NASA Technical Reports Server (NTRS)
Doran, P. T.; Bar-Cohen, Y.; Fritsen, C.; Kenig, F.; McKay, C. P.; Murray, A.; Sherrit, S.
2003-01-01
Evidence for the presence of ice and fluids near the surface of Mars in both the distant and recent past is growing with each new mission to the Planet. One explanation for fluids forming springlike features on Mars is the discharge of subsurface brines. Brines offer potential refugia for extant Martian life, and near surface ice could preserve a record of past life on the planet. Proven techniques to get underground to sample these environments, and get below the disruptive influence of the surface oxidant and radiation regime, will be critical for future astrobiology missions to Mars. Our Astrobiology for Science and Technology for Exploring Planets (ASTEP) project has the goal to develop and test a novel ultrasonic corer in a Mars analog environment, the McMurdo Dry valleys, Antarctica, and to detect and describe life in a previously unstudied extreme ecosystem; Lake Vida (Fig. 1), an ice-sealed lake.
Science at the ends of the Earth: astrobiology field expeditions as outreach tools
NASA Astrophysics Data System (ADS)
Billings, Linda
INTRODUCTION This paper will report on and evaluate communication, education, and outreach initiatives conducted in conjunction with NASA Astrobiology Science and Technology for Exploring Planets (ASTEP) field campaigns, addressing the costs and benefits of linking students, teachers, and other interested citizens with researchers in the field. This paper will highlight success stories, lessons learned, and promising practices regarding educational programs in scientific research environments. The Astrobiology Program in the U.S. National Aeronautics and Space Administration's (NASA's) Science Mission Directorate studies the origin, evolution, distribution, and future of life in the universe. Public interest in astrobiology is great, and advances in the field are rapid. Hence, the Astrobiology Program supports the widest possible dissemination of timely and useful information about scientific discoveries, technology development, new knowledge, and greater understanding produced by its investigators, employing an approach described as strategic communication planning. That is, the Astrobiology Program aims to integrate communication, education, and outreach into all aspects of program planning and execution. The Program encourages all of its investigators to contribute to the ongoing endeavor of informing public audiences about Astrobiology. The ASTEP element of the Astrobiology Program sponsors terrestrial field campaigns to further scientific research and technology development relevant to future solar system exploration missions. ASTEP science investigations are designed to further biological research in terrestrial environments analogous to those found on other planets, past or present. ASTEP sponsors the development of technologies to enable remote searches for, and identification of, life in extreme environments. ASTEP supports systems-level field campaigns designed to demonstrate and validate the science and technology in extreme environments on Earth. This paper will report on and evaluate communication, education, and outreach initiatives conducted in conjunction with ASTEP field campaigns, addressing the costs and benefits of linking students, teachers, and other interested citizens with researchers in the field. This paper will highlight success stories, lessons learned, and promising practices regarding educational programs in scientific research environments. SUMMARY The Astrobiology Program in NASA's Science Mission Directorate studies the origin, evolution, distribution, and future of life in the universe. Astrobiology research addresses three fundamental questions: How does life begin and evolve? Is there life beyond Earth and how can we detect it? What is the future of life on Earth and in the universe? Goals of the Astrobiology Program range from determining the nature and distribution of habitable environments in the Solar System and beyond to understanding the emergence of life from cosmic and planetary precursors, the interaction of past life on Earth with its changing environment, the formation and evolution of planets, links between planetary and biological evolution, the effects of climate and geology on habitability, and life's precursors and habitats in the outer solar system. Research dedicated to fulfilling these goals is conducted on Earth and in space, with a growing number of astrobiology investigations flying on planetary exploration missions. The field of astrobiology is an endeavor that brings together researchers in a broad range of disciplines including Earth and planetary science, astrophysics, heliophysics, microbiology and evolutionary biology, and cosmochemistry. Since 1995, the field of astrobiology has grown rapidly, and the pace of discovery has been brisk. The possibility of extraterrestrial life is now a serious scientific question. Research findings over the past decade that are relevant to this question include the controversial 1996 claim of fossil evidence for microbial life in a martian meteorite, evidence of past and perhaps even present liquid water on Mars, the likelihood of a liquid water ocean on Europa, the possibility of liquid water beneath the surface of Titan, observations of a growing number of extrasolar planets, and identification of new forms of microbial life in an ever-widening range of extreme Earth environments. Consequently, in the 21st century the pace of robotic planetary exploration is speeding up and scientific and public attention is increasingly focusing on astrobiology research, especially the search for signs of life on Mars and in other environments in our solar system. NASA's ASTEP program is sponsoring field campaigns to test science strategies and robotic technologies that could be useful in conducting astrobiological investigations in planetary environments, focusing on Mars and Europa. Public interest in astrobiology research is substantial, and advances in the field are rapid. Thus the NASA Astrobiology Program encourages Principal Investigators to incorporate communication, education, and public outreach initiatives in their research plans. NASA ASTEP projects provide especially good opportunities for communication, education, and outreach. The work of ASTEP projects takes place in remote terrestrial environments, places typically inaccessible to "civilians": the Norwegian protectorate of Svalbard, above the Arctic Circle; the far-northern reaches of the Arctic Ocean; the dry valleys of Antarctica; deep-sea hydrothermal vent systems and other unmapped underwater environments. ASTEP projects involve human researchers working with robotic adjuncts. ASTEP teams often combine include senior and student researchers. Some have even included "embedded" journalists and public affairs officers. ASTEP expeditions typically unfold in visually interesting, sometimes stunning, physical environments. ASTEP expeditions are virtually always intensive learning experiences for their researchers, and thus they provide good opportunities to demonstrate how science is actually done. Science means different things to different people in different situations, and thus public understanding of science, and science communication, are not simple things. Science can be a set of practices, a body of knowledge, a process of investigation, or a world view. In attempting to improve public understanding of science, it is useful to provide non-scientists with a window into the working world of science. ASTEP expeditions provide such windows. With the proliferation of miniaturized and increasingly affordable digital communication technology - still and video cameras, recorders, laptop computers - connections between the remote locations of ASTEP expeditions and students, teachers, and other interested citizens around the world are easier to make. Thanks to these technologies, interactive communications are also becoming easier. This paper will report on communication, education, and outreach activities for recent ASTEP field expeditions in the Arctic and Pacific oceans, Svalbard, and Mexico, highlighting success stories, lessons learned, and promising practices.
The δ Scuti pulsations of β Pictoris as observed by ASTEP from Antarctica
NASA Astrophysics Data System (ADS)
Mékarnia, D.; Chapellier, E.; Guillot, T.; Abe, L.; Agabi, A.; De Pra, Y.; Schmider, F.-X.; Zwintz, K.; Stevenson, K. B.; Wang, J. J.; Lagrange, A.-M.; Bigot, L.; Crouzet, N.; Fanteï-Caujolle, Y.; Christille, J.-M.; Kalas, P.
2017-12-01
Aims: The Antarctica Search for Transiting Extrasolar Planets (ASTEP), an automatized 400 mm telescope located at Concordia station in Antarctica, monitored β Pictoris continuously to detect any variability linked to the transit of the Hill sphere of its planet β Pictoris b. The long observation sequence, from March to September 2017, combined with the quality and high level duty cycle of our data, enables us to detect and analyse the δ Scuti pulsations of the star. Methods: Time series photometric data were obtained using aperture photometry by telescope defocussing. The 66 418 data points were analysed using the software package Period04. We only selected frequencies with amplitudes that exceed four times the local noise level in the amplitude spectrum. Results: We detect 31 δ Scuti pulsation frequencies, 28 of which are new detections. All the frequencies detected are in the interval 34.76-75.68 d-1. We also find that β Pictoris exhibits at least one pulsation mode that varies in amplitude over our monitoring duration of seven months.
AstroBioLab: A Mobile Biotic and Soil Analysis Laboratory
NASA Technical Reports Server (NTRS)
Bada, J. L.; Zent, A. P.; Grunthaner, F. J.; Quinn, R. C.; Navarro-Gonzalex, R.; Gonez-Silva, B.; McKay, C. P.
2003-01-01
The Jet Propulsion Laboratory, Scripps Institution of Oceanography, and NASA Ames Research Center are currently developing a mobile Astrobiology Laboratory (AstroBioLab) for a series of field campaigns using the Chilean Atacama Desert as a Martian surface analog site. The Astrobiology Science and Technology for Exploring Planets (ASTEP) program funded AstroBioLab is designed around the Mars Organic Detector (MOD) instrument and the Mars Oxidant Instrument (MOI) which provide complementary data sets. Using this suite of Mars Instrument Development Program (MIDP) and Planetary Instrument Definition and Development Program (PIDDP) derived in situ instruments, which provide state-of-the-art organic compound detection (attomolar sensitivity) and depth profiling of oxidation chemistry, we measure and correlate the interplay of organic compounds, inorganic oxidants, UV irradiation and water abundance. This mobile laboratory studies the proposition that intense UV irradiation coupled with low levels of liquid water generates metastable oxidizing species that can consume moderate amounts of seeded organic compounds. Results from the initial spring 2003 field campaign will be presented.
A Catalog of Eclipsing Binaries and Variable Stars Observed with ASTEP 400 from Dome C, Antarctica
NASA Astrophysics Data System (ADS)
Chapellier, E.; Mékarnia, D.; Abe, L.; Guillot, T.; Agabi, K.; Rivet, J.-P.; Schmider, F.-X.; Crouzet, N.; Aristidi, E.
2016-10-01
We used the large photometric database of the ASTEP program, whose primary goal was to detect exoplanets in the southern hemisphere from Antarctica, to search for eclipsing binaries (EcBs) and variable stars. 673 EcBs and 1166 variable stars were detected, including 31 previously known stars. The resulting online catalogs give the identification, the classification, the period, and the depth or semi-amplitude of each star. Data and light curves for each object are available at http://astep-vo.oca.eu.
ASTEP user's guide and software documentation
NASA Technical Reports Server (NTRS)
Gliniewicz, A. S.; Lachowski, H. M.; Pace, W. H., Jr.; Salvato, P., Jr.
1974-01-01
The Algorithm Simulation Test and Evaluation Program (ASTEP) is a modular computer program developed for the purpose of testing and evaluating methods of processing remotely sensed multispectral scanner earth resources data. ASTEP is written in FORTRAND V on the UNIVAC 1110 under the EXEC 8 operating system and may be operated in either a batch or interactive mode. The program currently contains over one hundred subroutines consisting of data classification and display algorithms, statistical analysis algorithms, utility support routines, and feature selection capability. The current program can accept data in LARSC1, LARSC2, ERTS, and Universal formats, and can output processed image or data tapes in Universal format.
A Multimedia Telematics Network for On-the-Job Training, Tutoring and Assessment.
ERIC Educational Resources Information Center
Ferreira, J. M. Martins; MacKinnon, Lachlan; Desmulliez, Marc; Foulk, Patrick
This paper describes an educational multimedia network developed in Advanced Software for Training and Evaluation of Processes (ASTEP). ASTEP started in February 1998 and was set up by a mixed industry-academia consortium with the objective of meeting the educational/training demands of the highly competitive microelectronics/semiconductor…
NASA Technical Reports Server (NTRS)
2010-01-01
The Program of the 2010 Astrobiology Science Conference: Evolution and Life: Surviving Catastrophes and Extremes on Earth and Beyond, included sessions on: 50 Years of Exobiology and Astrobiology: Greatest Hits; Extraterrestrial Molecular Evolution and Pre-Biological Chemistry: From the Interstellar Medium to the Solar System I; Human Exploration, Astronaut Health; Diversity in Astrobiology Research and Education; Titan: Past, Present, and Future; Energy Flow in Microbial Ecosystems; Extraterrestrial Molecular Evolution and Prebiological Chemistry: From the Interstellar Medium to the Solar System II; Astrobiology in Orbit; Astrobiology and Interdisciplinary Communication; Science from Rio Tinto: An Acidic Environment; Can We Rule Out Spontaneous Generation of RNA as the Key Step in the Origin of Life?; How Hellish Was the Hadean Earth?; Results from ASTEP and Other Astrobiology Field Campaigns I; Prebiotic Evolution: From Chemistry to Life I; Adaptation of Life in Hostile Space Environments; Extrasolar Terrestrial Planets I: Formation and Composition; Collaborative Tools and Technology for Astrobiology; Results from ASTEP and Other Astrobiology Field Campaigns II; Prebiotic Evolution: From Chemistry to Life II; Survival, Growth, and Evolution of Microrganisms in Model Extraterrestrial Environments; Extrasolar Terrestrial Planets II: Habitability and Life; Planetary Science Decadal Survey Update; Astrobiology Research Funding; Bioessential Elements Through Space and Time I; State of the Art in Life Detection; Terrestrial Evolution: Implications for the Past, Present, and Future of Life on Earth; Psychrophiles and Polar Environments; Life in Volcanic Environments: On Earth and Beyond; Geochronology and Astrobiology On and Off the Earth; Bioessential Elements Through Space and Time II; Origins and Evolution of Genetic Systems; Evolution of Advanced Life; Water-rich Asteroids and Moons: Composition and Astrobiological Potential; Impact Events and Evolution; A Warm, Wet Mars?; Titan Versus Europa - Potential for Astrobiology; Habitability Potential of Mars; Biosignatures: Tools and Development I; Origins of Molecular Asymmetry, Homochirality, and Life Detection; Deserts and Evaporite Basins and Associated Microbialite Systems; Ancient Life and Synthetic Biology: Crossroad of the Past and Future; Biosignatures: Tools and Development II; Free Oxygen: Proxies, Causes, and Consequences; Life in Modern Microbialite Systems - Function and Adaptation; Hydrothermal Systems and Organosynthesis Processes: Origin and Evolution of Life; Where Should We Go on Mars to Seek Signs of Life?; Search for Intelligent Life I. Innovative SETI Observing Programs and Future Directions; Integrating Astrobiology Research Across and Beyond the Community; Education in Astrobiology in K-12; Search for Intelligent Life II. Global Engagement and Interstellar Message Construction; Poster sessions included: Extraterrestrial Molecular Evolution and Pre-Biological Chemistry; Prebiotic Evolution: From Chemistry to Life; RNA World; Terrestrial Evolution: Implications for the Past, Present, and Future of Life on Earth; Hydrothermal Systems and Organosynthesis Processes: Origin and Evolution of Life; Virology and Astrobiology; Horizontal Genetic Transfer and Properties of Ancestral Organisms; Life in Volcanic Environments: On Earth and Beyond; Impact Events and Evolution; Evolution of Advanced Life; Evolution of Intelligent Life; Education in Astrobiology in K-12; Origins of Molecular Asymmetry, Homochirality, and Life Detection; Astrobiology and Interdisciplinary Communication; Diversity in Astrobiology Research and Education; Integrating Astrobiology Research Across and Beyond the Community; Policy and Societal Issues: Dealing with Potential Bumps in the Astrobiology Road Ahead; Results from ASTEP and Other Astrobiology Field Campaigns; Energy Flow in Microbial Ecosystems; Psychrophiles and Polar Environments; Deserts and Evaporite Basins and Associated Microbialite stems; Life in Modern Microbialite Systems - Function and Adaptation; Free Oxygen: Proxies, Causes, and Consequences; Bioessential Elements Through Space and Time; Water-rich Asteroids and Moons: Composition and Astrobiological Potential; Biosignatures: Tools and Developments; Robotics and Instrumentation for Astrobiology; State of the Art in Life Detection; Astrobiology in Orbit; Survival, Growth, and Evolution of Microrganisms in Model Extraterrestrial Evolution; Search for Intelligent Life; Habitability Potential of Mars; How and Where Should We Seek Signs of Life on Mars?; Titan: Past, Present, and Future; Extrasolar Terrestrial Planets: Formation, Composition, Diversity, Habitability and Life; Human Exploration, Astronaut Health; Science from Rio Tinto: An Acidic Environment and Adaptation of Life in Hostile Space Environments;
Development and Testing of a Laser-Powered Cryobot for Outer Planet Icy Moon Exploration
NASA Astrophysics Data System (ADS)
Siegel, V.; Stone, W.; Hogan, B.; Lelievre, S.; Flesher, C.
2013-12-01
Project VALKYRIE (Very-deep Autonomous Laser-powered Kilowatt-class Yo-yoing Robotic Ice Explorer) is a NASA-funded effort to develop the first laser powered cryobot - a self-contained intelligent ice penetrator capable of delivering science payloads through ice caps of the outer planet icy moons. The long range objective is to enable a full-scale Europa lander mission in which an autonomous life-searching underwater vehicle is transported by the cryobot and launched into the sub-surface Europan ocean. Mission readiness testing will involve an Antarctic sub-glacial lake cryobot sample return through kilometers of ice cap thickness. A key element of VALKYRIE's design is the use of a high energy laser as the primary power source. 1070 nm laser light is transmitted at a power level of 5 kW from a surface-based laser and injected into a custom-designed optical waveguide that is spooled out from the descending cryobot. Light exits the downstream end of the fiber, travels through diverging optics, and strikes a beam dump, which channels thermal power to hot water jets that melt the descent hole. Some beam energy is converted, via photovoltaic cells, to electricity for running onboard electronics and jet pumps. Since the vehicle can be sterilized prior to deployment and the melt path freezes behind it, preventing forward contamination, expansions on VALKYRIE concepts may enable cleaner and faster access to sub-glacial Antarctic lakes. Testing at Stone Aerospace between 2010 and 2013 has already demonstrated high power optical energy transfer over relevant (kilometer scale) distances as well as the feasibility of a vehicle-deployed optical waveguide (through which the power is transferred). The test vehicle is equipped with a forward-looking synthetic aperture radar (SAR) that can detect obstacles out to 1 kilometer from the vehicle. The initial ASTEP test vehicle will carry a science payload consisting of a DUV flow cytometer and a water sampling sub-system that will be triggered based on real-time analysis of the cytometer data. Results of laboratory test data and details of planned field campaigns will be discussed.
Intelligent Rover Execution for Detecting Life in the Atacama Desert
NASA Technical Reports Server (NTRS)
Baskaran, Vijayakumar; Muscettola, Nicola; Rijsman, David; Plaunt, Chris; Fry, Chuck
2006-01-01
On-board supervisory execution is crucial for the deployment of more capable and autonomous remote explorers. Planetary science is considering robotic explorers operating for long periods of time without ground supervision while interacting with a changing and often hostile environment. Effective and robust operations require on-board supervisory control with a high level of awareness of the principles of functioning of the environment and of the numerous internal subsystems that need to be coordinated. We describe an on-board rover executive that was deployed on a rover as past of the "Limits of Life in the Atacama Desert (LITA)" field campaign sponsored by the NASA ASTEP program. The executive was built using the Intelligent Distributed Execution Architecture (IDEA), an execution framework that uses model-based and plan-based supervisory control of its fundamental computational paradigm. We present the results of the third field experiment conducted in the Atacama desert (Chile) in August - October 2005.
Geospatial Representation, Analysis and Computing Using Bandlimited Functions
2010-02-19
navigation of aircraft and missiles require detailed representations of gravity and efficient methods for determining orbits and trajectories. However, many...efficient on today’s computers. Under this grant new, computationally efficient, localized representations of gravity have been developed and tested. As a...step in developing a new approach to estimating gravitational potentials, a multiresolution representation for gravity estimation has been proposed
The Mojave Subsurface Bio-Geochemistry Explorer (MOSBE)
NASA Technical Reports Server (NTRS)
Guerrero, J.; Beegle, L.; Abbey, W.; Bhartia, R.; Kounaves, S.; Russell, M.; Towles, D.
2012-01-01
The MOSBE Team has developed a terrestrial field campaign to explore two subsurface biological habitats under the Mojave Desert. This field campaign will not only help us understand terrestrial desert biology, but also will develop methodologies and strategies for potential future Mars missions that would seek to explore the Martian subsurface. We have proposed to the ASTEP program to integrate a suite of field demonstrated instruments with a 20 m subsurface drill as a coherent unit, the Mojave Subsurface Bio-geochemistry Explorer. The ATK Space Modular Planetary Drill System (MPDS) requires no drilling fluid, which allows aseptic sampling, can penetrate lithic ground up to 20 meters of depth, and utilizes less than 100 Watts throughout the entire depth. The drill has been developed and demonstrated in field testing to a depth of 10 meters in Arizona, December 2002. In addition to caching a continuous core throughout the drilling depth, it also generates and caches cuttings and fines that are strata-graphically correlated with the core. As a core segment is brought to the surface, it will be analyzed for texture and structure by a color microscopic imager and for relevant chemistry and mineralogy with a UV fluorescence/Raman spectrometer. Organic and soluble ionic species will be identified through two instruments -- a microcapillary electrophoresis, and an ion trap mass spectrometer that have been developed under PIDDP, ASTID and MIDP funding.
NASA Technical Reports Server (NTRS)
Stoker, Carol; Dunagan, Stephen; Stevens, Todd; Amils, Ricardo; Gomez-Elvira, Javier; Fernandez, David; Hall, James; Lynch, Kennda; Cannon, Howard; Zavaleta, Jhony
2004-01-01
The MARTE (Mars Astrobiology Research and Technology Experiment) project, an ASTEP field experiment, is exploring for a hypothesized subsurface anaerobic chemoautotrophic biosphere in the region of the Tinto River- or Rio Tinto- in southwestern Spain. It is also demonstrating technology needed to search for a subsurface biosphere on Mars. The project has three primary objectives: (1) search for and characterize subsurface life at Rio Tinto along with the physical and chemical properties and sustaining energy sources of its environment, (2) perform a high fidelity simulation of a robotic Mars drilling mission to search for life, and (3) demonstrate the drilling, sample handling, and instrument technologies relevant to searching for life on Mars. The simulation of the robotic drilling mission is guided by the results of the aseptic drilling campaign to search for life at Rio Tinto. This paper describes results of the first phase of the aseptic drilling campaign.
1993-01-01
Panasonic TLD . Panasonic Industrial Company; Secaucus, New Jersey. 5. Thurlow, Ronald M. "Neutron Dosimetry Using a Panasonic Thermoluminescent Dosimeter." A...steps 8-12. 29-15 THE BUILDING OF THE USAF PANASONIC UD-809AS ALGORITHM Katherine M. Arnold Research Associate Radiation Dosimetry Branch Brooks Air...Research August 1993 30-1 THE BUILDING OF THE USAF PANASONIC UD-809AS ALGORITHM Katherine M. Arnold Research Associate Radiation Dosimetry Branch
Astrobiology of Antarctic ice Covered Lakes
NASA Astrophysics Data System (ADS)
Doran, P. T.; Fritsen, C. H.
2005-12-01
Antarctica contains a number of permanently ice-covered lakes which have often been used as analogs of purported lakes on Mars in the past. Antarctic subglacial lakes, such as Lake Vostok, have also been viewed as excellent analogs for an ice covered ocean on the Jovian moon Europa, and to a lesser extend on Mars. Lakes in the McMurdo Dry Valleys of East Antarctica have ice covers that range from 3 to 20 meters thick. Water salinities range from fresh to hypersaline. The thinner ice-covered lakes have a well-documented ecology that relies on the limited available nutrients and the small amount of light energy that penetrates the ice covers. The thickest ice-covered lake (Lake Vida in Victoria Valley) has a brine beneath 20 m of ice that is 7 times sea water and maintains a temperature below -10 degrees Celsius. This lake is vastly different from the thinner ice-covered lakes in that there is no communication with the atmosphere. The permanent ice cover is so thick, that summer melt waters can not access the sub-ice brine and so the ice grows from the top up, as well as from the bottom down. Brine trapped beneath the ice is believed to be ancient, stranded thousands of years ago when the ice grew thick enough to isolate it from the surface. We view Lake Vida as an excellent analog for the last aquatic ecosystem to have existed on Mars under a planetary cooling. If, as evidence is now increasingly supporting, standing bodies of water existed on Mars in the past, their fate under a cooling would be to go through a stage of permanent ice cover establishment, followed by a thickening of that ice cover until the final stage just prior to a cold extinction would be a Lake Vida-like lake. If dust storms or mass movements covered these ancient lakes, remnants may well be in existence in the subsurface today. A NASA Astrobiology Science and Technology for Exploring Planets (ASTEP) project will drill the Lake Vida ice cover and access the brine and sediments beneath in November 2005. This presentation will include an update from the field.
Exploring the Largest Mass Fraction of the Solar System: the Case for Planetary Interiors
NASA Technical Reports Server (NTRS)
Danielson, L. R.; Draper, D.; Righter, K.; McCubbin, F.; Boyce, J.
2017-01-01
Why explore planetary interiors: The typical image that comes to mind for planetary science is that of a planet surface. And while surface data drive our exploration of evolved geologic processes, it is the interiors of planets that hold the key to planetary origins via accretionary and early differentiation processes. It is that initial setting of the bulk planet composition that sets the stage for all geologic processes that follow. But nearly all of the mass of planets is inaccessible to direct examination, making experimentation an absolute necessity for full planetary exploration.
The 1990 update to strategy for exploration of the inner planets
NASA Technical Reports Server (NTRS)
Esposito, Larry W.; Pepin, Robert O.; Cheng, Andrew F.; Jakosky, Bruce M.; Lunine, Jonathan I.; Mcfadden, Lucy-Ann; Mckay, Christopher P.; Mckinnon, William B.; Muhleman, Duane O.; Nicholson, Philip
1990-01-01
The Committee on Planetary and Lunar Exploration (COMPLEX) has undertaken to review and revise the 1978 report Strategy for Exploration of the Inner Planets, 1977-1987. The committee has found the 1978 report to be generally still pertinent. COMPLEX therefore issues its new report in the form of an update. The committee reaffirms the basic objectives for exploration of the planets: to determine the present state of the planets and their satellites, to understand the processes active now and at the origin of the solar system, and to understand planetary evolution, including appearance of life and its relation to the chemical history of the solar system.
Investigating the Origin and Evolution of Venus with In Situ Mass Spectrometry
NASA Technical Reports Server (NTRS)
Trainer, M. G.; Mahaffy, P. R.; Brinckerhoff, W. B.; Johnson, N. M.; Glaze, L. S.
2014-01-01
The exploration of Venus continues to be a top priority of planetary science. The Planetary Decadal Survey goals for inner-planet exploration seek to discern the origin and diversity of terrestrial planets, understand how the evolution of terrestrial planets relates to the evolution of life, and explore the processes that control climate on Earth-like planets [1]. These goals can only be realized through continued and extensive exploration of Venus, the most mysterious of the terrestrial planets, remarkably different from the Earth despite the gross similarities between these twin planets. It is unknown if this apparent divergence was intrinsic, programmed during accretion from distinct nebular reservoirs, or a consequence of either measured or catastrophic processes during planetary evolution. Even if the atmosphere of Venus is a more recent development, its relationship to the resurfacing of the planets enigmatic surface is not well understood. Resolving such uncertainties directly addresses the hypothesis of a more clement, possibly water-rich era in Venus past as well as whether Earth could become more Venus-like in the future.
Investigating the Origin and Evolution of Venus with In Situ Mass Spectrometry
NASA Technical Reports Server (NTRS)
Trainer, M. G.; Mahaffy, P. R.; Brinckerhoff, W. B.; Johnson, N. M.; Glaze, L. S.
2015-01-01
The exploration of Venus continues to be a top priority of planetary science. The Planetary Decadal Survey goals for inner-planet exploration seek to discern the origin and diversity of terrestrial planets, understand how the evolution of terrestrial planets relates to the evolution of life, and explore the processes that control climate on Earth-like planets. These goals can only be realized through continued and extensive exploration of Venus, the most mysterious of the terrestrial planets, remarkably different from the Earth despite the gross similarities between these "twin planets". It is unknown if this apparent divergence was intrinsic, programmed during accretion from distinct nebular reservoirs, or a consequence of either measured or catastrophic processes during planetary evolution. Even if the atmosphere of Venus is a more "recent" development, its relationship to the resurfacing of the planet's enigmatic surface is not well understood. Resolving such uncertainties directly addresses the hypothesis of a more clement, possibly water-rich era in Venus' past as well as whether Earth could become more Venus-like in the future.
Investigating the Origin and Evolution of Venus with in Situ Mass Spectrometry
NASA Technical Reports Server (NTRS)
Trainer, M. G.; Mahaffy, P. R.; Brinckerhoff, W. B.; Johnson, N. M.; Glaze, L. S.
2016-01-01
The exploration of Venus continues to be a top priority of planetary science. The Planetary Decadal Survey goals for inner-planet exploration seek to discern the origin and diversity of terrestrial planets, understand how the evolution of terrestrial planets relates to the evolution of life, and explore the processes that control climate on Earth-like planets. These goals can only be realized through continued and extensive exploration of Venus, the most mysterious of the terrestrial planets, remarkably different from the Earth despite the gross similarities between these "twin planets". It is unknown if this apparent divergence was intrinsic, programmed during accretion from distinct nebular reservoirs, or a consequence of either measured or catastrophic processes during planetary evolution. Even if the atmosphere of Venus is a more "recent" development, its relationship to the resurfacing of the planet's enigmatic surface is not well understood. Resolving such uncertainties directly addresses the hypothesis of a more clement, possibly water-rich era in Venus' past as well as whether Earth could become more Venus-like in the future.
NASA Technical Reports Server (NTRS)
Stoker, Carol; Lemke, Larry; Mandell, Humboldt; McKay, David; George, Jeffrey; Gomez-Alvera, Javier; Amils, Ricardo; Stevens, Todd; Miller, David
2003-01-01
The MARTE (Mars Astrobiology Research and Technology Experiment) project was selected by the new NASA ASTEP program, which supports field experiments having an equal emphasis on Astrobiology science and technology development relevant to future Astrobiology missions. MARTE will search for a hypothesized subsurface anaerobic chemoautotrophic biosphere in the region of the Tinto River in southwestern Spain while also demonstrating technology needed to search for a subsurface biosphere on Mars. The experiment is informed by the strategy for searching for life on Mars.
NASA's Exploration of the Red Planet: An Overview
NASA Technical Reports Server (NTRS)
Naderi, Firouz M.
2004-01-01
This viewgraph presentation reviews NASA's plans for the exploration of Mars. The reasons for the choice of Mars for exploration are reviewed: launch opportunity every 26 months, the closest planet, and potential extraterrestrial life.
A geological basis for the exploration of the planets: Introduction
NASA Technical Reports Server (NTRS)
Greeley, R.; Carr, M. H.
1976-01-01
The geological aspects of solar-system exploration were considered by first showing how geologic data are related to space science in general, and, second, by discussing the approach used in planetary geology. The origin, evolution, and distribution of matter condensed in the form of planets, satellites, comets, and asteroids were studied. Terrestrial planets, comets, and asteroids, and the solid satellites of the outer planets are discussed. Jupiter and Saturn, in particular, have satellites of prime importance. Geophysics, geochemistry, geodesy, cartography, and other disciplines concerned with the solid planets were all included.
Mapping forest types in Worcester County, Maryland, using LANDSAT data
NASA Technical Reports Server (NTRS)
Burtis, J., Jr.; Witt, R. G.
1981-01-01
The feasibility of mapping Level 2 forest cover types for a county-sized area on Maryland's Eastern Shore was demonstrated. A Level 1 land use/land cover classification was carried out for all of Worcester County as well. A June 1978 LANDSAT scene was utilized in a classification which employed two software packages on different computers (IDIMS on an HP 3000 and ASTEP-II on a Univac 1108). A twelve category classification scheme was devised for the study area. Resulting products include black and white line printer maps, final color coded classification maps, digitally enhanced color imagery and tabulated acreage statistics for all land use and land cover types.
Aerocapture Technology Development Needs for Outer Planet Exploration
NASA Technical Reports Server (NTRS)
Wercinski, Paul; Munk, Michelle; Powell, Richard; Hall, Jeff; Graves, Claude; Partridge, Harry (Technical Monitor)
2002-01-01
The purpose of this white paper is to identify aerocapture technology and system level development needs to enable NASA future mission planning to support Outer Planet Exploration. Aerocapture is a flight maneuver that takes place at very high speeds within a planet's atmosphere that provides a change in velocity using aerodynamic forces (in contrast to propulsive thrust) for orbit insertion. Aerocapture is very much a system level technology where individual disciplines such as system analysis and integrated vehicle design, aerodynamics, aerothermal environments, thermal protection systems (TPS), guidance, navigation and control (GN&C) instrumentation need to be integrated and optimized to meet mission specific requirements. This paper identifies on-going activities, their relevance and potential benefit to outer planet aerocapture that include New Millennium ST7 Aerocapture concept definition study, Mars Exploration Program aeroassist project level support, and FY01 Aeroassist In-Space Guideline tasks. The challenges of performing aerocapture for outer planet missions such as Titan Explorer or Neptune Orbiter require investments to advance the technology readiness of the aerocapture technology disciplines for the unique application of outer planet aerocapture. This white paper will identify critical technology gaps (with emphasis on aeroshell concepts) and strategies for advancement.
Terrestrial Planets: Comparative Planetology
NASA Technical Reports Server (NTRS)
1985-01-01
Papers were presented at the 47th Annual Meteoritical Society Meeting on the Comparative planetology of Terrestrial Planets. Subject matter explored concerning terrestrial planets includes: interrelationships among planets; plaentary evolution; planetary structure; planetary composition; planetary Atmospheres; noble gases in meteorites; and planetary magnetic fields.
The Effects of Gravitational Instabilities on Gas Giant Planet Migration in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Michael, Scott A.; Durisen, R. H.
2010-05-01
In this paper we conduct several three-dimensional radiative hydrodynamic simulations to explore the effect of the inclusion of gas giant planets in gravitationally unstable protoplanetary disks. We compare several simulations carried out with the CHYMERA code including: a baseline simulation without a planet, and three simulations including planets of various masses 0.3, 1 and 3 Jupiter masses. The planets are inserted into the baseline simulation after the gravitational instabilities (GIs) have grown to non-linear amplitude. The planets are inserted at the same radius, which coincides with the co-rotation radius of the dominant global mode in the baseline simulation. We examine the effect that the GIs have on migration rates as well as the potential of halting inward migration. We also examine the effect the insertion of the planet has on the global torques caused by the GIs. Furthermore, we explore the relationship between planet mass and migration rates and effect on GIs.
The Geology of the Terrestrial Planets
NASA Technical Reports Server (NTRS)
Carr, M. H. (Editor); Saunders, R. S.; Strom, R. G.; Wilhelms, D. E.
1984-01-01
The geologic history of the terrestrial planets is outlined in light of recent exploration and the revolution in geologic thinking. Among the topics considered are planet formation; planetary craters, basins, and general surface characteristics; tectonics; planetary atmospheres; and volcanism.
The Terrestrial Planet Finder and Darwin Missions
NASA Technical Reports Server (NTRS)
Danchi, William C.
2004-01-01
Both in the United States and in Europe, teams of scientists and engineers are exploring the feasibility of the Terrestrial Planet Finder (TPF) and Darwin missions, which are designed to search for Earth-like planets in the habitable zone of nearby stars. In the US, the TPF Science Working Group is studying four options - small (4m by 6 m primary mirror) and large (4m by 10 m primary mirror) coronagraphs for planet detection at visible wavelengths, and structurally connected and free-flyer interferometers at thermal infrared wavelengths. The US TPF-SWG is charged with selecting an option for NASA by the end of 2006. In Europe the Darwin Terrestrial Exo-planet Advisory Team (TE- SAT) is exploring the free-flyer interferometer option only at this time. I will discuss the vurtures and difficulties of detecting and characterizing extra-solar planets in both wavelength regions as well as some of the technical challenges and progress in the past year.
Origin scenarios for the Kepler 36 planetary system
NASA Astrophysics Data System (ADS)
Quillen, Alice C.; Bodman, Eva; Moore, Alexander
2013-11-01
We explore scenarios for the origin of two different density planets in the Kepler 36 system in adjacent orbits near the 7:6 mean motion resonance. We find that fine tuning is required in the stochastic forcing amplitude, the migration rate and planet eccentricities to allow two convergently migrating planets to bypass mean motion resonances such as the 4:3, 5:4 and 6:5, and yet allow capture into the 7:6 resonance. Stochastic forcing can eject the system from resonance causing a collision between the planets, unless the disc causing migration and stochastic forcing is depleted soon after resonance capture. We explore a scenario with approximately Mars mass embryos originating exterior to the two planets and migrating inwards towards two planets. We find that gravitational interactions with embryos can nudge the system out of resonances. Numerical integrations with about a half dozen embryos can leave the two planets in the 7:6 resonance. Collisions between planets and embryos have a wide distribution of impact angles and velocities ranging from accretionary to disruptive. We find that impacts can occur at sufficiently high impact angle and velocity that the envelope of a planet could have been stripped, leaving behind a dense core. Some of our integrations show the two planets exchanging locations, allowing the outer planet that had experienced multiple collisions with embryos to become the innermost planet. A scenario involving gravitational interactions and collisions with embryos may account for both the proximity of the Kepler 36 planets and their large density contrast.
THE STATISTICAL MECHANICS OF PLANET ORBITS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tremaine, Scott, E-mail: tremaine@ias.edu
2015-07-10
The final “giant-impact” phase of terrestrial planet formation is believed to begin with a large number of planetary “embryos” on nearly circular, coplanar orbits. Mutual gravitational interactions gradually excite their eccentricities until their orbits cross and they collide and merge; through this process the number of surviving bodies declines until the system contains a small number of planets on well-separated, stable orbits. In this paper we explore a simple statistical model for the orbit distribution of planets formed by this process, based on the sheared-sheet approximation and the ansatz that the planets explore uniformly all of the stable region ofmore » phase space. The model provides analytic predictions for the distribution of eccentricities and semimajor axis differences, correlations between orbital elements of nearby planets, and the complete N-planet distribution function, in terms of a single parameter, the “dynamical temperature,” that is determined by the planetary masses. The predicted properties are generally consistent with N-body simulations of the giant-impact phase and with the distribution of semimajor axis differences in the Kepler catalog of extrasolar planets. A similar model may apply to the orbits of giant planets if these orbits are determined mainly by dynamical evolution after the planets have formed and the gas disk has disappeared.« less
On the classification of exoplanets according to Safronov number
NASA Astrophysics Data System (ADS)
Öztürk, O.; Erdem, A.
2018-02-01
We reexamine the classification of transiting exoplanets proposed by Hansen & Barman (2007) based on equilibrium temperatures and Safronov numbers. We used more sensitive data, namely, photometric and spectroscopic orbital solutions, of 263 well-known planets given in The Exoplanet Data Explorer, while Hansen & Barman (2007) used data on 18 transiting planets. Diagrams of the planet gravity vs. orbital period, planet gravity vs. equilibrium temperature, and Safronov number vs. equilibrium temperature of the 263 transiting planets show that the division of planets into two classes is indistinct.
NASA Technical Reports Server (NTRS)
Chapman, Clark R.; Ramlose, Terri (Editor)
1989-01-01
The goal of planetary exploration is to understand the nature and development of the planets, as illustrated by pictures from the first two decades of spacecraft missions and by the imaginations of space artists. Planets, comets, asteroids, and moons are studied to discover the reasons for their similarities and differences and to find clues that contain information about the primordial process of planet origins. The scientific goals established by the National Academy of Sciences as the foundation of NASA's Solar System Exploration Program are covered: to determine the nature of the planetary system, to understand its origin and evolution, the development of life on Earth, and the principles that shape present day Earth.
Lapshin, Rostislav V
2009-06-01
Prospects for a feature-oriented scanning (FOS) approach to investigations of sample surfaces, at the micrometer and nanometer scales, with the use of scanning probe microscopy under space laboratory or planet exploration rover conditions, are examined. The problems discussed include decreasing sensitivity of the onboard scanning probe microscope (SPM) to temperature variations, providing autonomous operation, implementing the capabilities for remote control, self-checking, self-adjustment, and self-calibration. A number of topical problems of SPM measurements in outer space or on board a planet exploration rover may be solved via the application of recently proposed FOS methods.
Exoplanet exploration for brown dwarfs with infrared astrometry
NASA Astrophysics Data System (ADS)
Yamaguchi, Masaki
The astrometry is one of the oldest method for the exoplanet exploration. However, only one exoplanet has been found with the method. This is because the planet mass is sufficiently smaller than the mass of the central star, so that it is hard to observe the fluctuation of the central star by the planet. Therefore, we investigate the orbital period and mass of planets which we can discover by the future astrometric satellites for brown dwarfs, with the mass less than a tenth of the solar mass. So far five planetary systems of brown dwarfs have been found, whose mass ratios are larger than a tenth. For example, for the system whose distance, orbital period and mass ratio are 10 pc, 1 year and a tenth, respectively, the apparent semi-major axis reaches 3 milli-arcsecond, which can be well detected with the future astrometric satellites such as Small-JASMINE and Gaia. With these satellite, we can discover even super-Earth for the above system. We further investigate where in the period-mass plane we can explore the planet for individual brown dwarf with Small-JASMINE and Gaia. As a result, we find that we can explore a wide region where period and mass are within 5 years and larger than 3 earth mass. In addition, we can explore the region around 0.1 day and 10 Jovian mass, where planets have never found for any central star, and where we can explore only with Small-JASMINE for most target brown dwarfs.
Space Science in Action: Planets and the Solar System [Videotape].
ERIC Educational Resources Information Center
1999
This videotape recording teaches students about the key characteristics of each planet, the differences between inner and outer planets, and which planets have their own moons. Students look at how remote-control rovers are designed to explore other surfaces in the solar system. A hands-on activity demonstrates how gravity keeps all the members of…
Advanced space storable propellants for outer planet exploration
NASA Technical Reports Server (NTRS)
Thunnissen, Daniel P.; Guernsey, Carl S.; Baker, Raymond S.; Miyake, Robert N.
2004-01-01
An evaluation of the feasibility and mission performance benefits of using advanced space storable propellants for outer planet exploration was performed. For the purpose of this study, space storable propellants are defined to be propellants which can be passively stored without the need for active cooling.
The Atmospheres of Extrasolar Planets
NASA Technical Reports Server (NTRS)
Richardson, L. J.; Seager, S.
2007-01-01
In this chapter we examine what can be learned about extrasolar planet atmospheres by concentrating on a class of planets that transit their parent stars. As discussed in the previous chapter, one way of detecting an extrasolar planet is by observing the drop in stellar intensity as the planet passes in front of the star. A transit represents a special case in which the geometry of the planetary system is such that the planet s orbit is nearly edge-on as seen from Earth. As we will explore, the transiting planets provide opportunities for detailed follow-up observations that allow physical characterization of extrasolar planets, probing their bulk compositions and atmospheres.
New Extra-Solar Planet - thermal state and structure
NASA Astrophysics Data System (ADS)
Valencia, D.; O'Connell, R. J.; Sasselov, D.
2005-12-01
For the last decade astronomers have found more than 160 planets orbiting stars other than our sun. All but three of them are gaseous planets. The variety of characteristics of these newly discovered planets opens a new field with questions about planetary formation, structure and evolution, as well as the possibility of existence of life beyond our solar system. Planetary formation models suggested the existence of terrestrial extra-solar planets with masses up to 10 times the mass of the Earth. In June of 2005 the first Super-Earth was discovered orbiting a star 15 light years away with a mass that is about 7.5 times the mass of the Earth and a period of 1.94 days. The composition of this planet is unknown but probably has an Earth-like composition. Astronomers believe the surface temperature ranges between ~500 K and ~700 K. Liquid water can exist at temperatures above T=400K at high pressures (above 10 MPa) allowing for the possibility of a water layer on top of a rocky core. Our work focuses on determining scaling relationships with mass, internal structure parameters and thermal state. We explore the effects of a water/icy layer above a rocky core as well as other types of compositions in determining the internal structure. This water layer may convect causing the planet to have two layer convection. We explore the effects of a layer convection mode versus whole mantle convection for a Super-Earth. Due to the closeness of this planet to its parent star we can expect substantial tidal heating that can affect the thermal state of this planet. We explore the effects of tidal heating in the internal structure of a planet. Differences in composition have much larger effects in the mass-radius relationship than the uncertainties in thermodynamic parameters of the minerals composing the planet.
Sacred Space: A Beginning Framework for Off-Planet Church
NASA Astrophysics Data System (ADS)
Hoffmann, T. K.
As governments and corporations continue to engage space security, commerce, exploration and colonization, the Christian Church will not be far behind. Historically the Church has always been part of the first waves of explorers and colonizers, with its ideological interests being easily supported by generous resources and strong infrastructures. The exploring Church has not always been a friendly guest, however, and at times has initiated or condoned great harm. This paper offers a beginning framework as one way of insuring an appropriate presence in space for the Church. This framework is built with three common religious planks, namely, theology, ecclesiology and church worker vocation. Each of these is recast in terms of the off-planet scenario. This paper concludes that an appropriate off-planet Church will be founded on an "exomissiological" theology, will embrace an ecclesiology that emphasizes religious health, and will adequately select, train and monitor its off-planet church workers.
NASA Astrophysics Data System (ADS)
Haqq-Misra, J.
2014-04-01
The idea that a planet or its biota may be intrinsically valuable, apart from its usefulness to humans, is contentious among ethicists, while difficulties abound in attempting to decide what is objectively better or worse for a planet or life. As a way of dissecting the issue of value and life, I present a two-axis comparative tool for ethical frameworks that considers the intrinsic or instrumental value placed upon organisms, environments, planetary systems, and space. I discuss ethical considerations relevant to contemporary space exploration, near-future human exploration of Solar System bodies, and long-term possibilities of interplanetary colonization. This allows for more transparent discussions of value with regard to future space exploration or the discovery of extraterrestrial life.
NASA Technical Reports Server (NTRS)
Parks, R. J.
1979-01-01
Initial, current and planned United States projects for the spacecraft exploration of the outer planets of the solar system are presented. Initial plans were developed in the mid-1960's for the exploration of the outer planets by utilizing the gravity-assist technique during a fortuitous alignment of the outer planets in the Grand Tour Project, however although state-of-the-art space technology could have supported the project, it was considered too expensive, therefore politically infeasible. Subsequently, the Pioneer Project was undertaken to explore the asteroid belt and the environment around Jupiter and the Voyager Project was undertaken to send two spacecraft to fly by Jupiter and utilize its gravity assist to reach Saturn. The successful Pioneer 10 and 11 missions have provided important information on the effects of the asteroid belt and the severe radiation environment around Jupiter, and Voyager 1 has collected information about Jupiter, its magnetic fields and radiation zones, and its satellites. Project Galileo is intended to be launched in January 1982 to conduct an intensive investigation of Jupiter, its satellites and immediate environment and a Saturn Orbiter dual probe mission and a Uranus orbiter are also under consideration.
Planetary science: A lunar perspective
NASA Technical Reports Server (NTRS)
Taylor, S. R.
1982-01-01
An interpretative synthesis of current knowledge on the moon and the terrestrial planets is presented, emphasizing the impact of recent lunar research (using Apollo data and samples) on theories of planetary morphology and evolution. Chapters are included on the exploration of the solar system; geology and stratigraphy; meteorite impacts, craters, and multiring basins; planetary surfaces; planetary crusts; basaltic volcanism; planetary interiors; the chemical composition of the planets; the origin and evolution of the moon and planets; and the significance of lunar and planetary exploration. Photographs, drawings, graphs, tables of quantitative data, and a glossary are provided.
Topics in Extrasolar Planet Characterization
NASA Astrophysics Data System (ADS)
Howe, Alex Ryan
I present four papers exploring different topics in the area of characterizing the atmospheric and bulk properties of extrasolar planets. In these papers, I present two new codes, in various forms, for modeling these objects. A code to generate theoretical models of transit spectra of exoplanets is featured in the first paper and is refined and expanded into the APOLLO code for spectral modeling and parameter retrieval in the fourth paper. Another code to model the internal structure and evolution of planets is featured in the second and third papers. The first paper presents transit spectra models of GJ 1214b and other super-Earth and mini-Neptune type planets--planets with a "solid", terrestrial composition and relatively small planets with a thick hydrogen-helium atmosphere, respectively--and fit them to observational data to estimate the atmospheric compositions and cloud properties of these planets. The second paper presents structural models of super-Earth and mini-Neptune type planets and estimates their bulk compositions from mass and radius estimates. The third paper refines these models with evolutionary calculations of thermal contraction and ultraviolet-driven mass loss. Here, we estimate the boundaries of the parameter space in which planets lose their initial hydrogen-helium atmospheres completely, and we also present formation and evolution scenarios for the planets in the Kepler-11 system. The fourth paper uses more refined transit spectra models, this time for hot jupiter type planets, to explore the methods to design optimal observing programs for the James Webb Space Telescope to quantitatively measure the atmospheric compositions and other properties of these planets.
Earthlike planets: Surfaces of Mercury, Venus, earth, moon, Mars
NASA Technical Reports Server (NTRS)
Murray, B.; Malin, M. C.; Greeley, R.
1981-01-01
The surfaces of the earth and the other terrestrial planets of the inner solar system are reviewed in light of the results of recent planetary explorations. Past and current views of the origin of the earth, moon, Mercury, Venus and Mars are discussed, and the surface features characteristic of the moon, Mercury, Mars and Venus are outlined. Mechanisms for the modification of planetary surfaces by external factors and from within the planet are examined, including surface cycles, meteoritic impact, gravity, wind, plate tectonics, volcanism and crustal deformation. The origin and evolution of the moon are discussed on the basis of the Apollo results, and current knowledge of Mercury and Mars is examined in detail. Finally, the middle periods in the history of the terrestrial planets are compared, and future prospects for the exploration of the inner planets as well as other rocky bodies in the solar system are discussed.
Geologic Exploration of the Planets: The First 50 Years
NASA Astrophysics Data System (ADS)
Carr, Michael H.
2013-01-01
Fifty years ago, on 14 December 1962, the Mariner 2 spacecraft flew by Venus and inaugurated the modern era of planetary exploration. Since that first Venus flyby, roughly 80 spacecraft have successfully probed, orbited, flown by, landed on, or roved on other planets, satellites, asteroids, and comets. As Carl Sagan used to say, only one generation of humankind can be the first explorers of the solar system, and we are that generation.
Consequences of eccentricity and inclination damping for the in-situ formation of STIPs
NASA Astrophysics Data System (ADS)
Granados Contreras, Agueda Paula
2018-01-01
In Boley, Granados, and Gladman (2016), we proposed that hot and warm Jupiters could form in-situ from the consolidation of planets in meta-stable, high-multiplicity System with Tightly-packed Inner Planets (STIPs) in the presence of gas. Under this hypothesis, the timing of instability within the STIP relative to the gas depletion timescale can lead to a wide range of planetary diversity, from short-orbital period gas giants to high-density, massive planets. The simulations used Kepler-11 as a base and assumed that a gas giant could form if instability in the gaseous disc led to the consolidation of a 10 Mearth core. The results showed that such consolidation could work, in principle. However, in the simulations we excluded the effects of eccentricity and inclination damping. We present new simulations that explore this effect on the consolidation paradigm. For the parameters so far explored, gas damping significantly increases the stability of the system, although consolidation does occur in some cases. We further find that the eccentricity damping can lead to the formation of stable co-orbiting planets, although this is a rare outcome. Briefly, we explore the implications of the detection of transiting co-orbital planets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaltenegger, L.; Sasselov, D.; Rugheimer, S., E-mail: kaltenegger@mpia.de
Planets composed of large quantities of water that reside in the habitable zone are expected to have distinct geophysics and geochemistry of their surfaces and atmospheres. We explore these properties motivated by two key questions: whether such planets could provide habitable conditions and whether they exhibit discernable spectral features that distinguish a water-planet from a rocky Earth-like planet. We show that the recently discovered planets Kepler-62e and -62f are the first viable candidates for habitable zone water-planets. We use these planets as test cases for discussing those differences in detail. We generate atmospheric spectral models and find that potentially habitablemore » water-planets show a distinctive spectral fingerprint in transit depending on their position in the habitable zone.« less
NASA Astrophysics Data System (ADS)
Stamenkovic, V.
2017-12-01
We focus on the connections between plate tectonics and planet composition — by studying how plate yielding is affected by surface and mantle water, and by variable amounts of Fe, SiC, or radiogenic heat sources within the planet interior. We especially explore whether we can make any robust conclusions if we account for variable initial conditions, current uncertainties in model parameters and the pressure dependence of the viscosity, as well as uncertainties on how a variable composition affects mantle rheology, melting temperatures, and thermal conductivities. We use a 1D thermal evolution model to explore with more than 200,000 simulations the robustness of our results and use our previous results from 3D calculations to help determine the most likely scenario within the uncertainties we still face today. The results that are robust in spite of all uncertainties are that iron-rich mantle rock seems to reduce the efficiency of plate yielding occurring on silicate planets like the Earth if those planets formed along or above mantle solidus and that carbon planets do not seem to be ideal candidates for plate tectonics because of slower creep rates and generally higher thermal conductivities for SiC. All other conclusions depend on not yet sufficiently constrained parameters. For the most likely case based on our current understanding, we find that, within our range of varied planet conditions (1-10 Earth masses), planets with the greatest efficiency of plate yielding are silicate rocky planets of 1 Earth mass with large metallic cores (average density 5500-7000 kg m-3) with minimal mantle concentrations of iron (as little as 0% is preferred) and radiogenic isotopes at formation (up to 10 times less than Earth's initial abundance; less heat sources do not mean no heat sources). Based on current planet formation scenarios and observations of stellar abundances across the Galaxy as well as models of the evolution of the interstellar medium, such planets are suggested to be statistically more common around young stars in the outer disk of the Milky Way. Rocky super-Earths, undifferentiated planets, and still hypothetical carbon planets have the lowest plate yielding efficiencies found in our study. This work aids exoplanet characterization and helps explore the fundamental drivers of plate tectonics.
Open System Architecture design for planet surface systems
NASA Technical Reports Server (NTRS)
Petri, D. A.; Pieniazek, L. A.; Toups, L. D.
1992-01-01
The Open System Architecture is an approach to meeting the needs for flexibility and evolution of the U.S. Space Exploration Initiative program of the manned exploration of the solar system and its permanent settlement. This paper investigates the issues that future activities of the planet exploration program must confront, defines the basic concepts that provide the basis for establishing an Open System Architecture, identifies the appropriate features of such an architecture, and discusses examples of Open System Architectures.
Exploring exoplanet populations with NASA's Kepler Mission
NASA Astrophysics Data System (ADS)
Batalha, Natalie M.
2014-09-01
The Kepler Mission is exploring the diversity of planets and planetary systems. Its legacy will be a catalog of discoveries sufficient for computing planet occurrence rates as a function of size, orbital period, star type, and insolation flux. The mission has made significant progress toward achieving that goal. Over 3,500 transiting exoplanets have been identified from the analysis of the first 3 y of data, 100 planets of which are in the habitable zone. The catalog has a high reliability rate (85-90% averaged over the period/radius plane), which is improving as follow-up observations continue. Dynamical (e.g., velocimetry and transit timing) and statistical methods have confirmed and characterized hundreds of planets over a large range of sizes and compositions for both single- and multiple-star systems. Population studies suggest that planets abound in our galaxy and that small planets are particularly frequent. Here, I report on the progress Kepler has made measuring the prevalence of exoplanets orbiting within one astronomical unit of their host stars in support of the National Aeronautics and Space Administration's long-term goal of finding habitable environments beyond the solar system.
Exploring exoplanet populations with NASA's Kepler Mission.
Batalha, Natalie M
2014-09-02
The Kepler Mission is exploring the diversity of planets and planetary systems. Its legacy will be a catalog of discoveries sufficient for computing planet occurrence rates as a function of size, orbital period, star type, and insolation flux. The mission has made significant progress toward achieving that goal. Over 3,500 transiting exoplanets have been identified from the analysis of the first 3 y of data, 100 planets of which are in the habitable zone. The catalog has a high reliability rate (85-90% averaged over the period/radius plane), which is improving as follow-up observations continue. Dynamical (e.g., velocimetry and transit timing) and statistical methods have confirmed and characterized hundreds of planets over a large range of sizes and compositions for both single- and multiple-star systems. Population studies suggest that planets abound in our galaxy and that small planets are particularly frequent. Here, I report on the progress Kepler has made measuring the prevalence of exoplanets orbiting within one astronomical unit of their host stars in support of the National Aeronautics and Space Administration's long-term goal of finding habitable environments beyond the solar system.
Strategy for exploration of the outer planets: 1986-1996
NASA Technical Reports Server (NTRS)
1986-01-01
Over the past decade COMPLEX has published three strategy reports which, taken together, encompass the entire planetary system and recommend a coherent program of planetary exploration. The highest priority for outer planet exploration during the next decade is intensive study of Saturn (the planet, satellites, rings, and magnetosphere) as a system. The Committee additionally recommends that NASA engage in the following supporting activities: increased support of laboratory and theoretical studies; pursuit of earth-based and earth-orbital observations; commitment to continued operation of productive spacecraft; implementation of the instrument development plan as appropriate for the outer solar system; studies of deep atmospheric probes; development of penetrators or other hard landers; development of radiation-hardened spacecraft; and development of low-thrust propulsion systems. Longer-term objectives include exploration and intensive study of: the Uranus and Neptune systems; planetology of the Galilean satellites and Titan; and the inner Jovian system.
Emerging communications technologies for outer-planet exploration
NASA Technical Reports Server (NTRS)
Stelzried, C.; Lesh, J.
2001-01-01
Communication over long free space distances is extremely difficult due to the inverse squared propagation losses associated with link distance. That makes communications particularly difficult from outer planet destinations.
Gas Velocities Reveal Newly Born Planets in a Disk
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2018-06-01
Occasionally, science comes together beautifully for a discovery and sometimes this happens for more than one team at once! Today we explore how two independent collaborations of scientists simultaneously found the very first kinematic evidence for young planets forming in a protoplanetary disk. Though they explored the same disk, the two teams in fact discovered different planets.Evidence for PlanetsALMAs view of the dust in the protoplanetary disk surrounding the young star HD 163296. Todays studies explore not the dust, but the gas of this disk. [ALMA (ESO/NAOJ/NRAO); A. Isella; B. Saxton (NRAO/AUI/NSF)]Over the past three decades, weve detected around 4,000 fully formed exoplanets. Much more elusive, however, are the young planets still in the early stages of formation; only a handful of these have been discovered. More observations of early-stage exoplanets are needed in order to understand how these worlds are born in dusty protoplanetary-disk environments, how they grow their atmospheres, and how they evolve.Recent observations by the Atacama Large Millimeter/submillimeter Array (ALMA) have produced stunning images of protoplanetary disks. The unprecedented resolution of these images reveals substructure in the form of gaps and rings, hinting at the presence of planets that orbit within the disk and clear out their paths as they move. But there are also non-planet mechanisms that could produce such substructure, like grain growth around ice lines, or hydrodynamic instabilities in the disk.How can we definitively determine whether there are nascent planets embedded in these disks? Direct direction of a point source in a dust gap would be a strong confirmation, but now we have the next best thing: kinematic evidence for planets, from the motion of a disks gas.Observations of carbon monoxide line emission at +1km/s from the systemic velocity (left) vs. the outcome of a computer simulation (right) in the Pinte et al. study. A visible kink occurs in the flow, which can be reproduced by the presence of a 2-Jupiter-mass planet at 260 AU. [Pinte et al. 2018]Watching Gas MoveIn two papers published today in ApJL one led by Richard Teague (University of Michigan) and the other led by Christophe Pinte (Monash University in Australia and Grenoble Alpes University in France) astronomers have announced the detection of distinctive signs of planets in the gas motion of the disk surrounding HD 163296. This young star, located about 330 light-years away, is only 4 million years old.Unlike studies that hinge on observations of a disks dust which only makes up 1% of the disks mass! both studies here took a new approach: they used detailed ALMA observations revealing the dynamics of the disks carbon monoxide gas. By studying the gass motion, the teams found deviations from the Keplerian velocity that would be expected if there were no planets present. The authors then ran simulations to demonstrate that the deviations are consistent with local pressure perturbations caused by the passage of giant planets.Rotational velocity deviations due to changes in the local pressure, caused in this simulation by the presence of planets. [Teague et al. 2018]Giants FoundWhat did they find? Teague and collaborators, whose technique to identify velocity variations is best suited to explore the inner regions of the disk, discovered evidence for two separate Jupiter-mass planets orbiting at distances of 83 AU and 137 AU in the disk. Pinte and collaborators, whose velocity-measurement technique better explores the outer regions of the disk, found evidence for a two-Jupiter-mass planet orbiting at 260 AU.These results will rely on additional imaging in the coming years to confirm the presence of these newly born planets and a detection of point sources at these radii remains a hopeful goal for the future. Nonetheless, the new techniques explored here by Teague, Pinte, and collaborators are a promising route for young exoplanet discovery and characterization in other disks imaged by ALMA and future instruments.CitationRichard Teague et al 2018 ApJL 860 L12. doi:10.3847/2041-8213/aac6d7C. Pinte et al 2018 ApJL 860 L13. doi:10.3847/2041-8213/aac6dc
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrovich, Cristobal; Rafikov, Roman; Tremaine, Scott, E-mail: cpetrovi@princeton.edu
Many exoplanets in close-in orbits are observed to have relatively high eccentricities and large stellar obliquities. We explore the possibility that these result from planet-planet scattering by studying the dynamical outcomes from a large number of orbit integrations in systems with two and three gas-giant planets in close-in orbits (0.05 AU < a < 0.15 AU). We find that at these orbital separations, unstable systems starting with low eccentricities and mutual inclinations (e ≲ 0.1, i ≲ 0.1) generally lead to planet-planet collisions in which the collision product is a planet on a low-eccentricity, low-inclination orbit. This result is inconsistentmore » with the observations. We conclude that eccentricity and inclination excitation from planet-planet scattering must precede migration of planets into short-period orbits. This result constrains theories of planet migration: the semi-major axis must shrink by 1-2 orders of magnitude without damping the eccentricity and inclination.« less
Exploring our outer solar system - The Giant Planet System Observers
NASA Astrophysics Data System (ADS)
Cooper, J. F.; Sittler, E. C., Jr.; Sturner, S. J.; Pitman, J. T.
As space-faring peoples now work together to plan and implement future missions that robotically prepare for landing humans to explore the Moon, and later Mars, the time is right to develop evolutionary approaches for extending this next generation of exploration beyond Earth's terrestrial planet neighbors to the realm of the giant planets. And while initial fly-by missions have been hugely successful in providing exploratory surveys of what lies beyond Mars, we need to consider now what robotic precursor mission capabilities we need to emplace that prepare us properly, and comprehensively, for long-term robotic exploration, and eventual human habitation, beyond Mars to the outer reaches of our solar system. To develop practical strategies that can establish prioritized capabilities, and then develop a means for achieving those capabilities within realistic budget and technology considerations, and in reasonable timeframes, is our challenge. We suggest one component of such an approach to future outer planets exploration is a series of Giant Planets System Observer (GPSO) missions that provide for long- duration observations, monitoring, and relay functions to help advance our understanding of the outer planets and thereby enable a sound basis for planning their eventual exploration by humans. We envision these missions as being comparable to taking Hubble-class remote-sensing facilities, along with the space physics capabilities of long-lived geospace and heliospheric missions, to the giant planet systems and dedicating long observing lifetimes (HST, 16 yr.; Voyagers, 29 yr.) to the exhaustive study and characterization of those systems. GPSO missions could feature 20-yr+ extended mission lifetimes, direct inject trajectories to maximize useful lifetime on target, placement strategies that take advantage of natural environment shielding (e.g., Ganymede magnetic field) where possible, orbit designs having favorable planetary system viewing geometries, comprehensive broadband remote sensing capabilities, a complementary and redundant science instrument suite, fully autonomous operations, high bandwidth science data downlink, advanced solar power technologies (supplemented where necessary), functional interfaces that are compatible with future small fly-by missions, and fail-safe features for mission operations and planetary protection, 1 among other considerations. We describe in this paper one example of a GPSO-type mission our team has been formulating as a practical approach that addresses many of the most highly-rated future science exploration needs in the Jovian system, including the exploration of Europa, observation of Io and Ganymede, and characterization of the Jovian atmosphere. We call this mission concept the Ganymede Exploration Observer with Probes (GEOP), and describe its architecture, mission design, system features, science capabilities, key trades, and notional development plan for implementation within the next decade. 2
NASA's Discovery Program: Moving Toward the Edge (of the Solar System)
NASA Technical Reports Server (NTRS)
Johnson, Les; Gilbert, Paul
2007-01-01
NASA's Planetary Science , Division sponsors a competitive program of small spacecraft missions with the goal of performing focused science investigations that complement NASA's larger planetary science explorations at relatively low cost. The goal of the Discovery program is to launch many smaller missions with fast development times to increase our understanding of the solar system by exploring the planets, dwarf planets, their moons, and small bodies such as comets and asteroids. Discovery missions are solicited from the broad planetary science community approximately every 2 years. Active missions within the Discovery program include several with direct scientific or engineering connections to potential future missions to the edge of the solar system and beyond. In addition to those in the Discovery program are the missions of the New Frontiers program. The first New Frontiers mission. is the New Horizons mission to Pluto, which will explore this 38-AU distant dwarf planet and potentially some Kuiper Belt objects beyond. The Discovery program's Dawn mission, when launched in mid-2007, will use ion drive as its primary propulsion system. Ion propulsion is one of only two technologies that appear feasible for early interstellar precursor missions with practical flight times. The Kepler mission will explore the structure and diversity of extrasolar planetary systems, with an emphasis on the detection of Earth-size planets around other stars. Kepler will survey nearby solar systems searching for planets that may fall within the habitable zone,' a region surrounding a star within which liquid water may exist on a planet's surface - an essential ingredient for life as we know it. With its open and competitive approach to mission selections, the Discovery program affords scientists the opportunity to propose missions to virtually any solar system destination. With its emphasis on science and proven openness to the use of new technologies such as ion propulsion, missions flown as part of the program will test out technologies needed for future very deep-space exploration and potentially take us to these difficult and distant destinations.
Planetary exploration - Earth's new horizon /12th von Karman Lecture/. [ground based and spaceborne
NASA Technical Reports Server (NTRS)
Schurmeier, H. M.
1975-01-01
The article gives an account of the history of unmanned exploration of the planets of the solar system, including both earthbound exploration and exploration with spacecraft. Examples of images of the Martian surface are presented along with images obtained in Jupiter and Mercury flybys. Data are presented on the growth of US launch vehicle performance capability, navigation performance, and planetary data rate capability. Basic information regarding the nature of the scientific experiments aboard the Pioneer and Viking spacecraft is given. A case is put forward for the ongoing exploration of the planets as a worthwhile endeavor for man.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamilton, C.
1995-02-01
Views of the Solar System has been created as an educational tour of the solar system. It contains images and information about the Sun, planets, moons, asteroids and comets found within the solar system. The image processing for many of the images was done by the author. This tour uses hypertext to allow space travel by simply clicking on a desired planet. This causes information and images about the planet to appear on screen. While on a planet page, hyperlinks travel to pages about the moons and other relevant available resources. Unusual terms are linked to and defined in themore » Glossary page. Statistical information of the planets and satellites can be browsed through lists sorted by name, radius and distance. History of Space Exploration contains information about rocket history, early astronauts, space missions, spacecraft and detailed chronology tables of space exploration. The Table of Contents page has links to all of the various pages within Views Of the Solar System.« less
Environmental Test Program for the Mars Exploration Rover Project
NASA Technical Reports Server (NTRS)
Fisher, Terry C.; VanVelzer, Paul L.
2004-01-01
On June 10 and July 7, 2003 the National Aeronautics and Space Administration (NASA) launched two spacecraft from Cape Canaveral, Florida for a six (6) months flight to the Red Planet, Mars. The two Mars Exploration Rover spacecraft landed safely on the planet in January 2004. Prior to the successful launch, both of the spacecraft were involved in a comprehensive test campaign that included development, qualification, and protoflight test programs. Testing was performed to simulate the environments associated with launch, inter-planetary cruise, landing on the planet and Mars surface operations. Unique test requirements included operating the spacecraft while the chamber pressure was controlled to simulate the decent to the planet from deep space, high impact landing loads and rover operations on the surface of the planet at 8 Torr and -130 C. This paper will present an overview of the test program that included vibration, pyro-shock, landing loads, acoustic noise, thermal vacuum and solar simulation testing at the Jet Propulsion Laboratory (JPL) Environmental Test Laboratory facilities in Pasadena, California.
Full exploration of the giant planet population around β Pictoris
NASA Astrophysics Data System (ADS)
Lagrange, A.-M.; Keppler, M.; Meunier, N.; Lannier, J.; Beust, H.; Milli, J.; Bonnavita, M.; Bonnefoy, M.; Borgniet, S.; Chauvin, G.; Delorme, P.; Galland, F.; Iglesias, D.; Kiefer, F.; Messina, S.; Vidal-Madjar, A.; Wilson, P. A.
2018-05-01
Context. The search for extrasolar planets has been limited so far to close orbit (typ. ≤5 au) planets around mature solar-type stars on the one hand, and to planets on wide orbits (≥10 au) around young stars on the other hand. To get a better view of the full giant planet population, we have started a survey to search for giant planets around a sample of carefully selected young stars. Aims: This paper aims at exploring the giant planet population around one of our targets, β Pictoris, over a wide range of separations. With a disk and a planet already known, the β Pictoris system is indeed a very precious system for studies of planetary formation and evolution, as well as of planet-disk interactions. Methods: We analyse more than 2000 HARPS high-resolution spectra taken over 13 years as well as NaCo images recorded between 2003 and 2016. We combine these data to compute the detection probabilities of planets throughout the disk, from a fraction of au to a few dozen au. Results: We exclude the presence of planets more massive than 3 MJup closer than 1 au and further than 10 au, with a 90% probability. 15+ MJup companions are excluded throughout the disk except between 3 and 5 au with a 90% probability. In this region, we exclude companions with masses larger than 18 (resp. 30) MJup with probabilities of 60 (resp. 90) %. Based on data obtained with the ESO3.6 m/HARPS spectrograph at La Silla, and with NaCO on the VLT.The RV data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/A108
Our Planets at a Glance. Information Summaries.
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Washington, DC. Scientific and Technical Information Branch.
People have gazed up at the cosmos for thousands of years and wondered about the wanderers of the heavens: the planets. The past 20 years have been the golden age of planetary exploration because of many expeditions, most notably the Voyager and other unmanned space craft. This document is a summary of the information known about the planets of…
Mapping sand and gravel pits in the Patuxent River watershed
NASA Technical Reports Server (NTRS)
Schmidt, T. J.; Witt, R. G.
1981-01-01
LANDSAT data from July 1973 and June 1978 for the Patuxent River Watershed of Maryland were processed in an effort to devise an economical method of monitoring the reclamation of sand and gravel pits. ASTEP-II and IDIMS software were utilized to derive signatures for sand and gravel pits and other land use/land cover types. Both unsupervised and supervised classifications of the two data sets were produced. Resultant statistics and color output products were compared in order to determine the extent of reclamation and expansion of sand and gravel pits over the five-year time span and to check the locations of more recent sand and gravel pits. Preliminary results indicate that, for a selected northern sub-acre, signatures derived for sand and gravel pits were nearly 90 percent accurate.
Giant planets: Clues on current and past organic chemistry in the outer solar system
NASA Technical Reports Server (NTRS)
Pollack, James B.; Atreya, Sushil K.
1992-01-01
The giant planets of the outer solar system - Jupiter, Saturn, Uranus, and Neptune - were formed in the same flattened disk of gas and dust, the solar nebula, as the terrestrial planets were. Yet, the giant planets differ in some very fundamental ways from the terrestrial planets. Despite enormous differences, the giant planets are relevant to exobiology in general and the origin of life on the Earth in particular. The giant planets are described as they are today. Their basic properties and the chemistry occurring in their atmospheres is discussed. Theories of their origin are explored and aspects of these theories that may have relevance to exobiology and the origin of life on Earth are stressed.
2016-08-09
In our quest to explore other planets, we only have our own planet as an analogue to the environments we may find life. By exploring extreme environments on Earth, we can model conditions that may be present on other celestial bodies and select locations to explore for signatures of life. Dr. Penelope Boston, the new director of the NASA Astrobiology Institute at Ames, will describe her work in some of Earth’s most diverse caves and how they inform future exploration of Mars and the search for life in our solar system.
Fluxgate magnetometers for outer planets exploration
NASA Technical Reports Server (NTRS)
Acuna, M. H.
1974-01-01
The exploration of the interplanetary medium and the magnetospheres of the outer planets requires the implementation of magnetic field measuring instrumentation with wide dynamic range, high stability, and reliability. The fluxgate magnetometers developed for the Pioneer 11 and Mariner-Jupiter-Saturn missions are presented. These instruments cover the range of .01 nT to 2 million nT with optimum performance characteristics and low power consumption.
NASA Technical Reports Server (NTRS)
Spera, R. J.; Prickett, W. Z.; Garate, J. A.; Firth, W. L.
1971-01-01
Mission operations are presented for comet rendezvous and outer planet exploration NEP spacecraft employing in-core thermionic reactors for electric power generation. The selected reference missions are the Comet Halley rendezvous and a Jupiter orbiter at 5.9 planet radii, the orbit of the moon Io. The characteristics of the baseline multi-mission NEP spacecraft are presented and its performance in other outer planet missions, such as Saturn and Uranus orbiters and a Neptune flyby, are discussed. Candidate mission operations are defined from spacecraft assembly to mission completion. Pre-launch operations are identified. Shuttle launch and subsequent injection to earth escape by the Centaur D-1T are discussed, as well as power plant startup and the heliocentric mission phases. The sequence and type of operations are basically identical for all missions investigated.
Astrobiology: exploring the origins, evolution, and distribution of life in the Universe.
Des Marais, D J; Walter, M R
1999-01-01
The search for the origins of life and its presence beyond Earth is strengthened by new technology and by evidence that life tolerates extreme conditions and that planets are widespread. Astrobiologists learn how planets develop and maintain habitable conditions. They combine biological and information sciences to decipher the origins of life. They examine how biota, particularly microorganisms, evolve, at scales from the molecular to the biosphere level, including interactions with long-term planetary changes. Astrobiologists learn how to recognize the morphological, chemical, and spectroscopic signatures of life in order to explore both extraterrestrial samples and electromagnetic spectra reflected from extrasolar planets.
Astrobiology: exploring the origins, evolution, and distribution of life in the Universe
NASA Technical Reports Server (NTRS)
Des Marais, D. J.; Walter, M. R.
1999-01-01
The search for the origins of life and its presence beyond Earth is strengthened by new technology and by evidence that life tolerates extreme conditions and that planets are widespread. Astrobiologists learn how planets develop and maintain habitable conditions. They combine biological and information sciences to decipher the origins of life. They examine how biota, particularly microorganisms, evolve, at scales from the molecular to the biosphere level, including interactions with long-term planetary changes. Astrobiologists learn how to recognize the morphological, chemical, and spectroscopic signatures of life in order to explore both extraterrestrial samples and electromagnetic spectra reflected from extrasolar planets.
An integrated strategy for the planetary sciences: 1995 - 2010
NASA Technical Reports Server (NTRS)
1994-01-01
In 1992, the National Research Council's Space Studies Board charged its Committee on Planetary and Lunar Exploration (COMPLEX) to: (1) summarize current understanding of the planets and the solar system; (2) pose the most significant scientific questions that remain; and (3) establish the priorities for scientific exploration of the planets for the period from 1995 to 2010. The broad scientific goals of solar system exploration include: (1) understanding how physical and chemical processes determine the major characteristics of the planets, and thereby help us to understand the operation of Earth; (2) learning about how planetary systems originate and evolve; (3) determining how life developed in the solar system, particularly on Earth, and in what ways life modifies planetary environments; and (4) discovering how relatively simple, basic laws of physics and chemistry can lead to the diverse phenomena observed in complex systems. COMPLEX maintains that the most useful new programs to emphasize in the period from 1995 to 2010 are detailed investigations of comets, Mars, and Jupiter and an intensive search for, and characterization of, extrasolar planets.
The Living Planet: A Portrait of the Earth, 1984-85. Evaluation Section Report.
ERIC Educational Resources Information Center
New York City Board of Education, Brooklyn, NY. Office of Educational Evaluation.
In 1984-85, the Mobil Corporation provided the New York City Board of Education with a grant for developing an instructional project related to the Public Broadcasting System series, "The Living Planet." This series explored the concepts of the balance of nature and the adaptations of various life forms to our changing planet. The Living…
NASA Technical Reports Server (NTRS)
Belton, M. J. S.; Aksnes, K.; Davies, M. E.; Hartmann, W. K.; Millis, R. L.; Owen, T. C.; Reilly, T. H.; Sagan, C.; Suomi, V. E.; Collins, S. A., Jr.
1972-01-01
A recommended imaging system is outlined for use aboard the Outer Planet Grand Tour Explorer. The system features the high angular resolution capacity necessary to accommodate large encounter distances, and to satisfy the demand for a reasonable amount of time coverage. Specifications for all components within the system are provided in detail.
Exploring exoplanet populations with NASA’s Kepler Mission
Batalha, Natalie M.
2014-01-01
The Kepler Mission is exploring the diversity of planets and planetary systems. Its legacy will be a catalog of discoveries sufficient for computing planet occurrence rates as a function of size, orbital period, star type, and insolation flux. The mission has made significant progress toward achieving that goal. Over 3,500 transiting exoplanets have been identified from the analysis of the first 3 y of data, 100 planets of which are in the habitable zone. The catalog has a high reliability rate (85–90% averaged over the period/radius plane), which is improving as follow-up observations continue. Dynamical (e.g., velocimetry and transit timing) and statistical methods have confirmed and characterized hundreds of planets over a large range of sizes and compositions for both single- and multiple-star systems. Population studies suggest that planets abound in our galaxy and that small planets are particularly frequent. Here, I report on the progress Kepler has made measuring the prevalence of exoplanets orbiting within one astronomical unit of their host stars in support of the National Aeronautics and Space Administration’s long-term goal of finding habitable environments beyond the solar system. PMID:25049406
Planets Under a Red Sun Artist Concept
2011-04-08
This artist concept illustrates a young, red dwarf star surrounded by three planets. NASA Galaxy Evolution Explorer is helping to identify young, red dwarf stars that are close to us by detecting their ultraviolet light.
Strategy for outer planets exploration
NASA Technical Reports Server (NTRS)
1975-01-01
NASA's Planetary Programs Office formed a number of scientific working groups to study in depth the potential scientific return from the various candidate missions to the outer solar system. The results of these working group studies were brought together in a series of symposia to evaluate the potential outer planet missions and to discuss strategies for exploration of the outer solar system that were consistent with fiscal constraints and with anticipated spacecraft and launch vehicle capabilities. A logical, scientifically sound, and cost effective approach to exploration of the outer solar system is presented.
Effects of Extreme Obliquity Variations on the Habitability of Exoplanets
NASA Technical Reports Server (NTRS)
Armstrong, J. C.; Barnes, R.; Domagal-Goldman, S.; Breiner, J.; Quinn, T. R.; Meadows, V. S.
2014-01-01
We explore the impact of obliquity variations on planetary habitability in hypothetical systems with high mutual inclination. We show that large-amplitude, high-frequency obliquity oscillations on Earth-like exoplanets can suppress the ice-albedo feedback, increasing the outer edge of the habitable zone. We restricted our exploration to hypothetical systems consisting of a solar-mass star, an Earth-mass planet at 1 AU, and 1 or 2 larger planets. We verified that these systems are stable for 108 years with N-body simulations and calculated the obliquity variations induced by the orbital evolution of the Earth-mass planet and a torque from the host star. We ran a simplified energy balance model on the terrestrial planet to assess surface temperature and ice coverage on the planet's surface, and we calculated differences in the outer edge of the habitable zone for planets with rapid obliquity variations. For each hypothetical system, we calculated the outer edge of habitability for two conditions: (1) the full evolution of the planetary spin and orbit and (2) the eccentricity and obliquity fixed at their average values. We recovered previous results that higher values of fixed obliquity and eccentricity expand the habitable zone, but we also found that obliquity oscillations further expand habitable orbits in all cases. Terrestrial planets near the outer edge of the habitable zone may be more likely to support life in systems that induce rapid obliquity oscillations as opposed to fixed-spin planets. Such planets may be the easiest to directly characterize with space-borne telescopes.
Effects of extreme obliquity variations on the habitability of exoplanets.
Armstrong, J C; Barnes, R; Domagal-Goldman, S; Breiner, J; Quinn, T R; Meadows, V S
2014-04-01
We explore the impact of obliquity variations on planetary habitability in hypothetical systems with high mutual inclination. We show that large-amplitude, high-frequency obliquity oscillations on Earth-like exoplanets can suppress the ice-albedo feedback, increasing the outer edge of the habitable zone. We restricted our exploration to hypothetical systems consisting of a solar-mass star, an Earth-mass planet at 1 AU, and 1 or 2 larger planets. We verified that these systems are stable for 10(8) years with N-body simulations and calculated the obliquity variations induced by the orbital evolution of the Earth-mass planet and a torque from the host star. We ran a simplified energy balance model on the terrestrial planet to assess surface temperature and ice coverage on the planet's surface, and we calculated differences in the outer edge of the habitable zone for planets with rapid obliquity variations. For each hypothetical system, we calculated the outer edge of habitability for two conditions: (1) the full evolution of the planetary spin and orbit and (2) the eccentricity and obliquity fixed at their average values. We recovered previous results that higher values of fixed obliquity and eccentricity expand the habitable zone, but we also found that obliquity oscillations further expand habitable orbits in all cases. Terrestrial planets near the outer edge of the habitable zone may be more likely to support life in systems that induce rapid obliquity oscillations as opposed to fixed-spin planets. Such planets may be the easiest to directly characterize with space-borne telescopes.
NASA Astrophysics Data System (ADS)
Michaelis, H.; Behnke, T.; Bredthauer, R.; Holland, A.; Janesick, J.; Jaumann, R.; Keller, H. U.; Magrin, D.; Greggio, D.; Mottola, Stefano; Thomas, N.; Smith, P.
2017-11-01
When we talk about planetary exploration missions most people think spontaneously about fascinating images from other planets or close-up pictures of small planetary bodies such as asteroids and comets. Such images come in most cases from VIS/NIR- imaging- systems, simply called `cameras', which were typically built by institutes in collaboration with industry. Until now, they have nearly all been based on silicon CCD sensors, they have filter wheels and have often high power-consuming electronics. The question is, what are the challenges for future missions and what can be done to improve performance and scientific output. The exploration of Mars is ongoing. NASA and ESA are planning future missions to the outer planets like to the icy Jovian moons. Exploration of asteroids and comets are in focus of several recent and future missions. Furthermore, the detection and characterization of exo-planets will keep us busy for next generations. The paper is discussing the challenges and visions of imaging sensors for future planetary exploration missions. The focus of the talk is monolithic VIS/NIR- detectors.
The search for life on Earth and other planets.
Gross, Michael
2012-04-10
As the NASA rover Curiosity approaches Mars on its quest to look for signs of past or present life there and sophisticated instruments like the space telescopes Kepler and CoRoT keep discovering additional, more Earth-like planets orbiting distant stars, science faces the question of how to spot life on other planets. Even here on Earth biotopes remain to be discovered and explored.
NASA Technical Reports Server (NTRS)
1999-01-01
MESSENGER is a scientific mission to Mercury. Understanding this extraordinary planet and the forces that have shaped it is fundamental to understanding the processes that have governed the formation, evolution, and dynamics of the terrestrial planets. MESSENGER is a MErcury Surface, Space ENvironment, GEochemistry and Ranging mission to orbit Mercury for one Earth year after completing two flybys of that planet following two flybys of Venus. The necessary flybys return significant new data early in the mission, while the orbital phase, guided by the flyby data, enables a focused scientific investigation of this least-studied terrestrial planet. Answers to key questions about Mercury's high density, crustal composition and structure, volcanic history, core structure, magnetic field generation, polar deposits, exosphere, overall volatile inventory, and magnetosphere are provided by an optimized set of miniaturized space instruments. Our goal is to gain new insight into the formation and evolution of the solar system, including Earth. By traveling to the inner edge of the solar system and exploring a poorly known world, MESSENGER fulfills this quest.
Characterizing extrasolar terrestrial planets with reflected, emitted and transmitted spectra.
Tinetti, Giovanna
2006-12-01
NASA and ESA are planning missions to directly detect and characterize terrestrial planets outside our solar system (nominally NASA-Terrestrial Planet Finder and ESA-DARWIN missions). These missions will provide our first opportunity to spectroscopically study the global characteristics of those planets, and search for signs of habitability and life. We have used spatially and spectrally-resolved models to explore the observational sensitivity to changes in atmospheric and surface properties, and the detectability of surface biosignatures, in the globally averaged spectra and light-curves of the Earth. Atmospheric signatures of Earth-size exoplanets might be detected, in a near future, by stellar occultation as well. Detectability depends on planet's size, atmospheric composition, cloud cover and stellar type. According to our simulations, Earth's land vegetation signature (red-edge) is potentially visible in the disk-averaged spectra, even with cloud cover, and when the signal is averaged over the daily time scale. Marine vegetation is far more difficult to detect. We explored also the detectability of an exo-vegetation responsible for producing a signature that is red-shifted with respect to the Earth vegetation's one.
Scientific objectives of human exploration of Mars
Carr, M.H.
1996-01-01
While human exploration of Mars is unlikely to be undertaken for science reasons alone, science will be the main beneficiary. A wide range of science problems can be addressed at Mars. The planet formed in a different part of the solar system from the Earth and retains clues concerning compositional and environmental conditions in that part of the solar system when the planets formed. Mars has had a long and complex history that has involved almost as wide a range of processes as occurred on Earth. Elucidation of this history will require a comprehensive program of field mapping, geophysical sounding, in situ analyses, and return of samples to Earth that are representative of the planet's diversity. The origin and evolution of the Mars' atmosphere are very different from the Earth's, Mars having experienced major secular and cyclical changes in climate. Clues as to precisely how the atmosphere has evolved are embedded in its present chemistry, possibly in surface sinks of former atmosphere-forming volatiles, and in the various products of interaction between the atmosphere and surface. The present atmosphere also provides a means of testing general circulation models applicable to all planets. Although life is unlikely to be still extant on Mars, life may have started early in the planet's history. A major goal of any future exploration will, therefore, be to search for evidence of indigenous life.
2018-03-03
A United Launch Alliance Atlas V booster arrives at Space Launch Complex 3 at Vandenberg Air Force Base in California. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.
SPOTS: Search for Planets Orbiting Two Stars A Direct Imaging Survey for Circumbinary Planets
NASA Astrophysics Data System (ADS)
Thalmann, C.; Desidera, S.; Bergfors, C.; Boccaletti, A.; Bonavita, M.; Carson, J. C.; Feldt, M.; Goto, M.; Henning, T.; Janson, M.; Mordasini, C.
2013-09-01
Over the last decade, a vast amount of effort has been poured into gaining a better understanding of the fre- quency and diversity of extrasolar planets. Yet, most of these studies focus on single stars, leaving the population of planets in multiple systems poorly explored. This investigational gap persists despite the fact that both theoretical and observational evidence suggest that such systems represent a significant fraction of the overall planet population. With SPOTS, the Search for Planets Orbiting Two Stars, we are now carrying out the first direct imaging campaign dedicated to circumbinary planets. Our long-term goals are to survey 66 spectroscopic binaries in H-band with VLT NaCo and VLT SPHERE over the course of 4-5 years. This will establish first constraints on the wide-orbit circumbinary planet population, and may yield the spectacular first image of a bona fide circumbinary planet. Here we report on the results of the first two years of the SPOTS survey, as well as on our ongoing observation program.
Twenty five years of planetary science: Discoveries and new questions
NASA Astrophysics Data System (ADS)
Hauck, Steven A.; Baratoux, David; Stanley, Sabine
2016-10-01
This year marks the 25th anniversary of the first issue of JGR-Planets. We are marking this occasion with a collection of review papers focused on enduring and fundamental themes in planetary science that have framed the past quarter century and will strongly influence research and exploration in the next quarter century. With topics covering bodies small and large, processes on and in solid planets and giant planets, in atmospheres, and around other stars, this collection samples the broad scope of planetary science and of JGR-Planets.
NASA Technical Reports Server (NTRS)
Young, R. S.
1971-01-01
It is pointed out that planetary exploration is not simply a program designed to detect life on another planet. A planet similar to earth, such as Mars, when studied for evidence as to why life did not arise, may turn out to be scientifically more important than a planet which has already produced a living system. Of particular interest after Mars are Venus and Jupiter. Jupiter has a primitive atmosphere which may well be synthesizing organic molecules today. Speculations have been made concerning the possibility of a bio-zone in the upper atmosphere of Venus.
Understanding the Atmosphere of 51 Eri b: Do Photochemical Hazes Cloud the Planets Spectrum?
NASA Technical Reports Server (NTRS)
Marley, Mark Scott; Zahnle, Kevin; Moses, J.; Morley, C.
2015-01-01
The first young giant planet to be discovered by the Gemini Planet Imager was the (is) approximately 2MJ planet 51 Eri b. This approximately 20 Myr old young Jupiter is the first directly imaged planet to show unmistakable methane in H band. To constrain the planet's mass, atmospheric temperature, and composition, the GPI J and H band spectra as well as some limited photometric points were compared to the predictions of substellar atmosphere models. The best fitting models reported in the discovery paper (Macintosh et al. 2015) relied upon a combination of clear and cloudy atmospheric columns to reproduce the data. However for an object as cool as 700 K, the origin of the cloud coverage is somewhat puzzling, as the global silicate and iron clouds would be expected to have sunk well below the photosphere by this effective temperature. While strong vertical mixing in these low gravity atmospheres remains a plausible explanation, we have explored whether atmospheric photochemistry, driven by the UV flux from the primary star, may yield hazes that also influence the observed spectrum of the planet. To explore this possibility we have modeled the atmospheric photochemistry of 51 Eri b using two state-of-the-art photochemical models, both capable of predicting yields of complex hydrocarbons under various atmospheric conditions. In our presentation we will summarize the modeling approach employed to characterize 51 Eri b, explaining constraints on the planet's effective temperature, gravity, and atmospheric composition and also present results of our studies of atmospheric photochemistry. We will discuss whether photochemical hazes could indeed be responsible for the particulate opacity that apparently sculpts the spectrum of the planet.
Effects of Extreme Obliquity Variations on the Habitability of Exoplanets
Barnes, R.; Domagal-Goldman, S.; Breiner, J.; Quinn, T.R.; Meadows, V.S.
2014-01-01
Abstract We explore the impact of obliquity variations on planetary habitability in hypothetical systems with high mutual inclination. We show that large-amplitude, high-frequency obliquity oscillations on Earth-like exoplanets can suppress the ice-albedo feedback, increasing the outer edge of the habitable zone. We restricted our exploration to hypothetical systems consisting of a solar-mass star, an Earth-mass planet at 1 AU, and 1 or 2 larger planets. We verified that these systems are stable for 108 years with N-body simulations and calculated the obliquity variations induced by the orbital evolution of the Earth-mass planet and a torque from the host star. We ran a simplified energy balance model on the terrestrial planet to assess surface temperature and ice coverage on the planet's surface, and we calculated differences in the outer edge of the habitable zone for planets with rapid obliquity variations. For each hypothetical system, we calculated the outer edge of habitability for two conditions: (1) the full evolution of the planetary spin and orbit and (2) the eccentricity and obliquity fixed at their average values. We recovered previous results that higher values of fixed obliquity and eccentricity expand the habitable zone, but we also found that obliquity oscillations further expand habitable orbits in all cases. Terrestrial planets near the outer edge of the habitable zone may be more likely to support life in systems that induce rapid obliquity oscillations as opposed to fixed-spin planets. Such planets may be the easiest to directly characterize with space-borne telescopes. Key Words: Exoplanets—Habitable zone—Energy balance models. Astrobiology 14, 277–291. PMID:24611714
InSight Atlas V Centaur Lift & Mate
2018-03-06
A United Launch Alliance Centaur upper stage arrives at Space Launch Complex 3 at Vandenberg Air Force Base in California. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.
InSight Atlas V Booster Transport
2018-03-02
A United Launch Alliance Atlas V booster is transported to Space Launch Complex 3 at Vandenberg Air Force Base in California. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.
2018-02-28
At Vandenberg Air Force Base in California, NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft arrives at the Astrotech processing facility. InSight was developed and built by Lockheed-Martin Space Systems in Denver, Colorado, and is scheduled for liftoff is May 5, 2018. InSight is the first mission to land on Mars and explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth.
2018-03-03
A crane lifts a United Launch Alliance Atlas V booster at Space Launch Complex 3 at Vandenberg Air Force Base in California. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.
InSight Atlas V Centaur Transport / Lift & Mate
2018-03-06
A United Launch Alliance Centaur upper stage arrives at Space Launch Complex 3 at Vandenberg Air Force Base in California. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.
InSight Atlas V Fairing Arrival, Offload, and Unbagging
2018-01-31
The United Launch Alliance (ULA) payload fairing for NASA's upcoming Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars arrives at Vandenberg Air Force Base in California. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff atop a ULA Atlas V rocket is scheduled for May 5, 2018.
A Direct Path to Finding Earth-Like Planets
NASA Technical Reports Server (NTRS)
Heap, Sara R.; Linder, Don J.
2009-01-01
As envisaged by the 2000 astrophysics decadal survey panel: The main goal of Terrestrial Planet Finder (TPF) is nothing less than to search for evidence of life on terrestrial planets around nearby stars . Here, we consider how an optical telescope paired with a free-flying occulter blocking light from the star can reach this goal directly, without knowledge of results from prior astrometric, doppler, or transit exoplanet observations. Using design reference missions and other simulations, we explore the potential of TPF-O to find planets in the habitable zone around their central stars, to spectrally characterize the atmospheres of detected planets, and to obtain rudimentary information about their orbits. We emphasize the importance of ozone absorption in the UV spectrum of a planet as a marker of photosynthesis by plants, algae, and cyanobacteria.
Views from EPOXI. Colors in Our Solar System as an Analog for Extrasolar Planets
NASA Technical Reports Server (NTRS)
Crow, Carolyn A.; McFadden, L. A.; Robinson, T.; Livengood, T. A.; Hewagama, T.; Barry, R. K.; Deming, L. D.; Meadows, V.; Lisse, C. M.
2010-01-01
With extrasolar planet detection becoming more common place, the frontiers of extrasolar planet science have moved beyond detection to the observations required to determine planetary properties. Once the existing observational challenges have been overcome, the first visible-light studies of extrasolar Earth-sized planets will likely employ filter photometry or low-resolution. spectroscopy to observe disk-integrated radiation from the unresolved planet. While spectroscopy of these targets is highly desirable, and provides the most robust form of characterization. S/N considerations presently limit spectroscopic measurements of extrasolar worlds. Broadband filter photometry will thus serve as a first line of characterization. In this paper we use Extrasolar Observation and Characterization (EPOCh) filter photometry of the Earth. Moon and Mars model spectra. and previous photometric and spectroscopic observations of a range the solar system planets. Titan, and Moon to explore the limitations of using color as a baseline for understanding extrasolar planets
Hybrid rocket propulsion systems for outer planet exploration missions
NASA Astrophysics Data System (ADS)
Jens, Elizabeth T.; Cantwell, Brian J.; Hubbard, G. Scott
2016-11-01
Outer planet exploration missions require significant propulsive capability, particularly to achieve orbit insertion. Missions to explore the moons of outer planets place even more demanding requirements on propulsion systems, since they involve multiple large ΔV maneuvers. Hybrid rockets present a favorable alternative to conventional propulsion systems for many of these missions. They typically enjoy higher specific impulse than solids, can be throttled, stopped/restarted, and have more flexibility in their packaging configuration. Hybrids are more compact and easier to throttle than liquids and have similar performance levels. In order to investigate the suitability of these propulsion systems for exploration missions, this paper presents novel hybrid motor designs for two interplanetary missions. Hybrid propulsion systems for missions to Europa and Uranus are presented and compared to conventional in-space propulsion systems. The hybrid motor design for each of these missions is optimized across a range of parameters, including propellant selection, O/F ratio, nozzle area ratio, and chamber pressure. Details of the design process are described in order to provide guidance for researchers wishing to evaluate hybrid rocket motor designs for other missions and applications.
Using Comparative Planetology in Exhibit Development
NASA Astrophysics Data System (ADS)
Dusenbery, P. B.; Harold, J. B.; Morrow, C. A.
2004-12-01
It is critically important for the public to better understand the scientific process. Museum exhibitions are an important part of informal science education that can effectively reach public audiences as well as school groups. They provide an important gateway for the public to learn about compelling scientific endeavors. The Space Science Institute (SSI) is a national leader in producing traveling science exhibitions and their associated educational programming (i.e. interactive websites, educator workshops, public talks, instructional materials). The focus of this presentation will be on three of its exhibit projects: MarsQuest (currently on tour), Alien Earths (in fabrication), and Giant Planets (in development). MarsQuest is enabling millions of Americans to share in the excitement of the scientific exploration of Mars and to learn more about their own planet in the process. Alien Earths will bring origins-related research and discoveries to students and the American public. It has four interrelated exhibit areas: Our Place in Space, Star Birth, PlanetQuest, and Search for Life. Exhibit visitors will explore the awesome events surrounding the birth of stars and planets; they will join scientists in the hunt for planets outside our solar system including those that may be in "habitable zones" around other stars; and finally they will be able to learn about how scientists are looking for signs of life beyond Earth. Giant Planets: Exploring the Outer Solar System will take advantage of the excitement generated by the Cassini mission and bring planetary and origins research and discoveries to students and the public. It will be organized around four thematic areas: Our Solar System; Colossal Worlds; Moons, Rings, and Fields; and Make Space for Kids. Giant Planets will open in 2007. This talk will focus on the importance of making Earth comparisons in the conceptual design of each exhibit and will show several examples of how these comparisons were manifested in the MarsQuest & Alien Earths exhibitions.
SPOTS: The Search for Planets Orbiting Two Stars
NASA Astrophysics Data System (ADS)
Thalmann, Christian; Desidera, Silvano; Bergfors, Carolina; Boccaletti, Anthony; Bonavita, Mariangela; Carson, Joseph; Feldt, Markus; Goto, Miwa; Henning, Thomas; Janson, Markus; Klahr, Hubert; Marzari, Francesco; Mordasini, Christoph
2013-07-01
Over the last decade, a vast amount of effort has been poured into gaining a better understanding of the frequency and diversity of extrasolar planets. Yet, most of these studies focus on single stars, leaving the population of planets in multiple systems poorly explored. This investigational gap persists despite the fact that both theoretical and observational evidence suggest that such systems represent a significant fraction of the overall planet population. With SPOTS, the Search for Planets Orbiting Two Stars, we are now carrying out the first direct imaging campaign dedicated to circumbinary planets. Our long-term goals are to survey 66 spectroscopic binaries in H-band with VLT NaCo and VLT SPHERE over the course of 4-5 years. This will establish first constraints on the wide-orbit circumbinary planet population, and may yield the spectacular first image of a bona fide circumbinary planet. Here we report on the results of the first two years of the SPOTS survey, as well as on our ongoing observation program.
The Terrestrial Planets Formation in the Solar-System Analogs
NASA Astrophysics Data System (ADS)
Ji, Jianghui; Liu, L.; Chambers, J. E.; Butler, R. P.
2006-09-01
In this work, we numerically studied the terrestrial planets formation in the Solar-Systems Analogs using MERCURY (Chambers 1999). The Solar-System Analogs are herein defined as a solar-system like planetary system, where the system consists of two wide-separated Jupiter-like planets (e.g., 47 UMa, Ji et al. 2005) move about the central star on nearly circular orbits with low inclinations, then low-mass terrestrial planets can be formed there, and life would be possibly evolved. We further explored the terrestrial planets formation due to the current uncertainties of the eccentricities for two giant planets. In addition, we place a great many of the planetesimals between two Jupiter-like planets to investigate the potential asteroidal structure in such systems. We showed that the secular resonances and mean motion resonances can play an important role in shaping the asteroidal structure. We acknowledge the financial support by National Natural Science Foundation of China (Grant No.10573040, 10233020, 10203005) and Foundation of Minor Planets of Purple Mountain Observatory.
NASA Astrophysics Data System (ADS)
Leuko, Stefan; Rettberg, Petra; De Waele, Jo; Sanna, Laura; Koskinen, Kaisa
2016-07-01
The quest of exploring and looking for life in new places is a human desire since centuries. Nowadays, we are not only looking on planet Earth any more, but our endeavours focus on nearby planets in our solar system. It is therefore of great importance to preserve the extra-terrestrial environment and not to contaminate it with terrestrial / human associated bacteria. At this point in time we are not able to send crewed missions to other planets; however, analysing the impact of human exploration on environments is of great planetary protection concern. This can be achieved by obtaining samples from a subterranean environment, where only expert speleologists have access and the human impact is considered very low. For this study, astronauts participating in the 2014 ESA CAVES (Cooperative Adventure for Valuing and Exercising human behaviour and performance Skills) training course, obtained samples from deep within a subterranean environment and returned them to the laboratory for molecular microbial analysis. The diversity of the returned soil samples was analysed by molecular means such as clone library and next-generation sequencing (NGS). It was found that humans have an immense impact on the microbial diversity in the environment. Although the cave system is sparsely entered by humans, a high relative abundance of Staphylococcus spp. and Propionibacteria spp., organisms that are characteristic for human skin, have been recovered. Some samples even showed the presence of human gut associated methanogenic archaea, Methanomassiliicoccus spp. The obtained data from this investigation indicate that human exploration is strongly polluting an environment and may lead to false-positive sign of life on other planets. It is therefore imperative to increase our awareness to this problem as well as work towards new protocols to protect a pristine extraterrestrial environment during exploration.
A Planetary System Exploration Project for Introductory Astronomy and Astrobiology Courses
NASA Astrophysics Data System (ADS)
Rees, Richard F.
2015-01-01
I have created three-part projects for the introductory astronomy and astrobiology courses at Westfield State University which simulate the exploration of a fictional planetary system. The introductory astronomy project is an initial reconnaissance of the system by a robotic spacecraft, culminating in close flybys of two or three planets. The astrobiology project is a follow-up mission concluding with the landing of a roving lander on a planet or moon. Student responses in earlier parts of each project can be used to determine which planets are targeted for closer study in later parts. Highly realistic views of the planets from space and from their surfaces can be created using programs such as Celestia and Terragen; images and video returned by the spacecraft are thus a highlight of the project. Although designed around the particular needs and mechanics of the introductory astronomy and astrobiology courses for non-majors at WSU, these projects could be adapted for use in courses at many different levels.
Kepler Planets Tend to Have Siblings of the Same Size
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-11-01
After 8.5 years of observations with the Kepler space observatory, weve discovered a large number of close-in, tightly-spaced, multiple-planet systems orbiting distant stars. In the process, weve learned a lot about the properties about these systems and discovered some unexpected behavior. A new study explores one of the properties that has surprised us: planets of the same size tend to live together.Orbital architectures for 25 of the authors multiplanet systems. The dots are sized according to the planets relative radii and colored according to mass. Planets of similar sizes and masses tend to live together in the same system. [Millholland et al. 2017]Ordering of SystemsFrom Keplers observations of extrasolar multiplanet systems, we have seen that the sizes of planets in a given system arent completely random. Systems that contain a large planet, for example, are more likely to contain additional large planets rather than additional planets of random size. So though there is a large spread in the radii weve observed for transiting exoplanets, the spread within any given multiplanet system tends to be much smaller.This odd behavior has led us to ask whether this clustering occurs not just for radius, but also for mass. Since the multiplanet systems discovered by Kepler most often contain super-Earths and mini-Neptunes, which have an extremely large spread in densities, the fact that two such planets have similar radii does not guarantee that they have similar masses.If planets dont cluster in mass within a system, this would raise the question of why planets coordinate only their radii within a given system. If they do cluster in mass, it implies that planets within the same system tend to have similar densities, potentially allowing us to predict the sizes and masses of planets we might find in a given system.Insight into MassesLed by NSF graduate research fellow Sarah Millholland, a team of scientists at Yale University used recently determined masses for planets in 37 Kepler multiplanet systems to explore this question of whether exoplanets in a multiplanet system are more likely to have similar masses rather than random ones.Millholland and collaborators find that the masses do show the same clustering trend as radii in multiplanet systems i.e., sibling planets in the same system tend to have both masses and radii that are more similar than if the system were randomly assembled from the total population of planets weve observed. Furthermore, the masses and radii tend to be ordered within a system when the planets are ranked by their periods.The host stars metallicity is correlated with the median planetary radius for a system. [Adapted from Millholland et al. 2017]The authors note two important implications of these results:The scatter in the relation between mass and radius of observed exoplanets is primarily due to system-to-system variability, rather than the variability within each system.Knowing the properties of a star and its primordial protoplanetary disk might allow us to predict the outcome of the planet formation process for the system.Following up on the second point, the authors test whether certain properties of the host star correlate with properties of the planets. They find that the stellar mass and metallicity have a significant effect on the planet properties and the structure of the system.Continuing to explore multiplanet systems like these appears to be an excellent path forward for understanding the hidden order in the broad variety of exoplanets weve observed.CitationSarah Millholland et al 2017 ApJL 849 L33. doi:10.3847/2041-8213/aa9714
2015-12-15
A crane positions a United Launch Alliance Atlas V booster on the launch pad at Space Launch Complex 3 at Vandenberg Air Force Base in California. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.
A deformable spherical planet exploration robot
NASA Astrophysics Data System (ADS)
Liang, Yi-shan; Zhang, Xiu-li; Huang, Hao; Yang, Yan-feng; Jin, Wen-tao; Sang, Zhong-xun
2013-03-01
In this paper, a deformable spherical planet exploration robot has been introduced to achieve the task of environmental detection in outer space or extreme conditions. The robot imitates the morphology structure and motion mechanism of tumbleweeds. The robot is wind-driven. It consists of an axle, a spherical steel skeleton and twelve airbags. The axle is designed as two parts. The robot contracts by contracting the two-part axle. The spherical robot installs solar panels to provide energy for its control system.
Chairmanship of the Neptune/Pluto Outer Planets Science Working Group
NASA Technical Reports Server (NTRS)
Stern, S. Alan
1992-01-01
The Outer Planets Science Working Group (OPSWG) is the NASA Solar System Exploration Division (SSED) scientific steering committee for the Outer Solar Systems missions. The FY92 activities of OPSWG are summarized. A set of objectives for OPSWG over FY93 are described. OPSWG's activities for subsequent years are outlined. A paper which examines scientific questions motivating renewed exploration of the Neptune/Triton system and which reviews the technical results of the mission studies completed to date is included in the appendix.
Insight Fairing Offload and Unbagging
2018-01-30
In the Astrotech facility at Vandenberg Air Force Base in California, technicians remove protective wrapping from the United Launch Alliance (ULA) payload fairing for NASA's upcoming Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft designed to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff atop a ULA Atlas V rocket is scheduled for May 5, 2018.
InSight Atlas V Centaur Lift and Mate
2018-03-06
At Space Launch Complex 3 at Vandenberg Air Force Base in California, the United Launch Alliance Centaur upper stage is lifted and mated atop an Atlas V booster. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.
NASA Astrophysics Data System (ADS)
Tavrov, Alexander; Frolov, Pavel; Korablev, Oleg; Vedenkin, Nikolai; Barabanov, Sergey
2017-11-01
Solar System planetology requires a wide use of observing spectroscopy for surface geology to atmosphere climatology. A high-contrast imaging is required to study and to characterize extra-solar planetary systems among other faint astronomical targets observed in the vicinity of bright objects. Two middle class space telescopes projects aimed to observe Solar system planets by a long term monitoring via spectroscopy and polarimetry. Extra solar planets (exoplanets) engineering and scientific explorations are included in science program.
InSight Atlas V Centaur Transport / Lift & Mate
2018-03-06
At Space Launch Complex 3 at Vandenberg Air Force Base in California a crane lifts a United Launch Alliance Centaur upper stage for mating atop an Atlas V booster. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.
2018-03-03
A crane positions a United Launch Alliance Atlas V booster on the launch pad at Space Launch Complex 3 at Vandenberg Air Force Base in California. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.
InSight Atlas V Fairing Arrival, Offload, and Unbagging
2018-01-31
The United Launch Alliance (ULA) payload fairing for NASA's upcoming Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars has just arrived at the Astrotech facility at Vandenberg Air Force Base in California. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff atop a ULA Atlas V rocket is scheduled for May 5, 2018.
InSight Atlas V Booster Transport
2018-03-02
A United Launch Alliance Atlas V booster departs building 7525 at Vandenberg Air Force Base in California on its way to Space Launch Complex 3. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.
InSight Atlas V Centaur Transport / Lift & Mate
2018-03-06
At Vandenberg Air Force Base in California, a United Launch Alliance Centaur upper stage is transported to Space Launch Complex 3 for mating atop an Atlas V booster. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.
2018-02-28
After a U.S. Air Force C-17 aircraft arrived at Vandenberg Air Force Base in California, ground crews offload NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft designed to land on Mars. InSight was developed and built by Lockheed-Martin Space Systems in Denver, Colorado, and is scheduled for liftoff is May 5, 2018. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth.
InSight Spacecraft Uncrating, Removal from Container, Lift Heat
2018-03-01
At Vandenberg Air Force Base in California, NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft is uncrated inside the Astrotech processing facility. InSight was developed and built by Lockheed-Martin Space Systems in Denver, Colorado, and is scheduled for liftoff is May 5, 2018. InSight is the first mission to land on Mars and explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth.
InSight Atlas V Fairing Arrival, Offload, and Unbagging
2018-01-31
In the Astrotech facility at Vandenberg Air Force Base in California, technicians remove protective wrapping from the United Launch Alliance (ULA) payload fairing for NASA's upcoming Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft designed to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff atop a ULA Atlas V rocket is scheduled for May 5, 2018.
2018-03-03
Technicians, engineers and U.S. Air Force personnel prepare to support erection of a United Launch Alliance Atlas V booster at Space Launch Complex 3 at Vandenberg Air Force Base in California. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.
2018-02-28
A U.S. Air Force C-17 aircraft arrives at Vandenberg Air Force Base in California carrying NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft designed to land on Mars. InSight was developed and built by Lockheed-Martin Space Systems in Denver, Colorado, and is scheduled for liftoff is May 5, 2018. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth.
InSight Atlas V Centaur Lift & Mate
2018-03-06
At Space Launch Complex 3 at Vandenberg Air Force Base in California technicians and engineers mate a United Launch Alliance Centaur upper stage atop an Atlas V booster. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.
InSight Atlas V Centaur Lift & Mate
2018-03-06
At Space Launch Complex 3 at Vandenberg Air Force Base in California a crane lifts a United Launch Alliance Centaur upper stage for mating atop an Atlas V booster. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.
InSight Atlas V Booster Prep for Transport
2018-03-01
A United Launch Alliance Atlas V booster is prepared for transport to Space Launch Complex 3 at Vandenberg Air Force Base in California. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.
InSight Atlas V Booster Transport
2018-03-02
A United Launch Alliance Atlas V booster arrives at Space Launch Complex 3 at Vandenberg Air Force Base in California. The rocket will be positioned on the pad to launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.
Host Star Dependence of Small Planet Mass–Radius Distributions
NASA Astrophysics Data System (ADS)
Neil, Andrew R.; Rogers, Leslie A.
2018-05-01
The planet formation environment around M dwarf stars is different than around G dwarf stars. The longer hot protostellar phase, activity levels and lower protoplanetary disk mass of M dwarfs all may leave imprints on the composition distribution of planets. We use hierarchical Bayesian modeling conditioned on the sample of transiting planets with radial velocity mass measurements to explore small planet mass–radius distributions that depend on host star mass. We find that the current mass–radius data set is consistent with no host star mass dependence. These models are then applied to the Kepler planet radius distribution to calculate the mass distribution of close-orbiting planets and how it varies with host star mass. We find that the average heavy element mass per star at short orbits is higher for M dwarfs compared to FGK dwarfs, in agreement with previous studies. This work will facilitate comparisons between microlensing planet surveys and Kepler, and will provide an analysis framework that can readily be updated as more M dwarf planets are discovered by ongoing and future surveys such as K2 and the Transiting Exoplanet Survey Satellite.
WISE Detections of Dust in the Habitable Zones of Planet-Bearing Stars
NASA Technical Reports Server (NTRS)
Morales, Farisa Y.; Padgett, Deborah L.; Bryden, Geoffrey; Werner, M. W.; Furlan, E.
2012-01-01
We use data from the Wide-field Infrared Survey Explorer (WISE) all-sky release to explore the incidence of warm dust in the habitable zones around exoplanet-host stars. Dust emission at 12 and/or 22 microns (T(sub dust) approx.300 and/or approx.150 K) traces events in the terrestrial planet zones; its existence implies replenishment by evaporation of comets or collisions of asteroids, possibly stirred by larger planets. Of the 591 planetary systems (728 extrasolar planets) in the Exoplanet Encyclopedia as of 2012 January 31, 350 are robustly detected by WISE at > or = 5(sigma) level. We perform detailed photosphere subtraction using tools developed for Spitzer data and visually inspect all the WISE images to confirm bona fide point sources. We find nine planet-bearing stars show dust excess emission at 12 and/or 22 microns at > or = 3(sigma) level around young, main-sequence, or evolved giant stars. Overall, our results yield an excess incidence of approx.2.6% for stars of all evolutionary stages, but approx.1% for planetary debris disks around main-sequence stars. Besides recovering previously known warm systems, we identify one new excess candidate around the young star UScoCTIO 108.
Overview of Space Transportation and Propulsion at NASA
NASA Technical Reports Server (NTRS)
Sackheim, Robert L.
2003-01-01
Topics considered include: 1. Scientific discovery: The search for the life beyond Earth. Understanding our Planet. Understanding our Universe. Exploration of the Planets and beyond. 2. The ultimate high ground for national security: Intelligence, communications, rapid response, GPS. 3. Space-based commerce: Communications and Earth observing.
ERIC Educational Resources Information Center
Schuster, Dwight
2008-01-01
Physical models in the classroom "cannot be expected to represent the full-scale phenomenon with complete accuracy, not even in the limited set of characteristics being studied" (AAAS 1990). Therefore, by modifying a popular classroom activity called a "planet walk," teachers can explore upper elementary students' current understandings; create an…
ERIC Educational Resources Information Center
Field, George
1982-01-01
Based on the premise that discoveries raise more questions than they answer, explores various research questions related to the discovery of the planets and discoveries related to the theory of stellar evolution. (SK)
N-body simulations of planet formation: understanding exoplanet system architectures
NASA Astrophysics Data System (ADS)
Coleman, Gavin; Nelson, Richard
2015-12-01
Observations have demonstrated the existence of a significant population of compact systems comprised of super-Earths and Neptune-mass planets, and a population of gas giants that appear to occur primarily in either short-period (<10 days) or longer period (>100 days) orbits. The broad diversity of system architectures raises the question of whether or not the same formation processes operating in standard disc models can explain these planets, or if different scenarios are required instead to explain the widely differing architectures. To explore this issue, we present the results from a comprehensive suite of N-body simulations of planetary system formation that include the following physical processes: gravitational interactions and collisions between planetary embryos and planetesimals; type I and II migration; gas accretion onto planetary cores; self-consistent viscous disc evolution and disc removal through photo-evaporation. Our results indicate that the formation and survival of compact systems of super-Earths and Neptune-mass planets occur commonly in disc models where a simple prescription for the disc viscosity is assumed, but such models never lead to the formation and survival of gas giant planets due to migration into the star. Inspired in part by the ALMA observations of HL Tau, and by MHD simulations that display the formation of long-lived zonal flows, we have explored the consequences of assuming that the disc viscosity varies in both time and space. We find that the radial structuring of the disc leads to conditions in which systems of giant planets are able to form and survive. Furthermore, these giants generally occupy those regions of the mass-period diagram that are densely populated by the observed gas giants, suggesting that the planet traps generated by radial structuring of protoplanetary discs may be a necessary ingredient for forming giant planets.
Aerospace vehicle design, spacecraft section. Volume 2
NASA Technical Reports Server (NTRS)
1988-01-01
The next major step in the evolution of the space program is the exploration of the planet Mars. In preparation for this, much research is needed on the problem of surveying the planet surface. An aircraft appears to be a viable solution because it can carry men and equipment large distances in a short period of time as compared with ground transportation. The problems and design of an aircraft which would be able to survey the planet Mars are examined.
NASA Technical Reports Server (NTRS)
1986-01-01
In 1982, the NASA Solar System Exploration Committee (SSEC) published a report on a Core Program of planetary missions, representing the minimum-level program that could be carried out in a cost effective manner, and would yield a continuing return of basic scientific results. This is the second part of the SSEC report, describing missions of the highest scientific merit that lie outside the scope of the previously recommended Core Program because of their cost and technical challenge. These missions include the autonomous operation of a mobile scientific rover on the surface of Mars, the automated collection and return of samples from that planet, the return to Earth of samples from asteroids and comets, projects needed to lay the groundwork for the eventual utilization of near-Earth resources, outer planet missions, observation programs for extra-solar planets, and technological developments essential to make these missions possible.
Astrobiology and Venus exploration
NASA Astrophysics Data System (ADS)
Grinspoon, David H.; Bullock, Mark A.
For hundreds of years prior to the space age, Venus was considered among the most likely homes for extraterrestrial life. Since planetary exploration began, Venus has not been considered a promising target for Astrobiological exploration. However, Venus should be central to such an exploration program for several reasons. At present Venus is the only other Earth-sized terrestrial planet that we know of, and certainly the only one we will have the opportunity to explore in the foreseeable future. Understanding the divergence of Earth and Venus is central to understanding the limits of habitability in the inner regions of habitable zones around solar-type stars. Thus Venus presents us with a unique opportunity for putting the bulk properties, evolution and ongoing geochemical processes of Earth in a wider context. Many geological and meteorological processes otherwise active only on Earth at present are currently active on Venus. Active volcanism most likely affects the climate and chemical equilibrium state of the atmosphere and surface, and maintains the global cloud cover. Further, if we think beyond the specifics of a particular chemical system required to build complexity and heredity, we can ask what general properties a planet must possess in order to be considered a possible candidate for life. The answers might include an atmosphere with signs of flagrant chemical disequilibrium and active, internally driven cycling of volatile elements between the surface, atmosphere and interior. At present, the two planets we know of which possess these characteristics are Earth and Venus. Venus almost surely once had warm, habitable oceans. The evaporation of these oceans, and subsequent escape of hydrogen, most likely resulted in an oxygenated atmosphere. The duration of this phase is poorly understood, but during this time the terrestrial planets were not isolated. Rather, due to frequent impact transport, they represented a continuous environment for early microbial life. Life, once established in the early oceans of Venus, may have migrated to the clouds which, on present day Venus, may represent a habitable niche. Though highly acidic, this aqueous environment enjoys moderate temperatures, surroundings far from chemical equilibrium, and potentially useful radiation fluxes. Observations of unusual chemistry in the clouds, and particle populations that are not well characterized, suggest that this environment must be explored much more fully before biology can be ruled out. A sulfur-based metabolism for cloud-based life on Venus has recently been proposed (Schulze-Makuch et al., 2004). While speculative, these arguments, along with the discovery of terrestrial extremophile organisms that point toward the plausibility of survival in the Venusian clouds, establish the credibility of astrobiological exploration of Venus. Arguments for the possible existence of life on Mars or Europa are, by convention and repetition, seen as more mainstream than arguments for life elsewhere, but their logical status is similar to plausibility arguments for life on Venus. With the launch of COROT in 2006 and Kepler in 2008 the demographics of Earth-sized planets in our galaxy should finally become known. Future plans for a Terrestrial Planet Finder or Darwin-type space-based spectrograph should provide the capability of studying the atmospheric composition and other properties of terrestrial planets. One of the prime rationales for building such instruments is the possibility of identifying habitable planets or providing more generalized observational constraints on the habitable zones of stellar systems. Given the prevalence of CO2 dominated atmospheres in our own solar system, it is quite likely that a large fraction of these will be Venus-like in composition and evolutionary history. We will be observing these planets at random times in their evolution. In analogy with our own solar system, it is just as likely that we will find representatives of early Venus and early Earth type planets from the first 2 billion years of their evolution as it is that we will find "mature Venus" and "mature Earth"type planets that are roughly 4.5 billion years old. Therefore, in order to be poised to use the results of these future observations of extrasolar planets to make valid, generalized inferences about the size, shape and evolution of stellar habitable zones it is vital that we obtain a much deeper understanding of the evolutionary histories and divergence of Earth and Venus. The Mars Exploration Rover findings of evidence for aqueous conditions on early Mars have intensified interest in the possible origin and evolution of life on early Mars. Yet the evidence suggests that these deposits were formed in a highly acidic and sulfur-rich environment. During this phase, Mars may well have had sulfuric acid clouds sustained by vigorous, sulfur-rich volcanism. This suggests that a greater understanding of the chemistry of the Venusian atmosphere and clouds, and surface/atmosphere interactions, may help to characterize the environment of Mars when life may have formed there. In turn, if signs of early life are found on Mars during the upcoming decades of intensive astrobiological exploration planned for that planet, it will strengthen arguments for the plausibility of life in an early and gradually acidifying Venusian environment. Of our two neighboring planets, Venus and Mars, it is not yet known which held on to its surface oceans, and early habitable conditions, for longer.
Mars Redox Chemistry: Atacama Desert Soils as a Terrestrial Analog
NASA Technical Reports Server (NTRS)
Quinn, R. C.; Grunthaner, F. J.; Taylor, C. L.; Zent, A. P.
2003-01-01
The motivation for this work is to perform quantitative site characterizations of soil chemical processes to allow further development and field validation of the Mars Oxidant Instrument (MOI). The MOI is an in situ survey instrument designed to establish the presence of reactive chemical species in the martian soil, dust, or atmosphere, and to provide detailed reaction model system measurements to enable comprehensive Earthbased study. Functioning as a survey instrument, MOI tests the broad range of hypotheses explaining the reactivity of the martian surface material that have been put forth since the Viking experiments. This work is currently being carried out under the NASA ASTEP funded AstroBioLab (Jeffery Bada, PI). A second objective is to use Atacama field and Viking data to perform comparative studies, with the goal of furthering the understanding of the formation mechanisms and properties of martian oxidants.
Self-Organization of Zonal Jets in Outer Planet Atmospheres: Uranus and Neptune
NASA Technical Reports Server (NTRS)
Friedson, A. James
1997-01-01
The statistical mechnical theory of a two-dimensional Euler fluid is appleid for the first time to explore the spontaneous self-oganization of zonal jets in outer planet atmospheres. Globally conserved integralls of motion are found to play a central role in defining jet structure.
ERIC Educational Resources Information Center
Scarlatos, Tony
2013-01-01
Exploring the Solar System in the elementary school curriculum has traditionally involved activities, such as building scale models, to help students visualize the vastness of space and the relative size of the planets and their orbits. Today, numerous websites provide a wealth of information about the sun and the planets, combining text, photos,…
Deep Space Detectives: Searching for Planets Suitable for Life
ERIC Educational Resources Information Center
Pallant, Amy; Damelin, Daniel; Pryputniewicz, Sarah
2013-01-01
This article describes the High-Adventure Science curriculum unit "Is There Life in Space?" This free online investigation, developed by The Concord Consortium, helps students see how scientists use modern tools to locate planets around distant stars and explore the probability of finding extraterrestrial life. This innovative curriculum…
Gaia: "Thinking Like a Planet" as Transformative Learning
ERIC Educational Resources Information Center
Haigh, Martin
2014-01-01
Transformative learning may involve gentle perspective widening or something more traumatic. This paper explores the impact of a transformative pedagogy in a course that challenges learners to "think like a planet". Among six sources of intellectual anxiety, learners worry about: why Gaia Theory is neglected by their other courses; the…
ERIC Educational Resources Information Center
Treiman, Allan; And Others
This learning guide provides detailed information about exploring the planet Mars. The guide covers a variety of topics related to space exploration including: (1) the reasons for exploring Mars; (2) a history of the exploration of and thinking about Mars beginning with the Babylonians and continuing through the Viking missions; (3) the status of…
NASA Astrophysics Data System (ADS)
Johnson, Catherine L.; Hauck, , Steven A.
2016-11-01
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission yielded a wealth of information about the innermost planet. For the first time, visible images of the entire planet, absolute altimetry measurements and a global gravity field, measurements of Mercury's surface composition, magnetic field, exosphere, and magnetosphere taken over more than four Earth years are available. From these data, two overarching themes emerge. First, multiple data sets and modeling efforts point toward a dynamic ancient history. Signatures of graphite in the crust suggest solidification of an early magma ocean, image data show extensive volcanism and tectonic features indicative of subsequent global contraction, and low-altitude measurements of magnetic fields reveal an ancient magnetic field. Second, the present-day Mercury environment is far from quiescent. Convective motions in the outer core support a modern magnetic field whose strength and geometry are unique among planets with global magnetic fields. Furthermore, periodic and aperiodic variations in the magnetosphere and exosphere have been observed, some of which couple to the surface and the planet's deep interior. Finally, signatures of geologically recent volatile activity at the surface have been detected. Mercury's early history and its present-day environment have common elements with the other inner solar system bodies. However, in each case there are also crucial differences and these likely hold the key to further understanding of Mercury and terrestrial planet evolution. MESSENGER's exploration of Mercury has enabled a new view of the innermost planet, and more importantly has set the stage for much-needed future exploration.
NASA Astrophysics Data System (ADS)
Gong, Yan-Xiang; Ji, Jianghui
2018-05-01
Although several S-type and P-type planets in binary systems were discovered in past years, S-type planets have not yet been found in close binaries with an orbital separation not more than 5 au. Recent studies suggest that S-type planets in close binaries may be detected through high-accuracy observations. However, nowadays planet formation theories imply that it is difficult for S-type planets in close binaries systems to form in situ. In this work, we extensively perform numerical simulations to explore scenarios of planet-planet scattering among circumbinary planets and subsequent tidal capture in various binary configurations, to examine whether the mechanism can play a part in producing such kind of planets. Our results show that this mechanism is robust. The maximum capture probability is ˜10%, which can be comparable to the tidal capture probability of hot Jupiters in single star systems. The capture probability is related to binary configurations, where a smaller eccentricity or a low mass ratio of the binary will lead to a larger probability of capture, and vice versa. Furthermore, we find that S-type planets with retrograde orbits can be naturally produced via capture process. These planets on retrograde orbits can help us distinguish in situ formation and post-capture origin for S-type planet in close binaries systems. The forthcoming missions (PLATO) will provide the opportunity and feasibility to detect such planets. Our work provides several suggestions for selecting target binaries in search for S-type planets in the near future.
Atmospheric entry probes for outer planet exploration. Outer planet entry probe technical summary
NASA Technical Reports Server (NTRS)
1974-01-01
The use of unmanned space probes for investigating the conditions existing on and around the outer planets of the solar system is discussed. The subjects included in the report are: (1) the design of a common entry probe for outer planet missions, (2) the significant trades related to the development of a common probe design, (3) the impact of bus selection on probe design, (4) the impact of probe requirements on bus modifications, and (5) the key technology elements recommended for advanced development. Drawings and illustrations of typical probes are included to show the components and systems used in the space probes.
NASA Technical Reports Server (NTRS)
Kiang, N. Y.; Jablonski, Emma R.; Way, Michael J.; Del Genio, Anthony; Roberge, Aki
2015-01-01
The mean surface temperature of a planet is now acknowledged as insufficient to surmise its full potential habitability. Advancing our understanding requires exploration with 3D general circulation models (GCMs), which can take into account how gradients and fluxes across a planet's surface influence the distribution of heat, clouds, and the potential for heterogeneous distribution of liquid water. Here we present 3D GCM simulations of the effects of alternative stellar spectra, instellation, model resolution, and ocean heat transport, on the simulated distribution of heat and moisture of an Earth-like planet (ELP).
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.
2002-01-01
Mars is one of the most fascinating planets in the solar system, featuring an atmosphere, water, and enormous volcanoes and canyons. The Mars Pathfinder, Global Surveyor, and Odyssey missions mark the first wave of the Planet Earth's coming invasion of the red planet, changing our views of the past and future of the planet and the possibilities of life. Scientist and science-fiction writer Geoffrey A. Landis will present experiences on the Pathfinder mission, the challenges of using solar power on the surface of Mars, and present future missions to Mars such as the upcoming Mars Twin Rovers, which will launch two highly-capable vehicles in 2003 to explore the surface of Mars.
The SEEDS of Planet Formation: Indirect Signatures of Giant Planets in Transitional Disks
NASA Technical Reports Server (NTRS)
Grady, Carol
2012-01-01
Circumstellar disks associated with PMS stars are the site where planetesimals form and grow, and ultimately where planets are produced. A key phase in the evolution of such disks is the phase where clearing of the disk has begun, potentially enabling direct detection of giant planets, but the disk retains sufficient material that indirect signatures that these are young planetary systems are also present. After reviewing what has been learned from studies of the IR spectral energy distribution and (sub )mm-interferometry, I will discuss recent results obtained as part of the Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS).
Exploring Kepler Giant Planets in the Habitable Zone
NASA Astrophysics Data System (ADS)
Hill, Michelle L.; Kane, Stephen R.; Seperuelo Duarte, Eduardo; Kopparapu, Ravi K.; Gelino, Dawn M.; Wittenmyer, Robert A.
2018-06-01
The Kepler mission found hundreds of planet candidates within the Habitable Zones (HZ) of their host star, including over 70 candidates with radii larger than three Earth radii (R ⊕) within the optimistic HZ (OHZ). These giant planets are potential hosts to large terrestrial satellites (or exomoons) which would also exist in the HZ. We calculate the occurrence rates of giant planets (R p = 3.0–25 R ⊕) in the OHZ, and find a frequency of (6.5 ± 1.9)% for G stars, (11.5 ± 3.1)% for K stars, and (6 ± 6)% for M stars. We compare this with previously estimated occurrence rates of terrestrial planets in the HZ of G, K, and M stars and find that if each giant planet has one large terrestrial moon then these moons are less likely to exist in the HZ than terrestrial planets. However, if each giant planet holds more than one moon, then the occurrence rates of moons in the HZ would be comparable to that of terrestrial planets, and could potentially exceed them. We estimate the mass of each planet candidate using the mass–radius relationship developed by Chen & Kipping. We calculate the Hill radius of each planet to determine the area of influence of the planet in which any attached moon may reside, then calculate the estimated angular separation of the moon and planet for future imaging missions. Finally, we estimate the radial velocity semi-amplitudes of each planet for use in follow-up observations.
Seeking How Rocky Planets Form
2018-01-25
This is an artist's rendition of the InSight lander. InSight is short for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport. InSight is a Mars mission, but it's more than a Mars mission. The lander seeks the fingerprints of the processes that formed the rocky planets of the solar system, more than 4 billion years ago. It measures the planet's "vital signs:" its "pulse" (seismology), "temperature" (heat flow) and "reflexes" (precision tracking). https://photojournal.jpl.nasa.gov/catalog/PIA22229
New NASA Technologies for Space Exploration
NASA Technical Reports Server (NTRS)
Calle, Carlos I.
2015-01-01
NASA is developing new technologies to enable planetary exploration. NASA's Space Launch System is an advance vehicle for exploration beyond LEO. Robotic explorers like the Mars Science Laboratory are exploring Mars, making discoveries that will make possible the future human exploration of the planet. In this presentation, we report on technologies being developed at NASA KSC for planetary exploration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bromley, Benjamin C.; Kenyon, Scott J., E-mail: bromley@physics.utah.edu, E-mail: skenyon@cfa.harvard.edu
Correlations in the orbits of several minor planets in the outer solar system suggest the presence of a remote, massive Planet Nine. With at least 10 times the mass of the Earth and a perihelion well beyond 100 au, Planet Nine poses a challenge to planet formation theory. Here we expand on a scenario in which the planet formed closer to the Sun and was gravitationally scattered by Jupiter or Saturn onto a very eccentric orbit in an extended gaseous disk. Dynamical friction with the gas then allowed the planet to settle in the outer solar system. We explore thismore » possibility with a set of numerical simulations. Depending on how the gas disk evolves, scattered super-Earths or small gas giants settle on a range of orbits, with perihelion distances as large as 300 au. Massive disks that clear from the inside out on million-year timescales yield orbits that allow a super-Earth or gas giant to shepherd the minor planets as observed. A massive planet can achieve a similar orbit in a persistent, low-mass disk over the lifetime of the solar system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muñoz-Gutiérrez, M. A.; Pichardo, B.; Peimbert, A., E-mail: mmunoz.astro@gmail.com
We have explored the evolution of a cold debris disk under the gravitational influence of dwarf-planet-sized objects (DPs), both in the presence and absence of an interior giant planet. Through detailed long-term numerical simulations, we demonstrate that when the giant planet is not present, DPs can stir the eccentricities and inclinations of disk particles, in linear proportion to the total mass of the DPs; on the other hand, when the giant planet is included in the simulations, the stirring is approximately proportional to the mass squared. This creates two regimes: below a disk mass threshold (defined by the total massmore » of DPs), the giant planet acts as a stabilizing agent of the orbits of cometary nuclei, diminishing the effect of the scatterers; above the threshold, the giant contributes to the dispersion of the particles.« less
Transit Duration Variations due to Secular Interactions in Systems with Tightly-packed Inner Planets
NASA Astrophysics Data System (ADS)
Boley, Aaron; Van Laerhoven, Christa; Granados Contreras, A. Paula
2018-04-01
Secular interactions among planets in multi-planet systems will lead to variations in orbital inclinations and to the precession of orbital nodes. Taking known system architectures at face value, we calculate orbital precession rates for planets in tightly-packed systems using classical second-order secular theory, in which the orientation of the orbits can be described as a vector sum of eigenmodes and the eigenstructure is determined only by the masses and semi-major axes of the planets. Using this framework, we identify systems that have fast precession frequencies, and use those systems to explore the range of transit duration variation that could occur using amplitudes that are consistent with tightly-packed planetary systems. We then further assess how transit duration variations could be used in practice.
InSight Atlas V Centaur Stage Offload
2018-01-31
Inside Building B7525 at Vandenberg Air Force Base in California, the Centaur upper stage for a United Launch Alliance Atlas V rocket is offloaded from a transport truck. The launch vehicle will send NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff from Vandenberg is scheduled for May 5, 2018.
InSight Atlas V ASA and Nozzle Arrival/Unload
2018-02-05
At Vandenberg Air Force Base in California, the aft stub adapter (ASA) and nozzle for a United Launch Alliance Atlas V rocket is removed from its shipping container. The launch vehicle will send NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff from Vandenberg is scheduled for May 5, 2018.
InSight Spacecraft Uncrating, Removal from Container, Lift Heat
2018-03-01
Inside the Astrotech processing facility at Vandenberg Air Force Base in California, the heatshield for NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft is removed from protective wrapping. InSight was developed and built by Lockheed-Martin Space Systems in Denver, Colorado, and is scheduled for liftoff is May 5, 2018. InSight is the first mission to land on Mars and explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth.
InSight Atlas V Fairing Rotate to Vertical
2018-02-07
In the Astrotech facility at Vandenberg Air Force Base in California, the payload fairing for the United Launch Alliance (ULA) Atlas V for NASA's upcoming Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars is lifted to the vertical position. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff atop a ULA Atlas V rocket is scheduled for May 5, 2018.
InSight Spacecraft Uncrating, Removal from Container, Lift Heat
2018-03-01
Inside the Astrotech processing facility at Vandenberg Air Force Base in California, technicians and engineers inspect the heatshield for NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft. InSight was developed and built by Lockheed-Martin Space Systems in Denver, Colorado, and is scheduled for liftoff is May 5, 2018. InSight is the first mission to land on Mars and explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth.
InSight Spacecraft Uncrating, Removal from Container, Lift Heat
2018-03-01
Inside the Astrotech processing facility at Vandenberg Air Force Base in California, the heatshield for NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft has been removed from protective wrapping. InSight was developed and built by Lockheed-Martin Space Systems in Denver, Colorado, and is scheduled for liftoff is May 5, 2018. InSight is the first mission to land on Mars and explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth.
InSight Atlas V ASA to ISA Installation
2018-02-06
Inside Building B7525 at Vandenberg Air Force Base in California, the aft stub adapter (ASA) is installed to the interstage adapter (ISA) for a United Launch Alliance Atlas V rocket. The launch vehicle will send NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff from Vandenberg is scheduled for May 5, 2018.
InSight Atlas V Centaur Transport / Lift & Mate
2018-03-06
At Space Launch Complex 3 at Vandenberg Air Force Base in California technicians and engineers prepare a United Launch Alliance Centaur upper stage for lifting and mating atop an Atlas V booster. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.
InSight Atlas V Centaur Transport / Lift & Mate
2018-03-06
At Vandenberg Air Force Base in California, a United Launch Alliance Centaur upper stage is prepared for transport to Space Launch Complex 3 for mating atop an Atlas V booster. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.
Extra Solar Planet Science With a Non Redundant Mask
NASA Astrophysics Data System (ADS)
Minto, Stefenie Nicolet; Sivaramakrishnan, Anand; Greenbaum, Alexandra; St. Laurent, Kathryn; Thatte, Deeparshi
2017-01-01
To detect faint planetary companions near a much brighter star, at the Resolution Limit of the James Webb Space Telescope (JWST) the Near-Infrared Imager and Slitless Spectrograph (NIRISS) will use a non-redundant aperture mask (NRM) for high contrast imaging. I simulated NIRISS data of stars with and without planets, and run these through the code that measures interferometric image properties to determine how sensitive planetary detection is to our knowledge of instrumental parameters, starting with the pixel scale. I measured the position angle, distance, and contrast ratio of the planet (with respect to the star) to characterize the binary pair. To organize this data I am creating programs that will automatically and systematically explore multi-dimensional instrument parameter spaces and binary characteristics. In the future my code will also be applied to explore any other parameters we can simulate.
2018-01-25
An artist's rendition of how a rocky planet forms. As a rocky planet forms, the planet-forming material gathers in a process known as "accretion." It grows larger in size, and increases in temperature, along with the pressure at its core. The energy from this initial planet forming process causes the planet's elements to heat up and melt. Upon melting, layers form and separate. The heavier elements sink to the bottom, the lighter ones float to the top. This material then separates into layers as it cools, which is known as "differentiation." A fully formed planet slowly emerges, with an upper layer known as the crust, the mantle in the middle, and a solid iron core. InSight is short for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport. The InSight mission will help answer key questions about how the rocky planets of the solar system, as well as how rocky exoplanets, formed. So while InSight is a Mars mission, it's also more than a Mars mission. The lander seeks the fingerprints of the processes that formed the rocky planets of the solar system, more than 4 billion years ago. It measures the planet's "vital signs:" its "pulse" (seismology), "temperature" (heat flow) and "reflexes" (precision tracking). https://photojournal.jpl.nasa.gov/catalog/PIA22233
On the Detectability of Planet X with LSST
NASA Astrophysics Data System (ADS)
Trilling, David E.; Bellm, Eric C.; Malhotra, Renu
2018-06-01
Two planetary mass objects in the far outer solar system—collectively referred to here as Planet X— have recently been hypothesized to explain the orbital distribution of distant Kuiper Belt Objects. Neither planet is thought to be exceptionally faint, but the sky locations of these putative planets are poorly constrained. Therefore, a wide area survey is needed to detect these possible planets. The Large Synoptic Survey Telescope (LSST) will carry out an unbiased, large area (around 18000 deg2), deep (limiting magnitude of individual frames of 24.5) survey (the “wide-fast-deep (WFD)” survey) of the southern sky beginning in 2022, and it will therefore be an important tool in searching for these hypothesized planets. Here, we explore the effectiveness of LSST as a search platform for these possible planets. Assuming the current baseline cadence (which includes the WFD survey plus additional coverage), we estimate that LSST will confidently detect or rule out the existence of Planet X in 61% of the entire sky. At orbital distances up to ∼75 au, Planet X could simply be found in the normal nightly moving object processing; at larger distances, it will require custom data processing. We also discuss the implications of a nondetection of Planet X in LSST data.
Eyes on Planet Earth! Exploring Your Local Watershed
ERIC Educational Resources Information Center
Smith, Michael J.; Southard, John B.
2003-01-01
The American Geological Institute is helping teachers and geoscientists to emphasize the importance of inquiry and active investigation of the world around by selecting "Eyes on Planet Earth: Monitoring Our Changing World" as the theme of this year's Earth Science Week. The activity on the back of this month's poster insert, "Monitoring the…
NASA Cassini Mission Prepares for “Grand Finale” on This Week @NASA – April 7, 2017
2017-04-07
NASA held a news conference April 4 at the Jet Propulsion Laboratory, with participation from NASA headquarters, to preview the final phase of the Cassini spacecraft’s mission to Saturn. On April 26, Cassini will begin its “Grand Finale” – a series of deep dives between the planet and its rings. No other mission has ever explored this unique region that is so close to the planet. Cassini will make 22 orbits that swoop between the rings and the planet before ending its 20-year mission on Sept. 15, with a final plunge into Saturn. The mission team hopes to gain powerful insights into the planet's internal structure and the origins of the rings, obtain the first-ever sampling of Saturn's atmosphere and particles coming from the main rings, and capture the closest-ever views of Saturn's clouds and inner rings. Also, Next Space Station Crew Travels to Launch Site, New Target Launch Date for Orbital ATK Mission to ISS, Lightfoot Visits Industry Partners, Human Exploration Rover Challenge, and John Glenn Interred at Arlington National Cemetery.
Hybrid Mobile Communication Networks for Planetary Exploration
NASA Technical Reports Server (NTRS)
Alena, Richard; Lee, Charles; Walker, Edward; Osenfort, John; Stone, Thom
2007-01-01
A paper discusses the continuing work of the Mobile Exploration System Project, which has been performing studies toward the design of hybrid communication networks for future exploratory missions to remote planets. A typical network could include stationary radio transceivers on a remote planet, mobile radio transceivers carried by humans and robots on the planet, terrestrial units connected via the Internet to an interplanetary communication system, and radio relay transceivers aboard spacecraft in orbit about the planet. Prior studies have included tests on prototypes of these networks deployed in Arctic and desert regions chosen to approximate environmental conditions on Mars. Starting from the findings of the prior studies, the paper discusses methods of analysis, design, and testing of the hybrid communication networks. It identifies key radio-frequency (RF) and network engineering issues. Notable among these issues is the study of wireless LAN throughput loss due to repeater use, RF signal strength, and network latency variations. Another major issue is that of using RF-link analysis to ensure adequate link margin in the face of statistical variations in signal strengths.
Chaotic Dynamics of Trans-Neptunian Objects Perturbed by Planet Nine
NASA Astrophysics Data System (ADS)
Hadden, Sam; Li, Gongjie; Payne, Matthew J.; Holman, Matthew J.
2018-06-01
Observations of clustering among the orbits of the most distant trans-Neptunian objects (TNOs) has inspired interest in the possibility of an undiscovered ninth planet lurking in the outskirts of the solar system. Numerical simulations by a number of authors have demonstrated that, with appropriate choices of planet mass and orbit, such a planet can maintain clustering in the orbital elements of the population of distant TNOs, similar to the observed sample. However, many aspects of the rich underlying dynamical processes induced by such a distant eccentric perturber have not been fully explored. We report the results of our investigation of the dynamics of coplanar test-particles that interact with a massive body on an circular orbit (Neptune) and a massive body on a more distant, highly eccentric orbit (the putative Planet Nine). We find that a detailed examination of our idealized simulations affords tremendous insight into the rich test-particle dynamics that are possible. In particular, we find that chaos and resonance overlap plays an important role in particles’ dynamical evolution. We develop a simple mapping model that allows us to understand, in detail, the web of overlapped mean-motion resonances explored by chaotically evolving particles. We also demonstrate that gravitational interactions with Neptune can have profound effects on the orbital evolution of particles. Our results serve as a starting point for a better understanding of the dynamical behavior observed in more complicated simulations that can be used to constrain the mass and orbit of Planet Nine.
Colors of extreme exo-Earth environments.
Hegde, Siddharth; Kaltenegger, Lisa
2013-01-01
The search for extrasolar planets has already detected rocky planets and several planetary candidates with minimum masses that are consistent with rocky planets in the habitable zone of their host stars. A low-resolution spectrum in the form of a color-color diagram of an exoplanet is likely to be one of the first post-detection quantities to be measured for the case of direct detection. In this paper, we explore potentially detectable surface features on rocky exoplanets and their connection to, and importance as, a habitat for extremophiles, as known on Earth. Extremophiles provide us with the minimum known envelope of environmental limits for life on our planet. The color of a planet reveals information on its properties, especially for surface features of rocky planets with clear atmospheres. We use filter photometry in the visible as a first step in the characterization of rocky exoplanets to prioritize targets for follow-up spectroscopy. Many surface environments on Earth have characteristic albedos and occupy a different color space in the visible waveband (0.4-0.9 μm) that can be distinguished remotely. These detectable surface features can be linked to the extreme niches that support extremophiles on Earth and provide a link between geomicrobiology and observational astronomy. This paper explores how filter photometry can serve as a first step in characterizing Earth-like exoplanets for an aerobic as well as an anaerobic atmosphere, thereby prioritizing targets to search for atmospheric biosignatures.
High surface magnetic field in red giants as a new signature of planet engulfment?
NASA Astrophysics Data System (ADS)
Privitera, Giovanni; Meynet, Georges; Eggenberger, Patrick; Georgy, Cyril; Ekström, Sylvia; Vidotto, Aline A.; Bianda, Michele; Villaver, Eva; ud-Doula, Asif
2016-09-01
Context. Red giant stars may engulf planets. This may increase the rotation rate of their convective envelope, which could lead to strong dynamo-triggered magnetic fields. Aims: We explore the possibility of generating magnetic fields in red giants that have gone through the process of a planet engulfment. We compare them with similar models that evolve without any planets. We discuss the impact of magnetic braking through stellar wind on the evolution of the surface velocity of the parent star. Methods: By studying rotating stellar models with and without planets and an empirical relation between the Rossby number and the surface magnetic field, we deduced the evolution of the surface magnetic field along the red giant branch. The effects of stellar wind magnetic braking were explored using a relation deduced from magnetohydrodynamics simulations. Results: The stellar evolution model of a red giant with 1.7 M⊙ without planet engulfment and with a time-averaged rotation velocity during the main sequence equal to 100 km s-1 shows a surface magnetic field triggered by convection that is stronger than 10 G only at the base of the red giant branch, that is, for gravities log g> 3. When a planet engulfment occurs, this magnetic field can also appear at much lower gravities, that is, at much higher luminosities along the red giant branch. The engulfment of a 15 MJ planet typically produces a dynamo-triggered magnetic field stronger than 10 G for gravities between 2.5 and 1.9. We show that for reasonable magnetic braking laws for the wind, the high surface velocity reached after a planet engulfment may be maintained sufficiently long to be observable. Conclusions: High surface magnetic fields for red giants in the upper part of the red giant branch are a strong indication of a planet engulfment or of an interaction with a companion. Our theory can be tested by observing fast-rotating red giants such as HD 31994, Tyc 0347-00762-1, Tyc 5904-00513-1, and Tyc 6054-01204-1 and by determining whether they show magnetic fields.
The archaeal diversity in a cave system and its implications for life on other planets
NASA Astrophysics Data System (ADS)
Leuko, Stefan; Rettberg, Petra; De Waele, Jo; Bessone, Loredana; Sauro, Francesco; Sanna, Laura
The quest of exploring and looking for life in new places is a human desire since centuries. Nowadays, we are not only looking on planet Earth any more, but our endeavours focus on nearby planets in our solar system. At this point in time, we are not able to send manned missions to other planets, but to be ready and prepared for the day, training today is pivotal. Developed by the European Space Agency (ESA) since 2008, these CAVES missions (Cooperative Adventure for Valuing and Exercising human behaviour and performance Skills), prepare astronauts to work safely and effectively and solve problems as a multicultural team while exploring uncharted underground natural areas (i.e. caves) using space procedures. The hypogean environment is also of great interest for astrobiological research as cave conditions may resemble those in extra-terrestrial environments. Besides the main focus of exploration and skill training, future astronauts are also trained in taking microbiological samples for analysis during the exploration and for further analysis in the lab. During the 2013 mission, astronauts collected soil samples and employed flocked swaps to sample areas with little or no visible soil. Microscopic analysis back in the lab revealed a diverse spectrum of different cell shapes and sizes. Samples were further analysed employing molecular tools such as RFLP analysis, 16s rRNA clone libraries and sequence analysis. RFLP pattern analysis revealed that the community can be divided in 9 main groups and several single patterns. The largest group (40% of all analysed clones) belong to the clade of ammonia oxidizing archaea Nitrosopumilus spp.. Dividing the results by sampling point, it showed that the highest diversity of organisms was located on the flocked swaps, which is interesting as the sample was taken from a rock surface with no visible organic matter. By analysis low energy systems like a cave, we may be able to find clues for what could be necessary to survive on a different planet.
NASA Astrophysics Data System (ADS)
Alp, D.; Demory, B.-O.
2018-01-01
Context. Refraction deflects photons that pass through atmospheres, which affects transit light curves. Refraction thus provides an avenue to probe physical properties of exoplanet atmospheres and to constrain the presence of clouds and hazes. In addition, an effective surface can be imposed by refraction, thereby limiting the pressure levels probed by transmission spectroscopy. Aims: The main objective of the paper is to model the effects of refraction on photometric light curves for realistic planets and to explore the dependencies on atmospheric physical parameters. We also explore under which circumstances transmission spectra are significantly affected by refraction. Finally, we search for refraction signatures in photometric residuals in Kepler data. Methods: We use the model of Hui & Seager (2002, ApJ, 572, 540) to compute deflection angles and refraction transit light curves, allowing us to explore the parameter space of atmospheric properties. The observational search is performed by stacking large samples of transit light curves from Kepler. Results: We find that out-of-transit refraction shoulders are the most easily observable features, which can reach peak amplitudes of 10 parts per million (ppm) for planets around Sun-like stars. More typical amplitudes are a few ppm or less for Jovians and at the sub-ppm level for super-Earths. In-transit, ingress, and egress refraction features are challenging to detect because of the short timescales and degeneracies with other transit model parameters. Interestingly, the signal-to-noise ratio of any refraction residuals for planets orbiting Sun-like hosts are expected to be similar for planets orbiting red dwarfs and ultra-cool stars. We also find that the maximum depth probed by transmission spectroscopy is not limited by refraction for weakly lensing planets, but that the incidence of refraction can vary significantly for strongly lensing planets. We find no signs of refraction features in the stacked Kepler light curves, which is in agreement with our model predictions.
Exploring the Solar System with a Human Orrery
NASA Astrophysics Data System (ADS)
Newbury, Peter
2010-12-01
One of the fundamental learning goals of introductory astronomy is for the students to gain some perspective on the scale and structure of the solar system. Many astronomy teachers have laid out the planets along a long strip of paper1 or across a school grounds or campus.2 Other activities that investigate the motion of the planets are often computer based,34 hiding the awe-inspiring distances between the planets. Our human orrery activity, adapted from the design at the Armagh Observatory in Ireland,567 combines the best of both approaches by creating a working model of the solar system that mimics both the scale and the motion of the planets.
NASA Astrophysics Data System (ADS)
Titov, D. V.; Baines, K. H.; Basilevsky, A. T.; Chassefiere, E.; Chin, G.; Crisp, D.; Esposito, L. W.; Lebreton, J.-P.; Lellouch, E.; Moroz, V. I.; Nagy, A. F.; Owen, T. C.; Oyama, K.-I.; Russell, C. T.; Taylor, F. W.; Young, R. E.
2002-10-01
Venus has always been a fascinating objective for planetary studies. At the beginning of the space era Venus became one of the first targets for spacecraft missions. Our neighbour in the solar system and, in size, the twin sister of Earth, Venus was expected to be very similar to our planet. However, the first phase of Venus spacecraft exploration in 1962-1992 by the family of Soviet Venera and Vega spacecraft and US Mariner, Pioneer Venus, and Magellan missions discovered an entirely different, exotic world hidden behind a curtain of dense clouds. These studies gave us a basic knowledge of the conditions on the planet, but generated many more questions concerning the atmospheric composition, chemistry, structure, dynamics, surface-atmosphere interactions, atmospheric and geological evolution, and the plasma environment. Despite all of this exploration by more than 20 spacecraft, the "morning star" still remains a mysterious world. But for more than a decade Venus has been a "forgotten" planet with no new missions featuring in the plans of the world space agencies. Now we are witnessing the revival of interest in this planet: the Venus Orbiter mission is approved in Japan, Venus Express - a European orbiter mission - has successfully passed the selection procedure in ESA, and several Venus Discovery proposals are knocking at the doors of NASA. The paper presents an exciting story of Venus spacecraft exploration, summarizes open scientific problems, and builds a bridge to the future missions.
#AltPlanets: Exploring the Exoplanet Catalogue with Neural Networks
NASA Astrophysics Data System (ADS)
Laneuville, M.; Tasker, E. J.; Guttenberg, N.
2017-12-01
The launch of Kepler in 2009 brought the number of known exoplanets into the thousands, in a growth explosion that shows no sign of abating. While the data available for individual planets is presently typically restricted to orbital and bulk properties, the quantity of data points allows the potential for meaningful statistical analysis. It is not clear how planet mass, radius, orbital path, stellar properties and neighbouring planets influence one another, therefore it seems inevitable that patterns will be missed simply due to the difficulty of including so many dimensions. Even simple trends may be overlooked if they fall outside our expectation of planet formation; a strong risk in a field where new discoveries have destroyed theories from the first observations of hot Jupiters. A possible way forward is to take advantage of the capabilities of neural network autoencoders. The idea of such algorithms is to learn a representation (encoding) of the data in a lower dimension space, without a priori knowledge about links between the elements. This encoding space can then be used to discover the strongest correlations in the original dataset.The key point is that trends identified by a neural network are independent of any previous analysis and pre-conceived ideas about physical processes. Results can reveal new relationships between planet properties and verify existing trends. We applied this concept to study data from the NASA Exoplanet Archive and while we have begun to explore the potential use of neural networks for exoplanet data, there are many possible extensions. For example, the network can produce a large number of 'alternative planets' whose statistics should match the current distribution. This larger dataset could highlight gaps in the parameter space or indicate observations are missing particular regimes. This could guide instrument proposals towards objects liable to yield the most information.
An Ultraviolet Investigation of Activity on Exoplanet Host Stars
NASA Astrophysics Data System (ADS)
Shkolnik, Evgenya L.
2013-03-01
Using the far-UV (FUV) and near-UV (NUV) photometry from the NASA Galaxy Evolution Explorer (GALEX), we searched for evidence of increased stellar activity due to tidal and/or magnetic star-planet interactions (SPI) in the 272 known FGK planetary hosts observed by GALEX. With the increased sensitivity of GALEX, we are able probe systems with lower activity levels and at larger distances than what has been done to date with X-ray satellites. We compared samples of stars with close-in planets (a < 0.1 AU) to those with far-out planets (a > 0.5 AU) and looked for correlations of excess activity with other system parameters. This statistical investigation found no clear correlations with a, Mp , or Mp /a, in contrast to some X-ray and Ca II studies. However, there is tentative evidence (at a level of 1.8σ) that stars with radial-velocity-(RV)-detected close-in planets are more FUV-active than stars with far-out planets, in agreement with several published X-ray and Ca II results. The case is strengthened to a level of significance to 2.3σ when transit-detected close-in planets are included. This is most likely because the RV-selected sample of stars is significantly less active than the field population of comparable stars, while the transit-selected sample is similarly active. Given the factor of 2-3 scatter in fractional FUV luminosity for a given stellar effective temperature, it is necessary to conduct a time-resolved study of the planet hosts in order to better characterize their UV variability and generate a firmer statistical result. Based on observations made with the NASA Galaxy Evolution Explorer. GALEX is operated for NASA by the California Institute of Technology under NASA contract NAS5-98034.
The Moon: Keystone to Understanding Planetary Geological Processes and History
NASA Technical Reports Server (NTRS)
2002-01-01
Extensive and intensive exploration of the Earth's Moon by astronauts and an international array of automated spacecraft has provided an unequaled data set that has provided deep insight into geology, geochemistry, mineralogy, petrology, chronology, geophysics and internal structure. This level of insight is unequaled except for Earth. Analysis of these data sets over the last 35 years has proven fundamental to understanding planetary surface processes and evolution, and is essential to linking surface processes with internal and thermal evolution. Much of the understanding that we presently have of other terrestrial planets and outer planet satellites derives from the foundation of these data. On the basis of these data, the Moon is a laboratory for understanding of planetary processes and a keystone for providing evolutionary perspective. Important comparative planetology issues being addressed by lunar studies include impact cratering, magmatic activity and tectonism. Future planetary exploration plans should keep in mind the importance of further lunar exploration in continuing to build solid underpinnings in this keystone to planetary evolution. Examples of these insights and applications to other planets are cited.
Dynamical Simulations of HD 69830
NASA Astrophysics Data System (ADS)
Payne, Matthew J.; Ford, Eric B.; Wyatt, Mark C.; Booth, Mark
2009-02-01
Previous studies have developed models for the growth and migration of three planets orbiting HD 69830. We perform n-body simulations using MERCURY (Chambers 1999) to explore the implications of these models for: 1) the excitation of planetary orbits via planet-planet interactions, 2) the accretion and clearing of a putative planetesimal disk, 3) the distribution of planetesimal orbits following migration, and 4) the implications for the origin of the observed infrared emission from the HD 69830 system. We report preliminary results that suggest new constraints on the formation of HD 69830.
Study of Power Options for Jupiter and Outer Planet Missions
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Fincannon, James
2015-01-01
Power for missions to Jupiter and beyond presents a challenging goal for photovoltaic power systems, but NASA missions including Juno and the upcoming Europa Clipper mission have shown that it is possible to operate solar arrays at Jupiter. This work analyzes photovoltaic technologies for use in Jupiter and outer planet missions, including both conventional arrays, as well as analyzing the advantages of advanced solar cells, concentrator arrays, and thin film technologies. Index Terms - space exploration, spacecraft solar arrays, solar electric propulsion, photovoltaic cells, concentrator, Fresnel lens, Jupiter missions, outer planets.
NASA Astrophysics Data System (ADS)
Kinsey, J. C.; Yoerger, D. R.; Camilli, R.; German, C. R.
2010-12-01
Water velocity measurements are crucial to quantifying fluxes and better understanding water as a fundamental transport mechanism for marine chemical and biological processes. The importance of flux to understanding these processes makes it a crucial component of astrobiological exploration to moons possessing large bodies of water, such as Europa. Present technology allows us to obtain submerged water velocity measurements from stationary platforms; rarer are measurements from submerged vehicles which possess the ability to autonomously survey tens of kilometers over extended periods. Improving this capability would also allow us to obtain co-registered water velocity and other sensor data (e.g., mass spectrometers, temperature, oxygen, etc) and significantly enhance our ability to estimate fluxes. We report results from 4 recent expeditions in which we measured water velocities from autonomous underwater vehicles (AUVs) to help quantify flux in three different oceanographic contexts: hydrothermal vent plumes; an oil spill cruise responding to the 2010 Deepwater Horizon blowout; and two expeditions investigating naturally occurring methane seeps. On all of these cruises, we directly measured the water velocities with an acoustic Doppler current profiler (ADCP) mounted on the AUV. Vehicle motion was corrected for using bottom-lock Doppler tracks when available and, in the absence of bottom-lock, estimates of vehicle velocity based on dynamic models. In addition, on the methane seep cruises, we explored the potential of using acoustic mapping sonars, such as multi-beam and sub-bottom profiling systems, to localize plumes and indirectly quantify flux. Data obtained on these expeditions enhanced our scientific investigations and provides data for future development of algorithms for autonomously processing, identifying, and classifying water velocity and flux measurements. Such technology will be crucial in future astrobiology missions where highly constrained bandwidth will require robots to possess sufficient autonomy to process and react to data independent of human interpretation and interaction.
ORBITAL STABILITY OF MULTI-PLANET SYSTEMS: BEHAVIOR AT HIGH MASSES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrison, Sarah J.; Kratter, Kaitlin M., E-mail: morrison@lpl.arizona.edu, E-mail: kkratter@email.arizona.edu
2016-06-01
In the coming years, high-contrast imaging surveys are expected to reveal the characteristics of the population of wide-orbit, massive, exoplanets. To date, a handful of wide planetary mass companions are known, but only one such multi-planet system has been discovered: HR 8799. For low mass planetary systems, multi-planet interactions play an important role in setting system architecture. In this paper, we explore the stability of these high mass, multi-planet systems. While empirical relationships exist that predict how system stability scales with planet spacing at low masses, we show that extrapolating to super-Jupiter masses can lead to up to an ordermore » of magnitude overestimate of stability for massive, tightly packed systems. We show that at both low and high planet masses, overlapping mean-motion resonances trigger chaotic orbital evolution, which leads to system instability. We attribute some of the difference in behavior as a function of mass to the increasing importance of second order resonances at high planet–star mass ratios. We use our tailored high mass planet results to estimate the maximum number of planets that might reside in double component debris disk systems, whose gaps may indicate the presence of massive bodies.« less
On the Terminal Rotation Rates of Giant Planets
NASA Astrophysics Data System (ADS)
Batygin, Konstantin
2018-04-01
Within the general framework of the core-nucleated accretion theory of giant planet formation, the conglomeration of massive gaseous envelopes is facilitated by a transient period of rapid accumulation of nebular material. While the concurrent build-up of angular momentum is expected to leave newly formed planets spinning at near-breakup velocities, Jupiter and Saturn, as well as super-Jovian long-period extrasolar planets, are observed to rotate well below criticality. In this work, we demonstrate that the large luminosity of a young giant planet simultaneously leads to the generation of a strong planetary magnetic field, as well as thermal ionization of the circumplanetary disk. The ensuing magnetic coupling between the planetary interior and the quasi-Keplerian motion of the disk results in efficient braking of planetary rotation, with hydrodynamic circulation of gas within the Hill sphere playing the key role of expelling spin angular momentum to the circumstellar nebula. Our results place early-stage giant planet and stellar rotation within the same evolutionary framework, and motivate further exploration of magnetohydrodynamic phenomena in the context of the final stages of giant planet formation.
Which Type of Planets do We Expect to Observe in the Habitable Zone?
Adibekyan, Vardan; Figueira, Pedro; Santos, Nuno C
2016-11-01
We used a sample of super-Earth-like planets detected by the Doppler spectroscopy and transit techniques to explore the dependence of orbital parameters of the planets on the metallicity of their host stars. We confirm the previous results (although still based on small samples of planets) that super-Earths orbiting around metal-rich stars are not observed to be as distant from their host stars as we observe their metal-poor counterparts to be. The orbits of these super-Earths with metal-rich hosts usually do not reach into the Habitable Zone (HZ), keeping them very hot and inhabitable. We found that most of the known planets in the HZ are orbiting their GK-type hosts which are metal-poor. The metal-poor nature of planets in the HZ suggests a high Mg abundance relative to Si and high Si abundance relative to Fe. These results lead us to speculate that HZ planets might be more frequent in the ancient Galaxy and had compositions different from that of our Earth.
Survival of planets around shrinking stellar binaries
Muñoz, Diego J.; Lai, Dong
2015-01-01
The discovery of transiting circumbinary planets by the Kepler mission suggests that planets can form efficiently around binary stars. None of the stellar binaries currently known to host planets has a period shorter than 7 d, despite the large number of eclipsing binaries found in the Kepler target list with periods shorter than a few days. These compact binaries are believed to have evolved from wider orbits into their current configurations via the so-called Lidov–Kozai migration mechanism, in which gravitational perturbations from a distant tertiary companion induce large-amplitude eccentricity oscillations in the binary, followed by orbital decay and circularization due to tidal dissipation in the stars. Here we explore the orbital evolution of planets around binaries undergoing orbital decay by this mechanism. We show that planets may survive and become misaligned from their host binary, or may develop erratic behavior in eccentricity, resulting in their consumption by the stars or ejection from the system as the binary decays. Our results suggest that circumbinary planets around compact binaries could still exist, and we offer predictions as to what their orbital configurations should be like. PMID:26159412
Survival of planets around shrinking stellar binaries.
Muñoz, Diego J; Lai, Dong
2015-07-28
The discovery of transiting circumbinary planets by the Kepler mission suggests that planets can form efficiently around binary stars. None of the stellar binaries currently known to host planets has a period shorter than 7 d, despite the large number of eclipsing binaries found in the Kepler target list with periods shorter than a few days. These compact binaries are believed to have evolved from wider orbits into their current configurations via the so-called Lidov-Kozai migration mechanism, in which gravitational perturbations from a distant tertiary companion induce large-amplitude eccentricity oscillations in the binary, followed by orbital decay and circularization due to tidal dissipation in the stars. Here we explore the orbital evolution of planets around binaries undergoing orbital decay by this mechanism. We show that planets may survive and become misaligned from their host binary, or may develop erratic behavior in eccentricity, resulting in their consumption by the stars or ejection from the system as the binary decays. Our results suggest that circumbinary planets around compact binaries could still exist, and we offer predictions as to what their orbital configurations should be like.
Return to the red planet: The Mars Observer Mission
NASA Technical Reports Server (NTRS)
French, Bevan M.; Young, Carolynn (Editor)
1993-01-01
An overview of the Mars Observer Mission is discussed. Highlights include: (1) the spacecraft; (2) the instrumentation and science experiments; (3) the countries involved; (4) the flight teams; and (5) the planet Mars itself (a brief history). Photographs and flow charts are included, along with diagrams of instrumentation and a brief historical narrative of space observation and exploration.
General Astrophysics and Comparative Planetology with the Terrestrial Planet Finder Missions
NASA Technical Reports Server (NTRS)
Kuchner, Marc J. (Editor)
2005-01-01
This document discusses the potential of the Terrestrial Planet Finder (TPF) for general astrophysics beyond its base mission, focusing on science obtainable with no or minimal modifications to the mission design, but also exploring possible modifications of TPF with high scientific merit and no impact on the basic search for extrasolar Earth analogs.
NASA Technical Reports Server (NTRS)
Tyler, G. L.
1972-01-01
Scientific instrumentation for satellite communication and radio tracking systems in the outer planet exploration mission is discussed. Mission planning considers observations of planetary and satellite-masses, -atmospheres, -magnetic fields, -surfaces, -gravitational fields, solar wind composition, planetary radio emissions, and tests of general relativity in time delay and ray bending experiments.
ERIC Educational Resources Information Center
Wilkinson, John
2013-01-01
Humans have always had the vision to one day live on other planets. This vision existed even before the first person was put into orbit. Since the early space missions of putting humans into orbit around Earth, many advances have been made in space technology. We have now sent many space probes deep into the Solar system to explore the planets and…
A New Planet in our Solar System? NASA Takes a Look
2016-01-20
NASA’s Director of Planetary Science, Jim Green, discusses the Jan. 20, 2016 Astronomical Journal science paper that points to the possibility of a new “Planet 9” in our solar system beyond Pluto, examining the scientific process and inviting you to have a front row seat to our exploration of the solar system.
NASA Facts, Mars as a Member of the Solar System.
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Washington, DC. Educational Programs Div.
Presented is one of a series of National Aeronautics and Space Administration (NASA) facts about the exploration of Mars. In this publication, emphasis is placed on the planet Mars as a member of the Solar System and a detailed description is given related to historical accounts of the planet's existence and its travels. The physical…
Exploring the Solar System with a Human Orrery
ERIC Educational Resources Information Center
Newbury, Peter
2010-01-01
One of the fundamental learning goals of introductory astronomy is for the students to gain some perspective on the scale and structure of the solar system. Many astronomy teachers have laid out the planets along a long strip of paper or across a school grounds or campus. Other activities that investigate the motion of the planets are often…
Cascade Helps JPL Explore the Solar System
NASA Technical Reports Server (NTRS)
Burke, G. R.
1996-01-01
At Jet Propulsion Laboratory (JPL), we are involved with the unmanned exploration of the solar system. Unmanned probes observe the planet surfaces using radar and optical cameras to take a variety of measurements.
Revised planetary protection policy for solar system exploration.
DeVincenzi, D L; Stabekis, P D
1984-01-01
In order to control contamination of planets by terrestrial microorganisms and organic constituents, U.S. planetary missions have been governed by a planetary protection (or planetary quarantine) policy which has changed little since 1972. This policy has recently been reviewed in light of new information obtained from planetary exploration during the past decade and because of changes to, or uncertainties in, some parameters used in the existing quantitative approach. On the basis of this analysis, a revised planetary protection policy with the following key features is proposed: deemphasizing the use of mathematical models and quantitative analyses; establishing requirements for target planet/mission type (i.e., orbiter, lander, etc.) combinations; considering sample return missions a separate category; simplifying documentation; and imposing implementing procedures (i.e., trajectory biasing, cleanroom assembly, spacecraft sterilization, etc.) by exception, i.e., only if the planet/mission combination warrants such controls.
Planet signatures and Size Segregation in Debris Discs
NASA Astrophysics Data System (ADS)
Thébault, Philippe
2014-01-01
The response of a debris disc to a planetary perturber is the result of the complex interplay between gravitational effects, grain collisions and stellar radiation pressure (Stark & Kuchner (2009). We investigate to what extent this response can depart from the pure gravitational case when including grain collisional production and radiation pressure. We use the DyCoSS code (Thébault (2012), designed to study the coupled effect of collisions and dynamics for systems at steady state with one perturbing body. We focus on two outcomes: the 2D surface density profile of the disc+planet system, and the way the Particle Size Distribution (PSD) is spatially segregated within the disc. We consider two set-ups: 1) a narrow ring with an exterior ``shepherding'' planet, and 2) an extended disc in which a planet is embedded. For each case, the planet mass and orbit are explored as free parameters, and an unperturbed ``no-planet'' case is also considered. Another parameter is the disc's collisional activity, as parameterized by its optical depth τ.
Minerva exoplanet detection sensitivity from simulated observations
NASA Astrophysics Data System (ADS)
McCrady, Nate; Nava, C.
2014-01-01
Small rocky planets induce radial velocity signals that are difficult to detect in the presence of stellar noise sources of comparable or larger amplitude. Minerva is a dedicated, robotic observatory that will attain 1 meter per second precision to detect these rocky planets in the habitable zone around nearby stars. We present results of an ongoing project investigating Minerva’s planet detection sensitivity as a function of observational cadence, planet mass, and orbital parameters (period, eccentricity, and argument of periastron). Radial velocity data is simulated with realistic observing cadence, accounting for weather patterns at Mt. Hopkins, Arizona. Instrumental and stellar noise are added to the simulated observations, including effects of oscillation, jitter, starspots and rotation. We extract orbital parameters from the simulated RV data using the RVLIN code. A Monte Carlo analysis is used to explore the parameter space and evaluate planet detection completeness. Our results will inform the Minerva observing strategy by providing a quantitative measure of planet detection sensitivity as a function of orbital parameters and cadence.
InSight Atlas V Boattail Halves Arrival, Offload, Mate
2018-02-19
At Vandenberg Air Force Base in California, the boattail adaptor interface that will connect the Centaur upper stage to the payload fairing is offloaded for NASA's upcoming Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight will liftoff atop a United Launch Alliance Atlas V rocket to send the spacecraft on the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff from Vandenberg is scheduled for May 5, 2018.
InSight Atlas V Centaur Stage Prep for Transport
2018-02-27
At Vandenberg Air Force Base in California, a cover is installed on a Centaur upper stage in preparation for its transport to Space Launch Complex 3. The Centaur will be mounted atop a United Launch Alliance Atlas V rocket to boost NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.
InSight Atlas V Fairing Rotate to Vertical
2018-02-07
In the Astrotech facility at Vandenberg Air Force Base in California, technicians and engineers inspect the payload fairing for the United Launch Alliance (ULA) Atlas V for NASA's upcoming Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars after it was lifted to the vertical position. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff atop a ULA Atlas V rocket is scheduled for May 5, 2018.
InSight Atlas V Boattail Halves Arrival, Offload, Mate
2018-02-19
At Vandenberg Air Force Base in California, the boattail adaptor interface that will connect the Centaur upper stage to the payload fairing arrives for NASA's upcoming Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight will liftoff atop a United Launch Alliance Atlas V rocket to send the spacecraft on the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff from Vandenberg is scheduled for May 5, 2018.
InSight Spacecraft Uncrating, Removal from Container, Lift Heat
2018-03-01
Inside the Astrotech processing facility at Vandenberg Air Force Base in California, technicians and engineers use a crane to move the heatshield for NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft for further testing. InSight was developed and built by Lockheed-Martin Space Systems in Denver, Colorado, and is scheduled for liftoff is May 5, 2018. InSight is the first mission to land on Mars and explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth.
MAGNETIC GAMES BETWEEN A PLANET AND ITS HOST STAR: THE KEY ROLE OF TOPOLOGY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strugarek, A.; Brun, A. S.; Réville, V.
Magnetic interactions between a star and a close-in planet are postulated to be a source of enhanced emissions and to play a role in the secular evolution of the orbital system. Close-in planets generally orbit in the sub-alfvénic region of the stellar wind, which leads to efficient transfers of energy and angular momentum between the star and the planet. We model the magnetic interactions occurring in close-in star–planet systems with three-dimensional, global, compressible magnetohydrodynamic numerical simulations of a planet orbiting in a self-consistent stellar wind. We focus on the cases of magnetized planets and explore three representative magnetic configurations. Themore » Poynting flux originating from the magnetic interactions is an energy source for enhanced emissions in star–planet systems. Our results suggest a simple geometrical explanation for ubiquitous on/off enhanced emissions associated with close-in planets, and confirm that the Poynting fluxes can reach powers of the order of 10{sup 19} W. Close-in planets are also shown to migrate due to magnetic torques for sufficiently strong stellar wind magnetic fields. The topology of the interaction significantly modifies the shape of the magnetic obstacle that leads to magnetic torques. As a consequence, the torques can vary by at least an order of magnitude as the magnetic topology of the interaction varies.« less
Magnetic Games between a Planet and Its Host Star: The Key Role of Topology
NASA Astrophysics Data System (ADS)
Strugarek, A.; Brun, A. S.; Matt, S. P.; Réville, V.
2015-12-01
Magnetic interactions between a star and a close-in planet are postulated to be a source of enhanced emissions and to play a role in the secular evolution of the orbital system. Close-in planets generally orbit in the sub-alfvénic region of the stellar wind, which leads to efficient transfers of energy and angular momentum between the star and the planet. We model the magnetic interactions occurring in close-in star-planet systems with three-dimensional, global, compressible magnetohydrodynamic numerical simulations of a planet orbiting in a self-consistent stellar wind. We focus on the cases of magnetized planets and explore three representative magnetic configurations. The Poynting flux originating from the magnetic interactions is an energy source for enhanced emissions in star-planet systems. Our results suggest a simple geometrical explanation for ubiquitous on/off enhanced emissions associated with close-in planets, and confirm that the Poynting fluxes can reach powers of the order of 1019 W. Close-in planets are also shown to migrate due to magnetic torques for sufficiently strong stellar wind magnetic fields. The topology of the interaction significantly modifies the shape of the magnetic obstacle that leads to magnetic torques. As a consequence, the torques can vary by at least an order of magnitude as the magnetic topology of the interaction varies.
Scientific Objectives of China-Russia Joint Mars Exploration Program YH-1
NASA Astrophysics Data System (ADS)
Wu, Ji; Zhu, Guang-Wu; Zhao, Hua; Wang, Chi; Li, Lei; Sun, Yue-Qiang; Guo, Wei; Huang, Cheng-Li
2010-04-01
Compared with other planets, Mars is a planet most similar with the earth and most possible to find the extraterrestrial life on it, and therefore especially concerned about by human beings. In recent years, some countries have launched Mars probes and announced their manned Mars exploration programs. China has become the fifth country in the world to launch independently artificial satellites, and the third country able to carry out an independent manned space program. However, China is just at the beginning of deep space explorations. In 2007, China and Russia signed an agreement on a joint Mars exploration program by sending a Chinese micro-satellite Yinghuo-1 (YH-1) to the Mars orbit. Once YH-1 enters its orbit, it will carry out its own exploration, as well as the joint exploration with the Russian Phobos-Grunt probe. This paper summarizes the scientific background and objectives of YH-1 and describes briefly its payloads for realizing these scientific objectives. In addition, the main exploration tasks of YH-1 and a preliminary prospect on its exploration results are also given.
Planet Formation Instrument for the Thirty Meter Telescope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macintosh, B; Troy, M; Graham, J
2006-02-22
In the closing years of the 20th Century humankind began its exploration of the planetary systems in the solar neighborhood. Precision radial velocity measurements have now yielded the discovery of over 160 planets. Direct imaging of these planets, as opposed to detection of the effects of orbital motion on their parent star, is now feasible, and the first young planet in a wide orbit may have been detected using adaptive optics systems. Gemini and the VLT are building the first generation of high contrast adaptive optics systems, which deliver planet-imaging performance within few Airy rings of the host star. Thesemore » systems will make the first surveys of the outer regions of solar systems by detecting the self-luminous radiation of young planets. These instruments will establish whether Jovian planets form predominantly through 'top-down' (global gravitational instability) or 'bottom-up' (core accretion) processes. The 8-m 'extreme' AO systems cannot see close enough to the host stars to image Doppler planets, and they cannot reach the relatively distant, young clusters and associations where planets are forming. The Planet Formation Instrument will use the nearly four-fold improved angular resolution of TMT to peer into the inner solar systems of Doppler-planet bearing stars to yield a unified sample of planets with known Keplerian orbital elements and atmospheric properties. In star formation regions, where T Tauri stars (young solar type stars) are found in abundance, PFI can see into the snow line, where the icy cores of planets like Jupiter must have formed. Thus, TMT will be the first facility to witness the formation of new planets.« less
Selection and Prioritization of Advanced Propulsion Technologies for Future Space Missions
NASA Technical Reports Server (NTRS)
Eberle, Bill; Farris, Bob; Johnson, Les; Jones, Jonathan; Kos, Larry; Woodcock, Gordon; Brady, Hugh J. (Technical Monitor)
2002-01-01
The exploration of our solar system will require spacecraft with much greater capability than spacecraft which have been launched in the past. This is particularly true for exploration of the outer planets. Outer planet exploration requires shorter trip times, increased payload mass, and ability to orbit or land on outer planets. Increased capability requires better propulsion systems, including increased specific impulse. Chemical propulsion systems are not capable of delivering the performance required for exploration of the solar system. Future propulsion systems will be applied to a wide variety of missions with a diverse set of mission requirements. Many candidate propulsion technologies have been proposed but NASA resources do not permit development of a] of them. Therefore, we need to rationally select a few propulsion technologies for advancement, for application to future space missions. An effort was initiated to select and prioritize candidate propulsion technologies for development investment. The results of the study identified Aerocapture, 5 - 10 KW Solar Electric Ion, and Nuclear Electric Propulsion as high priority technologies. Solar Sails, 100 Kw Solar Electric Hall Thrusters, Electric Propulsion, and Advanced Chemical were identified as medium priority technologies. Plasma sails, momentum exchange tethers, and low density solar sails were identified as high risk/high payoff technologies.
TERRESTRIAL PLANET FORMATION FROM AN ANNULUS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walsh, Kevin J.; Levison, Harold F., E-mail: kwalsh@boulder.swri.edu
It has been shown that some aspects of the terrestrial planets can be explained, particularly the Earth/Mars mass ratio, when they form from a truncated disk with an outer edge near 1.0 au. This has been previously modeled starting from an intermediate stage of growth utilizing pre-formed planetary embryos. We present simulations that were designed to test this idea by following the growth process from km-sized objects located between 0.7 and 1.0 au up to terrestrial planets. The simulations explore initial conditions where the solids in the disk are planetesimals with radii initially between 3 and 300 km, alternately includingmore » effects from a dissipating gaseous solar nebula and collisional fragmentation. We use a new Lagrangian code known as LIPAD, which is a particle-based code that models the fragmentation, accretion, and dynamical evolution of a large number of planetesimals, and can model the entire growth process from km-sizes up to planets. A suite of large (∼ Mars mass) planetary embryos is complete in only ∼1 Myr, containing most of the system mass. A quiescent period then persists for 10–20 Myr characterized by slow diffusion of the orbits and continued accretion of the remaining planetesimals. This is interrupted by an instability that leads to embryos crossing orbits and embryo–embryo impacts that eventually produce the final set of planets. While this evolution is different than that found in other works exploring an annulus, the final planetary systems are similar, with roughly the correct number of planets and good Mars-analogs.« less
Superrotation on Venus, on Titan, and Elsewhere
NASA Astrophysics Data System (ADS)
Read, Peter L.; Lebonnois, Sebastien
2018-05-01
The superrotation of the atmospheres of Venus and Titan has puzzled dynamicists for many years and seems to put these planets in a very different dynamical regime from most other planets. In this review, we consider how to define superrotation objectively and explore the constraints that determine its occurrence. Atmospheric superrotation also occurs elsewhere in the Solar System and beyond, and we compare Venus and Titan with Earth and other planets for which wind estimates are available. The extreme superrotation on Venus and Titan poses some difficult challenges for numerical models of atmospheric circulation, much more difficult than for more rapidly rotating planets such as Earth or Mars. We consider mechanisms for generating and maintaining a superrotating state, all of which involve a global meridional overturning circulation. The role of nonaxisymmetric eddies is crucial, however, but the detailed mechanisms may differ between Venus, Titan, and other planets.
Magnetometer instrument team studies for the definition phase of the outer planets grand tour
NASA Technical Reports Server (NTRS)
Coleman, P. J., Jr.
1972-01-01
The objectives of magnetic field investigations on missions to the outer planets were defined as well as an instrumentation system, a program of studies and instrument development tasks was proposed for the mission definition phase of the Outer Planets Grand Tour project. A report on the status of this program is given. Requirements were also established for the spacecraft and the mission which would insure their compatibility with the magnetic field investigation proposed for the outer planets missions and developed figures of merit for encounter trajectories. The spacecraft-instrumentation interface and the on-board data handling system were defined in various reports by the Project Team and in the reports by the Science Steering Group. The defining program for exploring the outer planets within the more restrictive constraints of the Mariner Jupiter-Saturn project included defining a limited magnetic field investigation.
Thermal escape from extrasolar giant planets
Koskinen, Tommi T.; Lavvas, Panayotis; Harris, Matthew J.; Yelle, Roger V.
2014-01-01
The detection of hot atomic hydrogen and heavy atoms and ions at high altitudes around close-in extrasolar giant planets (EGPs) such as HD209458b implies that these planets have hot and rapidly escaping atmospheres that extend to several planetary radii. These characteristics, however, cannot be generalized to all close-in EGPs. The thermal escape mechanism and mass loss rate from EGPs depend on a complex interplay between photochemistry and radiative transfer driven by the stellar UV radiation. In this study, we explore how these processes change under different levels of irradiation on giant planets with different characteristics. We confirm that there are two distinct regimes of thermal escape from EGPs, and that the transition between these regimes is relatively sharp. Our results have implications for thermal mass loss rates from different EGPs that we discuss in the context of currently known planets and the detectability of their upper atmospheres. PMID:24664923
Thermal escape from extrasolar giant planets.
Koskinen, Tommi T; Lavvas, Panayotis; Harris, Matthew J; Yelle, Roger V
2014-04-28
The detection of hot atomic hydrogen and heavy atoms and ions at high altitudes around close-in extrasolar giant planets (EGPs) such as HD209458b implies that these planets have hot and rapidly escaping atmospheres that extend to several planetary radii. These characteristics, however, cannot be generalized to all close-in EGPs. The thermal escape mechanism and mass loss rate from EGPs depend on a complex interplay between photochemistry and radiative transfer driven by the stellar UV radiation. In this study, we explore how these processes change under different levels of irradiation on giant planets with different characteristics. We confirm that there are two distinct regimes of thermal escape from EGPs, and that the transition between these regimes is relatively sharp. Our results have implications for thermal mass loss rates from different EGPs that we discuss in the context of currently known planets and the detectability of their upper atmospheres.
NASA's Astro-Venture Engages Exceptional Students in Earth System Science Using Inquiry
NASA Astrophysics Data System (ADS)
Oguinn, C.
2003-12-01
Astro-Venture is an educational, interactive, multimedia Web environment highlighting NASA careers and astrobiology research in the areas of Astronomy, Geology, Biology and Atmospheric Sciences. Students in grades 5-8 role-play NASA careers, as they search for and design a planet with the necessary characteristics for human habitation. Astro-Venture uses online multimedia activities and off-line inquiry explorations to engage students in guided inquiry aligned with the 5 E inquiry model. This model has proven to be effective with exceptional students. Students are presented with the intellectual confrontation of how to design a planet and star system that would be able to meet their biological survival needs. This provides a purpose for the online and off-line explorations used throughout the site. Students first explore "what" conditions are necessary to support human habitability by engaging in multimedia training modules, which allow them to change astronomical, atmospheric, geological and biological aspects of the Earth and our star system and to view the effects of these changes on Earth. By focusing on Earth, students draw on their prior knowledge, which helps them to connect their new knowledge to their existing schema. Cause and effect relationships of Earth provide a concrete model from which students can observe patterns and generalize abstract results to an imagined planet. From these observations, students draw conclusions about what aspects allowed Earth to remain habitable. Once students have generalized needed conditions of "what" we need for a habitable planet, they conduct further research in off-line, standards-based classroom activities that also follow the inquiry model and help students to understand "why" we need these conditions. These lessons focus on standards-based concepts such as states of matter and the structure and movement of the Earth's interior. These lessons follow the inquiry structure commonly referred to as the five E's as follows: Engage: Draws on students' prior knowledge, builds on previous lesson concepts, introduces the purpose of the lesson and the scientific question which is the problem or intellectual confrontation they will explore. Explore: Students form hypotheses and conduct an exploration that will help them to collect data and evidence to answer the scientific question. Explain: Students reflect on the explore activity by recording their results and conclusions. They participate in guided discussions or activities that help to guide their understanding of the concepts. Extend/Apply: Students demonstrate their understanding of the concept and/or apply it to another situation. Evaluate: Students are evaluated on their understanding of the concept often using rubrics. After students have mastered the "whats" and "whys," they engage in multimedia mission modules that simulate "how" scientists might search for a planet and star system that meets these requirements using the inquiry process. Students are first asked to hypothesize the likelihood of finding a star system that meets these requirements. They then simulate the methods scientists might use to collect data on various stars and planets to deduce whether the star system meets the requirements for habitability or not. After collecting and analyzing this data, students are asked to draw conclusions in comparing their results to their initial hypothesis. Students apply all that they've learned to design a planet that meets the requirements for human habitability in all areas. Through this process, they learn that Earth works as a system in meeting our needs.
Robots and Humans: Synergy in Planetary Exploration
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.
2003-01-01
How will humans and robots cooperate in future planetary exploration? Are humans and robots fundamentally separate modes of exploration, or can humans and robots work together to synergistically explore the solar system? It is proposed that humans and robots can work together in exploring the planets by use of telerobotic operation to expand the function and usefulness of human explorers, and to extend the range of human exploration to hostile environments.
Robots and Humans: Synergy in Planetary Exploration
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.
2002-01-01
How will humans and robots cooperate in future planetary exploration? Are humans and robots fundamentally separate modes of exploration, or can humans and robots work together to synergistically explore the solar system? It is proposed that humans and robots can work together in exploring the planets by use of telerobotic operation to expand the function and usefulness of human explorers, and to extend the range of human exploration to hostile environments.
Characterizing Exoplanets with WFIRST
NASA Astrophysics Data System (ADS)
Robinson, Tyler D.; Stapelfeldt, Karl R.; Marley, Mark S.; Marchis, Franck; Fortney, Jonathan J.
2017-01-01
The Wide-Field Infrared Survey Telescope (WFIRST) mission is expected to be equipped with a Coronagraph Instrument (CGI) that will study and explore a diversity of exoplanets in reflected light. Beyond being a technology demonstration, the CGI will provide our first glimpses of temperate worlds around our nearest stellar neighbors. In this presentation, we explore how instrumental and astrophysical parameters will affect the ability of the WFIRST/CGI to obtain spectral and photometric observations that are useful for characterizing its planetary targets. We discuss the development of an instrument noise model suitable for studying the spectral characterization potential of a coronagraph-equipped, space-based telescope. To be consistent with planned technologies, we assume a baseline set of telescope and instrument parameters that include a 2.4 meter diameter primary aperture, an up-to-date filter set spanning the visible wavelength range, a spectroscopic wavelength range of 600-970 nm, and an instrument spectral resolution of 70. We present applications of our baseline model to a variety of spectral models of different planet types, emphasizing warm jovian exoplanets. With our exoplanet spectral models, we explore wavelength-dependent planet-star flux ratios for main sequence stars of various effective temperatures, and discuss how coronagraph inner and outer working angle constraints will influence the potential to study different types of planets. For planets most favorable to spectroscopic characterization—gas giants with extensive water vapor clouds—we study the integration times required to achieve moderate signal-to-noise ratio spectra. We also explore the sensitivity of the integration times required to detect key methane absorption bands to exozodiacal light levels. We conclude with a discussion of the opportunities for characterizing smaller, potentially rocky, worlds under a “rendezvous” scenario, where an external starshade is later paired with the WFIRST spacecraft.
Future Missions to Study Signposts of Planets
NASA Technical Reports Server (NTRS)
Traub, Wesley A.
2011-01-01
This talk will focus on debris disks, will compare ground and space and will discuss 2 proposed missions, Exoplanetary Circumstellar Environments And Disk Explorer (EXCEDE) and Zodiac II. At least 2 missions have been proposed for disk imaging. The technology is largely in hand today. A small mission would do excellent disk science, and would test technology for a future large mission for planets.
Top 10 astronomy stories of 2005
NASA Astrophysics Data System (ADS)
Reddy, Francis
2006-01-01
Spacecraft explored two planets and touched a comet, while astronomers puzzled over an errant asteroid, larger galaxies, and a titanic explosion in space. (10) Blast from beyond; (9) Exoplanet surprises; (8) An asteroid among us; (7) Return to space; (6) A year at Saturn ... (5) ... and two at Mars; (4) Deep impact; (3) Bigger, better galaxies; (2) The tenth planet; (1) Huygens lands on Titan.
Knowledge Management in Acquisition and Program Management (KM in the AM and PM)
2002-01-01
a clumping of clusters.16 If all the planets in a solar system had moons, the moons would be the people, each planet would be a discipline or cluster...exploration, one looks for non-obvious, unknown relation- ships in a data set. The discovery that cus- tomers frequently buy beer and diapers to- gether from
Balloon/Parachute to Orbiter Communications Using a Dipole Antenna
NASA Technical Reports Server (NTRS)
Kantak, Anil V.; Danos, Monika J.
2001-01-01
Currently, quite a few missions are being studied to send satellites to the outer and inner planets and their moons of the solar system; a large percentage of these missions will have a landed element. NASA's Origins program, Solar System Exploration, Program and Sun Earth Connection (SEC) program, etc., will have a variety of spacecrafts to various solar system planets and their moons to sample and analyze the related atmospheres as well as the soil once the lander lands on the body. These sampling missions may involve a tender element sampling the atmosphere by performing experiments while descending into the atmosphere or a rover collecting samples to return to Earth or a station for experimentation on the planet surface. In either of these cases, the pertinent data generated will have to be sent to the Earth through a communication link. Communications with the Tender during the Entry, Decent and Landing (EDL) phases of a mission is of paramount importance. This article explores a particular method of passing through the atmosphere while communicating with the ground station (DSN station) before landing an instrument package (the lander) on the surface of the planet or moon of interest.
Exploring Disks Around Planets
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-07-01
Giant planets are thought to form in circumstellar disks surrounding young stars, but material may also accrete into a smaller disk around the planet. Weve never detected one of these circumplanetary disks before but thanks to new simulations, we now have a better idea of what to look for.Image from previous work simulating a Jupiter-mass planet forming inside a circumstellar disk. The planet has its own circumplanetary disk of accreted material. [Frdric Masset]Elusive DisksIn the formation of giant planets, we think the final phase consists of accretion onto the planet from a disk that surrounds it. This circumplanetary disk is important to understand, since it both regulates the late gas accretion and forms the birthplace of future satellites of the planet.Weve yet to detect a circumplanetary disk thus far, because the resolution needed to spot one has been out of reach. Now, however, were entering an era where the disk and its kinematics may be observable with high-powered telescopes (like the Atacama Large Millimeter Array).To prepare for such observations, we need models that predict the basic characteristics of these disks like the mass, temperature, and kinematic properties. Now a researcher at the ETH Zrich Institute for Astronomy in Switzerland, Judit Szulgyi, has worked toward this goal.Simulating CoolingSzulgyi performs a series of 3D global radiative hydrodynamic simulations of 1, 3, 5, and 10 Jupiter-mass (MJ) giant planets and their surrounding circumplanetary disks, embedded within the larger circumstellar disk around the central star.Density (left column), temperature (center), and normalized angular momentum (right) for a 1 MJ planet over temperatures cooling from 10,000 K (top) to 1,000 K (bottom). At high temperatures, a spherical circumplanetary envelope surrounds the planet, but as the planet cools, the envelope transitions around 64,000 K to a flattened disk. [Szulgyi 2017]This work explores the effects of different planet temperatures and masses on the properties of the disks. Szulgyi specifically examines a range of planetary temperatures between 10,000 K and 1,000 K for the 1 MJ planet. Since the planet cools as it radiates away its formation heat, the different temperatures represent an evolutionary sequence over time.Predicted CharacteristicsSzulgyis work produced a number of intriguing observations, including the following:For the 1 MJ planet, a spherical circumplanetary envelope forms at high temperatures, flattening into a disk as the planet cools. Higher-mass planets form disks even at high temperatures.The disk has a steep temperature profile from inside to outside, and the whole disk is too hot for water to remain frozen. This suggests that satellites couldnt form in the disk earlier than 1 Myr after the planet birth. The outskirts of the disk cool first as the planet cools, indicating that satellites may eventually form in these outer parts and then migrate inward.The planets open gaps in the circumstellar disk as they orbit. As a planet radiates away its formation heat, the gap it opens becomes deeper and wider (though this is a small effect). For high-mass planets (5 MJ), the gap eccentricity increases, which creates a hostile environment for satellite formation.Szulgyi discusses a number of features of these disks that we can plan to search for in the future with our increasing telescope power including signatures in direct imaging and observations of their kinematics. The results from these simulations will help us both to detect these circumplanetary disks and to understand our observations when we do. These future observations will then allow us to learn about late-stage giant-planet formation as well as the formation of their satellites.CitationJ. Szulgyi 2017 ApJ 842 103. doi:10.3847/1538-4357/aa7515
On the Nature and Timing of Giant Planet Migration in the Solar System
NASA Astrophysics Data System (ADS)
Agnor, Craig B.
2016-05-01
Giant planet migration is a natural outcome of gravitational scattering and planet formation processes (Fernandez & Ip 1984). There is compelling evidence that the solar system's giant planets experienced large-scale migration involving close approaches between planets as well as smooth radial migration via planetesimal scattering. Aspects of giant planet migration have been invoked to explain many features of the outer solar system including the resonant structure of the Kuiper Belt (e.g., Malhotra 1993, Levison et al. 2008), the eccentricities of Jupiter and Saturn (Tsiganis et al. 2005, Morbidelli et al. 2009), the capture of Jupiter's Trojan companions (Morbidelli et al. 2005) and the capture of irregular planetary satellites (e.g., Nesvorny et al. 2007) to name a few. If this migration epoch occurred after the formation of the inner planets, then it may also explain the so-called lunar Late Heavy Bombardment (Gomes et al. 2005). This scenario necessarily requires coeval terrestrial and migrating giant planets. Recent N-body integrations exploring this issue have shown that giant planet migration may excite the terrestrial system via nodal and apsidal secular resonances (e.g., Brasser et al. 2013), may drive the terrestrial planets to crossing orbits (Kaib & Chambers 2016) or alternatively leave the inner solar system in a state closely resembling the observed one (Roig et al. 2016). The factors accounting for the large range of outcomes remain unclear. Using linear secular models and N-body simulations I am identifying and characterising the principal aspects of giant planet migration that excite the terrestrial planets' orbits. I will present these results and discuss how they inform the nature and timing of giant planet migration in the solar system.
Research on lunar and planet development and utilization
NASA Astrophysics Data System (ADS)
Iwata, Tsutomu; Etou, Takao; Imai, Ryouichi; Oota, Kazuo; Kaneko, Yutaka; Maeda, Toshihide; Takano, Yutaka
1992-08-01
Status of the study on unmanned and manned lunar missions, unmanned Mars missions, lunar resource development and utilization missions, remote sensing exploration missions, survey and review to elucidate the problems of research and development for lunar resource development and utilization, and the techniques and equipment for lunar and planet exploration are presented. Following items were studied respectively: (1) spacecraft systems for unmanned lunar missions, such as lunar observation satellites, lunar landing vehicles, lunar surface rovers, lunar surface hoppers, and lunar sample retrieval; (2) spacecraft systems for manned lunar missions, such as manned lunar bases, lunar surface operation robots, lunar surface experiment systems, manned lunar take-off and landing vehicles, and lunar freight transportation ships; (3) spacecraft systems for Mars missions, such as Mars satellites, Phobos and Deimos sample retrieval vehicles, Mars landing explorers, Mars rovers, Mars sample retrieval; (4) lunar resource development and utilization; and (5) remote sensing exploration technologies.
Modern Exploration of Galileo's New Worlds
NASA Technical Reports Server (NTRS)
Johnson, Torrence V.
2010-01-01
Four hundred years ago Galileo turned his telescope to the heavens and changed the way we view the cosmos forever. Among his discoveries in January of 1610 were four new 'stars', following Jupiter in the sky but changing their positions with respect to the giant planet every night. Galileo showed that these 'Medicean stars', as he named them, were moons orbiting Jupiter in the same manner that the Earth and planets revolve about the Sun in the Copernican theory of the solar system. Over the next three centuries these moons, now collectively named the Galilean satellites after their discoverer, remained tiny dots of light in astronomers' telescopes. In the latter portion of the twentieth century Galileo's new worlds became important targets of exploration by robotic spacecraft. This paper reviews the history of this exploration through the discoveries made by the Galileo mission from 1995 to 2003, setting the stage for on-going exploration in the new century.
Modeling climate diversity, tidal dynamics and the fate of volatiles on TRAPPIST-1 planets
NASA Astrophysics Data System (ADS)
Turbet, Martin; Bolmont, Emeline; Leconte, Jeremy; Forget, François; Selsis, Franck; Tobie, Gabriel; Caldas, Anthony; Naar, Joseph; Gillon, Michaël
2018-05-01
TRAPPIST-1 planets are invaluable for the study of comparative planetary science outside our solar system and possibly habitability. Both transit timing variations (TTV) of the planets and the compact, resonant architecture of the system suggest that TRAPPIST-1 planets could be endowed with various volatiles today. First, we derived from N-body simulations possible planetary evolution scenarios, and show that all the planets are likely in synchronous rotation. We then used a versatile 3D global climate model (GCM) to explore the possible climates of cool planets around cool stars, with a focus on the TRAPPIST-1 system. We investigated the conditions required for cool planets to prevent possible volatile species to be lost permanently by surface condensation, irreversible burying or photochemical destruction. We also explored the resilience of the same volatiles (when in condensed phase) to a runaway greenhouse process. We find that background atmospheres made of N2, CO, or O2 are rather resistant to atmospheric collapse. However, even if TRAPPIST-1 planets were able to sustain a thick background atmosphere by surviving early X/EUV radiation and stellar wind atmospheric erosion, it is difficult for them to accumulate significant greenhouse gases like CO2, CH4, or NH3. CO2 can easily condense on the permanent nightside, forming CO2 ice glaciers that would flow toward the substellar region. A complete CO2 ice surface cover is theoretically possible on TRAPPIST-1g and h only, but CO2 ices should be gravitationally unstable and get buried beneath the water ice shell in geologically short timescales. Given TRAPPIST-1 planets large EUV irradiation (at least 103 × Titan's flux), CH4 and NH3 are photodissociated rapidly and are thus hard to accumulate in the atmosphere. Photochemical hazes could then sedimentate and form a surface layer of tholins that would progressively thicken over the age of the TRAPPIST-1 system. Regarding habitability, we confirm that few bars of CO2 would suffice to warm the surface of TRAPPIST-1f and g above the melting point of water. We also show that TRAPPIST-1e is a remarkable candidate for surface habitability. If the planet is today synchronous and abundant in water, then it should very likely sustain surface liquid water at least in the substellar region, whatever the atmosphere considered.
An Astrobiological Experiment to Explore the Habitability of Tidally Locked M-Dwarf Planets
NASA Astrophysics Data System (ADS)
Angerhausen, Daniel; Sapers, Haley; Simoncini, Eugenio; Lutz, Stefanie; Alexandre, Marcelo da Rosa; Galante, Douglas
2014-04-01
We present a summary of a three-year academic research proposal drafted during the Sao Paulo Advanced School of Astrobiology (SPASA) to prepare for upcoming observations of tidally locked planets orbiting M-dwarf stars. The primary experimental goal of the suggested research is to expose extremophiles from analogue environments to a modified space simulation chamber reproducing the environmental parameters of a tidally locked planet in the habitable zone of a late-type star. Here we focus on a description of the astronomical analysis used to define the parameters for this climate simulation.
Meadows, Victoria S.; Bitz, Cecilia M.; Pierrehumbert, Raymond T.; Joshi, Manoj M.; Robinson, Tyler D.
2013-01-01
Abstract Planetary climate can be affected by the interaction of the host star spectral energy distribution with the wavelength-dependent reflectivity of ice and snow. In this study, we explored this effect with a one-dimensional (1-D), line-by-line, radiative transfer model to calculate broadband planetary albedos as input to a seasonally varying, 1-D energy balance climate model. A three-dimensional (3-D) general circulation model was also used to explore the atmosphere's response to changes in incoming stellar radiation, or instellation, and surface albedo. Using this hierarchy of models, we simulated planets covered by ocean, land, and water-ice of varying grain size, with incident radiation from stars of different spectral types. Terrestrial planets orbiting stars with higher near-UV radiation exhibited a stronger ice-albedo feedback. We found that ice extent was much greater on a planet orbiting an F-dwarf star than on a planet orbiting a G-dwarf star at an equivalent flux distance, and that ice-covered conditions occurred on an F-dwarf planet with only a 2% reduction in instellation relative to the present instellation on Earth, assuming fixed CO2 (present atmospheric level on Earth). A similar planet orbiting the Sun at an equivalent flux distance required an 8% reduction in instellation, while a planet orbiting an M-dwarf star required an additional 19% reduction in instellation to become ice-covered, equivalent to 73% of the modern solar constant. The reduction in instellation must be larger for planets orbiting cooler stars due in large part to the stronger absorption of longer-wavelength radiation by icy surfaces on these planets in addition to stronger absorption by water vapor and CO2 in their atmospheres, which provides increased downwelling longwave radiation. Lowering the IR and visible-band surface ice and snow albedos for an M-dwarf planet increased the planet's climate stability against changes in instellation and slowed the descent into global ice coverage. The surface ice-albedo feedback effect becomes less important at the outer edge of the habitable zone, where atmospheric CO2 could be expected to be high such that it maintains clement conditions for surface liquid water. We showed that ∼3–10 bar of CO2 will entirely mask the climatic effect of ice and snow, leaving the outer limits of the habitable zone unaffected by the spectral dependence of water ice and snow albedo. However, less CO2 is needed to maintain open water for a planet orbiting an M-dwarf star than would be the case for hotter main-sequence stars. Key Words: Extrasolar planets—M stars—Habitable zone—Snowball Earth. Astrobiology 13, 715–739. PMID:23855332
Shields, Aomawa L; Meadows, Victoria S; Bitz, Cecilia M; Pierrehumbert, Raymond T; Joshi, Manoj M; Robinson, Tyler D
2013-08-01
Planetary climate can be affected by the interaction of the host star spectral energy distribution with the wavelength-dependent reflectivity of ice and snow. In this study, we explored this effect with a one-dimensional (1-D), line-by-line, radiative transfer model to calculate broadband planetary albedos as input to a seasonally varying, 1-D energy balance climate model. A three-dimensional (3-D) general circulation model was also used to explore the atmosphere's response to changes in incoming stellar radiation, or instellation, and surface albedo. Using this hierarchy of models, we simulated planets covered by ocean, land, and water-ice of varying grain size, with incident radiation from stars of different spectral types. Terrestrial planets orbiting stars with higher near-UV radiation exhibited a stronger ice-albedo feedback. We found that ice extent was much greater on a planet orbiting an F-dwarf star than on a planet orbiting a G-dwarf star at an equivalent flux distance, and that ice-covered conditions occurred on an F-dwarf planet with only a 2% reduction in instellation relative to the present instellation on Earth, assuming fixed CO(2) (present atmospheric level on Earth). A similar planet orbiting the Sun at an equivalent flux distance required an 8% reduction in instellation, while a planet orbiting an M-dwarf star required an additional 19% reduction in instellation to become ice-covered, equivalent to 73% of the modern solar constant. The reduction in instellation must be larger for planets orbiting cooler stars due in large part to the stronger absorption of longer-wavelength radiation by icy surfaces on these planets in addition to stronger absorption by water vapor and CO(2) in their atmospheres, which provides increased downwelling longwave radiation. Lowering the IR and visible-band surface ice and snow albedos for an M-dwarf planet increased the planet's climate stability against changes in instellation and slowed the descent into global ice coverage. The surface ice-albedo feedback effect becomes less important at the outer edge of the habitable zone, where atmospheric CO(2) could be expected to be high such that it maintains clement conditions for surface liquid water. We showed that ∼3-10 bar of CO(2) will entirely mask the climatic effect of ice and snow, leaving the outer limits of the habitable zone unaffected by the spectral dependence of water ice and snow albedo. However, less CO(2) is needed to maintain open water for a planet orbiting an M-dwarf star than would be the case for hotter main-sequence stars.
Circularizing Planet Nine through dynamical friction with an extended, cold planetesimal belt
NASA Astrophysics Data System (ADS)
Eriksson, Linn E. J.; Mustill, Alexander J.; Johansen, Anders
2018-04-01
Unexpected clustering in the orbital elements of minor bodies beyond the Kuiper belt has led to speculations that our Solar system actually hosts nine planets, the eight established plus a hypothetical `Planet Nine'. Several recent studies have shown that a planet with a mass of about 10 Earth masses on a distant eccentric orbit with perihelion far beyond the Kuiper belt could create and maintain this clustering. The evolutionary path resulting in an orbit such as the one suggested for Planet Nine is nevertheless not easily explained. Here, we investigate whether a planet scattered away from the giant-planet region could be lifted to an orbit similar to the one suggested for Planet Nine through dynamical friction with a cold, distant planetesimal belt. Recent simulations of planetesimal formation via the streaming instability suggest that planetesimals can readily form beyond 100 au. We explore this circularisation by dynamical friction with a set of numerical simulations. We find that a planet that is scattered from the region close to Neptune on to an eccentric orbit has a 20-30 per cent chance of obtaining an orbit similar to that of Planet Nine after 4.6 Gyr. Our simulations also result in strong or partial clustering of the planetesimals; however, whether or not this clustering is observable depends on the location of the inner edge of the planetesimal belt. If the inner edge is located at 200 au, the degree of clustering amongst observable objects is significant.
Planetary science questions for the manned exploration of Mars
NASA Technical Reports Server (NTRS)
Blanchard, Douglas P.
1986-01-01
A major goal of a manned Mars mission is to explore the planet and to investigate scientific questions for which the intensive study of Mars is essential. The systematic exploration of planets was outlined by the National Academy of Science. The nearest analogy to the manned Mars mission is the Apollo program and manned missions to the Moon, but the analogy is limited. The case is argued here that Mars may have to be explored far more systematically than was the pre-Apollo Moon to provide the detailed information necessary if plans are made to use any of the resources available on Mars. Viking missions provided a wealth of information, yet there are great gaps in the fundamental knowledge of essential facts such as the properties of the Martian surface materials and their interaction with the atmosphere. Building on a strong data base of precursor missions, human exploration will allow great leaps in understanding the Martian environment and geologic history and its evolutionary role in the solar system.
A 3π Search for Planet Nine at 3.4 μm with WISE and NEOWISE
NASA Astrophysics Data System (ADS)
Meisner, A. M.; Bromley, B. C.; Kenyon, S. J.; Anderson, T. E.
2018-04-01
The recent “Planet Nine” hypothesis has led to many observational and archival searches for this giant planet proposed to orbit the Sun at hundreds of astronomical units. While trans-Neptunian object searches are typically conducted in the optical, models suggest Planet Nine could be self-luminous and potentially bright enough at ∼3–5 μm to be detected by the Wide-field Infrared Survey Explorer (WISE). We have previously demonstrated a Planet Nine search methodology based on time-resolved WISE coadds, allowing us to detect moving objects much fainter than would be possible using single-frame extractions. In the present work, we extend our 3.4 μm (W1) search to cover more than three-quarters of the sky and incorporate four years of WISE observations spanning a seven-year time period. This represents the deepest and widest-area WISE search for Planet Nine to date. We characterize the spatial variation of our survey’s sensitivity and rule out the presence of Planet Nine in the parameter space searched at W1 < 16.7 in high Galactic latitude regions (90% completeness).
Exploring the Effects of Stellar Multiplicity on Exoplanet Occurrence Rates
NASA Astrophysics Data System (ADS)
Barclay, Thomas; Shabram, Megan
2017-06-01
Determining the frequency of habitable worlds is a key goal of the Kepler mission. During Kepler's four year investigation it detected thousands of transiting exoplanets with sizes varying from smaller than Mercury to larger than Jupiter. Finding planets was just the first step to determining frequency, and for the past few years the mission team has been modeling the reliability and completeness of the Kepler planet sample. One effect that has not typically been built into occurrence rate statistics is that of stellar multiplicity. If a planet orbits the primary star in a binary or triple star system then the transit depth will be somewhat diluted resulting in a modest underestimation in the planet size. However, if a detected planet orbits a fainter star then the error in measured planet radius can be very significant. We have taken a hypothetical star and planet population and passed that through a Kepler detection model. From this we have derived completeness corrections for a realistic case of a Universe with binary stars and compared that with a model Universe where all stars are single. We report on the impact that binaries have on exoplanet population statistics.
Exploring the Relationship Between Planet Mass and Atmospheric Metallicity for Cool Giant Planets
NASA Astrophysics Data System (ADS)
Thomas, Nancy H.; Wong, Ian; Knutson, Heather; Deming, Drake; Desert, Jean-Michel; Fortney, Jonathan J.; Morley, Caroline; Kammer, Joshua A.; Line, Michael R.
2016-10-01
Measurements of the average densities of exoplanets have begun to help constrain their bulk compositions and to provide insight into their formation locations and accretionary histories. Current mass and radius measurements suggest an inverse relationship between a planet's bulk metallicity and its mass, a relationship also seen in the gas and ice giant planets of our own solar system. We expect atmospheric metallicity to similarly increase with decreasing planet mass, but there are currently few constraints on the atmospheric metallicities of extrasolar giant planets. For hydrogen-dominated atmospheres, equilibrium chemistry models predict a transition from CO to CH4 below ~1200 K. However, with increased atmospheric metallicity the relative abundance of CH4 is depleted and CO is enhanced. In this study we present new secondary eclipse observations of a set of cool (<1200 K) giant exoplanets at 3.6 and 4.5 microns using the Spitzer Space Telescope, which allow us to constrain their relative abundances of CH4 and CO and corresponding atmospheric metallicities. We discuss the implications of our results for the proposed correlation between planet mass and atmospheric metallicity as predicted by the core accretion models and observed in our solar system.
Working Group Reports and Presentations: Earth 3.0.
NASA Technical Reports Server (NTRS)
Dator, James
2006-01-01
We affirm the principle that a viable human space exploration program must be conducted hand-in-hand with a comprehensive scientific research program that incorporates both the physical and life sciences and that continues to protect and extend understanding of our home planet. Without advances in life science, we will be incapable of devising self-sustaining extraterrestrial habitats, and we will struggle to survive on the only living planet we know. Without advances in the physical sciences, we limit our ability to imagine new technologies for space travel and to understand the nature of the universe we explore. Scientific advances expand the boundaries of humanity s dreams.
NASA Astrophysics Data System (ADS)
Abbud-Madrid, Angel
2018-02-01
The space and multitude of celestial bodies surrounding Earth hold a vast wealth of resources for a variety of space and terrestrial applications. The unlimited solar energy, vacuum, and low gravity in space, as well as the minerals, metals, water, atmospheric gases, and volatile elements on the Moon, asteroids, comets, and the inner and outer planets of the Solar System and their moons, constitute potential valuable resources for robotic and human space missions and for future use in our own planet. In the short term, these resources could be transformed into useful materials at the site where they are found to extend mission duration and to reduce the costly dependence from materials sent from Earth. Making propellants and human consumables from local resources can significantly reduce mission mass and cost, enabling longer stays and fueling transportation systems for use within and beyond the planetary surface. Use of finely grained soils and rocks can serve for habitat construction, radiation protection, solar cell fabrication, and food growth. The same material could also be used to develop repair and replacement capabilities using advanced manufacturing technologies. Following similar mining practices utilized for centuries on Earth, identifying, extracting, and utilizing extraterrestrial resources will enable further space exploration, while increasing commercial activities beyond our planet. In the long term, planetary resources and solar energy could also be brought to Earth if obtaining these resources locally prove to be no longer economically or environmentally acceptable. Throughout human history, resources have been the driving force for the exploration and settling of our planet. Similarly, extraterrestrial resources will make space the next destination in the quest for further exploration and expansion of our species. However, just like on Earth, not all challenges are scientific and technological. As private companies start working toward exploiting the resources from asteroids, the Moon, and Mars, an international legal framework is also needed to regulate commercial exploration and the use of space and planetary resources for the benefit of all humanity. These resources hold the secret to unleash an unprecedented wave of exploration and of economic prosperity by utilizing the full potential and value of space. It is up to us humans here on planet Earth to find the best way to use these extraterrestrial resources effectively and responsibly to make this promise a reality.
The Delivery of Water During Terrestrial Planet Formation
NASA Astrophysics Data System (ADS)
O'Brien, David P.; Izidoro, Andre; Jacobson, Seth A.; Raymond, Sean N.; Rubie, David C.
2018-02-01
The planetary building blocks that formed in the terrestrial planet region were likely very dry, yet water is comparatively abundant on Earth. Here we review the various mechanisms proposed for the origin of water on the terrestrial planets. Various in-situ mechanisms have been suggested, which allow for the incorporation of water into the local planetesimals in the terrestrial planet region or into the planets themselves from local sources, although all of those mechanisms have difficulties. Comets have also been proposed as a source, although there may be problems fitting isotopic constraints, and the delivery efficiency is very low, such that it may be difficult to deliver even a single Earth ocean of water this way. The most promising route for water delivery is the accretion of material from beyond the snow line, similar to carbonaceous chondrites, that is scattered into the terrestrial planet region as the planets are growing. Two main scenarios are discussed in detail. First is the classical scenario in which the giant planets begin roughly in their final locations and the disk of planetesimals and embryos in the terrestrial planet region extends all the way into the outer asteroid belt region. Second is the Grand Tack scenario, where early inward and outward migration of the giant planets implants material from beyond the snow line into the asteroid belt and terrestrial planet region, where it can be accreted by the growing planets. Sufficient water is delivered to the terrestrial planets in both scenarios. While the Grand Tack scenario provides a better fit to most constraints, namely the small mass of Mars, planets may form too fast in the nominal case discussed here. This discrepancy may be reduced as a wider range of initial conditions is explored. Finally, we discuss several more recent models that may have important implications for water delivery to the terrestrial planets.
Robots and humans: synergy in planetary exploration
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.
2004-01-01
How will humans and robots cooperate in future planetary exploration? Are humans and robots fundamentally separate modes of exploration, or can humans and robots work together to synergistically explore the solar system? It is proposed that humans and robots can work together in exploring the planets by use of telerobotic operation to expand the function and usefulness of human explorers, and to extend the range of human exploration to hostile environments. Published by Elsevier Ltd.
PIONEER VENUS 2 MULTI PROBE IS ENCAPSULATED IN PROTECTIVE SHROUD
NASA Technical Reports Server (NTRS)
1978-01-01
Encapsulation of the Pioneer Venus Multiprobe in its protective nose fairing is closely monitored by technicians in Hangar AO. The 2,000-pound spacecraft is one of two being launched toward the planet Venus. The Multiprobe is scheduled for launch aboard an Atlas Centaur rocket on August 7. Flying a direct path to the cloud-shrouded planet, the Multiprobe will reach Venus five days after the arrival of its sister spacecraft, the Pioneer Venus Orbiter, which was launched May 20, 1978. Three weeks before the Multiprobe reaches Venus, its four heavily instrumented scientific probes (seen on top of the spacecraft's main body or ''bus'') will be released and will impact at various points on the planet's surface. Together, the two spacecraft will conduct a thorough scientific exploration of the planet Venus.
Technologies for Outer Planet Missions: A companion to the OPAG Exploration Strategy
NASA Astrophysics Data System (ADS)
Beauchamp, Patricia; McKinnon, William
The Outer Planets Assessment Group (OPAG) advocates the need for a focused technology program for the next Outer Planet Flagship Mission after the Europa Jupiter System Mission (EJSM) in order to be ready for a launch in the mid-2020s. Current planning assumes that a mission to Titan and Enceladus will be the highest priority. The challenges common to all Outer Planetary (OP) missions—large distances, long ight times, and stringent limitations on mass, power, and data rate—mean that all missions can signicantly benet from technical advances in a number of broad areas. Since technology development timescales are long, it is most productive to base technology requirements on the expected general characteristics of future missions. While the strategic Flagship mission concepts are better understood, an estimate of the needs for the competed small class (Discovery) and medium class (New Frontiers) missions can be included in constructing an effective technology investment plan. Technology investment priorities are guided by the requirements established in mission and system studies that are focused on the highest priority science objectives. The next OP mission (after EJSM) may involve orbiting one or both of the saturnian satellites Titan and Enceladus. Other potential OP missions include atmospheric probes of the giant planets, in situ exploration at Titan, flybys or orbiters to the ice giants Neptune and Uranus, and ultimately, landing on Europa or Enceladus. The breadth of technology needed for OP exploration clearly calls for an aggressive and focused technology development strategy that aligns with the Decadal Survey recommended mission profile, and includes technologies developed by NASA, as well as acquisition of applicable technologies from other government and commercial sectors. This presentation shows how the technologies discussed in the white paper derive from the Outer Planet science goals, with particular attention to those required by a mission to Titan and Enceladus -active solar system satellites. We explain why they are significant relative to current solar system goals/priorities and outline how they should influence the next generation of solar system exploration missions. Government sponsorship acknowledged
Technologies for Outer Planet Missions: A Companion to the OPAG Exploration Strategy
NASA Astrophysics Data System (ADS)
Beauchamp, P. M.; McKinnon, W. B.
2009-12-01
The Outer Planets Assessment Group (OPAG) advocates the need for a focused technology program for the next Outer Planet Flagship Mission after the Europa Jupiter System Mission (EJSM) in order to be ready for a launch in the mid-2020s. Current planning assumes that a mission to Titan and Enceladus will be the highest priority. The challenges common to all Outer Planetary (OP) missions — large distances, long flight times, and stringent limitations on mass, power, and data rate — mean that all missions can significantly benefit from technical advances in a number of broad areas. Since technology development timescales are long, it is most productive to base technology requirements on the expected general characteristics of future missions. While the strategic Flagship mission concepts are better understood, an estimate of the needs for the competed small class (Discovery) and medium class (New Frontiers) missions can be included in constructing an effective technology investment plan. Technology investment priorities are guided by the requirements established in mission and system studies that are focused on the highest priority science objectives. The next OP mission (after EJSM) may involve orbiting one or both of the saturnian satellites Titan and Enceladus. Other potential OP missions include atmospheric probes of the giant planets, in situ exploration at Titan, flybys or orbiters to the ice giants Neptune and Uranus, and ultimately, landing on Europa or Enceladus. The breadth of technology needed for OP exploration clearly calls for an aggressive and focused technology development strategy that aligns with the Decadal Survey recommended mission profile, and includes technologies developed by NASA, as well as acquisition of applicable technologies from other government and commercial sectors. This presentation shows how the technologies discussed in the white paper derive from the Outer Planet science goals, with particular attention to those required by a mission to Titan and Enceladus. We explain why they are significant relative to current solar system goals/priorities and outline how they should influence the next generation of solar system exploration missions.
Technologies for Outer Planet Missions: A companion to the OPAG Exploration Strategy
NASA Astrophysics Data System (ADS)
Beauchamp, Patricia; McKinnon, William
2010-05-01
The Outer Planets Assessment Group (OPAG) advocates the need for a focused technology program for the next Outer Planet Flagship Mission after the Europa Jupiter System Mission (EJSM) in order to be ready for a launch in the mid-2020s. Current planning assumes that a mission to Titan and Enceladus will be the highest priority. The challenges common to all Outer Planetary (OP) missions—large distances, long flight times, and stringent limitations on mass, power, and data rate—mean that all missions can significantly benefit from technical advances in a number of broad areas. Since technology development timescales are long, it is most productive to base technology requirements on the expected general characteristics of future missions. While the strate¬gic Flagship mission concepts are better understood, an estimate of the needs for the competed small class (Discovery) and medium class (New Frontiers) missions can be included in constructing an effective technology investment plan. Technology investment priorities are guided by the requirements established in mission and system studies that are focused on the highest priority science objectives. The next OP mission (after EJSM) may involve orbiting one or both of the saturnian satellites Titan and Enceladus. Other potential OP missions include atmospheric probes of the giant planets, in situ exploration at Titan, flybys or orbiters to the ice giants Neptune and Uranus, and ultimately, landing on Europa or Enceladus. The breadth of technology needed for OP exploration clearly calls for an aggressive and focused technology development strategy that aligns with the Decadal Survey recommended mission profile, and includes technologies developed by NASA, as well as acquisition of applicable technologies from other government and commercial sectors. This presentation shows how the technologies discussed in the white paper derive from the Outer Planet science goals, with particular attention to those required by a mission to Titan and Enceladus. We explain why they are significant relative to current solar system goals/priorities and outline how they should influence the next generation of solar system exploration missions. Government sponsorship acknowledged
Physics and Chemistry of Star and Planet Formation in the Alma ERA
NASA Astrophysics Data System (ADS)
Bergin, Edwin
2014-06-01
ALMA will open up new avenues of exploration encompassing the wide range of star formation in our galaxy and peering into the central heart of planet-forming circumstellar disks. As we seek to explore the origins of stars and planets molecular emission will be at the front and center of many studies probing gas physics and chemistry. In this talk I will discus some of the areas where we can expect significant advances due to the increased sensitivity and superb spatial resolution of ALMA. In star-forming cores, a rich chemistry is revealed that may be the simpler molecular precursors to more complex organics, such as amino acids, seen within primitive rocks in our own solar system. ALMA will provide new information regarding the relative spatial distribution within a given source for a host of organics, sampling tens to hundreds of transitions of a variety of molecules, including presumably new ones. In this area there is a rich synergy with existing ground and space-based data, including Herschel/Spitzer. Here the increased sampling of sources to be enabled by ALMA should bring greater clarity toward the key products of interstellar chemistry and further constrain processes. On smaller Solar System scales, for over a decade most observations of planet-forming disks focused on the dust thermal continuum emission as a probe of the gas content and structure. ALMA will enable reliable and direct studies of gas to explore the evolving physics of planet-formation, the gas dissipation timescales (i.e. the upper limit to the timescale for giant planet birth), and also the chemistry. It is this chemistry that sets the composition of gas giants and also influences the ultimate composition of water and organic materials that are delivered to terrestrial worlds. Here I will show how we can use molecular emission to determine the gas thermal structure of a disk system and the total gas content - key astrophysical quantities. This will also enable more constrained chemical studies that will seek to determine whether the chemistry of planetary birth is universal and similar to our own.
NASA Astrophysics Data System (ADS)
Benkhoff, J.
2017-12-01
NASA's MESSENGER mission has fundamentally changed our view of the innermost planet. Mercury is in many ways a very different planet from what we were expecting. Now BepiColombo has to follow up on answering the fundamental questions that MESSENGER raised and go beyond. BepiColombo is a joint project between the European Space Agency (ESA) and the Japanese Aerospace Exploration Agency (JAXA). The Mission consists of two orbiters, the Mercury Planetary Orbiter (MPO) and the Mercury Magnetospheric Orbiter (MMO). The mission scenario foresees a launch of both spacecraft with an ARIANE V in October 2018 and an arrival at Mercury in 2025. From their dedicated orbits the two spacecraft will be studying the planet and its environment. BepiColombo will study and understand the composition, geophysics, atmosphere, magnetosphere and history of Mercury, the least explored planet in the inner Solar System. In addition, the BepiColombo mission will provide a rare opportunity to collect multi-point measurements in a planetary environment. This will be particularly important at Mercury because of short temporal and spatial scales in the Mercury's environment. The foreseen orbits of the MPO and MMO will allow close encounters of the two spacecrafts throughout the mission. The MPO scientific payload comprises eleven instruments/instrument packages; The MMO comprises 5 instruments/instrument packages to the the study of the environment. The MPO will focus on a global characterization of Mercury through the investigation of its interior, surface, exosphere and magnetosphere. In addition, it will be testing Einstein's theory of general relativity. Together, the scientific payload of both spacecraft will provide the detailed information necessary to understand Mercury and its magnetospheric environment and to find clues to the origin and evolution of a planet close to its parent star. The BepiColombo mission will complement and follow up the work of NASA's MESSENGER mission by providing a highly accurate and comprehensive set of observations of Mercury. The mission has been named in honor of Giuseppe (Bepi) Colombo (1920-1984), who was a brilliant Italian mathematician, who made many significant contributions to planetary research and celestial mechanics.
Constraining the volatile fraction of planets from transit observations
NASA Astrophysics Data System (ADS)
Alibert, Y.
2016-06-01
Context. The determination of the abundance of volatiles in extrasolar planets is very important as it can provide constraints on transport in protoplanetary disks and on the formation location of planets. However, constraining the internal structure of low-mass planets from transit measurements is known to be a degenerate problem. Aims: Using planetary structure and evolution models, we show how observations of transiting planets can be used to constrain their internal composition, in particular the amount of volatiles in the planetary interior, and consequently the amount of gas (defined in this paper to be only H and He) that the planet harbors. We first explore planets that are located close enough to their star to have lost their gas envelope. We then concentrate on planets at larger distances and show that the observation of transiting planets at different evolutionary ages can provide statistical information on their internal composition, in particular on their volatile fraction. Methods: We computed the evolution of low-mass planets (super-Earths to Neptune-like) for different fractions of volatiles and gas. We used a four-layer model (core, silicate mantle, icy mantle, and gas envelope) and computed the internal structure of planets for different luminosities. With this internal structure model, we computed the internal and gravitational energy of planets, which was then used to derive the time evolution of the planet. Since the total energy of a planet depends on its heat capacity and density distribution and therefore on its composition, planets with different ice fractions have different evolution tracks. Results: We show for low-mass gas-poor planets that are located close to their central star that assuming evaporation has efficiently removed the entire gas envelope, it is possible to constrain the volatile fraction of close-in transiting planets. We illustrate this method on the example of 55 Cnc e and show that under the assumption of the absence of gas, the measured mass and radius imply at least 20% of volatiles in the interior. For planets at larger distances, we show that the observation of transiting planets at different evolutionary ages can be used to set statistical constraints on the volatile content of planets. Conclusions: These results can be used in the context of future missions like PLATO to better understand the internal composition of planets, and based on this, their formation process and potential habitability.
The Science Goals of NASA's Exploration Initiative
NASA Technical Reports Server (NTRS)
Gardner, Jonathan P.; Grunsfeld, John
2004-01-01
The recently released policy directive, "A Renewed Spirit of Discovery: The President's Vision for U. S. Space Exploration," seeks to advance the U. S. scientific, security and economic interest through a program of space exploration which will robotically explore the solar system and extend human presence to the Moon, Mars and beyond. NASA's implementation of this vision will be guided by compelling questions of scientific and societal importance, including the origin of our Solar System and the search for life beyond Earth. The Exploration Roadmap identifies four key targets: the Moon, Mars, the outer Solar System, and extra-solar planets. First, a lunar investigation will set up exploration test beds, search for resources, and study the geological record of the early Solar System. Human missions to the Moon will serve as precursors for human missions to Mars and other destinations, but will also be driven by their support for furthering science. The second key target is the search for past and present water and life on Mars. Following on from discoveries by Spirit and Opportunity, by the end of the decade there will have been an additional rover, a lander and two orbiters studying Mars. These will set the stage for a sample return mission in 2013, increasingly complex robotic investigations, and an eventual human landing. The third key target is the study of underground oceans, biological chemistry, and their potential for life in the outer Solar System. Beginning with the arrival of Cassini at Saturn in July 2004 and a landing on Titan in 2006, the next decade will see an extended investigation of the Jupiter icy moons by a mission making use of Project Prometheus, a program to develop space nuclear power and nuclear-electric propulsion. Finally, the search for Earth-like planets and life includes a series of telescopic missions designed to find and characterize extra-solar planets and search them for evidence of life. These missions include HST and Spitzer, operating now; Kepler, SIM, JWST, and TPF, currently under development; and the vision missions, Life Finder and Planet Imager, which will possibly be constructed in space by astronauts.
The Exploration of Mars. Educational Brief: Planetary Science, Grades 8-12.
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Washington, DC.
This booklet gives a history of human observations of Mars, including observations made from U.S. unmanned spacecraft. Also included is a discussion, "Encountering a New World: How to Explore a Planet," which contains classroom discussion questions and four classroom activities. The classroom activities include: (1) How to explore a…
Searching for Life: Early Earth, Mars and Beyond
NASA Technical Reports Server (NTRS)
DesMarais, David J.; Chang, Sherwood (Technical Monitor)
1996-01-01
We might be entering a golden age for exploring life throughout time and space. Rapid gene sequencing will better define our most distant ancestors. The earliest geologic evidence of life is now 3.8 billion years old. Organic matter and submicron-sized morphologies have been preserved in the martian crust for billions of years. Several new missions to Mars are planned, with a high priority on the search for life, past or present. The recent discovery of large extrasolar planets has heightened interest in spacecraft to detect small, earth-like planets. A recent workshop discussed strategies for life detection on such planets. There is much to anticipate in the near future.
The planets and our culture a history and a legacy
NASA Astrophysics Data System (ADS)
Clarke, Theodore C.; Bolton, Scott J.
2010-01-01
This manuscript relates the great literature, great art and the vast starry vault of heaven. It relates the myths of gods and heroes for whom the planets and the Medicean moons of Jupiter are named. The myths are illustrated by great art works of the Renaissance, Baroque and Rococo periods which reveal poignant moments in the myths. The manuscript identifies constellations spun off of these myths. In addition to the images of great art are associated images of the moons and planets brought to us by spacecraft in our new age of exploration, the New Renaissance, in which we find ourselves deeply immersed.
The Blue Dot Workshop: Spectroscopic Search for Life on Extrasolar Planets
NASA Technical Reports Server (NTRS)
Des Marais, David J. (Editor)
1997-01-01
This workshop explored the key questions and challenges associated with detecting life on an extrasolar planet. The final product will be a NASA Conference Publication which includes the abstracts from 21 talks, summaries of key findings, and recommendations for future research. The workshop included sessions on three related topics: the biogeochemistry of biogenic gases in the atmosphere, the chemistry and spectroscopy of planetary atmospheres, and the remote sensing of planetary atmospheres and surfaces. With the observation that planetary formation is probably a common phenomenon, together with the advent of the technical capability to locate and describe extrasolar planets, this research area indeed has an exciting future.
NASA'a Next-Generation Space Telescope visiting a time when galaxies were young
NASA Astrophysics Data System (ADS)
Seery, Bernard D.; Smith, Eric P.
1998-08-01
With the discovery of galaxies that existed when the universe was very young, of planets not in our own solar system, and with the tantalizing evidence that he conditions for life may have existed within our solar system on planets or moons outside of the earth system, the pat year has seen an explosion of interest in astronomy. In particular, a new era of exploration and understanding seems imminent, where the connection between the existence for the conditions of life will be connected to the origin of galaxies, stars and planets within the Universe. Who knows where this quest for knowledge will take us.
Characterizing Transiting Planets with JWST Spectra: Simulations and Retrievals
NASA Technical Reports Server (NTRS)
Greene, Tom; Line, Michael; Fortney, Jonathan
2015-01-01
There are now well over a thousand confirmed exoplanets, ranging from hot to cold and large to small worlds. JWST spectra will provide much more detailed information on the molecular constituents, chemical compositions, and thermal properties of the atmospheres of transiting planets than is now known. We explore this by modeling clear, cloudy,and high mean molecular weight atmospheres of typical hot Jupiter, warm Neptune, warm sub-Neptune, and cool super-Earth planets and then simulating their JWST transmission and emission spectra. These simulations were performed for several JWST instrument modes over 1 - 11 microns and incorporate realistic signal and noise components. We then performed state-of the art retrievals to determine how well temperatures and abundances (CO, CO2, H2O, NH3) will be constrained and over what pressures for these different planet types. Using these results, we appraise what instrument modes will be most useful for determining what properties of the different planets, and we assess how well we can constrain their compositions, CO ratios, and temperature profiles.
Jovian Small Orbiter for Magnetospheric and Auroral Studies
NASA Astrophysics Data System (ADS)
Takashima, T.; Kasaba, Y.; Misawa, H.; Kawaguchi, J.
2005-12-01
Solar-Sail Project to have been examined by ISAS/JAXA as an engineering mission has a possibility of a small probe into the Jovian orbit. This paper summarizes the basic design of Jovian magnetospheric and auroral studies by this small chance. The large-scale Jovian mission has been a hope since the 1970s when the examinations of planetary exploration were started in Japan. In the one of plans, the largest planet in the solar system would be solved by two main objectives: (1) Structure of a gas planet: the internal & atmospheric structures of a gas planet which could not become a star (following the objectives of Planet-C and BepiColombo). (2) Jovian-type magnetosphere: the process of a pulsar-like magnetosphere with the strongest magnetospheric activities in the solar system (following the objectives of BepiColombo and SCOPE). The small polar-orbit orbiter in Solar-Sail Project aims to establish the feasibility of such future outer planet missions by ISAS/JAXA. It aims the former target in its limited resources.
Environmental Remote Sensing Analysis Using Open Source Virtual Earths and Public Domain Imagery
NASA Astrophysics Data System (ADS)
Pilant, A. N.; Worthy, L. D.
2008-12-01
Human activities increasingly impact natural environments. Globally, many ecosystems are stressed to unhealthy limits, leading to loss of valuable ecosystem services- economic, ecologic and intrinsic. Virtual earths (virtual globes) (e.g., NASA World Wind, ossimPlanet, ArcGIS Explorer, Google Earth, Microsoft Virtual Earth) are geospatial data integration tools that can aid our efforts to understand and protect the environment. Virtual earths provide unprecedented desktop views of our planet, not only to professional scientists, but also to citizen scientists, students, environmental stewards, decision makers, urban developers and planners. Anyone with a broadband internet connection can explore the planet virtually, due in large part to freely available open source software and public domain imagery. This has at least two important potential benefits. One, individuals can study the planet from the visually intuitive perspective of the synoptic aerial view, promoting environmental awareness and stewardship. Two, it opens up the possibility of harnessing the in situ knowledge and observations of citizen scientists familiar with landscape conditions in their locales. Could this collective knowledge be harnessed (crowd sourcing) to validate and quality assure land cover and other maps? In this presentation we present examples using public domain imagery and two open source virtual earths to highlight some of the functionalities currently available. OssimPlanet is used to view aerial data from the USDA Geospatial Data Gateway. NASA World Wind is used to extract georeferenced high resolution USGS urban area orthoimagery. ArcGIS Explorer is used to demonstrate an example of image analysis using web processing services. The research presented here was conducted under the Environmental Feature Finder project of the Environmental Protection Agency's Advanced Monitoring Initiative. Although this work was reviewed by EPA and approved for publication, it may not necessarily reflect official Agency policy. Use of trade names does not imply endorsement by the authors or the EPA.
275 Candidates and 149 Validated Planets Orbiting Bright Stars in K2 Campaigns 0–10
NASA Astrophysics Data System (ADS)
Mayo, Andrew W.; Vanderburg, Andrew; Latham, David W.; Bieryla, Allyson; Morton, Timothy D.; Buchhave, Lars A.; Dressing, Courtney D.; Beichman, Charles; Berlind, Perry; Calkins, Michael L.; Ciardi, David R.; Crossfield, Ian J. M.; Esquerdo, Gilbert A.; Everett, Mark E.; Gonzales, Erica J.; Hirsch, Lea A.; Horch, Elliott P.; Howard, Andrew W.; Howell, Steve B.; Livingston, John; Patel, Rahul; Petigura, Erik A.; Schlieder, Joshua E.; Scott, Nicholas J.; Schumer, Clea F.; Sinukoff, Evan; Teske, Johanna; Winters, Jennifer G.
2018-03-01
Since 2014, NASA’s K2 mission has observed large portions of the ecliptic plane in search of transiting planets and has detected hundreds of planet candidates. With observations planned until at least early 2018, K2 will continue to identify more planet candidates. We present here 275 planet candidates observed during Campaigns 0–10 of the K2 mission that are orbiting stars brighter than 13 mag (in Kepler band) and for which we have obtained high-resolution spectra (R = 44,000). These candidates are analyzed using the vespa package in order to calculate their false-positive probabilities (FPP). We find that 149 candidates are validated with an FPP lower than 0.1%, 39 of which were previously only candidates and 56 of which were previously undetected. The processes of data reduction, candidate identification, and statistical validation are described, and the demographics of the candidates and newly validated planets are explored. We show tentative evidence of a gap in the planet radius distribution of our candidate sample. Comparing our sample to the Kepler candidate sample investigated by Fulton et al., we conclude that more planets are required to quantitatively confirm the gap with K2 candidates or validated planets. This work, in addition to increasing the population of validated K2 planets by nearly 50% and providing new targets for follow-up observations, will also serve as a framework for validating candidates from upcoming K2 campaigns and the Transiting Exoplanet Survey Satellite, expected to launch in 2018.
NASA Astrophysics Data System (ADS)
Rymer, A. M.; Arridge, C. S.; Masters, A.; Turtle, E. P.; Simon, A. A.; Hofstadter, M. D.; Turrini, D.; Politi, R.
2015-12-01
The Ice Giants in our solar system, Uranus and Neptune, are fundamentally different from their Gas Giant siblings Jupiter and Saturn, from the different proportions of rock and ice to the configuration of their planetary magnetic fields. Kepler space telescope discoveries of exo-planets indicate that planets of this type are among the most ubiquitous universally and therefore a future mission to explore the nature of the Ice Giants in our own solar system will provide insights into the nature of extra-solar system objects in general. Uranus has the smallest self- luminosity of all the planets, potentially related to catastrophic events early in the planet's history, which also may explain Uranus' large obliquity. Uranus' atmosphere is subject to extreme seasonal forcing making it unique in the Solar System. Neptune is also unique in a number of ways, notably its large moon Triton which is likely a captured Kuiper Belt Object and one of only two moons in the solar system with a robustly collisional atmosphere. Similar to Uranus, the angle between the solar wind and the magnetic dipole axis is subject to large-amplitude variations on both diurnal and seasonal timescales, but peculiarly it has one of the quietest magnetospheres of the solar system, at least according to Voyager 2, the only spacecraft to encounter Neptune to date. A comprehensive mission, as advocated in the Decadal Survey, would provide enormous science return but is also challenging and expensive. In this presentation we will discuss mission scenarios and suggest how collaboration between disciplines and internationally can help us to pursue a mission that includes Ice Giant exploration.
Astrobiology: An astronomer's perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergin, Edwin A.
2014-12-08
In this review we explore aspects of the field of astrobiology from an astronomical viewpoint. We therefore focus on the origin of life in the context of planetary formation, with additional emphasis on tracing the most abundant volatile elements, C, H, O, and N that are used by life on Earth. We first explore the history of life on our planet and outline the current state of our knowledge regarding the delivery of the C, H, O, N elements to the Earth. We then discuss how astronomers track the gaseous and solid molecular carriers of these volatiles throughout the processmore » of star and planet formation. It is now clear that the early stages of star formation fosters the creation of water and simple organic molecules with enrichments of heavy isotopes. These molecules are found as ice coatings on the solid materials that represent microscopic beginnings of terrestrial worlds. Based on the meteoritic and cometary record, the process of planet formation, and the local environment, lead to additional increases in organic complexity. The astronomical connections towards this stage are only now being directly made. Although the exact details are uncertain, it is likely that the birth process of star and planets likely leads to terrestrial worlds being born with abundant water and organics on the surface.« less
Extrasolar Planet Inferometric Survey (EPIcS)
NASA Technical Reports Server (NTRS)
Shao, Michael; Baliunas, Sallie; Boden, Andrew; Kulkarni, Shrinivas; Lin, Douglas N. C.; Loredo, Tom; Queloz, Didier; Shaklan, Stuart; Tremaine, Scott; Wolszczan, Alexander
2004-01-01
The discovery of the nature of the solar system was a crowning achievement of Renaissance science. The quest to evaluate the properties of extrasolar planetary systems is central to both the intellectual understanding of our origins and the cultural understanding of humanity's place in the Universe; thus it is appropriate that the goals and objectives of NASA's breakthrough Origins program emphasize the study of planetary systems, with a focus on the search for habitable planets. We propose an ambitious research program that will use SIM - the first major mission of the Origins program - to explore planetary systems in our Galactic neighborhood. Our program is a novel two-tiered SIM survey of nearby stars that exploits the capabilities of SIM to achieve two scientific objectives: (i) to identify Earth-like planets in habitable regions around nearby Sunlike stars: and (ii) to explore the nature and evolution of planetary systems in their full variety. The first of these objectives was recently recommended by the Astronomy and Astrophysics Survey Committee (the McKee-Taylor Committee) as a prerequisite for the development of the Terrestrial Planet Finder mission later in the decade. Our program combines this two-part survey with preparatory and contemporaneous research designed to maximize the scientific return from the limited and thus precious observing resources of SIM.
HOW LOW CAN YOU GO? THE PHOTOECCENTRIC EFFECT FOR PLANETS OF VARIOUS SIZES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, Ellen M.; Rogers, Leslie A.; Johnson, John Asher
2015-01-20
It is well-known that the light curve of a transiting planet contains information about the planet's orbital period and size relative to the host star. More recently, it has been demonstrated that a tight constraint on an individual planet's eccentricity can sometimes be derived from the light curve via the ''photoeccentric effect'', the effect of a planet's eccentricity on the shape and duration of its light curve. This has only been studied for large planets and high signal-to-noise scenarios, raising the question of how well it can be measured for smaller planets or low signal-to-noise cases. We explore the limitsmore » of the photoeccentric effect over a wide range of planet parameters. The method hinges upon measuring g directly from the light curve, where g is the ratio of the planet's speed (projected on the plane of the sky) during transit to the speed expected for a circular orbit. We find that when the signal-to-noise in the measurement of g is <10, the ability to measure eccentricity with the photoeccentric effect decreases. We develop a ''rule of thumb'' that for per-point relative photometric uncertainties σ = (10{sup –3}, 10{sup –4}, 10{sup –5}), the critical values of the planet-star radius ratio are R{sub p} /R {sub *} ≈ (0.1, 0.05, 0.03) for Kepler-like 30 minute integration times. We demonstrate how to predict the best-case uncertainty in eccentricity that can be found with the photoeccentric effect for any light curve. This clears the path to study eccentricities of individual planets of various sizes in the Kepler sample and future transit surveys.« less
Characterization and Validation of Transiting Planets in the TESS SPOC Pipeline
NASA Astrophysics Data System (ADS)
Twicken, Joseph D.; Caldwell, Douglas A.; Davies, Misty; Jenkins, Jon Michael; Li, Jie; Morris, Robert L.; Rose, Mark; Smith, Jeffrey C.; Tenenbaum, Peter; Ting, Eric; Wohler, Bill
2018-06-01
Light curves for Transiting Exoplanet Survey Satellite (TESS) target stars will be extracted and searched for transiting planet signatures in the Science Processing Operations Center (SPOC) Science Pipeline at NASA Ames Research Center. Targets for which the transiting planet detection threshold is exceeded will be processed in the Data Validation (DV) component of the Pipeline. The primary functions of DV are to (1) characterize planets identified in the transiting planet search, (2) search for additional transiting planet signatures in light curves after modeled transit signatures have been removed, and (3) perform a comprehensive suite of diagnostic tests to aid in discrimination between true transiting planets and false positive detections. DV data products include extensive reports by target, one-page summaries by planet candidate, and tabulated transit model fit and diagnostic test results. DV products may be employed by humans and automated systems to vet planet candidates identified in the Pipeline. TESS will launch in 2018 and survey the full sky for transiting exoplanets over a period of two years. The SPOC pipeline was ported from the Kepler Science Operations Center (SOC) codebase and extended for TESS after the mission was selected for flight in the NASA Astrophysics Explorer program. We describe the Data Validation component of the SPOC Pipeline. The diagnostic tests exploit the flux (i.e., light curve) and pixel time series associated with each target to support the determination of the origin of each purported transiting planet signature. We also highlight the differences between the DV components for Kepler and TESS. Candidate planet detections and data products will be delivered to the Mikulski Archive for Space Telescopes (MAST); the MAST URL is archive.stsci.edu/tess. Funding for the TESS Mission has been provided by the NASA Science Mission Directorate.
Planet Formation by Coagulation: A Focus on Uranus and Neptune
NASA Astrophysics Data System (ADS)
Goldreich, Peter; Lithwick, Yoram; Sari, Re'em
2004-09-01
Planets form in the circumstellar disks of young stars. We review the basic physical processes by which solid bodies accrete each other and alter each others' random velocities, and we provide order-of-magnitude derivations for the rates of these processes. We discuss and exercise the two-groups approximation, a simple yet powerful technique for solving the evolution equations for protoplanet growth. We describe orderly, runaway, neutral, and oligarchic growth. We also delineate the conditions under which each occurs. We refute a popular misconception by showing that the outer planets formed quickly by accreting small bodies. Then we address the final stages of planet formation. Oligarchy ends when the surface density of the oligarchs becomes comparable to that of the small bodies. Dynamical friction is no longer able to balance viscous stirring and the oligarchs' random velocities increase. In the inner-planet system, oligarchs collide and coalesce. In the outer-planet system, some of the oligarchs are ejected. In both the inner- and outer-planet systems, this stage ends once the number of big bodies has been reduced to the point that their mutual interactions no longer produce large-scale chaos. Subsequently, dynamical friction by the residual small bodies circularizes and flattens their orbits. The final stage of planet formation involves the clean up of the residual small bodies. Clean up has been poorly explored.
The Water Content of Exo-earths in the Habitable Zone around Low-mass Stars
NASA Astrophysics Data System (ADS)
Mulders, Gijs Dirk; Ciesla, Fred; Pascucci, Ilaria; apai, Daniel
2015-08-01
Terrestrial planets in the habitable zones of low-mass M dwarf stars have become the focus of many astronomical studies: they are more easily accessible to detection and characterization than their counterparts around sunlike stars. The habitability of these planets, however, faces a number of challenges, including inefficient or negligible water delivery during accretion. To understand the water content of planets in and around the habitable zone, simulations of the final stages of planet formation are necessary.We present detailed accretion simulations of wet and dry planetary embryos around a range of stellar masses. We focus on different pathways of delivering water from beyond the snow line to terrestrial planets in the habitable zone. We explore the impact of using either asteroid-like or comet-like bodies, and the effects of a dispersion in snow line locations. We derive the probability distribution of water abundances for terrestrial sized planets in the habitable zone.While these models predict that the bulk of terrestrial planets in the habitable zones of M stars will be dry, a small fraction receives earth-like amounts of water. Given their larger numbers and higher planet occurrence rates, this population of water-enriched worlds in the habitable zone of M stars may equal that around sun-like stars in numbers.References:Ciesla, Mulders et al. 2015Mulders et al. ApJ subm.
NASA Astrophysics Data System (ADS)
Zanazzi, J. J.; Lai, Dong
2018-04-01
Many hot Jupiter (HJ) systems have been observed to have their stellar spin axis misaligned with the planet's orbital angular momentum axis. The origin of this spin-orbit misalignment and the formation mechanism of HJs remain poorly understood. A number of recent works have suggested that gravitational interactions between host stars, protoplanetary disks, and inclined binary companions may tilt the stellar spin axis with respect to the disk's angular angular momentum axis, producing planetary systems with misaligned orbits. These previous works considered idealized disk evolution models and neglected the gravitational influence of newly formed planets. In this paper, we explore how disk photoevaporation and planet formation and migration affect the inclination evolution of planet-star-disk-binary systems. We take into account planet-disk interactions and the gravitational spin-orbit coupling between the host star and the planet. We find that the rapid depletion of the inner disk via photoevaporation reduces the excitation of stellar obliquities. Depending on the formation and migration history of HJs, the spin-orbit coupling between the star and the planet may reduces and even completely suppress the excitation of stellar obliquities. Our work constrains the formation/migration history of HJs. On the other hand, planetary systems with "cold" Jupiters or close-in super-earths may experience excitation of stellar obliquities in the presence of distant inclined companions.
Coupled Evolution with Tides of the Radius and Orbit of Transiting Giant Planets
NASA Astrophysics Data System (ADS)
Ibgui, Laurent; Burrows, A.
2009-12-01
Some transiting extrasolar giant planets have measured radii larger than predicted by the standard theory. We explore the possibility that an earlier episode of tidal heating can explain such radius anomalies and apply the formalism we develop to HD 209458b as an example. We find that for strong enough tides the planet's radius can undergo a transient phase of inflation that temporarily interrupts canonical, monotonic shrinking due to radiative losses. Importantly, an earlier episode of tidal heating can result in a planet with an inflated radius, even though its orbit has nearly circularized. Moreover, we confirm that at late times, and under some circumstances, by raising tides on the star itself a planet can spiral into its host. We note that a 3 to 10 solar planet atmospheric opacity with no tidal heating is sufficient to explain the observed radius of HD 209458b. However, our model demonstrates that with an earlier phase of episodic tidal heating we can fit the observed radius of HD 209458b even with lower (solar) atmospheric opacities. This work demonstrates that, if a planet is left with an appreciable eccentricity after early inward migration and/or dynamical interaction, coupling radius and orbit evolution in a consistent fashion that includes tidal heating, stellar irradiation, and detailed model atmospheres might offer a generic solution to the inflated radius puzzle for transiting extrasolar giant planets.
Planetary system formation: Effects of planet-disk tidal interaction
NASA Astrophysics Data System (ADS)
Bryden, Geoffrey
The standard theory of planet formation begins with the coagulation of solid planetesimals (Safronov 1969, Wetherill & Stewart 1989) followed by the accretion of disk gas once the solid core reaches a critical mass >~10M⊕ (Perri & Cameron 1974, Mizuno 1980, Bodenheimer & Pollack 1986). The classic picture of planet formation, in which each planet's position in the nebula remain fixed, is challenged by the observed distribution of extra-solar planets (e.g. Mayor & Queloz 1995, Butler et al. 1999). The majority of these planets are on short-period orbits ( P<~10 days) very close to their central stars ( ap<~0.1 AU), suggesting that orbital migration plays an important role in the formation of planetary systems. The intent of this thesis is to explore the inclusion of protoplanetary tidal forces into the classical theory of planetary system formation. Protoplanetary interaction with the surrounding gaseous nebulae directly determines giant planets' semi-major axes, masses, gas/solid ratio, and relative spacing. In essence, the process of gap formation determines the primary observational characteristics of both individual planets and their composite systems. Detailed simulations of gap formation produce a range of planetary masses consistent with the observed distribution. Fully self-interacting models of planetary system formation can be used to create a wide variety of planetary systems, ranging from the solar system to Upsilon Andromeda (Butler et al. 1999).
NASA Astrophysics Data System (ADS)
Zanazzi, J. J.; Lai, Dong
2018-07-01
Many hot Jupiter (HJ) systems have been observed to have their stellar spin axis misaligned with the planet's orbital angular momentum axis. The origin of this spin-orbit misalignment and the formation mechanism of HJs remain poorly understood. A number of recent works have suggested that gravitational interactions between host stars, protoplanetary discs, and inclined binary companions may tilt the stellar spin axis with respect to the disc's angular angular momentum axis, producing planetary systems with misaligned orbits. These previous works considered idealized disc evolution models and neglected the gravitational influence of newly formed planets. In this paper, we explore how disc photoevaporation and planet formation and migration affect the inclination evolution of planet-star-disc-binary systems. We take into account planet-disc interactions and the gravitational spin-orbit coupling between the host star and the planet. We find that the rapid depletion of the inner disc via photoevaporation reduces the excitation of stellar obliquities. Depending on the formation and migration history of HJs, the spin-orbit coupling between the star and the planet may reduces and even completely suppress the excitation of stellar obliquities. Our work constrains the formation/migration history of HJs. On the other hand, planetary systems with `cold' Jupiters or close-in super-earths may experience excitation of stellar obliquities in the presence of distant inclined companions.
Magnetour: Surfing planetary systems on electromagnetic and multi-body gravity fields
NASA Astrophysics Data System (ADS)
Lantoine, Gregory; Russell, Ryan P.; Anderson, Rodney L.; Garrett, Henry B.
2017-09-01
A comprehensive tour of the complex outer planet systems is a central goal in space science. However, orbiting multiple moons of the same planet would be extremely prohibitive using traditional propulsion and power technologies. In this paper, a new mission concept, named Magnetour, is presented to facilitate the exploration of outer planet systems and address both power and propulsion challenges. This approach would enable a single spacecraft to orbit and travel between multiple moons of an outer planet, without significant propellant or onboard power source. To achieve this free-lunch 'Grand Tour', Magnetour exploits the unexplored combination of magnetic and multi-body gravitational fields of planetary systems, with a unique focus on using a bare electrodynamic tether for power and propulsion. Preliminary results indicate that the Magnetour concept is sound and is potentially highly promising at Jupiter.
Inferring giant planets from ALMA millimeter continuum and line observations in (transition) disks
NASA Astrophysics Data System (ADS)
Facchini, S.; Pinilla, P.; van Dishoeck, E. F.; de Juan Ovelar, M.
2018-05-01
Context. Radial gaps or cavities in the continuum emission in the IR-mm wavelength range are potential signatures of protoplanets embedded in their natal protoplanetary disk are. Hitherto, models have relied on the combination of mm continuum observations and near-infrared scattered light images to put constraints on the properties of embedded planets. Atacama Large Millimeter/submillimeter Array (ALMA) observations are now probing spatially resolved rotational line emission of CO and other chemical species. These observations can provide complementary information on the mechanism carving the gaps in dust and additional constraints on the purported planet mass. Aims: We investigate whether the combination of ALMA continuum and CO line observations can constrain the presence and mass of planets embedded in protoplanetary disks. Methods: We post-processed azimuthally averaged 2D hydrodynamical simulations of planet-disk models, in which the dust densities and grain size distributions are computed with a dust evolution code that considers radial drift, fragmentation, and growth. The simulations explored various planet masses (1 MJ ≤ Mp ≤ 15 MJ) and turbulent parameters (10-4 ≤ α ≤ 10-3). The outputs were then post-processed with the thermochemical code DALI, accounting for the radially and vertically varying dust properties. We obtained the gas and dust temperature structures, chemical abundances, and synthetic emission maps of both thermal continuum and CO rotational lines. This is the first study combining hydrodynamical simulations, dust evolution, full radiative transfer, and chemistry to predict gas emission of disks hosting massive planets. Results: All radial intensity profiles of 12CO, 13CO, and C18O show a gap at the planet location. The ratio between the location of the gap as seen in CO and the peak in the mm continuum at the pressure maximum outside the orbit of the planet shows a clear dependence on planet mass and is independent of disk viscosity for the parameters explored in this paper. Because of the low dust density in the gaps, the dust and gas components can become thermally decoupled and the gas becomes colder than the dust. The gaps seen in CO are due to a combination of gas temperature dropping at the location of the planet and of the underlying surface density profile. Both effects need to be taken into account and disentangled when inferring gas surface densities from observed CO intensity profiles; otherwise, the gas surface density drop at the planet location can easily be overestimated. CO line ratios across the gap are able to quantify the gas temperature drop in the gaps in observed systems. Finally, a CO cavity not observed in any of the models, only CO gaps, indicating that one single massive planet is not able to explain the CO cavities observed in transition disks, at least without additional physical or chemical mechanisms.
New Cosmic Horizons: Space Astronomy from the V2 to the Hubble Space Telescope
NASA Astrophysics Data System (ADS)
Leverington, David
2001-02-01
Preface; 1. The sounding rocket era; 2. The start of the space race; 3. Initial exploration of the Solar System; 4. Lunar exploration; 5. Mars and Venus; early results; 6. Mars and Venus; the middle period; 7. Venus, Mars and cometary spacecraft post-1980; 8. Early missions to the outer planets; 9. The Voyager missions to the outer planets; 10. The Sun; 11. Early spacecraft observations of non-solar system sources; 12. A period of rapid growth; 13. The high energy astronomy observatory programme; 14. IUE, IRAS and Exosat - spacecraft for the early 1980s; 15. Hiatus; 16. Business as usual; 17. The Hubble Space Telescope.
Strategy for earth explorers in global earth sciences
NASA Technical Reports Server (NTRS)
1988-01-01
The goal of the current NASA Earth System Science initiative is to obtain a comprehensive scientific understanding of the Earth as an integrated, dynamic system. The centerpiece of the Earth System Science initiative will be a set of instruments carried on polar orbiting platforms under the Earth Observing System program. An Earth Explorer program can open new vistas in the earth sciences, encourage innovation, and solve critical scientific problems. Specific missions must be rigorously shaped by the demands and opportunities of high quality science and must complement the Earth Observing System and the Mission to Planet Earth. The committee believes that the proposed Earth Explorer program provides a substantial opportunity for progress in the earth sciences, both through independent missions and through missions designed to complement the large scale platforms and international research programs that represent important national commitments. The strategy presented is intended to help ensure the success of the Earth Explorer program as a vital stimulant to the study of the planet.
NASA Technical Reports Server (NTRS)
1994-01-01
This STS-68 patch was designed by artist Sean Collins. Exploration of Earth from space is the focus of the design of the insignia, the second flight of the Space Radar Laboratory (SRL-2). SRL-2 was part of NASA's Mission to Planet Earth (MTPE) project. The world's land masses and oceans dominate the center field, with the Space Shuttle Endeavour circling the globe. The SRL-2 letters span the width and breadth of planet Earth, symbolizing worldwide coverage of the two prime experiments of STS-68: The Shuttle Imaging Radar-C and X-Band Synthetic Aperture Radar (SIR-C/X-SAR) instruments; and the Measurement of Air Pollution from Satellites (MAPS) sensor. The red, blue, and black colors of the insignia represent the three operating wavelengths of SIR-C/X-SAR, and the gold band surrounding the globe symbolizes the atmospheric envelope examined by MAPS. The flags of international partners Germany and Italy are shown opposite Endeavour. The relationship of the Orbiter to Earth highlights the usefulness of human space flights in understanding Earth's environment, and the monitoring of its changing surface and atmosphere. In the words of the crew members, the soaring Orbiter also typifies the excellence of the NASA team in exploring our own world, using the tools which the Space Program developed to explore the other planets in the solar system.
1994-02-25
This STS-68 patch was designed by artist Sean Collins. Exploration of Earth from space is the focus of the design of the insignia, the second flight of the Space Radar Laboratory (SRL-2). SRL-2 was part of NASA's Mission to Planet Earth (MTPE) project. The world's land masses and oceans dominate the center field, with the Space Shuttle Endeavour circling the globe. The SRL-2 letters span the width and breadth of planet Earth, symbolizing worldwide coverage of the two prime experiments of STS-68: The Shuttle Imaging Radar-C and X-Band Synthetic Aperture Radar (SIR-C/X-SAR) instruments; and the Measurement of Air Pollution from Satellites (MAPS) sensor. The red, blue, and black colors of the insignia represent the three operating wavelengths of SIR-C/X-SAR, and the gold band surrounding the globe symbolizes the atmospheric envelope examined by MAPS. The flags of international partners Germany and Italy are shown opposite Endeavour. The relationship of the Orbiter to Earth highlights the usefulness of human space flights in understanding Earth's environment, and the monitoring of its changing surface and atmosphere. In the words of the crew members, the soaring Orbiter also typifies the excellence of the NASA team in exploring our own world, using the tools which the Space Program developed to explore the other planets in the solar system.
The Dynamics of Orbit-Clearing for Planets on Eccentric Orbits
NASA Astrophysics Data System (ADS)
Hastings, Danielle; Margot, Jean-Luc
2016-10-01
The third requirement in the 2006 International Astronomical Union (IAU) definition of a planet is that the object has cleared the neighborhood around its orbit. Margot (2015) proposed a metric that quantitatively determines if an object has enough mass to clear an orbital zone of a specific extent within a defined time interval. In this metric, the size of the zone to be cleared is given by CRH, where C is a constant and RH is the Hill Radius. Margot (2015) adopts C=2*31/2 to describe the minimum extent of orbital clearing on the basis of the planet's feeding zone. However, this value of C may only apply for eccentricities up to about 0.3 (Quillen & Faber 2006). Here, we explore the timescales and boundaries of orbital clearing for planets over a range of orbital eccentricities and planet-star mass ratios using the MERCURY integration package (Chambers 1999). The basic setup for the integrations includes a single planet orbiting a star and a uniform distribution of massless particles extending beyond CRH. The system is integrated for at least 106 revolutions and the massless particles are tracked in order to quantify the timescale and extent of the clearing.
NASA Technical Reports Server (NTRS)
Barnes, Norman P.
2005-01-01
NASA is developing active remote sensors to monitor the health of Planet Earth and for exploration of other planets. Development and deployment of these remote sensors can have a huge economic impact. Lasers for these active remote sensors span the spectral range from the ultraviolet to the mid infrared spectral regions. Development activities range from quantum mechanical modeling and prediction of new laser materials to the design, development, and demonstration be deployed in the field.
An inside look at NASA planetology
NASA Technical Reports Server (NTRS)
Dwornik, S. E.
1976-01-01
Staffing, financing and budget controls, and research grant allocations of NASA are reviewed with emphasis on NASA-supported research in planetary geological sciences: studies of the composition, structure, and history of solar system planets. Programs, techniques, and research grants for studies of Mars photographs acquired through Mariner 6-10 flights are discussed at length, and particularly the handling of computer-enhanced photographic data. Scheduled future NASA-sponsored planet exploration missions (to Mars, Jupiter, Saturn, Uranus) are mentioned.
RE-INFLATED WARM JUPITERS AROUND RED GIANTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez, Eric D.; Fortney, Jonathan J.
2016-02-10
Since the discovery of the first transiting hot Jupiters, models have sought to explain the anomalously large radii of highly irradiated gas giants. We now know that the size of hot Jupiter radius anomalies scales strongly with a planet's level of irradiation and numerous models like tidal heating, ohmic dissipation, and thermal tides have since been developed to help explain these inflated radii. In general, however, these models can be grouped into two broad categories: models that directly inflate planetary radii by depositing a fraction of the incident irradiation into the interior and models that simply slow a planet's radiativemore » cooling, allowing it to retain more heat from formation and thereby delay contraction. Here we present a new test to distinguish between these two classes of models. Gas giants orbiting at moderate orbital periods around post-main-sequence stars will experience enormous increases to their irradiation as their host stars move up the sub-giant and red-giant branches. If hot Jupiter inflation works by depositing irradiation into the planet's deep interiors then planetary radii should increase in response to the increased irradiation. This means that otherwise non-inflated gas giants at moderate orbital periods of >10 days can re-inflate as their host stars evolve. Here we explore the circumstances that can lead to the creation of these “re-inflated” gas giants and examine how the existence or absence of such planets can be used to place unique constraints on the physics of the hot Jupiter inflation mechanism. Finally, we explore the prospects for detecting this potentially important undiscovered population of planets.« less
NASA Astrophysics Data System (ADS)
Coates, Andrew
2005-10-01
Up until the dark ages, humankind knew of six planets including our own. The invention of the telescope, and the beginnings of scientific thought on orbits and planetary motion, were in the seventeenth century. The next three centuries added Uranus, Neptune and Pluto to the known list as well as the many moons, asteroids and comets that we know today. It is only in the latter part of the 20th century that we have been privileged to carry out in-situ exploration of the planets, comets and the solar wind's realm and to begin to understand the special conditions on Earth which meant that life started here. This is leading to a detailed view of the processes which have shaped our solar system. Here, we briefly review our current knowledge of the solar system we inhabit. We discuss the current picture of how the solar system began. Important processes at work, such as collisions and volcanism, and atmospheric evolution, are discussed. The planets, comets and asteroids are all discussed in general terms, together with the important discoveries from space missions which have led to our current views. For each of the bodies we present the current understanding of the physical properties and interrelationships and present questions for further study. The significance of recent results, such as proof that there were one standing bodies of water on Mars, and the discovery of what appears to be an Oort cloud comet, are put into context. What is in store for planetary exploration and discoveries in the future? Already a sequence of Mars exploration missions, a landing on a comet, further exploration of Saturn and the Jovian system and the first flyby of Pluto are planned. We examine the major scientific questions to be answered. We also discuss the prospects for finding other Earth-like planets elsewhere, and for finding extraterrestrial life both within and beyond our own solar system.
Venus Atmospheric Exploration by Solar Aircraft
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; LaMarre, C.; Colozza, A.
2002-01-01
The Venus atmosphere is a favorable environment for flying powered aircraft. The atmospheric pressure makes flight much easier than on planets such as Mars. Above the clouds, solar energy is available in abundance on Venus, and the slow rotation of Venus allows a solar airplane to be designed for flight within continuous sunlight. The atmosphere between 50 km and 75 km on Venus is one of the most dynamic and interesting regions of the planet. The challenge for a Venus aircraft will be the fierce winds and caustic atmosphere. In order to remain on the sunlit side of Venus, an exploration aircraft will have to be capable of sustained flight at or above the wind speed. An aircraft would be a powerful tool for exploration. By learning how Venus can be so similar to Earth, and yet so different, we will learn to better understand the climate and geological history of the Earth.
Scripps museum receives NSF grant
NASA Astrophysics Data System (ADS)
Scripps Institution of Oceanography has been awarded a $500,000 grant from the National Science Foundation for a 37,000-square-foot museum exhibition on ocean sciences entitled “Exploring the Blue Planet.” The exhibition will be installed in the Scripps Hall of Oceanography of the new Stephen Birch Aquarium-Museum. The facility is under construction at the University of California, San Diego, and is scheduled to open in fall 1992.NSF is providing approximately half of the funds required for “Exploring the Blue Planet,” which is designed to help visitors explore the many fields of oceanography. “This NSF grant will fund interactive exhibits and changing displays featuring the latest Scripps research that will allow children and adults to experience science as an approachable, creative process that can be used to understand the changing world,” said Luther Williams, NSF Assistant Director for Education and Human Resources.
Nano-Scale Sample Acquisition Systems for Small Class Exploration Spacecraft
NASA Astrophysics Data System (ADS)
Paulsen, G.
2015-12-01
The paradigm for space exploration is changing. Large and expensive missions are very rare and the space community is turning to smaller, lighter, and less expensive missions that could still perform great exploration. These missions are also within reach of commercial companies such as the Google Lunar X Prize teams that develop small scale lunar missions. Recent commercial endeavors such as "Planet Labs inc." and Sky Box Imaging, inc. show that there are new benefits and business models associated with miniaturization of space hardware. The Nano-Scale Sample Acquisition System includes NanoDrill for capture of small rock cores and PlanetVac for capture of surface regolith. These two systems are part of the ongoing effort to develop "Micro Sampling" systems for deployment by the small spacecraft with limited payload capacities. The ideal applications include prospecting missions to the Moon and Asteroids. The MicroDrill is a rotary-percussive coring drill that captures cores 7 mm in diameter and up to 2 cm long. The drill weighs less than 1 kg and can capture a core from a 40 MPa strength rock within a few minutes, with less than 10 Watt power and less than 10 Newton of preload. The PlanetVac is a pneumatic based regolith acquisition system that can capture surface sample in touch-and-go maneuver. These sampling systems were integrated within the footpads of commercial quadcopter for testing. As such, they could also be used by geologists on Earth to explore difficult to get to locations.
Geothermal heating enhances atmospheric asymmetries on synchronously rotating planets
NASA Astrophysics Data System (ADS)
Haqq-Misra, Jacob; Kopparapu, Ravi Kumar
2015-01-01
Earth-like planets within the liquid water habitable zone of M-type stars may evolve into synchronous rotators. On these planets, the substellar hemisphere experiences perpetual daylight while the opposing antistellar hemisphere experiences perpetual darkness. Because the night-side hemisphere has no direct source of energy, the air over this side of the planet is prone to freeze out and deposit on the surface, which could result in atmospheric collapse. However, general circulation models (GCMs) have shown that atmospheric dynamics can counteract this problem and provide sufficient energy transport to the antistellar side. Here, we use an idealized GCM to consider the impact of geothermal heating on the habitability of synchronously rotating planets. Geothermal heating may be expected due to tidal interactions with the host star, and the effects of geothermal heating provide additional habitable surface area and may help to induce melting of ice on the antistellar hemisphere. We also explore the persistence of atmospheric asymmetries between the Northern and Southern hemispheres, and we find that the direction of the meridional circulation (for rapidly rotating planets) or the direction of zonal wind (for slowly rotating planets) reverses on either side of the substellar point. We show that the zonal circulation approaches a theoretical state similar to a Walker circulation only for slowly rotating planets, while rapidly rotating planets show a zonal circulation with the opposite direction. We find that a cross-polar circulation is present in all cases and provides an additional mechanism of mass and energy transport from the substellar to antistellar point. Characterization of the atmospheres of synchronously rotating planets should include consideration of hemispheric differences in meridional circulation and examination of transport due to cross-polar flow.
The European Robotic Exploration of the Planet Mars
NASA Astrophysics Data System (ADS)
Chicarro, Agustin
2010-05-01
The ESA Mars Express mission was launched in June 2003 and has been orbiting Mars for over six years providing data with an unprecedented spatial and spectral resolution on the surface, subsurface, atmosphere and ionosphere of the red planet. The main theme of the mission is the search for water in its various states everywhere on the planet by all instruments using different techniques. The mission is still a huge success, helping rewrite new pages in our understanding of Mars. Mars Express will be followed by ESA's new Exploration Programme, starting in 2016 with an Orbiter focusing on atmospheric trace gases and in particular methane. The ExoMars rover will follow in 2018 to perform geochemical and exobiological measurements on the surface and the subsurface. Then in 2020, a Network of 3-6 surface stations will be launched (possibly together with an orbiter), in order to investigate the interior of the planet, its atmospheric dynamics and the geology of each landing site. All these Mars Exploration missions will be carried out jointly with NASA. Such network-orbiter combination represents a unique tool to perform new investigations of Mars, which could not be addressed by other means. In particular, i) the internal geophysical aspects concern the structure and dynamics of the interior of Mars including the state of the core and composition of the mantle; the fine structure of the crust including its paleomagnetic anomalies; the rotational parameters (axis tilt, precession, nutation, etc) that define both the state of the interior and the climate evolution; ii) the atmospheric physics aspects concern the general circulation and its forcing factors; the time variability cycles of the transport of volatiles, water and dust; surface-atmosphere interactions and overall meteorology and climate; iii) the geology of each landing site concerns the full characterization of the surrounding area including petrological rock types, chemical and mineralogical sample analysis, erosion, oxidation and weathering processes to infer the geological history of the region, as well as the astrobiological potential of each site. To complement the science gained from the Martian surface, investigations need to be carried out from orbit in a coordinated manner, such as i) global atmospheric mapping to study weather patterns, opacity and chemical composition; ii) a detailed map of the crustal magnetic anomalies from lower orbit (150 km); iii) study of these magnetic anomalies need to be studied in light of the magnetic field induced by the solar wind interaction with the upper atmosphere of the planet. The Network Mission concept is based on the fact that some important science goals on any given terrestrial planet can only be achieved with simultaneous measurements from a number of landers located on the surface of the planet (primarily internal geophysics, geodesy and meteorology) coupled to an orbiter. The long-term goal of Mars robotic exploration in Europe remains the return of rock and soil samples from the Martian surface before eventually Humans go to Mars one day.
NASA Technical Reports Server (NTRS)
Drake, Bret G.
2013-01-01
The first three human missions to Mars should be to three different geographic sites. Maximize mobility to extend the reach of human exploration beyond the landing site. Maximize the amount of time that the astronauts spend exploring the planet. Provide subsurface access. Return a minimum of 250 kg of samples to Earth.
On Mars: Exploration of the Red Planet, 1958 - 1978
NASA Technical Reports Server (NTRS)
Ezell, E. C. (Editor); Ezell, L. N. (Editor)
1984-01-01
The exploration of Mars is covered by the following topics: Mariner spacecraft and launch vehicles, search for Martian life; Voyager spacecraft; creation of Viking; Viking Orbiter and its Mariner inheritance; Viking lander; building a complex spacecraft; selecting landing sites; site certification, and data from Mars.
Aerospace Technology Enterprise
NASA Technical Reports Server (NTRS)
2004-01-01
Topics considered include: 1. The NASA vision. To improve life here; to extend life to there; and to find life beyond. 2. The NASA mission. To understand and protect our home planet; to explore the universe and search for life; and to inspire the next generation of explorers ... as only NASA can.
More About Reconfigurable Exploratory Robotic Vehicles
NASA Technical Reports Server (NTRS)
Howard, Ayanna; Nesnas, Issa; Werger, Barry; Helmick, Daniel; Clark, Murray; Christian, Raymond; Cipra, Raymond
2009-01-01
Modular exploratory robotic vehicles that will be able to reconfigure themselves in the field are undergoing development. Proposed for use in exploration of the surfaces of Mars and other remote planets, these vehicles and others of similar design could also be useful for exploring hostile terrain on Earth.
NASA Astrophysics Data System (ADS)
Dong, Ruobing; Dawson, Rebekah
2016-07-01
Transitional disks, protoplanetary disks with deep and wide central gaps, may be the result of planetary sculpting. By comparing numerical planet-opening-gap models with observed gaps, we find systems of 3-6 giant planets are needed in order to open gaps with the observed depths and widths. We explore the dynamical stability of such multi-planet systems using N-body simulations that incorporate prescriptions for gas effects. We find they can be stable over a typical disk lifetime, with the help of eccentricity damping from the residual gap gas that facilitates planets locking into mean motion resonances. However, in order to account for the occurrence rate of transitional disks, the planet sculpting scenario demands gap-opening-friendly disk conditions, in particular, a disk viscosity α ≲ 0.001. In addition, the demography of giant planets at ˜3-30 au separations, poorly constrained by current data, has to largely follow occurrence rates extrapolated outward from radial velocity surveys, not the lower occurrence rates extrapolated inward from direct imaging surveys. Even with the most optimistic occurrence rates, transitional disks cannot be a common phase that most gas disks experience at the end of their life, as popularly assumed, simply because there are not enough planets to open these gaps. Finally, as consequences of demanding almost all giant planets at large separations participate in transitional disk sculpting, the majority of such planets must form early and end up in a chain of mean motion resonances at the end of disk lifetime.
Science in Exploration: From the Moon to Mars and Back Home to Earth
NASA Technical Reports Server (NTRS)
Garvin, James B.
2007-01-01
NASA is embarking on a grand journey of exploration that naturally integrates the past successes of the Apollo missions to the Moon, as well as robotic science missions to Mars, to Planet Earth, and to the broader Universe. The US Vision for Space Exporation (VSE) boldly lays out a plan for human and robotic reconnaissance of the accessible Universe, starting with the surface of the Moon, and later embracing the surface of Mars. Sustained human and robotic access to the Moon and Mars will enable a new era of scientific investigation of our planetary neighbors, tied to driving scientific questions that pertain to the evolution and destiny of our home planet, but which also can be related to the search habitable worlds across the nearby Universe. The Apollo missions provide a vital legacy for what can be learned from the Moon, and NASA is now poised to recapture the lunar frontier starting with the flight of the Lunar Reconnaissance Orbiter (LRO) in late 2008. LRO will provide a new scientific context from which joint human and robotic exploration will ensue, guided by objectives some of which are focused on the grandest scientific challenges imaginable : Where did we come from? Are we alone? and Where are we going? The Moon will serve as an essential stepping stone for sustained human access and exploration of deep space and as a training ground while robotic missions with ever increasing complexity probe the wonders of Mars. As we speak, an armada of spacecraft are actively investigating the red planet both from orbit (NASA's Mars Reconnaissance Orbiter and Mars Odyssey Orbiter, plus ESA's Mars Express) and from the surface (NASA's twin Mars Exploration Rovers, and in 2008 NASA's Phoenix polar lander). The dramatically changing views of Mars as a potentially habitable world, with its own flavor of global climate change and unique climate records, provides a new vantage point from which to observe and question the workings of our own planet Earth. By 2010 NASA will have its first mobile analytical laboratory operating on the surface of Mars (Mars Science Laboratory) in search of potentially subtle expressions of past life or at least of life-hospitable environments. Meanwhile back here on Planet Earth, NASA will be continuing to implement an increasingly comprehensive program of robotic missions that address major issues associated with global climate variability, and the "state variables" that affect the quality of human life on our home planet. Ultimately, the fmits of NASA's emergent program of Exploration (VSE) will provide never-beforepossible opportunities for scientific leadership and advancement, culminating in a new state of awareness from which to better plan for the sustainability of life on Earth and for extending Earth life to the Moon and eventually to Mars. As NASA nears its 50th anniversary, the unimaginable and unexpected wealth of strategic knowledge its missions have generated about Earth, the Universe, and our local Solar System boggles the mind and serves as a legacy of knowledge for Educators to inspire future generations.
Jet Propulsion Laboratory: Annual Report 2004
NASA Technical Reports Server (NTRS)
2005-01-01
Once or twice in an age, a year comes along that the historians proclaim as an Annus Mirabilis - a year of wonders. For the Jet Propulsion Laboratory, 2004 was just that sort of time. From beginning to end, it was a nonstop experience of wondrous events in space. Imagine that two robot rovers embark on cross-country rambles across Mars, scrutinizing rocks for signs of past water on the now-arid world. A flagship spacecraft brakes into orbit at Saturn to begin longterm surveillance of the ringed world, preparing to drop a sophisticated probe to the surface of its haze-shrouded largest moon. Another craft makes the closest-ever pass by the nucleus of a comet, collecting sample particles as it goes. Two new space telescopes peer into the depths of the universe far beyond our solar system, viewing stars, nebulas and galaxies in invisible light beyond the spectrum our eyes can see. A pair of instruments is lofted on a NASA Earth-orbiting satellite to monitor air quality and the protective layer of ozone blanketing our home planet. A small probe brings samples of the solar wind to Earth for in-depth study. While JPL was absorbed with all of these ventures on other worlds, NASA and the White House unveiled an ambitious new plan of space exploration. The Vision for Space Exploration announced in January foresees a program of robotic and astronaut missions leading to a human return to the Moon by 2020, and eventual crewed expeditions to Mars. The vision also calls for more robotic missions to the moons of the outer planets; spaceborne observatories that will search for Earth-like planets around other stars and explore the formation and evolution of the universe; and continued study of our home planet. In order to accomplish all of this, NASA must perfect many as-yet-uninvented technologies and space transportation capabilities. JPL has a great deal to bring to this vision. Robotic exploration of Mars will lead the way for missions that will carry women and men to the red planet. Our engineers and scientists are formulating spacecraft that could use nuclear power to enable exploration missions of the future. And even now we are designing formations of space telescopes that will capture family portraits of the planets around neighboring stars. Those are only some of the ways that the Laboratory is contributing to NASA's broader goals. During 2004, JPL made a distinctive contribution to agencywide initiatives in areas such as safety, NASA transformation, the agency's Internet portal and NASA's Explorer Schools programs. Years like 2004 pose a special challenge for us. It would be easy to say that this was a once-in-a-decade high point of mission activities, but I believe that this would miss an opportunity. We are fortunate to have many space projects in the works that have the promise of being just as exhilarating as the great mission successes that we celebrated this year. The challenge and opportunity for us now is to make every year like this one.
2018-05-05
A United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 3 at Vandenberg Air Force Base, California, carrying NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, Mars lander. Liftoff was at 4:05 a.m. PDT (7:05 a.m. EDT). The spacecraft will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. InSight will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created.
New Directions in Giant Planet Formation
NASA Astrophysics Data System (ADS)
Youdin, Andrew
The proposed research will explore the limits of the core accretion mechanism for forming giant planets, both in terms of timescale and orbital distance. This theoretical research will be useful in interpreting the results of ongoing exoplanet searches. The effects of radiogenic heating and aerodynamic accretion of pebbles and boulders will be included in time-dependent models of atmospheric structure and growth. To investigate these issues, we will develop and publicly share a protoplanet atmospheric evolution code as an extension of the MESA stellar evolution code. By focusing on relevant processes in the early stages of giant planet formation, we can refine model predictions for exoplanet searches at a wide range of stellar ages and distances from the host star.
Structure of the Iconic Vega Debris Disk
NASA Astrophysics Data System (ADS)
Su, Kate
2015-10-01
Debris structures provide the best means to explore planets down to ice-giant masses in the outer (>5 AU) parts of extrasolar planetary systems. It is thought that the iconic Vega debris disk composes of two separate belts shepherded by unseen planets, similar to the Solar System. We will probe this possibility with SOFIA at 35 microns by: 1.) documenting the structure of the debris with sufficient resolution to distinguish a separate warm belt from the alternative model of dust flowing inward from the outer debris ring; and 2.) testing for traces of dust in its 15-60 AU zone and thus probing the possibility that ice giant planets may be shepherding the debris belts.
Magma ocean formation due to giant impacts
NASA Technical Reports Server (NTRS)
Tonks, W. B.; Melosh, H. J.
1992-01-01
The effect of giant impacts on the initial chemical and thermal states of the terrestrial planets is just now being explored. A large high speed impact creates an approximately hemispherical melt region with a radius that depends on the projectile's radius and impact speed. It is shown that giant impacts on large planets can create large, intact melt regions containing melt volumes up to a few times the volume of the projectile. These large melt regions are not created on asteroid sized bodies. If extruded to the surface, these regions contain enough melt to create a magma ocean of considerable depth, depending on the impact speed, projectile radius, and gravity of the target planet.
SEEDS - Strategic explorations of exoplanets and disks with the Subaru Telescope -
NASA Astrophysics Data System (ADS)
Tamura, M.
2016-02-01
The first convincing detection of planets orbiting stars other than the Sun, or exoplanets, was made in 1995. In only 20 years, the number of the exoplanets including promising candidates has already accumulated to more than 5000. Most of the exoplanets discovered so far are detected by indirect methods because the direct imaging of exoplanets needs to overcome the extreme contrast between the bright central star and the faint planets. Using the large Subaru 8.2-m Telescope, a new high-contrast imager, HiCIAO, and second-generation adaptive optics (AO188), the most ambitious high-contrast direct imaging survey to date for giant planets and planet-forming disks has been conducted, the SEEDS project. In this review, we describe the aims and results of the SEEDS project for exoplanet/disk science. The completeness and uniformity of this systematic survey mean that the resulting data set will dominate this field of research for many years.
An Overview of the Juno Mission to Jupiter
NASA Technical Reports Server (NTRS)
Grammier, Richard S.
2006-01-01
Arriving in orbit around the planet Jupiter in 2016 after a five-year journey, the Juno spacecraft will begin a one-year investigation of the gas giant in order to understand its origin and evolution by determining its water abundance and constraining its core mass. In addition, Juno will map the planet's magnetic and gravitational fields, map its atmosphere, and explore the three-dimensional structure of Jupiter's polar magnetosphere and auroras. Juno will discriminate among different models for giant planet formation. These investigations will be conducted over the course of thirty-two 11-day elliptical polar orbits of the planet. The orbits are designed to avoid Jupiter's highest radiation regions. The spacecraft is a spinning, solar-powered system carrying a complement of eight science instruments for conducting the investigations. The spacecraft systems and instruments take advantage of significant design and operational heritage from previous space missions.
What Can The Habitable Zone Gallery Do for You?
NASA Astrophysics Data System (ADS)
Gelino, Dawn M.; Kane, Stephen R.
2014-06-01
The Habitable Zone Gallery (www.hzgallery.org) has been online since August 2011 as a service to the exoplanet community to provide Habitable Zone (HZ) information for each of the exoplanetary systems with known planetary orbital parameters. The service includes a sortable table, a plot with the period and eccentricity of each of the planets with respect to their time spent in the HZ, a gallery of known systems which plots the orbits and the location of the HZ with respect to those orbits, and orbital movies. Recently, we have added new features including: implementation of both conservative and optimistic HZs, more user-friendly table and movies, movies for circumbinary planets, and a count of planets whose orbits lie entirely within the system’s HZ. Here we discuss various educational and scientific applications of the site such as target selection, exploring planets with eccentric or circumbinary orbits, and investigating habitability.
What Can the Habitable Zone Gallery Do For You?
NASA Astrophysics Data System (ADS)
Gelino, Dawn M.; Kane, Stephen
2015-12-01
The Habitable Zone Gallery (www.hzgallery.org) came online in August 2011 as a service to the exoplanet community that provides Habitable Zone (HZ) information for each of the exoplanetary systems with known planetary orbital parameters. The service includes a sortable table, a plot with the period and eccentricity of each of the planets with respect to their time spent in the HZ, a gallery of known systems which plot the orbits and the location of the HZ with respect to those orbits, and orbital movies. Recently, we have added new features including: implementation of both conservative and optimistic HZs, more user-friendly table and movies, movies for circumbinary planets, and a count of planets whose orbits lie entirely within the system's HZ. Here we discuss various educational and scientific applications of the site such as target selection, exploring planets with eccentric or circumbinary orbits, and investigating habitability.
What Can The Habitable Zone Gallery Do For You?
NASA Astrophysics Data System (ADS)
Gelino, D.
2014-04-01
The Habitable Zone Gallery (www.hzgallery.org) came online in August 2011 as a service to the exoplanet community that provides Habitable Zone (HZ) information for each of the exoplanetary systems with known planetary orbital parameters. The service includes a sortable table, a plot with the period and eccentricity of each of the planets with respect to their time spent in the HZ, a gallery of known systems which plot the orbits and the location of the HZ with respect to those orbits, and orbital movies. Recently, we have added new features including: implementation of both conservative and optimistic HZs, more user-friendly table and movies, movies for circumbinary planets, and a count of planets whose orbits lie entirely within the system's HZ. Here we discuss various educational and scientific applications of the site such as target selection, exploring planets with eccentric or circumbinary orbits, and investigating habitability.
Computer simulations of planetary accretion dynamics: Sensitivity to initial conditions
NASA Technical Reports Server (NTRS)
Isaacman, R.; Sagan, C.
1976-01-01
The implications and limitations of program ACRETE were tested. The program is a scheme based on Newtonian physics and accretion with unit sticking efficiency, devised to simulate the origin of the planets. The dependence of the results on a variety of radial and vertical density distribution laws, the ratio of gas to dust in the solar nebula, the total nebular mass, and the orbital eccentricity of the accreting grains was explored. Only for a small subset of conceivable cases are planetary systems closely like our own generated. Many models have tendencies towards one of two preferred configurations: multiple star systems, or planetary systems in which Jovian planets either have substantially smaller masses than in our system or are absent altogether. But for a wide range of cases recognizable planetary systems are generated - ranging from multiple star systems with accompanying planets, to systems with Jovian planets at several hundred AU, to single stars surrounded only by asteroids.
A Statistical Approach to Exoplanetary Molecular Spectroscopy Using Spitzer Eclipses
NASA Astrophysics Data System (ADS)
Deming, Drake; Garhart, Emily; Burrows, Adam; Fortney, Jonathan; Knutson, Heather; Todorov, Kamen
2018-01-01
Secondary eclipses of exoplanets observed using the Spitzer Space Telescope measure the total emission emergent from exoplanetary atmospheres integrated over broad photometric bands. Spitzer photometry is excellent for measuring day side temperatures, but is less well suited to the detection of molecular absorption or emission features. Even for very hot exoplanets, it can be difficult to attain the accuracy on eclipse depth that is needed to unambiguously interpret the Spitzer results in terms of molecular absorption or emission. However, a statistical approach, wherein we seek deviations from a simple blackbody planet as a function of the planet's equilibrium temperature, shows promise for defining the nature and strength of molecular absorption in ensembles of planets. In this paper, we explore such an approach using secondary eclipses observed for tens of hot exoplanets during Spitzer's Cycles 10, 12, and 13. We focus on the possibility that the hottest planets exhibit molecular features in emission, due to temperature inversions.
SEEDS - Strategic explorations of exoplanets and disks with the Subaru Telescope.
Tamura, Motohide
2016-01-01
The first convincing detection of planets orbiting stars other than the Sun, or exoplanets, was made in 1995. In only 20 years, the number of the exoplanets including promising candidates has already accumulated to more than 5000. Most of the exoplanets discovered so far are detected by indirect methods because the direct imaging of exoplanets needs to overcome the extreme contrast between the bright central star and the faint planets. Using the large Subaru 8.2-m Telescope, a new high-contrast imager, HiCIAO, and second-generation adaptive optics (AO188), the most ambitious high-contrast direct imaging survey to date for giant planets and planet-forming disks has been conducted, the SEEDS project. In this review, we describe the aims and results of the SEEDS project for exoplanet/disk science. The completeness and uniformity of this systematic survey mean that the resulting data set will dominate this field of research for many years.
Status and future of extraterrestrial mapping programs
NASA Technical Reports Server (NTRS)
Batson, R. M.
1981-01-01
Extensive mapping programs have been completed for the Earth's Moon and for the planet Mercury. Mars, Venus, and the Galilean satellites of Jupiter (Io, Europa, Ganymede, and Callisto), are currently being mapped. The two Voyager spacecraft are expected to return data from which maps can be made of as many as six of the satellites of Saturn and two or more of the satellites of Uranus. The standard reconnaissance mapping scales used for the planets are 1:25,000,000 and 1:5,000,000; where resolution of data warrants, maps are compiled at the larger scales of 1:2,000,000, 1:1,000,000 and 1:250,000. Planimetric maps of a particular planet are compiled first. The first spacecraft to visit a planet is not designed to return data from which elevations can be determined. As exploration becomes more intensive, more sophisticated missions return photogrammetric and other data to permit compilation of contour maps.
Resonant structure, formation and stability of the planetary system HD155358
NASA Astrophysics Data System (ADS)
Silburt, Ari; Rein, Hanno
2017-08-01
Two Jovian-sized planets are orbiting the star HD155358 near exact mean motion resonance (MMR) commensurability. In this work, we re-analyse the radial velocity (RV) data previously collected by Robertson et al. Using a Bayesian framework, we construct two models - one that includes and the other that excludes gravitational planet-planet interactions (PPIs). We find that the orbital parameters from our PPI and no planet-planet interaction (noPPI) models differ by up to 2σ, with our noPPI model being statistically consistent with previous results. In addition, our new PPI model strongly favours the planets being in MMR, while our noPPI model strongly disfavours MMR. We conduct a stability analysis by drawing samples from our PPI model's posterior distribution and simulating them for 109 yr, finding that our best-fitting values land firmly in a stable region of parameter space. We explore a series of formation models that migrate the planets into their observed MMR. We then use these models to directly fit to the observed RV data, where each model is uniquely parametrized by only three constants describing its migration history. Using a Bayesian framework, we find that a number of migration models fit the RV data surprisingly well, with some migration parameters being ruled out. Our analysis shows that PPIs are important to take into account when modelling observations of multiplanetary systems. The additional information that one can gain from interacting models can help constrain planet migration parameters.
Atmospheric Circulations of Rocky Planets as Heat Engines
NASA Astrophysics Data System (ADS)
Koll, D. D. B.
2017-12-01
Rocky planets are extremely common in the galaxy and include Earth, Mars, Venus, and hundreds of exoplanets. To understand and compare the climates of these planets, we need theories that are general enough to accommodate drastically different atmospheric and planetary properties. Unfortunately, few such theories currently exist.For Earth, there is a well-known principle that its atmosphere resembles a heat engine - the atmosphere absorbs heat near the surface, at a hot temperature, and emits heat to space in the upper troposphere, at a cold temperature, which allows it to perform work and balance dissipative processes such as friction. However, previous studies also showed that Earth's hydrological cycle uses up a large fraction of the heat engine's work output, which makes it difficult to view other atmospheres as heat engines.In this work I extend the heat engine principle from Earth towards other rocky planets. I explore both dry and moist atmospheres in an idealized general circulation model (GCM), and quantify their work output using entropy budgets. First, I show that convection and turbulent heat diffusion are important entropy sources in dry atmospheres. I develop a scaling that accounts for its effects, which allows me to predict the strength of frictional dissipation in dry atmospheres. There are strong parallels between my scaling and so-called potential intensity theory, which is a seminal theory for understanding tropical cyclones on Earth. Second, I address how moisture affects atmospheric heat engines. Moisture modifies both the thermodynamic properties of air and releases latent heat when water vapor condenses. I explore the impact of both effects, and use numerical simulations to explore the difference between dry and moist atmospheric circulations across a wide range of climates.
The Search for Habitable Environments in the Solar System
NASA Astrophysics Data System (ADS)
McCleese, Daniel
2005-07-01
All space faring nations devote a portion of their resources to exploring thesolar system. NASA has a forty-year history of robotic missions reaching into deep spacefor a better understanding of our origins, the evolution of our planet, and our destiny.For the past decade, NASA has placed considerable emphasis on the search for life beyondEarth. Missions to the rocky terrestrial planets and the moons of the gas giants seekanswers to the question: Are other worlds in the solar system habitable by simpleorganisms? By framing its search objective in this way, NASA motivates investigations ofthe fundamentals of what makes a planet an abode for life, and what ingredients arerequired for the origin and evolution of life. In this lecture, we focus on thestrategies and results of the search thus far. We will discuss recent scientific missionsto Mars, Europa, and Titan.Dr. Dan McCleese is the Chief Scientist for NASA's Mars ExplorationProgram at JPL. In this role he has worked with NASA and the international sciencecommunity to establish the current science strategy for exploring Mars. Dan's personalscience interests are focused on acquiring and interpreting climatological data sets forthe terrestrial planets. Specific research topics include development of the firstclimatology of cloud height for Earth, upper atmospheric cloud and thermal structure ofVenus, and, at present, the modern climate of Mars. He is the Principal Investigator forthe Mars Climate Sounder on the Mars Reconnaissance Orbiter to be launched in 2005. Inthis investigation, measurements of atmospheric water vapor, temperature and condensates,and the energy balance of the polar caps are emphasized. Dr. McCleese was a FulbrightScholar at Oxford University receiving a D.Phil. degree in Atmospheric Physics.
Understanding Divergent Evolution Among Earth-like Planets, the Case for Venus Exploration
NASA Astrophysics Data System (ADS)
Crisp, D.
2001-11-01
Venus was once considered to be Earth's twin because of its similar size, mass, and solar distance. Prevailing theories early in the 20th century alternately characterized it as a hot, lifeless desert or a cool, habitable swamp. Venus was therefore the target of intense scrutiny during the first three decades of the space age. Those studies found that although Venus and Earth apparently formed in similar parts of the solar nebula, sharing common inventories of refractory and volatile constituents, these two planets followed dramatically different evolutionary paths. While the Earth evolved into the only known oasis for life, Venus developed an almost unimaginably inhospitable environment for such an Earth-like planet. Some features of Venus can be understood as products of its location in the solar system, but other properties and processes governing the evolution and present state of its interior, surface, and climate remain mysterious or even contradictory. A more comprehensive understanding of these factors is clearly essential as NASA embarks on efforts to detect and then characterize Earth-like planets in other solar systems. As part of the National Research Council's effort to identify themes and priorities for solar system exploration over the next decade, an open community panel was formed to provide input on future Venus exploration. A comprehensive investigation of the processes driving the divergent evolution of Venus is emerging as the primary focus. In other words, why is Venus a failed Earth? From this theme, we will define specific measurement objectives, instrument requirements, and mission requirements. Priorities will then be based on a number of factors including the needs for simultaneous or correlative measurements, technology readiness, and available opportunities.
The ODINUS Mission Concept: a Mission for the exploration the Ice Giant Planets
NASA Astrophysics Data System (ADS)
Peron, Roberto
We present the scientific case and the mission concept of a proposal for the the comparative exploration of the ice giant planets Uranus and Neptune and their satellites with a pair of twin spacecraft: ODINUS (Origins, Dynamics and Interiors of Neptunian and Uranian Systems). The ODINUS proposal was submitted in response to the call for white papers for the definition of the themes of the L2 and L3 mission in the framework of ESA Cosmic Vision 2015-2025 program. The goal of ODINUS is the advancement of our understanding of the ancient past of the Solar System and, more generally, of how planetary systems form and evolve. The mission concept is focused on providing elements to answer to the scientific themes of the Cosmic Vision 2015-2025 program: What are the conditions for planetary formation and the emergency of life? How does the Solar System work? What are the fundamental physical laws of the Universe? In order to achieve its goals, ODINUS foresees the use of two twin spacecraft to be placed in orbit around Uranus and Neptune respectively, with selected flybys of their satellites. The proposed measurements aim to study the atmospheres and magnetospheres of the planets, the surfaces of the satellites, and the interior structure and composition of both satellites and planets. An important possibility for performing fundamental physics studies (among them tests of general relativity theory) is offered by the cruise phase. After the extremely positive evaluation of ESA Senior Survey Committee, who stated that ``the exploration of the icy giants appears to be a timely milestone, fully appropriate for an L class mission'', we discuss strategies to comparatively study Uranus and Neptune with future international missions.
Dawn Arrives at Vesta: The Smallest Terrestrial Planet
NASA Astrophysics Data System (ADS)
Russell, C. T.; Raymond, C. A.; Coradini, A.; Nathues, A.; De Sanctis, M. C.; Prettyman, T. H.; Jaumann, R.; McSween, H. Y.; McCord, T. B.; Keller, H. U.; Rayman, M.
2011-12-01
The Dawn Mission is a revolutionary concept in planetary exploration. Within the cost cap of a low-cost Discovery mission, a spacecraft has been flown to the main asteroid belt and been put into orbit around its second most massive body, 4 Vesta. Vesta was clearly beginning its march to planet-hood when its accretion stopped, most probably by the formation of Jupiter. Dawn's exploration is enabled by an ion propulsion system that will not only allow Dawn to descend to 200 km altitude, but to leave Vesta, travel to and orbit 1 Ceres in 2015 and map this largest main belt asteroid, a dwarf planet. The initial images of the surface of Vesta have been astounding. They reveal the diverse geochemical processes driven by the internal heat of this 530 km diameter body and titanic forces that have battered Vesta for over 4.65 billion years. A large southern impact structure, troughs ringing the equator, striped craters, dark albedo features contrasting with very high albedo features and a richly colored surface distinguish this most unusual small world.
The SEEDS High-Contrast Imaging Survey of Exoplanets Around Young Stellar Objects
NASA Astrophysics Data System (ADS)
Uyama, Taichi; Hashimoto, Jun; Kuzuhara, Masayuki; Mayama, Satoshi; Akiyama, Eiji; Currie, Thayne; Livingston, John; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Abe, Lyu; Brandner, Wolfgang; Brandt, Timothy D.; Carson, Joseph C.; Egner, Sebastian; Feldt, Markus; Goto, Miwa; Grady, Carol A.; Guyon, Olivier; Hayano, Yutaka; Hayashi, Masahiko; Hayashi, Saeko S.; Henning, Thomas; Hodapp, Klaus W.; Ishii, Miki; Iye, Masanori; Janson, Markus; Kandori, Ryo; Knapp, Gillian R.; Kwon, Jungmi; Matsuo, Taro; Mcelwain, Michael W.; Miyama, Shoken; Morino, Jun-Ichi; Moro-Martin, Amaya; Nishimura, Tetsuo; Pyo, Tae-Soo; Serabyn, Eugene; Suenaga, Takuya; Suto, Hiroshi; Suzuki, Ryuji; Takahashi, Yasuhiro H.; Takami, Michihiro; Takato, Naruhisa; Terada, Hiroshi; Thalmann, Christian; Turner, Edwin L.; Watanabe, Makoto; Wisniewski, John; Yamada, Toru; Takami, Hideki; Usuda, Tomonori; Tamura, Motohide
2017-03-01
We present high-contrast observations of 68 young stellar objects (YSOs) that have been explored as part of the Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS) survey on the Subaru telescope. Our targets are very young (<10 Myr) stars, which often harbor protoplanetary disks where planets may be forming. We achieve a typical contrast of ˜10-4-10-5.5 at an angular distance of 1″ from the central star, corresponding to typical mass sensitivities (assuming hot-start evolutionary models) of ˜10 M J at 70 au and ˜6 M J at 140 au. We detected a new stellar companion to HIP 79462 and confirmed the substellar objects GQ Lup b and ROXs 42B b. An additional six companion candidates await follow-up observations to check for common proper motion. Our SEEDS YSO observations probe the population of planets and brown dwarfs at the very youngest ages; these may be compared to the results of surveys targeting somewhat older stars. Our sample and the associated observational results will help enable detailed statistical analyses of giant planet formation.
Benefits of Nuclear Electric Propulsion for Outer Planet Exploration
NASA Technical Reports Server (NTRS)
Kos, Larry; Johnson, Les; Jones, Jonathan; Trausch, Ann; Eberle, Bill; Woodcock, Gordon; Brady, Hugh J. (Technical Monitor)
2002-01-01
Nuclear electric propulsion (NEP) offers significant benefits to missions for outer planet exploration. Reaching outer planet destinations, especially beyond Jupiter, is a struggle against time and distance. For relatively near missions, such as a Europa lander, conventional chemical propulsion and NEP offer similar performance and capabilities. For challenging missions such as a Pluto orbiter, neither chemical nor solar electric propulsion are capable while NEP offers acceptable performance. Three missions are compared in this paper: Europa lander, Pluto orbiter, and Titan sample return, illustrating how performance of conventional and advanced propulsion systems vary with increasing difficulty. The paper presents parametric trajectory performance data for NEP. Preliminary mass/performance estimates are provided for a Europa lander and a Titan sample return system, to derive net payloads for NEP. The NEP system delivers payloads and ascent/descent spacecraft to orbit around the target body, and for sample return, delivers the sample carrier system from Titan orbit to an Earth transfer trajectory. A representative scientific payload 500 kg was assumed, typical for a robotic mission. The resulting NEP systems are 100-kWe class, with specific impulse from 6000 to 9000 seconds.
Outer Planet Exploration with Advanced Radioisotope Electric Propulsion
NASA Technical Reports Server (NTRS)
Oleson, Steven; Gefert, Leon; Patterson, Michael; Schreiber, Jeffrey; Benson, Scott; McAdams, Jim; Ostdiek, Paul
2002-01-01
In response to a request by the NASA Deep Space Exploration Technology Program, NASA Glenn Research Center conducted a study to identify advanced technology options to perform a Pluto/Kuiper mission without depending on a 2004 Jupiter Gravity Assist, but still arriving before 2020. A concept using a direct trajectory with small, sub-kilowatt ion thrusters and Stirling radioisotope power systems was shown to allow the same or smaller launch vehicle class as the chemical 2004 baseline and allow a launch slip and still flyby in the 2014 to 2020 timeframe. With this promising result the study was expanded to use a radioisotope power source for small electrically propelled orbiter spacecraft for outer planet targets such as Uranus, Neptune, and Pluto.
Far Travelers: The Exploring Machines.
ERIC Educational Resources Information Center
Nicks, Oran W.
The National Aeronautics and Space Administration (NASA) program of lunar and planetary exploration produced a flood of scientific information about the moon, planets and the environment of interplanetary space. This book is an account of the people, machines, and the events of this scientific enterprise. It is a story of organizations,…
Autonomous flight control for a Titan exploration aerobot
NASA Technical Reports Server (NTRS)
Elfes, Alberto; Montgomery, James F.; Hall, Jeffrey L.; Joshi, Sanjay S.; Payne, Jeffrey; Bergh, Charles F.
2005-01-01
Robotic lighter-than-air vehicles, or aerobots, provide strategic platform for the exploration of planets and moons with an atmosphere, such as Venus, Mars, Titan and the gas giants. In this paper, we discuss steps towards the development of an autonomy architecture, and concentrate on the autonomous fight control subsystem.
Spectroscopy of H3+ and its impact on astrophysics.
Tennyson, J; Miller, S
2001-03-15
Since the original laboratory detection of an H3+ spectrum 20 years ago, the search has been on for astronomical observations of this important and fundamental molecular ion. Successful detection of H3+ in gas-giant planets, supernova ejecta and the interstellar medium as well as the prospects for future observations are discussed. The role H3+ has in determining the atmospheric structure of both the gas giants and cool metal-free planets is explored.
2012-12-01
selflessly working your own school and writing schedule around mine , supporting me throughout career paths that have been anything but traditional...observation, and other scientific research and exploration purposes. 4 A ground rover on a planet, moon, or other body such as an asteroid must...applied to autonomous craft that could eventually operate on the surface of planets, moons, and asteroids , as well as in Earth orbit or deep space
In Situ Probe Science at Saturn
NASA Technical Reports Server (NTRS)
Atkinson, D.H.; Lunine, J.I.; Simon-Miller, A. A.; Atreya, S. K.; Brinckerhoff, W.; Colaprete, A.; Coustenis, A.; Fletcher, L. N.; Guillot, T.; Lebreton, J.-P.;
2014-01-01
A fundamental goal of solar system exploration is to understand the origin of the solar sys-tem, the initial stages, conditions, and processes by which the solar system formed, how the formation pro-cess was initiated, and the nature of the interstellar seed material from which the solar system was born. Key to understanding solar system formation and subsequent dynamical and chemical evolution is the origin and evolution of the giant planets and their atmospheres. Several theories have been put forward to explain the process of solar system formation, and the origin and evolution of the giant planets and their atmospheres. Each theory offers quantifiable predictions of the abundances of noble gases He, Ne, Ar, Kr, and Xe, and abundances of key isotopic ratios 4He3He, DH, 15N14N, 18O16O, and 13C12C. Detection of certain dis-equilibrium species, diagnostic of deeper internal pro-cesses and dynamics of the atmosphere, would also help discriminate between competing theories. Measurements of the critical abundance profiles of these key constituents into the deeper well-mixed at-mosphere must be complemented by measurements of the profiles of atmospheric structure and dynamics at high vertical resolution and also require in situ explora-tion. The atmospheres of the giant planets can also serve as laboratories to better understand the atmospheric chem-istries, dynamics, processes, and climates on all planets including Earth, and offer a context and provide a ground truth for exoplanets and exoplanetary systems. Additionally, Giant planets have long been thought to play a critical role in the development of potentially habitable planetary systems. In the context of giant planet science provided by the Galileo, Juno, and Cassini missions to Jupiter and Sat-urn, a small, relatively shallow Saturn probe capable of measuring abundances and isotopic ratios of key at-mospheric constituents, and atmospheric structure in-cluding pressures, temperatures, dynamics, and cloud locations and properties not accessible by remote sens-ing can serve to test competing theories of solar system and giant planet origin, chemical, and dynamical evolution.
Passing NASA's Planet Quest Baton from Kepler to TESS
NASA Astrophysics Data System (ADS)
Jenkins, J.
Kepler vaulted into the heavens on March 7, 2009, initiating NASAs search for Earth- size planets orbiting Sun-like stars in the habitable zone, where liquid water could exist on a rocky planetary surface. In the 4 years since Kepler began science operations, a flood of photometric data on upwards of 190,000 stars of unprecedented precision and continuity has provoked a watershed of 134+ confirmed or validated planets, 3200+ planetary candidates (most sub-Neptune in size and many compara- ble to or smaller than Earth), and a resounding revolution in asteroseismology and astrophysics. The most recent discoveries include Kepler-62 with 5 planets total of which 2 are in the habitable zone with radii of 1.4 and 1.7 Re. The focus of the mission is shifting towards how to rapidly vet the 18,000+ threshold crossing events produced with each transiting planet search, and towards those studies that will allow us to understand what the data are saying about the prevalence of planets in the solar neighborhood and throughout the galaxy. This talk will provide an overview of the science results from the Kepler Mission and the work ahead to derive the frequency of Earth-size planets in the habitable zone of solar-like stars from the treasure trove of Kepler data. NASAs quest for exoplanets continues with the Transiting Exoplanet Survey Satel- lite (TESS) mission, slated for launch in May 2017 by NASAs Explorer Program. TESS will conduct an all-sky transit survey to identify the 1000 best small exoplanets in the solar neighborhood for follow up observations and characterization. TESSs targets will include all F, G, K dwarfs from +4 to +12 magnitude and all M dwarfs known within ˜200 light-years. 500,000 target stars will be observed over two years with ˜500 square degrees observed continuously for a year in each hemisphere in the James Webb Space Telescopes continuously viewable zones. Since the typical TESS target star is 5 magnitudes brighter than Kepler’s and 10 times closer, TESS discov- eries will afford significant opportunities to measure the masses of the exoplanets and to characterize their atmospheres with JWST, ELTs and other exoplanet explorers.
The Fate of Exoplanets and the Red Giant Rapid Rotator Connection
NASA Astrophysics Data System (ADS)
Carlberg, Joleen K.; Majewski, Steven R.; Arras, Phil; Smith, Verne V.; Cunha, Katia; Bizyaev, Dmitry
2011-03-01
We have computed the fate of exoplanet companions around main sequence stars to explore the frequency of planet ingestion by their host stars during the red giant branch evolution. Using published properties of exoplanetary systems combined with stellar evolution models and Zahn's theory of tidal friction, we modeled the tidal decay of the planets' orbits as their host stars evolve. Most planets currently orbiting within 2 AU of their star are expected to be ingested by the end of their stars' red giant branch ascent. Our models confirm that many transiting planets are sufficiently close to their parent star that they will be accreted during the main sequence lifetime of the star. We also find that planet accretion may play an important role in explaining the mysterious red giant rapid rotators, although appropriate planetary systems do not seem to be plentiful enough to account for all such rapid rotators. We compare our modeled rapid rotators and surviving planetary systems to their real-life counterparts and discuss the implications of this work to the broader field of exoplanets.
Finding A Planet Through the Dust
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2018-05-01
Finding planets in the crowded galactic center is a difficult task, but infrared microlensing surveys give us a fighting chance! Preliminary results from such a study have already revealed a new exoplanet lurking in the dust of the galactic bulge.Detection BiasesUKIRT-2017 microlensing survey fields (blue), plotted over a map showing the galactic-plane dust extinction. The location of the newly discovered giant planet is marked with blue crosshairs. [Shvartzvald et al. 2018]Most exoplanets weve uncovered thus far were found either via transits dips in a stars light as the planet passes in front of its host star or via radial velocity wobbles of the star as the orbiting planet tugs on it. These techniques, while highly effective, introduce a selection bias in the types of exoplanets we detect: both methods tend to favor discovery of close-in, large planets orbiting small stars; these systems produce the most easily measurable signals on short timescales.For this reason, microlensing surveys for exoplanets have something new to add to the field.Search for a LensIn gravitational microlensing, we observe a background star as it is briefly magnified by a passing foreground star acting as a lens. If that foreground star hosts a planet, we observe a characteristic shape in the observed brightening of the background star, and the properties of that shape can reveal information about the foreground planet.A diagram of how planets are detected via gravitational microlensing. The detectable planet is in orbit around the foreground lens star. [NASA]This technique for planet detection is unique in its ability to explore untapped regions of exoplanet parameter space with microlensing, we can survey for planets around all different types of stars (rather than primarily small, dim ones), planets of all masses near the further-out snowlines where gas and ice giants are likely to form, and even free-floating planets.In a new study led by a Yossi Shvartzvald, a NASA postdoctoral fellow at the Jet Propulsion Laboratory (JPL), a team of scientists now presents preliminary results from a near-infrared microlensing survey conducted with the United Kingdom Infrared Telescope (UKIRT) in Hawaii. Though the full study has not yet been published, the team reports on their first outcome: the detection of a giant planet in the galactic bulge.Giant Planet FoundThe light curve of UKIRT-2017-BLG-001. The inset shows a close-up of the anomaly in the curve, produced by the presence of the planet. [Shvartzvald et al. 2018]UKIRT-2017-BLG-001 is a giant planet detected at an angle of just 0.35 from the dusty, crowded Galactic center. It suffers from a high degree of extinction, implying that this planet could only have been detected via a near-infrared survey. The mass ratio of UKIRT-2017-BLG-001 to its host star is about 1.5 times that of Jupiter to the Sun, and its host star appears to be about 80% the mass of the Sun.The starplanet pair is roughly 20,500 light-years from us, which likely places it in the galactic bulge. Intriguingly, evidence suggests that the source star the star that the foreground starplanet lensed lies in the far galactic disk. If this is true, this would be the first source star of a microlensing event to be identified as belonging to the far disk.Artists impression of the WFIRST mission. [NASA]Looking AheadWhats next for microlensing exoplanet studies? The goal of the UKIRT near-infrared microlensing survey isnt just to discover planets its to characterize the exoplanet occurrence rates in different parts of the galaxy to inform future surveys.In particular, the UKIRT survey explored potential fields for the upcoming Wide Field Infrared Survey Telescope (WFIRST) mission, slated to launch in the mid-2020s. This powerful space telescope stands to vastly expand the reach of infrared microlensing detection, broadly surveying our galaxy for planets hiding in the dust.CitationY. Shvartzvald et al 2018 ApJL 857 L8. doi:10.3847/2041-8213/aab71b
Exoplanets: A New Era of Comparative Planetology
NASA Astrophysics Data System (ADS)
Meadows, Victoria
2014-11-01
We now know of over 1700 planets orbiting other stars, and several thousand additional planetary candidates. These discoveries have the potential to revolutionize our understanding of planet formation and evolution, while providing targets for the search for life beyond the Solar System. Exoplanets display a larger diversity of planetary types than those seen in our Solar System - including low-density, low-mass objects. They are also found in planetary system architectures very different from our own, even for stars similar to our Sun. Over 20 potentially habitable planets are now known, and half of the M dwarfs stars in our Galaxy may harbor a habitable planet. M dwarfs are plentiful, and they are therefore the most likely habitable planet hosts, but their planets will have radiative and gravitational interactions with their star and sibling planets that are unlike those in our Solar System. Observations to characterize the atmospheres and surfaces of exoplanets are extremely challenging, and transit transmission spectroscopy has been used to measure atmospheric composition for a handful of candidates. Frustratingly, many of the smaller exoplanets have flat, featureless spectra indicative of planet-wide haze or clouds. The James Webb Space Telescope and future ground-based telescopes will improve transit transmission characterization, and enable the first search for signs of life in terrestrial exoplanet atmospheres. Beyond JWST, planned next-generation space telescopes will directly image terrestrial exoplanets, allowing surface and atmospheric characterization that is more robust to haze. Until these observations become available, there is a lot that we can do as planetary scientists to inform required measurements and future data interpretation. Solar System planets can be used as validation targets for extrasolar planet observations and models. The rich heritage of planetary science models can also be used to explore the potential diversity of exoplanet environments and star-planet interactions. And planetary remote-sensing can inform new techniques to identify environmental characteristics and biosignatures in exoplanet spectra.
No large population of unbound or wide-orbit Jupiter-mass planets.
Mróz, Przemek; Udalski, Andrzej; Skowron, Jan; Poleski, Radosław; Kozłowski, Szymon; Szymański, Michał K; Soszyński, Igor; Wyrzykowski, Łukasz; Pietrukowicz, Paweł; Ulaczyk, Krzysztof; Skowron, Dorota; Pawlak, Michał
2017-08-10
Planet formation theories predict that some planets may be ejected from their parent systems as result of dynamical interactions and other processes. Unbound planets can also be formed through gravitational collapse, in a way similar to that in which stars form. A handful of free-floating planetary-mass objects have been discovered by infrared surveys of young stellar clusters and star-forming regions as well as wide-field surveys, but these studies are incomplete for objects below five Jupiter masses. Gravitational microlensing is the only method capable of exploring the entire population of free-floating planets down to Mars-mass objects, because the microlensing signal does not depend on the brightness of the lensing object. A characteristic timescale of microlensing events depends on the mass of the lens: the less massive the lens, the shorter the microlensing event. A previous analysis of 474 microlensing events found an excess of ten very short events (1-2 days)-more than known stellar populations would suggest-indicating the existence of a large population of unbound or wide-orbit Jupiter-mass planets (reported to be almost twice as common as main-sequence stars). These results, however, do not match predictions of planet-formation theories and surveys of young clusters. Here we analyse a sample of microlensing events six times larger than that of ref. 11 discovered during the years 2010-15. Although our survey has very high sensitivity (detection efficiency) to short-timescale (1-2 days) microlensing events, we found no excess of events with timescales in this range, with a 95 per cent upper limit on the frequency of Jupiter-mass free-floating or wide-orbit planets of 0.25 planets per main-sequence star. We detected a few possible ultrashort-timescale events (with timescales of less than half a day), which may indicate the existence of Earth-mass and super-Earth-mass free-floating planets, as predicted by planet-formation theories.
Habitability in Binary Systems: The Role of UV Reduction and Magnetic Protection
NASA Astrophysics Data System (ADS)
Clark, Joni; Mason, P. A.; Zuluaga, J. I.; Cuartas, P. A.; Bustamonte, S.
2013-06-01
The number of planets found in binary systems is growing rapidly and the discovery of many more planets in binary systems appears inevitable. We use the newly refined and more restrictive, single star habitable zone (HZ) models of Kopparapu et al. (2013) and include planetary magnetic protection calculations in order to investigate binary star habitability. Here we present results on circumstellar or S-type planets, which are planets orbiting a single star member of a binary. P-type planets, on the other hand, orbit the center of mass of the binary. Stable planetary orbits exist in HZs for both types of binaries as long as the semi-major axis of the planet is either greater than (P-type) or less than (S-type) a few times the semi-major axis of the binary. We define two types of S-type binaries for this investigation. The SA-type is a circumstellar planet orbiting the binary’s primary star. In this case, the limits of habitability are dominated by the primary being only slightly affected by the presence of the lower mass companion. Thus, the SA-type planets have habitability characteristics, including magnetic protection, similar to single stars of the same type. The SB-type is a circumstellar planet orbiting the secondary star in a wide binary. An SB-type planet needs to orbit slightly outside the secondary’s single star HZ and remain within the primary’s single star HZ at all times. We explore the parameter space for which this is possible. We have found that planets lying in the combined HZ of SB binaries can be magnetically protected against the effects of stellar winds from both primary and secondary stars in a limited number of cases. We conclude that habitable conditions exist for a subset of SA-type, and a smaller subset of SB-type binaries. However, circumbinary planets (P-types) provide the most intriguing possibilities for the existence of complex life due to the effect of synchronization of binaries with periods in the 20-30 day range which allows for planets with significant magnetic protection.
Robots and Humans in Planetary Exploration: Working Together?
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Lyons, Valerie (Technical Monitor)
2002-01-01
Today's approach to human-robotic cooperation in planetary exploration focuses on using robotic probes as precursors to human exploration. A large portion of current NASA planetary surface exploration is focussed on Mars, and robotic probes are seen as precursors to human exploration in: Learning about operation and mobility on Mars; Learning about the environment of Mars; Mapping the planet and selecting landing sites for human mission; Demonstration of critical technology; Manufacture fuel before human presence, and emplace elements of human-support infrastructure
2018-01-31
Attendees watch a short video on Explorer 1 during an event celebrating the 60th Anniversary of the Explorer 1 mission and the discovery of Earth's radiation belts, Wednesday, Jan. 31, 2018, at the National Academy of Sciences in Washington. The first U.S. satellite, Explorer 1, was launched from Cape Canaveral on January 31, 1958. The 30-pound satellite would yield a major scientific discovery, the Van Allen radiation belts circling our planet, and begin six decades of groundbreaking space science and human exploration. (NASA/Joel Kowsky)
A Bewildering and Dynamic Picture of Exoplanetary Systems Identified by the Kepler Mission (Invited)
NASA Astrophysics Data System (ADS)
Jenkins, J. M.
2013-12-01
Kepler vaulted into the heavens on March 7, 2009, initiating NASA's search for Earth-size planets orbiting Sun-like stars in the habitable zone, where liquid water could exist on a rocky planetary surface. In the 4 years since, a flood of photometric data of unprecedented precision and continuity on more than 190,000 stars has provoked a watershed of 134+ confirmed or validated planets, 3200+ planetary candidates (most sub-Neptune in size and many comparable to or smaller than Earth), and a revolution in asteroseismology and astrophysics. Recent discoveries include Kepler-62 with 5 planets total, of which 2 are in the habitable zone with radii of 1.4 and 1.7 Re. Approximately 500 of the stars in the Kepler survey with planets host multiple transiting planets: 43% of planet candidates have transiting siblings. Many of these multiple transiting planet systems are dynamically packed and are unlikely, therefore, to have formed in situ. These systems experienced strong migration and evolution to arrive at the configurations we observe today, with important implications for the time-variable habitability of these planets over their histories. The half dozen circumbinary transiting planet systems discovered by Kepler to date highlight the dynamic nature of the habitable zone in systems with multiple host stars where the habitable zone may change significantly on timescales commensurate with the orbital period of the binary. While the catalog of circumbinary planets is small at this point, it already possesses at least one example of an exoplanet in the habitable zone. This implies that the majority of habitable zone planets may be circumbinary planets given the high frequency of multiple star systems and the early detection of Kepler-47b. KIC-12557548 is most likely a disintegrating sub-Mercury-sized planet. While it was probably never habitable, it represents a unique example of the dynamic nature of planetary systems. These amazing discoveries challenge our conventional notion of the habitable zone for single stars and static planetary system configurations. This talk will provide an overview of the science results from the Kepler Mission and the work ahead to derive the frequency of Earth-size planets in the habitable zone of solar-like stars from the treasure trove of Kepler data. NASA's quest for exoplanets continues with the Transiting Exoplanet Survey Satellite (TESS) mission, slated for launch in May 2017 by NASA's Explorer Program. TESS will conduct an all- sky transit survey to identify the 1000 best small exoplanets in the solar neighborhood for follow up observations and characterization. TESS's targets will include all F, G, K dwarfs from +4 to +12 magnitude and all M dwarfs known within ~200 light-years. 500,000 target stars will be observed over two years with ~500 square degrees observed continuously for a year in each hemisphere in the James Webb Space Telescopes continuously viewable zones. Since the typical TESS target star is 5 magnitudes brighter than that of Kepler and 10 times closer, TESS discoveries will afford significant opportunities to measure the masses of the exoplanets and to characterize their atmospheres with JWST, ELTs and other exoplanet explorers. TESS' discoveries will raise new questions regarding habitability that will be open to investigation through active efforts to characterize their atmospheres and search for biomarkers. Funding for this mission is provided by NASA's Science Mission Directorate.
BepiColombo: Exploring Mercury
NASA Astrophysics Data System (ADS)
Geelen, K.; Novara, M.; Fugger, S.; Benkhoff, J.
2014-04-01
BepiColombo is an interdisciplinary mission to explore Mercury, the planet closest to the sun, carried out jointly between the European Space Agency and the Japanese Aerospace Exploration Agency. The mission consists of two orbiters dedicated to the detailed study of the planet and of its magnetosphere, the Mercury Planetary Orbiter (MPO) and the Mercury Magnetospheric Orbiter (MMO). The MPO is ESA's scientific contribution to the mission and comprises 11 science instruments. It is a three-axis-stabilized, nadir-pointing spacecraft which will be placed in a polar orbit with a period of approximately 2.3 hours, a periapsis of 480 km and an apoapsis of 1500 km, providing excellent spatial resolution over the entire planet surface. The interplanetary transfer is performed by an Electric Propulsion Module, which is jettisoned when Mercury is reached. It will set off in July 2016 on a journey to the smallest and least explored terrestrial planet in our Solar System. When it arrives at Mercury in January 2024, it will endure temperatures in excess of 350 °C and gather data during its 1 year nominal mission, with a possible 1-year extension. The difficulty of reaching, surviving and operating in the harsh environment of a planet so close to the sun, makes BepiColombo one of the most challenging planetary projects undertaken by ESA so far. A range of major challenges need to be overcome to enable the mission including the electric propulsion system, development of a new Multi-Layer Insulation able to withstand the high temperatures, an original solar panel design, stringent pointing requirements to be maintained in extreme conditions varying from a solar flux of 10 solar constants to eclipse conditions etc. The scientific payload of both spacecraft will provide the detailed information necessary to understand the origin and evolution of the planet itself and its surrounding environment. The scientific objectives focus on a global characterization of Mercury through the investigation of its interior, surface,exosphere and magnetosphere. In addition, instrumentation onboard BepiColombo will be used to test Einstein's theory of general relativity. Major effort was put into optimizing the scientific return of the mission by defining a payload complement such that individual measurements can be interrelated and complement each other. This paper gives an in-depth overview of BepiColombo spacecraft composite and the mission profile. It describes the suite of scientific instruments on board of the two BepiColombo spacecraft and the science goals of the mission. This paper gives an overview of the mission, describes the science case together with the payload suite as well as the latest status of the spacecraft development.
BepiColombo the next step to explore Mercury - Status update and Science goals
NASA Astrophysics Data System (ADS)
Benkhoff, Johannes; Fujimoto, Masaki; Zender, Joe
2016-04-01
NASA's MESSENGER mission has fundamentally changed our view of the innermost planet. Mercury is in many ways a very different planet from what we were expecting. Now BepiColombo has to follow up on answering the fundamental questions that MESSENGER raised and go beyond. BepiColombo is a joint project between ESA and the Japanese Aerospace Exploration Agency (JAXA). The Mission consists of two orbiters, the Mercury Planetary Orbiter (MPO) and the Mercury Magnetospheric Orbiter (MMO). The mission scenario foresees a launch of both spacecraft with an ARIANE V in late 2017/early 2018 and an arrival at Mercury in 2024. From their dedicated orbits the two spacecraft will be studying the planet and its environment. The MPO scientific payload comprises eleven instruments/instrument packages; the MMO scientific payload consists of five instruments/instrument packages. Together, the scientific payload of both spacecraft will perform measurements to find clues to the origin and evolution of a planet close to its parent star. The MPO on BepiColombo will focus on a global characterization of Mercury through the investigation of its interior, surface, exosphere and magnetosphere. In addition, it will be testing Einstein's theory of general relativity. The MMO provided by JAXA focuses on investigating the wave and particle environment of the planet from an eccentric orbit. Together, the scientific payload of both spacecraft will provide the detailed information necessary to understand the process of planetary formation and evolution in the hottest part of the proto-planetary nebula as well as the similarities and differences between the magnetospheres of Mercury and the Earth. All scientific instruments have been integrated into the spacecraft and both spacecraft are now under final acceptance testing.
NASA Astrophysics Data System (ADS)
Pollach, Claudia
2014-05-01
Teaching Geography and Economics to our school's fifth graders (14 year-olds), we focus on topics like the ecosystem, climate, natural resources and natural disasters. In addition to the usual curriculum we would like to deepen their knowledge and we want to establish a link between facts, figures and students' lives. The main aim is to raise their awareness of "Our Changing Planet". They should learn how human activity influences climate and enviroment. Moreover, the students should understand how every single action a human being sets has a positive or negative impact on our earth. Even little steps made by each one of us can help the earth and everyone of us has the choice. The idea is to set up a project in which all 14-year-olds take part. They work outside their usual schedule and examine the topic's various aspects for up to three days. Plus, they can explore their individual options to help fix our planet. Possible topics are the sustainable usage of ressources such as water, air, wood, fuel and energy. What is my ecological footprint? How can I support the planet by acting responsible as a consumer? How can we make our school "greener"? Our mission is not only to gain information on the topic but also to change certain habits so that we live and act in a more responsible and sustainable way. Teachers of related subjects give their expertise and help exploring the issues. The "Our Changing Planet" project days peak in an assembly where the student teams present their findings plus an international climatologist is going to give a short lecture.
NASA Astrophysics Data System (ADS)
Raymond, S. N.; Armitage, P. J.; Moro-Martín, A.; Booth, M.; Wyatt, M. C.; Armstrong, J. C.; Mandell, A. M.; Selsis, F.; West, A. A.
2012-05-01
We present models for the formation of terrestrial planets, and the collisional evolution of debris disks, in planetary systems that contain multiple marginally unstable gas giants. We previously showed that in such systems, the dynamics of the giant planets introduces a correlation between the presence of terrestrial planets and cold dust, i.e., debris disks, which is particularly pronounced at λ ~ 70 μm. Here we present new simulations that show that this connection is qualitatively robust to a range of parameters: the mass distribution of the giant planets, the width and mass distribution of the outer planetesimal disk, and the presence of gas in the disk when the giant planets become unstable. We discuss how variations in these parameters affect the evolution. We find that systems with equal-mass giant planets undergo the most violent instabilities, and that these destroy both terrestrial planets and the outer planetesimal disks that produce debris disks. In contrast, systems with low-mass giant planets efficiently produce both terrestrial planets and debris disks. A large fraction of systems with low-mass (M ≲ 30 M⊕) outermost giant planets have final planetary separations that, scaled to the planets' masses, are as large or larger than the Saturn-Uranus and Uranus-Neptune separations in the solar system. We find that the gaps between these planets are not only dynamically stable to test particles, but are frequently populated by planetesimals. The possibility of planetesimal belts between outer giant planets should be taken into account when interpreting debris disk SEDs. In addition, the presence of ~ Earth-mass "seeds" in outer planetesimal disks causes the disks to radially spread to colder temperatures, and leads to a slow depletion of the outer planetesimal disk from the inside out. We argue that this may explain the very low frequency of >1 Gyr-old solar-type stars with observed 24 μm excesses. Our simulations do not sample the full range of plausible initial conditions for planetary systems. However, among the configurations explored, the best candidates for hosting terrestrial planets at ~1 AU are stars older than 0.1-1 Gyr with bright debris disks at 70 μm but with no currently-known giant planets. These systems combine evidence for the presence of ample rocky building blocks, with giant planet properties that are least likely to undergo destructive dynamical evolution. Thus, we predict two correlations that should be detected by upcoming surveys: an anti-correlation between debris disks and eccentric giant planets and a positive correlation between debris disks and terrestrial planets. Three movies associated to Figs. 1, 3, and 7 are available in electronic form at http://www.aanda.org
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malamud, Uri; Perets, Hagai B., E-mail: uri.mal@tx.technion.ac.il, E-mail: hperets@physics.technion.ac.il
Studies suggest that the pollution of white dwarf (WD) atmospheres arises from the accretion of minor planets, but the exact properties of polluting material, and in particular the evidence for water in some cases are not yet understood. Several previous works studied the possibility of water surviving inside minor planets around evolving stars. However, they all focused on small, comet-sized to moonlet-sized minor planets, when the inferred mass inside the convection zones of He-dominated WDs could actually be compatible with much more massive minor planets. Here we explore for the first time, the water retention inside exoplanetary dwarf planets, ormore » moderate-sized moons, with radii of the order of hundreds of kilometers. This paper concludes a series of papers that has now covered nearly the entire potential mass range of minor planets, in addition to the full mass range of their host stars. We find that water retention is (a) affected by the mass of the WD progenitor, and (b) it is on average at least 5%, irrespective of the assumed initial water composition, if it came from a single accretion event of an icy dwarf planet or moon. The latter prediction strengthens the possibility of habitability in WD planetary systems, and it may also be used in order to distinguish between pollution originating from multiple small accretion events and singular large accretion events. To conclude our work, we provide a code that calculates ice and water retention by interpolation and may be freely used as a service to the community.« less
KEPLER Mission: development and overview
NASA Astrophysics Data System (ADS)
Borucki, William J.
2016-03-01
The Kepler Mission is a space observatory launched in 2009 by NASA to monitor 170 000 stars over a period of four years to determine the frequency of Earth-size and larger planets in and near the habitable zone of Sun-like stars, the size and orbital distributions of these planets, and the types of stars they orbit. Kepler is the tenth in the series of NASA Discovery Program missions that are competitively-selected, PI-directed, medium-cost missions. The Mission concept and various instrument prototypes were developed at the Ames Research Center over a period of 18 years starting in 1983. The development of techniques to do the 10 ppm photometry required for Mission success took years of experimentation, several workshops, and the exploration of many ‘blind alleys’ before the construction of the flight instrument. Beginning in 1992 at the start of the NASA Discovery Program, the Kepler Mission concept was proposed five times before its acceptance for mission development in 2001. During that period, the concept evolved from a photometer in an L2 orbit that monitored 6000 stars in a 50 sq deg field-of-view (FOV) to one that was in a heliocentric orbit that simultaneously monitored 170 000 stars with a 105 sq deg FOV. Analysis of the data to date has detected over 4600 planetary candidates which include several hundred Earth-size planetary candidates, over a thousand confirmed planets, and Earth-size planets in the habitable zone (HZ). These discoveries provide the information required for estimates of the frequency of planets in our galaxy. The Mission results show that most stars have planets, many of these planets are similar in size to the Earth, and that systems with several planets are common. Although planets in the HZ are common, many are substantially larger than Earth.
NASA Astrophysics Data System (ADS)
Wolfgang, Angie; Fortney, Jonathan
2018-01-01
In standard models for planet formation, solid material in protoplanetary disks coagulate and collide to form rocky bodies. It therefore seems reasonable to assume that their chemical composition will follow the abundances of refractory elements, such as Si and Fe, in the host star, which has also accreted material from the disk. Backed by planet formation simulations which validate this assumption, planetary internal structure models have begun to use stellar abundances to break degeneracies in low-mass planet compositions inferred only from mass and radius. Inconveniently, our own Solar System contradicts this approach, as its terrestrial bodies exhibit a range of rock/iron ratios and the Sun's [Si/Fe] ratio is offset from the mean planetary [Si/Fe]. In this work, we explore what number and quality of observations we need to empirically measure the exoplanet-star [Si/Fe] correlation, given future transit missions, RV follow-up, and stellar characterization. Specifically, we generate synthetic datasets of terrestrial planet masses and radii and host star abundances assuming that the planets’ bulk [Si/Fe] ratio exactly tracks that of their host stars. We assign measurement uncertainties corresponding to expected precisions for TESS, PLATO, Gaia, and future RV instrumentation, and then invert the problem to infer the planet-star [Si/Fe] correlation given these observational constraints. Comparing the result to the generated truth, we find that 1% precision on the planet radii is needed to test whether [Si/Fe] ratios are correlated between exoplanet and host star. On the other hand, lower precisions can test for systematic offsets between planet and star [Si/Fe], which can constrain the importance of giant impacts for extrasolar terrestrial planet formation.
KEPLER Mission: development and overview.
Borucki, William J
2016-03-01
The Kepler Mission is a space observatory launched in 2009 by NASA to monitor 170,000 stars over a period of four years to determine the frequency of Earth-size and larger planets in and near the habitable zone of Sun-like stars, the size and orbital distributions of these planets, and the types of stars they orbit. Kepler is the tenth in the series of NASA Discovery Program missions that are competitively-selected, PI-directed, medium-cost missions. The Mission concept and various instrument prototypes were developed at the Ames Research Center over a period of 18 years starting in 1983. The development of techniques to do the 10 ppm photometry required for Mission success took years of experimentation, several workshops, and the exploration of many 'blind alleys' before the construction of the flight instrument. Beginning in 1992 at the start of the NASA Discovery Program, the Kepler Mission concept was proposed five times before its acceptance for mission development in 2001. During that period, the concept evolved from a photometer in an L2 orbit that monitored 6000 stars in a 50 sq deg field-of-view (FOV) to one that was in a heliocentric orbit that simultaneously monitored 170,000 stars with a 105 sq deg FOV. Analysis of the data to date has detected over 4600 planetary candidates which include several hundred Earth-size planetary candidates, over a thousand confirmed planets, and Earth-size planets in the habitable zone (HZ). These discoveries provide the information required for estimates of the frequency of planets in our galaxy. The Mission results show that most stars have planets, many of these planets are similar in size to the Earth, and that systems with several planets are common. Although planets in the HZ are common, many are substantially larger than Earth.
Dusty disc-planet interaction with dust-free simulations
NASA Astrophysics Data System (ADS)
Chen, Jhih-Wei; Lin, Min-Kai
2018-05-01
Protoplanets may be born into dust-rich environments if planetesimals formed through streaming or gravitational instabilities, or if the protoplanetary disc is undergoing mass loss due to disc winds or photoevaporation. Motivated by this possibility, we explore the interaction between low mass planets and dusty protoplanetary discs with focus on disc-planet torques. We implement Lin & Youdin's newly developed, purely hydrodynamic model of dusty gas into the PLUTO code to simulate dusty protoplanetary discs with an embedded planet. We find that for imperfectly coupled dust and high metallicity, e.g. Stokes number 10-3 and dust-to-gas ratio Σd/Σg = 0.5, a `bubble' develops inside the planet's co-orbital region, which introduces unsteadiness in the flow. The resulting disc-planet torques sustain large amplitude oscillations that persists well beyond that in simulations with perfectly coupled dust or low dust-loading, where co-rotation torques are always damped. We show that the desaturation of the co-rotation torques by finite-sized particles is related to potential vorticity generation from the misalignment of dust and gas densities. We briefly discuss possible implications for the orbital evolution of protoplanets in dust-rich discs. We also demonstrate Lin & Youdin's dust-free framework reproduces previous results pertaining to dusty protoplanetary discs, including dust-trapping by pressure bumps, dust settling, and the streaming instability.
Stabilization of ammonia-rich hydrate inside icy planets.
Naden Robinson, Victor; Wang, Yanchao; Ma, Yanming; Hermann, Andreas
2017-08-22
The interior structure of the giant ice planets Uranus and Neptune, but also of newly discovered exoplanets, is loosely constrained, because limited observational data can be satisfied with various interior models. Although it is known that their mantles comprise large amounts of water, ammonia, and methane ices, it is unclear how these organize themselves within the planets-as homogeneous mixtures, with continuous concentration gradients, or as well-separated layers of specific composition. While individual ices have been studied in great detail under pressure, the properties of their mixtures are much less explored. We show here, using first-principles calculations, that the 2:1 ammonia hydrate, (H 2 O)(NH 3 ) 2 , is stabilized at icy planet mantle conditions due to a remarkable structural evolution. Above 65 GPa, we predict it will transform from a hydrogen-bonded molecular solid into a fully ionic phase O 2- ([Formula: see text]) 2 , where all water molecules are completely deprotonated, an unexpected bonding phenomenon not seen before. Ammonia hemihydrate is stable in a sequence of ionic phases up to 500 GPa, pressures found deep within Neptune-like planets, and thus at higher pressures than any other ammonia-water mixture. This suggests it precipitates out of any ammonia-water mixture at sufficiently high pressures and thus forms an important component of icy planets.
Terrestrial Planet Finder Coronagraph : technology and mission design studies
NASA Technical Reports Server (NTRS)
Ford, Virginia G.
2004-01-01
The Terrestrial Planet Finder (TPF) coronagraph study involves exploring the technologies that enable a coronagraph style instrument to image and characterize earth-like planets orbiting nearby stars. Testbeds have been developed to demonstrate the emerging technologies needed for this effort and an architecture study has resulted in designs of a facility that will provide the environment needed for the technology to function in this role. A broad community of participants is involved in this work through studies, analyses, fabrication of components, and participation in the design effort. The scope of activities - both on the technology side and in the architecture study side - will be presented in this paper. The status and the future plans of the activities will be reviewed.
Hack the Planet: What we Talk About When we Talk About Geoengineering
NASA Astrophysics Data System (ADS)
Kintisch, E.
2010-12-01
Hack the Planet (Wiley, 2010) explores how an idea once basically anathema to meetings like AGU has, in the space of a few years, become part of the geoscience mainstream. Through chapters involving researchers like David Battisti, Stephen Salter, Edward Teller and Brent Constanz the book documents the roots of this shift and how scientists are breaking new ground in the controversial field. And it shows how trying to engineer the planet's climate or manage its carbon poses novel scientific, geopolitical and moral risks and rewards. This session will cover how the topic of climate engineering has moved from something geoscientists don't talk about to something geoscientists can talk about, to something, in my view, that geoscientists must talk about.
The State and Future of Mars Polar Science and Exploration
NASA Technical Reports Server (NTRS)
Clifford, Stephen M.; Crisp, David; Fisher, David A.; Herkenhoff, Ken E.; Smrekar, Suzanne E.; Thomas, Peter C.; Wynn-Williams, David D.; Zurek, Richard W.; Barnes, Jeffrey R.; Bills, Bruce G.
2000-01-01
As the planet's principal cold traps, the martian polar regions have accumulated extensive mantles of ice and dust that cover individual areas of approx. 10(exp 6)sq km and total as much as 3-4 km thick. From the scarcity of superposed craters on their surface, these layered deposits are thought to he comparatively young-preserving a record of the seasonal and climatic cycling of atmospheric CO2, H2O, and dust over the past approx. 10(exp 5)-10(exp 8) years. For this reason, the martian polar deposits may serve as a Rosetta Stone for understanding the geologic and climatic history of the planet-documenting variations in insolation (due to quasiperiodic oscillations in the planet's obliquity and orbital elements), volatile mass balance, atmospheric composition, dust storm activity, volcanic eruptions, large impacts, catastrophic floods, solar luminosity, supernovae, and perhaps even a record of microbial life. Beyond their scientific value, the polar regions may soon prove important for another reason-providing a valuable and accessible reservoir of water to support the long-term human exploration of Mars. In this paper we assess the current state of Mars polar research, identify the key questions that motivate the exploration of the polar regions, discuss the extent to which current missions will address these questions, and speculate about what additional capabilities and investigations may be required to address the issues that remain outstanding.
The State and Future of Mars Polar Science and Exploration
Clifford, S.M.; Crisp, D.; Fisher, D.A.; Herkenhoff, K. E.; Smrekar, S.E.; Thomas, P.C.; Wynn-Williams, D. D.; Zurek, R.W.; Barnes, J.R.; Bills, B.G.; Blake, E.W.; Calvin, W.M.; Cameron, J.M.; Carr, M.H.; Christensen, P.R.; Clark, B. C.; Clow, G.D.; Cutts, J.A.; Dahl-Jensen, D.; Durham, W.B.; Fanale, F.P.; Farmer, J.D.; Forget, F.; Gotto-Azuma, K.; Grard, R.; Haberle, R.M.; Harrison, W.; Harvey, R.; Howard, A.D.; Ingersoll, A.P.; James, P.B.; Kargel, J.S.; Kieffer, H.H.; Larsen, J.; Lepper, K.; Malin, M.C.; McCleese, D.J.; Murray, B.; Nye, J.F.; Paige, D.A.; Platt, S.R.; Plaut, J.J.; Reeh, N.; Rice, J.W.; Smith, D.E.; Stoker, C.R.; Tanaka, K.L.; Mosley-Thompson, E.; Thorsteinsson, T.; Wood, S.E.; Zent, A.; Zuber, M.T.; Zwally, H.J.
2000-01-01
As the planet's principal cold traps, the martian polar regions have accumulated extensive mantles of ice and dust that cover individual areas of ???106 km2 and total as much as 3-4 km thick. From the scarcity of superposed craters on their surface, these layered deposits are thought to be comparatively young - preserving a record of the seasonal and climatic cycling of atmospheric CO2, H2O, and dust over the past ???105-108 years. For this reason, the martian polar deposits may serve as a Rosetta Stone for understanding the geologic and climatic history of the planet - documenting variations in insolation (due to quasiperiodic oscillations in the planet's obliquity and orbital elements), volatile mass balance, atmospheric composition, dust storm activity, volcanic eruptions, large impacts, catastrophic floods, solar luminosity, supernovae, and perhaps even a record of microbial life. Beyond their scientific value, the polar regions may soon prove important for another reason - providing a valuable and accessible reservoir of water to support the long-term human exploration of Mars. In this paper we assess the current state of Mars polar research, identify the key questions that motivate the exploration of the polar regions, discuss the extent to which current missions will address these questions, and speculate about what additional capabilities and investigations may be required to address the issues that remain outstanding. ?? 2000 Academic Press.
The state and future of Mars polar science and exploration.
Clifford, S M; Crisp, D; Fisher, D A; Herkenhoff, K E; Smrekar, S E; Thomas, P C; Wynn-Williams, D D; Zurek, R W; Barnes, J R; Bills, B G; Blake, E W; Calvin, W M; Cameron, J M; Carr, M H; Christensen, P R; Clark, B C; Clow, G D; Cutts, J A; Dahl-Jensen, D; Durham, W B; Fanale, F P; Farmer, J D; Forget, F; Gotto-Azuma, K; Zwally, H J
2000-04-01
As the planet's principal cold traps, the martian polar regions have accumulated extensive mantles of ice and dust that cover individual areas of approximately 10(6) km2 and total as much as 3-4 km thick. From the scarcity of superposed craters on their surface, these layered deposits are thought to be comparatively young--preserving a record of the seasonal and climatic cycling of atmospheric CO2, H2O, and dust over the past approximately 10(5)-10(8) years. For this reason, the martian polar deposits may serve as a Rosetta Stone for understanding the geologic and climatic history of the planet--documenting variations in insolation (due to quasiperiodic oscillations in the planet's obliquity and orbital elements), volatile mass balance, atmospheric composition, dust storm activity, volcanic eruptions, large impacts, catastrophic floods, solar luminosity, supernovae, and perhaps even a record of microbial life. Beyond their scientific value, the polar regions may soon prove important for another reason--providing a valuable and accessible reservoir of water to support the long-term human exploration of Mars. In this paper we assess the current state of Mars polar research, identify the key questions that motivate the exploration of the polar regions, discuss the extent to which current missions will address these questions, and speculate about what additional capabilities and investigations may be required to address the issues that remain outstanding.
Exploring the Solar System with Stellar Occultations
NASA Technical Reports Server (NTRS)
Elliot, J. L.; Dunham, E. W.
1984-01-01
By recording the light intensity as a function of time when a planet occults a relatively bright star, the thermal structure of the upper atmosphere of the planet can be probed. The main feature of stellar occultation observations is their high spatial resolution, typically several thousand times better than the resolution achievable with ground-based imaging. Five stellar occultations have been observed. The main results of these observations are summarized. Stellar occultations have been observed on Uranus, Mars, Pallas, Neptune and the Jovian Ring.
NASA Technical Reports Server (NTRS)
Belton, M. J. S.; Aksnes, K.; Davies, M. E.; Hartmann, W. K.; Millis, R. L.; Owen, T. C.; Reilly, T. H.; Sagan, C.; Suomi, V. E.; Collins, S. A., Jr.
1972-01-01
A variety of imaging systems proposed for use aboard the Outer Planet Grand Tour Explorer are discussed and evaluated in terms of optimal resolution capability and efficient time utilization. It is pointed out that the planetary and satellite alignments at the time of encounter dictate a high degree of adaptability and versatility in order to provide sufficient image enhancement over earth-based techniques. Data compression methods are also evaluated according to the same criteria.
Halley's comet exploration and the Japanese Usuda large antenna
NASA Technical Reports Server (NTRS)
Nomura, T.
1986-01-01
An overview of the Japanese PLANET-A project to investigate Halley's Comet is given. The objectives and scientific challenges involved in the project are given, and the nature of the contribution made by the large antenna array located at Usuda-Cho, Nagano Prefecture, Japan is discussed. The structural design of the MS-T5 and PLANET-A probes are given, as well as the tracking and control network for the probes. The construction, design, operating system and site selection for the Usuda antenna station are discussed.
NASA Astrophysics Data System (ADS)
Apai, Dániel; Kasper, Markus; Skemer, Andrew; Hanson, Jake R.; Lagrange, Anne-Marie; Biller, Beth A.; Bonnefoy, Mickaël; Buenzli, Esther; Vigan, Arthur
2016-03-01
Time-resolved photometry is an important new probe of the physics of condensate clouds in extrasolar planets and brown dwarfs. Extreme adaptive optics systems can directly image planets, but precise brightness measurements are challenging. We present VLT/SPHERE high-contrast, time-resolved broad H-band near-infrared photometry for four exoplanets in the HR 8799 system, sampling changes from night to night over five nights with relatively short integrations. The photospheres of these four planets are often modeled by patchy clouds and may show large-amplitude rotational brightness modulations. Our observations provide high-quality images of the system. We present a detailed performance analysis of different data analysis approaches to accurately measure the relative brightnesses of the four exoplanets. We explore the information in satellite spots and demonstrate their use as a proxy for image quality. While the brightness variations of the satellite spots are strongly correlated, we also identify a second-order anti-correlation pattern between the different spots. Our study finds that KLIP reduction based on principal components analysis with satellite-spot-modulated artificial-planet-injection-based photometry leads to a significant (˜3×) gain in photometric accuracy over standard aperture-based photometry and reaches 0.1 mag per point accuracy for our data set, the signal-to-noise ratio of which is limited by small field rotation. Relative planet-to-planet photometry can be compared between nights, enabling observations spanning multiple nights to probe variability. Recent high-quality relative H-band photometry of the b-c planet pair agrees to about 1%.
A Novel Approach to Exploring the Mars Polar Caps
NASA Technical Reports Server (NTRS)
Brophy, John R.; Carsey, Frank D.; Rodgers, David H.; Soderblom, L. A.; Wilcox, Brian H.
2000-01-01
The Martian polar caps contain some of the most important scientific sites on the planet. There is much interest in exploring them with a view to understanding their role in the Mars climate system. By gaining access to the stratigraphy of the polar terrain, it is probable that one can access the climate history of the planet. Additionally, investigations aimed at localizing subsurface water--liquid or solid--are not only of great scientific interest but are also germane to the long-term interests of the manned space flight program. A major difficulty with polar exploration is access. Current techniques using chemical propulsion, Holman transfers, and direct-entry landers with aeroshells have limited capability to access the polar terrain. For the near term the authors propose a new approach to solving this transportation issue by using Solar Electric Propulsion (SEP), recently flight demonstrated on NASA's DS1 Mission to an asteroid and a comet. For a longer-term approach there are additional ways in which access to Mars, as well as other planets, can be significantly improved. These include the use of Chaos orbit theory to enable transportation between LaGrange points in the solar system, gossamer structures enabling very low-mass mobility, and advanced ascent vehicles. In this paper the authors describe how a 1000-kG payload can be transported to the surface of Mars and a polar sample obtained and returned to Earth in less than five years using SEP. A vision of how this approach can be integrated into a long-term Mars exploration strategy building toward the future is also discussed.
A Novel Approach to Exploring the Mars Polar Caps
NASA Astrophysics Data System (ADS)
Brophy, John R.; Carsey, Frank D.; Rodgers, David H.; Soderblom, L. A.; Wilcox, Brian H.
2000-08-01
The Martian polar caps contain some of the most important scientific sites on the planet. There is much interest in exploring them with a view to understanding their role in the Mars climate system. By gaining access to the stratigraphy of the polar terrain, it is probable that one can access the climate history of the planet. Additionally, investigations aimed at localizing subsurface water--liquid or solid--are not only of great scientific interest but are also germane to the long-term interests of the manned space flight program. A major difficulty with polar exploration is access. Current techniques using chemical propulsion, Holman transfers, and direct-entry landers with aeroshells have limited capability to access the polar terrain. For the near term the authors propose a new approach to solving this transportation issue by using Solar Electric Propulsion (SEP), recently flight demonstrated on NASA's DS1 Mission to an asteroid and a comet. For a longer-term approach there are additional ways in which access to Mars, as well as other planets, can be significantly improved. These include the use of Chaos orbit theory to enable transportation between LaGrange points in the solar system, gossamer structures enabling very low-mass mobility, and advanced ascent vehicles. In this paper the authors describe how a 1000-kG payload can be transported to the surface of Mars and a polar sample obtained and returned to Earth in less than five years using SEP. A vision of how this approach can be integrated into a long-term Mars exploration strategy building toward the future is also discussed.
NASA Astrophysics Data System (ADS)
Winterhalter, D.; Levine, J. S.; Kerschmann, R.; Beaty, D. W.; Carrier, B. L.; Ashley, J. W.
2018-04-01
To aid early engineering and mission design efforts, the NESC held a workshop on the atmospheric dust and its impact on the human exploration of Mars. Of great interest is the possible Mars Sample Return contribution that will help to answer pertinent questions.
ERIC Educational Resources Information Center
Berry, John
1981-01-01
Likening the relationship of the ALA and its professional divisions to that of the sun and its planets, this editorial explores the organizational characteristics and stability of the present system and solicits opinions. (RAA)
Automatic control in planetary exploration in the 1980s. [onboard spacecraft
NASA Technical Reports Server (NTRS)
Moore, J. W.
1973-01-01
Based on an examination of the planetary missions in the 1980s and their related objectives, a broad assessment of the automatic control capabilities required for these missions is presented. The ten outer-planet, terrestrial-planet, and small-body missions considered involve various operations encompassing a complex series of modes including cruise, maneuver, and powered flight control. In addition to routine navigation and attitude control, onboard control is required to point scientific instruments and antennas with respect to the vehicle and to maneuver the spacecraft in time-constrained or hazardous environments. These 1980 missions aimed at exploring new areas of the solar system will be more demanding. New design philosophies and increased performance capabilities will be required to meet the constraints imposed by science requirements and mission-cost effectiveness.
From planets to crops and back: Remote sensing makes sense
NASA Astrophysics Data System (ADS)
Mustard, John F.
2017-04-01
Remotely sensed data and the instruments that acquire them are core parts of Earth and planetary observation systems. They are used to quantify the Earth's interconnected systems, and remote sensing is the only way to get a daily, or more frequent, snapshot of the status of the Earth. It really is the Earth's stethoscope. In a similar manner remote sensing is the rock hammer of the planetary scientist and the only way comprehensive data sets can be acquired. To risk offending many remotely sensed data acquired across the electromagnetic spectrum, it is the tricorder to explore known and unknown planets. Arriving where we are today in the use of remotely sensed data in the solar system has been a continually evolving synergy between Earth observation, planetary exploration, and fundamental laboratory work.
Mission building blocks for outer solar system exploration.
NASA Technical Reports Server (NTRS)
Herman, D.; Tarver, P.; Moore, J.
1973-01-01
Description of the technological building blocks required for exploring the outer planets with maximum scientific yields under stringent resource constraints. Two generic spacecraft types are considered: the Mariner and the Pioneer. Following a discussion of the outer planet mission constraints, the evolutionary development of spacecraft, probes, and propulsion building blocks is presented. Then, program genealogies are shown for Pioneer and Mariner missions and advanced propulsion systems to illustrate the soundness of a program based on spacecraft modification rather than on the development of new spacecraft for each mission. It is argued that, for minimum costs, technological advancement should occur in an evolutionary manner from mission to mission. While this strategy is likely to result in compromises on specific missions, the realization of the overall objectives calls for an advance commitment to the entire mission series.
NASA Astrophysics Data System (ADS)
Turnbull, Margaret
The WFIRST mission is now envisioned to include a coronagraph for the purpose of direct detection of nearby exoplanets, including planets known to exist via radial velocity detection and new discoveries. Assuming that starlight rejection sufficient for planet detection (~1e-9) can be achieved, what can be learned about these planets given a realistic spectral resolution and signal-to-noise ratio? We propose to investigate the potential for WFIRST to efficiently discriminate planets from background sources, and to characterize planets in terms of important diagnostic atmospheric features, using broad- and intermediate band color data. We will map out this capability as a function of signal-to-noise ratio, bandpass location, and bandpass width. Our investigation will place emphasis on gas giants, ice giants, and mini-Neptunes (compatible with current AFTA-C baseline performance specifications), as well as a variety of super-Earths (an AFTA-C "stretch" goal). We will explore a variety of compositions, cloud types, phase angles, and (in the case of super-Earths with semi-transparent atmospheres) surface types. Noiseless spectra generated for these model planets will be passed through (a) standard bandpasses for comparison to prior work and (b) filter transmission curves corresponding to bandpasses of 5-20% over the full range of WFIRST's expected bandpass (400 - 1,000 nm). From this, filter combinations will be used to generate planet colors and find filter sets that most efficiently discriminate between planets and background sources, and between planets of different type. We will then repeat this exercise for S/N levels of 1-1,000 in order to (1) explore the true efficacy of broadband measurements in exoplanet studies, and (2) provide an estimate of total required integration time for a compelling WFIRST exoplanet program. To accomplish this, we will use model spectra for mini-Neptunes, and ice and gas giants of varying composition (Hu et al. 2013), and observed spectra for Solar System objects (Jupiter, Saturn, Uranus, Neptune, and Titan; Karcoschka 1994). We will also use observed SCIAMACHY spectra for the desert, ocean, forest, and icy Earth, in order to build a diverse set of spatially integrated super-Earth spectra, plus variations in atmospheric composition. Simulated observed spectra will be generated for planets placed under the irradiance of stellar spectral types corresponding to WFIRST's highest priority targets for exoplanet imaging (approximately K5V through F5V). The colors extracted from these spectra will be compared to colors extracted from spectra for a wide range of likely extragalactic sources (Bruzual & Charlott 2003) and extincted stellar background sources. Finally, we will assess the "background threat" for the 100 most favorable targets for exoplanet imaging with WFIRST. This flag will be assigned based on number and type of background sources expected at various galactic latitudes, and the above results indicating how readily such sources can be discriminated from exoplanets. As a result of this intensive, three year effort, we will deliver to the community a library of planet spectra and colors in standard and proposed "designer" passbands for planets of all types under stars of varying spectral type, plus colors for a wide range of expected stellar and extragalactic background sources. These data will be available for future work in simulating images and eventual "double blind" studies in extracting planet sources and atmospheric signatures. We expect that our investigation will inform WFIRST and all future direct imaging missions of (1) how different planets will appear at "first glance" from the likely sea of background of stars and unresolved extragalactic sources, and (2) the necessary performance specifications required to characterize the most important atmospheric constituents and discriminate between planets of varying type.
Direct Imaging of Warm Extrasolar Planets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macintosh, B
2005-04-11
One of the most exciting scientific discoveries in the last decade of the twentieth century was the first detection of planets orbiting a star other than our own. By now more than 130 extrasolar planets have been discovered indirectly, by observing the gravitational effects of the planet on the radial velocity of its parent star. This technique has fundamental limitations: it is most sensitive to planets close to their star, and it determines only a planet's orbital period and a lower limit on the planet's mass. As a result, all the planetary systems found so far are very different frommore » our own--they have giant Jupiter-sized planets orbiting close to their star, where the terrestrial planets are found in our solar system. Such systems have overturned the conventional paradigm of planet formation, but have no room in them for habitable Earth-like planets. A powerful complement to radial velocity detections of extrasolar planets will be direct imaging--seeing photons from the planet itself. Such a detection would allow photometric measurements to determine the temperature and radius of a planet. Also, direct detection is most sensitive to planets in wide orbits, and hence more capable of seeing solar systems resembling our own, since a giant planet in a wide orbit does not preclude the presence of an Earth-like planet closer to the star. Direct detection, however, is extremely challenging. Jupiter is roughly a billion times fainter than our sun. Two techniques allowed us to overcome this formidable contrast and attempt to see giant planets directly. The first is adaptive optics (AO) which allows giant earth-based telescopes, such as the 10 meter W.M. Keck telescope, to partially overcome the blurring effects of atmospheric turbulence. The second is looking for young planets: by searching in the infrared for companions to young stars, we can see thermal emission from planets that are still warm with the heat of their formation. Together with a UCLA team that leads the field of young-star identification, we carried out a systematic near-infrared search for young planetary companions to {approx}200 young stars. We also carried out targeted high-sensitivity observations of selected stars surrounded by circumstellar dust rings. We developed advanced image processing techniques to allow detection of even fainter sources buried in the noisy halo of scattered starlight. Even with these techniques, around most of our targets our search was only sensitive to planets in orbits significantly wider than our solar system. With some carefully selected targets--very young dusty stars in the solar neighborhood--we reach sensitivities sufficient to see solar systems like our own. Although we discovered no unambiguous planets, we can significantly constrain the frequency of such planets in wide (>50 AU) orbits, which helps determine which models of planet formation remain plausible. Successful modeling of our observations has led us to the design of a next-generation AO system that will truly be capable of exploring solar systems resembling our own.« less
Bringing life to space exploration.
Noor, A K; Doyle, R J; Venneri, S L
1999-11-01
Characteristics of 21st century space exploration are examined. Characteristics discussed include autonomy, evolvability, robotic outposts, and an overview of future missions. Sidebar articles examine the application of lessons from biological systems to engineered systems and mission concepts taking shape at NASA. Those mission concepts include plans for Mars missions, sample return missions for Venus and a comet nucleus, Europa orbiter and lander missions, a Titan organics explorer, and a terrestrial planet finder.
The Maximum Mass Solar Nebula and the early formation of planets
NASA Astrophysics Data System (ADS)
Nixon, C. J.; King, A. R.; Pringle, J. E.
2018-03-01
Current planet formation theories provide successful frameworks with which to interpret the array of new observational data in this field. However, each of the two main theories (core accretion, gravitational instability) is unable to explain some key aspects. In many planet formation calculations, it is usual to treat the initial properties of the planet forming disc (mass, radius, etc.) as free parameters. In this paper, we stress the importance of setting the formation of planet forming discs within the context of the formation of the central stars. By exploring the early stages of disc formation, we introduce the concept of the Maximum Mass Solar Nebula (MMSN), as opposed to the oft-used Minimum Mass Solar Nebula (here mmsn). It is evident that almost all protoplanetary discs start their evolution in a strongly self-gravitating state. In agreement with almost all previous work in this area, we conclude that on the scales relevant to planet formation these discs are not gravitationally unstable to gas fragmentation, but instead form strong, transient spiral arms. These spiral arms can act as efficient dust traps allowing the accumulation and subsequent fragmentation of the dust (but not the gas). This phase is likely to populate the disc with relatively large planetesimals on short timescales while the disc is still veiled by a dusty-gas envelope. Crucially, the early formation of large planetesimals overcomes the main barriers remaining within the core accretion model. A prediction of this picture is that essentially all observable protoplanetary discs are already planet hosting.
Coupled Evolution with Tides of the Radius and Orbit of Transiting Giant Planets: General Results
NASA Astrophysics Data System (ADS)
Ibgui, Laurent; Burrows, Adam
2009-08-01
Some transiting extrasolar giant planets (EGPs) have measured radii larger than predicted by the standard theory. In this paper, we explore the possibility that an earlier episode of tidal heating can explain such radius anomalies and apply the formalism we develop to HD 209458b as an example. We find that for strong enough tides the planet's radius can undergo a transient phase of inflation that temporarily interrupts canonical, monotonic shrinking due to radiative losses. Importantly, an earlier episode of tidal heating can result in a planet with an inflated radius, even though its orbit has nearly circularized. Moreover, we confirm that at late times, and under some circumstances, by raising tides on the star itself a planet can spiral into its host. We note that a 3× to 10× solar planet atmospheric opacity with no tidal heating is sufficient to explain the observed radius of HD 209458b. However, our model demonstrates that with an earlier phase of episodic tidal heating, we can fit the observed radius of HD 209458b even with lower (solar) atmospheric opacities. This work demonstrates that, if a planet is left with an appreciable eccentricity after early inward migration and/or dynamical interaction, coupling radius and orbit evolution in a consistent fashion that includes tidal heating, stellar irradiation, and detailed model atmospheres might offer a generic solution to the inflated radius puzzle for transiting EGPs such as WASP-12b, TrES-4, and WASP-6b.
NASA Astrophysics Data System (ADS)
Lovis, C.; Mayor, M.; Bouchy, F.; Pepe, F.; Queloz, D.; Santos, N. C.; Udry, S.; Benz, W.; Bertaux, J.-L.; Mordasini, C.; Sivan, J.-P.
2005-07-01
We report on the detection of three Saturn-mass planets discovered with the HARPS instrument. HD 93083 shows radial-velocity (RV) variations best explained by the presence of a companion of 0.37 MJup orbiting in 143.6 days. HD 101930 b has an orbital period of 70.5 days and a minimum mass of 0.30 MJup. For HD 102117, we present the independent detection of a companion with m2 sin{i} = 0.14 MJup and orbital period P = 20.7 days. This planet was recently detected by Tinney et al. (ApJ, submitted). Activity and bisector indicators exclude any significant RV perturbations of stellar origin, reinforcing the planetary interpretation of the RV variations. The radial-velocity residuals around the Keplerian fits are 2.0, 1.8 and 0.9 m s-1 respectively, showing the unprecedented RV accuracy achieved with HARPS. A sample of stable stars observed with HARPS is also presented to illustrate the long-term precision of the instrument. All three stars are metal-rich, confirming the now well-established relation between planet occurrence and metallicity. The new planets are all in the Saturn-mass range, orbiting at moderate distance from their parent star, thereby occupying an area of the parameter space which seems difficult to populate according to planet formation theories. A systematic exploration of these regions will provide new constraints on formation scenarios in the near future.
The Maximum Mass Solar Nebula and the early formation of planets
NASA Astrophysics Data System (ADS)
Nixon, C. J.; King, A. R.; Pringle, J. E.
2018-07-01
Current planet formation theories provide successful frameworks with which to interpret the array of new observational data in this field. However, each of the two main theories (core accretion, gravitational instability) is unable to explain some key aspects. In many planet formation calculations, it is usual to treat the initial properties of the planet-forming disc (mass, radius, etc.) as free parameters. In this paper, we stress the importance of setting the formation of planet-forming discs within the context of the formation of the central stars. By exploring the early stages of disc formation, we introduce the concept of the Maximum Mass Solar Nebula, as opposed to the oft-used minimum mass solar nebula. It is evident that almost all protoplanetary discs start their evolution in a strongly self-gravitating state. In agreement with almost all previous work in this area, we conclude that on the scales relevant to planet formation these discs are not gravitationally unstable to gas fragmentation, but instead form strong, transient spiral arms. These spiral arms can act as efficient dust traps allowing the accumulation and subsequent fragmentation of the dust (but not the gas). This phase is likely to populate the disc with relatively large planetesimals on short time-scales while the disc is still veiled by a dusty-gas envelope. Crucially, the early formation of large planetesimals overcomes the main barriers remaining within the core accretion model. A prediction of this picture is that essentially all observable protoplanetary discs are already planet hosting.
Advances in the Kepler Transit Search Engine
NASA Astrophysics Data System (ADS)
Jenkins, Jon M.
2016-10-01
Twenty years ago, no planets were known outside our own solar system. Since then, the discoveries of ~1500 exoplanets have radically altered our views of planets and planetary systems. This revolution is due in no small part to the Kepler Mission, which has discovered >1000 of these planets and >4000 planet candidates. While Kepler has shown that small rocky planets and planetary systems are quite common, the quest to find Earth's closest cousins and characterize their atmospheres presses forward with missions such as NASA Explorer Program's Transiting Exoplanet Survey Satellite (TESS) slated for launch in 2017 and ESA's PLATO mission scheduled for launch in 2024. These future missions pose daunting data processing challenges in terms of the number of stars, the amount of data, and the difficulties in detecting weak signatures of transiting small planets against a roaring background. These complications include instrument noise and systematic effects as well as the intrinsic stellar variability of the subjects under scrutiny. In this paper we review recent developments in the Kepler transit search pipeline improving both the yield and reliability of detected transit signatures. Many of the phenomena in light curves that represent noise can also trigger transit detection algorithms. The Kepler Mission has expended great effort in suppressing false positives from its planetary candidate catalogs. Over 18,000 transit-like signatures can be identified for a search across 4 years of data. Most of these signatures are artifacts, not planets. Vetting all such signatures historically takes several months' effort by many individuals. We describe the application of machine learning approaches for the automated vetting and production of planet candidate catalogs. These algorithms can improve the efficiency of the human vetting effort as well as quantifying the likelihood that each candidate is truly a planet. This information is crucial for obtaining valid planet occurrence rates. Machine learning approaches may prove to be critical to the success of future missions such as TESS and PLATO.
NASA Astrophysics Data System (ADS)
Hinkel, Natalie R.; Unterborn, Cayman T.
2018-01-01
The compositions of stars and planets are connected, but the definition of “habitability” and the “habitable zone” only take into account the physical relationship between the star and planet. Planets, however, are made truly habitable by both chemical and physical processes that regulate climatic and geochemical cycling between atmosphere, surface, and interior reservoirs. Despite this, an “Earth-like” planet is often defined as a planet made of a mixture of rock and Fe that is roughly 1 Earth-density. To understand the interior of a terrestrial planet, the stellar abundances of planet-building elements (e.g., Mg, Si, and Fe) can be used as a proxy for the planet’s composition. We explore the planetary mineralogy and structure for fictive planets around the 10 stars closest to the Sun using stellar abundances from the Hypatia Catalog. Although our sample contains stars that are both sub- and super-solar in their abundances, we find that the mineralogies are very similar for all 10 planets—since the error or spread in the stellar abundances create significant degeneracy in the models. We show that abundance uncertainties need to be on the order of [Fe/H] < 0.02 dex, [Si/H] < 0.01 dex, [Al/H] < 0.002 dex, while [Mg/H] and [Ca/H] < 0.001 dex in order to distinguish two unique planetary populations in our sample of 10 stars. While these precisions are high, we believe that they are possible given certain abundance techniques, in addition to methodological transparency, that have recently been demonstrated in the literature. However, without these precisions, the uncertainty in planetary structures will be so high that we will be unable to confidently state that a planet is like the Earth, or unlike anything we have ever seen. We made some cuts and ruled out a number of stars, but these 10 are still rather nearby.
NASA Technical Reports Server (NTRS)
Saunders, R. S.; Carr, M. H.
1984-01-01
The following aspects of the planet Venus are discussed: orbit, rotation, composition, wind erosion, topography, surface roughness, gravity, and tectonics. The Venera satellites, Pioneer space probes, and Mariner space probes involved in Venusian exploration are enumerated.
Atmospheric escape from the TRAPPIST-1 planets and implications for habitability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Chuanfei; Jin, Meng; Lingam, Manasvi
Here, the presence of an atmosphere over sufficiently long timescales is widely perceived as one of the most prominent criteria associated with planetary surface habitability. We address the crucial question of whether the seven Earth-sized planets transiting the recently discovered ultracool dwarf star TRAPPIST-1 are capable of retaining their atmospheres. To this effect, we carry out numerical simulations to characterize the stellar wind of TRAPPIST-1 and the atmospheric ion escape rates for all of the seven planets. We also estimate the escape rates analytically and demonstrate that they are in good agreement with the numerical results. We conclude that themore » outer planets of the TRAPPIST-1 system are capable of retaining their atmospheres over billion-year timescales. The consequences arising from our results are also explored in the context of abiogenesis, biodiversity, and searches for future exoplanets. In light of the many unknowns and assumptions involved, we recommend that these conclusions must be interpreted with due caution.« less
Atmospheric escape from the TRAPPIST-1 planets and implications for habitability
Dong, Chuanfei; Jin, Meng; Lingam, Manasvi; ...
2018-01-09
Here, the presence of an atmosphere over sufficiently long timescales is widely perceived as one of the most prominent criteria associated with planetary surface habitability. We address the crucial question of whether the seven Earth-sized planets transiting the recently discovered ultracool dwarf star TRAPPIST-1 are capable of retaining their atmospheres. To this effect, we carry out numerical simulations to characterize the stellar wind of TRAPPIST-1 and the atmospheric ion escape rates for all of the seven planets. We also estimate the escape rates analytically and demonstrate that they are in good agreement with the numerical results. We conclude that themore » outer planets of the TRAPPIST-1 system are capable of retaining their atmospheres over billion-year timescales. The consequences arising from our results are also explored in the context of abiogenesis, biodiversity, and searches for future exoplanets. In light of the many unknowns and assumptions involved, we recommend that these conclusions must be interpreted with due caution.« less
Neutron activation analysis on the surface of the Moon and other terrestrial planets
NASA Astrophysics Data System (ADS)
Golovin, Dmitry; Litvak, Maxim; Kozyrev, S. Alexander; Tretiyakov, Vladislav; Sanin, Anton; Vostrukhin, Andrey; Mitrofanov, Igor; Malakhov, Alexey
Determine of elements composition of the planet subsurface in situ is important scientific task for understanding of origin and formation processes of terrestrial planets, moons and asteroids. Also this study will be very perspective in terms of utilization of mineral resources for future lunar base. Creation of such outpost will open doors for robotic and human exploration in the distant parts of Solar System. ADRON instrument onboard landing platforms Russian near-pole lunar missions (Glob and Resource) will be first example of using Neutron Activation method in space. It will measure nuclear composition of the lunar regolith in the landing sites up to 1 m depth. This instrument is able to use for different planets and conditions. For Venus surface, taking into account short lifetime of spacecraft one or two hours of operation will be enough to perform such measurements. Another good opportunity is using similar instrument on Lunar or Martian rovers for searching of important minerals.
Luger, R; Barnes, R; Lopez, E; Fortney, J; Jackson, B; Meadows, V
2015-01-01
We show that photoevaporation of small gaseous exoplanets ("mini-Neptunes") in the habitable zones of M dwarfs can remove several Earth masses of hydrogen and helium from these planets and transform them into potentially habitable worlds. We couple X-ray/extreme ultraviolet (XUV)-driven escape, thermal evolution, tidal evolution, and orbital migration to explore the types of systems that may harbor such "habitable evaporated cores" (HECs). We find that HECs are most likely to form from planets with ∼1 M⊕ solid cores with up to about 50% H/He by mass, though whether or not a given mini-Neptune forms a HEC is highly dependent on the early XUV evolution of the host star. As terrestrial planet formation around M dwarfs by accumulation of local material is likely to form planets that are small and dry, evaporation of small migrating mini-Neptunes could be one of the dominant formation mechanisms for volatile-rich Earths around these stars.
Prospect of life on cold planets with low atmospheric pressures
NASA Astrophysics Data System (ADS)
Pavlov, A. A.; Vdovina, M.
2009-12-01
Stable liquid water on the surface of a planet has been viewed as the major requirement for a habitable planet. Such approach would exclude planets with low atmospheric pressures and cold mean surface temperatures (like present Mars) as potential candidates for extraterrestrial life search. Here we explore a possibility of the liquid water formation in the extremely shallow (1-3 cm) subsurface layer under low atmospheric pressures (0.1-10 mbar) and low average surface temperatures (~-30 C). During brief periods of simulated daylight warming the shallow subsurface ice sublimates, the water vapor can diffuse through the porous surface layer of soil temporarily producing supersaturated conditions in the soil, which lead to the formation of liquid films. We show that non-extremophile terrestrial microorganisms (Vibrio sp.) can grow and reproduce under such conditions. The necessary conditions for metabolism and reproduction are the sublimation of ground ice through a thin layer of soil and short episodes of warm temperatures at the planetary surface.
Atmospheric escape from the TRAPPIST-1 planets and implications for habitability
NASA Astrophysics Data System (ADS)
Dong, Chuanfei; Jin, Meng; Lingam, Manasvi; Airapetian, Vladimir S.; Ma, Yingjuan; van der Holst, Bart
2018-01-01
The presence of an atmosphere over sufficiently long timescales is widely perceived as one of the most prominent criteria associated with planetary surface habitability. We address the crucial question of whether the seven Earth-sized planets transiting the recently discovered ultracool dwarf star TRAPPIST-1 are capable of retaining their atmospheres. To this effect, we carry out numerical simulations to characterize the stellar wind of TRAPPIST-1 and the atmospheric ion escape rates for all of the seven planets. We also estimate the escape rates analytically and demonstrate that they are in good agreement with the numerical results. We conclude that the outer planets of the TRAPPIST-1 system are capable of retaining their atmospheres over billion-year timescales. The consequences arising from our results are also explored in the context of abiogenesis, biodiversity, and searches for future exoplanets. In light of the many unknowns and assumptions involved, we recommend that these conclusions must be interpreted with due caution.
The problem of scale in planetary geomorphology
NASA Technical Reports Server (NTRS)
Rossbacher, L. A.
1985-01-01
Recent planetary exploration has shown that specific landforms exhibit a significant range in size between planets. Similar features on Earth and Mars offer some of the best examples of this scale difference. The difference in heights of volcanic features between the two planets has been cited often; the Martian volcano Olympus Mons stands approximately 26 km high, but Mauna Loa rises only 11 km above the Pacific Ocean floor. Polygonally fractured ground in the northern plains of Mars has diameters up to 20 km across; the largest terrestrial polygons are only 500 m in diameter. Mars also has landslides, aeolian features, and apparent rift valleys larger than any known on Earth. No single factor can explain the variations in landform size between planets. Controls on variation on Earth, related to climate, lithology, or elevation, have seldom been considered in detail. The size differences between features on Earth and other planets seem to be caused by a complex group of interacting relationships. The major planetary parameters that may affect landform size are discussed.
SEEDS — Strategic explorations of exoplanets and disks with the Subaru Telescope —
TAMURA, Motohide
2016-01-01
The first convincing detection of planets orbiting stars other than the Sun, or exoplanets, was made in 1995. In only 20 years, the number of the exoplanets including promising candidates has already accumulated to more than 5000. Most of the exoplanets discovered so far are detected by indirect methods because the direct imaging of exoplanets needs to overcome the extreme contrast between the bright central star and the faint planets. Using the large Subaru 8.2-m Telescope, a new high-contrast imager, HiCIAO, and second-generation adaptive optics (AO188), the most ambitious high-contrast direct imaging survey to date for giant planets and planet-forming disks has been conducted, the SEEDS project. In this review, we describe the aims and results of the SEEDS project for exoplanet/disk science. The completeness and uniformity of this systematic survey mean that the resulting data set will dominate this field of research for many years. PMID:26860453
The carbonate-silicate cycle and CO2/climate feedbacks on tidally locked terrestrial planets.
Edson, Adam R; Kasting, James F; Pollard, David; Lee, Sukyoung; Bannon, Peter R
2012-06-01
Atmospheric gaseous constituents play an important role in determining the surface temperatures and habitability of a planet. Using a global climate model and a parameterization of the carbonate-silicate cycle, we explored the effect of the location of the substellar point on the atmospheric CO(2) concentration and temperatures of a tidally locked terrestrial planet, using the present Earth continental distribution as an example. We found that the substellar point's location relative to the continents is an important factor in determining weathering and the equilibrium atmospheric CO(2) level. Placing the substellar point over the Atlantic Ocean results in an atmospheric CO(2) concentration of 7 ppmv and a global mean surface air temperature of 247 K, making ∼30% of the planet's surface habitable, whereas placing it over the Pacific Ocean results in a CO(2) concentration of 60,311 ppmv and a global temperature of 282 K, making ∼55% of the surface habitable.
Atmospheric escape from the TRAPPIST-1 planets and implications for habitability.
Dong, Chuanfei; Jin, Meng; Lingam, Manasvi; Airapetian, Vladimir S; Ma, Yingjuan; van der Holst, Bart
2018-01-09
The presence of an atmosphere over sufficiently long timescales is widely perceived as one of the most prominent criteria associated with planetary surface habitability. We address the crucial question of whether the seven Earth-sized planets transiting the recently discovered ultracool dwarf star TRAPPIST-1 are capable of retaining their atmospheres. To this effect, we carry out numerical simulations to characterize the stellar wind of TRAPPIST-1 and the atmospheric ion escape rates for all of the seven planets. We also estimate the escape rates analytically and demonstrate that they are in good agreement with the numerical results. We conclude that the outer planets of the TRAPPIST-1 system are capable of retaining their atmospheres over billion-year timescales. The consequences arising from our results are also explored in the context of abiogenesis, biodiversity, and searches for future exoplanets. In light of the many unknowns and assumptions involved, we recommend that these conclusions must be interpreted with due caution.
The Astrobiology of the Subsurface: Exploring Cave Habitats on Earth, Mars and Beyond
NASA Technical Reports Server (NTRS)
Boston, Penelope Jane
2016-01-01
We are using the spectacular underground landscapes of Earth caves as models for the subsurfaces of other planets. Caves have been detected on the Moon and Mars and are strongly suspected for other bodies in the Solar System including some of the ice covered Ocean Worlds that orbit gas giant planets. The caves we explore and study include many extreme conditions of relevance to planetary astrobiology exploration including high and low temperatures, gas atmospheres poisonous to humans but where exotic microbes can flourish, highly acidic or salty fluids, heavy metals, and high background radiation levels. Some cave microorganisms eat their way through bedrock, some live in battery acid conditions, some produce unusual biominerals and rare cave formations, and many produce compounds of potential pharmaceutical and industrial significance. We study these unique lifeforms and the physical and chemical biosignatures that they leave behind. Such traces can be used to provide a "Field Guide to Unknown Organisms" for developing life detection space missions.
Materials and design concepts for space-resilient structures
NASA Astrophysics Data System (ADS)
Naser, Mohannad Z.; Chehab, Alaa I.
2018-04-01
Space exploration and terraforming nearby planets have been fascinating concepts for the longest time. Nowadays, that technological advancements with regard to space exploration are thriving, it is only a matter of time before humans can start colonizing nearby moons and planets. This paper presents a state-of-the-art literature review on recent developments of "space-native" construction materials, and highlights evolutionary design concepts for "space-resilient" structures (i.e., colonies and habitats). This paper also details effects of harsh (and unique) space environments on various terrestrial and extraterrestrial construction materials, as well as on space infrastructure and structural systems. The feasibility of exploiting available space resources in terms of "in-situ resource utilization" and "harvesting of elements and compounds", as well as emergence of enabling technologies such as "cultured (lab-grown)" space construction materials are discussed. Towards the end of the present review, number of limitations and challenges facing Lunar and Martian exploration, and venues in-need for urgent research are identified and examined.
The Search for Habitable Worlds. 1. The Viability of a Starshade Mission
NASA Technical Reports Server (NTRS)
Turnbull, Margaret C.; Glassman, Tiffany; Roberge, Aki; Cash, Webster; Noecker, Charley; Lo, Amy; Mason, Brian; Oakley, Phil; Bally, John
2012-01-01
As part of NASA's mission to explore habitable planets orbiting nearby stars, this article explores the detection and characterization capabilities of a 4 m space telescope plus 50 m starshade located at the Earth-Sun L2 point, known as the New Worlds Observer (NWO). Our calculations include the true spectral types and distribution of stars on the sky, an iterative target selection protocol designed to maximize efficiency based on prior detections, and realistic mission constraints. We conduct simulated observing runs for a wide range in exozodiacal background levels (epsilon = 1-100 times the local zodi brightness) and overall prevalence of Earth-like terrestrial planets (eta(sub solar halo))0.1-1). We find that even without any return visits, the NWO baseline architecture (IWA = 65 mas, limiting FPB = 4 x 10(exp -11) can achieve a 95% probability of detecting and spectrally characterizing at least one habitable Earth-like planet and an expectation value of approximately 3 planets found, within the mission lifetime and delta V budgets, even in the worst-case scenario (eta(sub solar halo) = 0.1 and = epsilon = 100 zodis for every target). This achievement requires about 1 yr of integration time spread over the 5 yr mission, leaving the remainder of the telescope time for UV-NIR general astrophysics. Cost and technical feasibility considerations point to a "sweet spot" in starshade design near a 50 m starshade effective diameter. with 12 or 16 petals, at a distance of 70,000-100,000 km from the telescope.
Outreach of Astronomy with emphasis to the Solar System by the Space group in Greece
NASA Astrophysics Data System (ADS)
Moussas, X.; Dialynas, K.; Babasides, G.; Fasoulopoulos, G.; Dimitropoulou, V.; Prassopoulos, D.; Kouphos, S.; Spandagos, E.; Strikis, J.
We have a long tradition in Space and Solar System outreach at the University of Athens (Space Group). We have contributed with many popular science articles in encyclopaedias (a total of some 200000 words), magazines and newspapers, public lectures around Greece and radio and TV programmes. We contribute in exhibitions for the public on many occasions (e.g. The British Exploration of the Planets, an exhibition organized by the British Council, at Eugenides Foundation and The Planetarium, where I prepared some 15 posters). We are preparing an outreach site of Astrophysics with sections for the planets, the exploration of the solar system and solar terrestrial relations. I am preparing several posters for the planets. We organize with the Hellenic Physical Union a series of Astrophysics Lectures at the University of Athens. Together with the Hellenic Physical Union we are planning to produce a theatrical play and CD or DVD concerning the planets. We have excellent collaboration with the amateur astronomers allover Greece and Cyprus. We organize, together with Physics or mathematics teachers in high schools several events related to astronomical observations (e.g. Venus transit, solar eclipe, astronomy nights). 1 We also organize popular science programmes in TV channels. I brief we consider Astronomy and especially the planetary system as a "Great Attractor" of pupil and the general public to science and we use it on every occasion for the benefit of the pupil and science. 2
Solar System Planetary Science Decadal Survey and Missions in the Next Decade, 2013-2022
NASA Technical Reports Server (NTRS)
Reh, Kim
2011-01-01
In 2010, the National Research Council Space Studies Board established a decadal survey committee to develop a comprehensive science, mission, and technology strategy for planetary science that updates and extends the Board's 2003 Solar System Exploration Decadal Survey, "New Frontiers in the Solar System: An Integrated Exploration Strategy." The scope of the survey encompasses the inner planets (Mercury, Venus, and Mars), the Earth's Moon, the giant planets (Jupiter, Saturn, Uranus, and Neptune), the moons of the giant planets, dwarf planets and small bodies, primitive bodies including comets and Kuiper Belt objects, and astrobiology. Over this past year, the decadal survey committee has interacted with the broad solar system science community to determine the current state of knowledge and to identify the most important scientific questions expected to face the community during the interval 2013-2022. The survey has identified candidate missions that address the most important science questions and has conducted, through NASA sponsorship, concept studies to assess the cost of such missions as well as technology needs. The purpose of this paper is to provide an overview of the 2012 Solar System Planetary Science Decadal Survey study approach and missions that were studied for implementation in the upcoming decade. Final results of the decadal survey, including studies that were completed and the specific science, programmatic, and technology recommendations will be disclosed publically in the spring of 2011 and are not the subject of this paper.
The Resilience of Kepler Multi-systems to Stellar Obliquity
NASA Astrophysics Data System (ADS)
Spalding, Christopher; Marx, Noah W.; Batygin, Konstantin
2018-04-01
The Kepler mission and its successor K2 have brought forth a cascade of transiting planets. Many of these planetary systems exhibit multiple transiting members. However, a large fraction possesses only a single transiting planet. This high abundance of singles, dubbed the "Kepler Dichotomy," has been hypothesized to arise from significant mutual inclinations between orbits in multi-planet systems. Alternatively, the single-transiting population truly possesses no other planets in the system, but the true origin of the overabundance of single systems remains unresolved. In this work, we propose that planetary systems typically form with a coplanar, multiple-planetary architecture, but that quadrupolar gravitational perturbations from their rapidly-rotating host star subsequently disrupt this primordial coplanarity. We demonstrate that, given sufficient stellar obliquity, even systems beginning with 2 planetary constituents are susceptible to dynamical instability soon after planet formation, as a result of the stellar quadrupole moment. This mechanism stands as a widespread, yet poorly explored pathway toward planetary system instability. Moreover, by requiring that observed multi-systems remain coplanar on Gyr timescales, we are able to place upper limits on the stellar obliquity in systems such as K2-38 (obliquity < 20 degrees), where other methods of measuring spin-orbit misalignment are not currently available.
Infrared excesses in stars with and without planets using revised WISE photometry
NASA Astrophysics Data System (ADS)
Maldonado, Raul F.; Chavez, Miguel; Bertone, Emanuele; Cruz-Saenz de Miera, Fernando
2017-11-01
We present an analysis on the potential prevalence of mid-infrared excesses in stars with and without planetary companions. Based on an extended data base of stars detected with the Wide Infrared Survey Explorer (WISE) satellite, we studied two stellar samples: one with 236 planet hosts and another with 986 objects for which planets have been searched, but not found. We determined the presence of an excess over the photosphere by comparing the observed flux ratio at 22 and 12 μm (f22/f12) with the corresponding synthetic value, derived from results of classical model photospheres. We found a detection rate of 0.85 per cent at 22 μm (two excesses) in the sample of stars with planets and 0.1 per cent (1 detection) for the stars without planets. The difference of the detection rate between the two samples is not statistically significant, a result that is independent of the different approaches found in the literature to define an excess in the wavelength range covered by WISE observations. As an additional result, we found that the WISE fluxes required a normalization procedure to make them compatible with synthetic data, probably pointing out a revision of the WISE data calibration.
Hubble Uncovers Evidence of Farthest Planet Forming From its Star
2017-12-08
Astronomers using NASA's Hubble Space Telescope have found compelling evidence of a planet forming 7.5 billion miles away from its star, a finding that may challenge current theories about planet formation. Of the almost 900 planets outside our solar system that have been confirmed to date, this is the first to be found at such a great distance from its star. The suspected planet is orbiting the diminutive red dwarf TW Hydrae, a popular astronomy target located 176 light-years away from Earth in the constellation Hydra the Sea Serpent. Read more: 1.usa.gov/196B6lZ NASA, ESA, J. Debes (STScI), H. Jang-Condell (University of Wyoming), A. Weinberger (Carnegie Institution of Washington), A. Roberge (Goddard Space Flight Center), G. Schneider (University of Arizona/Steward Observatory), and A. Feild (STScI/AURA) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Mapping the Pressure-radius Relationship of Exoplanets
NASA Astrophysics Data System (ADS)
Cubillos, Patricio; Fossati, Luca; Kubyshkina, Darya
2017-10-01
The radius of a planet is one of the most physically meaningful and readily accessible parameters of extra-solar planets. This parameter is extensively used in the literature to compare planets or study trends in the know population of exoplanets. However, in an atmosphere, the concept of a planet radius is inherently fuzzy. The atmospheric pressures probed by trasmission (transit) or emission (eclipse) spectra are not directly constrained by the observations, they vary as a function of the atmospheric properties and observing wavelengths, and further correlate with the atmospheric properties producing degenerate solutions.Here, we characterize the properties of exoplanet radii using a radiative-transfer model to compute clear- atmosphere transmission and emission spectra of gas-dominated planets. We explore a wide range of planetary temperatures, masses, and radii, sampling from 300 to 3000 K and Jupiter- to Earth-like values. We will discuss how transit and photospheric radii vary over the parameter space, and map the global trends in the atmospheric pressures associated with these radii. We will also highlight the biases introduced by the choice of an observing band, or the assumption of a clear/cloudy atmosphere, and the relevance that these biases take as better instrumentation improves the precision of photometric observations.
2018-01-31
Thomas Zurbuchen, Associate Administrator for NASA's Science Mission Directorate, speaks during an event celebrating the 60th Anniversary of the Explorer 1 mission and the discovery of Earth's radiation belts, Wednesday, Jan. 31, 2018, at the National Academy of Sciences in Washington. The first U.S. satellite, Explorer 1, was launched from Cape Canaveral on January 31, 1958. The 30-pound satellite would yield a major scientific discovery, the Van Allen radiation belts circling our planet, and begin six decades of groundbreaking space science and human exploration. (NASA/Joel Kowsky)
NASA Strategic Roadmap Summary Report
NASA Technical Reports Server (NTRS)
Wilson, Scott; Bauer, Frank; Stetson, Doug; Robey, Judee; Smith, Eric P.; Capps, Rich; Gould, Dana; Tanner, Mike; Guerra, Lisa; Johnston, Gordon
2005-01-01
In response to the Vision, NASA commissioned strategic and capability roadmap teams to develop the pathways for turning the Vision into a reality. The strategic roadmaps were derived from the Vision for Space Exploration and the Aldrich Commission Report dated June 2004. NASA identified 12 strategic areas for roadmapping. The Agency added a thirteenth area on nuclear systems because the topic affects the entire program portfolio. To ensure long-term public visibility and engagement, NASA established a committee for each of the 13 areas. These committees - made up of prominent members of the scientific and aerospace industry communities and senior government personnel - worked under the Federal Advisory Committee Act. A committee was formed for each of the following program areas: 1) Robotic and Human Lunar Exploration; 2) Robotic and Human Exploration of Mars; 3) Solar System Exploration; 4) Search for Earth-Like Planets; 5) Exploration Transportation System; 6) International Space Station; 7) Space Shuttle; 8) Universe Exploration; 9) Earth Science and Applications from Space; 10) Sun-Solar System Connection; 11) Aeronautical Technologies; 12) Education; 13) Nuclear Systems. This document contains roadmap summaries for 10 of these 13 program areas; The International Space Station, Space Shuttle, and Education are excluded. The completed roadmaps for the following committees: Robotic and Human Exploration of Mars; Solar System Exploration; Search for Earth-Like Planets; Universe Exploration; Earth Science and Applications from Space; Sun-Solar System Connection are collected in a separate Strategic Roadmaps volume. This document contains memebership rosters and charters for all 13 committees.
Colonizing the Red Planet: An Interdisciplinary Activity.
ERIC Educational Resources Information Center
Tomblin, David C.; Bentley, Michael L.
1998-01-01
Describes a simulation activity based on the hypothesis that human habitation on Mars is a realistic future public policy issue and a reasonable consequence of space exploration. Uses cooperative learning. (DDR)
Student Reactions to Investigative Approach in Courses About Venus and Mars
NASA Astrophysics Data System (ADS)
Muller, O. H.; Smith, Z. E.; Rivera-Valentin, E.
2006-12-01
We report on how students perceived their learning experiences during two half-semester courses, the Geology of Venus, taught in the Fall of 2004, and The Geology of Mars, taught this Fall, just prior to this AGU meeting. These courses were designed to have a strong research component. Students were required to complete two research projects, one based on a location of their choosing, the other based on a process thought to be significant on the planet. They were to use images and data from the PDS and similar sites, and to access the primary literature. Edgard and Zack found this approach very much to their liking because they knew that: 1. They were using the very same imagery available to scientists who were at the cutting edge of their fields. 2. They were using techniques which had the potential to reveal things which no one had seen before. 3. There are many questions still unanswered about the basic history of the planets they were studying, some of which might be susceptible to the approaches they were using. In addition, as they worked on an area they developed a sense of ownership, and a feeling that they knew that area better than anyone else in the class, and perhaps better than many planetary scientists. They wanted to learn more about the planet they were studying, not only because they were interested in the planet, but also because it allowed them to put what they were discovering about their areas or processes into a more global perspective. And they particularly enjoyed the freedom to follow whatever path their exploration led them to. It is this last aspect which may represent the most important outcome from these courses. Learning to explore, to seek, to question, etc., is quite different from learning about exploration. It requires a willingness to go out into the unknown, to probe the darkness not just of the dataset, but of one's ignorance. Each trip builds confidence, and in the process develops an appetite for just such exploration.
NASA Astrophysics Data System (ADS)
Bell, James F.; Olkin, Cathy; Castillo-Rogez, Julie
2015-11-01
Among the most potentially diagnostic but least explored populations of small bodies are the Jupiter Trojan asteroids, which orbit at ~5 AU in the L4 and L5 Lagrange points of Jupiter. The Trojans provide a unique perspective on solar system history, because their locations and physical, compositional, and mineralogic properties preserve evidence for important gravitational interactions among the giant planets. The locations and orbital properties of more than 6200 Jupiter Trojans are now known, but that is likely only a small fraction of a population of up to ~1e6 Trojans >1 km in size. The Trojans are hypothesized to be either former KBOs scattered into the inner solar system by early giant planet migration and then trapped in L4 and L5, or bodies formed near 5 AU in a more quiescent early solar system.Important Planetary Decadal Survey questions that can be addressed by studying the Trojans include: (a) How did the giant planets and their satellite systems accrete, and is there evidence that they migrated to new orbital positions? (b) What is the relationship between large and small KBOs? Is the small population derived by impact disruption of the large one? (c) What kinds of surface evolution, radiation chemistry, and surface-atmosphere interactions occur on distant icy primitive bodies? And (d) What are the sources of asteroid groups (Trojans and Centaurs) that remain to be explored by spacecraft?Here we describe the Trojan Tour and Rendezvous (TTR) New Frontiers mission concept, which is designed to answer these Decadal questions and to test hypotheses for early giant planet migration and solar system evolution. Via close flybys of many of these objects, and orbital characterization of at least one large Trojan, TTR will enable the initial up-close exploration of this population. Our primary mission goals are to characterize the overall surface geology, geochemistry and mineralogy of these worlds; to characterize their internal structure and dynamical properties; to investigate the nature, sources and history of activity on these bodies; and to explore the diversity of the broader Trojan asteroid population.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nesvold, Erika R.; Naoz, Smadar; Vican, Laura
The first indication of the presence of a circumstellar debris disk is usually the detection of excess infrared emission from the population of small dust grains orbiting the star. This dust is short-lived, requiring continual replenishment, and indicating that the disk must be excited by an unseen perturber. Previous theoretical studies have demonstrated that an eccentric planet orbiting interior to the disk will stir the larger bodies in the belt and produce dust via interparticle collisions. However, motivated by recent observations, we explore another possible mechanism for heating a debris disk: a stellar-mass perturber orbiting exterior to and inclined tomore » the disk and exciting the disk particles’ eccentricities and inclinations via the Kozai–Lidov mechanism. We explore the consequences of an exterior perturber on the evolution of a debris disk using secular analysis and collisional N -body simulations. We demonstrate that a Kozai–Lidov excited disk can generate a dust disk via collisions and we compare the results of the Kozai–Lidov excited disk with a simulated disk perturbed by an interior eccentric planet. Finally, we propose two observational tests of a dust disk that can distinguish whether the dust was produced by an exterior brown dwarf or stellar companion or an interior eccentric planet.« less
NASA Strategic Roadmap Committees Final Roadmaps. Volumes 1 and 2
NASA Technical Reports Server (NTRS)
2005-01-01
Volume 1 contains NASA strategic roadmaps for the following Advanced Planning and Integration Office (APIO) committees: Earth Science and Applications from Space; Sun - Solar System Connection. Volume 2 contains NASA strategic roadmaps for the following APIO committees: Robotic and Human Exploration of Mars; Solar System Exploration; Search for Earth-like Planets; Universe Exploration, as well as membership rosters and charters for all APIO committees, including those above and the following: Exploration Transportation System; Nuclear Systems; Robotic and Human Lunar Exploration; Aeronautical Technologies; Space Shuttle; International Space Station; Education.
2018-01-31
A replica of the Explorer 1 satellite is seen on display during an event celebrating the 60th Anniversary of the Explorer 1 mission and the discovery of Earth's radiation belts, Wednesday, Jan. 31, 2018, at the National Academy of Sciences in Washington. The first U.S. satellite, Explorer 1, was launched from Cape Canaveral on January 31, 1958. The 30-pound satellite would yield a major scientific discovery, the Van Allen radiation belts circling our planet, and begin six decades of groundbreaking space science and human exploration. (NASA/Joel Kowsky)
Student Geoscientists Explore the Earth during Earth Science Week 2005
ERIC Educational Resources Information Center
Benbow, Ann E.; Camphire, Geoff
2005-01-01
Taking place October 9-15, Earth Science Week 2005 will celebrate the theme "Geoscientists Explore the Earth." The American Geological Institute (AGI) is organizing the event, as always, to help people better understand and appreciate the Earth sciences and to encourage stewardship of the planet. This year, the focus will be on the wide range of…
The Blue Planet: Seas & Oceans. Young Discovery Library Series.
ERIC Educational Resources Information Center
de Beauregard, Diane Costa
This book is written for children ages 5 through 10. Part of a series designed to develop their curiosity, facinate them and educate them, this volume explores the physical and environmental characteristics of the world's oceans. Topics are: (1) human exploration; (2) the food chain; (3) coral reefs; (4) currents and tides; (5) waves; (6)…
Mars Public Engagement Overview
NASA Technical Reports Server (NTRS)
Johnson, Christine
2009-01-01
This viewgraph presentation reviews the Mars public engagement goal to understand and protect our home planet, explore the Universe and search for life, and to inspire the next generation of explorers. Teacher workshops, robotics education, Mars student imaging and analysis programs, MARS Student Imaging Project (MSIP), Russian student participation, MARS museum visualization alliance, and commercialization concepts are all addressed in this project.
Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets
NASA Astrophysics Data System (ADS)
Schultz, Colin
2013-07-01
The dancing glow of the aurorae, the long tendrils of light that seem to reach up into space, has mesmerized scientists for centuries. More than a beautiful display, the aurorae tell us about the Earth—about its atmosphere, its magnetic field, and its relationship with the Sun. As technology developed, researchers looking beyond Earth's borders discovered an array of auroral processes on planets throughout the solar system. In the AGU monograph Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets, editors Andreas Keiling, Eric Donovan, Fran Bagenal, and Tomas Karlsson explore the many open questions that permeate the science of auroral physics and the relatively recent field of extraterrestrial aurorae. In this interview, Eos talks to Karlsson about extraterrestrial aurorae, Alfvén waves, and the sounds of the northern lights.
Exploring the NRO Opportunity for a Hubble-Sized Wide-Field Near-IR Space Telescope - New WFIRST
NASA Technical Reports Server (NTRS)
Dressler, Alan; Spergel, David; Mountain, Matt; Postman, Mark; Elliott, Erin; Bendek, Eduardo; Bennett, David; Dalcanton, Julianne; Gaudi, Scott; Gehrels, Neil;
2013-01-01
We discuss scientific, technical, and programmatic issues related to the use of an NRO 2.4m telescope for the WFIRST initiative of the 2010 Decadal Survey. We show that this implementation of WFIRST, which we call "NEW WFIRST," would achieve the goals of the NWNH Decadal Survey for the WFIRST core programs of Dark Energy and Microlensing Planet Finding, with the crucial benefit of deeper and/or wider near-IR surveys for GO science and a potentially Hubble-like Guest Observer program. NEW WFIRST could also include a coronagraphic imager for direct detection of dust disks and planets around neighboring stars, a high-priority science and technology precursor for future ambitious programs to image Earth-like planets around neighboring stars.
Climate Dynamics and Hysteresis at Low and High Obliquity
NASA Astrophysics Data System (ADS)
Colose, C.; Del Genio, A. D.; Way, M.
2017-12-01
We explore the large-scale climate dynamics at low and high obliquity for an Earth-like planet using the ROCKE-3D (Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics) 3-D General Circulation model being developed at NASA GISS as part of the Nexus for Exoplanet System Science (NExSS) initiative. We highlight the role of ocean heat storage and transport in determining the seasonal cycle at high obliquity, and describe the large-scale circulation and resulting regional climate patterns using both aquaplanet and Earth topographical boundary conditions. Finally, we contrast the hysteresis structure to varying CO2 concentration for a low and high obliquity planet near the outer edge of the habitable zone. We discuss the prospects for habitability for a high obliquity planet susceptible to global glaciation.
A proposed new policy for planetary protection
NASA Technical Reports Server (NTRS)
Barengoltz, J. B.; Bergstrom, S. L.; Hobby, G. L.; Stabekis, P. D.
1981-01-01
A critical review of the present policy was conducted with emphasis on its application to future planetary exploration. The probable impact of recent data on the implementation of the present policy was also assessed. The existing policy and its implementation were found to: be excessive for certain missions (e.g., Voyager), neglect the contamination hazard posed by the bulk constituent organics of spacecraft, be ambiguous for certain missions (e.g., Pioneer Venus), and treat all extraterrestrial sample return missions alike. The major features of the proposed policy are planet/mission combinations, a qualitative top level statement, and implementation by exception rather than rule. The concept of planet/mission categories permits the imposition of requirements according to both biological interest in the target planet and the relative contamination hazard of the mission type.
Schuster, Haley; Peck, Steven L
2016-12-01
The colonization of a new planet will inevitably bring about new bioethical issues. One is the possibility of pregnancy during the mission. During the journey to the target planet or moon, and for the first couple of years before a colony has been established and the colony has been accommodated for children, a pregnancy would jeopardize the safety of the crew and the wellbeing of the child. The principal concern with a pregnancy during an interplanetary mission is that it could put the entire crew in danger. Resources such as air, food, and medical supplies will be limited and calculated to keep the crew members alive. We explore the bioethical concerns of near-future space travel.
Characterizing the Atmosphere of a Young Planet
NASA Technical Reports Server (NTRS)
Marley, Mark
2016-01-01
Since the discovery of the young, directly imaged planet 51 Eri b, its emergent spectrum has proved challenging to interpret. The initial discovery paper (Macintosh et al. 2015) interpreted the spectrum as indicative of a low mass (few Jupiter masses), effective temperature near 700 degrees Kelvin, and partial cloudiness. Subsequent observations in the K band, however, seem to invalidate the early models. In addition, newly improved photochemical data point to the likely presence of exotic haze species in the atmosphere. In my presentation I will explore the photochemistry of the atmosphere and discuss whether disequilibrium chemistry, hazes, clouds, or non-solar abundances of heavy elements may be responsible for the unusual spectrum of this planet. The implications for the interpretation of other young Jupiters in this mass and effective temperature range will also be considered.
Debris disks as signposts of terrestrial planet formation
NASA Astrophysics Data System (ADS)
Raymond, S. N.; Armitage, P. J.; Moro-Martín, A.; Booth, M.; Wyatt, M. C.; Armstrong, J. C.; Mandell, A. M.; Selsis, F.; West, A. A.
2011-06-01
There exists strong circumstantial evidence from their eccentric orbits that most of the known extra-solar planetary systems are the survivors of violent dynamical instabilities. Here we explore the effect of giant planet instabilities on the formation and survival of terrestrial planets. We numerically simulate the evolution of planetary systems around Sun-like stars that include three components: (i) an inner disk of planetesimals and planetary embryos; (ii) three giant planets at Jupiter-Saturn distances; and (iii) an outer disk of planetesimals comparable to estimates of the primitive Kuiper belt. We calculate the dust production and spectral energy distribution of each system by assuming that each planetesimal particle represents an ensemble of smaller bodies in collisional equilibrium. Our main result is a strong correlation between the evolution of the inner and outer parts of planetary systems, i.e. between the presence of terrestrial planets and debris disks. Strong giant planet instabilities - that produce very eccentric surviving planets - destroy all rocky material in the system, including fully-formed terrestrial planets if the instabilities occur late, and also destroy the icy planetesimal population. Stable or weakly unstable systems allow terrestrial planets to accrete in their inner regions and significant dust to be produced in their outer regions, detectable at mid-infrared wavelengths as debris disks. Stars older than ~100 Myr with bright cold dust emission (in particular at λ ~ 70 μm) signpost dynamically calm environments that were conducive to efficient terrestrial accretion. Such emission is present around ~16% of billion-year old Solar-type stars. Our simulations yield numerous secondary results: 1) the typical eccentricities of as-yet undetected terrestrial planets are ~0.1 but there exists a novel class of terrestrial planet system whose single planet undergoes large amplitude oscillations in orbital eccentricity and inclination; 2) by scaling our systems to match the observed semimajor axis distribution of giant exoplanets, we predict that terrestrial exoplanets in the same systems should be a few times more abundant at ~0.5 AU than giant or terrestrial exoplanets at 1 AU; 3) the Solar System appears to be unusual in terms of its combination of a rich terrestrial planet system and a low dust content. This may be explained by the weak, outward-directed instability that is thought to have caused the late heavy bombardment. The movie associated to Fig. 2 is available in electronic form at http://www.aanda.org
SAMURAI: Polar AUV-Based Autonomous Dexterous Sampling
NASA Astrophysics Data System (ADS)
Akin, D. L.; Roberts, B. J.; Smith, W.; Roderick, S.; Reves-Sohn, R.; Singh, H.
2006-12-01
While autonomous undersea vehicles are increasingly being used for surveying and mapping missions, as of yet there has been little concerted effort to create a system capable of performing physical sampling or other manipulation of the local environment. This type of activity has typically been performed under teleoperated control from ROVs, which provides high-bandwidth real-time human direction of the manipulation activities. Manipulation from an AUV will require a completely autonomous sampling system, which implies both advanced technologies such as machine vision and autonomous target designation, but also dexterous robot manipulators to perform the actual sampling without human intervention. As part of the NASA Astrobiology Science and Technology for Exploring the Planets (ASTEP) program, the University of Maryland Space Systems Laboratory has been adapting and extending robotics technologies developed for spacecraft assembly and maintenance to the problem of autonomous sampling of biologicals and soil samples around hydrothermal vents. The Sub-polar ice Advanced Manipulator for Universal Sampling and Autonomous Intervention (SAMURAI) system is comprised of a 6000-meter capable six-degree-of-freedom dexterous manipulator, along with an autonomous vision system, multi-level control system, and sampling end effectors and storage mechanisms to allow collection of samples from vent fields. SAMURAI will be integrated onto the Woods Hole Oceanographic Institute (WHOI) Jaguar AUV, and used in Arctic during the fall of 2007 for autonomous vent field sampling on the Gakkel Ridge. Under the current operations concept, the JAGUAR and PUMA AUVs will survey the water column and localize on hydrothermal vents. Early mapping missions will create photomosaics of the vents and local surroundings, allowing scientists on the mission to designate desirable sampling targets. Based on physical characteristics such as size, shape, and coloration, the targets will be loaded into the SAMURAI control system, and JAGUAR (with SAMURAI mounted to the lower forward hull) will return to the designated target areas. Once on site, vehicle control will be turned over to the SAMURAI controller, which will perform vision-based guidance to the sampling site and will then ground the AUV to the sea bottom for stability. The SAMURAI manipulator will collect samples, such as sessile biologicals, geological samples, and (potentially) vent fluids, and store the samples for the return trip. After several hours of sampling operations on one or several sites, JAGUAR control will be returned to the WHOI onboard controller for the return to the support ship. (Operational details of AUV operations on the Gakkel Ridge mission are presented in other papers at this conference.) Between sorties, SAMURAI end effectors can be changed out on the surface for specific targets, such as push cores or larger biologicals such as tube worms. In addition to the obvious challenges in autonomous vision-based manipulator control from a free-flying support vehicle, significant development challenges have been the design of a highly capable robotic arm within the mass limitations (both wet and dry) of the JAGUAR vehicle, the development of a highly robust manipulator with modular maintenance units for extended polar operations, and the creation of a robot-based sample collection and holding system for multiple heterogeneous samples on a single extended sortie.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spurzem, R.; Giersz, M.; Heggie, D. C.
At least 10%-15% of nearby Sunlike stars have known Jupiter-mass planets. In contrast, very few planets are found in mature open and globular clusters such as the Hyades and 47 Tuc. We explore here the possibility that this dichotomy is due to the postformation disruption of planetary systems associated with the stellar encounters in long-lived clusters. One supporting piece of evidence for this scenario is the discovery of freely floating low-mass objects in star forming regions. We use two independent numerical approaches, a hybrid Monte Carlo and a direct N-body method, to simulate the impact of the encounters. We showmore » that the results of numerical simulations are in reasonable agreement with analytical determinations in the adiabatic and impulsive limits. They indicate that distant stellar encounters generally do not significantly modify the compact and nearly circular orbits. However, moderately close stellar encounters, which are likely to occur in dense clusters, can excite planets' orbital eccentricity and induce dynamical instability in systems that are closely packed with multiple planets. The disruption of planetary systems occurs primarily through occasional nearly parabolic, nonadiabatic encounters, though eccentricity of the planets evolves through repeated hyperbolic adiabatic encounters that accumulate small-amplitude changes. The detached planets are generally retained by the potential of their host clusters as free floaters in young stellar clusters such as {sigma} Orionis. We compute effective cross sections for the dissolution of planetary systems and show that, for all initial eccentricities, dissolution occurs on timescales that are longer than the dispersion of small stellar associations, but shorter than the age of typical open and globular clusters. Although it is much more difficult to disrupt short-period planets, close encounters can excite modest eccentricity among them, such that subsequent tidal dissipation leads to orbital decay, tidal inflation, and even disruption of the close-in planets.« less
Planetary Evolution, Habitability and Life
NASA Astrophysics Data System (ADS)
Tilman, Spohn; Breuer, Doris; de Vera, Jean-Pierre; Jaumann, Ralf; Kuehrt, Ekkehard; Möhlmann, Diedrich; Rauer, Heike; Richter, Lutz
A Helmholtz Alliance has been established to study the interactions between life and the evo-lution of planets. The approach goes beyond current studies in Earth-System Sciences by including the entire planet from the atmosphere to the deep interior, going beyond Earth to include other Earth-like planets such as Mars and Venus and satellites in the solar system where ecosystems may exist underneath thick ice shells,considering other solar systems. The approach includes studies of the importance of plate tectonics and other tectonic regimes such as single plate tectonics for the development and for sustaining life and asks the question: If life can adapt to a planet, can a planet adapt to life? Can life be seen as a geological process and if so, can life shape the conditions on a planet such that life can flourish? The vision goes beyond the solar system by including the challenges that life would face in other solar systems. The Alliance uses theoretical modelling of feedback cycles and coupled planetary atmosphere and interior processes. These models are based on the results of remote sensing of planetary surfaces and atmospheres, laboratory studies on (meteorite) samples from other planets and on studies of life under extreme conditions. The Alliance uses its unique capabilities in remote sensing and in-situ exploration to prepare for empirical studies of the parameters affecting habitability. The Alliance aims to establish a network infrastructure in Germany to enable the most ad-vanced research in planetary evolution studies by including life as a planetary process. Finding extraterrestrial life is a task of fundamental importance to mankind, and its fulfilment will be philosophically profound. Evaluating the interactions between planetary evolution and life will help to put the evolution of our home planet (even anthropogenic effects) into perspective.
NASA Astrophysics Data System (ADS)
Petigura, Erik A.; Howard, Andrew W.; Marcy, Geoffrey W.; Johnson, John Asher; Isaacson, Howard; Cargile, Phillip A.; Hebb, Leslie; Fulton, Benjamin J.; Weiss, Lauren M.; Morton, Timothy D.; Winn, Joshua N.; Rogers, Leslie A.; Sinukoff, Evan; Hirsch, Lea A.; Crossfield, Ian J. M.
2017-09-01
The California-Kepler Survey (CKS) is an observational program developed to improve our knowledge of the properties of stars found to host transiting planets by NASA’s Kepler Mission. The improvement stems from new high-resolution optical spectra obtained using HIRES at the W. M. Keck Observatory. The CKS stellar sample comprises 1305 stars classified as Kepler objects of interest, hosting a total of 2075 transiting planets. The primary sample is magnitude-limited ({Kp}< 14.2) and contains 960 stars with 1385 planets. The sample was extended to include some fainter stars that host multiple planets, ultra-short period planets, or habitable zone planets. The spectroscopic parameters were determined with two different codes, one based on template matching and the other on direct spectral synthesis using radiative transfer. We demonstrate a precision of 60 K in {T}{eff}, 0.10 dex in {log}g, 0.04 dex in [{Fe}/{{H}}], and 1.0 {km} {{{s}}}-1 in V\\sin I. In this paper, we describe the CKS project and present a uniform catalog of spectroscopic parameters. Subsequent papers in this series present catalogs of derived stellar properties such as mass, radius, and age; revised planet properties; and statistical explorations of the ensemble. CKS is the largest survey to determine the properties of Kepler stars using a uniform set of high-resolution, high signal-to-noise ratio spectra. The HIRES spectra are available to the community for independent analyses. Based on observations obtained at the W. M. Keck Observatory, which is operated jointly by the University of California and the California Institute of Technology. Keck time was granted for this project by the University of California, and California Institute of Technology, the University of Hawaii, and NASA.
NASA Astrophysics Data System (ADS)
Waalkes, William; Berta-Thompson, Zachory; Charbonneau, David; Irwin, Jonathan; Newton, Elisabeth; Dittmann, Jason; Bourrier, Vincent; Ehrenreich, David; Kempton, Eliza
2018-01-01
GJ1132b is one of the few known Earth-sized planets, and at 12 pc away it is also one of the closest known transiting planets. With an equilibrium temperature of 500 K, this planet is too hot to be habitable but we can use it to learn about the presence and volatile content of rocky planet atmospheres around M dwarf stars. Using Hubble STIS spectra during primary transit, we explore the potential for UV transit detections of GJ1132b. If we were to observe a deep Lyman-α transit, that would indicate the presence of a neutral hydrogen envelope flowing from GJ1132b. On the other hand, ruling out deep absorption from neutral hydrogen may indicate that this planet has either retained its volatiles or lost them very early in the star’s life. We carry out this analysis by extracting 1D spectra from the STIS pipeline, splitting the time-tagged spectra into higher resolution samples, and producing light curves of the red and blue wings of the Lyman-α line. We fit for the baseline stellar flux and transit depths in order to constrain the characteristics of the cloud of neutral hydrogen gas that may surround the planet. Our work extends beyond the transit study into an analysis of the stellar variability and Lyman-α spectrum of GJ1132, a slowly-rotating 0.18 MSun M dwarf with previously uncharacterized UV activity. Understanding the role that UV variability plays in planetary atmospheres and volatile retention is crucial to assess atmospheric evolution and the habitability of cooler rocky planets.
NASA Astrophysics Data System (ADS)
Madhusudhan, Nikku; Burrows, Adam; Currie, Thayne
2011-08-01
We have generated an extensive new suite of massive giant planet atmosphere models and used it to obtain fits to photometric data for the planets HR 8799b, c, and d. We consider a wide range of cloudy and cloud-free models. The cloudy models incorporate different geometrical and optical thicknesses, modal particle sizes, and metallicities. For each planet and set of cloud parameters, we explore grids in gravity and effective temperature, with which we determine constraints on the planet's mass and age. Our new models yield statistically significant fits to the data, and conclusively confirm that the HR 8799 planets have much thicker clouds than those required to explain data for typical L and T dwarfs. Both models with (1) physically thick forsterite clouds and a 60 μm modal particle size and (2) clouds made of 1 μm sized pure iron droplets and 1% supersaturation fit the data. Current data are insufficient to accurately constrain the microscopic cloud properties, such as composition and particle size. The range of best-estimated masses for HR 8799b, HR 8799c, and HR 8799d conservatively span 2-12 MJ , 6-13 MJ , and 3-11 MJ , respectively, and imply coeval ages between ~10 and ~150 Myr, consistent with previously reported stellar ages. The best-fit temperatures and gravities are slightly lower than values obtained by Currie et al. using even thicker cloud models. Finally, we use these models to predict the near-to-mid-IR colors of soon-to-be imaged planets. Our models predict that planet-mass objects follow a locus in some near-to-mid-IR color-magnitude diagrams that is clearly separable from the standard L/T dwarf locus for field brown dwarfs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apai, Dániel; Skemer, Andrew; Hanson, Jake R.
Time-resolved photometry is an important new probe of the physics of condensate clouds in extrasolar planets and brown dwarfs. Extreme adaptive optics systems can directly image planets, but precise brightness measurements are challenging. We present VLT/SPHERE high-contrast, time-resolved broad H-band near-infrared photometry for four exoplanets in the HR 8799 system, sampling changes from night to night over five nights with relatively short integrations. The photospheres of these four planets are often modeled by patchy clouds and may show large-amplitude rotational brightness modulations. Our observations provide high-quality images of the system. We present a detailed performance analysis of different data analysismore » approaches to accurately measure the relative brightnesses of the four exoplanets. We explore the information in satellite spots and demonstrate their use as a proxy for image quality. While the brightness variations of the satellite spots are strongly correlated, we also identify a second-order anti-correlation pattern between the different spots. Our study finds that KLIP reduction based on principal components analysis with satellite-spot-modulated artificial-planet-injection-based photometry leads to a significant (∼3×) gain in photometric accuracy over standard aperture-based photometry and reaches 0.1 mag per point accuracy for our data set, the signal-to-noise ratio of which is limited by small field rotation. Relative planet-to-planet photometry can be compared between nights, enabling observations spanning multiple nights to probe variability. Recent high-quality relative H-band photometry of the b–c planet pair agrees to about 1%.« less
Taking the Temperature of a Lava Planet
NASA Astrophysics Data System (ADS)
Kreidberg, Laura; Lopez, Eric; Cowan, Nick; Lupu, Roxana; Stevenson, Kevin; Louden, Tom; Malavolta, Luca
2018-05-01
Ultra-short period rocky planets (USPs) are an exotic class of planet found around less than 1% of stars. With orbital periods shorter than 24 hours, these worlds are blasted with stellar radiation that is expected to obliterate any traces of a primordial atmosphere and melt the dayside surface into a magma ocean. Observations of USPs have yielded several surprising results, including the measurement of an offset hotspot in the thermal phase curve of 55 Cancri e (which may indicate a thick atmosphere has survived), and a high Bond albedo for Kepler-10b, which suggests the presence of unusually reflective lava on its surface. To further explore the properties of USPs and put these results in context, we propose to observe a thermal phase curve of the newly discovered USP K2- 141b. This planet is a rocky world in a 6.7 hour orbit around a bright, nearby star. When combined with optical phase curve measured by K2, our observations will uniquely determine the planet's Bond albedo, precisely measure the offset of the thermal curve, and determine the temperature of the dayside surface. These results will cement Spitzer's role as a pioneer in the study of terrestrial planets beyond the Solar System, and provide a critical foundation for pursuing the optimal follow-up strategy for K2-141b with JWST.
David, L
1996-05-01
The distant shores of Mars were reached by numerous U.S. and Russian spacecraft throughout the 1960s to mid 1970s. Nearly 20 years have passed since those successful missions which orbited and landed on the Martian surface. Two Soviet probes headed for the planet in July, 1988, but later failed. In August 1993, the U.S. Mars Observer suddenly went silent just three days before it was to enter orbit around the planet and was never heard from again. In late 1996, there will be renewed activity on the launch pads with three probes departing for the red planet: 1) The U.S. Mars Global Surveyor will be launched in November on a Delta II rocket and will orbit the planet for global mapping purposes; 2) Russia's Mars '96 mission, scheduled to fly in November on a Proton launcher, consists of an orbiter, two small stations which will land on the Martian surface, and two penetrators that will plow into the terrain; and finally, 3) a U.S. Discovery-class spacecraft, the Mars Pathfinder, has a December launch date atop a Delta II booster. The mission features a lander and a microrover that will travel short distances over Martian territory. These missions usher in a new phase of Mars exploration, setting the stage for an unprecedented volley of spacecraft that will orbit around, land on, drive across, and perhaps fly at low altitudes over the planet.
2016-10-22
The scientific knowledge and technologies needed to make human exploration of Mars happen are within our reach. NASA 360 joins Dr. Jim Green, Director of NASA’s Planetary Science Division, as he discusses how NASA is preparing for human exploration of the Red Planet. This video was created from a live recording at the Viking 40th Anniversary Symposium in July 2016. To watch the original talk please visit: http://bit.ly/2bk1PGk
Terraforming planet Dune: Climate-vegetation interactions on a sandy planet
NASA Astrophysics Data System (ADS)
Cresto Aleina, F.; Baudena, M.; D'Andrea, F.; Provenzale, A.
2012-04-01
The climate and the biosphere of planet Earth interact in multiple, complicated ways and on many spatial and temporal scales. Some of these processes can be studied with the help of simple mathematical models, as done for the effects of vegetation on albedo in desert areas and for the mechanisms by which terrestrial vegetation affects water fluxes in arid environments. Conceptual models of this kind do not attempt at providing quantitative descriptions of the climate-biosphere interaction, but rather to explore avenues and mechanisms which can play a role in the real system, providing inspiration for further research. In this work, we develop a simple conceptual box model in the spirit illustrated above, to explore whether and how vegetation affects the planetary hydrologic cycle. We imagine a planet with no oceans and whose surface is entirely covered with sand, quite similar to planet Dune of the science-fiction series by Frank Herbert (1965). We suppose that water is entirely in the sand, below the surface. Without vegetation, only evaporation takes place, affecting the upper sand layer for a maximum depth of a few cm. The amount of water that is evaporated in the atmosphere is relatively small, and not sufficient to trigger a full hydrologic cycle. The question is what happens to this planet when vegetation is introduced: the root depth can reach a meter or more, and plant transpiration can then transfer a much larger amount of water to the atmosphere. One may wonder whether the presence of vegetation is sufficient to trigger a hydrologic cycle with enough precipitation to sustain the vegetation itself and, if the answer is positive, what is the minimum vegetation cover that is required to maintain the cycle active. In more precise terms, we want to know whether the introduction of vegetation and of the evapotranspiration feedback allows for the existence of multiple equilibria (or solutions) in the soil-vegetation-atmosphere system. Although the box model introduced here is best formulated in terms of a hypothetical sandy planet, the results can be used to study the hydrologic cycle on wide continental regions of the Earth. On the other hand, our findings show how the definition of a habitable climate may also depend on surface characteristics, and in particular on biosphere and climate interactions.
Dune Exploration: Mars Allegories
NASA Astrophysics Data System (ADS)
Zahnle, K.; Sleep, N. H.; Abe, Y.; Abe-Ouchi, A.
2005-12-01
We know of one factual habitable planet, although other factual planets can be imagined as habitable. Sometimes the allegory is obvious. E.g., H. G. Wells imagined Martians exterminating humans as an allegory to Englishmen exterminating the Tasmanian aborigines, whilst Percival Lowell saw the global network of Martian canals as a world civilization that had progressed beyond war. But most habitable planets are overtly fictional. The planet properly known as Arrakis and colloquially known as Dune (Herbert 1965) provides an exceptionally well-developed example of a fictional habitable planet. In its particulars Dune resembles a warmer Mars with a breathable oxygen atmosphere. Like Mars, Dune is now a parched desert planet but there are signs that water flowed in the prehistoric past. Dune has small water ice caps at the poles and more extensive deep polar aquifers. The tropics are exceedingly dry but the polar regions are cool and moist enough to have morning dew. Dune is sparsely inhabited by a mix of indigenous and terran flora and fauna. The fictional Dune asks us to consider how much water is enough, why does oxygen accumulate in an atmosphere, and what actually sets the inner edge to the habitable zone. The inner edge of the habitable zone is conventionally set by the onset of the runaway greenhouse effect. The runaway greenhouse occurs when there is enough water vapor in the atmosphere to lift the planet's thermal photosphere off the ground. For a wet planet the mapping between saturation, temperature and optical depth is unique; together these set an upper limit on the rate the amount of thermal radiation that the planet can emit and still maintain a humid atmosphere. A dry atmosphere has a lower opacity for a given temperature, other things equal. With its vast dry equatorial deserts, a habitable Dune can radiate at a significantly higher effective temperature than a wet planet, and so it can provide an abode for life significantly closer to its sun. We use GCM modeling to show that liquid water can exist at places on the surface of a Dune-like planet at insolation levels as much as 170% of the present solar flux of the Earth.
On the observability of resonant structures in planetesimal disks due to planetary migration
NASA Astrophysics Data System (ADS)
Reche, R.; Beust, H.; Augereau, J.-C.; Absil, O.
2008-03-01
Context: The observed clumpy structures in debris disks are commonly interpreted as particles trapped in mean-motion resonances with an unseen exo-planet. Populating the resonances requires a migrating process of either the particles (spiraling inward due to drag forces) or the planet (moving outward). Because the drag time-scale in resolved debris disks is generally long compared to the collisional time-scale, the planet migration scenario might be more likely, but this model has so far only been investigated for planets on circular orbits. Aims: We present a thorough study of the impact of a migrating planet on a planetesimal disk, by exploring a broad range of masses and eccentricities for the planet. We discuss the sensitivity of the structures generated in debris disks to the basic planet parameters. Methods: We perform many N-body numerical simulations, using the symplectic integrator SWIFT, taking into account the gravitational influence of the star and the planet on massless test particles. A constant migration rate is assumed for the planet. Results: The effect of planetary migration on the trapping of particles in mean motion resonances is found to be very sensitive to the initial eccentricity of the planet and of the planetesimals. A planetary eccentricity as low as 0.05 is enough to smear out all the resonant structures, except for the most massive planets. The planetesimals also initially have to be on orbits with a mean eccentricity of less than than 0.1 in order to keep the resonant clumps visible. Conclusions: This numerical work extends previous analytical studies and provides a collection of disk images that may help in interpreting the observations of structures in debris disks. Overall, it shows that stringent conditions must be fulfilled to obtain observable resonant structures in debris disks. Theoretical models of the origin of planetary migration will therefore have to explain how planetary systems remain in a suitable configuration to reproduce the observed structures. Figures 4-7 and Tables 2-4 are only available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Jenkins, Jon Michael
2015-08-01
Twenty years ago, no planets were known outside our own solar system. Since then, the discoveries of ~1500 exoplanets have radically altered our views of planets and planetary systems. This revolution is due in no small part to the Kepler Mission, which has discovered >1000 of these planets and >4000 planet candidates. While Kepler has shown that small rocky planets and planetary systems are quite common, the quest to find Earth’s closest cousins and characterize their atmospheres presses forward with missions such as NASA Explorer Program’s Transiting Exoplanet Survey Satellite (TESS) slated for launch in 2017 and ESA’s PLATO mission scheduled for launch in 2024.These future missions pose daunting data processing challenges in terms of the number of stars, the amount of data, and the difficulties in detecting weak signatures of transiting small planets against a roaring background. These complications include instrument noise and systematic effects as well as the intrinsic stellar variability of the subjects under scrutiny. In this paper we review recent developments in the Kepler transit search pipeline improving both the yield and reliability of detected transit signatures.Many of the phenomena in light curves that represent noise can also trigger transit detection algorithms. The Kepler Mission has expended great effort in suppressing false positives from its planetary candidate catalogs. While over 18,000 transit-like signatures can be identified for a search across 4 years of data, most of these signatures are artifacts, not planets. Vetting all such signatures historically takes several months’ effort by many individuals. We describe the application of machine learning approaches for the automated vetting and production of planet candidate catalogs. These algorithms can improve the efficiency of the human vetting effort as well as quantifying the likelihood that each candidate is truly a planet. This information is crucial for obtaining valid planet occurrence rates. Machine learning approaches may prove to be critical to the success of future missions such as TESS and PLATO.
Logical steps to moon, Mars and beyond
NASA Astrophysics Data System (ADS)
Kuriki, Kyoichi
1993-10-01
A scenario of the space activities aimed at exploration of moon, Mars, and other planets is proposed. The scenario uses motivations based on the fundamental human instinct, i.e. intellectual curiosity and survival of the humankind. It is shown how these key drivers are threading through the known programs including Space Shuttle and Space Station, Space Energy Exploitation and Space Factory, Lunar Base, and Mars Base. It is concluded that an eventual goal of the mission from planet earth is to set Noah's Arc off into space in the next millenium.
2018-05-05
NASA’s Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) was launched May 5 on a United Launch Alliance Atlas V rocket, from Vandenberg Air Force Base in Central California. NASA also flew a technology demonstration called Mars Cube One (MarCO) on the Atlas V to separately go to Mars. NASA has a long and successful track record at Mars. InSight will drill into the Red Planet to study the crust, mantle and core of Mars. It will help scientists understand the formation and early evolution of all rocky planets, including Earth.
2016-01-28
This animated flight over Ceres explores the most prominent craters, as well as the mountain Ahuna Mons. The movie shows Ceres in enhanced color, using images taken by the NASA's Dawn spacecraft as it orbited the dwarf planet.
Estimated Radiation Dosage on Mars
2002-03-01
This global map of Mars, based on data from NASA Mars Odyssey, shows the estimated radiation dosages from cosmic rays reaching the surface, a serious health concern for any future human exploration of the planet.
2002-02-16
This global map of Mars, based on data from NASA Mars Odyssey, shows estimates for amounts of high-energy-particle cosmic radiation reaching the surface, a serious health concern for any future human exploration of the planet.
2015-12-22
This concept animation shows just one of many potential concepts for how the first human landing site on Mars might evolve throughout the course of multiple human expeditions to the Red Planet over a decade or more.
2004-01-06
KENNEDY SPACE CENTER, FLA. --Shown upside down to read the names, this plaque commemorating the STS-107 Space Shuttle Columbia crew now looks over the Mars landscape after the successful landing and deployment of the Mars Exploration Rover “Spirit” Jan. 4 onto the red planet. The plaque, mounted on the high-gain antenna, is shown while the rover underwent final checkout March 28, 2003, in the Payload Hazardous Servicing Facility at KSC.
Vision 21: The NASA strategic plan
NASA Technical Reports Server (NTRS)
1992-01-01
The NASA Strategic Plan, Vision 21, is a living roadmap to the future to guide the men and women of the NASA team as they ensure U.S. leadership in space exploration and aeronautics research. This multiyear plan consists of a set of programs and activities that will retain our leadership in space science and the exploration of the solar system; help rebuild our nation's technology base and strengthen our leadership in aviation and other key industries; encourage commercial applications of space technology; use the unique perspective of space to better understand our home planet; provide the U.S. and its partners with a permanent space based research facility; expand on the legacy of Apollo and initiate precursor activities to establish a lunar base; and allow us a journey into tomorrow, journey to another planet (Mars), and beyond.
Mars Surface Environmental Issues
NASA Technical Reports Server (NTRS)
Charles, John
2002-01-01
Planetary exploration by astronauts will require extended periods of habitation on a planet's surface, under the influence of environmental factors that are different from those of Earth and the spacecraft that delivered the crew to the planet. Human exploration of Mars, a possible near-term planetary objective, can be considered a challenging scenario. Mission scenarios currently under consideration call for surface habitation periods of from 1 to 18 months on even the earliest expeditions. Methods: Environmental issues associated with Mars exploration have been investigated by NASA and the National Space Biomedical Research Institute (NSBRI) as part of the Bioastronautics Critical Path Roadmap Project (see http ://criticalpath.jsc.nasa.gov). Results: Arrival on Mars will immediately expose the crew to gravity only 38% of that at Earth's surface in possibly the first prolonged exposure to gravity other than the 1G of Earth's surface and the zero G of weightless space flight, with yet unknown effects on crew physiology. The radiation at Mars' surface is not well documented, although the planet's bulk and even its thin atmosphere may moderate the influx of galactic cosmic radiation and energetic protons from solar flares. Secondary radiation from activated components of the soil must also be considered. Ultrafine and larger respirable and nonrespirable particles in Martian dust introduced into the habitat after surface excursions may induce pulmonary inflammation exacerbated by the additive reactive and oxidizing nature of the dust. Stringent decontamination cannot eliminate mechanical and corrosive effects of the dust on pressure suits and exposed machinery. The biohazard potential of putative indigenous Martian microorganisms may be assessed by comparison with analog environments on Earth. Even in their absence, human microorganisms, if not properly controlled, can be a threat to the crew's health. Conclusions: Mars' surface offers a substantial challenge to the health and safety of future human explorers.
Exploring H2O Prominence in Reflection Spectra of Cool Giant Planets
NASA Astrophysics Data System (ADS)
MacDonald, Ryan J.; Marley, Mark S.; Fortney, Jonathan J.; Lewis, Nikole K.
2018-05-01
The H2O abundance of a planetary atmosphere is a powerful indicator of formation conditions. Inferring H2O in the solar system giant planets is challenging, due to condensation depleting the upper atmosphere of water vapor. Substantially warmer hot Jupiter exoplanets readily allow detections of H2O via transmission spectroscopy, but such signatures are often diminished by the presence of clouds composed of other species. In contrast, highly scattering water clouds can brighten planets in reflected light, enhancing molecular signatures. Here, we present an extensive parameter space survey of the prominence of H2O absorption features in reflection spectra of cool (Teff < 400 K) giant exoplanetary atmospheres. The impact of effective temperature, gravity, metallicity, and sedimentation efficiency is explored. We find prominent H2O features around 0.94 μm, 0.83 μm, and across a wide spectral region from 0.4 to 0.73 μm. The 0.94 μm feature is only detectable where high-altitude water clouds brighten the planet: Teff ∼ 150 K, g ≳ 20 ms‑2, fsed ≳ 3, m ≲ 10× solar. In contrast, planets with g ≲ 20 ms‑2 and Teff ≳ 180 K display substantially prominent H2O features embedded in the Rayleigh scattering slope from 0.4 to 0.73 μm over a wide parameter space. High fsed enhances H2O features around 0.94 μm, and enables these features to be detected at lower temperatures. High m results in dampened H2O absorption features, due to water vapor condensing to form bright, optically thick clouds that dominate the continuum. We verify these trends via self-consistent modeling of the low-gravity exoplanet HD 192310c, revealing that its reflection spectrum is expected to be dominated by H2O absorption from 0.4 to 0.73 μm for m ≲ 10× solar. Our results demonstrate that H2O is manifestly detectable in reflected light spectra of cool giant planets only marginally warmer than Jupiter, providing an avenue to directly constrain the C/O and O/H ratios of a hitherto unexplored population of exoplanetary atmospheres.
Mars Orbiter Sample Return Power Design
NASA Technical Reports Server (NTRS)
Mardesich, N.; Dawson, S.
2005-01-01
Mars has greatly intrigued scientists and the general public for many years because, of all the planets, its environment is most like Earth's. Many scientists believe that Mars once had running water, although surface water is gone today. The planet is very cold with a very thin atmosphere consisting mainly of CO2. Mariner 4, 6, and 7 explored the planet in flybys in the 1960s and by the orbiting Mariner 9 in 1971. NASA then mounted the ambitious Viking mission, which launched two orbiters and two landers to the planet in 1975. The landers found ambiguous evidence of life. Mars Pathfinder landed on the planet on July 4, 1997, delivering a mobile robot rover that demonstrated exploration of the local surface environment. Mars Global Surveyor is creating a highest-resolution map of the planet's surface. These prior and current missions to Mars have paved the way for a complex Mars Sample Return mission planned for 2003 and 2005. Returning surface samples from Mars will necessitate retrieval of material from Mars orbit. Sample mass and orbit are restricted to the launch capability of the Mars Ascent Vehicle. A small sample canister having a mass less than 4 kg and diameter of less than 16 cm will spend from three to seven years in a 600 km orbit waiting for retrieval by a second spacecraft consisting of an orbiter equipped with a sample canister retrieval system, and a Earth Entry Vehicle. To allow rapid detection of the on-orbit canister, rendezvous, and collection of the samples, the canister will have a tracking beacon powered by a surface mounted solar array. The canister must communicate using RF transmission with the recovery vehicle that will be coming in 2006 or 2009 to retrieve the canister. This paper considers the aspect and conclusion that went into the design of the power system that achieves the maximum power with the minimum risk. The power output for the spherical orbiting canister was modeled and plotted in various views of the orbit by the Satellite Orbit Analysis Program (SOAP).
Pebble-isolation mass: Scaling law and implications for the formation of super-Earths and gas giants
NASA Astrophysics Data System (ADS)
Bitsch, Bertram; Morbidelli, Alessandro; Johansen, Anders; Lega, Elena; Lambrechts, Michiel; Crida, Aurélien
2018-04-01
The growth of a planetary core by pebble accretion stops at the so-called pebble isolation mass, when the core generates a pressure bump that traps drifting pebbles outside its orbit. The value of the pebble isolation mass is crucial in determining the final planet mass. If the isolation mass is very low, gas accretion is protracted and the planet remains at a few Earth masses with a mainly solid composition. For higher values of the pebble isolation mass, the planet might be able to accrete gas from the protoplanetary disc and grow into a gas giant. Previous works have determined a scaling of the pebble isolation mass with cube of the disc aspect ratio. Here, we expand on previous measurements and explore the dependency of the pebble isolation mass on all relevant parameters of the protoplanetary disc. We use 3D hydrodynamical simulations to measure the pebble isolation mass and derive a simple scaling law that captures the dependence on the local disc structure and the turbulent viscosity parameter α. We find that small pebbles, coupled to the gas, with Stokes number τf < 0.005 can drift through the partial gap at pebble isolation mass. However, as the planetary mass increases, particles must be decreasingly smaller to penetrate the pressure bump. Turbulent diffusion of particles, however, can lead to an increase of the pebble isolation mass by a factor of two, depending on the strength of the background viscosity and on the pebble size. We finally explore the implications of the new scaling law of the pebble isolation mass on the formation of planetary systems by numerically integrating the growth and migration pathways of planets in evolving protoplanetary discs. Compared to models neglecting the dependence of the pebble isolation mass on the α-viscosity, our models including this effect result in higher core masses for giant planets. These higher core masses are more similar to the core masses of the giant planets in the solar system.
NASA Technical Reports Server (NTRS)
Kostov, Veselin B.; Moore, Keavin; Tamayo, Daniel; Jayawardhana, Ray; Rinehart, Stephen A.
2016-01-01
Inspired by the recent Kepler discoveries of circumbinary planets orbiting nine close binary stars, we explore the fate of the former as the latter evolve off the main sequence. We combine binary star evolution models with dynamical simulations to study the orbital evolution of these planets as their hosts undergo common-envelope stages, losing in the process a tremendous amount of mass on dynamical timescales. Five of the systems experience at least one Roche-lobe overflow and common-envelope stages (Kepler-1647 experiences three), and the binary stars either shrink to very short orbits or coalesce; two systems trigger a double-degenerate supernova explosion. Kepler's circumbinary planets predominantly remain gravitationally bound at the end of the common-envelope phase, migrate to larger orbits, and may gain significant eccentricity; their orbital expansion can be more than an order of magnitude and can occur over the course of a single planetary orbit. The orbits these planets can reach are qualitatively consistent with those of the currently known post-common-envelope, eclipse-time variations circumbinary candidates. Our results also show that circumbinary planets can experience both modes of orbital expansion (adiabatic and non-adiabatic) if their host binaries undergo more than one common-envelope stage; multiplanet circumbinary systems like Kepler-47 can experience both modes during the same common-envelope stage. Additionally, unlike Mercury orbiting the Sun, a circumbinary planet with the same semi-major axis can survive the common envelope evolution of a close binary star with a total mass of 1 Solar Mass.
NASA Astrophysics Data System (ADS)
Granados Contreras, A. P.; Boley, A. C.
2018-03-01
We explore the effects of an undetected outer giant planet on the dynamics, observability, and stability of Systems with Tightly-packed Inner Planets (STIPs). We use direct numerical simulations along with secular theory and synthetic secular frequency spectra to analyze how analogues of Kepler-11 and Kepler-90 behave in the presence of a nearly co-planar, Jupiter-like outer perturber with semimajor axes between 1 and 5.2 au. Most locations of the outer perturber do not affect the evolution of the inner planetary systems, apart from altering precession frequencies. However, there are locations at which an outer planet causes system instability due to, in part, secular eccentricity resonances. In Kepler-90, there is a range of orbital distances for which the outer perturber drives planets b and c, through secular interactions, onto orbits with inclinations that are ∼16° away from the rest of the planets. Kepler-90 is stable in this configuration. Such secular resonances can thus affect the observed multiplicity of transiting systems. We also compare the synthetic apsidal and nodal precession frequencies with the secular theory and find some misalignment between principal frequencies, indicative of strong interactions between the planets (consistent with the system showing TTVs). First-order libration angles are calculated to identify MMRs in the systems, for which two near-MMRs are shown in Kepler-90, with a 5:4 between b and c, as well as a 3:2 between g and h.
Exploring exomoon atmospheres with an idealized general circulation model
NASA Astrophysics Data System (ADS)
Haqq-Misra, Jacob; Heller, René
2018-06-01
Recent studies have shown that large exomoons can form in the accretion disks around super-Jovian extrasolar planets. These planets are abundant at about 1 AU from Sun-like stars, which makes their putative moons interesting for studies of habitability. Technological advances could soon make an exomoon discovery with Kepler or the upcoming CHEOPS and PLATO space missions possible. Exomoon climates might be substantially different from exoplanet climates because the day-night cycles on moons are determined by the moon's synchronous rotation with its host planet. Moreover, planetary illumination at the top of the moon's atmosphere and tidal heating at the moon's surface can be substantial, which can affect the redistribution of energy on exomoons. Using an idealized general circulation model with simplified hydrologic, radiative, and convective processes, we calculate surface temperature, wind speed, mean meridional circulation, and energy transport on a 2.5 Mars-mass moon orbiting a 10-Jupiter-mass at 1 AU from a Sun-like star. The strong thermal irradiation from a young giant planet causes the satellite's polar regions to warm, which remains consistent with the dynamically-driven polar amplification seen in Earth models that lack ice-albedo feedback. Thermal irradiation from young, luminous giant planets onto water-rich exomoons can be strong enough to induce water loss on a planet, which could lead to a runaway greenhouse. Moons that are in synchronous rotation with their host planet and do not experience a runaway greenhouse could experience substantial polar melting induced by the polar amplification of planetary illumination and geothermal heating from tidal effects.
PASTIS: Bayesian extrasolar planet validation - I. General framework, models, and performance
NASA Astrophysics Data System (ADS)
Díaz, R. F.; Almenara, J. M.; Santerne, A.; Moutou, C.; Lethuillier, A.; Deleuil, M.
2014-06-01
A large fraction of the smallest transiting planet candidates discovered by the Kepler and CoRoT space missions cannot be confirmed by a dynamical measurement of the mass using currently available observing facilities. To establish their planetary nature, the concept of planet validation has been advanced. This technique compares the probability of the planetary hypothesis against that of all reasonably conceivable alternative false positive (FP) hypotheses. The candidate is considered as validated if the posterior probability of the planetary hypothesis is sufficiently larger than the sum of the probabilities of all FP scenarios. In this paper, we present PASTIS, the Planet Analysis and Small Transit Investigation Software, a tool designed to perform a rigorous model comparison of the hypotheses involved in the problem of planet validation, and to fully exploit the information available in the candidate light curves. PASTIS self-consistently models the transit light curves and follow-up observations. Its object-oriented structure offers a large flexibility for defining the scenarios to be compared. The performance is explored using artificial transit light curves of planets and FPs with a realistic error distribution obtained from a Kepler light curve. We find that data support the correct hypothesis strongly only when the signal is high enough (transit signal-to-noise ratio above 50 for the planet case) and remain inconclusive otherwise. PLAnetary Transits and Oscillations of stars (PLATO) shall provide transits with high enough signal-to-noise ratio, but to establish the true nature of the vast majority of Kepler and CoRoT transit candidates additional data or strong reliance on hypotheses priors is needed.
Searching for Planet Nine with Coadded WISE and NEOWISE-Reactivation Images
Meisner, Aaron M.; Bromley, Benjamin C.; Nugent, Peter E.; ...
2017-01-11
A distant, as yet unseen ninth planet has been invoked to explain various observations of the outer solar system. While such a "Planet Nine," if it exists, is most likely to be discovered via reflected light in the optical, it may emit much more strongly at 3-5 μm than simple blackbody predictions would suggest, depending on its atmospheric properties. As a result, Planet Nine may be detectable at 3.4 μm with the Wide-field Infrared Survey Explorer, but single exposures are too shallow except at relatively small distances (more » $${d}_{9}\\lesssim 430$$ au). In this paper, we develop a method to search for Planet Nine far beyond the W1 single-exposure sensitivity, to distances as large as 800 au, using inertial coadds of W1 exposures binned into ~1 day intervals. We apply our methodology to a ~2000 square degree testbed sky region which overlaps a southern segment of Planet Nine's anticipated orbital path. We do not detect a plausible Planet Nine candidate, but are able to derive a detailed completeness curve, ruling out its presence within the parameter space searched at W1 < 16.66 (90% completeness). Our method uses all publicly available W1 imaging, spanning 2010 January to 2015 December, and will become more sensitive with future NEOWISE-Reactivation releases of additional W1 exposures. Finally, we anticipate that our method will be applicable to the entire high Galactic latitude sky, and we will extend our search to that full footprint in the near future.« less
The dynamical evolution of transiting planetary systems including a realistic collision prescription
NASA Astrophysics Data System (ADS)
Mustill, Alexander J.; Davies, Melvyn B.; Johansen, Anders
2018-05-01
Planet-planet collisions are a common outcome of instability in systems of transiting planets close to the star, as well as occurring during in-situ formation of such planets from embryos. Previous N-body studies of instability amongst transiting planets have assumed that collisions result in perfect merging. Here, we explore the effects of implementing a more realistic collision prescription on the outcomes of instability and in-situ formation at orbital radii of a few tenths of an au. There is a strong effect on the outcome of the growth of planetary embryos, so long as the debris thrown off in collisions is rapidly removed from the system (which happens by collisional processing to dust, and then removal by radiation forces) and embryos are small (<0.1 M⊕). If this is the case, then systems form fewer detectable (≥1 M⊕) planets than systems evolved under the assumption of perfect merging in collisions. This provides some contribution to the "Kepler Dichotomy": the observed over-abundance of single-planet systems. The effects of changing the collision prescription on unstable mature systems of super-Earths are less pronounced. Perfect mergers only account for a minority of collision outcomes in such systems, but most collisions resulting in mass loss are grazing impacts in which only a few per cent. of mass is lost. As a result, there is little impact on the final masses and multiplicities of the systems after instability when compared to systems evolved under the assumption that collisions always result in perfect merging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsumura, Soko; Brasser, Ramon; Ida, Shigeru, E-mail: s.matsumura@dundee.ac.uk
2016-02-10
Recent observations started revealing the compositions of protostellar disks and planets beyond the solar system. In this paper, we explore how the compositions of terrestrial planets are affected by the dynamical evolution of giant planets. We estimate the initial compositions of the building blocks of these rocky planets by using a simple condensation model, and numerically study the compositions of planets formed in a few different formation models of the solar system. We find that the abundances of refractory and moderately volatile elements are nearly independent of formation models, and that all the models could reproduce the abundances of thesemore » elements of the Earth. The abundances of atmophile elements, on the other hand, depend on the scattering rate of icy planetesimals into the inner disk, as well as the mixing rate of the inner planetesimal disk. For the classical formation model, neither of these mechanisms are efficient and the accretion of atmophile elements during the final assembly of terrestrial planets appears to be difficult. For the Grand Tack model, both of these mechanisms are efficient, which leads to a relatively uniform accretion of atmophile elements in the inner disk. It is also possible to have a “hybrid” scenario where the mixing is not very efficient but the scattering is efficient. The abundances of atmophile elements in this case increase with orbital radii. Such a scenario may occur in some of the extrasolar planetary systems, which are not accompanied by giant planets or those without strong perturbations from giants. We also confirm that the Grand Tack scenario leads to the distribution of asteroid analogues where rocky planetesimals tend to exist interior to icy ones, and show that their overall compositions are consistent with S-type and C-type chondrites, respectively.« less
The Thermal Emission and Albedo of Super-Earths with Flat Transmission Spectra
NASA Astrophysics Data System (ADS)
Morley, Caroline; Fortney, Jonathan; Marley, Mark
2014-11-01
Vast resources have been dedicated to characterizing the handful of planets with radii between Earth’s and Neptune’s that are accessible to current telescopes. Observations of their transmission spectra have been inconclusive and do not constrain the atmospheric composition. Here, we present a path forward for understanding this class of small planets: by understanding the thermal emission and reflectivity of small planets, we can break these degeneracies and constrain the atmospheric composition. Of the ~four small planets studied to date, all have radii in the near-IR consistent with being constant in wavelength. This suggests either that these planets all have higher mean molecular weight atmospheres than expected for hydrogen-dominated bulk compositions, or that the atmospheres of small planets are consistently enshrouded in thick hazes and clouds. For the particularly well-studied planet GJ 1214b, the measurements made using HST/WFC3 can rule out atmospheres with high mean molecular weights, leaving clouds as the sole explanation for the flat transmission spectrum. We showed in Morley et al. 2013 that these clouds and hazes can be made of salts and sulfides, which condense in the upper atmosphere of a cool H-rich atmosphere like GJ 1214b, or made of photochemical hazes such as soots, which result from methane photodissociation and subsequent carbon chemistry. Here, we explore how clouds thick enough to obscure the transmission spectrum change both thermal emission spectra and albedo spectra. These observations are complementary to transmission spectra measurements. Thermal emission probes deeper layers of the atmosphere, potentially below the high haze layer obscuring the transmission spectra; albedo spectra probe reflected starlight largely from the cloud particles themselves. Crucially, these complementary observations of planets with flat transmission spectra may allow us to break the degeneracies between cloud materials, cloud height and longitude, and bulk composition of the atmosphere. We make predictions for the observability of known planets for current and future telescopes.
The Thermal Emission and Albedo of Super-Earths with Flat Transmission Spectra
NASA Astrophysics Data System (ADS)
Morley, Caroline; Fortney, Jonathan J.; Marley, Mark
2015-01-01
Vast resources have been dedicated to characterizing the handful of planets with radii between Earth's and Neptune's that are accessible to current telescopes. Observations of their transmission spectra have been inconclusive and do not constrain the atmospheric composition. Here, we present a path forward for understanding this class of small planets: by understanding the thermal emission and reflectivity of small planets, we can break these degeneracies and constrain the atmospheric composition.Of the ~five small planets studied to date, four have radii in the near-IR consistent with being constant in wavelength. This suggests either that these planets all have higher mean molecular weight atmospheres than expected for hydrogen-dominated bulk compositions, or that the atmospheres of small planets are consistently enshrouded in thick hazes and clouds. For the particularly well-studied planet GJ 1214b, the measurements made using HST/WFC3 can rule out atmospheres with high mean molecular weights, leaving clouds as the sole explanation for the flat transmission spectrum. We showed in Morley et al. 2013 that these clouds and hazes can be made of salts and sulfides, which condense in the upper atmosphere of a cool H-rich atmosphere like GJ 1214b, or made of photochemical hazes such as soots, which result from methane photodissociation and subsequent carbon chemistry. Here, we explore how clouds thick enough to obscure the transmission spectrum change both thermal emission spectra and albedo spectra. These observations are complementary to transmission spectra measurements. Thermal emission probes deeper layers of the atmosphere, potentially below the high haze layer obscuring the transmission spectra; albedo spectra probe reflected starlight largely from the cloud particles themselves. Crucially, these complementary observations of planets with flat transmission spectra may allow us to break the degeneracies between cloud materials, cloud height and longitude, and bulk composition of the atmosphere. We make predictions for the observability of known planets for current and future telescopes.
Geometry of Exploration: Eyes over Mars. NASA Connect: Program 4 in the 1999-2000 Series.
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Hampton, VA. Langley Research Center.
This teaching unit is designed to help students in grades 4-8 explore the concepts of geometry and measurement in the context of surveying planets. The units in this series have been developed to enhance and enrich mathematics, science, and technology education and to accommodate different teaching and learning styles. Each unit consists of a…
NASA Celebrates 40 Years of the Voyager Mission
2017-09-05
NASA celebrates 40 years of the Voyager 1 and 2 spacecraft -- humanity's farthest and longest-lived mission -- on Tuesday, Sept. 5. The Voyagers’ original mission was to explore Jupiter and Saturn. Although the twin spacecraft are now far beyond the planets in the solar system, NASA continues to communicate with them daily as they explore the frontier where interstellar space begins.
"A Changing Planet: Cultural Worldviews and the Environment". A Curriculum Unit for Grades 5 and 6.
ERIC Educational Resources Information Center
Barca, Deborah
This curriculum unit is part of a larger curriculum developed around the broad theme of change. In this unit students will explore how a culture's myths and traditions reflect their environmental practices. As students actively explore environmental issues, their understandings of those issues change, which in turn fosters self-growth (i.e.,…
NASA Technical Reports Server (NTRS)
Wales, Roxana C.
2005-01-01
This viewgraph presentation summarizes the scheduling and planning difficulties inherent in operating the Mars Exploration Rovers (MER) during the overlapping terrestrial day and Martian sol. The presentation gives special empahsis to communication between the teams controlling the rovers from Earth, and keeping track of time on the two planets.
NASA Astrophysics Data System (ADS)
Wertz, O.; Absil, O.; Gómez González, C. A.; Milli, J.; Girard, J. H.; Mawet, D.; Pueyo, L.
2017-02-01
Context. HR8799 is orbited by at least four giant planets, making it a prime target for the recently commissioned Spectro-Polarimetric High-contrast Exoplanet REsearch (VLT/SPHERE). As such, it was observed on five consecutive nights during the SPHERE science verification in December 2014. Aims: We aim to take full advantage of the SPHERE capabilities to derive accurate astrometric measurements based on H-band images acquired with the Infra-Red Dual-band Imaging and Spectroscopy (IRDIS) subsystem, and to explore the ultimate astrometric performance of SPHERE in this observing mode. We also aim to present a detailed analysis of the orbital parameters for the four planets. Methods: We performed thorough post-processing of the IRDIS images with the Vortex Imaging Processing (VIP) package to derive a robust astrometric measurement for the four planets. This includes the identification and careful evaluation of the different contributions to the error budget, including systematic errors. Combining our astrometric measurements with the ones previously published in the literature, we constrain the orbital parameters of the four planets using PyAstrOFit, our new open-source python package dedicated to orbital fitting using Bayesian inference with Monte-Carlo Markov Chain sampling. Results: We report the astrometric positions for epoch 2014.93 with an accuracy down to 2.0 mas, mainly limited by the astrometric calibration of IRDIS. For each planet, we derive the posterior probability density functions for the six Keplerian elements and identify sets of highly probable orbits. For planet d, there is clear evidence for nonzero eccentricity (e 0.35), without completely excluding solutions with smaller eccentricities. The three other planets are consistent with circular orbits, although their probability distributions spread beyond e = 0.2, and show a peak at e ≃ 0.1 for planet e. The four planets have consistent inclinations of approximately 30° with respect to the sky plane, but the confidence intervals for the longitude of the ascending node are disjointed for planets b and c, and we find tentative evidence for non-coplanarity between planets b and c at the 2σ level. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 60.A-9352.
Asteroids in the service of humanity
NASA Astrophysics Data System (ADS)
Crawford, Ian A.
2013-07-01
There are at least three compelling reasons for the human race to initiate a major programme to explore and better understand the 'minor planets' of the Solar System: (1) Enhancing scientific knowledge; (2) Mitigating the impact hazard; and (3) Utilizing extraterrestrial resources. Strong synergies exist between all three. Moreover, all these activities would benefit from greater international cooperation in space exploration by the World's space agencies, and the recognition that asteroids are important targets for human and robotic exploration.
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan
2014-01-01
Establishing a lunar presence and creating an industrial capability on the Moon may lead to important new discoveries for all of human kind. Historical studies of lunar exploration, in-situ resource utilization (ISRU) and industrialization all point to the vast resources on the Moon and its links to future human and robotic exploration. In the historical work, a broad range of technological innovations are described and analyzed. These studies depict program planning for future human missions throughout the solar system, lunar launched nuclear rockets, and future human settlements on the Moon, respectively. Updated analyses based on the visions presented are presented. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal propulsion, nuclear surface power, as well as advanced chemical propulsion can significantly enhance these scenarios. Robotic and human outer planet exploration options are described in many detailed and extensive studies. Nuclear propulsion options for fast trips to the outer planets are discussed. To refuel such vehicles, atmospheric mining in the outer solar system has also been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as Helium 3 (3He) and hydrogen can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and hydrogen (deuterium, etc.) were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses have investigated resource capturing aspects of atmospheric mining in the outer solar system. These analyses included the gas capturing rate, storage options, and different methods of direct use of the captured gases. While capturing 3He, large amounts of hydrogen and 4He are produced. With these two additional gases, the potential for fueling small and large fleets of additional exploration and exploitation vehicles exists.
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan
2014-01-01
Establishing a lunar presence and creating an industrial capability on the Moon may lead to important new discoveries for all of human kind. Historical studies of lunar exploration, in-situ resource utilization (ISRU) and industrialization all point to the vast resources on the Moon and its links to future human and robotic exploration. In the historical work, a broad range of technological innovations are described and analyzed. These studies depict program planning for future human missions throughout the solar system, lunar launched nuclear rockets, and future human settlements on the Moon, respectively. Updated analyses based on the visions presented are presented. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal propulsion, nuclear surface power, as well as advanced chemical propulsion can significantly enhance these scenarios. Robotic and human outer planet exploration options are described in many detailed and extensive studies. Nuclear propulsion options for fast trips to the outer planets are discussed. To refuel such vehicles, atmospheric mining in the outer solar system has also been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as helium 3 (3He) and hydrogen (H2) can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and H2 (deuterium, etc.) were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses have investigated resource capturing aspects of atmospheric mining in the outer solar system. These analyses included the gas capturing rate, storage options, and different methods of direct use of the captured gases. While capturing 3He, large amounts of hydrogen and 4He are produced. With these two additional gases, the potential for fueling small and large fleets of additional exploration and exploitation vehicles exists.
Sixteenth Lunar and Planetary Science Conference. Press abstracts
NASA Technical Reports Server (NTRS)
1985-01-01
A broad range of topics concerned with lunar and planetary science are discussed. Topics among those included are, the sun, the planets, comets, meteorities, asteroids, satellites, space exploration, and the significance of these to Earth.
ScienceCast 212: Amazing Moons
2016-03-10
When the Space Age began, explorers were eager to visit the planets of the solar system. As the years have passed, however, astronomers have realized that the moons of the solar system may be even more interesting.
Current progress on TPFI nulling architectures at Jet Propulsion Laboratory
NASA Technical Reports Server (NTRS)
Gappinger, Robert O.; Wallace, J. Kent; Bartos, Randall D.; Macdonald, Daniel R.; Brown, Kenneth A.
2005-01-01
Infrared interferometric nulling is a promising technology for exoplanet detection. Nulling research for the Terrestrial Planet Finder Interferometer has been exploring a variety of interferometer architectures at the Jet Propulsion Laboratory (JPL).
How Do Earth-Sized, Short-Period Planets Form?
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-08-01
Matching theory to observation often requires creative detective work. In a new study, scientists have used a clever test to reveal clues about the birth of speedy, Earth-sized planets.Former Hot Jupiters?Artists impression of a hot Jupiter with an evaporating atmosphere. [NASA/Ames/JPL-Caltech]Among the many different types of exoplanets weve observed, one unusual category is that of ultra-short-period planets. These roughly Earth-sized planets speed around their host stars at incredible rates, with periods of less than a day.How do planets in this odd category form? One popular theory is that they were previously hot Jupiters, especially massive gas giants orbiting very close to their host stars. The close orbit caused the planets atmospheres to be stripped away, leaving behind only their dense cores.In a new study, a team of astronomers led by Joshua Winn (Princeton University) has found a clever way to test this theory.Planetary radius vs. orbital period for the authors three statistical samples (colored markers) and the broader sample of stars in the California Kepler Survey. [Winn et al. 2017]Testing MetallicitiesStars hosting hot Jupiters have an interesting quirk: they typically have metallicities that are significantly higher than an average planet-hosting star. It is speculated that this is because planets are born from the same materials as their host stars, and hot Jupiters require the presence of more metals to be able to form.Regardless of the cause of this trend, if ultra-short-period planets are in fact the solid cores of former hot Jupiters, then the two categories of planets should have hosts with the same metallicity distributions. The ultra-short-period-planet hosts should therefore also be weighted to higher metallicities than average planet-hosting stars.To test this, the authors make spectroscopic measurements and gather data for a sample of stellar hosts split into three categories:64 ultra-short-period planets (orbital period shorter than a day)23 hot Jupiters (larger than 4 times Earths radius and orbital period shorter than 10 days)243 small hot planets (smaller than 4 times Earths radius and orbital period between 1 and 10 days)They then compare the metallicity distributions of these three groups.Back to the Drawing BoardMetallicity distributions of the three statistical samples. The hot-Jupiter hosts (orange) have different distribution than the others; it is weighted more toward higher metallicities. [Winn et al. 2017]Winn and collaborators find that hosts of ultra-short-period planets do not have the same metallicity distribution as hot-Jupiter hosts; the metallicities of hot-Jupiter hosts are significantly higher. The metallicity distributions for hosts of ultra-short-period planets and hosts of small hot planets were statistically indistinguishable, however.These results strongly suggest that the majority of ultra-short-period planets are not the cores of former hot Jupiters. Alternative options include the possibility that they are the cores of smaller planets, such as sub-Neptunes, or that they are the short-period extension of the distribution of close-in, small rocky planets that formed by core accretion.This narrowing of the options for the formation of ultra-short-period planets is certainly intriguing. We can hope to further explore possibilities in the future after the Transiting Exoplanet Survey Satellites (TESS) comes online next year; TESS is expected to discover many more ultra-short-period planets that are too faint for Kepler to detect.CitationJoshua N. Winn et al 2017 AJ 154 60. doi:10.3847/1538-3881/aa7b7c
Secular evolution of eccentricity in protoplanetary discs with gap-opening planets
NASA Astrophysics Data System (ADS)
Teyssandier, Jean; Ogilvie, Gordon I.
2017-06-01
We explore the evolution of the eccentricity of an accretion disc perturbed by an embedded planet whose mass is sufficient to open a large gap in the disc. Various methods for representing the orbit-averaged motion of an eccentric disc are discussed. We characterize the linear instability that leads to the growth of eccentricity by means of hydrodynamical simulations. We numerically recover the known result that eccentricity growth in the disc is possible when the planet-to-star mass ratio exceeds 3 × 10-3. For mass ratios larger than this threshold, the precession rates and growth rates derived from simulations, as well as the shape of the eccentric mode, compare well with the predictions of a linear theory of eccentric discs. We study mechanisms by which the eccentricity growth eventually saturates into a non-linear regime.
NASA Astrophysics Data System (ADS)
Meyer, Michael; NIRCam Star and Planet Formation Theme Team
2017-06-01
With its extraordinary sensitivity, wavelength coverage from < 1 to 5 microns, 2.2x4.4 arc minute field of view, and diversity of observing modes, NIRCam on JWST offers very powerful capabilities to explore the origins of stars and planets. Here we describe programs planned within the NIRCam GTO Program including: i) extinction mapping of pre-stellar cores; ii) massive star formation; iii) embedded clusters and the end of the IMF; iv) imaging and spectroscopy of young stellar objects; and v) excitation of PAH features. We will describe the scope of each program, selection of observing modes and rationale, as well as provide some explicit examples of program design. We will also review the expected outcomes, illustrating the power of NIRCam to answer questions fundamental to understanding the origins of stars and planets.
Warm debris disks candidates in transiting planets systems
NASA Astrophysics Data System (ADS)
Ribas, Á.; Merín, B.; Ardila, D. R.; Bouy, H.
2012-09-01
We have bandmerged candidate transiting planetary systems (fromthe Kepler satellite) and confirmed transiting planetary systems (from the literature) with the recent Wide-field Infrared Survey Explorer (WISE) preliminary release catalog. We have found 13 stars showing infrared excesses at either 12 μm and/or 22 μm. Without longer wavelength observations it is not possible to conclusively determine the nature of the excesses, although we argue that they are likely due to debris disks around the stars. The ratios between themeasured fluxes and the stellar photospheres are generally larger than expected for Gyr-old stars, such as these planetary hosts. Assuming temperature limits for the dust and emission from large dust particles, we derive estimates for the disk radii. These values are comparable to the planet's semi-major axis, suggesting that the planets may be stirring the planetesimals in the system.
The Moon is a Planet Too: Lunar Science and Robotic Exploration
NASA Technical Reports Server (NTRS)
Cohen, Barbara A.
2009-01-01
This slide presentation reviews some of what is known about the moon, and draws parallels between the moon and any other terrestrial planet. The Moon is a cornerstone for all rocky planets The Moon is a terrestrial body, formed and evolved similarly to Earth, Mars, Mercury, Venus, and large asteroids The Moon is a differentiated body, with a layered internal structure (crust, mantle, and core) The Moon is a cratered body, preserving a record of bombardment history in the inner solar system The Moon is an active body, experiencing moonquakes, releasing primordial heat, conducting electricity, sustaining bombardment, and trapping volatile molecules Lunar robotic missions provide early science return to obtain important science and engineering objectives, rebuild a lunar science community, and keep our eyes on the Moon. These lunar missions, both past and future are reviewed.
Terrestrial Planet Finder: Technology Development Plans
NASA Technical Reports Server (NTRS)
Lindensmith, Chris
2004-01-01
One of humanity's oldest questions is whether life exists elsewhere in the universe. The Terrestrial Planet Finder (TPF) mission will survey stars in our stellar neighborhood to search for planets and perform spectroscopic measurements to identify potential biomarkers in their atmospheres. In response to the recently published President's Plan for Space Exploration, TPF has plans to launch a visible-light coronagraph in 2014, and a separated-spacecraft infrared interferometer in 2016. Substantial funding has been committed to the development of the key technologies that are required to meet these goals for launch in the next decade. Efforts underway through industry and university contracts and at JPL include a number of system and subsystem testbeds, as well as components and numerical modeling capabilities. The science, technology, and design efforts are closely coupled to ensure that requirements and capabilities will be consistent and meet the science goals.
2014 Summer Series - Robert Zubrin - Mars Direct - Humans to the Red Planet within a Decade
2014-07-10
In July 1989, on the 20th anniversary of the Apollo Moon landing, the first President Bush called for America to renew its pioneering push into space with the establishment of a permanent Lunar base and a series of human missions to Mars. While many have said that such an endeavor would be excessively costly and take many decades, a small team at Martin Marietta drew up a daring plan that could sharply cut costs and send a group of American astronauts to the Red Planet within ten years. The plan, known as 'Mars Direct,' has attracted international attention and broad controversy. Now, with the nation debating how to proceed with human space exploration, the 'Mars Direct' plan is more relevant than ever: Can Americans reach the Red Planet in our time?
InSight Probes the 'Inner Space' of Mars
2018-01-25
An artist's impression of the InSight lander on Mars. InSight, short for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, is designed to give the Red Planet its first thorough check up since it formed 4.5 billion years ago. It is scheduled to launch from Vandenberg Air Force Base on the California coast between May 5 through June 8, 2018, and land on Mars six months later. InSight will look for tectonic activity and meteorite impacts, study how much heat is still flowing through the planet, and track Mars' wobble as it orbits the sun. While InSight is a Mars mission, it's more than a Mars mission. InSight will help answer key questions about the formation of the rocky planets of the solar system. https://photojournal.jpl.nasa.gov/catalog/PIA22226
Pluto and Charon: Ice Worlds on the Ragged Edge of the Solar System
NASA Astrophysics Data System (ADS)
Stern, Alan; Mitton, Jacqueline
1997-10-01
Rave reviews for Pluto and Charon: Ice Worlds on the Ragged Edge of the Solar System The story of the quest to understand Pluto and the resulting transformation of our concept of the diminutive planet from that of solar-system misfit to king of the Kuiper Belt is told in this book by Alan Stern and Jacqueline Mitton. Stern, a Plutophile to the core, is one of the most energetic, talented, and savvy planetary astronomers in the business today. Mitton, trained as an astronomer, is an experienced writer and editor of scientific books for nonscientists. Together they have created an immensely informative book . . . Written in an engaging and informal style, Pluto and Charon takes the reader step by step from the discovery of the ninth planet in 1930 to the current understanding of Pluto and its moon, Charon.-Sky & Telescope More than a book summarizing what we know about [the] planet, [Pluto and Charon is] about how far and how fast astronomical technology has come since 1965 . . . Stern and Mitton use the narrative of Pluto research to explain in comfortable, everyday language how such work is done . . . One of the nice touches in the book is that Stern and Mitton tell us something about each astronomer.-Astronomy Pluto and Charon presents the exploration of the ninth planet-written as a vivid historical account-for anyone with an interest in science and astronomy . . . the authors describe in simple language the methods researchers use to explore the universe and the way ever-improving instrumentation helps their knowledge advance.-Physics Today
The Devil in the Dark: A Fully Self-Consistent Seismic Model for Venus
NASA Astrophysics Data System (ADS)
Unterborn, C. T.; Schmerr, N. C.; Irving, J. C. E.
2017-12-01
The bulk composition and structure of Venus is unknown despite accounting for 40% of the mass of all the terrestrial planets in our Solar System. As we expand the scope of planetary science to include those planets around other stars, the lack of measurements of basic planetary properties such as moment of inertia, core-size and thermal profile for Venus hinders our ability to compare the potential uniqueness of the Earth and our Solar System to other planetary systems. Here we present fully self-consistent, whole-planet density and seismic velocity profiles calculated using the ExoPlex and BurnMan software packages for various potential Venusian compositions. Using these models, we explore the seismological implications of the different thermal and compositional initial conditions, taking into account phase transitions due to changes in pressure, temperature as well as composition. Using mass-radius constraints, we examine both the centre frequencies of normal mode oscillations and the waveforms and travel times of body waves. Seismic phases which interact with the core, phase transitions in the mantle, and shallower parts of Venus are considered. We also consider the detectability and transmission of these seismic waves from within the dense atmosphere of Venus. Our work provides coupled compositional-seismological reference models for the terrestrial planet in our Solar System of which we know the least. Furthermore, these results point to the potential wealth of fundamental scientific insights into Venus and Earth, as well as exoplanets, which could be gained by including a seismometer on future planetary exploration missions to Venus, the devil in the dark.
Education And Public Outreach For NASA's EPOXI Mission
NASA Astrophysics Data System (ADS)
McFadden, Lucy-Ann A.; Warner, E. M.; Crow, C. A.; Ristvey, J. D.; Counley, J.
2008-09-01
NASA's EPOXI mission has two scientific objectives in using the Deep Impact flyby spacecraft for further studies of comets and adding studies of extra-solar planets around other stars. During the Extrasolar Planetary Observations and Characterization (EPOCh) phase of the mission, observations of extrasolar planets transiting their parent stars are observed to further knowledge and understanding of planetary systems. Observations of Earth allow for comparison with Earth-like planets around other stars. A movie of Earth during a day when the Moon passed between Earth and the spacecraft is an educational highlight with scientific significance. The Deep Impact Extended Investigation (DIXI) continues the Deep Impact theme of investigating comets with a flyby of comet Hartley 2 in November 2010 to further explore the properties of comets and their formation. The EPOXI Education and Public Outreach (E/PO) program builds upon existing materials related to exploring comets and the Deep Impact mission, updating and modifying activities based on results from Deep Impact. An educational activity called Comparing Comets is under development that will guide students in conducting analyses similar to those that DIXI scientists will perform after observing comet Hartley 2. Existing educational materials related to planet finding from other NASA programs are linked from EPOXI's web page. Journey Through the Universe at the National Air and Space Museum encourages education in family and community groups and reaches out to underrepresented minorities. EPOXI's E/PO program additionally offers a newsletter to keep the public, teachers, and space enthusiasts apprised of mission activities. For more information visit: http://epoxi.umd.edu.
Carl Sagan and the Exploration of Mars and Venus
NASA Technical Reports Server (NTRS)
Toon, Owen B.; Condon, Estelle P. (Technical Monitor)
1997-01-01
Inspired by childhood readings of books by Edgar Rice Burroughs, Carl Sagan's first interest in planetary science focused on Mars and Venus. Typical of much of his career he was skeptical of early views about these planets. Early in this century it was thought that the Martian wave of darkening, a seasonal albedo change on the planet, was biological in origin. He suggested instead that it was due to massive dust storms, as was later shown to be the case. He was the first to recognize that Mars has huge topography gradients across its surface. During the spacecraft era, as ancient river valleys were found on the planet, he directed studies of Mars' ancient climate. He suggested that changes in the planets orbit were involved in climate shifts on Mars, just as they are on Earth. Carl had an early interest in Venus. Contradictory observations led to a controversy about the surface temperature, and Carl was one of the first to recognize that Venus has a massive greenhouse effect at work warming its surface. His work on radiative transfer led to an algorithm that was extensively used by modelers of the Earth's climate and whose derivatives still dominate the calculation of radiative transfer in planetary atmospheres today. Carl inspired a vast number of young scientists through his enthusiasm for new ideas and discoveries, his skeptical approach, and his boundless energy. I had the privilege to work in Carl's laboratory during the peak of the era of Mars' initial exploration. It was an exciting time, and place. Carl made it a wonderful experience.
2018-01-31
Alexander Moiseev, a research scientist at NASA's Goddard Spaceflight Center, speaks during an event celebrating the 60th Anniversary of the Explorer 1 mission and the discovery of Earth's radiation belts, Wednesday, Jan. 31, 2018, at the National Academy of Sciences in Washington. The first U.S. satellite, Explorer 1, was launched from Cape Canaveral on January 31, 1958. The 30-pound satellite would yield a major scientific discovery, the Van Allen radiation belts circling our planet, and begin six decades of groundbreaking space science and human exploration. (NASA/Joel Kowsky)
2018-01-31
Michael Freilich, Director of the Earth Science Division of NASA's Science Mission Directorate, speaks during an event celebrating the 60th Anniversary of the Explorer 1 mission and the discovery of Earth's radiation belts, Wednesday, Jan. 31, 2018, at the National Academy of Sciences in Washington. The first U.S. satellite, Explorer 1, was launched from Cape Canaveral on January 31, 1958. The 30-pound satellite would yield a major scientific discovery, the Van Allen radiation belts circling our planet, and begin six decades of groundbreaking space science and human exploration. (NASA/Joel Kowsky)
The Inhabitance Paradox: how habitability and inhabitancy are inseparable
NASA Astrophysics Data System (ADS)
Goldblatt, C.
2015-12-01
The dominant paradigm in assigning "habitability" to terrestrial planets is to define a circumstellar habitable zone: the locus of orbital radii in which the planet is neither too hot nor too cold for life as we know it. One dimensional climate models have put theoretically impressive boundaries on this: a runaway greenhouse or water loss at the inner edge (Venus), and low-latitude glaciation followed by formation of CO2 clouds at the outer edge. A cottage industry now exists to "refine" the definition of these boundaries each year to the third decimal place of an AU. Using exactly that kind of model, I'll show that the different climate states can overlap very substantially and that "snowball Earth", temperate climate and a post-runaway climate can all be stable under the same solar flux. Furthermore, the radial extent of the temperature climate band is very narrow for pure water atmospheres. The width of the habitable zone is determined by the atmospheric inventories of di-nitrogen and carbon dioxide. Yet Earth teaches us that these abundances are very heavily influenced (perhaps even controlled) by biology. This is paradoxical: the habitable zone seeks to define the region a planet should be capable of harbouring life; yet whether the planet is inhabited will determine whether the climate may be habitable at any given distance from the star. This matters, because future life detection missions may use habitable zone boundaries in mission design. A historical view of solar system exploration helps frame the problem; robotic exploration of the outer solar system revealed the un-imagined nature of the Jovian and Saturnian moons, whilst showing that the Venusian jungle died long ago. Prediction will fall to data but the unexpected may emerge. To soften that fall we should revise the paradigm of habitability to acknowledge that habitability depends on inhabitance; for life as we know it is a planetary scale--and planet dominating--phenomenon.
Baroclinic instability in the interiors of the giant planets: A cooling history of Uranus?
NASA Technical Reports Server (NTRS)
Holme, Richard; Ingersoll, Andrew P.
1994-01-01
We propose a quasigeostrophic, baroclinic model for heat transport within the interior of a stably stratified Jovian planet, based on motion in thin cylindrical annuli. Density decreases from the center outward and is zero at the surface of the planet. In the homogeneous case (no core), we find instability for the poles hotter than the equator, but not for the reverse. If the motion is bounded by an impenetrable core, instability occurs for both cases. Much of the behavior can be explained by analogy to conventional baroclinic instability theory. Motivated by our results, we explore a possible connection between the highly inclined rotation axis of Uranus and its anomalously low surface heat flux. We assume that the planets formed hot. Our conjecture is that heat was efficiently convected outwards by baroclinic instability in Uranus (with the poles hotter than the equator), but not in the other three Jovian planets. The surface temperature was higher for the stably stratified case (Uranus), leading to a higher rate of infrared emission and faster cooling. Therefore, we propose that Uranus lost its internal heat sooner than Neptune because baroclinic motions, permitted by its inclination to the sun, were able to extract its internal heat while the surface was still warm.
Interior Studies with BepiColombo's MPO
NASA Astrophysics Data System (ADS)
Benkhoff, Johannes; Zender, Joe
2017-04-01
NASA's MESSENGER mission has fundamentally changed our view of the innermost planet. Mercury is in many ways a very different planet from what we were expecting. Now BepiColombo has to follow up on answering the fundamental questions that MESSENGER raised and go beyond. BepiColombo is a joint project between ESA and the Japanese Aerospace Exploration Agency (JAXA). The Mission consists of two orbiters, the Mercury Planetary Orbiter (MPO) and the Mercury Magnetospheric Orbiter (MMO). The mission scenario foresees a launch of both spacecraft with an ARIANE V in October 2018 and an arrival at Mercury in 2025. From their dedicated orbits the two spacecraft will be studying the planet and its environment. The MPO scientific payload comprises eleven instruments/instrument packages; several of them dedicated to the study of the interior. Together, these instruments will perform measurements to enhance our knowledge of the planets figure and internal structure and composition. Expected results will provide further clues to the origin and evolution of a planet close to its parent star. In this presentation we will give an overview on the expected science return of BepiColombo with respect to the interior. In addition we give a brief update on the latest development status of the mission. All scientific instruments have been integrated into the spacecraft and both spacecraft are now under final acceptance testing.
NASA Astrophysics Data System (ADS)
Limaye, Sanjay
Venus has been the target of exploration for half a century, before the successful Mariner 2 fly-by in December 1962. The decade after that was marked by growing sophistication in the instruments and spacecraft. During the second decade of Venus exploration (1972 - 1981) the instruments and spacecraft had advanced to make the first detailed survey of the planet and image the surface. During the third decade Venus was explored with more advanced instruments such as synthetic aperture radar and by balloons - the only balloons in another atmosphere ever flown till present. Then came a long pause until 2005 when ESA launched Venus Express, which is still orbiting the planet and returning data. The nearly two-dozen missions flown to Venus have painted a puzzling picture of Venus - we still do not have answers to some key questions. The foremost is why did Venus evolve so differently from Earth? International space agencies and scientists have been considering various approaches to exploring Venus through small and large missions. The Venus Exploration Analysis Group (NASA) has developed a Venus Exploration Roadmap and a comprehensive list of goals, objectives and investigations (www.lpi.usra.edu/vexag), but an international coordinated, comprehensive plan to explore Venus is needed. To fill this void, the COSPAR International Venus Exploration Working Group (IVEWG) has been active in fostering dialog and discussions among the space faring agencies. One small step in the future exploration of Venus is the formation of a joint Science Definition Team (SDT) (NASA and Roscosmos/IKI) for Russia’s Venera-D mission in early 2014. The team is expected to submit a report to respective agencies in early 2015. Towards identifying key surface regions and atmospheric regions of Venus, a workshop is being held in May 2014 by VEXAG to seek community input. It is likely that calls for proposals for missions will also be announced under the M class by ESA and under the Discovery Program by NASA during 2014. Given that the science questions about Venus are many - ranging from the surface and interior and extending into the atmosphere to 120 km and beyond, it is likely that there will be opportunities for other efforts to contribute to the comprehensive exploration of Venus. If undertaken in a coordinated and collaborative manner, we may make substantial progress in understanding Venus, why and/or how it evolved differently from Earth. This knowledge will help us understand Earth-like rocky planets around other stars that are being discovered at a rapid pace now.
Giant Planet Candidates, Brown Dwarfs, and Binaries from the SDSS-III MARVELS Planet Survey.
NASA Astrophysics Data System (ADS)
Thomas, Neil; Ge, Jian; Li, Rui; de Lee, Nathan M.; Heslar, Michael; Ma, Bo; SDSS-Iii Marvels Team
2015-01-01
We report the discoveries of giant planet candidates, brown dwarfs, and binaries from the SDSS-III MARVELS survey. The finalized 1D pipeline has provided 18 giant planet candidates, 16 brown dwarfs, and over 500 binaries. An additional 96 targets having RV variability indicative of a giant planet companion are also reported for future investigation. These candidates are found using the advanced MARVELS 1D data pipeline developed at UF from scratch over the past three years. This pipeline carefully corrects most of the instrument effects (such as trace, slant, distortion, drifts and dispersion) and observation condition effects (such as illumination profile, fiber degradation, and tracking variations). The result is long-term RV precisions that approach the photon limits in many cases for the ~89,000 individual stellar observations. A 2D version of the pipeline that uses interferometric information is nearing completion and is demonstrating a reduction of errors to half the current levels. The 2D processing will be used to increase the robustness of the detections presented here and to find new candidates in RV regions not confidently detectable with the 1D pipeline. The MARVELS survey has produced the largest homogeneous RV measurements of 3300 V=7.6-12 FGK stars with a well defined cadence of 27 RV measurements over 2 years. The MARVELS RV data and other follow-up data (photometry, high contrast imaging, high resolution spectroscopy and RV measurements) will explore the diversity of giant planet companion formation and evolution around stars with a broad range in metallicity (Fe/H -1.5-0.5), mass ( 0.6-2.5M(sun)), and environment (thin disk and thick disk), and will help to address the key scientific questions identified for the MARVELS survey including, but not limited to: Do metal poor stars obey the same trends for planet occurrence as metal rich stars? What is the distribution of giant planets around intermediate-mass stars and binaries? Is the 'planet desert' within 0.6 AU in the planet orbital distribution of intermediate-mass stars real?
Reconsidering the Theological and Ethical Implications of Extraterrestrial Life
NASA Technical Reports Server (NTRS)
Randolph, Richard O. (Editor); Race, Margaret S.; McKay, Christopher P.
1997-01-01
As we stand on the threshold of a new millennium, we also find ourselves at the brink of a new and exciting era in space exploration. In fact, this new era has already begun, with the successful landing and exploration of Mars by the Pathfinder mission in July 1997. Pathfinder represents an important scientific accomplishment for NASA because it demonstrated the agency's ability to successfully explore space at a relatively modest price. At the same time, Pathfinder revealed once again the genuine interest and fascination that people all over planet Earth have for space exploration. The recent Pathfinder mission to Mars was only the first in an ambitious series of NASA missions planned for exploration of Mars, Earth's nearest planetary neighbor where extraterrestrial life is a real possibility. In March 1998, the next step in this exploration takes place, when the Mars Global Surveyor--which is already in orbit around Mars--begins photographing and mapping the Martian surface. NASA plans to continue its exploration with additional landers and orbiters taking off for Mars every 26 months, when the paths of Mars and Earth bring them in closer proximity. By the year 2005, NASA hopes to launch a mission that will return martian samples to Earth. And, as early as 2011, astronauts could be rocketing from Earth for the first human landing on the Red Planet. In the distant future, there may be even more grandiose plans, including the possibility of engineering an atmosphere on Mars that could support biological life.
The use of activity-based cost estimation as a management tool for cultural change
NASA Technical Reports Server (NTRS)
Mandell, Humboldt; Bilby, Curt
1991-01-01
It will be shown that the greatest barrier to American exploration of the planet Mars is not the development of the technology needed to deliver humans and return them safely to earth. Neither is it the cost of such an undertaking, as has been previously suggested, although certainly, such a venture may not be inexpensive by some measures. The predicted costs of exploration have discouraged serious political dialog on the subject. And, in fact, even optimistic projections of the NASA budget do not contain the resources required, under the existing development and management paradigm, for human space exploration programs. It will be demonstrated that the perception of the costs of such a venture, and the cultural responses to the perceptions are factors inhibiting American exploration of the moon and the planet Mars. Cost models employed in the aerospace industry today correctly mirror the history of past space programs, and as such, are representative of the existing management and development paradigms. However, if, under this current paradigm no major exploration programs are feasible, then cost analysis methods based in the past may not have great utility in exploring the needed cultural changes. This paper explores the use of a new type of model, the activity based cost model, which will treat management style as an input variable, in a sense providing a tool whereby a complete, affordable program might be designed, including both the technological and management aspects.
Solar System Exploration, 1995-2000
NASA Technical Reports Server (NTRS)
Squyres, S.; Varsi, G.; Veverka, J.; Soderblom, L.; Black, D.; Stern, A.; Stetson, D.; Brown, R. A.; Niehoff, J.; Squibb, G.
1994-01-01
Goals for planetary exploration during the next decade include: (1) determine how our solar system formed, and understand whether planetary systems are a common phenomenon through out the cosmos; (2) explore the diverse changes that planets have undergone throughout their history and that take place at present, including those that distinguish Earth as a planet; (3) understand how life might have formed on Earth, whether life began anywhere else in the solar system, and whether life (including intelligent beings) might be a common cosmic phenomenon; (4) discover and investigate natural phenomena that occur under conditions not realizable in laboratories; (5) discover and inventory resources in the solar system that could be used by human civilizations in the future; and (6) make the solar system a part of the human experience in the same way that Earth is, and hence lay the groundwork for human expansion into the solar system in the coming century. The plan for solar system exploration is motivated by these goals as well as the following principle: The solar system exploration program will conduct flight programs and supporting data analysis and scientific research commensurate with United States leadership in space exploration. These programs and research must be of the highest scientific merit, they must be responsive to public excitement regarding planetary exploration, and they must contribute to larger national goals in technology and education. The result will be new information, which is accessible to the public, creates new knowledge, and stimulates programs of education to increase the base of scientific knowledge in the general public.
Ground Based Studies of the Outer Planets
NASA Technical Reports Server (NTRS)
Trafton, Laurence M.
2005-01-01
This report covers progress to date under this grant on our continuing program to conduct ground based studies of the outer solar system planets and satellites, with emphasis on spectroscopy and atmospheric phenomena. The research continues under our new PAST grant, NNG04G131G beginning 5/1/2004. The original period of performance of the subject grant was 3/1/2001 to 2/28/2004, but was extended one year at no cost. Although there is some overlap in the scientific projects conducted during the extended year with those of the new grant, this report is confined to the portion of the work funded under NAG5-10435. The primary goals for this grant period were a comparative study of outer planet thermospheres/ionospheres near solar maximum, extended to the mid-IR, and the investigation of molecular dimers in outer solar system atmospheres. This project supports NASA's planned space missions, Jupiter Polar Orbiter, outer Planet Microprobes, and the recent Cassini flyby of Jupiter. It also supports the OSS strategic plan themes, The Exploration of the Solar System and The Sun-Earth Connection/ Understanding comparative planetary space environments.
The TESS Transiting Planet Search Predicted Recovery and Reliability Rates
NASA Astrophysics Data System (ADS)
Smith, Jeffrey C.; Caldwell, Douglas A.; Davies, Misty; Jenkins, Jon Michael; Li, Jie; Morris, Robert L.; Rose, Mark; Tenenbaum, Peter; Ting, Eric; Twicken, Joseph D.; Wohler, Bill
2018-06-01
The Transiting Exoplanet Survey Satellite (TESS) will search for transiting planet signatures via the Science Processing Operations Center (SPOC) Science Pipeline at NASA Ames Research Center. We report on predicted transit recovery and reliability rates for planetary signatures. These estimates are based on simulated runs of the pipeline using realistic stellar models and transiting planet populations along with best estimates for instrumental noise, thermal induced focus changes, instrumental drift and stochastic artifacts in the light curve data. Key sources of false positives are identified and summarized. TESS will launch in 2018 and survey the full sky for transiting exoplanets over a period of two years. The SPOC pipeline was ported from the Kepler Science Operations Center (SOC) codebase and extended for TESS after the mission was selected for flight in the NASA Astrophysics Explorer program. Candidate planet detections and data products will be delivered to the Mikulski Archive for Space Telescopes (MAST); the MAST URL is archive.stsci.edu/tess. Funding for the TESS Mission has been provided by the NASA Science Mission Directorate.
Restrictions on the detection of the Super-Earth in Solar system
NASA Astrophysics Data System (ADS)
Vidmachenko, A. P.
2018-05-01
For assessment of visibility of possible 9th planet, we use the infrared observations obtained by the "Wide-Field Infrared Survey Explorer". It turned out that the telescope could not see an analog of the planet of the giant Saturn at a distance of up to 30000 AU. This circumstance allowed us to estimate that at distances up to 1000 AU it would be clearly visible planetary body with a radius of more than 11,000 km; that is, a planet with mass of about 10 Earth masses and "earth" density (5520 kg/m3). If we take into account that the density of the "average" TNO differs little from 2000 kg/m3, that the radius of such "Super-Earth" with a mass of about 10 Earth masses - will increase to 19200 km. Then the limit of detection of a possible 9th planet will increase by almost 4 times: up to 4000 AU. And since the "WISE" telescope did not "see" even Saturn, that our estimates unequivocally suggest that there is no "Super-Earth" at a distance up to 1000 AU in the Solar system.
The Robo-AO KOI survey: laser adaptive optics imaging of every Kepler exoplanet candidate
NASA Astrophysics Data System (ADS)
Ziegler, Carl; Law, Nicholas M.; Baranec, Christoph; Morton, Tim; Riddle, Reed; Atkinson, Dani; Nofi, Larissa
2016-07-01
The Robo-AO Kepler Planetary Candidate Survey is observing every Kepler planet candidate host star (KOI) with laser adaptive optics imaging to hunt for blended nearby stars which may be physically associated companions. With the unparalleled efficiency provided by the first fully robotic adaptive optics system, we perform the critical search for nearby stars (0.15" to 4.0" separation with contrasts up to 6 magnitudes) that dilute the observed planetary transit signal, contributing to inaccurate planetary characteristics or astrophysical false positives. We present 3313 high resolution observations of Kepler planetary hosts from 2012-2015, discovering 479 nearby stars. We measure an overall nearby star probability rate of 14.5+/-0.8%. With this large data set, we are uniquely able to explore broad correlations between multiple star systems and the properties of the planets which they host, providing insight into the formation and evolution of planetary systems in our galaxy. Several KOIs of particular interest will be discussed, including possible quadruple star systems hosting planets and updated properties for possible rocky planets orbiting with in their star's habitable zone.
The Robo-AO KOI Survey: Laser Adaptive Optics Imaging of Every Kepler Exoplanet Candidate
NASA Astrophysics Data System (ADS)
Ziegler, Carl; Law, Nicholas M.; Baranec, Christoph; Morton, Tim; Riddle, Reed L.
2016-01-01
The Robo-AO Kepler Planetary Candidate Survey is observing every Kepler planet candidate host star (KOI) with laser adaptive optics imaging to hunt for blended nearby stars which may be physically associated companions. With the unparalleled efficiency provided by the first fully robotic adaptive optics system, we perform the critical search for nearby stars (0.15" to 4.0" separation with contrasts up to 6 magnitudes) that pollute the observed planetary transit signal, contributing to inaccurate planetary characteristics or astrophysical false positives. We present approximately 3300 high resolution observations of Kepler planetary hosts from 2012-2015, with ~500 observed nearby stars. We measure an overall nearby star probability rate of 16.2±0.8%. With this large dataset, we are uniquely able to explore broad correlations between multiple star systems and the properties of the planets which they host. We then use these clues for insight into the formation and evolution of these exotic systems. Several KOIs of particular interest will be discussed, including possible quadruple star systems hosting planets and updated properties for possible rocky planets orbiting in the habitable zone.
The exploration of exoplanets: What can we learn from solar system synergies?
NASA Astrophysics Data System (ADS)
Encrenaz, Therese
2015-07-01
Most of the discovered exoplanets are "exotic" with regard to the Solar system, with characteristics that are very different from our own planets. Still, we can use the experience gained in the study of the solar system planets for trying to understand the physical nature of exoplanets. The properties of their atmospheres are, as in the case of the Solar system, constrained by a few parameters: their mass and radius, the stellar radiation flux (and thus the star's properties and its distance to the planet), the planet's ellipticity, its inclination, its rotation, the presence or absence of a magnetosphere... Under some simple hypotheses (thermochemical equilibrium and absence of migration), it is possible to make simple predictions about the nature of the exoplanet's atmospheric composition, on the basis of the planet's mass and its equilibrium temperature. The study of solar system planets also tells us which other mechanisms may lead to a departure from thermochemical equilibrium, in particular photochemistry and transport-induced quenching. The study of planetary spectra is a good starting point to try to understand the spectra of exoplanets that now become available through transit spectroscopy observations. From the spectral type of the hosting star and its distance to the exoplanet, one can estimate the spectral ranges where reflected/scattered stellar radiation and thermal emission dominate. In the thermal regime, the observation of a given molecule in different bands of different intensities may provide constraints on the vertical thermal profile and the vertical distribution of the molecule.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meisner, Aaron M.; Bromley, Benjamin C.; Nugent, Peter E.
A distant, as yet unseen ninth planet has been invoked to explain various observations of the outer solar system. While such a "Planet Nine," if it exists, is most likely to be discovered via reflected light in the optical, it may emit much more strongly at 3-5 μm than simple blackbody predictions would suggest, depending on its atmospheric properties. As a result, Planet Nine may be detectable at 3.4 μm with the Wide-field Infrared Survey Explorer, but single exposures are too shallow except at relatively small distances (more » $${d}_{9}\\lesssim 430$$ au). In this paper, we develop a method to search for Planet Nine far beyond the W1 single-exposure sensitivity, to distances as large as 800 au, using inertial coadds of W1 exposures binned into ~1 day intervals. We apply our methodology to a ~2000 square degree testbed sky region which overlaps a southern segment of Planet Nine's anticipated orbital path. We do not detect a plausible Planet Nine candidate, but are able to derive a detailed completeness curve, ruling out its presence within the parameter space searched at W1 < 16.66 (90% completeness). Our method uses all publicly available W1 imaging, spanning 2010 January to 2015 December, and will become more sensitive with future NEOWISE-Reactivation releases of additional W1 exposures. Finally, we anticipate that our method will be applicable to the entire high Galactic latitude sky, and we will extend our search to that full footprint in the near future.« less
Homogeneous Studies of Transiting Extrasolar Planets: Current Status and Future Plans
NASA Astrophysics Data System (ADS)
Taylor, John
2011-09-01
We now know of over 500 planets orbiting stars other than our Sun. The jewels in the crown are the transiting planets, for these are the only ones whose masses and radii are measurable. They are fundamental for our understanding of the formation, evolution, structure and atmospheric properties of extrasolar planets. However, their characterization is not straightforward, requiring extremely high-precision photometry and spectroscopy as well as input from theoretical stellar models. I summarize the motivation and current status of a project to measure the physical properties of
Accretion of Jupiter-mass planets in the limit of vanishing viscosity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szulágyi, J.; Morbidelli, A.; Crida, A.
In the core-accretion model, the nominal runaway gas-accretion phase brings most planets to multiple Jupiter masses. However, known giant planets are predominantly Jupiter mass bodies. Obtaining longer timescales for gas accretion may require using realistic equations of states, or accounting for the dynamics of the circumplanetary disk (CPD) in the low-viscosity regime, or both. Here we explore the second way by using global, three-dimensional isothermal hydrodynamical simulations with eight levels of nested grids around the planet. In our simulations, the vertical inflow from the circumstellar disk (CSD) to the CPD determines the shape of the CPD and its accretion rate.more » Even without a prescribed viscosity, Jupiter's mass-doubling time is ∼10{sup 4} yr, assuming the planet at 5.2 AU and a Minimum Mass Solar Nebula. However, we show that this high accretion rate is due to resolution-dependent numerical viscosity. Furthermore, we consider the scenario of a layered CSD, viscous only in its surface layer, and an inviscid CPD. We identify two planet-accretion mechanisms that are independent of the viscosity in the CPD: (1) the polar inflow—defined as a part of the vertical inflow with a centrifugal radius smaller than two Jupiter radii and (2) the torque exerted by the star on the CPD. In the limit of zero effective viscosity, these two mechanisms would produce an accretion rate 40 times smaller than in the simulation.« less
Estimated Radiation on Mars, Hits per Cell Nucleus
2002-03-01
This global map of Mars, based on data from NASA Mars Odyssey, shows estimates for amounts of high-energy-particle cosmic radiation reaching the surface, a serious health concern for any future human exploration of the planet.
NASA Technical Reports Server (NTRS)
1974-01-01
This monograph describes the National Aeronautics and Space Administration's program to explore the planet that most nearly resembles the earth and the search for life on the surface of Mars that the Vikings are scheduled to begin in 1976.
Contemporary Planetary Science.
ERIC Educational Resources Information Center
Belton, Michael J. S.; Levy, Eugene H.
1982-01-01
Presents an overview of planetary science and the United States program for exploration of the planets, examining the program's scientific objectives, its current activities, and the diversity of its methods. Also discusses the program's lack of continuity, especially in personnel. (Author/JN)
Experientally guided robots. [for planet exploration
NASA Technical Reports Server (NTRS)
Merriam, E. W.; Becker, J. D.
1974-01-01
This paper argues that an experientally guided robot is necessary to successfully explore far-away planets. Such a robot is characterized as having sense organs which receive sensory information from its environment and motor systems which allow it to interact with that environment. The sensori-motor information which it receives is organized into an experiential knowledge structure and this knowledge in turn is used to guide the robot's future actions. A summary is presented of a problem solving system which is being used as a test bed for developing such a robot. The robot currently engages in the behaviors of visual tracking, focusing down, and looking around in a simulated Martian landscape. Finally, some unsolved problems are outlined whose solutions are necessary before an experientally guided robot can be produced. These problems center around organizing the motivational and memory structure of the robot and understanding its high-level control mechanisms.
Neutral Mass Spectrometry for Venus Atmosphere and Surface
NASA Technical Reports Server (NTRS)
Mahaffy, Paul
2004-01-01
The nature of the divergent evolution of the terrestrial planets Venus, Earth, and Mars is a fundamental problem in planetary science that is most relevant to understanding the characteristics of small planets we are likely to discover in extrasolar systems and the number of such systems that may support habitable environments. For this reason, the National Research Council's Decadal Survey gives Venus exploration high priority. That report was the basis of the NASA selection of Venus as one of four prime mission targets for the recently initiated New Frontiers Program. If the Decadal Survey priorities are to be realized, in situ Venus exploration must remain a high priority. Remote sensing orbital and in situ atmospheric measurements from entry probe or balloon platforms might be realized under the low cost Discovery missions while both atmospheric and landed surface measurements are envisioned with the intermediate class missions of the New Frontiers Program.
Laser technology developments in support of ESA's earth observation missions
NASA Astrophysics Data System (ADS)
Durand, Y.; Bézy, J.-L.; Meynart, R.
2008-02-01
Within the context of ESA's Living Planet Programme, the European Space Agency has selected three missions embarking lidar instruments: ADM-Aeolus (Atmospheric Dynamics Mission) planed for launch in 2009 with a Doppler Wind Lidar, ALADIN, as unique payload; EarthCARE (Earth Clouds, Aerosols, and Radiation Explorer) planed for launch in 2013 including an ATmospheric backscatter LIDar (ATLID); at last, A-SCOPE (Advanced Space Carbon and Climate Observation of Planet Earth), candidate for the 7 th Earth Explorer, relying on a CO II Total Column Differential Absorption Lidar. To mitigate the technical risks for selected missions associated with the different sorts of lidar, ESA has undertaken critical technology developments, from the transmitter to the receiver and covering both components and sub-systems development and characterization. The purpose of this paper is to present the latest results obtained in the area of laser technology that are currently ongoing in support to EarthCARE, A-SCOPE and ADM-Aeolus.
NASA Technical Reports Server (NTRS)
Rayman, Marc D.; Mase, Robert A.
2012-01-01
On 16 July 2011, after completing nearly four years of interplanetary flight, Dawn entered orbit around (4) Vesta, the second most massive body in the main asteroid belt. Dawn used solar electric propulsion to spiral to a series of six different orbits to accomplish its science campaign. Although the transfers to progressively lower orbits presented significant challenges, all were executed smoothly. During its nearly 14 months in orbit, Dawn spiraled down to 210 km above the surface and back up, before initiating the gradual departure to travel to dwarf planet (1) Ceres for a 2015 rendezvous. Dawn's exploration of Vesta has shown it to be geologically complex and fascinating, resembling terrestrial planets more than typical asteroids. Among the principal features is a 500-km diameter impact basin within which is the second tallest mountain known in the solar system. This paper presents Dawn's operations at Vesta and summarizes the principal findings.
NASA Astrophysics Data System (ADS)
Howe, Alex R.; Burrows, Adam; Deming, Drake
2017-01-01
We provide an example of an analysis to explore the optimization of observations of transiting hot Jupiters with the James Webb Space Telescope (JWST) to characterize their atmospheres based on a simple three-parameter forward model. We construct expansive forward model sets for 11 hot Jupiters, 10 of which are relatively well characterized, exploring a range of parameters such as equilibrium temperature and metallicity, as well as considering host stars over a wide range in brightness. We compute posterior distributions of our model parameters for each planet with all of the available JWST spectroscopic modes and several programs of combined observations and compute their effectiveness using the metric of estimated mutual information per degree of freedom. From these simulations, clear trends emerge that provide guidelines for designing a JWST observing program. We demonstrate that these guidelines apply over a wide range of planet parameters and target brightnesses for our simple forward model.
Mars Exploration Using Biomorphic Flyers
NASA Astrophysics Data System (ADS)
Thakoor, S.; Chahl, J.; Srinivasan, M.; Cabrol, N.; Young, L.; Hine, B.; Zornetzer, S.
Mars imagery obtained by the Mariner, Viking, Pathfinder, Mars Global Surveyor and Mars Odyssey Missions suggests the previous existence of abundant liquid water (considered essential for life as we know it). It is not clear what transpired on the Martian climate to have turned the planet in to the desert that it is today. Developing a comprehensive understanding of the past and present climatic events for our sister planet Mars may provide important information relevant to the future health and well being of our own planet. Following and exploring water flow features is a valuable strategy in the search for extant or extinct life, it satisfies our fundamental scientific curiosity, and could provide answers to the fundamental questions surrounding the question of the origins of life in our solar system. Low altitude air-borne exploration of Mars offers a means for covering large areas, perhaps up to several hundred kilometers, quickly and efficiently. Aerial exploration should provide a close-up birds eye view of the planetary terrain. Exploration that can only be imagined today could become a reality if we develop methods to fly on Mars and navigate through its difficult terrain to image/study sites of interest. Mars offers a substantial challenge to conventional flight due to its thin atmosphere (about a hundredth that on Earth); lack of magnetic compassing for navigation, and the limited telecommunications or navigational infrastructure. To meet and overcome these challenges, we are adapting for Mars exploration principles proven successful in nature to achieve stable flight control and navigation. By incorporating engineering solutions modeled on successful biological solutions we will provide novel and highly effective micro flyer capabilities suitable for aerial surveillance of Mars. We will describe a few example sites on Mars whose exploration absolutely requires the ability to cover several hundred kilometers. We will illustrate how autonomous biomorphic flyers will enable imagery and environmental measurements to be captured from extremely low altitudes and even inside terrain features such as canyons that were previously considered impossible to explore on a large scale. At a Terrestrial analog Martian site, we plan to demonstrate a proof of concept simulation experiment, emulating selected conditions of Mars. The demonstration will consist of launching/deploying a variety of biomorphic flyers each containing biologically inspired technologies capable of, for example, autonomous real time navigation, visual search, selective feature detection, intelligent flight control and image enhancement by sensory data fusion.
2013 - Life is a Cosmic Phenomenon : The "Search for Water" evolves into the "Search for Life"
NASA Astrophysics Data System (ADS)
Smith, William E.
2013-03-01
We propose that the 2013 data from the Kepler Mission (giving a current estimate of the number of earth-like planets in the habitable zone of sun-like stars as 144 billion), has caused a consciousness change in human belief in the probability of life off earth. This seems to have affected NASA's public statements which are now leaning to the more visionary mission goal of the "Search for Life" rather than the 1975-2012 focus of the "Search for Water". We propose that the first confirmed earth-like planet, expected to be announced later this year, be called "BORUCKI" in honour of the visionary USA scientist Bill Borucki, the father of the Kepler Mission. We explore the 2013 status of the Hoyle-Wickramasinghe Model of Panspermia, its hypothesis, propositions, experiments and evidence. We use the Karl Popper model for scientific hypotheses (1). Finally we explore Sir Fred Hoyle's vision of a planetary microbe defense system we call the Hoyle Shield. We explore the subsystem components of the shield and assess some options for these components using break-though technologies already available.
The Astrobiology of the Subsurface: Caves and Rock Fracture Habitats on Earth, Mars and Beyond
NASA Technical Reports Server (NTRS)
Boston, Penelope J.
2017-01-01
The Astrobiology of the Subsurface: Exploring Cave Habitats on Earth, Mars and Beyond. We are using the spectacular underground landscapes of Earth caves as models for the subsurfaces of other planets. Caves have been detected on the Moon and Mars and are strongly suspected for other bodies in the Solar System including some of the ice covered Ocean Worlds that orbit gas giant planets. The caves we explore and study include many extreme conditions of relevance to planetary astrobiology exploration including high and low temperatures, gas atmospheres poisonous to humans but where exotic microbes can fluorish, highly acidic or salty fluids, heavy metals, and high background radiation levels. Some cave microorganisms eat their way through bedrock, some live in battery acid conditions, some produce unusual biominerals and rare cave formations, and many produce compounds of potential pharmaceutical and industrial significance. We study these unique lifeforms and the physical and chemical biosignatures that they leave behind. Such traces can be used to provide a Field Guide to Unknown Organisms for developing life detection space missions.
Exploring the climate of Proxima B with the Met Office Unified Model
NASA Astrophysics Data System (ADS)
Boutle, Ian A.; Mayne, Nathan J.; Drummond, Benjamin; Manners, James; Goyal, Jayesh; Hugo Lambert, F.; Acreman, David M.; Earnshaw, Paul D.
2017-05-01
We present results of simulations of the climate of the newly discovered planet Proxima Centauri B, performed using the Met Office Unified Model (UM). We examine the responses of both an "Earth-like" atmosphere and simplified nitrogen and trace carbon dioxide atmosphere to the radiation likely received by Proxima Centauri B. Additionally, we explore the effects of orbital eccentricity on the planetary conditions using a range of eccentricities guided by the observational constraints. Overall, our results are in agreement with previous studies in suggesting Proxima Centauri B may well have surface temperatures conducive to the presence of liquid water. Moreover, we have expanded the parameter regime over which the planet may support liquid water to higher values of eccentricity (≳0.1) and lower incident fluxes (881.7 W m-2) than previous work. This increased parameter space arises because of the low sensitivity of the planet to changes in stellar flux, a consequence of the stellar spectrum and orbital configuration. However, we also find interesting differences from previous simulations, such as cooler mean surface temperatures for the tidally-locked case. Finally, we have produced high-resolution planetary emission and reflectance spectra, and highlight signatures of gases vital to the evolution of complex life on Earth (oxygen, ozone and carbon dioxide).
Life sciences interests in Mars missions
NASA Technical Reports Server (NTRS)
Rummel, John D.; Griffiths, Lynn D.
1989-01-01
NASA's Space Life Sciences research permeates plans for Mars missions and the rationale for the exploration of the planet. The Space Life Sciences program has three major roles in Mars mission studies: providing enabling technology for piloted missions, conducting scientific exploration related to the origin and evolution of life, and protecting space crews from the adverse physiological effects of space flight. This paper presents a rationale for exploration and some of the issues, tradeoffs, and visions being addressed in the Space Life Sciences program in preparation for Mars missions.
Twenty-fourth Lunar and Planetary Science Conference. Part 1: A-F
NASA Technical Reports Server (NTRS)
1993-01-01
The topics covered include the following: petrology, petrography, meteoritic composition, planetary geology, atmospheric composition, astronomical spectroscopy, lunar geology, Mars (planet), Mars composition, Mars surface, volcanology, Mars volcanoes, Mars craters, lunar craters, mineralogy, mineral deposits, lithology, asteroids, impact melts, planetary composition, planetary atmospheres, planetary mapping, cosmic dust, photogeology, stratigraphy, lunar craters, lunar exploration, space exploration, geochronology, tectonics, atmospheric chemistry, astronomical models, and geochemistry.
Scouts: Using Numbers to Explore Mars In Situ
NASA Technical Reports Server (NTRS)
Blaney, D. L.; Wilson, G. R.
2000-01-01
Mars is a planet with a complex geologic history involving fluvial, volcanic, aeolian, atmospheric, and impact processes. Many critical questions about Mars are still heatedly debated within the scientific community and we still have much to discover. The current Mars exploration philosophy involves remote observation of the planet from orbit and intensive in situ study of a few sites on the surface. Orbital data provides a global picture while in situ investigations provide detailed knowledge at a single location. Mars Scouts are proposed to provide access to multiple locations on Mars. They address the emerging program needs of exploring the diversity of the planet globally in ways that cannot be achieved from orbit. The goal of the Scout is to find a way to investigate many locations on the surface of Mars in an affordable and efficient manner. We have only visited three locations on the surface of Mars, which have very similar characteristics. Increased numbers allows more types of locations to be investigated. The hallmarks of Scouts are numbers and access. Thus the capability of a single Scout will be limited. The science return from a single Scout will be significantly less than from a large science lander or an orbiting spacecraft. Scouts rely on their numbers to collectively provide a substantial increase in our knowledge of Mars. Scouts potentially serve two purposes in the Mars exploration architecture. First, Scouts are a science exploration tool. They provide access to places on Mars we currently can't explore because program focus, surface roughness, elevation, or latitude that we know are scientifically interesting. Scouts can react to new discoveries and evolving ideas about Mars. They can be used to test theories which until proven would not warrant the investment of a large lander. Second, Scouts enable better large scale missions by providing ground truth of remote sensing data and allowing us to "know" sites in advance before sending large landers and sample return missions. This increases the probability of success for these expensive missions both from safety and science return stand-points.
Planetary/DOD entry technology flight experiments. Volume 2: Planetary entry flight experiments
NASA Technical Reports Server (NTRS)
Christensen, H. E.; Krieger, R. J.; Mcneilly, W. R.; Vetter, H. C.
1976-01-01
The technical feasibility of launching a high speed, earth entry vehicle from the space shuttle to advance technology for the exploration of the outer planets' atmospheres was established. Disciplines of thermodynamics, orbital mechanics, aerodynamics propulsion, structures, design, electronics and system integration focused on the goal of producing outer planet environments on a probe shaped vehicle during an earth entry. Major aspects of analysis and vehicle design studied include: planetary environments, earth entry environment capability, mission maneuvers, capabilities of shuttle upper stages, a comparison of earth entry planetary environments, experiment design and vehicle design.
The Habitable Zone Gallery and its Applications
NASA Astrophysics Data System (ADS)
Gelino, Dawn M.; Kane, S. R.
2012-05-01
The Habitable Zone Gallery (www.hzgallery.org) is a service to the exoplanet community which provides Habitable Zone (HZ) information for each of the exoplanetary systems with known planetary orbital parameters. The service includes a sortable table, a plot with the period and eccentricity of each of the planets with respect to their time spent in the HZ, a gallery of known systems which plot the orbits and the location of the HZ with respect to those orbits, and orbital movies. Here we discuss various educational and scientific applications of the site such as target selection, exploring planets with eccentric orbits, and investigating habitability.
Potential and Limitations of Photometric Reconstruction Through a Flock of Dove Cubesats
NASA Astrophysics Data System (ADS)
Altena, B.; Mousivand, A.; Mascaro, J.; Kääb, A.
2017-10-01
When Earth observation satellite systems are designed, one typically prefers a sun-synchronous orbit. However, the first generations of cubesats from Planet were deployed out of the International Space Station (ISS) and therefore do not obey such an orbit. Their configuration samples at different local times within the mid-latitudes. Consequently, it is in theory possible to exploit photometric techniques and extract highly detailed topographic information. In this study we demonstrate and explore photometry based on Planet cubesat images for Tyndall glacier at the Southern Patagonian icefield, and Zhadang glacier situated on the Tibetan plateau.
NASA Technical Reports Server (NTRS)
Kieffer, Hugh H. (Editor); Jakosky, Bruce M. (Editor); Snyder, Conway W. (Editor); Matthews, Mildred S. (Editor)
1992-01-01
The present volume on Mars discusses visual, photographic and polarimetric telescopic observations, spacecraft exploration of Mars, the origin and thermal evolution of Mars, and the bulk composition, mineralogy, and internal structure of the planet. Attention is given to Martian gravity and topography, stress and tectonics on Mars, long-term orbital and spin dynamics of Mars, and Martian geodesy and cartography. Topics addressed include the physical volcanology of Mars, the canyon system on planet, Martian channels and valley networks, and ice in the Martian regolith. Also discussed are Martian aeolian processes, sediments, and features, polar deposits of Mars, dynamics of the Martian atmosphere, and the seasonal behavior of water on Mars.
Stochasticity and predictability in terrestrial planet formation
NASA Astrophysics Data System (ADS)
Hoffmann, Volker; Grimm, Simon L.; Moore, Ben; Stadel, Joachim
2017-02-01
Terrestrial planets are thought to be the result of a vast number of gravitational interactions and collisions between smaller bodies. We use numerical simulations to show that practically identical initial conditions result in a wide array of final planetary configurations. This is a result of the chaotic evolution of trajectories which are highly sensitive to minuscule displacements. We determine that differences between systems evolved from virtually identical initial conditions can be larger than the differences between systems evolved from very different initial conditions. This implies that individual simulations lack predictive power. For example, there is not a reproducible mapping between the initial and final surface density profiles. However, some key global properties can still be extracted if the statistical spread across many simulations is considered. Based on these spreads, we explore the collisional growth and orbital properties of terrestrial planets, which assemble from different initial conditions (we vary the initial planetesimal distribution, planetesimal masses, and giant planet orbits.). Confirming past work, we find that the resulting planetary systems are sculpted by sweeping secular resonances. Configurations with giant planets on eccentric orbits produce fewer and more massive terrestrial planets on tighter orbits than those with giants on circular orbits. This is further enhanced if the initial mass distribution is biased to the inner regions. In all cases, the outer edge of the system is set by the final location of the ν6 resonance and we find that the mass distribution peaks at the ν5 resonance. Using existing observations, we find that extrasolar systems follow similar trends. Although differences between our numerical modelling and exoplanetary systems remain, we suggest that CoRoT-7, HD 20003 and HD 20781 may host undetected giant planets.
Disk-integrated reflection light curves of planets
NASA Astrophysics Data System (ADS)
Garcia Munoz, A.
2014-03-01
The light scattered by a planet atmosphere contains valuable information on the planet's composition and aerosol content. Typically, the interpretation of that information requires elaborate radiative transport models accounting for the absorption and scattering processes undergone by the star photons on their passage through the atmosphere. I have been working on a particular family of algorithms based on Backward Monte Carlo (BMC) integration for solving the multiple-scattering problem in atmospheric media. BMC algorithms simulate statistically the photon trajectories in the reverse order that they actually occur, i.e. they trace the photons from the detector through the atmospheric medium and onwards to the illumination source following probability laws dictated by the medium's optical properties. BMC algorithms are versatile, as they can handle diverse viewing and illumination geometries, and can readily accommodate various physical phenomena. As will be shown, BMC algorithms are very well suited for the prediction of magnitudes integrated over a planet's disk (whether uniform or not). Disk-integrated magnitudes are relevant in the current context of exploration of extrasolar planets because spatial resolution of these objects will not be technologically feasible in the near future. I have been working on various predictions for the disk-integrated properties of planets that demonstrate the capacities of the BMC algorithm. These cases include the variability of the Earth's integrated signal caused by diurnal and seasonal changes in the surface reflectance and cloudiness, or by sporadic injection of large amounts of volcanic particles into the atmosphere. Since the implemented BMC algorithm includes a polarization mode, these examples also serve to illustrate the potential of polarimetry in the characterization of both Solar System and extrasolar planets. The work is complemented with the analysis of disk-integrated photometric observations of Earth and Venus drawn from various sources.
NASA Technical Reports Server (NTRS)
Torres, Guillermo; Fressin, Francois; Batalha, Natalie M.; Borucki, William J.; Brown, Timothy M.; Bryson, Stephen T.; Buchhave, Lars A.; Charbonneau, David; Ciardi, David R.; Dunham, Edward W.;
2011-01-01
Light curves from the Kepler Mission contain valuable information on the nature of the phenomena producing the transit-like signals. To assist in exploring the possibility that they are due to an astrophysical false positive we describe a procedure (BLENDER) to model the photometry in terms of a blend rather than a planet orbiting a star. A blend may consist of a background or foreground eclipsing binary (or star-planet pair) whose eclipses are attenuated by the light of the candidate and possibly other stars within the photometric aperture. We apply BLENDER to the case of Kepler-9 (KIC 3323887), a target harboring two previously confirmed Saturn-size planets (Kepler-9 b and Kepler-9 c) showing transit timing variations, and an additional shallower signal with a 1.59 day period suggesting the presence of a super-Earth-size planet. Using BLENDER together with constraints from other follow-up observations we are able to rule out all blends for the two deeper signals and provide independent validation of their planetary nature. For the shallower signal, we rule out a large fraction of the false positives that might mimic the transits. The false alarm rate for remaining blends depends in part (and inversely) on the unknown frequency of small-size planets. Based on several realistic estimates of this frequency, we conclude with very high confidence that this small signal is due to a super-Earth-size planet (Kepler-9 d) in a multiple system, rather than a false positive. The radius is determined to be 1.64(exp)(sub-14),R, and current spectroscopic observations are as yet insufficient to establish its mass.
The atmospheres of earthlike planets after giant impact events
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lupu, R. E.; Freedman, Richard; Zahnle, Kevin
2014-03-20
It is now understood that the accretion of terrestrial planets naturally involves giant collisions, the moon-forming impact being a well-known example. In the aftermath of such collisions, the surface of the surviving planet is very hot and potentially detectable. Here we explore the atmospheric chemistry, photochemistry, and spectral signatures of post-giant-impact terrestrial planets enveloped by thick atmospheres consisting predominantly of CO{sub 2} and H{sub 2}O. The atmospheric chemistry and structure are computed self-consistently for atmospheres in equilibrium with hot surfaces with composition reflecting either the bulk silicate Earth (which includes the crust, mantle, atmosphere, and oceans) or Earth's continental crust.more » We account for all major molecular and atomic opacity sources including collision-induced absorption. We find that these atmospheres are dominated by H{sub 2}O and CO{sub 2}, while the formation of CH{sub 4} and NH{sub 3} is quenched because of short dynamical timescales. Other important constituents are HF, HCl, NaCl, and SO{sub 2}. These are apparent in the emerging spectra and can be indicative that an impact has occurred. The use of comprehensive opacities results in spectra that are a factor of two lower brightness temperature in the spectral windows than predicted by previous models. The estimated luminosities show that the hottest post-giant-impact planets will be detectable with near-infrared coronagraphs on the planned 30 m class telescopes. The 1-4 μm will be most favorable for such detections, offering bright features and better contrast between the planet and a potential debris disk. We derive cooling timescales on the order of 10{sup 5-6} yr on the basis of the modeled effective temperatures. This leads to the possibility of discovering tens of such planets in future surveys.« less
The Effect of Orbital Configuration on the Possible Climates and Habitability of Kepler-62f.
Shields, Aomawa L; Barnes, Rory; Agol, Eric; Charnay, Benjamin; Bitz, Cecilia; Meadows, Victoria S
2016-06-01
As lower-mass stars often host multiple rocky planets, gravitational interactions among planets can have significant effects on climate and habitability over long timescales. Here we explore a specific case, Kepler-62f (Borucki et al., 2013 ), a potentially habitable planet in a five-planet system with a K2V host star. N-body integrations reveal the stable range of initial eccentricities for Kepler-62f is 0.00 ≤ e ≤ 0.32, absent the effect of additional, undetected planets. We simulate the tidal evolution of Kepler-62f in this range and find that, for certain assumptions, the planet can be locked in a synchronous rotation state. Simulations using the 3-D Laboratoire de Météorologie Dynamique (LMD) Generic global climate model (GCM) indicate that the surface habitability of this planet is sensitive to orbital configuration. With 3 bar of CO2 in its atmosphere, we find that Kepler-62f would only be warm enough for surface liquid water at the upper limit of this eccentricity range, providing it has a high planetary obliquity (between 60° and 90°). A climate similar to that of modern-day Earth is possible for the entire range of stable eccentricities if atmospheric CO2 is increased to 5 bar levels. In a low-CO2 case (Earth-like levels), simulations with version 4 of the Community Climate System Model (CCSM4) GCM and LMD Generic GCM indicate that increases in planetary obliquity and orbital eccentricity coupled with an orbital configuration that places the summer solstice at or near pericenter permit regions of the planet with above-freezing surface temperatures. This may melt ice sheets formed during colder seasons. If Kepler-62f is synchronously rotating and has an ocean, CO2 levels above 3 bar would be required to distribute enough heat to the nightside of the planet to avoid atmospheric freeze-out and permit a large enough region of open water at the planet's substellar point to remain stable. Overall, we find multiple plausible combinations of orbital and atmospheric properties that permit surface liquid water on Kepler-62f. Extrasolar planets-Habitability-Planetary environments. Astrobiology 16, 443-464.
Understanding divergent evolution of Earth-like planets: The case for a Venus exploration program
NASA Astrophysics Data System (ADS)
Crisp, D.
The planet Venus is our most Earth-like neighbor in size, mass, and solar distance. In spite of these similarities, the Venus surface and atmosphere are characterized by some of the most enigmatic features seen anywhere in the solar system. Here, we propose a Venus exploration program designed to explain the origin and divergent evolution of the interiors, surfaces, and atmospheres of the terrestrial planets in our solar system, and provide greater insight into the conditions that may affect the habitability of terrestrial planets in other solar systems. This program includes: - The Noble Gas and Trace Gas Explorer is the highest priority mission because itsdata are vital to our understanding of the origin of Venus. This Discovery classmission requires a single entry probe that will carry the state-of-the-art instrumentsneeded to complete the noble gas and trace gas inventories between the cloud topsand the surface. - The Global Geological Process Mapping Orbiter is a Discovery class mission. Itwill carry a C- and/or X-band radar designed for stereo or interferometric imaging,to provide global maps of the surface at horizontal resolutions of 25 to 50 metersto identify and characterize the geologic processes that have shaped the Venussurface. - The Atmospheric Composition Orbiter is a Discovery class mission that will carryremote sensing instruments for characterizing clouds and trace gas variationsthroughout the atmosphere. This mission will collect the data needed tocharacterize the radiative, chemical, and dynamical processes that are maintainingthe thermal structure and composition of the present atmosphere. - The Atmospheric Dynamics Explorer is a New Frontiers class mission that willdeploy 12 to 24 long-lived balloons over a range of latitudes and altitudes toidentify the mechanisms responsible for maintaining the atmosphericsuperrotation. - The Surface and Interior Explorer is a New Frontiers class mission that will deploythree or more long-lived landers on the Venus surface. Each lander will carry aseismometer for studies of the interior structure, as well as in situ instruments forcharacterizing the surface mineralogy and elemental composition. This missionrequires significant technology development. - A Sample Return mission will eventually be needed to conduct investigations ofthe Venus surface and atmosphere that cannot be conducted by instruments onremote sensing platforms or on entry probes. This will probably require a largemission and significant technology development. This series of missions will complement and expand on the science objectives of the proposed ESA Venus Express Mission and the ISAS Venus Climate Orbiter.
How Normal is Our Solar System?
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2015-10-01
To date, weve discovered nearly 2000 confirmed exoplanets, as well as thousands of additional candidates. Amidst this vast sea of solar systems, how special is our own? A new study explores the answer to this question.Analyzing DistributionsKnowing whether our solar system is unique among exoplanetary systems can help us to better understand future observations of exoplanets. Furthermore, if our solar system is typical, this allows us to be optimistic about the possibility of life existing elsewhere in the universe.In a recent study, Rebecca Martin (University of Nevada, Las Vegas) and Mario Livio (Space Telescope Science Institute) examine how normal our solar system is, by comparing the properties of our planets to the averages obtained from known exoplanets.Comparing PropertiesSo how do we measure up?Densities of planets as a function of their mass. Exoplanets (N=287) are shown in blue, planets in our solar system are shown in red. [MartinLivio 2015]Planet masses and densitiesThose of the gas giants in our solar system are pretty typical. The terrestrial planets are on the low side for mass, but thats probably a selection effect: its very difficult to detect low-mass planets.Age of the solar systemRoughly half the stars in the disk of our galaxy are younger than the Sun, and half are older. Were definitely not special in age.Orbital locations of the planetsThis is actually a little strange: our solar system is lacking close-in planets. All of our planets, in fact, orbit at a distance that is larger than the mean distance observed in exoplanetary systems. Again, however, this might be a selection effect at work: its easier to detect large planets orbiting very close to their stars.Eccentricities of the planets orbitsOur planets are on very circular orbits and that actually makes us somewhat special too, compared to typical exoplanet systems. There is a possible explanation though: eccentricity of orbits tends to decrease with more planets in the system. Because weve got eight, it might be unsurprising that their eccentricities are so low.Super-EarthsWe dont have any planets in the range of 1-10 times the mass of Earth, which is pretty unusual super-Earths have a high occurrence rate among exoplanets.In summary, the authors find that for the most part, were a pretty typical solar system. Our most unusual features are the lack of a super-Earth, the lack of any close-in planets, and the low eccentricities of our planets. The fact that were fairly average means that, from a habitability standpoint, theres probably nothing special about our little corner of the galaxy. So perhaps life elsewhere is a possibility!CitationRebecca G. Martin and Mario Livio 2015 ApJ 810 105. doi:10.1088/0004-637X/810/2/105
Climate of an Earth-Like World with Changing Eccentricity
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-02-01
Having a giant planet like Jupiter next door can really wreak havoc on your orbit! A new study examines what such a bad neighbor might mean for the long-term climate of an Earth-like planet.Influence of a Bad NeighborThe presence of a Jupiter-like giant planet in a nearby orbit can significantly affect how terrestrial planets evolve dynamically, causing elements like the planets orbital eccentricities and axial tilts to change over time. Earth is saved this inconvenience Jupiter isnt close enough to significantly influence us, and our large moon stabilizes our orbit against Jupiters tugs.Top panels: Authors simulationoutcomes for Case1, in which the planets eccentricity varies from 0 to 0.283 over 6500 years. Bottom panels: Outcomes for Case 2, in which the planets eccentricity varies from 0 to 0.066 over 4500 years. The highereccentricities reached in Case 1 causes the climate parameters to vary more widely. Click for a better look! [Way Georgakarakos 2017]Mars, on the other hand, isnt as lucky: its possible that Jupiters gravitational pull causes Marss axial tilt, for instance, to evolve through a range as large as 0 to 60 degrees on timescales of millions of years! Marss orbital eccentricity is similarly thought to vary due to Jupiters influence, and both of these factors play a major role in determining Marss climate.As exoplanet missions discover more planets many of which are Earth-like we must carefully consider which among these are most likely to be capable of sustaining life. If having a nearby neighbor like a Jupiter can tug an Earth-like world into an orbit with varying eccentricity, how does this affect the planets climate? Will the planet remain temperate? Or will it develop a runaway heating or cooling effect as it orbits, rendering it uninhabitable?Oceans and OrbitsTo examine these questions, two scientists have built the first ever 3D global climate model simulations of an Earth-like world using a fully coupled ocean (necessary for understanding the transport of heat across the planet) with a planetary orbit that evolves over time.The surface air temperature variation of a planet with orbital eccentricity of 0.283. The top panel shows the surface temperature when the planet is closest to the star in its orbit (periastron); the bottom when the planet is furthest from the star in its orbit (apoastron). [Way Georgakarakos 2017]The scientists, Michael Way (NASA Goddard and Uppsala University, Sweden) and Nikolaos Georgakarakos (New York University Abu Dhabi), focus in this study on the specific effects of a varying orbital eccentricity on an Earth-like planets climate, holding the planets axial tilt steady at Earths 23.5. They explore two scenarios: one in which the planets eccentricity evolves from 0 to 0.283 over 6500 years, and the other in which it evolves from 0 to 0.066 over 4500 years.Temperate OutcomesWay and Georgakarakos find that the planet with the more widely varying eccentricity has a greater increase rainfall and humidity as the planet approaches its host star in its orbit. Nonetheless, this effect is not enough to cause a runaway greenhouse scenario in which the planet becomes too warm for habitability. Similarly, the ocean ice fraction remains low enough even at apoastron in high-eccentricity scenarios for the planet to remain temperate.What does these results imply? Having a changing eccentricity caused by the gravitational pull of a nearby Jupiter-like neighbor may make a planets climate more variable, but not to the extent where the planet is no longer able to support life. Therefore, as we discover more such planets with current and upcoming exoplanet missions, we know that we neednt necessarily assume that they arent interest for habitability.CitationM. J. Way and Nikolaos Georgakarakos 2017 ApJL 835 L1. doi:10.3847/2041-8213/835/1/L1
The Search for Life in the Solar System*
Gurnett, Donald A.
2009-01-01
In this presentation I give an overview of the long struggle to answer the age old question, does life exist anywhere else? The focus will be specifically on the search for life in the solar system, since this is the only region currently accessible to direct investigation. A hundred years ago many people believed that life, possibly even intelligent life, existed at the nearby planets Venus and Mars, and possibly elsewhere. The space age exploration of the planets has radically altered that view. We now know that Venus is a very hostile place, with no possibility for life, and that Mars is almost completely barren and very cold, with little prospect for life. The only remaining possibility appears to be in the interior of some of the moons of the outer planets where, due to an unlikely combination of factors, the conditions may be suitable for life. PMID:19768185