Lemont B. Kier: a bibliometric exploration of his scientific production and its use.
Restrepo, Guillermo; Llanos, Eugenio J; Silva, Adriana E
2013-12-01
We thought an appropriate way to celebrate the seminal contribution of Kier is to explore his influence on science, looking for the impact of his research through the citation of his scientific production. From a bibliometric approach the impact of Kier's work is addressed as an individual within a community. Reviewing data from his curriculum vitae, as well as from the ISI Web of Knowledge (ISI), his role within the scientific community is established and the way his scientific results circulate is studied. His curriculum vitae is explored emphasising the approaches he used in his research activities and the social ties with other actors of the community. The circulation of Kier's publications in the ISI is studied as a means for spreading and installing his discourse within the community. The citation patterns found not only show the usage of Kier's scientific results, but also open the possibility to identify some characteristics of this discursive community, such as a common vocabulary and common research goals. The results show an interdisciplinary research work that consolidates a scientific community on the topic of drug discovery.
Kraemer Diaz, Anne E.; Spears Johnson, Chaya R.; Arcury, Thomas A.
2013-01-01
Community-based participatory research (CBPR) has become essential in health disparities and environmental justice research; however, the scientific integrity of CBPR projects has become a concern. Some concerns, such as appropriate research training, lack of access to resources and finances, have been discussed as possibly limiting the scientific integrity of a project. Prior to understanding what threatens scientific integrity in CBPR, it is vital to understand what scientific integrity means for the professional and community investigators who are involved in CBPR. This analysis explores the interpretation of scientific integrity in CBPR among 74 professional and community research team members from of 25 CBPR projects in nine states in the southeastern United States in 2012. It describes the basic definition for scientific integrity and then explores variations in the interpretation of scientific integrity in CBPR. Variations in the interpretations were associated with team member identity as professional or community investigators. Professional investigators understood scientific integrity in CBPR as either conceptually or logistically flexible, as challenging to balance with community needs, or no different than traditional scientific integrity. Community investigators interpret other factors as important in scientific integrity, such as trust, accountability, and overall benefit to the community. This research demonstrates that the variations in the interpretation of scientific integrity in CBPR call for a new definition of scientific integrity in CBPR that takes into account the understanding and needs of all investigators. PMID:24161098
Exploring Venus: the Venus Exploration Analysis Group (VEXAG)
NASA Astrophysics Data System (ADS)
Ocampo, A.; Atreya, S.; Thompson, T.; Luhmann, J.; Mackwell, S.; Baines, K.; Cutts, J.; Robinson, J.; Saunders, S.
In July 2005 NASA s Planetary Division established the Venus Exploration Analysis Group VEXAG http www lpi usra edu vexag in order to engage the scientific community at large in identifying scientific priorities and strategies for the exploration of Venus VEXAG is a community-based forum open to all interested in the exploration of Venus VEXAG was designed to provide scientific input and technology development plans for planning and prioritizing the study of Venus over the next several decades including a Venus surface sample return VEXAG regularly evaluates NASA s Venus exploration goals scientific objectives investigations and critical measurement requirements including the recommendations in the National Research Council Decadal Survey and NASA s Solar System Exploration Strategic Roadmap VEXAG will take into consideration the latest scientific results from ESA s Venus Express mission and the MESSENGER flybys as well as the results anticipated from JAXA s Venus Climate Orbiter together with science community inputs from venues such as the February 13-16 2006 AGU Chapman Conference to identify the scientific priorities and strategies for future NASA Venus exploration VEXAG is composed of two co-chairs Sushil Atreya University of Michigan Ann Arbor and Janet Luhmann University of California Berkeley VEXAG has formed three focus groups in the areas of 1 Planetary Formation and Evolution Surface and Interior Volcanism Geodynamics etc Focus Group Lead Steve Mackwell LPI 2 Atmospheric Evolution Dynamics Meteorology
Rest, Kathleen M.; Halpern, Michael H.
2007-01-01
Our nation’s health and prosperity are based on a foundation of independent scientific discovery. Yet in recent years, political interference in federal government science has become widespread, threatening this legacy. We explore the ways science has been misused, the attempts to measure the pervasiveness of this problem, and the effects on our long-term capacity to meet today’s most complex public health challenges. Good government and a functioning democracy require public policy decisions to be informed by independent science. The scientific and public health communities must speak out to defend taxpayer-funded science from political interference. Encouragingly, both the scientific community and Congress are exploring ways to restore scientific integrity to federal policymaking. PMID:17901422
Rest, Kathleen M; Halpern, Michael H
2007-11-01
Our nation's health and prosperity are based on a foundation of independent scientific discovery. Yet in recent years, political interference in federal government science has become widespread, threatening this legacy. We explore the ways science has been misused, the attempts to measure the pervasiveness of this problem, and the effects on our long-term capacity to meet today's most complex public health challenges. Good government and a functioning democracy require public policy decisions to be informed by independent science. The scientific and public health communities must speak out to defend taxpayer-funded science from political interference. Encouragingly, both the scientific community and Congress are exploring ways to restore scientific integrity to federal policymaking.
Exploring "The World around Us" in a Community of Scientific Enquiry
ERIC Educational Resources Information Center
Dunlop, Lynda; Compton, Kirsty; Clarke, Linda; McKelvey-Martin, Valerie
2013-01-01
The primary Communities of Scientific Enquiry project is one element of the outreach work in Science in Society in Biomedical Sciences in partnership with the School of Education at the University of Ulster. The project aims to develop scientific understanding and skills at key stage 2 and is a response to several contemporary issues in primary…
NASA Astrophysics Data System (ADS)
Schmidt, Gregory
2016-07-01
The NASA Solar System Exploration Research Virtual Institute (SSERVI) is a virtual institute focused on research at the intersection of science and explora-tion, training the next generation of lunar scientists, and community development. The institute is a hub for opportunities that engage the larger scientific and exploration communities in order to form new interdis-ciplinary, research-focused collaborations. Its relative-ly large domestic teams work together along with in-ternational partners in both traditional and virtual set-tings to bring disparate approaches together for mutual benefit. This talk will describe the research efforts of the nine domestic teams that constitute the U.S. com-plement of the Institute and how it is engaging the in-ternational science and exploration communities through workshops, conferences, online seminars and classes, student exchange programs and internships. The Institute is centered on the scientific aspects of exploration as they pertain to the Moon, Near Earth Asteroids (NEAs) and the moons of Mars. It focuses on interdisciplinary, exploration-related science cen-tered around all airless bodies targeted as potential human destinations. Areas of study reported here will represent the broad spectrum of lunar, NEA, and Mar-tian moon sciences encompassing investigations of the surface, interior, exosphere, and near-space environ-ments as well as science uniquely enabled from these bodies. The technical focus ranges from investigations of plasma physics, geology/geochemistry, technology integration, solar system origins/evolution, regolith geotechnical properties, analogues, volatiles, ISRU and exploration potential of the target bodies. SSERVI enhances the widening knowledgebase of planetary research by acting as a bridge between several differ-ent groups and bringing together researchers from the scientific and exploration communities, multiple disci-plines across the full range of planetary sciences, and domestic and international communities and partner-ships.
Sciologer: Visualizing and Exploring Scientific Communities
ERIC Educational Resources Information Center
Bales, Michael Eliot
2009-01-01
Despite the recognized need to increase interdisciplinary collaboration, there are few information resources available to provide researchers with an overview of scientific communities--topics under investigation by various groups, and patterns of collaboration among groups. The tools that are available are designed for expert social network…
Kraemer Diaz, Anne E.; Spears Johnson, Chaya R.; Arcury, Thomas A.
2015-01-01
Scientific integrity is necessary for strong science; yet many variables can influence scientific integrity. In traditional research, some common threats are the pressure to publish, competition for funds, and career advancement. Community-based participatory research (CBPR) provides a different context for scientific integrity with additional and unique concerns. Understanding the perceptions that promote or discourage scientific integrity in CBPR as identified by professional and community investigators is essential to promoting the value of CBPR. This analysis explores the perceptions that facilitate scientific integrity in CBPR as well as the barriers among a sample of 74 professional and community CBPR investigators from 25 CBPR projects in nine states in the southeastern United States in 2012. There were variations in perceptions associated with team member identity as professional or community investigators. Perceptions identified to promote and discourage scientific integrity in CBPR by professional and community investigators were external pressures, community participation, funding, quality control and supervision, communication, training, and character and trust. Some perceptions such as communication and training promoted scientific integrity whereas other perceptions, such as a lack of funds and lack of trust could discourage scientific integrity. These results demonstrate that one of the most important perceptions in maintaining scientific integrity in CBPR is active community participation, which enables a co-responsibility by scientists and community members to provide oversight for scientific integrity. Credible CBPR science is crucial to empower the vulnerable communities to be heard by those in positions of power and policy making. PMID:25588933
SSERVI: Merging Science and Human Exploration
NASA Technical Reports Server (NTRS)
Schmidt, Gregory; Gibbs, Kristina
2017-01-01
The NASA Solar System Exploration Research Virtual Institute (SSERVI) is a virtual institute focused on research and the intersection of science and exploration, training the next generation of lunar scientists, and community development. As part of the SSERVI mission, we act as a hub for the opportunities that engage the larger scientific and exploration communities in order to form a new interdisciplinary, research-focused collaborations.
Kraemer Diaz, Anne E; Spears Johnson, Chaya R; Arcury, Thomas A
2015-06-01
Scientific integrity is necessary for strong science; yet many variables can influence scientific integrity. In traditional research, some common threats are the pressure to publish, competition for funds, and career advancement. Community-based participatory research (CBPR) provides a different context for scientific integrity with additional and unique concerns. Understanding the perceptions that promote or discourage scientific integrity in CBPR as identified by professional and community investigators is essential to promoting the value of CBPR. This analysis explores the perceptions that facilitate scientific integrity in CBPR as well as the barriers among a sample of 74 professional and community CBPR investigators from 25 CBPR projects in nine states in the southeastern United States in 2012. There were variations in perceptions associated with team member identity as professional or community investigators. Perceptions identified to promote and discourage scientific integrity in CBPR by professional and community investigators were external pressures, community participation, funding, quality control and supervision, communication, training, and character and trust. Some perceptions such as communication and training promoted scientific integrity whereas other perceptions, such as a lack of funds and lack of trust could discourage scientific integrity. These results demonstrate that one of the most important perceptions in maintaining scientific integrity in CBPR is active community participation, which enables a co-responsibility by scientists and community members to provide oversight for scientific integrity. Credible CBPR science is crucial to empower the vulnerable communities to be heard by those in positions of power and policy making. © 2015 Society for Public Health Education.
Establishing lunar resource viability
NASA Astrophysics Data System (ADS)
Carpenter, J.; Fisackerly, R.; Houdou, B.
2016-11-01
Recent research has highlighted the potential of lunar resources as an important element of space exploration but their viability has not been demonstrated. Establishing whether or not they can be considered in future plans is a multidisciplinary effort, requiring scientific expertise and delivering scientific results. To this end various space agencies and private entities are looking to lunar resources, extracted and processed in situ, as a potentially game changing element in future space architectures, with the potential to increase scale and reduce cost. However, before any decisions can be made on the inclusion of resources in exploration roadmaps or future scenarios some big questions need to be answered about the viability of different resource deposits and the processes for extraction and utilisation. The missions and measurements that will be required to answer these questions, and which are being prepared by agencies and others, can only be performed through the engagement and support of the science community. In answering questions about resources, data and knowledge will be generated that is of fundamental scientific importance. In supporting resource prospecting missions the science community will de facto generate new scientific knowledge. Science enables exploration and exploration enables science.
Explaining Variation in How Classroom Communities Adapt the Practice of Scientific Argumentation
ERIC Educational Resources Information Center
Berland, Leema K.
2011-01-01
Research and practice has placed an increasing emphasis on aligning classroom practices with scientific practices such as scientific argumentation. In this paper, I explore 1 challenge associated with this goal by examining how existing classroom practices influence students' engagement in the practice of scientific argumentation. To do so, I…
NASA Technical Reports Server (NTRS)
Gibbs, K. E.; Schmidt, G. K.
2017-01-01
The NASA Solar System Exploration Research Virtual Institute (SSERVI) is a virtual institute focused on re-search at the intersection of science and exploration, training the next generation of lunar scientists, and community development. As part of the SSERVI mission, we act as a hub for opportunities that engage the larger scientific and exploration communities in order to form new interdisciplinary, research-focused collaborations. This talk will describe the international partner re-search efforts and how we are engaging the international science and exploration communities through workshops, conferences, online seminars and classes, student exchange programs and internships.
NASA Technical Reports Server (NTRS)
Schmidt, Gregory K.
2014-01-01
The NASA Solar System Exploration Research Virtual Institute (SSERVI), originally chartered in 2008 as the NASA Lunar Science Institute (NLSI), is chartered to advance both the scientific goals needed to enable human space exploration, as well as the science enabled by such exploration. NLSI and SSERVI have in succession been "institutes without walls," fostering collaboration between domestic teams (7 teams for NLSI, 9 for SSERVI) as well as between these teams and the institutes' international partners, resulting in a greater global endeavor. SSERVI teams and international partners participate in sharing ideas, information, and data arising from their respective research efforts, and contribute to the training of young scientists and bringing the scientific results and excitement of exploration to the public. The domestic teams also respond to NASA's strategic needs, providing community-based responses to NASA needs in partnership with NASA's Analysis Groups. Through the many partnerships enabled by NLSI and SSERVI, scientific results have well exceeded initial projections based on the original PI proposals, proving the validity of the virtual institute model. NLSI and SSERVI have endeavored to represent not just the selected and funded domestic teams, but rather the entire relevant scientific community; this has been done through many means such as the annual Lunar Science Forum (now re-named Exploration Science Forum), community-based grass roots Focus Groups on a wide range of topics, and groups chartered to further the careers of young scientists. Additionally, NLSI and SSERVI have co-founded international efforts such as the pan-European lunar science consortium, with an overall goal of raising the tide of lunar science (and now more broadly exploration science) across the world.
Building a Culture of Health Informatics Innovation and Entrepreneurship: A New Frontier.
Househ, Mowafa; Alshammari, Riyad; Almutairi, Mariam; Jamal, Amr; Alshoaib, Saleh
2015-01-01
Entrepreneurship and innovation within the health informatics (HI) scientific community are relatively sluggish when compared to other disciplines such as computer science and engineering. Healthcare in general, and specifically, the health informatics scientific community needs to embrace more innovative and entrepreneurial practices. In this paper, we explore the concepts of innovation and entrepreneurship as they apply to the health informatics scientific community. We also outline several strategies to improve the culture of innovation and entrepreneurship within the health informatics scientific community such as: (I) incorporating innovation and entrepreneurship in health informatics education; (II) creating strong linkages with industry and healthcare organizations; (III) supporting national health innovation and entrepreneurship competitions; (IV) creating a culture of innovation and entrepreneurship within healthcare organizations; (V) developing health informatics policies that support innovation and entrepreneurship based on internationally recognized standards; and (VI) develop an health informatics entrepreneurship ecosystem. With these changes, we conclude that embracing health innovation and entrepreneurship may be more readily accepted over the long-term within the health informatics scientific community.
Secondary Science Teachers, the Internet, and Curriculum Development: A Community of Explorers.
ERIC Educational Resources Information Center
Saferstein, Barry; Souviney, Randall
1998-01-01
In the Community of Explorers Project (CoE) high school teachers and students engaged in scientific problem solving using advanced network technology and innovative pedagogy. Analysis of e-mail indicated the important effects of organizational and occupational cultures on the application of technology in classrooms and on the development of a…
NASA Astrophysics Data System (ADS)
Race, M. S.; Hobbie, J.; et al.
2007-12-01
For more than a decade, scientists and space mission planners have recognized the importance of collaborative information exchange with the Antarctic research community to address their many shared exploration challenges, from drilling methods, remote sample collection, and data interpretation, to concerns about cross contamination that could adversely impact both the environment and interpretation of scientific data. Another shared concern exists in the regulatory realm; both the Antarctic and outer space environments are subject to separate international treaties that impose regulatory controls and oversight with serious implications for exploration planning. In recent years, both communities have faced the need to adjust their regulatory controls in light of fast-paced advances in scientific understanding of extreme environments, particularly related to potential microbial life. Both communities have sought and received advice from the National Research Council (NRC) through studies that suggested ways to update their respective oversight and regulatory systems while allowing for continued scientific exploration. A recently completed NRC study "Exploration of Antarctic Subglacial Aquatic Environments: Environmental and Scientific Stewardship" provided a suite of recommendations to address1) 'cleanliness' levels necessary for equipment and devices used in exploration of subglacial aquatic environments, as well as 2) the scientific basis for contamination standards, and 3) the steps for defining an overall exploration strategy conducive to sound environmental management and scientific stewardship. This talk will present the findings of the recent multinational NRC study, which is likely to translate into useful information for analogue studies that proceed to test techniques and capabilities for exploring an Europan ocean, other icy celestial locations, and related science targets on Earth. As the science and exploration of subglacial environments grows beyond its infancy, the initial methodologies and protocols will undoubtedly continue to need further development and regular revision - making continued collaboration and communication between the polar and space communities mutually beneficial and advisable. NRC Study Committee members: 1 John E. Hobbie (Chair), Marine Biological Laboratory, Woods Hole, Massachusetts; 2 Amy Baker, Technical Administrative Services, Littleton, Colorado; 3 Garry Clarke, The University of British Columbia, Vancouver, Canada; 4 Peter T. Doran, University of Illinois at Chicago, Earth and Environmental Sciences; 5 David Karl, University of Hawaii at Manoa, School of Ocean and Earth Science, Honolulu; 6 Barbara Methé, The Institute for Genomic Research, Rockville, Maryland; 7 Heinz Miller, Alfred-Wegener-Institute for Polar and Marine Research, Germany; 8 Samuel B. Mukasa, University of Michigan, Ann Arbor; 9 Margaret Race, SETI Institute, Mountain View, California; 10 Warwick Vincent, Département de Biologie, Université Laval, Québec, Canada; 11 David Walton, British Antarctic Survey, Cambridge, United Kingdom; 12 James White, University of Colorado, Boulder, 13 Maria Uhle (Study Director), National Research Council.
Participation Levels in 25 Community-Based Participatory Research Projects
ERIC Educational Resources Information Center
Spears Johnson, C. R.; Kraemer Diaz, A. E.; Arcury, T. A.
2016-01-01
This analysis describes the nature of community participation in National Institutes of Health and Centers for Disease Control and Prevention funded community-based participatory research (CBPR) projects, and explores the scientific and social implications of variation in community participation. We conducted in-depth interviews in 2012 with…
NASA's Solar System Exploration Research Virtual Institute: Combining Science and Exploration
NASA Astrophysics Data System (ADS)
Bailey, B.; Schmidt, G.; Daou, D.; Pendleton, Y.
2015-10-01
The NASA Solar System Exploration Research Virtual Institute (SSERVI) is a virtual institute focused on research at the intersection of science andexploration, training the next generation of lunar scientists, and community development. As part of the SSERVI mission, we act as a hub for opportunities that engage the larger scientific and exploration communities in order to form new interdisciplinary, research-focused collaborations. This talk will describe the research efforts of the nine domestic teams that constitute the U.S. complement of the Institute and how we will engage the international science and exploration communities through workshops, conferences, online seminars and classes, student exchange programs and internships.
ERIC Educational Resources Information Center
Tasquier, Giulia; Levrini, Olivia; Dillon, Justin
2016-01-01
The scientific community has been debating climate change for over two decades. In the light of certain arguments put forward by the aforesaid community, the EU has recommended a set of innovative reforms to science teaching such as incorporating environmental issues into the scientific curriculum, thereby helping to make schools a place of civic…
Using Network Analysis to Characterize Biogeographic Data in a Community Archive
NASA Astrophysics Data System (ADS)
Wellman, T. P.; Bristol, S.
2017-12-01
Informative measures are needed to evaluate and compare data from multiple providers in a community-driven data archive. This study explores insights from network theory and other descriptive and inferential statistics to examine data content and application across an assemblage of publically available biogeographic data sets. The data are archived in ScienceBase, a collaborative catalog of scientific data supported by the U.S Geological Survey to enhance scientific inquiry and acuity. In gaining understanding through this investigation and other scientific venues our goal is to improve scientific insight and data use across a spectrum of scientific applications. Network analysis is a tool to reveal patterns of non-trivial topological features in the data that do not exhibit complete regularity or randomness. In this work, network analyses are used to explore shared events and dependencies between measures of data content and application derived from metadata and catalog information and measures relevant to biogeographic study. Descriptive statistical tools are used to explore relations between network analysis properties, while inferential statistics are used to evaluate the degree of confidence in these assessments. Network analyses have been used successfully in related fields to examine social awareness of scientific issues, taxonomic structures of biological organisms, and ecosystem resilience to environmental change. Use of network analysis also shows promising potential to identify relationships in biogeographic data that inform programmatic goals and scientific interests.
What is the Value of Space Exploration? - A Prairie Perspective
NASA Technical Reports Server (NTRS)
1995-01-01
The symposium addresses different topics within Space Exploration. The symposium was fed, using satellite downlinks, to several communities in North Dakota, the first such symposium of its type ever held. The specific topics presented by different community members within the state of North Dakota were: the economic, cultural, scientific and technical, political, educational and social value of Space Exploration. Included is a 22 minute VHS video cassette highlighting the symposium.
NASA Technical Reports Server (NTRS)
Schmidt, Greg; Bailey, Brad; Gibbs, Kristina
2015-01-01
The NASA Solar System Exploration Research Virtual Institute (SSERVI) is a virtual institute focused on research at the intersection of science and exploration, training the next generation of lunar scientists, and development and support of the international community. As part of its mission, SSERVI acts as a hub for opportunities that engage the larger scientific and exploration communities in order to form new interdisciplinary, research-focused collaborations. The nine domestic SSERVI teams that comprise the U.S. complement of the Institute engage with the international science and exploration communities through workshops, conferences, online seminars and classes, student exchange programs and internships. SSERVI represents a close collaboration between science, technology and exploration enabling a deeper, integrated understanding of the Moon and other airless bodies as human exploration moves beyond low Earth orbit. SSERVI centers on the scientific aspects of exploration as they pertain to the Moon, Near Earth Asteroids (NEAs) and the moons of Mars, with additional aspects of related technology development, including a major focus on human exploration-enabling efforts such as resolving Strategic Knowledge Gaps (SKGs). The Institute focuses on interdisciplinary, exploration-related science focused on airless bodies targeted as potential human destinations. Areas of study represent the broad spectrum of lunar, NEA, and Martian moon sciences encompassing investigations of the surface, interior, exosphere, and near-space environments as well as science uniquely enabled from these bodies. This research profile integrates investigations of plasma physics, geology/geochemistry, technology integration, solar system origins/evolution, regolith geotechnical properties, analogues, volatiles, ISRU and exploration potential of the target bodies. New opportunities for both domestic and international partnerships are continually generated through these research and community development efforts, and SSERVI can further serve as a model for joint international scientific efforts through its creation of bridges across disciplines and between countries. Since the inception of the NASA Lunar Science Institute (SSERVIs predecessor), it has and will continue to contribute in many ways toward the advancement of lunar science and the eventual human exploration of the Moon.
NASA Astrophysics Data System (ADS)
Ehrenfreund, Pascale; Foing, Bernard
2014-05-01
In response to the growing importance of space exploration, the objectives of the COSPAR Panel on Exploration (PEX) are to provide high quality, independent science input to support the development of a global space exploration program while working to safeguard the scientific assets of solar system bodies. PEX engages with COSPAR Commissions and Panels, science foundations, IAA, IAF, UN bodies, and IISL to support in particular national and international space exploration working groups and the new era of planetary exploration. COSPAR's input, as gathered by PEX, is intended to express the consensus view of the international scientific community and should ultimately provide a series of guidelines to support future space exploration activities and cooperative efforts, leading to outstanding scientific discoveries, opportunities for innovation, strategic partnerships, technology progression, and inspiration for people of all ages and cultures worldwide. We shall focus on the lunar exploration aspects, where the COSPAR PEX is building on previous COSPAR, ILEWG and community conferences. An updated COSPAR PEX report is published and available online (Ehrenfreund P. et al, COSPAR planetary exploration panel report, http://www.gwu.edu/~spi/assets/COSPAR_PEX2012.pdf). We celebrate 20 years after the 1st International Conference on Exploration and Utilisation of the Moon at Beatenberg in June 1994. The International Lunar Exploration Working Group (ILEWG) was established the year after in April 1995 at an EGS meeting in Hamburg, Germany. As established in its charter, this working group reports to COSPAR and is charged with developing an international strategy for the exploration of the Moon (http://sci.esa.int/ilewg/ ). It discusses coordination between missions, and a road map for future international lunar exploration and utilisation. It fosters information exchange or potential and real future lunar robotic and human missions, as well as for new scientific and exploration information about the Moon. We present the GLUC/ICEUM11 declaration (with emphasis on Science and exploration; Technologies and resources, Infrastructures and human aspects; Moon, Space, Society and Young Explorers) (http://sci.esa.int/iceum11). We give a report on ongoing relevant ILEWG community activities. We discuss how lunar missions SMART-1, Kaguya, Chang'E1&2, Chandrayaan-1, LCROSS, LRO, GRAIL, LADEE, Chang'E3 and upcoming missions contribute to lunar exploration objectives & roadmap.
Environmental Resilience: Exploring Scientific Concepts for ...
Report This report summarizes two Community Environmental Resilience Index workshops held at EPA in May and July of 2014. The workshops explored scientific concepts for building an index of indicators of community environmental resilience to natural or human-caused disasters. The index could be used to support disaster decision-making. Key workshop outcomes include: a working definition of environmental resilience and insight into how it relates to EPA's mission and Strategic Goals, a call for an inventory of EPA resiliency tools, a preliminary list of indicators and CERI structure, identification of next steps for index development, and emergence of a network of collaborators. The report can be used to support EPA's work in resilience under PPD-8, PPD-21, and the national response and disaster recovery frameworks. It can feed into interagency efforts on building community resilience.
Public understanding of science is not scientific literacy
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGowan, A.
1995-12-31
The author notes that public understanding of science has, in many quarters, been taken over by the wrong notion of scientific literacy. The need for the scientific community to develop the language that speaks to the public in general is explored. Methodologies to improve communication to the general public and increase their understanding with clearly developed metaphors are examined.
Partnerships that Bridge the Gap Between Research and Impact
NASA Astrophysics Data System (ADS)
Pandya, R. E.; Udu-gama, N.
2015-12-01
Losses from natural hazards continue to grow, despite growing scientific understanding. Similarly, increasing scientific evidence of our vulnerability to human-induced environmental change has little impact on human behavior. From the perspective of community leaders and policy makers, useful research is hard to locate and difficult to translate from academic publications. Making local decisions is complicated by multiple scientific approaches and predictions and a scientific emphasis on the abstract and global over the concrete and local. Collaborative and respectful locally-focused partnerships, in which community leaders and decision makers co-design local solutions with Earth and space scientists, can overcome this research-to-impact gap. These partnerships work best when they use available scientific and community knowledge to make an immediate local impact while also designing research that addresses broadly relevent and emerging priorities. Framed this way, successful partnerships rest on reciprocal volunteerism: for scientists, making an immediate impact with current knowledge is pro-bono work, while the longer term research better aligns with their career advancement. For community leaders this is flipped: immediate actions tie to their professional responsibilities, and participating in research is often extracurricular. The Thriving Earth Exchange has launched several of these local partnerships and is assembling a set of tools and resources that scientists and community leaders can use to advance their work together. We will introduce the institutional partners who help us identify communities willing to enter these partnerships, and describe how we recruit and select willing and able scientists, many from AGU. We will highlight the human-centered skills and values that are important predictors of successful partnerships and show how we nurture them. We will also describe the progress of several existing efforts and the strategies they use to advance their co-design process. We will explore ideas for sharing co-designed solutions between communities, and explore how partnerships can make the inevitable local customization of borrowed solutions more efficient. Finally, we will share some of the solutions these partnerships have developed and describe their impact.
Bringing Planetary Data into Learning Environments: A Community Effort
NASA Astrophysics Data System (ADS)
Shipp, S.; Higbie, M.; Lowes, L.
2005-12-01
Recognizing the need to communicate scientific findings, and the power of using real planetary data in educational settings to engage students in Earth and space science in meaningful ways, the South Central Organization of Researchers and Educators and the Solar System Exploration Education Forum, part of NASA's Science Mission Directorate's Support Network, have established the Planetary Data in Education (PDE) Initiative. The Initiative strives to: 1) Establish a collaborative community of educators, education specialists, curriculum developers, tool developers, learning technologists, scientists, and data providers to design and develop educationally appropriate products; 2) Build awareness in the broader educational and scientific community of existing programs, products, and resources; 3) Address issues hindering the effective use of planetary data in formal and informal educational settings; and 4) Encourage partnerships that leverage the community's expertise The PDE community has hosted two conferences exploring issues in using data in educational settings. The community recognizes that data are available through venues such as the Planetary Data Systems (PDS), but not in a format that the end-user in a formal or informal educational setting can digest; these data are intended for the scientific audience. Development of meaningful educational programs using planetary data requires design of appropriate learner interfaces and involvement of data providers, product developers, learning technologists, scientists, and educators. The PDE community will participate in the development of Earth Exploration Toolbooks during the DLESE Data Services Workshop and will host a workshop in the summer of 2006 to bring together small groups of educators, data providers, and learning technologists, and scientists to design and develop products that bring planetary data into educational settings. In addition, the PDE community hosts a Web site that presents elements identified as needed by the community, including examples of planetary data use in education, recommendations for program development, links to data providers, opportunities for collaboration, pertinent research, and a Web portal to access educational resources using planetary data on the DLESE Web site.
Inquiry through Modeling: Exploring the Tensions between Natural & Sexual Selection Using Crickets
ERIC Educational Resources Information Center
Bouwma-Gearhart, Jana; Bouwma, Andrew
2015-01-01
The "Next Generation Science Standards" (NGSS Lead States, 2013) recommend that science courses engage communities of students in scientific practices that include building accurate conceptual models of phenomena central to the understanding of scientific disciplines. We offer a set of activities, implemented successfully at both the…
If It Can Be Studied or Developed, Should It Be?
ERIC Educational Resources Information Center
Sarason, Seymour B.
1984-01-01
Challenges the axiom that unalloyed benefits accrue to society by virtue of untrammeled scientific inquiry and technological advance. Discusses examples of challenges from within and without the scientific community in matters of atomic energy, space exploration, genetic engineering, and inquiry into racial and ethnic differences in intelligence.…
Research Infrastructure and Scientific Collections: The Supply and Demand of Scientific Research
NASA Astrophysics Data System (ADS)
Graham, E.; Schindel, D. E.
2016-12-01
Research infrastructure is essential in both experimental and observational sciences and is commonly thought of as single-sited facilities. In contrast, object-based scientific collections are distributed in nearly every way, including by location, taxonomy, geologic epoch, discipline, collecting processes, benefits sharing rules, and many others. These diffused collections may have been amassed for a particular discipline, but their potential for use and impact in other fields needs to be explored. Through a series of cross-disciplinary activities, Scientific Collections International (SciColl) has explored and developed new ways in which the supply of scientific collections can meet the demand of researchers in unanticipated ways. From cross-cutting workshops on emerging infectious diseases and food security, to an online portal of collections, SciColl aims to illustrate the scope and value of object-based scientific research infrastructure. As distributed infrastructure, the full impact of scientific collections to the research community is a result of discovering, utilizing, and networking these resources. Examples and case studies from infectious disease research, food security topics, and digital connectivity will be explored.
Babor, Thomas F; Robaina, Katherine
2013-02-01
We explored the emerging relationships among the alcohol industry, academic medicine, and the public health community in the context of public health theory dealing with corporate social responsibility. We reviewed sponsorship of scientific research, efforts to influence public perceptions of research, dissemination of scientific information, and industry-funded policy initiatives. To the extent that the scientific evidence supports the reduction of alcohol consumption through regulatory and legal measures, the academic community has come into increasing conflict with the views of the alcohol industry. We concluded that the alcohol industry has intensified its scientific and policy-related activities under the general framework of corporate social responsibility initiatives, most of which can be described as instrumental to the industry's economic interests.
Robaina, Katherine
2013-01-01
We explored the emerging relationships among the alcohol industry, academic medicine, and the public health community in the context of public health theory dealing with corporate social responsibility. We reviewed sponsorship of scientific research, efforts to influence public perceptions of research, dissemination of scientific information, and industry-funded policy initiatives. To the extent that the scientific evidence supports the reduction of alcohol consumption through regulatory and legal measures, the academic community has come into increasing conflict with the views of the alcohol industry. We concluded that the alcohol industry has intensified its scientific and policy-related activities under the general framework of corporate social responsibility initiatives, most of which can be described as instrumental to the industry’s economic interests. PMID:23237151
First among equals: The selection of NASA space science experiments
NASA Technical Reports Server (NTRS)
Naugle, John E.
1990-01-01
The process is recounted by which NASA and the scientific community have, since 1958, selected individual experiments for NASA space missions. It explores the scientific and organizational issues involved in the selection process and discusses the significance of the process in the character and accomplishments of U.S. space activities.
Contrasting Scientific Knowledge with Knowledge from the Lifeworld: The Dialogic Inclusion Contract
ERIC Educational Resources Information Center
Padros, Maria; Garcia, Rocio; de Mello, Roseli; Molina, Silvia
2011-01-01
The Dialogic Inclusion Contract (DIC) consists in an agreement between the scientific community and social agents to define successful actions aimed at overcoming social exclusion in highly underprivileged areas. Taking the case of a Spanish neighborhood that is generating important transformations, this article explores the process of defining…
The use of harmonic drives on NASA's Mars Exploration Rover
NASA Technical Reports Server (NTRS)
Krishnan, S.; Voorhees, C.
2001-01-01
The Mars Exploration Rover (MER) mission will send two 185 kg rovers to Mars in 2003 to continue the scientific community's search for evidence of past water on Mars. These twin robotic vehicles will carry harmonic drives and their performance will be characterized at various temperatures, speeds and loads.
ERIC Educational Resources Information Center
Greenseid, Lija O.; Lawrenz, Frances
2011-01-01
This study explores the use of citation analysis methods to assess the influence of program evaluations conducted within the area of science, technology, engineering, and mathematics (STEM) education. Citation analysis is widely used within scientific research communities to measure the relative influence of scientific research enterprises and/or…
Is Twitter a forum for disseminating research to health policy makers?
Kapp, Julie M; Hensel, Brian; Schnoring, Kyle T
2015-12-01
Findings from scientific research largely remain inside the scientific community. Research scientists are being encouraged to use social media, and especially Twitter, for dissemination of evidence. The potential for Twitter to narrow the gap on evidence translated into policy presents new opportunities. We explored the innovative question of the feasibility of Twitter as a tool for the scientific community to disseminate to and engage with health policy makers for research impact. We created a list of federal "health policy makers." In December 2014, we identified members using several data sources, then collected and summarized their Twitter usage data. Nearly all health policy makers had Twitter accounts. Their communication volume varied broadly. Policy makers are more likely to push information via Twitter than engage with constituents, although usage varied broadly. Twitter has the potential to aid the scientific community in dissemination of health-related research to health policy makers, after understanding how to effectively (and selectively) use Twitter. Copyright © 2015 Elsevier Inc. All rights reserved.
Engaging Karen Refugee Students in Science Learning through a Cross-Cultural Learning Community
ERIC Educational Resources Information Center
Harper, Susan G.
2017-01-01
This research explored how Karen (first-generation refugees from Burma) elementary students engaged with the Next Generation Science Standards (NGSS) practice of constructing scientific explanations based on evidence within the context of a cross-cultural learning community. In this action research, the researcher and a Karen parent served as…
ERIC Educational Resources Information Center
Daley, Dorothy M.
2007-01-01
This paper explores the influence of local community groups on agency decisionmaking at hazardous waste sites nationwide. The central purpose of this research is to examine the relative influence of two forms of public participation at Superfund sites: Community Advisory Groups (CAGs) and Technical Assistance Grants (TAGs). When citizens mobilize…
NASA Astrophysics Data System (ADS)
Lyons, Renee
Educational programs created to provide opportunities for all, in reality often reflect social inequalities. Such is the case for Public Participation in Scientific Research (PPSR) Projects. PPSR projects have been proposed as an effective way to engage more diverse audiences in science, yet the demographics of PPSR participants do not correspond with the demographic makeup of the United States. The field of PPSR as a whole has struggled to recruit low SES and underrepresented populations to participate in project research efforts. This research study explores factors, which may be affecting an underrepresented community's willingness to engage in scientific research and provides advice from PPSR project leaders in the field, who have been able to engage underrepresented communities in scientific research, on how to overcome these barriers. Finally the study investigates the theoretical construct of a Third Space within a PPSR project. The research-based recommendations for PPSR projects desiring to initiate and sustain research partnerships with underrepresented communities well align with the theoretical construct of a Third Space. This study examines a specific scientific research partnership between an underrepresented community and scientific researchers to examine if and to what extent a Third Space was created. Using qualitative methods to understand interactions and processes involved in initiating and sustaining a scientific research partnership, this study provides advice on how PPSR research partnerships can engage underrepresented communities in scientific research. Study results show inequality and mistrust of powerful institutions stood as participation barriers for underrepresented community members. Despite these barriers PPSR project leaders recommend barriers can be confronted by open dialogue with communities about the abuse and alienation they have faced, by signaling respect for the community, and by entering the community through someone the community already trusts. Finally although many of the principles of a Third Space well align with the larger level of activity, which existed in the PPSR project examined in this study, study findings challenge others to critically examine assumptions behind the idea of a Third Space in PPSR and urge other PPSR project leaders towards a transformed view of science.
Working Group Reports and Presentations: Mars Science and Exploration
NASA Technical Reports Server (NTRS)
Beaty, David
2006-01-01
In Mars, the spirit of exploring an exciting and rewarding new frontier is alive. Mars not only offers a unique destination for exploration, but it is also a critical destination for the advancement of human society and preservation of humanity. The exploration of Mars will provide significant social and technological benefits to enhance life on Earth as well. International cooperation will not only be essential to the success of a human presence on Mars, but development of such interactions will jumpstart collaboration on global issues. The eventual commercialization of space holds tremendous opportunities for economic growth. Finally, there is an undeniable basic human need to explore and define our place in the universe. The overarching theme that ties together all of these reasons for exploration is to inspire and unite the global community to pursue a common cause that is much larger than disagreements over ethnic differences or national borders. Continuous inspiration of the public, the scientific community, and the community of Earth are required in order to explore Mars.
NASA Technical Reports Server (NTRS)
Ippolito, Corey; Plice, Laura; Pisanich, Greg
2003-01-01
The BEES (Bio-inspired Engineering for Exploration Systems) for Mars project at NASA Ames Research Center has the goal of developing bio-inspired flight control strategies to enable aerial explorers for Mars scientific investigations. This paper presents a summary of our ongoing research into biologically inspired system designs for control of unmanned autonomous aerial vehicle communities for Mars exploration. First, we present cooperative design considerations for robotic explorers based on the holarchical nature of biological systems and communities. Second, an outline of an architecture for cognitive decision making and control of individual robotic explorers is presented, modeled after the emotional nervous system of cognitive biological systems. Keywords: Holarchy, Biologically Inspired, Emotional UAV Flight Control
Bareback sex and gay men: an HIV prevention failure.
Goodroad, B K; Kirksey, K M; Butensky, E
2000-01-01
Bareback sex, or actively seeking unprotected anal intercourse is occurring in the gay male community. This represents a new phenomenon, different from previously identified "relapse" unsafe sexual behavior and poses an important HIV prevention problem. This article reviews the extant literature regarding bareback sex. The lay press and scientific literature are reviewed. Although discussion of issues surrounding bareback sex is abundant in the gay press, scientific literature regarding this phenomenon is nonexistent. The evidence-based literature addresses relapse to unsafe sexual behavior. Although this literature provides further understanding of safer sexual behaviors in gay men, barebacking is a unique issue that requires additional exploration. In this article, factors underlying bareback sexual behavior are explored, including previous HIV prevention efforts and their relationship to this phenomenon. Finally, bareback sex in the gay male community and its implications for nursing practice, research, and education are explored. The harm reduction model is offered as a useful guide for nursing assessment and intervention.
How should novelty be valued in science?
Cohen, Barak A
2017-07-25
Scientists are under increasing pressure to do "novel" research. Here I explore whether there are risks to overemphasizing novelty when deciding what constitutes good science. I review studies from the philosophy of science to help understand how important an explicit emphasis on novelty might be for scientific progress. I also review studies from the sociology of science to anticipate how emphasizing novelty might impact the structure and function of the scientific community. I conclude that placing too much value on novelty could have counterproductive effects on both the rate of progress in science and the organization of the scientific community. I finish by recommending that our current emphasis on novelty be replaced by a renewed emphasis on predictive power as a characteristic of good science.
Partners in Science: A Suggested Framework for Inclusive Research
NASA Astrophysics Data System (ADS)
Pandya, R. E.
2012-12-01
Public participation in scientific research, also known as citizen science, is effective on many levels: it produces sound, publishable science and data, helps participants gain scientific knowledge and learn about the methods and practices of modern science, and can help communities advance their own priorities. Unfortunately, the demographics of citizen science programs do not reflect the demographics of the US; in general people of color and less affluent members of society are under-represented. To understand the reasons for this disparity, it is useful to look to the broader research about participation in science in a variety of informal and formal settings. From this research, the causes for unequal participation in science can be grouped into three broad categories: accessibility challenges, cultural differences, and a gap between scientific goals and community priorities. Many of these challenges are addressed in working with communities to develop an integrated program of scientific research, education, and community action that addresses community priorities and invites community participation at every stage of the process from defining the question to applying the results. In the spectrum of ways to engage the public in scientific research, this approach of "co-creation" is the most intensive. This talk will explore several examples of co-creation of science, including collaborations with tribal communities around climate change adaptation, work in the Louisiana Delta concerning land loss, and the link between weather and disease in Africa. We will articulate some of the challenges of working this intensively with communities, and suggest a general framework for guiding this kind of work with communities. This model of intensive collaboration at every stage is a promising one for adding to the diversity of citizen science efforts. It also provides a powerful strategy for science more generally, and may help us diversify our field, ensure the use and usability of our science, and help strengthen public support for and acceptance of scientific results.
ERIC Educational Resources Information Center
Winters, Charlene A.; Kuntz, Sandra W.; Weinert, Clarann; Black, Brad
2014-01-01
As a means to involve the public in research, the National Institutes of Health (NIH) established the Partners in Research Program and solicited research grant applications from academic/scientific institutions and community organizations that proposed to forge partnerships: (a) to study methods and strategies to engage and inform the public…
NASA Technical Reports Server (NTRS)
Clinton, R. G., Jr.; Szofran, Frank; Bassler, Julie A.; Schlagheck, Ronald A.; Cook, Mary Beth
2005-01-01
The Microgravity Materials Science Program established a strong research capability through partnerships between NASA and the scientific research community. With the announcement of the vision for space exploration, additional emphasis in strategic materials science areas was necessary. The President's Commission recognized that achieving its exploration objectives would require significant technical innovation, research, and development in focal areas defined as "enabling technologies." Among the 17 enabling technologies identified for initial focus were: advanced structures, advanced power and propulsion; closed-loop life support and habitability; extravehicular activity systems; autonomous systems and robotics; scientific data collection and analysis, biomedical risk mitigation; and planetary in situ resource utilization. Mission success may depend upon use of local resources to fabricate a replacement part to repair a critical system. Future propulsion systems will require materials with a wide range of mechanical, thermophysical, and thermochemical properties, many of them well beyond capabilities of today's materials systems. Materials challenges have also been identified by experts working to develop advanced life support systems. In responding to the vision for space exploration, the Microgravity Materials Science Program aggressively transformed its research portfolio and focused materials science areas of emphasis to include space radiation shielding; in situ fabrication and repair for life support systems; in situ resource utilization for life support consumables; and advanced materials for exploration, including materials science for space propulsion systems and for life support systems. The purpose of this paper is to inform the scientific community of these new research directions and opportunities to utilize their materials science expertise and capabilities to support the vision for space exploration.
Astrobiology from exobiology: Viking and the current Mars probes.
Soffen, G A
1997-01-01
The development of an Astrobiology Program is an extension of current exobiology programs. Astrobiology is the scientific study of the origin, distribution, evolution, and future of life in the universe. It encompasses exobiology; formation of elements, stars, planets, and organic molecules; initiation of replicating organisms; biological evolution; gravitational biology; and human exploration. Current interest in life on Mars provides the scientific community with an example of scientific inquiry that has mass appeal. Technology is mature enough to search for life in the universe.
Sustaining Scientist-Community Partnerships that are Just, Equitable, and Trustworthy
NASA Astrophysics Data System (ADS)
Sheats, N.
2016-12-01
Communities of color, indigenous people, and low income communities throughout the United States are on the front lines of environmental and health impacts from polluting sources, and yet don't fully benefit from public policies that are intended to reduce or prevent those impacts. Many of the challenges faced by environmental justice communities can and should be addressed, in part, through science-based public policies. Community-relevant scientific information and equal access to this information is needed to protect people from public health and environmental hazards. Too often, however, the scientific community has failed to work collaboratively with environmental justice communities. This session will explore the challenges and opportunities faced by environmental justice advocates and scientists in working with one another. This talk will share findings from a recently-held forum, specifically discussing a formal set of principles and best practices for community-scientist partnerships to guide future collaborations between scientists and communities. When community members and scientists collaborate, they bring together unique strengths and types of knowledge that can help address our most pressing challenges, inform decision making, and develop solutions that benefit all people. The speaker will address institutional and historic barriers that hinder such collaboration, potential pitfalls to avoid, and share how institutional systems of scientific research can incorporate equity analyses into their work to ensure solutions that are truly effective.
Exploring Two Approaches for an End-to-End Scientific Analysis Workflow
NASA Astrophysics Data System (ADS)
Dodelson, Scott; Kent, Steve; Kowalkowski, Jim; Paterno, Marc; Sehrish, Saba
2015-12-01
The scientific discovery process can be advanced by the integration of independently-developed programs run on disparate computing facilities into coherent workflows usable by scientists who are not experts in computing. For such advancement, we need a system which scientists can use to formulate analysis workflows, to integrate new components to these workflows, and to execute different components on resources that are best suited to run those components. In addition, we need to monitor the status of the workflow as components get scheduled and executed, and to access the intermediate and final output for visual exploration and analysis. Finally, it is important for scientists to be able to share their workflows with collaborators. We have explored two approaches for such an analysis framework for the Large Synoptic Survey Telescope (LSST) Dark Energy Science Collaboration (DESC); the first one is based on the use and extension of Galaxy, a web-based portal for biomedical research, and the second one is based on a programming language, Python. In this paper, we present a brief description of the two approaches, describe the kinds of extensions to the Galaxy system we have found necessary in order to support the wide variety of scientific analysis in the cosmology community, and discuss how similar efforts might be of benefit to the HEP community.
SCOSTEP: Understanding the Climate and Weather of the Sun-Earth System
NASA Technical Reports Server (NTRS)
Gopalswamy, Natchimuthuk
2011-01-01
The international solar-terrestrial physics community had recognized the importance of space weather more than a decade ago, which resulted in a number of international collaborative activities such as the Climate and Weather of the Sun Earth System (CAWSES) by the Scientific Committee on Solar Terrestrial Physics (SCOSTEP). The CAWSES program is the current major scientific program of SCOSTEP that will continue until the end of the year 2013. The CAWSES program has brought scientists from all over the world together to tackle the scientific issues behind the Sun-Earth connected system and explore ways of helping the human society. In addition to the vast array of space instruments, ground based instruments have been deployed, which not only filled voids in data coverage, but also inducted young scientists from developing countries into the scientific community. This paper presents a summary of CAWSES and other SCOSTEP activities that promote space weather science via complementary approaches in international scientific collaborations, capacity building, and public outreach.
NASA Astrophysics Data System (ADS)
Lewis, E. S.; Gehrke, G. E.
2017-12-01
In a historical moment where the legitimacy of science is being questioned, it is essential to make science more accessible to the public. Active participation increases the legitimacy of projects within communities (Sidaway 2009). Creating collaborations in research strengthens not only the work by adding new dimensions, but also the social capital of communities through increased knowledge, connections, and decision making power. In this talk, Lewis will discuss how engagement at different stages of the scientific process is possible, and how researchers can actively develop opportunities that are open and inviting. Genuine co-production in research pushes scientists to work in new ways, and with people from different backgrounds, expertise, and lived experiences. This approach requires a flexible and dynamic balance of learning, sharing, and creating for all parties involved to ensure more meaningful and equitable participation. For example, in community science such as that by Public Lab, the community is at the center of scientific exploration. The research is place-based and is grounded in the desired outcomes of community members. Researchers are able to see themselves as active participants in this work alongside community members. Participating in active listening, developing plans together, and using a shared language built through learning can be helpful tools in all co-production processes. Generating knowledge is powerful. Through genuine collaboration and co-creation, science becomes more relevant. When community members are equitable stakeholders in the scientific process, they are better able to engage and advocate for the changes they want to see in their communities. Through this talk, session attendees will learn about practices that promote equitable participation in science, and hear examples of how the community science process engages people in both the knowledge production, and in the application of science.
Pioneers on the Astrosociological Frontier: Introduction to the First Symposium on Astrosociology
NASA Astrophysics Data System (ADS)
Pass, Jim
2009-03-01
Astrosociology is a relatively new multidisciplinary field that scientifically investigates astrosocial phenomena (i.e., social, cultural, and behavioral patterns related to space exploration and related issues). The "astrosociological frontier" represents an analogous framework to that of space as the "final frontier," as both territories are quite empty of human activity and ripe for exploration. This focus on the astrosociological frontier provides insights about the need for a social-scientific field to place the human dimension in its proper place alongside familiar space community concerns such as engineering. The astrosociological frontier refers to the lack of development of astrosociology as a scientific field—or anything like it earlier during the space age. It includes both the 1) unoccupied "landscape" in academia characterized by the lack of astrosociology in its curricula and 2) dearth of space research focused on social-scientific (i.e., astrosociological) topics both inside and outside of traditional academia in collaboration with traditional space community members and the new space entrepreneurs. Within academia, the "frontier" is characterized by a lack of courses, programs, and departments dedicated to astrosociology. In the future, proponents of this new field expect the astrosociological frontier to become characterized by a growing number of "settlements" in curricula across the country and world. As things stand, however, the early "astrosociological pioneers" include those who seek to explore these underappreciated issues within academic and professional climates that discourage them from pursuing their interests. Thus, the "1st Symposium on Astrosociology" at the 2009 SPESIF conference represents an important expedition consisting of pioneering participants willing to venture into a little-explored territory with the goal of developing astrosociology.
Making Geoscience Data Relevant for Students, Teachers, and the Public
NASA Astrophysics Data System (ADS)
Taber, M.; Ledley, T. S.; Prakash, A.; Domenico, B.
2009-12-01
The scientific data collected by government funded research belongs to the public. As such, the scientific and technical communities are responsible to make scientific data accessible and usable by the educational community. However, much geoscience data are difficult for educators and students to find and use. Such data are generally described by metadata that are narrowly focused and contain scientific language. Thus, data access presents a challenge to educators in determining if a particular dataset is relevant to their needs, and to effectively access and use the data. The AccessData project (EAR-0623136, EAR-0305058) has developed a model for bridging the scientific and educational communities to develop robust inquiry-based activities using scientific datasets in the form of Earth Exploration Toolbook (EET, http://serc.carleton.edu/eet) chapters. EET chapters provide step-by-step instructions for accessing specific data and analyzing it with a software analysis tool to explore issues or concepts in science, technology, and mathematics. The AccessData model involves working directly with small teams made up of data providers from scientific data archives or research teams, data analysis tool specialists, scientists, curriculum developers, and educators (AccessData, http://serc.carleton.edu/usingdata/accessdata). The process involves a number of steps including 1) building of the team; 2) pre-workshop facilitation; 3) face-to-face 2.5 day workshop; 4) post-workshop follow-up; 5) completion and review of the EET chapter. The AccessData model has been evolved over a series of six annual workshops hosting ~10 teams each. This model has been expanded to other venues to explore expanding its scope and sustainable mechanisms. These venues include 1) workshops focused on the data collected by a large research program (RIDGE, EarthScope); 2) a workshop focused on developing a citizen scientist guide to conducting research; and 3) facilitating a team on an annual basis within the structure of the Federation of Earth Science Information Partners (ESIP Federation), leveraging their semi-annual meetings. In this presentation we will describe the AccessData model of making geoscience data accessible and usable in educational contexts from the perspective of both the organizers and from a team. We will also describe how this model has been adapted to other contexts to facilitate a broader reach of geoscience data.
Phytoplankton in the Sea of Okhotsk
2013-06-13
Differently colored waters in the Sea of Okhotsk on June 12, 2013 suggest differences in phytoplankton community structure from one location to the next. The ocean color community would eventually like to use remotely sensed data, such as are shown in the above Aqua-MODIS image, to better understand global phytoplankton diversity. Credit: NASA/MODIS/Aqua NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Adventures in supercomputing: Scientific exploration in an era of change
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gentry, E.; Helland, B.; Summers, B.
1997-11-01
Students deserve the opportunity to explore the world of science surrounding them. Therefore it is important that scientific exploration and investigation be a part of each student`s educational career. The Department of Energy`s Adventures in Superconducting (AiS) takes students beyond mere scientific literacy to a rich embodiment of scientific exploration. AiS provides today`s science and math students with a greater opportunity to investigate science problems, propose solutions, explore different methods of solving the problem, organize their work into a technical paper, and present their results. Students learn at different rates in different ways. Science classes with students having varying learningmore » styles and levels of achievement have always been a challenge for teachers. The AiS {open_quotes}hands-on, minds-on{close_quotes} project-based method of teaching science meets the challenge of this diversity heads on! AiS uses the development of student chosen projects as the means of achieving a lifelong enthusiasm for scientific proficiency. One goal of AiS is to emulate the research that takes place in the everyday environment of scientists. Students work in teams and often collaborate with students nationwide. With the help of mentors from the academic and scientific community, students pose a problem in science, investigate possible solutions, design a mathematical and computational model for the problem, exercise the model to achieve results, and evaluate the implications of the results. The students then have the opportunity to present the project to their peers, teachers, and scientists. Using this inquiry-based technique, students learn more than science skills, they learn to reason and think -- going well beyond the National Science Education Standard. The teacher becomes a resource person actively working together with the students in their quest for scientific knowledge.« less
NASA Astrophysics Data System (ADS)
Johnston, Carol Suzanne Chism
This qualitative study explores how a scientific research experience helped seven secondary science teachers to grow professionally. The design of this Research Experience for Teachers (RET) program emphasized having teachers become members of university scientific research communities---participating in experimental design, data collection, analysis, and presenting of findings---in order to have a better understanding of research science. I conducted individual interviews with teacher and scientist participants, visited the teachers in their laboratories, videotaped classroom visits, and videotaped group meetings during the summers to learn what teachers brought back to their classrooms about the processes of science. I examined the teachers' views of research science, views shaped by their exposure to research science under the mentorship of a scientist participant. The teachers observed the collaborative efforts of research scientists and experienced doing scientific research, using technology and various experimental methods. Throughout their two-year experience, the teachers continually refined their images of scientists. I also examined how teachers in this program built a professional community as they developed curricula. Further, I investigated what the teachers brought from their experiences back to the classroom, deciding on a theme of "Communicating Science" as a way to convey aspects of scientific inquiry to students. Teacher growth as a result of this two-year program included developing more empathy for student learning and renewing their enthusiasm for both learning and teaching science. Teacher growth also included developing curricula to involve students in behaving as scientists. The teachers identified a few discrete communication practices of scientists that they deemed appropriate for students to adopt to increase their communication skills. Increased community building in classes to model scientific communities was seen as a way to motivate students and to help them to understand scientific concepts.
Online Resources: Smithsonian Marine Station (SMS) at Fort Pierce
to do so with a goal of promoting public awareness and the need for stewardship of the IRL as an students, the public and scientific community, and we encourage you to explore this dynamic, ever-growing
Building Scientific Data's list of recommended data repositories
NASA Astrophysics Data System (ADS)
Hufton, A. L.; Khodiyar, V.; Hrynaszkiewicz, I.
2016-12-01
When Scientific Data launched in 2014 we provided our authors with a list of recommended data repositories to help them identify data hosting options that were likely to meet the journal's requirements. This list has grown in size and scope, and is now a central resource for authors across the Nature-titled journals. It has also been used in the development of data deposition policies and recommended repository lists across Springer Nature and at other publishers. Each new addition to the list is assessed according to a series of criteria that emphasize the stability of the resource, its commitment to principles of open science and its implementation of relevant community standards and reporting guidelines. A preference is expressed for repositories that issue digital object identifiers (DOIs) through the DataCite system and that share data under the Creative Commons CC0 waiver. Scientific Data currently lists fourteen repositories that focus on specific areas within the Earth and environmental sciences, as well as the broad scope repositories, Dryad and figshare. Readers can browse and filter datasets published at the journal by the host repository using ISA-explorer, a demo tool built by the ISA-tools team at Oxford University1. We believe that well-maintained lists like this one help publishers build a network of trust with community data repositories and provide an important complement to more comprehensive data repository indices and more formal certification efforts. In parallel, Scientific Data has also improved its policies to better support submissions from authors using institutional and project-specific repositories, without requiring each to apply for listing individually. Online resources Journal homepage: http://www.nature.com/scientificdata Data repository criteria: http://www.nature.com/sdata/policies/data-policies#repo-criteria Recommended data repositories: http://www.nature.com/sdata/policies/repositories Archived copies of the list: https://dx.doi.org/10.6084/m9.figshare.1434640.v6 Reference Gonzalez-Beltran, A. ISA-explorer: A demo tool for discovering and exploring Scientific Data's ISA-tab metadata. Scientific Data Updates http://blogs.nature.com/scientificdata/2015/12/17/isa-explorer/ (2015).
Rural Community Leaders’ Perceptions of Environmental Health Risks
Larsson, Laura S.; Butterfield, Patricia; Christopher, Suzanne; Hill, Wade
2015-01-01
Qualitative description was used to explore how rural community leaders frame, interpret, and give meaning to environmental health issues affecting their constituents and communities. Six rural community leaders discussed growth, vulnerable families, and the action avoidance strategies they use or see used in lieu of adopting health-promoting behaviors. Findings suggest intervention strategies should be economical, use common sense, be sensitive to regional identity, and use local case studies and “inside leadership.” Occupational health nurses addressing the disparate environmental health risks in rural communities are encouraged to use agenda-neutral, scientifically based risk communication efforts and foster collaborative relationships among nurses, planners, industry, and other community leaders. PMID:16562621
Exploring Two Approaches for an End-to-End Scientific Analysis Workflow
Dodelson, Scott; Kent, Steve; Kowalkowski, Jim; ...
2015-12-23
The advance of the scientific discovery process is accomplished by the integration of independently-developed programs run on disparate computing facilities into coherent workflows usable by scientists who are not experts in computing. For such advancement, we need a system which scientists can use to formulate analysis workflows, to integrate new components to these workflows, and to execute different components on resources that are best suited to run those components. In addition, we need to monitor the status of the workflow as components get scheduled and executed, and to access the intermediate and final output for visual exploration and analysis. Finally,more » it is important for scientists to be able to share their workflows with collaborators. Moreover we have explored two approaches for such an analysis framework for the Large Synoptic Survey Telescope (LSST) Dark Energy Science Collaboration (DESC), the first one is based on the use and extension of Galaxy, a web-based portal for biomedical research, and the second one is based on a programming language, Python. In our paper, we present a brief description of the two approaches, describe the kinds of extensions to the Galaxy system we have found necessary in order to support the wide variety of scientific analysis in the cosmology community, and discuss how similar efforts might be of benefit to the HEP community.« less
NASA Astrophysics Data System (ADS)
Baztan, Juan; Cordier, Mateo; Huctin, Jean-Michel; Zhu, Zhiwei; Vanderlinden, Jean-Paul
2017-09-01
What are the links between mainstream climate science and local community knowledge? This study takes the example of Greenland, considered one of the regions most impacted by climate change, and Inuit people, characterized as being highly adaptive to environmental change, to explore this question. The study is based on 10 years of anthropological participatory research in Uummannaq, Northwest Greenland, along with two fieldwork periods in October 2014 and April 2015, and a quantitative bibliometric analysis of the international literature on sea ice - a central subject of concern identified by Uummannaq community members during the fieldwork periods. Community members' perceptions of currently available scientific climate knowledge were also collected during the fieldwork. This was done to determine if community members consider available scientific knowledge salient and if it covers issues they consider relevant. The bibliometric analysis of the sea ice literature provided additional insight into the degree to which scientific knowledge about climate change provides information relevant for the community. Our results contribute to the ongoing debate on the missing connections between community worldviews, cultural values, livelihood needs, interests and climate science. Our results show that more scientific research efforts should consider local-level needs in order to produce local-scale knowledge that is more salient, credible and legitimate for communities experiencing climate change. In Uummannaq, as in many Inuit communities with similar conditions, more research should be done on sea ice thickness in winter and in areas through which local populations travel. This paper supports the growing evidence that whenever possible, climate change research should focus on environmental features that matter to communities, at temporal and spatial scales relevant to them, in order to foster community adaptations to change. We recommend such research be connected to and co-constructed with local communities to ensure their needs and values are integrated into the research process and outputs.
NASA Astrophysics Data System (ADS)
Druckenmiller, M. L.; Wiggins, H. V.; Eicken, H.; Francis, J. A.; Huntington, H.; Scambos, T. A.
2015-12-01
The Study of Environmental Arctic Change (SEARCH), ongoing since the early-2000s, aims to develop scientific knowledge to help society understand and respond to the rapidly changing Arctic. Through collaboration with the research community, funding agencies, national and international science programs, and other stakeholders, SEARCH facilitates research activities across local-to-global scales, with increasing emphasis on addressing the information needs of policy and decision-makers. This talk will explore the program's history, spanning its earliest efforts to understand interrelated atmospheric, oceanic, and terrestrial changes in the Arctic to more recent objectives of providing stakeholder-relevant information, such as community-wide summaries of the expected arctic summer sea ice minimum or up-to-date information on sea ice conditions to Alaska Native walrus hunters in the Bering and Chukchi Seas. We will discuss SEARCH's recent shift toward a "Knowledge to Action" vision and implementation of focused Action Teams to: (1) improve understanding, advance prediction, and explore consequences of changing arctic sea ice; (2) document and understand how degradation of near-surface permafrost will affect arctic and global systems; and (3) improve predictions of future land-ice loss and impacts on sea level. Tracking and evaluating how scientific information from such research reaches stakeholders and informs decisions are critical for interactions that allow the research community to keep pace with an evolving landscape of arctic decision-makers. Examples will be given for the new directions these Action Teams are taking regarding science communication and approaches for research community collaboration to synthesize research findings and promote arctic science and interdisciplinary scientific discovery.
The non-Federal oceanographic community: An overview
NASA Technical Reports Server (NTRS)
Swetnick, M. A.
1981-01-01
A portion of the broad domestic non-Federal oceanographic community that represents a potential market for satellite remote sensor derived oceanographic data and/or marine environmental information is presented. The overview consists of listings of individuals and/or organizations who have used, or are likely to use such data or information for scientific research, offshore engineering purposes, marine resources exploration and utilization, marine related operational applications, or coastal zone management.
Interacting and paradoxical forces in neuroscience and society
Singh, Jennifer; Hallmayer, Joachim; Illes, Judy
2007-01-01
Discoveries in the field of neuroscience are a natural source of discourse among scientists and have long been disseminated to the public. Historically, as news of findings has travelled between communities, it has elicited both expected and unusual reactions. What scientific landmarks promote discourse within the professional community? Do the same findings achieve a place in the public eye? How does the media choose what is newsworthy, and why does the public react the way it does? Drawing on examples of past challenges at the crossroads of neuroscience and society and on a case study of trends in one neurogenetic disease, autism, we explore the dialectical forces interacting in scientific and public discourse. PMID:17237806
Workshop on Science and the Human Exploration of Mars
NASA Technical Reports Server (NTRS)
Duke, M. B. (Editor)
2001-01-01
The exploration of Mars will be a multi-decadal activity. Currently, a scientific program is underway, sponsored by NASA's Office of Space Science in the United States, in collaboration with international partners France, Italy, and the European Space Agency. Plans exist for the continuation of this robotic program through the first automated return of Martian samples in 2014. Mars is also a prime long-term objective for human exploration, and within NASA, efforts are being made to provide the best integration of the robotic program and future human exploration missions. From the perspective of human exploration missions, it is important to understand the scientific objectives of human missions, in order to design the appropriate systems, tools, and operational capabilities to maximize science on those missions. In addition, data from the robotic missions can provide critical environmental data - surface morphology, materials composition, evaluations of potential toxicity of surface materials, radiation, electrical and other physical properties of the Martian environment, and assessments of the probability that humans would encounter Martian life forms. Understanding of the data needs can lead to the definition of experiments that can be done in the near-term that will make the design of human missions more effective. This workshop was convened to begin a dialog between the scientific community that is central to the robotic exploration mission program and a set of experts in systems and technologies that are critical to human exploration missions. The charge to the workshop was to develop an understanding of the types of scientific exploration that would be best suited to the human exploration missions and the capabilities and limitations of human explorers in undertaking science on those missions.
Science and the Constellation Systems Program Office
NASA Technical Reports Server (NTRS)
Mendell, Wendell
2007-01-01
An underlying tension has existed throughout the history of NASA between the human spaceflight programs and the external scientific constituencies of the robotic exploration programs. The large human space projects have been perceived as squandering resources that might otherwise be utilized for scientific discoveries. In particular, the history of the relationship of science to the International Space Station Program has not been a happy one. The leadership of the Constellation Program Office, created in NASA in October, 2005, asked me to serve on the Program Manager s staff as a liaison to the science community. Through the creation of my position, the Program Manager wanted to communicate and elucidate decisions inside the program to the scientific community and, conversely, ensure that the community had a voice at the highest levels within the program. Almost all of my technical contributions at NASA, dating back to the Apollo Program, has been within the auspices of what is now known as the Science Mission Directorate. However, working at the Johnson Space Center, where human spaceflight is the principal activity, has given me a good deal of incidental contact and some more direct exposure through management positions to the structures and culture of human spaceflight programs. I entered the Constellation family somewhat naive but not uninformed. In addition to my background in NASA science, I have also written extensively over the past 25 years on the topic of human exploration of the Moon and Mars. (See, for example, Mendell, 1985). I have found that my scientific colleagues generally have little understanding of the structure and processes of a NASA program office; and many of them do not recognize the name, Constellation. In many respects, the international ILEWG community is better informed. Nevertheless, some NASA decision processes on the role of science, particularly with respect to the formulation of a lunar surface architecture, are not well known, even in ILEWG. At the recent annual Lunar and Planetary Science Conference, I reviewed the evolution of the program as a function of Agency leadership and the constraints put on NASA by the President in his 2004 announcement. I plan to continue my long-time ILEWG tradition of reporting a personal view of the state of development of human exploration of the solar system, this time coming from within the program office tasked to implement the vision for the United States. The current NASA implementation of the Vision for Space Exploration is consistent with certain classical scenarios that have been discussed extensively in the literature. I will discuss the role of science within the Vision, both from official policy and from a de facto interaction. While science goals are not officially driving the implementation of the Vision, the tools of scientific exploration are integral to defining the extraterrestrial design environments. In this respect the sharing of results from international missions to the Moon can make significant contributions to the success of the future human activities.
Private Sector Engagement: An Approach
NASA Astrophysics Data System (ADS)
Benjamin, G.
2016-12-01
Public health organizations serve as scientific societies as a major part of their core mission. In addition, mobilizing partners to identify health threats and to work collaboratively to improve community health involves engagement of a variety of partners including those in the private sector. Increased concerns about conflicts of interest, transparency and undue influence are emerging as a major concern. This presentation will explore one framework for decision making to minimize risks and enhancing independence in scientific inquiry and public health programming.
NASA Technical Reports Server (NTRS)
Talbot, Bryan; Zhou, Shu-Jia; Higgins, Glenn
2002-01-01
One of the most significant challenges in large-scale climate modeling, as well as in high-performance computing in other scientific fields, is that of effectively integrating many software models from multiple contributors. A software framework facilitates the integration task. both in the development and runtime stages of the simulation. Effective software frameworks reduce the programming burden for the investigators, freeing them to focus more on the science and less on the parallel communication implementation, while maintaining high performance across numerous supercomputer and workstation architectures. This document proposes a strawman framework design for the climate community based on the integration of Cactus, from the relativistic physics community, and UCLA/UCB Distributed Data Broker (DDB) from the climate community. This design is the result of an extensive survey of climate models and frameworks in the climate community as well as frameworks from many other scientific communities. The design addresses fundamental development and runtime needs using Cactus, a framework with interfaces for FORTRAN and C-based languages, and high-performance model communication needs using DDB. This document also specifically explores object-oriented design issues in the context of climate modeling as well as climate modeling issues in terms of object-oriented design.
Engaging Karen refugee students in science learning through a cross-cultural learning community
NASA Astrophysics Data System (ADS)
Harper, Susan G.
2017-02-01
This research explored how Karen (first-generation refugees from Burma) elementary students engaged with the Next Generation Science Standards (NGSS) practice of constructing scientific explanations based on evidence within the context of a cross-cultural learning community. In this action research, the researcher and a Karen parent served as co-teachers for fourth- and fifth-grade Karen and non-Karen students in a science and culture after-school programme in a public elementary school in the rural southeastern United States. Photovoice provided a critical platform for students to create their own cultural discourses for the learning community. The theoretical framework of critical pedagogy of place provided a way for the learning community to decolonise and re-inhabit the learning spaces with knowledge they co-constructed. Narrative analysis of video transcripts of the after-school programme, ethnographic interviews, and focus group discussions from Photovoice revealed a pattern of emerging agency by Karen students in the scientific practice of constructing scientific explanations based on evidence and in Karen language lessons. This evidence suggests that science learning embedded within a cross-cultural learning community can empower refugee students to construct their own hybrid cultural knowledge and leverage that knowledge to engage in a meaningful way with the epistemology of science.
Search for Signatures of Life in the Solar System
NASA Astrophysics Data System (ADS)
Race, M.; Schwehm, G.; Arnould, J.; Dawson, S.; Devore, E.; Evans, D.; Ferrazzani, M.; Shostak, S.
The search for evidence of extraterrestrial life is an important scientific theme that fascinates the public and encourages interest in space exploration, both within the solar system and beyond. The rapid pace of mass media communication allows the public to share mission results and new discoveries almost simultaneously with the scientific community. The public can read about proposed sample return missions to Mars, listen as scientists debate about in situ exploration of the oceans on Europa, learn about the growing number of extrasolar planets, or use their personal computers to participate in searches for extraterrestrial intelligence (SETI). As the science community continues its multi-pronged efforts to detect evidence of extraterrestrial life, it must be mindful of more than just science and technology. It is important to understand public perceptions, misperceptions, beliefs, concerns and potential complications associated with the search for life beyond our home planet. This panel is designed to provide brief overviews of some important non-scientific areas with the potential to impact future astrobiological exploration. The presentations will be followed by open discussion and audience participation. Invited panelists and their topical areas include: SCIENCE FICTION AND MISPERCEPTIONS: Seth Shostak, Dylan EvansBattling Pseudo-Science, Hollywood and Alien Abductions LEGAL ISSUES: Marcus FerrazzaniLooming Complications for Future Missions and Exploration RISK COMMUNICATION: Sandra DawsonEngaging the Public, Explaining the Risks, and Encouraging Long-Term Interestin Mission Science EDUCATION: Edna DeVoreUsing the Search for Life as a Motivating Theme in Teaching Basic Science andCritical Thinking. ETHICAL ISSUES AND CONCERNS: Jacques ArnouldWhat Will it Mean if We Find "ET"? PANEL MODERATORS: Margaret Race, Gerhard Schwehm
Key, Kent D
2017-10-01
As the Flint community endeavors to recover and move forward in the aftermath of the Flint water crisis, distrust of scientific and governmental authorities must be overcome. Future community engagement in research will require community-level protections ensuring that no further harm is done to the community. A community ethics review explores risks and benefits and complements institutional review board (IRB) review. Using the case of Flint, I describe how community-level ethical protections can reestablish a community's trust. All IRBs reviewing protocols that include risk to communities and not merely individual participants should consider how community members are engaged in the proposed research and identify and respond to questions and domains of concern from community members. © 2017 American Medical Association. All Rights Reserved.
Taylor, Kimberly A.; Short, A.
2009-01-01
Integrating science into resource management activities is a goal of the CALFED Bay-Delta Program, a multi-agency effort to address water supply reliability, ecological condition, drinking water quality, and levees in the Sacramento-San Joaquin Delta of northern California. Under CALFED, many different strategies were used to integrate science, including interaction between the research and management communities, public dialogues about scientific work, and peer review. This paper explores ways science was (and was not) integrated into CALFED's management actions and decision systems through three narratives describing different patterns of scientific integration and application in CALFED. Though a collaborative process and certain organizational conditions may be necessary for developing new understandings of the system of interest, we find that those factors are not sufficient for translating that knowledge into management actions and decision systems. We suggest that the application of knowledge may be facilitated or hindered by (1) differences in the objectives, approaches, and cultures of scientists operating in the research community and those operating in the management community and (2) other factors external to the collaborative process and organization.
Geospatial-enabled Data Exploration and Computation through Data Infrastructure Building Blocks
NASA Astrophysics Data System (ADS)
Song, C. X.; Biehl, L. L.; Merwade, V.; Villoria, N.
2015-12-01
Geospatial data are present everywhere today with the proliferation of location-aware computing devices and sensors. This is especially true in the scientific community where large amounts of data are driving research and education activities in many domains. Collaboration over geospatial data, for example, in modeling, data analysis and visualization, must still overcome the barriers of specialized software and expertise among other challenges. The GABBs project aims at enabling broader access to geospatial data exploration and computation by developing spatial data infrastructure building blocks that leverage capabilities of end-to-end application service and virtualized computing framework in HUBzero. Funded by NSF Data Infrastructure Building Blocks (DIBBS) initiative, GABBs provides a geospatial data architecture that integrates spatial data management, mapping and visualization and will make it available as open source. The outcome of the project will enable users to rapidly create tools and share geospatial data and tools on the web for interactive exploration of data without requiring significant software development skills, GIS expertise or IT administrative privileges. This presentation will describe the development of geospatial data infrastructure building blocks and the scientific use cases that help drive the software development, as well as seek feedback from the user communities.
2013-01-01
The Stamina method is proposed by the non-profit Stamina Foundation and envisages the conversion of mesenchymal stem cells, which normally generate bone, cartilage and adipose tissue, into neurons after brief exposure to ethanol and retinoic acid. The reactions of the scientific community and the implications of the case are briefly explored.
The ISECG Science White Paper - A Scientific Perspective on the Global Exploration Roadmap
NASA Astrophysics Data System (ADS)
Bussey, David B.; Worms, Jean-Claude; Spiero, Francois; Schlutz, Juergen; Ehrenfreund, Pascale
2016-07-01
Future space exploration goals call for sending humans and robots beyond low Earth orbit and establishing sustained access to destinations such as the Moon, asteroids and Mars. Space agencies participating in the International Space Exploration Coordination Group (ISECG) are discussing an international approach for achieving these goals, documented in ISECG's Global Exploration Roadmap (GER). The GER reference scenario reflects a step-wise evolution of critical capabilities from ISS to missions in the lunar vicinity in preparation for the journey of humans to Mars. As an element of this continued road mapping effort, the ISECG agencies are therefore soliciting input and coordinated discussion with the scientific community to better articulate and promote the scientific opportunities of the proposed mission themes. An improved understanding of the scientific drivers and the requirements to address priority science questions associated with the exploration destinations (Moon, Near Earth Asteroids, Mars and its moons) as well as the preparatory activities in cis-lunar space is beneficial to optimize the partnership of robotic assets and human presence beyond low Earth orbit. The interaction has resulted in the development of a Science White Paper to: • Identify and highlight the scientific opportunities in early exploration missions as the GER reference architecture matures, • Communicate overarching science themes and their relevance in the GER destinations, • Ensure international science communities' perspectives inform the future evolution of mission concepts considered in the GER The paper aims to capture the opportunities offered by the missions in the GER for a broad range of scientific disciplines. These include planetary and space sciences, astrobiology, life sciences, physical sciences, astronomy and Earth science. The paper is structured around grand science themes that draw together and connect research in the various disciplines, and it will focus on opportunities created by the near-term mission themes in the GER centred around 1) extended duration crew missions to an exploration habitat in cis-lunar space, 2) crew mission(s) to an asteroid, and 3) crew missions to the lunar surface. The preparation of that Science White Paper has been coordinated and led by an external Science Advisory Group composed of scientists form a variety of nations. The first draft of this White Paper has been discussed on the occasion of a COSPAR-ISECG-ESF workshop organised in Paris on 10-11 February 2016. The recommendations developed at the workshop provide further input that is incorporated in the final version of the ISECG Science White Paper, expected to be published in the fall of 2016. The authors aim to present the rationale and contents of this White Paper on the occasion of the COSPAR Assembly.
NASA Astrophysics Data System (ADS)
Kelly, Madeline; Cebulla, Hannah; Powers, Lynn
2015-01-01
Through various opportunities and experiences with extracurricular scientific research, primarily astronomical research with programs like NASA/IPAC Teacher Archive Research Project (NITARP), and the Mars Exploration Student Data Teams (MESDT), we have noticed a change in our learning style, career path, and general outlook on the scientific community that we strongly believe could also be added to the lives of many other high school students given similar opportunities. The purpose of our poster is to emphasize the importance of granting high school students opportunities to explore different styles and methods of learning. We believe that although crucial, a basic high school education is not enough to expose young adults to the scientific community and create enough interest for a career path. As a result, we wish to show that more of these programs and opportunities should be offered to a greater number of students of all ages, allowing them to explore their passions, develop their understanding of different fields, and determine the paths best suited to their interests. Within our poster, we will emphasize how these programs have specifically impacted our lives, what we hope to see in the future, and how we hope to attain the growth of such opportunities. We include such proposals as; increasing outreach programs, expanding the exposure of young students to the sciences, both in the classroom and out, allowing high school students to participate in active scientific research, and involving students in hands-on activities/experiments within school clubs, the classroom, at home, or at local events. Spreading these opportunities to directly interact with the sciences in similar manners as that of professional scientists will allow students to discover their interests, realize what being a scientist truly entails, and allow them to take the first steps into following their career paths.
Mid June in the North Atlantic [crop
2015-06-18
Phytoplankton communities and sea ice limn the turbulent flow field around Iceland in this Suomi-NPP/VIIRS scene collected on June 14, 2015. Credit: NASA/Goddard/Suomi NPP/VIIRS NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Mid June in the North Atlantic
2015-06-18
Phytoplankton communities and sea ice limn the turbulent flow field around Iceland in this Suomi-NPP/VIIRS scene collected on June 14, 2015. Credit: NASA/Goddard/Suomi NPP/VIIRS NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Astrophysics Data System (ADS)
Kreofsky, Tess Marie
Citizen science projects present a distinctive opportunity for professional and volunteer scientists to coordinate their efforts to gather unique sets of data that can benefit the scientific and local communities. These projects are assumed to be an effective educational tool to teach nature of science (NOS) to participants (Brossard, Lewenstein, Bonney, 2005). This case study evaluates the effectiveness of participation in a citizen science project as a way to learn about NOS. Through enhancement of the Tryon Creek Owl Monitoring Project the researcher reviewed the characteristics of a citizen science project that were thought to be necessary to impact the volunteers' knowledge of NOS. The study also explored the benefits and limitations to organizing the citizen science protect using the principles of action research. Analysis of participants' knowledge and the effectiveness of active research theory, was evaluated through pre- and post- questionnaires and interviews. Although volunteers were able to explore the core themes of NOS through actively engaging in the scientific process, they did not experience a statistically significant change in their demonstration of understanding. For a multitude of reasons, participants had a positive experience with the presence of an embedded researcher within the project. This case study supports the use of active research as a guide to ensure that within each project the needs of both the scientific community and the volunteer scientists are met.
Environmental risk, precaution, and scientific rationality in the context of WTO/NAFTA trade rules.
Crawford-Brown, Douglas; Pauwelyn, Joost; Smith, Kelly
2004-04-01
This article considers the role of scientific rationality in understanding statements of risk produced by a scientific community. An argument is advanced that, while scientific rationality does impose constraints on valid scientific justifications for restrictions on products and practices, it also provides flexibility in the judgments needed to both develop and apply characterizations of risk. The implications of this flexibility for the understanding of risk estimates in WTO and NAFTA deliberations are explored, with the goal of finding an intermediate ground between the view that science unambiguously justifies or rejects a policy, and the view that science is yet another cultural tool that can be manipulated in support of any decision. The result is a proposal for a dialogical view of scientific rationality in which risk estimates are depicted as confidence distributions that follow from a structured dialogue of scientific panels focused on judgments of evidence, evidential reasoning, and epistemic analysis.
Alperin, Juan Pablo; Gomez, Charles J; Haustein, Stefanie
2018-03-01
The growing presence of research shared on social media, coupled with the increase in freely available research, invites us to ask whether scientific articles shared on platforms like Twitter diffuse beyond the academic community. We explore a new method for answering this question by identifying 11 articles from two open access biology journals that were shared on Twitter at least 50 times and by analyzing the follower network of users who tweeted each article. We find that diffusion patterns of scientific articles can take very different forms, even when the number of times they are tweeted is similar. Our small case study suggests that most articles are shared within single-connected communities with limited diffusion to the public. The proposed approach and indicators can serve those interested in the public understanding of science, science communication, or research evaluation to identify when research diffuses beyond insular communities.
Starting a Conversation about Open Data in Mathematics Education Research
ERIC Educational Resources Information Center
Logan, Tracy
2015-01-01
This position paper discusses the role of open access research data within mathematics education, a relatively new initiative across the wider research community. International and national policy documents are explored and examples from both the scientific and social science paradigms of mathematical sciences and mathematics education…
ERIC Educational Resources Information Center
OTHS, FLORENCE V.; STRUMPF, BENJAMIN E.
SPECIAL PROGRAMS FOR THIRD-, FOURTH-, AND FIFTH-GRADE STUDENTS IN THE BRONX SCHOOLS WERE PREPARED. CURRICULUM AREAS FOR GRADES 3 AND 4 WERE--HEALTH, LANGUAGE ARTS, MUSIC, MATHEMATICS, AND SCIENCE. IN SCIENCE, FOR EXAMPLE, THE SCIENTIFIC ASPECTS OF THE COMMUNITY AND SCIENCE IN EVERYDAY LIVING WERE EXPLORED. NEW TEACHERS WERE ORIENTED TO THE PROGRAM…
Food Deserts and Overweight Schoolchildren: Evidence from Pennsylvania
ERIC Educational Resources Information Center
Schafft, Kai A.; Jensen, Eric B.; Hinrichs, C. Clare
2009-01-01
The concept of the "food desert", an area with limited access to retail food stores, has increasingly been used within social scientific and public health research to explore the dimensions of spatial inequality and community well-being. While research has demonstrated that food deserts are frequently characterized by higher levels of…
Teaching Biology for a Sustainable Future
ERIC Educational Resources Information Center
Musante, Susan
2011-01-01
Students at Calvin College in Grand Rapids, Michigan, can now take an innovative biology course in which an integrated, interdisciplinary, problem-based approach is used--one that the scientific community itself is promoting. The first course in a four-semester sequence, Biology 123--The Living World: Concepts and Connections--explores real-world…
Student Reflections on Choosing to Study Science Post-16
ERIC Educational Resources Information Center
Pike, Angela G.; Dunne, Mairead
2011-01-01
The research recounted in this paper was designed primarily to attempt to understand the reasons for the low uptake of the natural sciences beyond compulsory education in England. This has caused widespread concern within governmental quarters, university science departments and the scientific community as a whole. This research explored the…
Nanoethics, Science Communication, and a Fourth Model for Public Engagement.
Miah, Andy
2017-01-01
This paper develops a fourth model of public engagement with science, grounded in the principle of nurturing scientific agency through participatory bioethics. It argues that social media is an effective device through which to enable such engagement, as it has the capacity to empower users and transforms audiences into co-producers of knowledge, rather than consumers of content. Social media also fosters greater engagement with the political and legal implications of science, thus promoting the value of scientific citizenship. This argument is explored by considering the case of nanoscience and nanotechnology, as an exemplar for how emerging technologies may be handled by the scientific community and science policymakers.
Williams, Edith Marie; Anderson, Judith; Lee, Rhonda; White, Janice; Hahn-Baker, David
2009-01-01
Community-based participatory research (CBPR) is a method to improve environmental quality in communities primarily inhabited by minorities or low-income families. The Buffalo Lupus Project was a CBPR partnership formed to explore the relationship between a local waste site and high rates of lupus. The "Behind the Fence" Community Environmental Forum Theater project was able to successfully funnel the results of scientific research and ongoing activities to the community by utilizing a Forum Theater approach, image-making techniques, an interactive workshop, and energetic public performance. Filming of project activities will expand the reach of that original performance and provide other communities with a potential model for similar efforts.
Cirac-Claveras, Gemma
2018-01-01
This article uses a French case to explore the who, how, and why of satellite remote-sensing development and its transition towards routine utilization in the domain of ecosystems ecology. It discusses the evolution of a community of technology developers promoting remote-sensing capabilities (mostly sponsored by the French space agency). They attempted to legitimate quality scientific practices, establish the authority of satellite remote-sensing data within academic institutions, and build a community of technology users. This article, hence, is intended to contribute to historical interest in how a community of users is constructed for a technological system.
NASA Technical Reports Server (NTRS)
Allen, Carlton C.; Beaty, David W.
2010-01-01
Sample return from Mars has been advocated by numerous scientific advisory panels for over 30 years, most prominently beginning with the National Research Council s [1] strategy for the exploration of the inner solar system, and most recently by the Mars Exploration Program Analysis Group (MEPAG s) Next Decade Science Analysis Group [2]. Analysis of samples here on Earth would have enormous advantages over in situ analyses in producing the data quality needed to address many of the complex scientific questions the community has posed about Mars. Instead of a small, predetermined set of analytical techniques, state of the art preparative and instrumental resources of the entire scientific community could be applied to the samples. The analytical emphasis could shift as the meaning of each result becomes better appreciated. These arguments apply both to igneous rocks and to layered sedimentary materials, either of which could contain water and other volatile constituents. In 2009 MEPAG formed the Mid-Range Rover Science Analysis Group (MRR-SAG) to formulate a mission concept that would address two general objectives: (1) conduct high-priority in situ science and (2) make concrete steps towards the potential return of samples to Earth. This analysis resulted in a mission concept named the Mars Astrobiology Explorer-Cacher (MAX-C), which was envisioned for launch in the 2018 opportunity. After extensive discussion, this group concluded that by far the most definitive contribution to sample return by this mission would be to collect and cache, in an accessible location, a suite of compelling samples that could potentially be recovered and returned by a subsequent mission. This would have the effect of separating two of the essential functions of MSR, the acquisition of the sample collection and its delivery to martian orbit, into two missions.
Laboratory Astrophysics: Enabling Scientific Discovery and Understanding
NASA Technical Reports Server (NTRS)
Kirby, K.
2006-01-01
NASA's Science Strategic Roadmap for Universe Exploration lays out a series of science objectives on a grand scale and discusses the various missions, over a wide range of wavelengths, which will enable discovery. Astronomical spectroscopy is arguably the most powerful tool we have for exploring the Universe. Experimental and theoretical studies in Laboratory Astrophysics convert "hard-won data into scientific understanding". However, the development of instruments with increasingly high spectroscopic resolution demands atomic and molecular data of unprecedented accuracy and completeness. How to meet these needs, in a time of severe budgetary constraints, poses a significant challenge both to NASA, the astronomical observers and model-builders, and the laboratory astrophysics community. I will discuss these issues, together with some recent examples of productive astronomy/lab astro collaborations.
Use of antarctic analogs to support the space exploration initiative
NASA Technical Reports Server (NTRS)
Wharton, Robert; Roberts, Barney; Chiang, Erick; Lynch, John; Roberts, Carol; Buoni, Corinne; Andersen, Dale
1990-01-01
This report has discussed the Space Exploration Initiative (SEI) and the U.S. Antarctic Program (USAP) in the context of assessing the potential rationale and strategy for conducting a cooperative NASA/NSF (National Science Foundation) effort. Specifically, such an effort would address shared research and data on living and conducting scientific research in isolated, confined, hostile, and remote environments. A review of the respective goals and requirements of NASA and the NSF indicates that numerous opportunities exist to mutually benefit from sharing relevant technologies, data, and systems. Two major conclusions can be drawn: (1) The technologies, experience, and capabilities existing and developing in the aerospace community would enhance scientific research capabilities and the efficiency and effectiveness of operations in Antarctica. The transfer and application of critical technologies (e.g., power, waste management, life support) and collaboration on crew research needs (e.g., human behavior and medical support needs) would streamline the USAP operations and provide the scientific community with advancements in facilities and tools for Antarctic research. (2) Antarctica is the most appropriate earth analog for the environments of the the Moon and Mars. Using Antarctica in this way would contribute substantially to near- and long-term needs and plans for the SEI. Antarctica is one of the few ground-based analogs that would permit comprehensive and integrated studies of three areas deemed critical to productive and safe operations on the Moon and Mars: human health and productivity; innovative scientific research techniques; and reliable, efficient technologies and facilities.
Use of antarctic analogs to support the space exploration initiative
NASA Astrophysics Data System (ADS)
Wharton, Robert; Roberts, Barney; Chiang, Erick; Lynch, John; Roberts, Carol; Buoni, Corinne; Andersen, Dale
1990-12-01
This report has discussed the Space Exploration Initiative (SEI) and the U.S. Antarctic Program (USAP) in the context of assessing the potential rationale and strategy for conducting a cooperative NASA/NSF (National Science Foundation) effort. Specifically, such an effort would address shared research and data on living and conducting scientific research in isolated, confined, hostile, and remote environments. A review of the respective goals and requirements of NASA and the NSF indicates that numerous opportunities exist to mutually benefit from sharing relevant technologies, data, and systems. Two major conclusions can be drawn: (1) The technologies, experience, and capabilities existing and developing in the aerospace community would enhance scientific research capabilities and the efficiency and effectiveness of operations in Antarctica. The transfer and application of critical technologies (e.g., power, waste management, life support) and collaboration on crew research needs (e.g., human behavior and medical support needs) would streamline the USAP operations and provide the scientific community with advancements in facilities and tools for Antarctic research. (2) Antarctica is the most appropriate earth analog for the environments of the the Moon and Mars. Using Antarctica in this way would contribute substantially to near- and long-term needs and plans for the SEI. Antarctica is one of the few ground-based analogs that would permit comprehensive and integrated studies of three areas deemed critical to productive and safe operations on the Moon and Mars: human health and productivity; innovative scientific research techniques; and reliable, efficient technologies and facilities.
Synchronous in-field application of life-detection techniques in planetary analog missions
NASA Astrophysics Data System (ADS)
Amador, Elena S.; Cable, Morgan L.; Chaudry, Nosheen; Cullen, Thomas; Gentry, Diana; Jacobsen, Malene B.; Murukesan, Gayathri; Schwieterman, Edward W.; Stevens, Adam H.; Stockton, Amanda; Yin, Chang; Cullen, David C.; Geppert, Wolf
2015-02-01
Field expeditions that simulate the operations of robotic planetary exploration missions at analog sites on Earth can help establish best practices and are therefore a positive contribution to the planetary exploration community. There are many sites in Iceland that possess heritage as planetary exploration analog locations and whose environmental extremes make them suitable for simulating scientific sampling and robotic operations. We conducted a planetary exploration analog mission at two recent lava fields in Iceland, Fimmvörðuháls (2010) and Eldfell (1973), using a specially developed field laboratory. We tested the utility of in-field site sampling down selection and tiered analysis operational capabilities with three life detection and characterization techniques: fluorescence microscopy (FM), adenine-triphosphate (ATP) bioluminescence assay, and quantitative polymerase chain reaction (qPCR) assay. The study made use of multiple cycles of sample collection at multiple distance scales and field laboratory analysis using the synchronous life-detection techniques to heuristically develop the continuing sampling and analysis strategy during the expedition. Here we report the operational lessons learned and provide brief summaries of scientific data. The full scientific data report will follow separately. We found that rapid in-field analysis to determine subsequent sampling decisions is operationally feasible, and that the chosen life detection and characterization techniques are suitable for a terrestrial life-detection field mission. In-field analysis enables the rapid obtainment of scientific data and thus facilitates the collection of the most scientifically relevant samples within a single field expedition, without the need for sample relocation to external laboratories. The operational lessons learned in this study could be applied to future terrestrial field expeditions employing other analytical techniques and to future robotic planetary exploration missions.
NASA Astrophysics Data System (ADS)
Keener, P.; Tuddenham, P. T.; Bishop, T.
2016-02-01
The National Oceanic and Atmospheric Administration (NOAA) Ship Okeanos Explorer spent the 2013 field season exploring a wide variety of seafloor features and biological communities in and between largely unexplored canyons in the Northeast Atlantic Ocean, revealing hot spots for biodiversity and providing new information about how these canyons change over time. During the expeditions, an interdisciplinary team of scientists from dozens of institutions and multiple sectors together with ocean educators and the public were able to observe via telepresence the deep Atlantic using NOAA's new remotely-operated vehicle Deep Discoverer. In a collaboration between the NOAA Office of Ocean Exploration and Research and The College of Exploration, along with partners in Canada and the European Union (EU), key exploration findings from the NOAA Ship Okeanos Explorer 2013 field season were designed into an online workshop in which 640 educators, scientists, government representatives, policy makers, and other interested stakeholders representing 40 states within the U.S. and 29 countries participated. The five-week long online offering, titled Deepwater Explorations in the North Atlantic Onboard the NOAA Ship Okeanos Explorer…Online Conversations to Advance Transatlantic Ocean Literacy, built upon the telepresence experience and served as a foundation for extending conversations begun approximately a year earlier on transatlantic ocean literacy, as called for in The Galway Statement. Scientific experts from the U.S., Canada, and the EU provided keynote addresses on deep-sea corals, methane seeps, deep-water canyons, seamounts, and biological diversity in this important area of our "shared Atlantic Ocean." This session will socialize key findings of the workshop based on an evaluation conducted at the conclusion of the workshop and offers insight into how online learning communities can advance ocean literacy and scientific understanding in support of The Galway Statement.
NASA Astrophysics Data System (ADS)
Crawford, Teresa Jo
This study explored the issue of literacy in science by examining how the social and academic literate practices in an elementary classroom formed the basis for learning across the curriculum, with a specific focus on the disciplinary field of science. Through the study of classroom interaction, issues related to student knowledge and ability were addressed as they pertain to scientific literacy in the context of science education reform. The theoretical framework guiding this study was drawn from sociocultural studies of scientific communities and interactional ethnography in education. To investigate the literate practices of science in a school setting, data were collected over a two-year period with the same teacher in her third grade and then her fourth/fifth grade classroom. Data were collected through participant observation in the form of fieldnotes, video data, interviews, and various artifacts (e.g., writings, drawings, teaching protocols). Using ethnographic and sociolinguistic methods of analysis this work examined classroom members' discursive practices to illustrate the role that discourse plays in creating opportunities for engagement in, and access to, scientific knowledge. These analyses revealed that the discursive actions and practices among members of this classroom shaped a particular type of learning environment that was process-oriented and inquiry based. It was shown that this learning environment afforded opportunities for students to engage in the processes of science outside the official, planned curriculum, often leading to whole class scientific investigations and discussions. Additionally, within this classroom community students were able to draw on multiple discourses to display their knowledge of scientific concepts and practices. Overall, this study found that the literate practices of this classroom community, as they were socially constructed among members, contributed to opportunities for students to practice science and demonstrate scientific literacy.
Stark, James F.
2016-01-01
The Hungarian-born intellectual Arthur Koestler produced a wide-ranging corpus of written work throughout the mid twentieth century. Despite being the subject of two huge biographies in recent years, his long-standing engagement with numerous scientific disciplines remains unexplored. This paper situates Koestler's scientific philosophy within the context of mid-twentieth-century science and explores his relationship with key figures, including Dennis Gábor, C. H. Waddington, Ludwig von Bertalanffy and J. R. Smythies. The argument presented is threefold. First, surprisingly, serious scientists, particularly in the biological sciences, took Koestler's scientific work seriously; second, despite Koestler's best efforts, his allies could not agree on a single articulation of anti-reductionism; and third, the reductionist/anti-reductionist debates of the mid twentieth century constituted a battle for the authority to speak on behalf of ‘science’ that led Koestler into direct conflict with figures including Peter Medawar. By exploring the community associated with Koestler, the paper sheds new light on the status of scientific authority and the relationship between scientists’ metaphysical beliefs and their practices.
CERN and LHC - Their Place in Global Science
None
2018-01-09
The Large Hadron Collider (LHC) is the largest scientific instrument in the world. It brings into collision intense beams of protons and ions to explore the structure of matter and investigate the forces of nature at an unprecedented energy scale, thus serving a community of some 7,000 particle physicists from all over the world.
Condensed Proceedings of the Ad Hoc Committee on Environmental Behavior
ERIC Educational Resources Information Center
Cancro, Robert
1972-01-01
Fourteen leading behavioral scientists explore the relationship between environment and health with a focus on the following question: As we look at health care as people receive it in their communities and the realities of America today, what can we do to improve it?'' Philosophical, scientific issues discussed in round table fashion. (LK)
Toddlers' Scientific Explorations: Encounters with Insects
ERIC Educational Resources Information Center
Shaffer, Lauren Foster; Hall, Ellen; Lynch, Mary
2009-01-01
This article features Boulder Journey School, located in Boulder, Colorado, a full-day, year-round school that welcomes over 200 young children, ages 6 weeks to 6 years, and their families. The school community is committed to a culture based on children as curious and competent individuals capable of coconstructing knowledge. In Boulder Journey…
MakeHERspaces: STEM, Girls, and the Maker Movement. CRB Short Subjects. S-14-022
ERIC Educational Resources Information Center
Martin, Pamela
2014-01-01
Few innovations have galvanized libraries, schools, and museums like the maker movement. "Makerspaces" are community centers that combine manufacturing equipment with education in a way that lets people collaborate, explore and innovate. In makerspaces, people apply scientific and engineering principles in a hands-on environment to…
NASA Technical Reports Server (NTRS)
Greeley, Ronald (Editor)
1990-01-01
The catalog was compiled from material provided by the planetary community for areas on Mars that are of potential interest for future exploration. The catalog has been edited for consistency insofar as practical; however, the proposed scientific objectives and characteristics have not been reviewed. This is a working catalog that is being revised, updated, and expanded continually.
2017-12-08
President Obama has named six NASA individuals as recipients of the 2011 Presidential Early Career Award for Scientists and Engineers (PECASE). Temilola "Lola" Fatoyinbo-Agueh, an environmental scientist from NASA's Goddard Space Flight Center, Greenbelt, Md. was one of the recipients. The PECASE awards represent the highest honor bestowed by the U.S. government on scientists and engineers beginning their independent careers. They recognize recipients' exceptional potential for leadership at the frontiers of scientific knowledge, and their commitment to community service as demonstrated through professional leadership, education or community outreach. To read more go to: www.nasa.gov/centers/goddard/news/releases/2012/12-064.html Credit: NASA/GSFC/Chris Gunn NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Astrophysics Data System (ADS)
Wright, Christopher G.
2011-12-01
This research examines the intellectual and linguistic resources that a group of African American boys brought to the study of the science of sound and the practice of representation. By taking a resource-rich view of the boys' linguistic and representational practices, my objective is to investigate children's abilities in producing, using, critiquing, and modifying representations. Specifically, this research looks to explore and identify the varieties of resources that African American boys utilize in developing scientific understanding. Using transcripts from group sessions, as well as the drawings produced during these sessions, I utilized a combination of discourse analysis to explore the boys' linguistic interactions during the critique of drawings with a focus on the boys' manipulation of line segments in order to explore their representational competencies. Analysis of the transcripts and the boys' drawings revealed several important findings. First, elements of Signifying were instrumental in the group's collective exploration of each other's drawings, and the ideas of sound transmission being represented in the drawings. Thus, I found that the boys' use of Signifying was key to their engagement win the practice of critique. Second, the boys' ideas regarding sound transmission were not fixed, stable misconceptions that could be "fixed" through instruction. Instead, I believe that their explanations and drawings were generated from a web of ideas regarding sound transmission. Lastly, the boys exhibited a form of meta-representational competency that included the production, modification, and manipulation of notations used to represent sound transmission. Despite this competency, the negotiation process necessary in constructing meaning of a drawing highlighted the complexities in developing a conventional understanding or meaning for representations. Additional research is necessary for exploring the intellectual and lingustic resources that children from communities of color bring to the science classroom. The objective of this research was not to highlight a single intellectual and linguistic resource that educators and educational researchers could expect to witness when working with African American boys. Instead, the objective was to highlight an approach to teaching and learning that investigated and highlighted the resources that children from communities of color have developed within their communities and from their varied life experiences that may be conducive to scientific exploration and language. Recognizing that all children bring a variety of resources that can be utilized and further developed in order to expand their understandings of scientific concepts or a representational practices must be continually explored if we are to begin the process of addressing inequitable access to science opportunities.
Human Mars Landing Site and Impacts on Mars Surface Operations
NASA Technical Reports Server (NTRS)
Bussey, Ben; Hoffman, Stephen J.
2016-01-01
This paper describes NASA's initial steps for identifying and evaluating candidate Exploration Zones (EZs) and Regions of Interests (ROIs) for the first human crews that will explore the surface of Mars. NASA's current effort to define the exploration of this planet by human crews, known as the Evolvable Mars Campaign (EMC), provides the context in which these EZs and ROIs are being considered. The EMC spans all aspects of a human Mars mission including launch from Earth, transit to and from Mars, and operations on the surface of Mars. Studies related to Mars surface operations and related system capabilities have led to the current definition of an EZ as well as ROIs. An EZ is a collection of ROIs that are located within approximately 100 kilometers of a centralized landing site. ROIs are areas that are relevant for scientific investigation and/or development/maturation of capabilities and resources necessary for a sustainable human presence. The EZ also contains one or more landing sites and a habitation site that will be used by multiple human crews during missions to explore and utilize the ROIs within the EZ. With the EMC as a conceptual basis, the EZ model has been refined to a point where specific site selection criteria for scientific exploration and in situ resource utilization can be defined. In 2015 these criteria were distributed to the planetary sciences community and the in situ resource utilization and civil engineering communities as part of a call for EZ proposals. The resulting "First Landing Site/Exploration Zone Workshop for Human Missions to the Surface of Mars" was held in October 2015 during which 47 proposals for EZs and ROIs were presented and discussed. Proposed locations spanned all longitudes and all allowable latitudes (+/- 50 degrees). Proposed justification for selecting one of these EZs also spanned a significant portion of the scientific and resource criteria provided to the community. Workshop results will be used to prepare for follow-on workshops to refine our understanding of proposed EZs and ultimately select a single location to be explored and utilized by human crews. Another significant workshop outcome was a recognition that new data will be needed to refine our understanding of the value of proposed EZs. These new data will come in part from existing spacecraft at Mars and may come from future robotic Mars missions as appropriate consideration is given to these new data needs during mission definition and development.
NASA Astrophysics Data System (ADS)
Williams, J. W.; Ashworth, A. C.; Betancourt, J. L.; Bills, B.; Blois, J.; Booth, R.; Buckland, P.; Charles, D.; Curry, B. B.; Goring, S. J.; Davis, E.; Grimm, E. C.; Graham, R. W.; Smith, A. J.
2015-12-01
Community-supported data repositories (CSDRs) in paleoecology and paleoclimatology have a decades-long tradition and serve multiple critical scientific needs. CSDRs facilitate synthetic large-scale scientific research by providing open-access and curated data that employ community-supported metadata and data standards. CSDRs serve as a 'middle tail' or boundary organization between information scientists and the long-tail community of individual geoscientists collecting and analyzing paleoecological data. Over the past decades, a distributed network of CSDRs has emerged, each serving a particular suite of data and research communities, e.g. Neotoma Paleoecology Database, Paleobiology Database, International Tree Ring Database, NOAA NCEI for Paleoclimatology, Morphobank, iDigPaleo, and Integrated Earth Data Alliance. Recently, these groups have organized into a common Paleobiology Data Consortium dedicated to improving interoperability and sharing best practices and protocols. The Neotoma Paleoecology Database offers one example of an active and growing CSDR, designed to facilitate research into ecological and evolutionary dynamics during recent past global change. Neotoma combines a centralized database structure with distributed scientific governance via multiple virtual constituent data working groups. The Neotoma data model is flexible and can accommodate a variety of paleoecological proxies from many depositional contests. Data input into Neotoma is done by trained Data Stewards, drawn from their communities. Neotoma data can be searched, viewed, and returned to users through multiple interfaces, including the interactive Neotoma Explorer map interface, REST-ful Application Programming Interfaces (APIs), the neotoma R package, and the Tilia stratigraphic software. Neotoma is governed by geoscientists and provides community engagement through training workshops for data contributors, stewards, and users. Neotoma is engaged in the Paleobiological Data Consortium and other efforts to improve interoperability among cyberinfrastructure in the paleogeosciences.
Mars exploration program analysis group goal one: determine if life ever arose on Mars.
Hoehler, Tori M; Westall, Frances
2010-11-01
The Mars Exploration Program Analysis Group (MEPAG) maintains a standing document that articulates scientific community goals, objectives, and priorities for mission-enabled Mars science. Each of the goals articulated within the document is periodically revisited and updated. The astrobiology-related Goal One, "Determine if life ever arose on Mars," has recently undergone such revision. The finalized revision, which appears in the version of the MEPAG Goals Document posted on September 24, 2010, is presented here.
Genomic Databases and Biobanks in Israel.
Siegal, Gil
2015-01-01
Large-scale biobanks represents an important scientific and medical as well as a commercial opportunity. However, realizing these and other prospects requires social, legal, and regulatory conducive climate, as well as a capable scientific community and adequate infrastructure. Israel has been grappling with the appropriate approach to establishing such a repository, and debates over the governance, structure, finance, and mode of operation shed a bright light on the underlying social norms, civic engagement and scientific clout in steering a governmental response to pressing medical needs. The article presents the backdrop of the Israeli scene, and explores the reasons and forces at work behind the current formulation of the Israeli National Biobank, MIDGAM. © 2015 American Society of Law, Medicine & Ethics, Inc.
Wexler, Anna
2016-04-01
Scientists and neuroethicists have recently drawn attention to the ethical and regulatory issues surrounding the do-it-yourself (DIY) brain stimulation community, which comprises individuals stimulating their own brains with transcranial direct current stimulation (tDCS) for self-improvement. However, to date, existing regulatory proposals and ethical discussions have been put forth without engaging those involved in the DIY tDCS community or attempting to understand the nature of their practices. I argue that to better contend with the growing ethical and safety concerns surrounding DIY tDCS, we need to understand the practices of the community. This study presents the results of a preliminary inquiry into the DIY tDCS community, with a focus on knowledge that is formed, shared and appropriated within it. I show that when making or acquiring a device, DIYers (as some members call themselves) produce a body of knowledge that is completely separate from that of the scientific community, and share it via online forums, blogs, videos and personal communications. However, when applying tDCS, DIYers draw heavily on existing scientific knowledge, posting links to academic journal articles and scientific resources and adopting the standardised electrode placement system used by scientists. Some DIYers co-opt scientific knowledge and modify it by creating their own manuals and guides based on published papers. Finally, I explore how DIYers cope with the methodological limitations inherent in self-experimentation. I conclude by discussing how a deeper understanding of the practices of DIY tDCS has important regulatory and ethical implications. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
International Planning for Subglacial Lake Exploration
NASA Astrophysics Data System (ADS)
Kennicutt, M.; Priscu, J.
2003-04-01
As one of the last unexplored frontiers on our planet, subglacial lakes offer a unique and exciting venue for exploration and research. Over the past several years, subglacial lakes have captured the imagination of the scientific community and public, evoking images of potential exotic life forms surviving under some of the most extreme conditions on earth. Various planning activities have recognized that due to the remote and harsh conditions, that a successful subglacial lake exploration program will entail a concerted effort for a number of years. It will also require an international commitment of major financial and human resources. To begin a detailed planning process, the Scientific Committee on Antarctic Research (SCAR) convened the Subglacial Antarctic Lake Exploration Group of Specialists (SALEGOS) in Tokyo in 2000. The group was asked to build on previous workshops and meetings to develop a plan to explore subglacial lake environments. Its mandate adopted the guiding principles as agreed in Cambridge in 1999 that the program would be interdisciplinary in scope, be designed for minimum contamination and disturbance of the subglacial lake environment, have as a goal lake entry and sample retrieval, and that the ultimate target of the program should be Lake Vostok exploration. Since its formation SALEGOS has met three times and addressed some of the more intractable issues related to subglacial lake exploration. Topics under discussion include current state-of-the-knowledge of subglacial environments, technological needs, international management and organizational strategies, a portfolio of scientific projects, "clean" requirements, and logistical considerations. In this presentation the actvities of SALEGOS will be summarized and recommendations for an international subglacial lake exploration program discussed.
Science Alive!: Connecting with Elementary Students through Science Exploration.
Raja, Aarti; Lavin, Emily Schmitt; Gali, Tamara; Donovan, Kaitlin
2016-05-01
A novel program called Science Alive! was developed by undergraduate faculty members, K-12 school teachers, and undergraduate students to enrich science, technology, engineering, and mathematics (STEM) literacy at community schools located near the university. The ultimate goal of the program is to bolster the scientific knowledge and appreciation of local area students and community members and serve as a model for similar programs. Through the program, we observed that elementary school students made gains toward learning their grade-level science curricula after a hands-on learning experience and had fun doing these hands-on activities. Through the program, undergraduate students, working with graduate students and alumni, build scientific learning modules using explanatory handouts and creative activities as classroom exercises. This helps better integrate scientific education through a collaborative, hands-on learning program. Results showed that elementary school students made the highest learning gains in their performance on higher-level questions related to both forces and matter as a result of the hands-on learning modules. Additionally, college students enjoyed the hands-on activities, would consider volunteering their time at such future events, and saw the service learning program as a benefit to their professional development through community building and discipline-specific service. The science modules were developed according to grade-level curricular standards and can be used year after year to teach or explain a scientific topic to elementary school students via a hands-on learning approach.
MS PHD'S Professional Development Program: A Scientific Renaissance in Cyberspace
NASA Astrophysics Data System (ADS)
Powell, J. M.; Williamson, V. A.; Griess, C. A.; Pyrtle, A. J.
2004-12-01
This study is a component of a four-year investigation of MS PHD'S Professional Development Program's virtual community through the lenses of underrepresented minority students in Earth system science and engineering fields. In this presentation, the development, assessment and projected utilization of the ongoing study will be discussed. The overall goal of this study is to examine the effectiveness of virtual team building methods and understand how the development of a communal cyberinfrastructure acts as an integral part of the emergence of a Scientific Renaissance. The exemplar, Minorities Striving and Pursuing Higher Degrees of Success in Earth System Science (MS PHD'S), provides professional development experiences to facilitate the advancement of students of color achieving outstanding Earth system careers. Undergraduate and graduate students are supported through access to scientific conferences, mentorship and virtual community building. Framed by critical theory, this ethnographic exploration uses a mixed methods research design to record, observe, and analyze both the processes and products of the website, listserv and synchronous web-based dialogue. First, key findings of the formative evaluation and annual reports of the successfully implemented 2003 MS PHD'S Pilot Project are presented. These findings inform future evaluations of the use of technological resources and illustrate how this public space provides peer support and enriched research opportunities. Quantitative methods such as statistical analysis, academic and professional tracking and evaluative tools for scientific content and competency are complimented by qualitative methods that include observations, heuristic case studies and focus group interviews. The findings of this ongoing investigation will provide insight on how national organizations, higher education practitioners, community-based support systems and underrepresented minorities in the sciences promote diversity by developing successful cyberspace programs and networks. Through the examination of the transformation, expansion and democratization of the Earth system science community, new knowledge will be obtained on how a cyber-community fuses science, diversity and technology to form dialectics between creating and analyzing a Scientific Renaissance.
International cooperation for Mars exploration and sample return
NASA Technical Reports Server (NTRS)
Levy, Eugene H.; Boynton, William V.; Cameron, A. G. W.; Carr, Michael H.; Kitchell, Jennifer H.; Mazur, Peter; Pace, Norman R.; Prinn, Ronald G.; Solomon, Sean C.; Wasserburg, Gerald J.
1990-01-01
The National Research Council's Space Studies Board has previously recommended that the next major phase of Mars exploration for the United States involve detailed in situ investigations of the surface of Mars and the return to earth for laboratory analysis of selected Martian surface samples. More recently, the European space science community has expressed general interest in the concept of cooperative Mars exploration and sample return. The USSR has now announced plans for a program of Mars exploration incorporating international cooperation. If the opportunity becomes available to participate in Mars exploration, interest is likely to emerge on the part of a number of other countries, such as Japan and Canada. The Space Studies Board's Committee on Cooperative Mars Exploration and Sample Return was asked by the National Aeronautics and Space Administration (NASA) to examine and report on the question of how Mars sample return missions might best be structured for effective implementation by NASA along with international partners. The committee examined alternatives ranging from scientific missions in which the United States would take a substantial lead, with international participation playing only an ancillary role, to missions in which international cooperation would be a basic part of the approach, with the international partners taking on comparably large mission responsibilities. On the basis of scientific strategies developed earlier by the Space Studies Board, the committee considered the scientific and technical basis of such collaboration and the most mutually beneficial arrangements for constructing successful cooperative missions, particularly with the USSR.
GABBs: Cyberinfrastructure for Self-Service Geospatial Data Exploration, Computation, and Sharing
NASA Astrophysics Data System (ADS)
Song, C. X.; Zhao, L.; Biehl, L. L.; Merwade, V.; Villoria, N.
2016-12-01
Geospatial data are present everywhere today with the proliferation of location-aware computing devices. This is especially true in the scientific community where large amounts of data are driving research and education activities in many domains. Collaboration over geospatial data, for example, in modeling, data analysis and visualization, must still overcome the barriers of specialized software and expertise among other challenges. In addressing these needs, the Geospatial data Analysis Building Blocks (GABBs) project aims at building geospatial modeling, data analysis and visualization capabilities in an open source web platform, HUBzero. Funded by NSF's Data Infrastructure Building Blocks initiative, GABBs is creating a geospatial data architecture that integrates spatial data management, mapping and visualization, and interfaces in the HUBzero platform for scientific collaborations. The geo-rendering enabled Rappture toolkit, a generic Python mapping library, geospatial data exploration and publication tools, and an integrated online geospatial data management solution are among the software building blocks from the project. The GABBS software will be available through Amazon's AWS Marketplace VM images and open source. Hosting services are also available to the user community. The outcome of the project will enable researchers and educators to self-manage their scientific data, rapidly create GIS-enable tools, share geospatial data and tools on the web, and build dynamic workflows connecting data and tools, all without requiring significant software development skills, GIS expertise or IT administrative privileges. This presentation will describe the GABBs architecture, toolkits and libraries, and showcase the scientific use cases that utilize GABBs capabilities, as well as the challenges and solutions for GABBs to interoperate with other cyberinfrastructure platforms.
[Scientific production in nutrition and the public perception of hunger and eating in Brazil].
Coutinho, Marília; Lucatelli, Márcio
2006-08-01
There is a contradiction between the perceptions held by different sectors of the Establishment with regard to the questions of hunger and nutrition in Brazil. On the one hand, the flagship of the present Brazilian government's social policy is the "Fome Zero" program. This program is based on the notion that the condition of hunger is socially relevant in this country. On the other hand, the scientific community in the field of nutrition has, through epidemiological studies, highlighted obesity as one of the most serious public health problems in Brazil. The reason why the public perception is dissociated from the production of knowledge on this subject has old roots that are related to the difficulties in institutionalizing science in Brazil. This has been reflected in a relative lack of legitimacy for scientific discourse. The new factor in this situation is the attainment of greater international visibility by the scientific community in nutritional de epidemiology. The future of the practical application of the results from nutritional epidemiology research in Brazil depends on the dynamics of the political agenda regarding hunger and nutrition, and of the sectors associated with this. The objective of this study was to explore this situation by means of analyzing scientometric data on the scientific production, historical data and documents relating to discourse about hunger.
NASA Technical Reports Server (NTRS)
Brown, Molly E.; Ihli, Monica; Hendrick, Oscar; Delgado-Arias, Sabrina; Escobar, Vanessa M.; Griffith, Peter
2015-01-01
The North American Carbon Program (NACP) was formed to further the scientific understanding of sources, sinks, and stocks of carbon in Earth's environment. Carbon cycle science integrates multidisciplinary research, providing decision-support information for managing climate and carbon-related change across multiple sectors of society. This investigation uses the conceptual framework of com-munities of practice (CoP) to explore the role that the NACP has played in connecting researchers into a carbon cycle knowledge network, and in enabling them to conduct physical science that includes ideas from social science. A CoP describes the communities formed when people consistently engage in shared communication and activities toward a common passion or learning goal. We apply the CoP model by using keyword analysis of abstracts from scientific publications to analyze the research outputs of the NACP in terms of its knowledge domain. We also construct a co-authorship network from the publications of core NACP members, describe the structure and social pathways within the community. Results of the content analysis indicate that the NACP community of practice has substantially expanded its research on human and social impacts on the carbon cycle, contributing to a better understanding of how human and physical processes interact with one another. Results of the co-authorship social network analysis demonstrate that the NACP has formed a tightly connected community with many social pathways through which knowledge may flow, and that it has also expanded its network of institutions involved in carbon cycle research over the past seven years.
Transgenes and transgressions: scientific dissent as heterogeneous practice.
Delborne, Jason A
2008-08-01
Although scholars in science and technology studies have explored many dynamics and consequences of scientific controversy, no coherent theory of scientific dissent has emerged. This paper proposes the elements of such a framework, based on understanding scientific dissent as a set of heterogeneous practices. I use the controversy over the presence of transgenic DNA in Mexican maize in the early 2000s to point to a processual model of scientific dissent. 'Contrarian science' includes knowledge claims that challenge the dominant scientific trajectory, but need not necessarily lead to dissent. 'Impedance' represents efforts to undermine the credibility of contrarian science (or contrarian scientists) and may originate within or outside of the scientific community. In the face of impedance, contrarian scientists may become dissenters. The actions of the scientist at the center of the case study, Professor Ignacio Chapela of the University of California, Berkeley, demonstrate particular practices of scientific dissent, ranging from 'agonistic engagement' to 'dissident science'. These practices speak not only to functional strategies of winning scientific debate, but also to attempts to reconfigure relations among scientists, publics, institutions, and politics that order knowledge production.
Liheng Chen; Qianqian Wang; Kolby Hirth; Carlos Baez; Umesh P. Agarwal; J. Y. Zhu
2015-01-01
Cellulose nanocrystals (CNC) have recently received much attention in the global scientific community for their unique mechanical and optical properties. Here, we conducted the first detailed exploration of the basic properties of CNC, such as morphology, crystallinity, degree of sulfation and yield, as a function of production condition variables. The rapid cellulose...
ERIC Educational Resources Information Center
Balas, Andrea K.; Hariharan, Joya
This study, part of a larger research project, explored the knowledge and attitudes of the general population regarding cloning. Such awareness of the general public's knowledge of important science topics, attitudes toward such topics, and sources from which people retrieve information can help scientific and educational communities develop…
Environmental Public Health Policy for Asbestos in Schools: Unintended Consequences.
ERIC Educational Resources Information Center
Corn, Jacqueline Karnell
This book explores the history of asbestos in schools and buildings and how this issue shaped the development of public health policy. It provides insight into past policy including how and why action was taken and who caused it to be taken; it also offers guidance for the scientific and regulatory communities in the future. While explaining…
Dark Sectors 2016 Workshop: Community Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander, Jim; et al.
This report, based on the Dark Sectors workshop at SLAC in April 2016, summarizes the scientific importance of searches for dark sector dark matter and forces at masses beneath the weak-scale, the status of this broad international field, the important milestones motivating future exploration, and promising experimental opportunities to reach these milestones over the next 5-10 years.
ERIC Educational Resources Information Center
Sapir, Adi
2017-01-01
Research institutions and universities are positioned in a state of inherent struggle to reconcile the pressures and demands of the external environment with those of the scientific community. This paper is focused on one contested area, the division between basic and applied research, and explores how universities work to balance organizational…
Whose Deaf Genes Are They Anyway?: The Deaf Community's Challenge to Legislation on Embryo Selection
ERIC Educational Resources Information Center
Emery, Steven D.; Middleton, Anna; Turner, Graham H.
2010-01-01
This article centers on the implications of genetic developments (as a scientific and technological discipline) for those Deaf people who identify as a cultural and linguistic minority group and are concerned with the preservation and development of sign language and Deaf culture. We explore the impact of one particular legislative initiative that…
The emergy of metabolism in the same ecosystem (maize) under different environmental conditions
Xiajie Zhai; Huan Zhao; Lizhu Guo; Deborah M. Finch; Ding Huang; Kesi Liu; Shiming Tang; Yuejuan Yang; Jianxin Guo; Jiahuan Li; Shu Xie; Kun Wang
2018-01-01
Ecosystem sustainability is the basis for life, economic and social sustainability. The energy metabolism of an ecosystem has long been a focus area in the scientific community because it determines the productivity, sustainability and development of ecosystem. This study applied emergy analysis to explore the metabolism of maize ecosystems under different...
Colen, Rivka; Foster, Ian; Gatenby, Robert; Giger, Mary Ellen; Gillies, Robert; Gutman, David; Heller, Matthew; Jain, Rajan; Madabhushi, Anant; Madhavan, Subha; Napel, Sandy; Rao, Arvind; Saltz, Joel; Tatum, James; Verhaak, Roeland; Whitman, Gary
2014-10-01
The National Cancer Institute (NCI) Cancer Imaging Program organized two related workshops on June 26-27, 2013, entitled "Correlating Imaging Phenotypes with Genomics Signatures Research" and "Scalable Computational Resources as Required for Imaging-Genomics Decision Support Systems." The first workshop focused on clinical and scientific requirements, exploring our knowledge of phenotypic characteristics of cancer biological properties to determine whether the field is sufficiently advanced to correlate with imaging phenotypes that underpin genomics and clinical outcomes, and exploring new scientific methods to extract phenotypic features from medical images and relate them to genomics analyses. The second workshop focused on computational methods that explore informatics and computational requirements to extract phenotypic features from medical images and relate them to genomics analyses and improve the accessibility and speed of dissemination of existing NIH resources. These workshops linked clinical and scientific requirements of currently known phenotypic and genotypic cancer biology characteristics with imaging phenotypes that underpin genomics and clinical outcomes. The group generated a set of recommendations to NCI leadership and the research community that encourage and support development of the emerging radiogenomics research field to address short-and longer-term goals in cancer research.
Sexual Violence in the Backlands: Toward a Macro-Level Understanding of Rural Sex Crimes.
Braithwaite, Jeremy
2015-10-01
This research focuses on structural covariates of sex crimes in rural communities (using urban and urbanizing communities as comparison groups), with particular analysis on exploring how the magnitude and direction of such covariates differ with respect to type of sex crime. Using 2000 sex crime data from the National Incident-Based Reporting System (NIBRS) for the population of reporting U.S. cities, negative binomial and logistic regression procedures were used to explore the relationship between resource disadvantage, local investment, and economic inequality and sex crime subtypes. For sex crimes that occurred almost exclusively in the home, urban and urbanizing community rates were largely influenced by resource disadvantage and local investment, while these measures did not reach significance for explaining rural rates. Conversely, local investment was a significant predictor of sex crimes that occurred outside the home in rural communities. This research indicates that a structural analysis of sexual victimization (widely absent from the scientific literature) does yield significant findings and that disaggregation of crime into subtypes allows for a more detailed differentiation between urban and rural communities. © The Author(s) 2014.
Exploration of Uncertainty in Glacier Modelling
NASA Technical Reports Server (NTRS)
Thompson, David E.
1999-01-01
There are procedures and methods for verification of coding algebra and for validations of models and calculations that are in use in the aerospace computational fluid dynamics (CFD) community. These methods would be efficacious if used by the glacier dynamics modelling community. This paper is a presentation of some of those methods, and how they might be applied to uncertainty management supporting code verification and model validation for glacier dynamics. The similarities and differences between their use in CFD analysis and the proposed application of these methods to glacier modelling are discussed. After establishing sources of uncertainty and methods for code verification, the paper looks at a representative sampling of verification and validation efforts that are underway in the glacier modelling community, and establishes a context for these within overall solution quality assessment. Finally, an information architecture and interactive interface is introduced and advocated. This Integrated Cryospheric Exploration (ICE) Environment is proposed for exploring and managing sources of uncertainty in glacier modelling codes and methods, and for supporting scientific numerical exploration and verification. The details and functionality of this Environment are described based on modifications of a system already developed for CFD modelling and analysis.
Messeri, Lisa; Vertesi, Janet
2015-01-01
This article introduces the concept of the sociotechnical projectory to explore the importance of future-oriented discourse in technical practice. It examines the case of two flagship NASA missions that, since the 1960s, have been continually proposed and deferred. Despite the missions never being flown, it argues that they produced powerful effects within the planetary science community as assumed "end-points" to which all current technological, scientific, and community efforts are directed. It asserts that attention to the social construction of technological systems requires historical attention to how actors situate themselves with respect to a shared narrative of the future.
NASA Astrophysics Data System (ADS)
Tate, Erika Dawn
School science instruction that connects to students' diverse home, cultural, or linguistic experiences can encourage lifelong participation in the scientific dilemmas that impact students' lives. This dissertation seeks effective ways to support high school students as they learn complex science topics and use their knowledge to transform their personal and community environments. Applying the knowledge integration perspective, I collaborated with education, science, and community partners to design a technology enhanced science module, Improving Your Community's Asthma Problem. This exemplar community science curriculum afforded students the opportunity to (a) investigate a local community health issue, (b) interact with relevant evidence related to physiology, clinical management, and environmental risks, and (c) construct an integrated understanding of the asthma problem in their community. To identify effective instructional scaffolds that engage students in the knowledge integration process and prepare them to participate in community science, I conducted 2 years of research that included 5 schools, 10 teachers, and over 500 students. This dissertation reports on four studies that analyzed student responses on pre-, post-, and embedded assessments. Researching across four design stages, the iterative design study investigated how to best embed the visualizations of the physiological processes breathing, asthma attack, and the allergic immune response in an inquiry activity and informed evidence-based revisions to the module. The evaluation study investigated the impact of this revised Asthma module across multiple classrooms and differences in students' prior knowledge. Combining evidence of student learning from the iterative and evaluation studies with classroom observations and teacher interviews, the longitudinal study explored the impact of teacher practices on student learning in years 1 and 2. In the final chapter, I studied how the Asthma module and students' local community influenced students as they integrated their ideas related to perspectives, evidence use, the consideration of tradeoffs, and localization to construct explanations and decision justifications regarding their community's asthma problem. In the end, this dissertation offers evidence that informs the future design of community science instruction that successfully engages students in the knowledge integration process and has implications for creating multiple opportunities for students to meaningfully participate in community science.
NASA's Microgravity Fluid Physics Strategic Research Roadmap
NASA Technical Reports Server (NTRS)
Motil, Brian J.; Singh, Bhim S.
2004-01-01
The Microgravity Fluid Physics Program at NASA has developed a substantial investigator base engaging a broad crosssection of the U.S. scientific community. As a result, it enjoys a rich history of many significant scientific achievements. The research supported by the program has produced many important findings that have been published in prestigious journals such as Science, Nature, Journal of Fluid Mechanics, Physics of Fluids, and many others. The focus of the program so far has primarily been on fundamental scientific studies. However, a recent shift in emphasis at NASA to develop advanced technologies to enable future exploration of space has provided motivation to add a strategic research component to the program. This has set into motion a year of intense planning within NASA including three workshops to solicit inputs from the external scientific community. The planning activities and the workshops have resulted in a prioritized list of strategic research issues along with a corresponding detailed roadmap specific to fluid physics. The results of these activities were provided to NASA s Office of Biological and Physical Research (OBPR) to support the development of the Enterprise Strategy document. This paper summarizes these results while showing how the planned research supports NASA s overall vision through OBPR s organizing questions.
NASA Astrophysics Data System (ADS)
Sotin, Christophe
2000-07-01
Every four or five years, the French scientific community is invited by the French space agency (CNES) to define the scientific priorities of the forthcoming years. The last workshop took place in March 98 in Arcachon, France. During this three-day workshop, it was clear that the study of Mars was very attractive for everyone because it is a planet very close to the Earth and its study should allow us to better understand the chemical and physical processes which drive the evolution of a planet by comparing the evolution of the two planets. For example, the study of Mars should help to understand the relationship between mantle convection and plate tectonics, the way magnetic dynamo works, and which conditions allowed life to emerge and evolve on Earth. The Southern Hemisphere of planet Mars is very old and it should have recorded some clues on the planetary evolution during the first billion years, a period for which very little is known for the Earth because both plate tectonics and weathering have erased the geological record. The international scientific community defined the architecture of Mars exploration program more than ten years ago. After the scientific discoveries made (and to come) with orbiters and landers, it appeared obvious that the next steps to be prepared are the delivery of networks on the surface and the study of samples returned from Mars. Scientific objectives related to network science include the determination of the different shells which compose the planet, the search for water in the subsurface, the record of atmospheric parameters both in time and space. Those related to the study of samples include the understanding of the differentiation of the planet and the fate of volatiles (including H2O) thanks to very accurate isotopic measurements which can be performed in laboratories, the search for minerals which can prove that life once existed on Mars, the search for present life on Mars (bacteria). Viking landers successfully landed on the surface of Mars in the mid seventies. Mars Pathfinder showed that rovers could be delivered at the surface of the planet and move around a lander. If it seems feasible that such a lander can grab samples and return them to the lander, a technical challenge is to launch successfully a rocket from the surface of Mars, put in orbit the samples, collect the sample in orbit and bring them back to the surface of the Earth. Such a technical challenge in addition to the amount of scientific information which will be returned, makes the Mars Sample Return mission a very exciting mission at the turn of the millenium. Following the Arcachon meeting, CNES made the decision to support strongly Mars exploration. This program includes three major aspects: (1) strong participation in the ESA Mars Express mission, (2) development of network science in collaboration with European partners, and (3) participation in the NASA-lead Mars Sample Return mission. In addition, participation in micromissions is foreseen to increase the scientific return with low-cost missions.
Human Mars Landing Site and Impacts on Mars Surface Operations
NASA Technical Reports Server (NTRS)
Hoffman, Stephen J.; Bussey, Ben
2016-01-01
This paper describes NASA's initial steps for identifying and evaluating candidate Exploration Zones (EZs) and Regions of Interests (ROIs) for the first human crews that will explore the surface of Mars. NASA's current effort to define the exploration of this planet by human crews, known as the Evolvable Mars Campaign (EMC), provides the context in which these EZs and ROIs are being considered. The EMC spans all aspects of a human Mars mission including launch from Earth, transit to and from Mars, and operations on the surface of Mars. An EZ is a collection of ROIs located within approximately 100 kilometers of a centralized landing site. ROIs are areas relevant for scientific investigation and/or development/maturation of capabilities and resources necessary for a sustainable human presence. The EZ also contains one or more landing sites and a habitation site that will be used by multiple human crews during missions to explore and utilize the ROIs within the EZ. With the EMC as a conceptual basis, the EZ model has been refined to a point where specific site selection criteria for scientific exploration and in situ resource utilization can be defined. In 2015 these criteria were distributed to the planetary sciences community and the in situ resource utilization and civil engineering communities as part of a call for EZ proposals. The resulting "First Landing Site/Exploration Zone Workshop for Human Missions to the Surface of Mars" was held in October 2015 during which 47 proposals for EZs and ROIs were presented and discussed. Proposed locations spanned all longitudes and all allowable latitudes (+/- 50 degrees). Proposed justification for selecting one of these EZs also spanned a significant portion of the scientific and resource criteria provided to the community. Several important findings resulted from this Workshop including: (a) a strong consensus that, at a scale of 100 km (radius), multiple places on Mars exist that have both sufficient scientific interest to sustain multiple crews of exploring astronauts, AND potential resource deposits for ISRU indicating the current EZ definition is viable and should be retained for now, (b) new data types (needed for more definitive analysis of EZs) argued strongly for a new orbiter mission, and possibly one or more surface missions, to obtain these data, (c) a general consensus that this Workshop was an excellent start to identifying a place where future human missions to Mars can productively explore this planet and learn to live and work there for the long term. Building on these findings, HEOMD and SMD are: (a) refining the EZ selection criteria and overall selection process to improve on lessons learned from the first EZ workshop, (b) using these proposed locations to develop "reference EZs" for assessment purposes (primarily engineering assessments), (c) gathering data and conducting analyses to better understanding the different potential sources for water, including the ease of extraction and purification, and (d) assessing trends in additional data that are needed to better characterize EZs proposed at the workshop and how these data needs impact the design and operation of future robotic Mars missions.
An enhanced Planetary Radar Operating Centre (PROC)
NASA Astrophysics Data System (ADS)
Catallo, C.
2010-12-01
Planetary exploration by means of radar systems, mainly using GPRs is an important role of Italy and numerous scientific international space programs are carried out jointly with ESA and NASA by Italian Space Agency, the scientific community and the industry. Three experiments under Italian leadership ( designed and manufactured by the Italian industry) provided by ASI within a NASA/ESA/ASI joint venture framework are successfully operating: MARSIS on-board MEX, SHARAD on-board MRO and CASSINI Radar on-board Cassini spacecraft: the missions have been further extended . Three dedicated operational centers, namely SHOC, (Sharad Operating Centre), MOC (Marsis Operating Center) and CASSINI PAD are operating from the missions beginning to support all the scientific communities, institutional customers and experiment teams operation Each center is dedicated to a single instrument management and control, data processing and distribution and even if they had been conceived to operate autonomously and independently one from each other, synergies and overlaps have been envisaged leading to the suggestion of a unified center, the Planetary Radar Processing Center (PROC). In order to harmonize operations either from logistics point of view and from HW/SW capabilities point of view PROC is designed and developed for offering improved functionalities to increase capabilities, mainly in terms of data exchange, comparison, interpretation and exploitation. PROC is, therefore, conceived as the Italian support facility to the scientific community for on-going and future Italian planetary exploration programs, such as Europa-Jupiter System Mission (EJSM) The paper describes how the new PROC is designed and developed, to allow SHOC, MOC and CASSINI PAD to operate as before, and to offer improved functionalities to increase capabilities, mainly in terms of data exchange, comparison, interpretation and exploitation aiding scientists to increase their knowledge in the field of surface radar sounding: furthermore the flexibility and the big dimensions of the PROC archives allow easy integration of other missions (e.g. EJSM). A specific PROC Web facility and a dedicated high capacity on line storage allow PROC missions status and scientific results spreading, scientific requests submission, news, studies, technical information, radar data images publication and data retrieving (the latter only on science team members request), according to different permissions assigned both to science team members and generic users
A Conceptual Overview of the Role of Beauty and Aesthetics in Science and Science Education
ERIC Educational Resources Information Center
Girod, Mark
2007-01-01
Conversations on the connection of art, beauty, and the aesthetic experience in science are gaining a voice in the science education community. This article provides a conceptual overview of the role of beauty and aesthetics in science and science education. It focuses on a discussion of four themes exploring beauty in scientific ideas and…
From Droughts to Drones: An After-School Club Uses Drones to Learn about Environmental Science
ERIC Educational Resources Information Center
Gillani, Bijan; Gillani, Roya
2015-01-01
An after-school enrichment activity offered to sixth-grade students gave a group of 10 students an opportunity to explore the effects of the California drought in their community using an engaging scientific device: the UAV (unmanned aerial vehicle). Although this activity was specifically designed for a small after-school enrichment group, it…
Choosing to Major in Physics, or Not: Factors Affecting Undergraduate Decision Making
ERIC Educational Resources Information Center
Stiles-Clarke, Laura; MacLeod, Katarin
2016-01-01
For the past 40 years, there has been apprehension in North American society, and particularly in the scientific community, concerning the decline of interest and enrollment in science degree programs at the post-secondary level. This trend has proven very difficult to reverse. The purpose of this study was to explore why students at an Atlantic…
Studies of Polar Mesospheric Clouds from Observations by the Student Nitric Oxide Explorer
NASA Technical Reports Server (NTRS)
Bailey, Scott M.
2005-01-01
The Geospace Sciences SR&T award NAG5-12648 "Studies of polar mesospheric clouds from observations by the Student Nitric Oxide Explorer" has been completed. The project was very successful in completing the proposed objectives and brought forth unexpected results in the study of Polar Mesospheric Clouds (PMCs). This work has provided key results to the community, provided valuable experience to two students, and inspired new research and collaborations with other research groups. Here we briefly summarize the progress and the scientific results.
NASA Technical Reports Server (NTRS)
Gaskin, Jessica; Ozel, Feryal; Vikhlinin, Alexey
2016-01-01
The X-Ray Surveyor mission concept is unique among those being studied for prioritization in the NASA Astrophysics 2020 Decadal Survey. The X-Ray Surveyor mission will explore the high-energy Universe; providing essential and complimentary observations to the Astronomy Community. The NASA Astrophysics Roadmap (Enduring Quests, Daring Visions) describes the need for an X-Ray Observatory that is capable of addressing topics such as the origin and growth of the first supermassive black holes, galaxy evolution and growth of the cosmic structure, and the origin and evolution of the stars that make up our Universe. To address these scientifically compelling topics and more, an Observatory that exhibits leaps in capability over that of previous X-Ray Observatories in needed. This paper describes the current status of the X-Ray Surveyor Mission Concept Study and the path forward, which includes scientific investigations, technology development, and community participation.
NASA Astrophysics Data System (ADS)
Gaskin, Jessica; Özel, Feryal; Vikhlinin, Alexey
2016-07-01
The X-Ray Surveyor mission concept is unique among those being studied for prioritization in the NASA Astrophysics 2020 Decadal Survey. The X-Ray Surveyor mission will explore the high-energy Universe; providing essential and complimentary observations to the Astronomy Community. The NASA Astrophysics Roadmap (Enduring Quests, Daring Visions) describes the need for an X-Ray Observatory that is capable of addressing topics such as the origin and growth of the first supermassive black holes, galaxy evolution and growth of the cosmic structure, and the origin and evolution of the stars that make up our Universe. To address these scientifically compelling topics and more, an Observatory that exhibits leaps in capability over that of previous X-Ray Observatories in needed. This paper describes the current status of the X-Ray Surveyor Mission Concept Study and the path forward, which includes scientific investigations, technology development, and community participation.
What can the programming language Rust do for astrophysics?
NASA Astrophysics Data System (ADS)
Blanco-Cuaresma, Sergi; Bolmont, Emeline
2017-06-01
The astrophysics community uses different tools for computational tasks such as complex systems simulations, radiative transfer calculations or big data. Programming languages like Fortran, C or C++ are commonly present in these tools and, generally, the language choice was made based on the need for performance. However, this comes at a cost: safety. For instance, a common source of error is the access to invalid memory regions, which produces random execution behaviors and affects the scientific interpretation of the results. In 2015, Mozilla Research released the first stable version of a new programming language named Rust. Many features make this new language attractive for the scientific community, it is open source and it guarantees memory safety while offering zero-cost abstraction. We explore the advantages and drawbacks of Rust for astrophysics by re-implementing the fundamental parts of Mercury-T, a Fortran code that simulates the dynamical and tidal evolution of multi-planet systems.
The ethical issues in uranium mining research in the Navajo Nation.
Panikkar, Bindu; Brugge, Doug
2007-01-01
We explore the experience of Navajo communities living under the shadow of nuclear age fallout who were subjects of five decades of research. In this historical analysis of public health (epidemiological) research conducted in the Navajo lands since the inception of uranium mining from the 1950s untill the end of the 20th century, we analyze the successes and failures in the research initiatives conducted on Navajo lands, the ethical breaches, and the harms and benefits that this research has brought about to the community. We discuss how scientific and moral uncertainty, lack of full stakeholder participation and community wide outreach and education can impact ethical decisions made in research.
Optimizing Resources for Trustworthiness and Scientific Impact of Domain Repositories
NASA Astrophysics Data System (ADS)
Lehnert, K.
2017-12-01
Domain repositories, i.e. data archives tied to specific scientific communities, are widely recognized and trusted by their user communities for ensuring a high level of data quality, enhancing data value, access, and reuse through a unique combination of disciplinary and digital curation expertise. Their data services are guided by the practices and values of the specific community they serve and designed to support the advancement of their science. Domain repositories need to meet user expectations for scientific utility in order to be successful, but they also need to fulfill the requirements for trustworthy repository services to be acknowledged by scientists, funders, and publishers as a reliable facility that curates and preserves data following international standards. Domain repositories therefore need to carefully plan and balance investments to optimize the scientific impact of their data services and user satisfaction on the one hand, while maintaining a reliable and robust operation of the repository infrastructure on the other hand. Staying abreast of evolving repository standards to certify as a trustworthy repository and conducting a regular self-assessment and certification alone requires resources that compete with the demands for improving data holdings or usability of systems. The Interdisciplinary Earth Data Alliance (IEDA), a data facility funded by the US National Science Foundation, operates repositories for geochemical, marine Geoscience, and Antarctic research data, while also maintaining data products (global syntheses) and data visualization and analysis tools that are of high value for the science community and have demonstrated considerable scientific impact. Balancing the investments in the growth and utility of the syntheses with resources required for certifcation of IEDA's repository services has been challenging, and a major self-assessment effort has been difficult to accommodate. IEDA is exploring a partnership model to share generic repository functions (e.g. metadata registration, long-term archiving) with other repositories. This could substantially reduce the effort of certification and allow effort to focus on the domain-specific data curation and value-added services.
CosmoQuest: Creative Engagement & Citizen Science Ignite Authentic Science
NASA Astrophysics Data System (ADS)
Cobb, W. H.; Noel-Storr, J.; Tweed, A.; Asplund, S.; Aiello, M. P.; Lebofsky, L. A.; Chilton, H.; Gay, P.
2016-12-01
The CosmoQuest Virtual Research Facility offers in-depth experiences to diverse audiences nationally and internationally through pioneering citizen science. An endeavor between universities, research institutes, and NASA centers, CosmoQuest brings together scientists, educators, researchers, programmers—and individuals of all ages—to explore and make sense of our solar system and beyond. CosmoQuest creates pathways for engaging diverse audiences in authentic science, encouraging scientists to engage with learners, and learners to engage with scientists. Here is a sequence of activities developed by CosmoQuest, leveraging a NASA Discovery and New Frontiers Programs activity developed for the general STEAM community, that activates STEM learning. The Spark: Igniting Curiosity Art and the Cosmic Connection uses the elements of art—shape, line, color, texture, value—to hone observation skills and inspire questions. Learners explore NASA image data from celestial bodies in our solar system—planets, asteroids, moons. They investigate their geology, analyzing features and engaging in scientific discourse rising from evidence while creating a beautiful piece of art. The Fuel: Making Connections Crater Comparisons explore authentic NASA image data sets, engrossing learners at a deeper level. With skills learned in Art and the Cosmic Connection, learners analyze specific image sets with the feedback of mission team members. The Burn: Evolving Community Become a Solar System Mapper. Investigate and analyze NASA mission image data of Mars, Mercury, the Moon and Vesta through CosmoQuest's citizen science projects. Learners make real-world connections while contributing to NASA science. Scaffolded by an educational framework that inspires 21st century learners, CosmoQuest engages people in analyzing and interpreting real NASA data, inspiring questions, defining problems, and realizing their potential to contribute to genuine scientific results. Through social channels, CosmoQuest empowers and expands its community, including science and education-focused hangouts, virtual star parties, and diverse social media. CosmoQuest offers a hub for excellent resources throughout NASA and the larger astronomy community and fosters the conversations they inspire.
Díaz-Aristizabal, Urko; Sanz-Victoria, Silvia; Sahonero-Daza, Milton; Ledesma-Ocampo, Sandra; Cachimuel-Vinueza, Mesías; Torrico, Marisabel
2012-01-01
Community-Based Rehabilitation (CBR) is a strategy for community development endorsed by the World Health Organization (WHO), the International Labor Office (ILO) and the United Nations Educational, Scientific and Cultural Organization (UNESCO). It is designed to promote rehabilitation, equal opportunity and social inclusion of Disabled Persons (DP) in their home communities by fostering cooperation among disabled individuals, their families, and other concerned social actors, it encourages community leadership and full social participation by DP through multi-sector cooperation. This article explores the historical antecedents and basic features of CBR strategy through an analysis of a directed culture change initiative developed by a foundation in the Cochabamba administrative region of Bolivia. Especially in intercultural environments, certain aspects of the socio-cultural context may determine whether CBR programs succeed or fail.
NASA Astrophysics Data System (ADS)
Song, Mary Elizabeth
This study explores what educators may learn from the experiences of secondary students working in professional scientific laboratories. My investigation is guided by the methodology of phenomenological; I depend primarily on interviews conducted with students and professional researchers. This material is supported primarily by on-site observations, and by informal conversations between me and the study participants. My dissertation has three goals: (one) to use the work of secondary students in scientific research laboratories to consider how they know the discipline; (two) to distinguish the students' professional accomplishments from science learning at school; and, (three) to engage readers in a reflection about authority within the scientific community, and the possibility that by accomplishing research, students take their legitimate place among those who construct scientific knowledge. My methods and focus have allowed me to capture qualities of the student narratives that support the emergence of three major themes: the importance of doing "real work" in learning situations; the inapplicability of "school learning" to professional research arenas; and the inclusive nature of the scientific community. At the same time, the study is confined by the narrow pool of participants I interviewed over a short period of time. These talented students were all academically successful, articulate, "well-rounded" and in this sense, mature. They typically had strong family support, and they talked about ideas with their parents. Indeed, the students were all capable story-tellers who were anxious to share their experiences publicly. Yet they themselves remind the reader of their struggles to overcome naivete in the lab. By doing so they suggested to me that their experiences might be accessible to a broad range of young men and women; thus this study is a good beginning for further research.
Interactive 3D visualization for theoretical virtual observatories
NASA Astrophysics Data System (ADS)
Dykes, T.; Hassan, A.; Gheller, C.; Croton, D.; Krokos, M.
2018-06-01
Virtual observatories (VOs) are online hubs of scientific knowledge. They encompass a collection of platforms dedicated to the storage and dissemination of astronomical data, from simple data archives to e-research platforms offering advanced tools for data exploration and analysis. Whilst the more mature platforms within VOs primarily serve the observational community, there are also services fulfilling a similar role for theoretical data. Scientific visualization can be an effective tool for analysis and exploration of data sets made accessible through web platforms for theoretical data, which often contain spatial dimensions and properties inherently suitable for visualization via e.g. mock imaging in 2D or volume rendering in 3D. We analyse the current state of 3D visualization for big theoretical astronomical data sets through scientific web portals and virtual observatory services. We discuss some of the challenges for interactive 3D visualization and how it can augment the workflow of users in a virtual observatory context. Finally we showcase a lightweight client-server visualization tool for particle-based data sets, allowing quantitative visualization via data filtering, highlighting two example use cases within the Theoretical Astrophysical Observatory.
Parente, Eugenio; Cocolin, Luca; De Filippis, Francesca; Zotta, Teresa; Ferrocino, Ilario; O'Sullivan, Orla; Neviani, Erasmo; De Angelis, Maria; Cotter, Paul D; Ercolini, Danilo
2016-02-16
Amplicon targeted high-throughput sequencing has become a popular tool for the culture-independent analysis of microbial communities. Although the data obtained with this approach are portable and the number of sequences available in public databases is increasing, no tool has been developed yet for the analysis and presentation of data obtained in different studies. This work describes an approach for the development of a database for the rapid exploration and analysis of data on food microbial communities. Data from seventeen studies investigating the structure of bacterial communities in dairy, meat, sourdough and fermented vegetable products, obtained by 16S rRNA gene targeted high-throughput sequencing, were collated and analysed using Gephi, a network analysis software. The resulting database, which we named FoodMicrobionet, was used to analyse nodes and network properties and to build an interactive web-based visualisation. The latter allows the visual exploration of the relationships between Operational Taxonomic Units (OTUs) and samples and the identification of core- and sample-specific bacterial communities. It also provides additional search tools and hyperlinks for the rapid selection of food groups and OTUs and for rapid access to external resources (NCBI taxonomy, digital versions of the original articles). Microbial interaction network analysis was carried out using CoNet on datasets extracted from FoodMicrobionet: the complexity of interaction networks was much lower than that found for other bacterial communities (human microbiome, soil and other environments). This may reflect both a bias in the dataset (which was dominated by fermented foods and starter cultures) and the lower complexity of food bacterial communities. Although some technical challenges exist, and are discussed here, the net result is a valuable tool for the exploration of food bacterial communities by the scientific community and food industry. Copyright © 2015. Published by Elsevier B.V.
Shrager, Jeff; Billman, Dorrit; Convertino, Gregorio; Massar, J P; Pirolli, Peter
2010-01-01
Science is a form of distributed analysis involving both individual work that produces new knowledge and collaborative work to exchange information with the larger community. There are many particular ways in which individual and community can interact in science, and it is difficult to assess how efficient these are, and what the best way might be to support them. This paper reports on a series of experiments in this area and a prototype implementation using a research platform called CACHE. CACHE both supports experimentation with different structures of interaction between individual and community cognition and serves as a prototype for computational support for those structures. We particularly focus on CACHE-BC, the Bayes community version of CACHE, within which the community can break up analytical tasks into "mind-sized" units and use provenance tracking to keep track of the relationship between these units. Copyright © 2009 Cognitive Science Society, Inc.
Enhancing Scientific Foundations to Ensure Reproducibility: A New Paradigm.
Hsieh, Terry; Vaickus, Max H; Remick, Daniel G
2018-01-01
Progress in science is dependent on a strong foundation of reliable results. The publish or perish paradigm in research, coupled with an increase in retracted articles from the peer-reviewed literature, is beginning to erode the trust of both the scientific community and the public. The NIH is combating errors by requiring investigators to follow new guidelines addressing scientific premise, experimental design, biological variables, and authentication of reagents. Herein, we discuss how implementation of NIH guidelines will help investigators proactively address pitfalls of experimental design and methods. Careful consideration of the variables contributing to reproducibility helps ensure robust results. The NIH, investigators, and journals must collaborate to ensure that quality science is funded, explored, and published. Copyright © 2018 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Nuclear subs to explore Arctic?
NASA Astrophysics Data System (ADS)
The international community of scientists has become interested in the idea of using a nuclear submarine to explore the Arctic and other inaccessible regions of the World Ocean. Several alternative approaches to formulating a concept and the respective plan of action put forward by different expert groups have been amply discussed [Eos, May 12, 1992; Navy News and Undersea Technology, November 9, 1992]. The Russian Academy of Sciences has created a working group, “Science-NSM,” to coordinate efforts in working out the concept of the project and the plan of action, determine the main scientific and applied problems and criteria for selecting the type of nuclear submarine to be rebuilt, appraise the possible solutions of occurring problems, as well as to effect international contacts. Members of the group include E. P. Velikhov (chairman), vice-president of the Russian Academy of Sciences; D. M. Klimov (deputy chairman); and Y. D. Chasheckin (scientific secretary).
Advanced Solar Cell and Array Technology for NASA Deep Space Missions
NASA Technical Reports Server (NTRS)
Piszczor, Michael; Benson, Scott; Scheiman, David; Finacannon, Homer; Oleson, Steve; Landis, Geoffrey
2008-01-01
A recent study by the NASA Glenn Research Center assessed the feasibility of using photovoltaics (PV) to power spacecraft for outer planetary, deep space missions. While the majority of spacecraft have relied on photovoltaics for primary power, the drastic reduction in solar intensity as the spacecraft moves farther from the sun has either limited the power available (severely curtailing scientific operations) or necessitated the use of nuclear systems. A desire by NASA and the scientific community to explore various bodies in the outer solar system and conduct "long-term" operations using using smaller, "lower-cost" spacecraft has renewed interest in exploring the feasibility of using photovoltaics for to Jupiter, Saturn and beyond. With recent advances in solar cell performance and continuing development in lightweight, high power solar array technology, the study determined that photovoltaics is indeed a viable option for many of these missions.
NASA's Solar System Exploration Research Virtual Institute: Merging Science and Exploration
NASA Technical Reports Server (NTRS)
Pendleton, Y. J.; Schmidt, G. K.; Bailey, B. E.; Minafra, J. A.
2016-01-01
NASA's Solar System Exploration Research Virtual Institute (SSERVI) represents a close collaboration between science, technology and exploration, and was created to enable a deeper understanding of the Moon and other airless bodies. SSERVI is supported jointly by NASA's Science Mission Directorate and Human Exploration and Operations Mission Directorate. The institute currently focuses on the scientific aspects of exploration as they pertain to the Moon, Near Earth Asteroids (NEAs) and the moons of Mars, but the institute goals may expand, depending on NASA's needs, in the future. The 9 initial teams, selected in late 2013 and funded from 2014-2019, have expertise across the broad spectrum of lunar, NEA, and Martian moon sciences. Their research includes various aspects of the surface, interior, exosphere, near-space environments, and dynamics of these bodies. NASA anticipates a small number of additional teams to be selected within the next two years, with a Cooperative Agreement Notice (CAN) likely to be released in 2016. Calls for proposals are issued every 2-3 years to allow overlap between generations of institute teams, but the intent for each team is to provide a stable base of funding for a five year period. SSERVI's mission includes acting as a bridge between several groups, joining together researchers from: 1) scientific and exploration communities, 2) multiple disciplines across a wide range of planetary sciences, and 3) domestic and international communities and partnerships. The SSERVI central office is located at NASA Ames Research Center in Mountain View, CA. The administrative staff at the central office forms the organizational hub for the domestic and international teams and enables the virtual collaborative environment. Interactions with geographically dispersed teams across the U.S., and global partners, occur easily and frequently in a collaborative virtual environment. This poster will provide an overview of the 9 current US teams and international partners, as well as information about outreach efforts and future opportunities to participate in SSERVI.
NASA Astrophysics Data System (ADS)
Moriarty, Meghan A.
This study explored the influence of teachers' authentic scientific research experiences (ASREs) on teachers' conceptions of the nature of science (NOS) and teachers' NOS instruction. Twelve high school biology teachers participated in this study. Six of the participants had authentic scientific research experience (ASRE) and six had not participated in authentic scientific research. Data included background surveys, modified Views of the Nature of Science (VNOS) questionnaires, interviews, and teaching observations. Data was coded based on the eight NOS understandings outlined in 2013 in the Next Generation Science Standards (NGSS). Evidence from this study indicates participating in authentic scientific research as a member of a scientific community has dual benefits of enabling high school science teachers with informed understandings of the NOS and positioning them to teach with the NOS. However, these benefits do not always result from an ASRE. If the nature of the ASRE is limited, then it may limit teachers' NOS understandings and their NOS teaching practices. The results of this study suggest that participation in ASREs may be one way to improve teachers' NOS understandings and teaching practices if the experiences themselves offer a comprehensive view of the NOS. Because ASREs and other science learning experiences do not always offer such experiences, pre-service teacher education and professional development opportunities may engage science teachers in two ways: (1) becoming part of a scientific community may enable them to teach with NOS and (2) being reflective about what being a scientist means may improve teachers' NOS understandings and better position them to teach about NOS.. Keywords: nature of science, authentic scientific research experiences, Next Generation Science Standards, teaching about NOS, teaching with NOS.
Evidence, Power, and Policy Change in Community-Based Participatory Research
Tsui, Emma
2014-01-01
Meaningful improvements in health require modifying the social determinants of health. As policies are often underlying causes of the living conditions that shape health, policy change becomes a health goal. This focus on policy has led to increasing interest in expanding the focus of community-based participatory research (CBPR) to change not only communities but also policies. To best realize this potential, the relationship between evidence and power in policy change must be more fully explored. Effective action to promote policies that improve population health requires a deeper understanding of the roles of scientific evidence and political power in bringing about policy change; the appropriate scales for policy change, from community to global; and the participatory processes that best acknowledge the interplay between power and evidence. PMID:24228677
Participation levels in 25 Community-based participatory research projects
Spears Johnson, C. R.; Kraemer Diaz, A. E.; Arcury, T. A.
2016-01-01
This analysis describes the nature of community participation in National Institutes of Health and Centers for Disease Control and Prevention funded community-based participatory research (CBPR) projects, and explores the scientific and social implications of variation in community participation. We conducted in-depth interviews in 2012 with professional and community researchers from 25 CBPR projects in the Southeast US. Interview topics focused on participants’ experiences with the nature and conduct of their CBPR project. Projects were rated on community participation in 13 components of research. Projects varied substantially in community participation. Some projects had community participation in only two to three components; others had participation in every component. Some professional researchers were deliberate in their inclusion of community participation in all aspects of research, others had community participation in some aspects, and others were mainly concerned that community members had the opportunity to participate in the study. Findings suggest a need for a standardized rubric for community-based research that facilitates delineation of approaches and procedures that are effective and efficient. Little actual community participation may also result in negative social impacts for communities. PMID:27422896
Citizen science for water quality monitoring: Data implications of citizen perspectives.
Jollymore, Ashlee; Haines, Morgan J; Satterfield, Terre; Johnson, Mark S
2017-09-15
Citizen science, where citizens play an active role in the scientific process, is increasingly used to expand the reach and scope of scientific research while also achieving engagement and educational goals. Despite the emergence of studies exploring data outcomes of citizen science, the process and experience of engaging with citizens and citizen-lead groups through participatory science is less explored. This includes how citizen perspectives alter data outcomes, a critical upshot given prevalent mistrust of citizen versus scientist data. This study uses a citizen science campaign investigating watershed impacts on water quality to interrogate the nature and implications of citizen involvement in producing scientifically and societally relevant data. Data representing scientific outcomes are presented alongside a series of vignettes that offer context regarding how, why, and where citizens engaged with the project. From these vignettes, six specific lessons are examined towards understanding how integration of citizen participation alters data outcomes relative to 'professional' science. In particular, elements of participant social identity (e.g., their motivation for participation), and contextual knowledge (e.g., of the research program itself) can shape participation and resulting data outcomes. Such scientific outcomes are particularly relevant given continued concerns regarding the quality of citizen data, which could hinder scientific acceptance of citizen sciences. Importantly, the potential for meaningful engagement with citizen and participants within citizen groups - given significant capacity within the community - represents a substantial and under-realized opportunity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Application of a data base management system to a finite element model
NASA Technical Reports Server (NTRS)
Rogers, J. L., Jr.
1980-01-01
In today's software market, much effort is being expended on the development of data base management systems (DBMS). Most commercially available DBMS were designed for business use. However, the need for such systems within the engineering and scientific communities is becoming apparent. A potential DBMS application that appears attractive is the handling of data for finite element engineering models. The applications of a commercially available, business-oriented DBMS to a structural engineering, finite element model is explored. The model, DBMS, an approach to using the DBMS, advantages and disadvantages are described. Plans for research on a scientific and engineering DBMS are discussed.
Astrobiology in culture: the search for extraterrestrial life as "science".
Billings, Linda
2012-10-01
This analysis examines the social construction of authority, credibility, and legitimacy for exobiology/astrobiology and, in comparison, the search for extraterrestrial intelligence (SETI), considering English-language conceptions of these endeavors in scientific culture and popular culture primarily in the United States. The questions that define astrobiology as a scientific endeavor are multidisciplinary in nature, and this endeavor is broadly appealing to public audiences as well as to the scientific community. Thus, it is useful to examine astrobiology in culture-in scientific culture, official culture, and popular culture. A researcher may explore science in culture, science as culture, by analyzing its rhetoric, the primary means that people use to construct their social realities-their cultural environment, as it were. This analysis follows this path, considering scientific and public interest in astrobiology and SETI and focusing on scientific and official constructions of the two endeavors. This analysis will also consider whether and how scientific and public conceptions of astrobiology and SETI, which are related but at the same time separate endeavors, converge or diverge and whether and how these convergences or divergences affect the scientific authority, credibility, and legitimacy of these endeavors.
Gone, Joseph P
2012-09-01
In the field of substance abuse treatment, American Indian and Alaska Native (AI/AN) communities have routinely incorporated ceremonial practices as one important component in the promotion of recovery and healing. The beneficial effects of such practices are frequently described as plainly apparent by community-based advocates, providers, and professionals alike. In the present era of evidence-based substance abuse intervention, however, indigenous integration of such practices raises questions pertaining to the systematic evaluation of treatment efficacy. The focus of this article is outcome evaluation. Although intervention outcome researchers recognize the randomized controlled trial as the "gold standard" against which claims of treatment efficacy are measured, AI/AN efficacy assertions grounded in indigenous traditional knowledge (ITK) reflect different concerns that have emerged in non-Western historical contexts. The interface between scientific and indigenous "ways of knowing" is explored here relative to efficacy claims about substance abuse treatment. Distinguishing features of both scientific knowing and ITK are summarized and compared. ITK has been described as personal and experiential, reflecting the primacy of autonomous individual knowing. In contrast, intervention scientists are skeptical of personal inference as a basis for efficacy evaluation. The evident divergence between these epistemic paradigms can result in potentially contradictory claims. Proper appraisal of the status and relevance of ITK for determining treatment efficacy requires further exploration of these marginalized approaches to knowledge. Intervention scientists who work in AI/AN communities should remain open to the legitimacy and role of ITKs in investigations of substance abuse treatment.
Spears Johnson, Chaya R; Kraemer Diaz, Anne E; Arcury, Thomas A
2017-04-01
Community-based participatory research (CBPR) seeks to conduct relevant, sustainable research that is tailored to the needs of the communities with which it is engaged through equitable collaboration between community representatives and professional researchers. Like other participatory approaches to research and planning, CBPR has been criticized for the potential to engage a biased sample of community representatives and, thereby, undermine the fundamental purpose of the approach. Moreover, the varying educational levels and areas of expertise, especially regarding science literacy, among those participating in CBPR has raised concern about the ability for true collaboration to exist within CBPR projects. This article presents findings from a qualitative study of 25 CBPR research projects and explores matters of science literacy, community representation, and the nature of CBPR. Ultimately, it is suggested that those who engage in CBPR should carefully consider the potential for biased community representation and seek to purposely and mindfully avoid any partiality.
Virtual Exploitation Environment Demonstration for Atmospheric Missions
NASA Astrophysics Data System (ADS)
Natali, Stefano; Mantovani, Simone; Hirtl, Marcus; Santillan, Daniel; Triebnig, Gerhard; Fehr, Thorsten; Lopes, Cristiano
2017-04-01
The scientific and industrial communities are being confronted with a strong increase of Earth Observation (EO) satellite missions and related data. This is in particular the case for the Atmospheric Sciences communities, with the upcoming Copernicus Sentinel-5 Precursor, Sentinel-4, -5 and -3, and ESA's Earth Explorers scientific satellites ADM-Aeolus and EarthCARE. The challenge is not only to manage the large volume of data generated by each mission / sensor, but to process and analyze the data streams. Creating synergies among the different datasets will be key to exploit the full potential of the available information. As a preparation activity supporting scientific data exploitation for Earth Explorer and Sentinel atmospheric missions, ESA funded the "Technology and Atmospheric Mission Platform" (TAMP) [1] [2] project; a scientific and technological forum (STF) has been set-up involving relevant European entities from different scientific and operational fields to define the platforḿs requirements. Data access, visualization, processing and download services have been developed to satisfy useŕs needs; use cases defined with the STF, such as study of the SO2 emissions for the Holuhraun eruption (2014) by means of two numerical models, two satellite platforms and ground measurements, global Aerosol analyses from long time series of satellite data, and local Aerosol analysis using satellite and LIDAR, have been implemented to ensure acceptance of TAMP by the atmospheric sciences community. The platform pursues the "virtual workspace" concept: all resources (data, processing, visualization, collaboration tools) are provided as "remote services", accessible through a standard web browser, to avoid the download of big data volumes and for allowing utilization of provided infrastructure for computation, analysis and sharing of results. Data access and processing are achieved through standardized protocols (WCS, WPS). As evolution toward a pre-operational environment, the "Virtual Exploitation Environment Demonstration for Atmospheric Missions" (VEEDAM) aims at maintaining, running and evolving the platform, demonstrating e.g. the possibility to perform massive processing over heterogeneous data sources. This work presents the VEEDAM concepts, provides pre-operational examples, stressing on the interoperability achievable exposing standardized data access and processing services (e.g. making accessible data and processing resources from different VREs). [1] TAMP platform landing page http://vtpip.zamg.ac.at/ [2] TAMP introductory video https://www.youtube.com/watch?v=xWiy8h1oXQY
Bringing scientific rigor to community-developed programs in Hong Kong.
Fabrizio, Cecilia S; Hirschmann, Malia R; Lam, Tai Hing; Cheung, Teresa; Pang, Irene; Chan, Sophia; Stewart, Sunita M
2012-12-31
This paper describes efforts to generate evidence for community-developed programs to enhance family relationships in the Chinese culture of Hong Kong, within the framework of community-based participatory research (CBPR). The CBPR framework was applied to help maximize the development of the intervention and the public health impact of the studies, while enhancing the capabilities of the social service sector partners. Four academic-community research teams explored the process of designing and implementing randomized controlled trials in the community. In addition to the expected cultural barriers between teams of academics and community practitioners, with their different outlooks, concerns and languages, the team navigated issues in utilizing the principles of CBPR unique to this Chinese culture. Eventually the team developed tools for adaptation, such as an emphasis on building the relationship while respecting role delineation and an iterative process of defining the non-negotiable parameters of research design while maintaining scientific rigor. Lessons learned include the risk of underemphasizing the size of the operational and skills shift between usual agency practices and research studies, the importance of minimizing non-negotiable parameters in implementing rigorous research designs in the community, and the need to view community capacity enhancement as a long term process. The four pilot studies under the FAMILY Project demonstrated that nuanced design adaptations, such as wait list controls and shorter assessments, better served the needs of the community and led to the successful development and vigorous evaluation of a series of preventive, family-oriented interventions in the Chinese culture of Hong Kong.
Design of FastQuery: How to Generalize Indexing and Querying System for Scientific Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Jerry; Wu, Kesheng
2011-04-18
Modern scientific datasets present numerous data management and analysis challenges. State-of-the-art index and query technologies such as FastBit are critical for facilitating interactive exploration of large datasets. These technologies rely on adding auxiliary information to existing datasets to accelerate query processing. To use these indices, we need to match the relational data model used by the indexing systems with the array data model used by most scientific data, and to provide an efficient input and output layer for reading and writing the indices. In this work, we present a flexible design that can be easily applied to most scientific datamore » formats. We demonstrate this flexibility by applying it to two of the most commonly used scientific data formats, HDF5 and NetCDF. We present two case studies using simulation data from the particle accelerator and climate simulation communities. To demonstrate the effectiveness of the new design, we also present a detailed performance study using both synthetic and real scientific workloads.« less
NASA Astrophysics Data System (ADS)
Weible, Jennifer L.; Toomey Zimmerman, Heather
2016-05-01
Although curiosity is considered an integral aspect of science learning, researchers have debated how to define, measure, and support its development in individuals. Prior measures of curiosity include questionnaire type scales (primarily for adults) and behavioral measures. To address the need to measure scientific curiosity, the Science Curiosity in Learning Environments (SCILE) scale was created and validated as a 12-item scale to measure scientific curiosity in youth. The scale was developed through (a) adapting the language of the Curiosity and Exploration Inventory-II [Kashdan, T. B., Gallagher, M. W., Silvia, P. J., Winterstein, B. P., Breen, W. E., Terhar, D., & Steger, M. F. (2009). The curiosity and exploration inventory-II: Development, factor structure, and psychometrics. Journal of Research in Personality, 43(6), 987-998] for youth and (b) crafting new items based on scientific practices drawn from U.S. science standards documents. We administered a preliminary set of 30 items to 663 youth ages 8-18 in the U.S.A. Exploratory and confirmatory factor analysis resulted in a three-factor model: stretching, embracing, and science practices. The findings indicate that the SCILE scale is a valid measure of youth's scientific curiosity for boys and girls as well as elementary, middle school, and high school learners.
The NASA Education Enterprise: Inspiring the Next Generation of Explorers
NASA Technical Reports Server (NTRS)
2003-01-01
On April 12, 2002, NASA Administrator Sean O Keefe opened a new window to the future of space exploration with these words in his Pioneering the Future address. Thus began the conceptual framework for structuring the new Education Enterprise. The Agency s mission is to understand and protect our home planet; to explore the universe in search for life; and to inspire the next generation of explorers as only NASA can. In adopting this mission, education became a core element and is now a vital part of every major NASA research and development mission. NASA s call to inspire the next generation of explorers is now resounding throughout the NASA community and schools of all levels all around the country. The goal is to capture student interest, nurture their natural curiosities, and intrigue their minds with new and exciting scientific research; as well as to provide educators with the creative tools they need to improve America s scientific literacy. The future of NASA begins with America s youngest scholars. According to Administrator O Keefe s address, if NASA does not motivate the youngest generation now, there is little prospect this generation will choose to pursue scientific disciplines later. Since embracing Administrator O Keefe s educational mandate over a year ago, NASA has been fully devoted to broadening its roadmap to motivation. The efforts have generated a whole new showcase of thoughtprovoking and fun learning opportunities, through printed material, Web sites and Webcasts, robotics, rocketry, aerospace design contests, and various other resources as only NASA can.
SEA Semester Undergraduates Research the Ocean's Role in Climate Systems in the Pacific Ocean
NASA Astrophysics Data System (ADS)
Meyer, A. W.; Becker, M. K.; Grabb, K. C.
2014-12-01
Sea Education Association (SEA)'s fully accredited Oceans & Climate SEA Semester program provides upper-level science undergraduates a unique opportunity to explore the ocean's role in the global climate system as they conduct real-world oceanographic research and gain first-hand understanding of and appreciation for the collaborative nature of the scientific research process. Oceans & Climate is an interdisciplinary science and policy semester in which students also explore public policy perspectives to learn how scientific knowledge is used in making climate-related policy. Working first at SEA's shore campus, students collaborate with SEA faculty and other researchers in the local Woods Hole scientific community to design and develop an original research project to be completed at sea. Students then participate as full, working members of the scientific team and sailing crew aboard the 134-foot brigantine SSV Robert C. Seamans; they conduct extensive oceanographic sampling, manage shipboard operations, and complete and present the independent research project they designed onshore. Oceans & Climate SEA Semester Cruise S-250 sailed from San Diego to Tahiti on a 7-week, >4000nm voyage last fall (November-December 2013). This remote open-ocean cruise track traversed subtropical and equatorial regions of the Pacific particularly well suited for a diverse range of climate-focused studies. Furthermore, as SEA has regularly collected scientific data along similar Pacific cruise tracks for more than a decade, students often undertake projects that require time-series analyses. 18 undergraduates from 15 different colleges and universities participated in the S-250 program. Two examples of the many projects completed by S-250 students include a study of the possible relationship between tropical cyclone intensification, driven by warm sea surface temperatures, and the presence of barrier layers; and a study of nutrient cycling in the eastern Pacific, focusing on primary nitrite maximum changes in various oceanographic regions with differing levels of stratification and accompanying localization of microbial communities. These studies, as well as additional scientific and policy projects conducted by other Oceans & Climate students, will be highlighted in this poster presentation.
FATES: a flexible analysis toolkit for the exploration of single-particle mass spectrometer data
NASA Astrophysics Data System (ADS)
Sultana, Camille M.; Cornwell, Gavin C.; Rodriguez, Paul; Prather, Kimberly A.
2017-04-01
Single-particle mass spectrometer (SPMS) analysis of aerosols has become increasingly popular since its invention in the 1990s. Today many iterations of commercial and lab-built SPMSs are in use worldwide. However, supporting analysis toolkits for these powerful instruments are outdated, have limited functionality, or are versions that are not available to the scientific community at large. In an effort to advance this field and allow better communication and collaboration between scientists, we have developed FATES (Flexible Analysis Toolkit for the Exploration of SPMS data), a MATLAB toolkit easily extensible to an array of SPMS designs and data formats. FATES was developed to minimize the computational demands of working with large data sets while still allowing easy maintenance, modification, and utilization by novice programmers. FATES permits scientists to explore, without constraint, complex SPMS data with simple scripts in a language popular for scientific numerical analysis. In addition FATES contains an array of data visualization graphic user interfaces (GUIs) which can aid both novice and expert users in calibration of raw data; exploration of the dependence of mass spectral characteristics on size, time, and peak intensity; and investigations of clustered data sets.
NASA International Environmental Partnerships
NASA Technical Reports Server (NTRS)
Lewis, Pattie; Valek, Susan
2010-01-01
For nearly five decades, the National Aeronautics and Space Administration (NASA) has been preeminent in space exploration. NASA has landed Americans on the moon, robotic rovers on Mars, and led cooperative scientific endeavors among nations aboard the International Space Station. But as Earth's population increases, the environment is subject to increasing challenges and requires more efficient use of resources. International partnerships give NASA the opportunity to share its scientific and engineering expertise. They also enable NASA to stay aware of continually changing international environmental regulations and global markets for materials that NASA uses to accomplish its mission. Through international partnerships, NASA and this nation have taken the opportunity to look globally for solutions to challenges we face here on Earth. Working with other nations provides NASA with collaborative opportunities with the global science/engineering community to explore ways in which to protect our natural resources, conserve energy, reduce the use of hazardous materials in space and earthly applications, and reduce greenhouse gases that potentially affect all of Earth's inhabitants. NASA is working with an ever-expanding list of international partners including the European Union, the European Space Agency and, especially, the nation of Portugal. Our common goal is to foster a sustainable future in which partners continue to explore the universe while protecting our home planet's resources for future generations. This brochure highlights past, current, and future initiatives in several important areas of international collaboration that can bring environmental, economic, and other benefits to NASA and the wider international space community.
NASA Astrophysics Data System (ADS)
Tasquier, Giulia; Levrini, Olivia; Dillon, Justin
2016-03-01
The scientific community has been debating climate change for over two decades. In the light of certain arguments put forward by the aforesaid community, the EU has recommended a set of innovative reforms to science teaching such as incorporating environmental issues into the scientific curriculum, thereby helping to make schools a place of civic education. However, despite these European recommendations, relatively little emphasis is still given to climate change within science curricula. Climate change, although potentially engaging for students, is a complex topic that poses conceptual difficulties and emotional barriers, as well as epistemological challenges. Whilst the conceptual and emotional barriers have already been the object of several studies, students' reactions to the epistemological issues raised by climate changes have so far been rarely explored in science education research and thus are the main focus of this paper. This paper describes a study concerning the implementation of teaching materials designed to focus on the epistemological role of 'models and the game of modelling' in science and particularly when dealing with climate change. The materials were implemented in a course of 15 hours (five 3-hour lessons) for a class of Italian secondary-school students (grade 11; 16-17 years old). The purpose of the study is to investigate students' reactions to the epistemological dimension of the materials, and to explore if and how the material enabled them to develop their epistemological knowledge on models.
Impact of knowledge of leprosy on the attitude towards leprosy patients: a community study.
Raju, M S; Kopparty, S N
1995-01-01
NLEP, through its survey-education-treatment (SET) pattern, attempts to educate the community members about the scientific facts of leprosy with the view to improve their knowledge leading to a more positive attitude towards the leprosy afflicted. This paper explores the impact of knowledge on the attitudes of 1199 community members drawn from two States, Andhra Pradesh and Orissa, towards leprosy. The results show that, overall, a high knowledge level did not necessarily generate positive attitudes. There was a general negative attitude despite 35% to 50% of the respondents having high knowledge level. There were, however, situations in which a high level of knowledge helps to have positive attitudes. These situations differ in the two states studied.
Cookies as agents for community membership
NASA Astrophysics Data System (ADS)
Rodriguez, Idaykis; Goertzen, Renee Michelle; Brewe, Eric; Kramer, Laird
2013-01-01
When becoming a member of a community of practice, a novice must adopt certain community norms to participate, and these include the social norms of the group. Using the analytical perspective of Legitimate Peripheral Participation in a Community of Practice, this paper explores the social role of cookies as agents for community participation and membership in a physics research group. We analyze data from an ethnographic case study of a physics research group weekly research meeting. The mentors bring cookies to each meeting and view the cookies as a token of appreciation for the graduate students' work. These cookies take on a subtler role of initiating guests and students into scientific conversations and participation. Via the cookies, members also share personal histories and stories that help members strengthen their membership. The study of social norms in this research group is part of a larger study of physics expert identity development.
NASA's Solar System Exploration Research Virtual Institute (SSERVI)
NASA Astrophysics Data System (ADS)
Pendleton, Yvonne J.
2015-11-01
NASA's Solar System Exploration Research Virtual Institute (SSERVI) represents a close collaboration between science, technology and exploration, and was created to enable a deeper understanding of the Moon and other airless bodies. SSERVI is supported jointly by NASA’s Science Mission Directorate and Human Exploration and Operations Mission Directorate. The institute currently focuses on the scientific aspects of exploration as they pertain to the Moon, Near Earth Asteroids (NEAs) and the moons of Mars, but the institute goals may expand, depending on NASA's needs, in the future. The 9 initial teams, selected in late 2013 and funded from 2014-2019, have expertise across the broad spectrum of lunar, NEA, and Martian moon sciences. Their research includes various aspects of the surface, interior, exosphere, near-space environments, and dynamics of these bodies.NASA anticipates a small number of additional teams to be selected within the next two years, with a Cooperative Agreement Notice (CAN) likely to be released in 2016. Calls for proposals are issued every 2-3 years to allow overlap between generations of institute teams, but the intent for each team is to provide a stable base of funding for a five year period. SSERVI's mission includes acting as a bridge between several groups, joining together researchers from: 1) scientific and exploration communities, 2) multiple disciplines across a wide range of planetary sciences, and 3) domestic and international communities and partnerships.The SSERVI central office is located at NASA Ames Research Center in Mountain View, CA. The administrative staff at the central office forms the organizational hub for the domestic and international teams and enables the virtual collaborative environment. Interactions with geographically dispersed teams across the U.S., and global partners, occur easily and frequently in a collaborative virtual environment. This poster will provide an overview of the 9 current US teams and international partners, as well as information about outreach efforts and future opportunities to participate in SSERVI.
Teaching animal science: education or indoctrination?
Schillo, K K
1997-04-01
Traditional animal science curricula ignore sociological aspects of scientific research and therefore portray scientific knowledge as value-free. This view gives rise to a teaching method that involves imparting lists of scientific facts that are to be accepted by students without critical evaluation. This amounts to little more than indoctrination and misrepresents science as a system of knowledge. An alternative approach is based on the view that science is a creative human activity that reflects the values and biases of its practitioners. The goal of this approach is to teach students to think analytically and to make independent judgments about scientific claims. This requires a scientific literacy: an understanding of principal scientific theories, the nature of scientific research, and the relationship between science and society. To achieve this goal, a teacher must become less of an authority figure, whose role is to simply pass on information, and more of a facilitator, whose role is to promote questioning, exploration, and synthesis. This requires a learning community in which students feel comfortable taking risks and develop the courage to make and defend judgments. This teaching approach enhances the intellectual and ethical development of students, allowing them to serve themselves and society in responsible ways.
Translating land use science to a museum exhibit.
Arce-Nazario, Javier A
2016-01-01
For land use science to engage the general public it must successfully translate its concepts and conclusions and make them public outside of traditional scientific venues. Here we explore science-art exhibits, which blend artistic presentations with specific scientific data or themes, as a possible effective way of communicating scientific information and disrupting misconceptions. We describe the process of producing a science-art exhibit on remote sensing and Puerto Rican landscape history from 1937 to the present, sited at a rural Puerto Rican community museum, and examine the visitor experience and educational outcomes of the museum exhibit through analysis of survey data. The exhibit project engaged undergraduate students from a variety of academic backgrounds, introduced land use science concepts to the public in an engaging format, and was effective at reshaping visitors' misconceptions of Puerto Rico's landscape change history.
Gender equity and equality on Korean student scientists: A life history narrative study
NASA Astrophysics Data System (ADS)
Hur, Changsoo
Much research, including that by Koreans (e.g., Mo, 1999), agrees on two major points relating to the inequitable and unequal condition of women in the scientific community: (1) the fact that the under-representation of women in the scientific community has been taken for granted for years (e.g., Rathgeber, 1998), and (2) documenting women's lives has been largely excluded in women's studies (e.g., Sutton, 1998). The basis for the design of this study relates to the aforementioned observations. This study addresses two major research questions: how do social stereotypes exist in terms of gender equity and equality in the South Korean scientific and educational fields, and how do these stereotypes influence women and men's socializations, in terms of gender equity and equality, in the South Korean scientific and educational fields? To investigate the research questions, this qualitative study utilizes a life history narrative approach in examining various theoretical perspectives, such as critical theory, post-structuralism, and postmodernism. Through the participants' perceptions and experiences in the scientific community and in South Korean society, this study fords gendered stereotypes, practices, and socializations in school, family, and the scientific community. These findings demonstrate asymmetric gendered structures in South Korea. Moreover, with the comparison among male and female participants, this study shows how they perceive and experience differently in school, family, and the scientific community. This study attempts to understand the South Korean scientific community as represented by four student scientists through social structures. Education appears to function significantly as an hegemonic power in conveying legitimating ideologies. This process reproduces man-centered social structures, especially in the scientific community. This suggests that to emancipate women's under-representations in the scientific community, educational administrators and teachers should carefully consider gendered practices, stereotypes, and socialization in science classes. There have been significant findings of educative authenticity criteria (Guba & Lincoln, 1989) that stimulate the needs of future studies on gender, especially women in the scientific community in general and, more specifically, in South Korea. These findings suggest the importance of active involvement by women participants to enhance a more detailed examination, by women's studies, of the scientific community.
Community Intelligence in Knowledge Curation: An Application to Managing Scientific Nomenclature
Zou, Dong; Li, Ang; Liu, Guocheng; Chen, Fei; Wu, Jiayan; Xiao, Jingfa; Wang, Xumin; Yu, Jun; Zhang, Zhang
2013-01-01
Harnessing community intelligence in knowledge curation bears significant promise in dealing with communication and education in the flood of scientific knowledge. As knowledge is accumulated at ever-faster rates, scientific nomenclature, a particular kind of knowledge, is concurrently generated in all kinds of fields. Since nomenclature is a system of terms used to name things in a particular discipline, accurate translation of scientific nomenclature in different languages is of critical importance, not only for communications and collaborations with English-speaking people, but also for knowledge dissemination among people in the non-English-speaking world, particularly young students and researchers. However, it lacks of accuracy and standardization when translating scientific nomenclature from English to other languages, especially for those languages that do not belong to the same language family as English. To address this issue, here we propose for the first time the application of community intelligence in scientific nomenclature management, namely, harnessing collective intelligence for translation of scientific nomenclature from English to other languages. As community intelligence applied to knowledge curation is primarily aided by wiki and Chinese is the native language for about one-fifth of the world’s population, we put the proposed application into practice, by developing a wiki-based English-to-Chinese Scientific Nomenclature Dictionary (ESND; http://esnd.big.ac.cn). ESND is a wiki-based, publicly editable and open-content platform, exploiting the whole power of the scientific community in collectively and collaboratively managing scientific nomenclature. Based on community curation, ESND is capable of achieving accurate, standard, and comprehensive scientific nomenclature, demonstrating a valuable application of community intelligence in knowledge curation. PMID:23451119
Community intelligence in knowledge curation: an application to managing scientific nomenclature.
Dai, Lin; Xu, Chao; Tian, Ming; Sang, Jian; Zou, Dong; Li, Ang; Liu, Guocheng; Chen, Fei; Wu, Jiayan; Xiao, Jingfa; Wang, Xumin; Yu, Jun; Zhang, Zhang
2013-01-01
Harnessing community intelligence in knowledge curation bears significant promise in dealing with communication and education in the flood of scientific knowledge. As knowledge is accumulated at ever-faster rates, scientific nomenclature, a particular kind of knowledge, is concurrently generated in all kinds of fields. Since nomenclature is a system of terms used to name things in a particular discipline, accurate translation of scientific nomenclature in different languages is of critical importance, not only for communications and collaborations with English-speaking people, but also for knowledge dissemination among people in the non-English-speaking world, particularly young students and researchers. However, it lacks of accuracy and standardization when translating scientific nomenclature from English to other languages, especially for those languages that do not belong to the same language family as English. To address this issue, here we propose for the first time the application of community intelligence in scientific nomenclature management, namely, harnessing collective intelligence for translation of scientific nomenclature from English to other languages. As community intelligence applied to knowledge curation is primarily aided by wiki and Chinese is the native language for about one-fifth of the world's population, we put the proposed application into practice, by developing a wiki-based English-to-Chinese Scientific Nomenclature Dictionary (ESND; http://esnd.big.ac.cn). ESND is a wiki-based, publicly editable and open-content platform, exploiting the whole power of the scientific community in collectively and collaboratively managing scientific nomenclature. Based on community curation, ESND is capable of achieving accurate, standard, and comprehensive scientific nomenclature, demonstrating a valuable application of community intelligence in knowledge curation.
Vaccine Hesitancy and Online Information: The Influence of Digital Networks.
Getman, Rebekah; Helmi, Mohammad; Roberts, Hal; Yansane, Alfa; Cutler, David; Seymour, Brittany
2017-12-01
This article analyzes the digital childhood vaccination information network for vaccine-hesitant parents. The goal of this study was to explore the structure and influence of vaccine-hesitant content online by generating a database and network analysis of vaccine-relevant content. We used Media Cloud, a searchable big-data platform of over 550 million stories from 50,000 media sources, for quantitative and qualitative study of an online media sample based on keyword selection. We generated a hyperlink network map and measured indegree centrality of the sources and vaccine sentiment for a random sample of 450 stories. 28,122 publications from 4,817 sources met inclusion criteria. Clustered communities formed based on shared hyperlinks; communities tended to link within, not among, each other. The plurality of information was provaccine (46.44%, 95% confidence interval [39.86%, 53.20%]). The most influential sources were in the health community (National Institutes of Health, Centers for Disease Control and Prevention) or mainstream media ( New York Times); some user-generated sources also had strong influence and were provaccine (Wikipedia). The vaccine-hesitant community rarely interacted with provaccine content and simultaneously used primary provaccine content within vaccine-hesitant narratives. The sentiment of the overall conversation was consistent with scientific evidence. These findings demonstrate an online environment where scientific evidence online drives vaccine information outside of the vaccine-hesitant community but is also prominently used and misused within the robust vaccine-hesitant community. Future communication efforts should take current context into account; more information may not prevent vaccine hesitancy.
Wood, Dylan; King, Margaret; Landis, Drew; Courtney, William; Wang, Runtang; Kelly, Ross; Turner, Jessica A; Calhoun, Vince D
2014-01-01
Neuroscientists increasingly need to work with big data in order to derive meaningful results in their field. Collecting, organizing and analyzing this data can be a major hurdle on the road to scientific discovery. This hurdle can be lowered using the same technologies that are currently revolutionizing the way that cultural and social media sites represent and share information with their users. Web application technologies and standards such as RESTful webservices, HTML5 and high-performance in-browser JavaScript engines are being utilized to vastly improve the way that the world accesses and shares information. The neuroscience community can also benefit tremendously from these technologies. We present here a web application that allows users to explore and request the complex datasets that need to be shared among the neuroimaging community. The COINS (Collaborative Informatics and Neuroimaging Suite) Data Exchange uses web application technologies to facilitate data sharing in three phases: Exploration, Request/Communication, and Download. This paper will focus on the first phase, and how intuitive exploration of large and complex datasets is achieved using a framework that centers around asynchronous client-server communication (AJAX) and also exposes a powerful API that can be utilized by other applications to explore available data. First opened to the neuroscience community in August 2012, the Data Exchange has already provided researchers with over 2500 GB of data.
Wood, Dylan; King, Margaret; Landis, Drew; Courtney, William; Wang, Runtang; Kelly, Ross; Turner, Jessica A.; Calhoun, Vince D.
2014-01-01
Neuroscientists increasingly need to work with big data in order to derive meaningful results in their field. Collecting, organizing and analyzing this data can be a major hurdle on the road to scientific discovery. This hurdle can be lowered using the same technologies that are currently revolutionizing the way that cultural and social media sites represent and share information with their users. Web application technologies and standards such as RESTful webservices, HTML5 and high-performance in-browser JavaScript engines are being utilized to vastly improve the way that the world accesses and shares information. The neuroscience community can also benefit tremendously from these technologies. We present here a web application that allows users to explore and request the complex datasets that need to be shared among the neuroimaging community. The COINS (Collaborative Informatics and Neuroimaging Suite) Data Exchange uses web application technologies to facilitate data sharing in three phases: Exploration, Request/Communication, and Download. This paper will focus on the first phase, and how intuitive exploration of large and complex datasets is achieved using a framework that centers around asynchronous client-server communication (AJAX) and also exposes a powerful API that can be utilized by other applications to explore available data. First opened to the neuroscience community in August 2012, the Data Exchange has already provided researchers with over 2500 GB of data. PMID:25206330
"NASA's Solar System Exploration Research Virtual Institute" - Expanded Goals and More Partners
NASA Astrophysics Data System (ADS)
Daou, D.; Schmidt, G.; Pendleton, Y.; Bailey, B.; Morrison, D.
2015-10-01
The NASA Solar System Exploration Research Virtual Institute (SSERVI) has been pursuing international partnerships since its inceptionas the NASA Lunar Science Institute (NLSI), in order to both leverage the science being done by its domestic member institutions as well as to help lunar science and exploration become a greater global endeavor. The international partners of the I nstitute have pursued a broad program of lunar science stimulated by scientific partnerships enabled by the SSERVI community. Furthermore, regional partnerships have been formed such as the new pan- European lunar science consortium, which promises both new scientific approaches and mission concepts.International partner membership requires longterm commitment from both the partner and SSERVI, together with tangible and specific plans for scientific interaction that will produce results of mutual benefit to both the institute's U.S. Teams and the international partner.International partners are invited to participate in all aspects of the Institute's activities and programs, on a basis of no exchange of funds. Through these activities, SSERVI researchers and international partners participate in sharing ideas, information, and data arising from their respective research efforts, and contribute to the training of young scientists.This talk will present an overview of the Institute and the international nodes. We will also discuss the various processes to become a SSERVI partner as well as the opportunities available for collaborations with the SSERVI national teams.
NASAs Solar System Exploration Research Virtual Institute- Expanded Goals and More Partners
NASA Technical Reports Server (NTRS)
Schmidt, G. K.; Daou, D.; Pendleton, Y.; Bailey, B. E.
2015-01-01
The NASA Solar System Exploration Research Virtual Institute (SSERVI) has been pursuing international partnerships since its inception as the NASA Lunar Science Institute (NLSI), in order to both leverage the science being done by its domestic member institutions as well as to help lunar science and exploration become a greater global endeavor. The international partners of the Institute have pursued a broad program of lunar science stimulated by scientific partnerships enabled by the SSERVI community. Furthermore, regional partnerships have been formed such as the new pan-European lunar science consortium, which promises both new scientific approaches and mission concepts. International partner membership requires long-term commitment from both the partner and SSERVI, together with tangible and specific plans for scientific interaction that will produce results of mutual benefit to both the institute's U.S. Teams and the international partner. International partners are invited to participate in all aspects of the Institute's activities and programs, on a basis of no exchange of funds. Through these activities, SSERVI researchers and international partners participate in sharing ideas, information, and data arising from their respective research efforts, and contribute to the training of young scientists. This talk will present an overview of the Institute and the international nodes. We will also discuss the various processes to become a SSERVI partner as well as the opportunities available for collaborations with the SSERVI national teams.
"NASA's Solar System Exploration Research Virtual Institute"; - Expanded Goals and New Teams
NASA Astrophysics Data System (ADS)
Daou, D.; Schmidt, G. K.; Pendleton, Y.; Bailey, B. E.
2014-04-01
The NASA Solar System Exploration Research Virtual Institute (SSERVI) has been pursuing international partnerships since its inception as the NASA Lunar Science Institute (NLSI), in order to both leverage the science being done by its domestic member institutions as well as to help lunar science and exploration become a greater global endeavor. The international partners of the Institute have pursued a broad program of lunar science stimulated by scientific partnerships enabled by the SSERVI community. Furthermore, regional partnerships have been formed such as the new pan-European lunar science consortium, which promises both new scientific approaches and mission concepts. International partner membership requires long-term commitment from both the partner and SSERVI, together with tangible and specific plans for scientific interaction that will produce results of mutual benefit to both the institute's U.S. Teams and the international partner. International partners are invited to participate in all aspects of the Institute's activities and programs, on a basis of no exchange of funds. Through these activities, SSERVI researchers and international partners participate in sharing ideas, information, and data arising from their respective research efforts, and contribute to the training of young scientists. This talk will present an overview of the Institute and the international nodes. We will also discuss the various processes to become a SSERVI partner as well as the opportunities available for collaborations with the SSERVI national teams.
Complexity and Innovation: Army Transformation and the Reality of War
2004-05-26
necessary to instill confidence among all members of the interested community that the causal relationships...continues to gain momentum and general acceptance within the scientific community . The topic is addressed in numerous books, studies and scientific journals...scientific community has steadily grown. Since the time of Galileo and Newton, scientific endeavor has been characterized by reductionism (the process
Exploring the Intersections of Personal Epistemology, Public Epistemology, and Affect
NASA Astrophysics Data System (ADS)
Lising, Laura J.
2007-11-01
This paper discusses an approach to exploring the divide between students' stances toward their own learning and their perceptions of what is productive for the scientific community (sometimes called "personal epistemology" and "public epistemology"). The possible relationship between this divide and students' science- and course-related affect (e.g. preferences, motivation, emotions) will also be discussed. Previous research and theory indicate certain methodological considerations in study design and analysis, particularly attention to survey context, both with respect to attempting to tease apart epistemology from course expectations, and in considering differences between stated and enacted epistemologies and, similarly, beliefs vs. resources. A survey instrument designed to explore personal/public epistemology splits and affective variables will be described and preliminary results will be presented.
Participation levels in 25 Community-based participatory research projects.
Spears Johnson, C R; Kraemer Diaz, A E; Arcury, T A
2016-10-01
This analysis describes the nature of community participation in National Institutes of Health and Centers for Disease Control and Prevention funded community-based participatory research (CBPR) projects, and explores the scientific and social implications of variation in community participation. We conducted in-depth interviews in 2012 with professional and community researchers from 25 CBPR projects in the Southeast US. Interview topics focused on participants' experiences with the nature and conduct of their CBPR project. Projects were rated on community participation in 13 components of research. Projects varied substantially in community participation. Some projects had community participation in only two to three components; others had participation in every component. Some professional researchers were deliberate in their inclusion of community participation in all aspects of research, others had community participation in some aspects, and others were mainly concerned that community members had the opportunity to participate in the study. Findings suggest a need for a standardized rubric for community-based research that facilitates delineation of approaches and procedures that are effective and efficient. Little actual community participation may also result in negative social impacts for communities. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Hydrothermal Vents of Juan de Fuca Ridge
NASA Astrophysics Data System (ADS)
Stark, Joyce
As a member of REVEL (Research and Education: Volcanoes, Exploration and Life), I had an opportunity to participant in a scientific research cruise focused on the active volcanoes along the Juan de Fuca Ridge, the submarine spreading center off the Washington- Oregon-Canada coast. REVEL was sponsored by the National Science Foundation, University of Washington, Pennsylvania State University and the American Museum of Natural History. We studied the geological, chemical and biological processes associated with active hydrothermal systems and my research focused on the biological communities of the sulfide structures. We worked on board the Woods Hole Oceanographic Institution Vessel, R/V Atlantis and the submersible ALVIN was used to sample the "Black Smokers". As a member of the scientific party, I participated in collection and sorting of biological specimens from the vent communities, attended lectures by scientists, contributed to the cruise log website, maintained a journal and developed my own research project. It was my responsibility to bring this cutting-edge research back to the classroom.
The Human Genome Diversity (HGD) Project. Summary document
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1993-12-31
In 1991 a group of human geneticists and molecular biologists proposed to the scientific community that a world wide survey be undertaken of variation in the human genome. To aid their considerations, the committee therefore decided to hold a small series of international workshops to explore the major scientific issues involved. The intention was to define a framework for the project which could provide a basis for much wider and more detailed discussion and planning--it was recognized that the successful implementation of the proposed project, which has come to be known as the Human Genome Diversity (HGD) Project, would notmore » only involve scientists but also various national and international non-scientific groups all of which should contribute to the project`s development. The international HGD workshop held in Sardinia in September 1993 was the last in the initial series of planning workshops. As such it not only explored new ground but also pulled together into a more coherent form much of the formal and informal discussion that had taken place in the preceding two years. This report presents the deliberations of the Sardinia workshop within a consideration of the overall development of the HGD Project to date.« less
Laboratory directed research and development: Annual report to the Department of Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-12-01
As one of the premier scientific laboratories of the DOE, Brookhaven must continuously foster the development of new ideas and technologies, promote the early exploration and exploitation of creative and innovative concepts, and develop new fundable R and D projects and programs. At Brookhaven National Laboratory one such method is through its Laboratory Directed Research and Development Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is a major factor in achievingmore » and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The Project Summaries with their accomplishments are described in this report. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals and presentations at meetings and forums.« less
Buljan, Ivan; Barać, Lana; Marušić, Ana
2018-01-01
The aim of our study has been to use a qualitative approach to explore the potential motivations and drivers for unethical behaviors in biomedicine and determine the role of institutions regarding those issues in a small scientific community setting. Three focus groups were held---two with doctoral students and one with active senior researchers. Purposive sampling was used to reach participants at different stages of their scientific careers. Participants in all three focus groups were asked the same questions regarding the characteristics and behaviors of ethical/unethical scientists, ethical climate, role, and responsibility of institutions; they were also asked to suggest ways to improve research integrity. The data analysis included coding of the transcripts, categorization of the initial codes, and identification of themes and patterns. Three main topics were derived from the focus groups discussions. The first included different forms of unethical behaviors including increasing research "waste," non-publication of negative results, authorship manipulation, data manipulation, and repression of collaborators. The second addressed the factors influencing unethical behavior, both external and internal, to the researchers. Two different definitions of ethics in science emerged; one from the categorical perspective and the other from the dimensional perspective. The third topic involved possible routes for improvement, one from within the institution through the research integrity education, research integrity bodies, and quality control, and the other from outside the institution through external supervision of institutions. Based on the results of our study, research misconduct in a small scientific community is perceived to be the consequence of the interaction of several social and psychological factors, both general and specific, for small research communities. Possible improvements should be systematic, aiming both for improvements in work environment and personal awareness in research ethics, and the implementation of those changes should be institutional responsibility.
US Cosmic Visions: New Ideas in Dark Matter 2017 : Community Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, J.; Fox, P.; Dawson, W. A.
This white paper summarizes the workshop “U.S. Cosmic Visions: New Ideas in Dark Matter” held at University of Maryland from March 23-25. The flagships of the US Dark Matter search program are the G2 experiments ADMX, LZ, and SuperCDMS, which will cover well-motivated axion and WIMP dark matter over a range of masses. The workshop assumes that a complete exploration of this parameter space remains the highest priority of the dark matter community, and focuses instead on the science case for additional new small-scale projects in dark matter science that complement the G2 program (and other ongoing projects worldwide). Itmore » therefore concentrates on exploring distinct, well-motivated parameter space that will not be covered by the existing program; on surveying ideas for such projects (i.e. projects costing ~$10M or less); and on placing these ideas in a global context. The workshop included over 100 presentations of new ideas, proposals and recent science and R&D results from the US and international scientific community.« less
Echo Chambers: Emotional Contagion and Group Polarization on Facebook.
Del Vicario, Michela; Vivaldo, Gianna; Bessi, Alessandro; Zollo, Fabiana; Scala, Antonio; Caldarelli, Guido; Quattrociocchi, Walter
2016-12-01
Recent findings showed that users on Facebook tend to select information that adhere to their system of beliefs and to form polarized groups - i.e., echo chambers. Such a tendency dominates information cascades and might affect public debates on social relevant issues. In this work we explore the structural evolution of communities of interest by accounting for users emotions and engagement. Focusing on the Facebook pages reporting on scientific and conspiracy content, we characterize the evolution of the size of the two communities by fitting daily resolution data with three growth models - i.e. the Gompertz model, the Logistic model, and the Log-logistic model. Although all the models appropriately describe the data structure, the Logistic one shows the best fit. Then, we explore the interplay between emotional state and engagement of users in the group dynamics. Our findings show that communities' emotional behavior is affected by the users' involvement inside the echo chamber. Indeed, to an higher involvement corresponds a more negative approach. Moreover, we observe that, on average, more active users show a faster shift towards the negativity than less active ones.
Exploring Metaphors for Making Data Broadly Available.
NASA Astrophysics Data System (ADS)
Parsons, M.; Fox, P.
2012-04-01
As international attention to scientific data continues to grow in today's born digital and Internet age, we take the opportunity to re-visit long-standing approaches to managing data and to critically examine some proposed new capabilities. In this presentation we build on our preliminary exploration of multiple metaphors co-existing in support of a healthy data ecosystem, and discuss what we see as key data ecosystem attributes embedded in modern approaches to data managment across the broad spectrum of geoscientific data and geoscientists. We conclude with a set of suggestions and actions to engage the world wide data and information science community to advance such a discussion.
Particle dark matter: A multimessenger endeavour
NASA Astrophysics Data System (ADS)
Regis, M.
2017-01-01
The search for dark matter (DM) as a new, yet undiscovered, particle is explored through a complex host of different signals, from collider to direct and indirect searches. A special focus is dedicated to the latter ones, covering the full electromagnetic spectrum (from radio to gamma-rays), charged cosmic-rays and neutrinos. The expected DM signals are by definition faint, but the possibility to exploit a wide-field investigation offers promising prospects. In this brief review, I summarize the state-of-the-art in the search for particle DM signals, exploring some new ideas that are emerging in the effort of the scientific community to understand the elusive nature of DM.
Friedrichsen, Patricia
2009-01-01
The intersection of science and our society has led to legal and ethical issues in which we all play a part. To support development of scientific literacy, college science courses need to engage students in difficult dialogues around ethical issues. We describe a new course, Stem Cells and Society, in which students explore the basic biology of stem cell research and the controversy surrounding it. As part of the course, we highlight the nature of science, looking at the methods and norms within the scientific community. To gain a perspective on the current stem cell controversy, we examine the public debates in the 1970s surrounding in vitro fertilization, the stem cell initiative in Missouri, and the personal and religious viewpoints that have emerged relative to the stem cell debate. In the Stem Cells and Society course, students are challenged to develop and clarify their own personal positions concerning embryonic stem cell research. These positions are grounded in science, religion or personal philosophy, and law. PMID:19255139
Cleaning the IceMole: collection of englacial samples from Blood Falls, Antarctica
NASA Astrophysics Data System (ADS)
Mikucki, J.; Digel, I.; Chua, M.; Davis, J.; Ghosh, D.; Lyons, W. B.; Welch, K. A.; Purcell, A.; Francke, G.; Feldmann, M.; Espe, C.; Heinen, D.; Dachwald, B.; Kowalski, J.; Tulaczyk, S. M.
2016-12-01
The Minimally Invasive Direct Glacial Access project (MIDGE) used a maneuverable thermoelectric melting probe called the IceMole to collect the first englacial samples of brine from Blood Falls, Antarctica. In order to maintain the scientific integrity of samples collected and minimize impact to this specially protected ecosystem, microbial and chemical contamination of the IceMole needed to be minimized. Guidelines have been established for research in Antarctic subglacial systems by the scientific and regulatory community and have been detailed by the "Code of Conduct for the Exploration and Research of Subglacial Aquatic Environments" put forth by the Scientific Committee on Antarctic Research (SCAR) Action Group, and was submitted to the Antarctic Treaty System. This Code of Conduct (CoC) recognizes the ecological importance and pristine nature of subglacial habitats and recommends a path forward towards clean exploration. Similarly, the US and European space agencies (NASA and ESA) have detailed instrument preparation protocols for the exploration of icy worlds in our solar system for planetary protection. Given the synergistic aims of these two groups we have adopted protocols from both subglacial and space exploration approaches. Here we present our approach to cleaning the IceMole in the field and report on ability to reduce the bioload inherent on the melter. Specifically our protocol reduced the exterior bio-load by an order of magnitude, to levels common in most clean rooms, and 1-3 orders of magnitude below that of Taylor Glacier ice surrounding Blood Falls. Our results indicate that the collection of englacial samples for microbiological analysis is feasible with melting probes.
C3: A Collaborative Web Framework for NASA Earth Exchange
NASA Astrophysics Data System (ADS)
Foughty, E.; Fattarsi, C.; Hardoyo, C.; Kluck, D.; Wang, L.; Matthews, B.; Das, K.; Srivastava, A.; Votava, P.; Nemani, R. R.
2010-12-01
The NASA Earth Exchange (NEX) is a new collaboration platform for the Earth science community that provides a mechanism for scientific collaboration and knowledge sharing. NEX combines NASA advanced supercomputing resources, Earth system modeling, workflow management, NASA remote sensing data archives, and a collaborative communication platform to deliver a complete work environment in which users can explore and analyze large datasets, run modeling codes, collaborate on new or existing projects, and quickly share results among the Earth science communities. NEX is designed primarily for use by the NASA Earth science community to address scientific grand challenges. The NEX web portal component provides an on-line collaborative environment for sharing of Eearth science models, data, analysis tools and scientific results by researchers. In addition, the NEX portal also serves as a knowledge network that allows researchers to connect and collaborate based on the research they are involved in, specific geographic area of interest, field of study, etc. Features of the NEX web portal include: Member profiles, resource sharing (data sets, algorithms, models, publications), communication tools (commenting, messaging, social tagging), project tools (wikis, blogs) and more. The NEX web portal is built on the proven technologies and policies of DASHlink.arc.nasa.gov, (one of NASA's first science social media websites). The core component of the web portal is a C3 framework, which was built using Django and which is being deployed as a common framework for a number of collaborative sites throughout NASA.
Science communication as political communication
Scheufele, Dietram A.
2014-01-01
Scientific debates in modern societies often blur the lines between the science that is being debated and the political, moral, and legal implications that come with its societal applications. This manuscript traces the origins of this phenomenon to professional norms within the scientific discipline and to the nature and complexities of modern science and offers an expanded model of science communication that takes into account the political contexts in which science communication takes place. In a second step, it explores what we know from empirical work in political communication, public opinion research, and communication research about the dynamics that determine how issues are debated and attitudes are formed in political environments. Finally, it discusses how and why it will be increasingly important for science communicators to draw from these different literatures to ensure that the voice of the scientific community is heard in the broader societal debates surrounding science. PMID:25225389
NASA Astrophysics Data System (ADS)
Safriel, Uriel; Akhtar-Schuster, Mariam; Abraham, Elena Maria; Cowie, Annette; Daradur, Mihail; de Vente, Joris; Dema Dorji, Karma; Kust, German; Metternicht, Graciela; Orr, Barron; Pietragalla, Vanina
2015-04-01
At its 11th meeting in Windhoek/Namibia, in September 2013, the United Nations Convention to Combat Desertification (UNCCD) Conference of the Parties (COP) decided to establish a Science-Policy Interface (SPI)* (decision 23/COP.11). The goal of the SPI is to facilitate a two-way dialogue between scientists and policy makers in order to ensure the delivery of policy-relevant information, knowledge and advice on desertification/land degradation and drought (DLDD). The SPI established several initial objectives, including working with the scientific community to bring to the UNCCD and the other Rio conventions (climate change and biodiversity) the scientific evidence for the contribution of sustainable land use and management to climate change adaptation/mitigation and to safeguarding biodiversity and ecosystem services. *For more on the SPI see: http://www.unccd.int/en/programmes/Science/International-Scientific-Advice/Pages/SPI.aspx?HighlightID=282
Science communication as political communication.
Scheufele, Dietram A
2014-09-16
Scientific debates in modern societies often blur the lines between the science that is being debated and the political, moral, and legal implications that come with its societal applications. This manuscript traces the origins of this phenomenon to professional norms within the scientific discipline and to the nature and complexities of modern science and offers an expanded model of science communication that takes into account the political contexts in which science communication takes place. In a second step, it explores what we know from empirical work in political communication, public opinion research, and communication research about the dynamics that determine how issues are debated and attitudes are formed in political environments. Finally, it discusses how and why it will be increasingly important for science communicators to draw from these different literatures to ensure that the voice of the scientific community is heard in the broader societal debates surrounding science.
The EGS Data Collaboration Platform: Enabling Scientific Discovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weers, Jonathan D; Johnston, Henry; Huggins, Jay V
Collaboration in the digital age has been stifled in recent years. Reasonable responses to legitimate security concerns have created a virtual landscape of silos and fortified castles incapable of sharing information efficiently. This trend is unfortunately opposed to the geothermal scientific community's migration toward larger, more collaborative projects. To facilitate efficient sharing of information between team members from multiple national labs, universities, and private organizations, the 'EGS Collab' team has developed a universally accessible, secure data collaboration platform and has fully integrated it with the U.S. Department of Energy's (DOE) Geothermal Data Repository (GDR) and the National Geothermal Data Systemmore » (NGDS). This paper will explore some of the challenges of collaboration in the modern digital age, highlight strategies for active data management, and discuss the integration of the EGS Collab data management platform with the GDR to enable scientific discovery through the timely dissemination of information.« less
NASA Astrophysics Data System (ADS)
Charania, A.
2002-01-01
At the end of the first decade of the 21st century, the International Space Station (ISS) will stand as a testament of the engineering capabilities of the international community. The choices for the next logical step for this community remain vast and conflicting: a Mars mission, moon colonization, Space Solar Power (SSP), etc. This examination focuses on positioning SSP as one such candidate for consideration. A marketing roadmap is presented that reveals the potential benefits of SSP to both the space community and the global populace at large. Recognizing that scientific efficiency itself has no constituency large enough to persuade entities to outlay funds for such projects, a holistic approach is taken to positioning SSP. This includes the scientific, engineering, exploratory, economic, political, and development capabilities of the system. SSP can be seen as both space exploration related and a resource project for undeveloped nations. Coupling these two non-traditional areas yields a broader constituency for the project that each one alone could generate. Space exploration is many times seen as irrelevant to the condition of the populace of the planet from which the money comes for such projects. When in this new century, billions of people on the planet still have never made a phone call or even have access to clean water, the origins of this skepticism can be understandable. An area of concern is the problem of not living up to the claims of overeager program marketers. Just as the ISS may never live up to the claims of its advocates in terms of space research, any SSP program must be careful in not promising utopian global solutions to any future energy starved world. Technically, SSP is a very difficult problem, even harder than creating the ISS, yet the promise it can hold for both space exploration and Earth development can lead to a renaissance of the relevance of space to the lives of the citizens of the world.
Preparing Scientists to be Community Partners
NASA Astrophysics Data System (ADS)
Pandya, R. E.
2012-12-01
Many students, especially students from historically under-represented communities, leave science majors or avoid choosing them because scientific careers do not offer enough opportunity to contribute to their communities. Citizen science, or public participation in scientific research, may address these challenges. At its most collaborative, it means inviting communities to partner in every step of the scientific process from defining the research question to applying the results to community priorities. In addition to attracting and retaining students, this level of community engagement will help diversify science, ensure the use and usability of our science, help buttress public support of science, and encourage the application of scientific results to policy. It also offers opportunities to tackle scientific questions that can't be accomplished in other way and it is demonstrably effective at helping people learn scientific concepts and methods. In order to learn how to prepare scientists for this kind of intensive community collaboration, we examined several case studies, including a project on disease and public health in Africa and the professionally evaluated experience of two summer interns in Southern Louisiana. In these and other cases, we learned that scientific expertise in a discipline has to be accompanied by a reservoir of humility and respect for other ways of knowing, the ability to work collaboratively with a broad range of disciplines and people, patience and enough career stability to allow that patience, and a willingness to adapt research to a broader set of scientific and non-scientific priorities. To help students achieve this, we found that direct instruction in participatory methods, mentoring by community members and scientists with participatory experience, in-depth training on scientific ethics and communication, explicit articulation of the goal of working with communities, and ample opportunity for personal reflection were essential. There is much more to learn about preparing students for these collaborative approaches, and the principal goal of sharing these strategies is to spark a conversation about the ways we prepare scientists and the public to work together in an increasingly collaborative scientific enterprise.
Values and Objectivity in Science: Value-Ladenness, Pluralism and the Epistemic Attitude
NASA Astrophysics Data System (ADS)
Carrier, Martin
2013-10-01
My intention is to cast light on the characteristics of epistemic or fundamental research (in contrast to application-oriented research). I contrast a Baconian notion of objectivity, expressing a correspondence of the views of scientists to the facts, with a pluralist notion, involving a critical debate between conflicting approaches. These conflicts include substantive hypotheses or theories but extend to values as well. I claim that a plurality of epistemic values serves to accomplish a non-Baconian form of objectivity that is apt to preserve most of the intuitions tied to the objectivity of science. For instance, pluralism is the only way to cope with the challenge of preference bias. Furthermore, the plurality of epistemic values cannot be substantially reduced by exploring the empirical success of scientific theories distinguished in light of particular such values. However, in addition to pluralism at the level of theories and value-commitments alike, scientific research is also characterized by a joint striving for consensus which I trace back to a shared epistemic attitude. This attitude manifests itself, e.g., in the willingness of scientists to subject their claims to empirical scrutiny and to respect rational argument. This shared epistemic attitude is embodied in rules adopted by the scientific community concerning general principles of dealing with knowledge claims. My contention is that pluralism and consensus formation can be brought into harmony by placing them at different levels of consideration: at the level of scientific reasoning and at the level of social conventions regarding how to deal with claims put forward within the scientific community.
Exploring the Influence of Student Focus Groups in Their Professional and Personal Development
NASA Astrophysics Data System (ADS)
Hosseini, S.; Hut, R.
2014-12-01
A scientific career is often more than a 9-to-5 commitment, both in terms of time and passion. An important factor that fuels this passion is engaging with the community on many levels. In the history of education and professional development, there are numerous studies that emphasis the importance of surrounding groups and like-minded peers in one's professional and personal development in a less constrained environment. In our experience, in modern days where students are surrounded with too much information and yet too little clear signal, the idea of mentor and advisor can no longer limit to one or two people. We strongly feel it is imperative to have the opportunity to share expertise on scientific issues, career options, develop presenting and writing skills, participate in professional volunteer activities with alike and advanced colleagues, share future opportunities, and successfully navigating life both inside and outside of graduate school in a relaxed environment. Most of the professional scientific and engineering communities put a lot of effort to create and maintain professional groups in masters and Ph.D. levels but the dynamics within these groups prove it to be very different and it is challenging to maintain both momentum and productivity. Authors of this report would present their experience in creating, running and maintaining various student groups in the discipline of physics, astronomy, planetary science, hydrology, and optical engineering in US, Europe and Middle East. The common factors and differences based on the supportive community, location, and the educational level would be discussed. An outline of potential helpful factors within the academic institutes and professional communities would be presented based on the examination on various successful and unsuccessful experiences.
NASA Astrophysics Data System (ADS)
Messina, Piero; Foing, Bernard H.; Hufenbach, Bernhard; Haignere, Claudie; Schrogl, Kai-Uwe
2016-07-01
The "Moon Village" concept Space exploration is anchored in the International Space Station and in the current and future automatic and planetary automatic and robotic missions that pave the way for future long-term exploration objectives. The Moon represents a prime choice for scientific, operational and programmatic reasons and could be the enterprise that federates all interested Nations. On these considerations ESA is currently elaborating the concept of a Moon Village as an ensemble where multiple users can carry out multiple activities. The Moon Village has the ambition to serve a number of objectives that have proven to be of interest (including astronomy, fundamental research, resources management, moon science, etc. ) to the space community and should be the catalyst of new alliances between public and private entities including non-space industries. Additionally the Moon Village should provide a strong inspirational and education tool for the younger generations . The Moon Village will rely both on automatic, robotic and human-tendered structures to achieve sustainable moon surface operations serving multiple purposes on an open-architecture basis. This Europe-inspired initiative should rally all communities (across scientific disciplines, nations, industries) and make it to the top of the political agendas as a the scientific and technological undertaking but also political and inspirational endeavour of the XXI century. The current reflections are of course based on the current activities and plans on board the ISS and the discussion held in international fora such as the ISECG. The paper will present the status of these reflections, also in view of the ESA Council at Ministerial Level 2016, and will give an overview of the on-going activities being carried out to enable the vision of a Moon Village.
A Modern Explorer's Journey - using events for innovative multipurpose educational outreach
NASA Astrophysics Data System (ADS)
Lilja Bye, Bente
2014-05-01
Earth observations are important across the specter of geo-sciences. The Group on Earth Observations (GEO) is coordinating efforts to build a Global Earth Observation System of Systems, or GEOSS. The lack of dedicated funding to support specific Science &Technology activities in support of GEOSS is one of the most important obstacles to engaging the Science &Technology communities in its implementation. Finding resources to outreach and capacity building is likewise a challenge. The continuation of GEO and GEOSS rely on political support which again is influenced by public opinions. The GEO Ministerial Summit in 2014 was an event that both needed visibility and represented an opportunity to mobilize the GEO community in producing outreach and educational material. Through the combined resources from two of GEO tasks in the GEO work plan, a multipurpose educational outreach project was planned and executed. This project addressed the following issues: How can the GEO community mobilize resources for its work plan projects in the Societal Benefit Area Water? How can we produce more educational and capacity building material? How can the GEO community support the GEO secretariat related to public relations (material and otherwise) Based on activities described in the GEO work plan, a showcase video and online campaign consisting on a series of webinars were developed and produced. The video and webinars were linked through a common reference: the water cycle. Various aspects of the water cycle ranging from general to more technical and scientific education were covered in the webinars, while the video called A Modern Explorer's Journey focused on story telling with a more emotional appeal. The video was presented to the Ministers at the GEO Ministerial Summit and distributed widely to the GEO community and through social media and articles (as embedded YouTube and more). A discussion of challenges and successes of this event-based educational outreach project will be presented. Continued use of new outreach tools such as web technology and social innovations for more efficient use of limited resources will remain an issue for the scientific community. Lessons learned need to be provided continuously and this project add to this material.
ESA's Planetary Science Archive: Preserve and present reliable scientific data sets
NASA Astrophysics Data System (ADS)
Besse, S.; Vallat, C.; Barthelemy, M.; Coia, D.; Costa, M.; De Marchi, G.; Fraga, D.; Grotheer, E.; Heather, D.; Lim, T.; Martinez, S.; Arviset, C.; Barbarisi, I.; Docasal, R.; Macfarlane, A.; Rios, C.; Saiz, J.; Vallejo, F.
2018-01-01
The European Space Agency (ESA) Planetary Science Archive (PSA) is undergoing a significant refactoring of all its components to improve the services provided to the scientific community and the public. The PSA supports ESA's missions exploring the Solar System by archiving scientific peer-reviewed observations as well as engineering data sets. This includes the Giotto, SMART-1, Huygens, Venus Express, Mars Express, Rosetta, Exomars 2016, Exomars RSP, BepiColombo, and JUICE missions. The PSA is offering a newly designed graphical user interface which is simultaneously meant to maximize the interaction with scientific observations and also minimise the efforts needed to download these scientific observations. The PSA still offers the same services as before (i.e., FTP, documentation, helpdesk, etc.). In addition, it will support the two formats of the Planetary Data System (i.e., PDS3 and PDS4), as well as providing new ways for searching the data products with specific metadata and geometrical parameters. As well as enhanced services, the PSA will also provide new services to improve the visualisation of data products and scientific content (e.g., spectra, etc.). Together with improved access to the spacecraft engineering data sets, the PSA will provide easier access to scientific data products that will help to maximize the science return of ESA's space missions.
Optical Fibre Sensors Using Graphene-Based Materials: A Review
Hernaez, Miguel; Zamarreño, Carlos R.; Melendi-Espina, Sonia; Bird, Liam R.; Mayes, Andrew G.; Arregui, Francisco J.
2017-01-01
Graphene and its derivatives have become the most explored materials since Novoselov and Geim (Nobel Prize winners for Physics in 2010) achieved its isolation in 2004. The exceptional properties of graphene have attracted the attention of the scientific community from different research fields, generating high impact not only in scientific journals, but also in general-interest newspapers. Optical fibre sensing is one of the many fields that can benefit from the use of these new materials, combining the amazing morphological, chemical, optical and electrical features of graphene with the advantages that optical fibre offers over other sensing strategies. In this document, a review of the current state of the art for optical fibre sensors based on graphene materials is presented. PMID:28098825
Aerothermodynamic environment for a Titan probe with deployable decelerator
NASA Technical Reports Server (NTRS)
Green, M. J.; Swenson, B. L.; Balakrishnan, A.
1985-01-01
It is pointed out that further exploration of Titan, Saturn's largest moon, is of current interest to the scientific community, particularly from the standpoint of the organic chemical evolution of its atmosphere. For a suitable study of this Saturnian satellite, a mission involving a Titan atmospheric entry probe is to be conducted. The probe is to employ a deployable decelerator with the aim to allow scientific measurements in the haze layer. The present investigation is concerned with an assessment of the aerothermodynamic environment for the considered probe during its hypervelocity, low-Reynolds-number entry. Attention is given to the employed computational method, the Titan probe configuration, the Titan probe trajectory, the viscous-layer regime of the aerothermodynamic environment, and the incipient merged-layer regime.
How Do You Answer the Life on Mars Question? Use Multiple Small Landers Like Beagle 2
NASA Technical Reports Server (NTRS)
Gibson, Everett K.; Pillinger, C. T.; Wright, I. P.; Hurst, S. J.; Richter, L.; Sims, M. R.
2012-01-01
To address one of the most important questions in planetary science Is there life on Mars? The scientific community must turn to less costly means of exploring the surface of the Red Planet. The United Kingdom's Beagle 2 Mars lander concept was a small meter-size lander with a scientific payload constituting a large proportion of the flown mass designed to supply answers to the question about life on Mars. A possible reason why Beagle 2 did not send any data was that it was a one-off attempt to land. As Steve Squyres said at the time: "It's difficult to land on Mars - if you want to succeed you have to send two of everything".
Optical Fibre Sensors Using Graphene-Based Materials: A Review.
Hernaez, Miguel; Zamarreño, Carlos R; Melendi-Espina, Sonia; Bird, Liam R; Mayes, Andrew G; Arregui, Francisco J
2017-01-14
Graphene and its derivatives have become the most explored materials since Novoselov and Geim (Nobel Prize winners for Physics in 2010) achieved its isolation in 2004. The exceptional properties of graphene have attracted the attention of the scientific community from different research fields, generating high impact not only in scientific journals, but also in general-interest newspapers. Optical fibre sensing is one of the many fields that can benefit from the use of these new materials, combining the amazing morphological, chemical, optical and electrical features of graphene with the advantages that optical fibre offers over other sensing strategies. In this document, a review of the current state of the art for optical fibre sensors based on graphene materials is presented.
Center for Integrated Nanotechnologies 2011 Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanders, Antonya
We are pleased to share with you this 2011 edition of the Annual Report from the Center for Integrated Nanotechnologies (CINT) and the growing excitement we feel around cementing our brand as a leader in integration nanoscience. This can be seen most readily in the momentum we have achieved in our signature Integration Focus Activities (IFAs). These efforts unite our scientists across our four scientific Thrust areas with our users to concentrate research on larger-scale nanoscience integration challenges for specific classes of nanomaterials, systems, and phenomena. All three of our current IFAs (p. 10) now have a full head ofmore » steam, and nearly 30% of our current user projects map in some meaningful way to one of these IFAs. As part of our redoubled effort to increase our industrial user base, we are also looking to leverage these IFAs to build a stronger link to and spur recruitment within our industrial user community. We believe that the IFAs are a natural community-building tool with an intrinsic value proposition for industry; an R&D pipeline that can lead to more mature, more commercially well-positioned technologies. Finally, as nanoscience and nanotechnology are maturing, we as a research community are beginning to see our efforts extend in many exciting new directions. Our focus on nanoscience integration positions us very well to capitalize on new opportunities including the emerging Mesoscale Initiative within the DOE Office of Science. Many aspects of mesoscale science are embodied in the integration of nanoscale building blocks. We are equally proud of our continuing strong performance in support of our user program. We have fully transitioned to our new user proposal database providing enhanced convenience and flexibility for proposal submission and review. In our two regular proposal calls this year we received a total of 225 proposals, an increase of 10% over our 2010 performance. Our official count on number of users for the period remains at {approx}350 and continues to reflect full engagement of our scientific staff. We are also seeing a steady increase in our industrial user base, with the number of industrial proposals (including Rapid Access proposals) doubling in 2011. We attribute this in part of our outreach efforts including our focused industrial session in each of our past two annual User Conferences. The Center for Integrated Nanotechnologies (CINT) is a Department of Energy/Office of Science Nanoscale Science Research Center (NSRC) operating as a national user facility devoted to establishing the scientific principles that govern the design, performance, and integration of nanoscale materials. Jointly operated by Los Alamos and Sandia National Laboratories, CINT explores the continuum from scientific discovery to use-inspired research, with a focus on the integration of nanoscale materials and structures to achieve new properties and performance and their incorporation into the micro- and macro worlds. Through its Core Facility at Sandia National Laboratories and its Gateway Facility at Los Alamos National Laboratory, CINT provides open access to tools and expertise needed to explore the continuum from scientific discovery to the integration of nanostructures into the micro- and macro worlds. In its overall operations, CINT strives to achieve the following goals common to all Nanoscale Science Research Centers: (1) Conduct forefront research in nanoscale science; (2) Operate as a user facility for scientific research; (3) Provide user access to the relevant BES-supported expertise and capabilities at the host national laboratory; and (4) Leverage other relevant national laboratory capabilities to enhance scientific opportunities for the nanoscience user community. These additional goals are specific to the unique CINT mission: (5) Establish and lead a scientific community dedicated to solving nanoscale science integration challenges; and (6) Create a single user facility program that combines expertise and facilities at both Los Alamos and Sandia National Laboratories. The CINT user program provides the international scientific community with open access to world-class scientific staff and state-of-the-art facilities for theory and simulation, nanomaterials synthesis and characterization, and unique capabilities for nanoscale materials integration, from the level of nanoscale synthesis to the fabrication of micro- and macroscale structures and devices. The staff of CINT includes laboratory scientists, postdocs and technical support staff who are leaders in the nanoscience research programs in CINT scientific thrust areas: (1) Nanoscale Electronics and Mechanics, (2) Nanophotonics and Optical Nanomaterials, (3) Soft, Biological and Composite Nanomaterials, and (4) Theory and Simulation of Nanoscale Phenomena.« less
Fois, Francesca; Forino, Giuseppe
2014-10-01
The paper applies the community resilience approach to the post-disaster case of Pescomaggiore, an Italian village affected by the L'Aquila earthquake in 2009. A group of residents refused to accept the housing recovery solutions proposed by the government, opting for autonomous recovery. They developed a housing project in the form of a self-built ecovillage, characterised by earthquake-proof buildings made of straw and wood. The project is a paradigmatic example of a community-based response to an external shock. It illustrates the concept of 'community resilience', which is widely explored in the scientific debate but still vaguely defined. Based on qualitative methodologies, the paper seeks to understand how the community resilience process can be enacted in alternative social practices such as ecovillages. The goal is to see under which conditions natural disasters can be considered windows of opportunity for sustainability. © 2014 The Author(s). Disasters © Overseas Development Institute, 2014.
NASA Astrophysics Data System (ADS)
Shaner, A. J.; Kring, D. A.
2015-12-01
To be competitive in 21st century science and exploration careers, graduate students in planetary science and related disciplines need mentorship and need to develop skills not always available at their home university, including fieldwork, mission planning, and communicating with others in the scientific and engineering communities in the U.S. and internationally. Programs offered by the Lunar and Planetary Institute (LPI) address these needs through summer internships and field training programs. From 2008-2012, LPI hosted the Lunar Exploration Summer Intern Program. This special summer intern program evaluated possible landing sites for robotic and human exploration missions to the lunar surface. By the end of the 2012 program, a series of scientifically-rich landing sites emerged, some of which had never been considered before. Beginning in 2015 and building on the success of the lunar exploration program, a new Exploration Science Summer Intern Program is being implemented with a broader scope that includes both the Moon and near-Earth asteroids. Like its predecessor, the Exploration Science Summer Intern Program offers graduate students a unique opportunity to integrate scientific input with exploration activities in a way that mission architects and spacecraft engineers can use. The program's activities may involve assessments and traverse plans for a particular destination or a more general assessment of a class of possible exploration targets. Details of the results of these programs will be discussed. Since 2010 graduate students have participated in field training and research programs at Barringer (Meteor) Crater and the Sudbury Impact Structure. Skills developed during these programs prepare students for their own thesis studies in impact-cratered terrains, whether they are on the Earth, the Moon, Mars, or other solar system planetary surface. Future field excursions will take place at these sites as well as the Zuni-Bandera Volcanic Field. Skills developed during the Zuni-Bandera training will prepare students for their own thesis studies of volcanic provinces on any solar system planetary surface where basaltic volcanism has occurred. Further details of these field trainings will also be discussed.
Scientific Literacy in Food Education: Gardening and Cooking in School
NASA Astrophysics Data System (ADS)
Strohl, Carrie A.
Recent attention to socio-scientific issues such as sustainable agriculture, environmental responsibility and nutritional health has spurred a resurgence of public interest in gardening and cooking. Seen as contexts for fostering scientific literacy---the knowledge domains, methodological approaches, habits of mind and discourse practices that reflect one's understanding of the role of science in society, gardening and cooking are under-examined fields in science education, in part, because they are under-utilized pedagogies in school settings. Although learning gardens were used historically to foster many aspects of scientific literacy (e.g., cognitive knowledge, norms and methods of science, attitudes toward science and discourse of science), analysis of contemporary studies suggests that science learning in gardens focuses mainly on science knowledge alone. Using multiple conceptions of scientific literacy, I analyzed qualitative data to demonstrate how exploration, talk and text fostered scientific literacy in a school garden. Exploration prompted students to engage in scientific practices such as making observations and constructing explanations from evidence. Talk and text provided background knowledge and accurate information about agricultural, environmental and nutritional topics under study. Using a similar qualitative approach, I present a case study of a third grade teacher who explicitly taught food literacy through culinary arts instruction. Drawing on numerous contextual resources, this teacher created a classroom community of food practice through hands-on cooking lessons, guest chef demonstrations, and school-wide tasting events. As a result, she promoted six different types of knowledge (conceptual, procedural, dispositional, sensory, social, and communal) through leveraging contextual resources. This case study highlights how food literacy is largely contingent on often-overlooked mediators of food literacy: the relationships between participants, the activity, and the type of knowledge invoked. Scientific literacy in food education continues to be a topic of interest in the fields of public health and of sustainable agriculture, as well as to proponents of the local food movement. This dissertation begins to map a more cohesive and comprehensive approach to gardening and cooking implementation and research in school settings.
ERIC Educational Resources Information Center
Kraemer Diaz, Anne E.; Spears Johnson, Chaya R.; Arcury, Thomas A.
2015-01-01
Scientific integrity is necessary for strong science; yet many variables can influence scientific integrity. In traditional research, some common threats are the pressure to publish, competition for funds, and career advancement. Community-based participatory research (CBPR) provides a different context for scientific integrity with additional and…
Ho, Tung Manh; Nguyen, Ha Viet; Vuong, Thu-Trang; Dam, Quang-Minh; Pham, Hiep-Hung; Vuong, Quan-Hoang
2017-01-01
Background: Collaboration is a common occurrence among Vietnamese scientists; however, insights into Vietnamese scientific collaborations have been scarce. On the other hand, the application of social network analysis in studying science collaboration has gained much attention all over the world. The technique could be employed to explore Vietnam's scientific community. Methods: This paper employs network theory to explore characteristics of a network of 412 Vietnamese social scientists whose papers can be found indexed in the Scopus database. Two basic network measures, density and clustering coefficient, were taken, and the entire network was studied in comparison with two of its largest components. Results: The networks connections are very sparse, with a density of only 0.47%, while the clustering coefficient is very high (58.64%). This suggests an inefficient dissemination of information, knowledge, and expertise in the network. Secondly, the disparity in levels of connection among individuals indicates that the network would easily fall apart if a few highly-connected nodes are removed. Finally, the two largest components of the network were found to differ from the entire networks in terms of measures and were both led by the most productive and well-connected researchers. Conclusions: High clustering and low density seems to be tied to inefficient dissemination of expertise among Vietnamese social scientists, and consequently low scientific output. Also low in robustness, the network shows the potential of an intellectual elite composed of well-connected, productive, and socially significant individuals.
Ho, Tung Manh; Nguyen, Ha Viet; Vuong, Thu-Trang; Dam, Quang-Minh; Pham, Hiep-Hung; Vuong, Quan-Hoang
2017-01-01
Background: Collaboration is a common occurrence among Vietnamese scientists; however, insights into Vietnamese scientific collaborations have been scarce. On the other hand, the application of social network analysis in studying science collaboration has gained much attention all over the world. The technique could be employed to explore Vietnam’s scientific community. Methods: This paper employs network theory to explore characteristics of a network of 412 Vietnamese social scientists whose papers can be found indexed in the Scopus database. Two basic network measures, density and clustering coefficient, were taken, and the entire network was studied in comparison with two of its largest components. Results: The networks connections are very sparse, with a density of only 0.47%, while the clustering coefficient is very high (58.64%). This suggests an inefficient dissemination of information, knowledge, and expertise in the network. Secondly, the disparity in levels of connection among individuals indicates that the network would easily fall apart if a few highly-connected nodes are removed. Finally, the two largest components of the network were found to differ from the entire networks in terms of measures and were both led by the most productive and well-connected researchers. Conclusions: High clustering and low density seems to be tied to inefficient dissemination of expertise among Vietnamese social scientists, and consequently low scientific output. Also low in robustness, the network shows the potential of an intellectual elite composed of well-connected, productive, and socially significant individuals. PMID:28928958
Search Pathways: Modeling GeoData Search Behavior to Support Usable Application Development
NASA Astrophysics Data System (ADS)
Yarmey, L.; Rosati, A.; Tressel, S.
2014-12-01
Recent technical advances have enabled development of new scientific data discovery systems. Metadata brokering, linked data, and other mechanisms allow users to discover scientific data of interes across growing volumes of heterogeneous content. Matching this complex content with existing discovery technologies, people looking for scientific data are presented with an ever-growing array of features to sort, filter, subset, and scan through search returns to help them find what they are looking for. This paper examines the applicability of available technologies in connecting searchers with the data of interest. What metrics can be used to track success given shifting baselines of content and technology? How well do existing technologies map to steps in user search patterns? Taking a user-driven development approach, the team behind the Arctic Data Explorer interdisciplinary data discovery application invested heavily in usability testing and user search behavior analysis. Building on earlier library community search behavior work, models were developed to better define the diverse set of thought processes and steps users took to find data of interest, here called 'search pathways'. This research builds a deeper understanding of the user community that seeks to reuse scientific data. This approach ensures that development decisions are driven by clearly articulated user needs instead of ad hoc technology trends. Initial results from this research will be presented along with lessons learned for other discovery platform development and future directions for informatics research into search pathways.
Development of a NASA 2018 Mars Landed Mission Concept
NASA Technical Reports Server (NTRS)
Wilson, M. G.; Salvo, C. G.; Abilleira, F.; Sengstacken, A. J.; Allwood, A. G.; Backes, P. G.; Lindemann, R. A.; Jordan, J. F.
2010-01-01
Fundamental to NASA's Mars Exploration Program (MEP) is an ongoing development of an integrated and coordinated set of possible future candidate missions that meet fundamental science and programmatic objectives of NASA and the Mars scientific community. In the current planning horizon of the NASA MEP, a landed mobile surface exploration mission launching in the 2018 Mars launch opportunity exists as a candidate project to meet MEP in situ science and exploration objectives. This paper describes the proposed mission science objectives and the mission implementation concept developed for the 2018 opportunity. As currently envisioned, this mission concept seeks to explore a yet-to-be-selected site with high preservation potential for physical and chemical biosignatures, evaluate paleoenvironmental conditions, characterize the potential for preservation of biosignatures, and access multiple sequences of geological units in a search for evidence of past life and/or prebiotic chemistry at a site on Mars.
Study of Scientific Production of Community Medicines' Department Indexed in ISI Citation Databases.
Khademloo, Mohammad; Khaseh, Ali Akbar; Siamian, Hasan; Aligolbandi, Kobra; Latifi, Mahsoomeh; Yaminfirooz, Mousa
2016-10-01
In the scientometric, the main criterion in determining the scientific position and ranking of the scientific centers, particularly the universities, is the rate of scientific production and innovation, and in all participations in the global scientific development. One of the subjects more involved in repeatedly dealt with science and technology and effective on the improvement of health is medical science fields. In this research using scientometric and citation analysis, we studied the rate of scientific productions in the field of community medicine, which is the numbers of articles published and indexed in ISI database from 2000 to 2010. This study is scientometric using the survey and analytical citation. The study samples included all of the articles in the ISI database from 2000 to 2010. For the data collection, the advance method of searching was used at the ISI database. The ISI analyses software and descriptive statistics were used for data analysis. Results showed that among the five top universities in producing documents, Tehran University of Medical Sciences with 88 (22.22%) documents are allocated to the first rank of scientific products. M. Askarian with 36 (90/9%) published documents; most of the scientific outputs in Community medicine, in the international arena is the most active author in this field. In collaboration with other writers, Iranian departments of Community Medicine with 27 published articles have the greatest participation with scholars of English authors. In the process of scientific outputs, the results showed that the scientific process was in its lowest in the years 2000 to 2004, and while the department of Community medicine in 2009 allocated most of the production process to itself. Iranian Journal of Public Health and Saudi Medical Journal each of them had 16 articles which had most participation rate in the publishing of community medicine's department. On the type of carrier, community medicine's department by presentation of 340(85.86%) articles had presented most of their scientific productions in the format of article, also in the field of community medicine outputs, article entitled: "Iron loading and erythrophagocytosis increase ferroportin 1 (FPN1) expression in J774 macrophages"(1) with 81 citations ranked first in cited articles. Subject areas of occupational health with 70 articles and subject areas of general medicine with 69 articles ranked the most active research areas in the Production of community medicine's department. the obtained data showed the much growth of scientific production. The Tehran University of medical Sciences ranked the first in publishing articles in community medicine's department and with most collaboration with community medicine department of England writers in this field and most writers will present their works in paper format.
Study of Scientific Production of Community Medicines’ Department Indexed in ISI Citation Databases
Khademloo, Mohammad; Khaseh, Ali Akbar; Siamian, Hasan; Aligolbandi, Kobra; Latifi, Mahsoomeh; Yaminfirooz, Mousa
2016-01-01
Background: In the scientometric, the main criterion in determining the scientific position and ranking of the scientific centers, particularly the universities, is the rate of scientific production and innovation, and in all participations in the global scientific development. One of the subjects more involved in repeatedly dealt with science and technology and effective on the improvement of health is medical science fields. In this research using scientometric and citation analysis, we studied the rate of scientific productions in the field of community medicine, which is the numbers of articles published and indexed in ISI database from 2000 to 2010. Methods: This study is scientometric using the survey and analytical citation. The study samples included all of the articles in the ISI database from 2000 to 2010. For the data collection, the advance method of searching was used at the ISI database. The ISI analyses software and descriptive statistics were used for data analysis. Results: Results showed that among the five top universities in producing documents, Tehran University of Medical Sciences with 88 (22.22%) documents are allocated to the first rank of scientific products. M. Askarian with 36 (90/9%) published documents; most of the scientific outputs in Community medicine, in the international arena is the most active author in this field. In collaboration with other writers, Iranian departments of Community Medicine with 27 published articles have the greatest participation with scholars of English authors. In the process of scientific outputs, the results showed that the scientific process was in its lowest in the years 2000 to 2004, and while the department of Community medicine in 2009 allocated most of the production process to itself. Iranian Journal of Public Health and Saudi Medical Journal each of them had 16 articles which had most participation rate in the publishing of community medicine’s department. On the type of carrier, community medicine’s department by presentation of 340(85.86%) articles had presented most of their scientific productions in the format of article, also in the field of community medicine outputs, article entitled: “Iron loading and erythrophagocytosis increase ferroportin 1 (FPN1) expression in J774 macrophages”(1) with 81 citations ranked first in cited articles. Subject areas of occupational health with 70 articles and subject areas of general medicine with 69 articles ranked the most active research areas in the Production of community medicine’s department. Conclusion: the obtained data showed the much growth of scientific production. The Tehran University of medical Sciences ranked the first in publishing articles in community medicine’s department and with most collaboration with community medicine department of England writers in this field and most writers will present their works in paper format. PMID:28077896
Human exploration of Mars - The role of a Mars outpost laboratory
NASA Technical Reports Server (NTRS)
Duke, Michael B.
1992-01-01
Consideration is given to a Martian exploration strategy which includes intensive robotic reconnaissance to characterize features of Mars' geology that are important to the solution of major problems of Mars history, including the possible past presence of life. A human reconnaissance phase may follow the robotic reconnaissance phase, guided to the most productive sites by the results of the robotic missions. The strategy also involves an intensive human phase of investigation, with interactive field geology/laboratory investigation at the Mars outpost. The laboratory investigations, as well as the field work, should be highly interactive with a broad scientific community on earth. The most detailed analyses would be performed on samples returned to earth.
NASA Astrophysics Data System (ADS)
McEntee, C.; Cairns, A.; Buhrman, J.
2012-12-01
Public acceptance of the scientific consensus regarding climate change has eroded and misinformation designed to confuse the public is rapidly proliferating. Those issues, combined with an increase of politically motivated attacks on climate scientists and their research, have led to a place where ideology can trump scientific consensus as the foundation for developing policy solutions. The scientific community has been, thus far, unprepared to respond effectively to these developments. However, as a scientific society whose members engage in climate science research, and one whose organizational mission and vision are centered on the concepts of science for the benefit of humanity and ensuring a sustainable future, the American Geophysical Union can, and should, play an important role in reversing this trend. To that end, in 2011, AGU convened a Leadership Summit on Climate Science Communication, in which presidents, executive directors, and senior public policy staff from 17 scientific organizations engaged with experts in the social sciences regarding effective communication of climate science and with practitioners from agriculture, energy, and the military. The discussions focused on three key issues: the environment of climate science communication; public understanding of climate change; and the perspectives of consumers of climate science-based information who work with specific audiences. Participants diagnosed previous challenges and failings, enumerated the key constituencies that need to be effectively engaged, and identified the critical role played by cultural cognition—the influence of group values, particularly around equality and authority, individualism, and community; and the perceptions of risk. Since that meeting, AGU has consistently worked to identify and explore ways that it, and its members, and improve the effectiveness of their communication with the public about climate change. This presentation will focus on the insights AGU has gathered, as well as make the case for why this is an important role for scientific societies, such as AGU, to play.
NASA Astrophysics Data System (ADS)
Roesch-McNally, G.; Prendeville, H. R.
2017-12-01
A lack of coproduction, the joint production of new technologies or knowledge among technical experts and other groups, is arguably one of the reasons why much scientific information and resulting decision support systems are not very usable. Increasingly, public agencies and academic institutions are emphasizing the importance of coproduction of scientific knowledge and decision support systems in order to facilitate greater engagement between the scientific community and key stakeholder groups. Coproduction has been embraced as a way for the scientific community to develop actionable scientific information that will assist end users in solving real-world problems. Increasing the level of engagement and stakeholder buy-in to the scientific process is increasingly necessary, particularly in the context of growing politicization of science and the scientific process. Coproduction can be an effective way to build trust and can build-on and integrate local and traditional knowledge. Employing coproduction strategies may enable the development of more relevant and useful information and decision support tools that address stakeholder challenges at relevant scales. The USDA Northwest Climate Hub has increasingly sought ways to integrate coproduction in the development of both applied research projects and the development of decision support systems. Integrating coproduction, however, within existing institutions is not always simple, given that coproduction is often more focused on process than products and products are, for better or worse, often the primary focus of applied research and tool development projects. The USDA Northwest Climate Hub sought to integrate coproduction into our FY2017 call for proposal process. As a result we have a set of proposals and fledgling projects that fall along the engagement continuum (see Figure 1- attached). We will share the challenges and opportunities that emerged from this purposeful integration of coproduction into the work that we prioritized for funding. This effort highlights strategies for how federal agencies might consider how and whether to codify coproduction tenets into their collaborations and agenda setting.
Truth, proof and evidence: homeopathy and the medical paradigm.
Swayne, Jeremy
2008-04-01
The study and practice of medicine, in its most personal and intimate functions, its most sophisticated scientific and technological manifestations, and its philosophical and ethical ramifications, are central to our understanding of the human condition. Homeopathic medicine: its insights, the questions that it begs, and the scientific and philosophical challenges it presents, has a significant contribution to make to this process. To be actively and seriously engaged with homeopathy is an adventurous undertaking. It is to be engaged in exploring both human nature and the nature of the world we inhabit. And in that process we are also engaged in the pursuit of truth and the exploration of reality. This paper deals first with the layout of the playing field on which homeopathy has to compete to be taken seriously. It then discusses three concepts: reality, truth and knowledge, which are objectives for which we strive and principles that guide us in that striving. In the third part it introduces the concept of 'personal knowledge' as an essential ingredient of scientific discovery and the pursuit of truth. And finally it proposes that the homeopathic community in general, and the Faculty of Homeopathy in particular, must expand its vision with a definition of a new paradigm, the new model of healthcare and medical science to which the vision aspires.
On the lack of consensus over the meaning of openness: an empirical study.
Grubb, Alicia M; Easterbrook, Steve M
2011-01-01
This study set out to explore the views and motivations of those involved in a number of recent and current advocacy efforts (such as open science, computational provenance, and reproducible research) aimed at making science and scientific artifacts accessible to a wider audience. Using a exploratory approach, the study tested whether a consensus exists among advocates of these initiatives about the key concepts, exploring the meanings that scientists attach to the various mechanisms for sharing their work, and the social context in which this takes place. The study used a purposive sampling strategy to target scientists who have been active participants in these advocacy efforts, and an open-ended questionnaire to collect detailed opinions on the topics of reproducibility, credibility, scooping, data sharing, results sharing, and the effectiveness of the peer review process. We found evidence of a lack of agreement on the meaning of key terminology, and a lack of consensus on some of the broader goals of these advocacy efforts. These results can be explained through a closer examination of the divergent goals and approaches adopted by different advocacy efforts. We suggest that the scientific community could benefit from a broader discussion of what it means to make scientific research more accessible and how this might best be achieved.
On the Lack of Consensus over the Meaning of Openness: An Empirical Study
Grubb, Alicia M.; Easterbrook, Steve M.
2011-01-01
This study set out to explore the views and motivations of those involved in a number of recent and current advocacy efforts (such as open science, computational provenance, and reproducible research) aimed at making science and scientific artifacts accessible to a wider audience. Using a exploratory approach, the study tested whether a consensus exists among advocates of these initiatives about the key concepts, exploring the meanings that scientists attach to the various mechanisms for sharing their work, and the social context in which this takes place. The study used a purposive sampling strategy to target scientists who have been active participants in these advocacy efforts, and an open-ended questionnaire to collect detailed opinions on the topics of reproducibility, credibility, scooping, data sharing, results sharing, and the effectiveness of the peer review process. We found evidence of a lack of agreement on the meaning of key terminology, and a lack of consensus on some of the broader goals of these advocacy efforts. These results can be explained through a closer examination of the divergent goals and approaches adopted by different advocacy efforts. We suggest that the scientific community could benefit from a broader discussion of what it means to make scientific research more accessible and how this might best be achieved. PMID:21858110
Science and Technology Diplomacy with Cuba
NASA Astrophysics Data System (ADS)
Colon, Frances
President Obama's announcement of U. S. policy change toward Cuba and increased freedom of interaction with the Cuban people opens unprecedented and long-awaited opportunities for the scientific and engineering communities in the U. S. and in Cuba to establish and expand collaborative efforts that will greatly advance U.S. and Cuba science and technology agendas. New rules for export of donated-only items for scientific use will bring researchers closer to the level of their professional peers around the world. Increasing Cubans' access to information will result in greater interactions between scientific communities and enable the sharing of ideas and discoveries that can fuel entrepreneurship on the island. The scientific community has expressed an extraordinary level of interest in the wide range of scientific opportunities that the new policy presents, in collaborating with their Cuban counterparts, and in supporting the development of scientific capacity in Cuba. In response to numerous expressions of interest and inquiries from the scientific community, the Office of the Science and Technology Adviser to the Secretary of State (STAS) has engaged in public outreach to inform the U.S. science and technology community of the implications of the new policy for collaborative research, emerging scientific opportunities, and the standing limitations for engagement with the people of Cuba.
Strategies for broadening public involvement in space developments
NASA Technical Reports Server (NTRS)
Harris, Philip R.
1992-01-01
There is widespread public interest in and goodwill toward the space program. For NASA's plans for the next 25 years to be achieved, this public reservoir of support needs to be tapped and channeled. NASA endeavors have to reach out beyond the scientific, technological, and aerospace communities to foster wider participation in space exploration and exploitation. To broaden NASA support and spread out the financing of space activities, recommendations for consideration are offered in the area of economics, political, institutional, international, and managerial areas.
Social behavioural epistemology and the scientific community.
Watve, Milind
2017-07-01
The progress of science is influenced substantially by social behaviour of and social interactions within the scientific community. Similar to innovations in primate groups, the social acceptance of an innovation depends not only upon the relevance of the innovation but also on the social dominance and connectedness of the innovator. There are a number of parallels between many well-known phenomena in behavioural evolution and various behavioural traits observed in the scientific community. It would be useful, therefore, to use principles of behavioural evolution as hypotheses to study the social behaviour of the scientific community. I argue in this paper that a systematic study of social behavioural epistemology is likely to boost the progress of science by addressing several prevalent biases and other problems in scientific communication and by facilitating appropriate acceptance/rejection of novel concepts.
NASA Astrophysics Data System (ADS)
Downs, R. R.; Lenhardt, W. C.; Robinson, E.
2014-12-01
Science software is integral to the scientific process and must be developed and managed in a sustainable manner to ensure future access to scientific data and related resources. Organizations that are part of the scientific enterprise, as well as members of the scientific community who work within these entities, can contribute to the sustainability of science software and to practices that improve scientific community capabilities for science software sustainability. As science becomes increasingly digital and therefore, dependent on software, improving community practices for sustainable science software will contribute to the sustainability of science. Members of the Earth science informatics community, including scientific data producers and distributers, end-user scientists, system and application developers, and data center managers, use science software regularly and face the challenges and the opportunities that science software presents for the sustainability of science. To gain insight on practices needed for the sustainability of science software from the science software experiences of the Earth science informatics community, an interdisciplinary group of 300 community members were asked to engage in simultaneous roundtable discussions and report on their answers to questions about the requirements for improving scientific software sustainability. This paper will present an analysis of the issues reported and the conclusions offered by the participants. These results provide perspectives for science software sustainability practices and have implications for actions that organizations and their leadership can initiate to improve the sustainability of science software.
Farrell, Nicholas R; Deacon, Brett J
2016-03-01
Although client preferences are an integral component of evidence-based practice in psychology (American Psychological Association, 2006), relatively little research has examined what potential mental health consumers value in the psychotherapy they may receive. The present study was conducted to examine community members' preferences for the scientific and relational aspects of psychotherapy for different types of presenting problems, and how accurately therapists perceive these preferences. Community members (n = 200) were surveyed about the importance of scientific (e.g., demonstrated efficacy in clinical trials) and relational (e.g., therapist empathy) characteristics of psychotherapy both for anxiety disorders (e.g., obsessive-compulsive disorder) and disorder-nonspecific issues (e.g., relationship difficulties). Therapists (n = 199) completed the same survey and responded how they expected the average mental health consumer would. Results showed that although community members valued relational characteristics significantly more than scientific characteristics, the gap between these two was large for disorder-nonspecific issues (d = 1.24) but small for anxiety disorders (d = .27). Community members rated scientific credibility as important across problem types. Therapists significantly underestimated the importance of scientific characteristics to community members, particularly in the treatment of disorder-nonspecific issues (d = .74). Therapists who valued research less in their own practice were more likely to underestimate the importance of scientific credibility to community members. The implications of the present findings for understanding the nature of client preferences in evidence-based psychological practice are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.
An interactive, multi-touch videowall for scientific data exploration
NASA Astrophysics Data System (ADS)
Blower, Jon; Griffiths, Guy; van Meersbergen, Maarten; Lusher, Scott; Styles, Jon
2014-05-01
The use of videowalls for scientific data exploration is rising as hardware becomes cheaper and the availability of software and multimedia content grows. Most videowalls are used primarily for outreach and communication purposes, but there is increasing interest in using large display screens to support exploratory visualization as an integral part of scientific research. In this PICO presentation we will present a brief overview of a new videowall system at the University of Reading, which is designed specifically to support interactive, exploratory visualization activities in climate science and Earth Observation. The videowall consists of eight 42-inch full-HD screens (in 4x2 formation), giving a total resolution of about 16 megapixels. The display is managed by a videowall controller, which can direct video to the screen from up to four external laptops, a purpose-built graphics workstation, or any combination thereof. A multi-touch overlay provides the capability for the user to interact directly with the data. There are many ways to use the videowall, and a key technical challenge is to make the most of the touch capabilities - touch has the potential to greatly reduce the learning curve in interactive data exploration, but most software is not yet designed for this purpose. In the PICO we will present an overview of some ways in which the wall can be employed in science, seeking feedback and discussion from the community. The system was inspired by an existing and highly-successful system (known as the "Collaboratorium") at the Netherlands e-Science Center (NLeSC). We will demonstrate how we have adapted NLeSC's visualization software to our system for touch-enabled multi-screen climate data exploration.
Ports Primer: 8.1 Using Scientific Data and Research
Communities can demonstrate environmental concerns by providing scientific evidence of environmental impact. Communities may be able to access existing local data and conduct their own analyses or communities may turn to existing studies.
NASA Technical Reports Server (NTRS)
Sawin, Charles F.
1999-01-01
The product of the critical path roadmap project is an integrated strategy for mitigating the risks associated with human exploration class missions. It is an evolving process that will assure the ability to communicate the integrated critical path roadmap. Unlike previous reports, this one will not sit on a shelf - it has the full support of the JSC Space and Life Sciences Directorate (SA) and is already being used as a decision making tool (e.g., budget and investigation planning for Shuttle and Space Station mission). Utility of this product depends on many efforts, namely: providing the required information (completed risk data sheets, critical question information, technology data). It is essential to communicate the results of the critical path roadmap to the scientific community - this meeting is a good opportunity to do so. The web site envisioned for the critical path roadmap will provide the capability to communicate to a broader community and to track and update the system routinely.
A case study of data integration for aquatic resources using semantic web technologies
Gordon, Janice M.; Chkhenkeli, Nina; Govoni, David L.; Lightsom, Frances L.; Ostroff, Andrea C.; Schweitzer, Peter N.; Thongsavanh, Phethala; Varanka, Dalia E.; Zednik, Stephan
2015-01-01
Use cases, information modeling, and linked data techniques are Semantic Web technologies used to develop a prototype system that integrates scientific observations from four independent USGS and cooperator data systems. The techniques were tested with a use case goal of creating a data set for use in exploring potential relationships among freshwater fish populations and environmental factors. The resulting prototype extracts data from the BioData Retrieval System, the Multistate Aquatic Resource Information System, the National Geochemical Survey, and the National Hydrography Dataset. A prototype user interface allows a scientist to select observations from these data systems and combine them into a single data set in RDF format that includes explicitly defined relationships and data definitions. The project was funded by the USGS Community for Data Integration and undertaken by the Community for Data Integration Semantic Web Working Group in order to demonstrate use of Semantic Web technologies by scientists. This allows scientists to simultaneously explore data that are available in multiple, disparate systems beyond those they traditionally have used.
Setting Priorities for Space Research: Opportunities and Imperatives
NASA Technical Reports Server (NTRS)
Dutton, John A.; Abelson, Philip H.; Beckwith, Steven V. W.; Bishop, William P.; Byerly, Radford, Jr.; Crowe, Lawson; Dews, Peter; Garriott, Owen K.; Lunine, Jonathan; Macauley, Molly K.
1992-01-01
This report represents the first phase of a study by a task group convened by the Space Studies Board to ascertain whether it should attempt to develop a methodology for recommending priorities among the various initiatives in space research (that is, scientific activities concerned with phenomena in space or utilizing observations from space). The report argues that such priority statements by the space research community are both necessary and desirable and would contribute to the formulation and implementation of public policy. The report advocates the establishment of priorities to enhance effective management of the nation's scientific research program in space. It argues that scientific objectives and purposes should determine how and under what circumstances scientific research should be done. The report does not take a position on the controversy between advocates of manned space exploration and those who favor the exclusive use of unmanned space vehicles. Nor does the report address questions about the value or appropriateness of Space Station Freedom or proposals to establish a permanent manned Moon base or to undertake a manned mission to Mars. These issues lie beyond the charge to the task group.
Solar System Exploration Research Virtual Institute: Year Three Annual Report 2016
NASA Technical Reports Server (NTRS)
Pendleton, Yvonne; Schmidt, Greg; Kring, David; Horanyi, Mihaly; Heldmann, Jennifer; Glotch, Timothy; Rivkin, Andy; Farrell, William; Pieters, Carle; Bottke, William;
2016-01-01
NASA's Solar System Exploration Research Virtual Institute (SSERVI) is pleased to present the 2016 Annual Report. Each year brings new scientific discoveries, technological breakthroughs, and collaborations. The integration of basic research and development, industry and academic partnerships, plus the leveraging of existing technologies, has further opened a scientific window into human exploration. SSERVI sponsorship by the NASA Science Mission Directorate (SMD) and Human Exploration and Operations Mission Directorate (HEOMD) continues to enable the exchange of insights between the human exploration and space science communities, paving a clearer path for future space exploration. SSERVI provides a unique environment for scientists and engineers to interact within multidisciplinary research teams. As a virtual institute, the best teaming arrangements can be made irrespective of the geographical location of individuals or laboratory facilities. The interdisciplinary science that ensues from virtual and in-person interactions, both within the teams and across team lines, provides answers to questions that many times cannot be foreseen. Much of this research would not be accomplished except for the catalyzing, collaborative environment enabled by SSERVI. The SSERVI Central Office, located at NASA Ames Research Center in Silicon Valley, California, provides the leadership, guidance and technical support that steers the virtual institute. At the start of 2016, our institute had nine U.S. teams, each mid-way through their five-year funding cycle, plus nine international partnerships. However, by the end of the year we were well into the selection of four new domestic teams, selected through NASA's Cooperative Agreement Notice (CAN) process, and a new international partnership. Understanding that human and robotic exploration is most successful as an international endeavor, international partnerships collaborate with SSERVI domestic teams on a no-exchange of funds basis, but they bring a richness to the institute that is priceless. The international partner teams interact with the domestic teams in a number of ways, including sharing students, scientific insights, and access to facilities. We are proud to introduce our newest partnership with the Astrophysics and Planetology Research Institute (IRAP) in Toulouse, France. In 2016, Principal Investigator Dr. Patrick Pinet assembled a group of French researchers who will contribute scientific and technological expertise related to SSERVI research. SSERVI's domestic teams compete for five-year funding opportunities through proposals to a NASA CAN every few years. Having overlapping proposal selection cycles allows SSERVI to be more responsive to any change in direction NASA might experience, while providing operational continuity for the institute. Allowing new teams to blend with the more seasoned teams preserves corporate memory and expands the realm of collaborative possibilities. A key component of SSERVI's mission is to grow and maintain an integrated research community focused on questions related to the Moon, Near-Earth asteroids, and the moons of Mars. The strong community response to CAN-2 demonstrated the health of that effort. NASA Headquarters conducted the peer-review of 22 proposals early in 2017 and, based on recommendations from the SSERVI Central Office and NASA SSERVI program officers, the NASA selecting officials determined the new teams in the spring of 2017. We are pleased to welcome the CAN-2 teams into the institute, and look forward to the collaborations that will develop with the current teams. The new teams are: The Network for Exploration and Space Science (NESS) team (Principal Investigator (PI) Prof. Jack Burns/U. Colorado); the Exploration Science Pathfinder Research for Enhancing Solar System Observations (ESPRESSO) team (PI Dr. Alex Parker/Southwest Research Institute); the Toolbox for Research and Exploration (TREX) team (PI Dr. Amanda Hendrix/ Planetary Science Institute); and the Radiation Effects on Volatiles and Exploration of Asteroids & Lunar Surfaces (REVEALS) team (PI Prof. Thomas Orlando/ Georgia Institute of Technology). In this report, you will find an overview of the 2016 leadership activities of the SSERVI Central Office, reports prepared by the U.S. teams from CAN-1, and achievements from several of the SSERVI international partners. Reflecting on the past year's discoveries and advancements serves as a potent reminder that there is still a great deal to learn about NASA's target destinations. Innovation in the way we access, sample, measure, visualize, and assess our target destinations is needed for further discovery. At the same time, let us celebrate how far we have come, and strongly encourage a new generation that will make the most of future opportunities.
NASA Astrophysics Data System (ADS)
Wooten, Michelle M.; Coble, Kim; Puckett, Andrew W.; Rector, Travis
2018-06-01
[This paper is part of the Focused Collection on Astronomy Education Research.] This study investigates students' perceived impacts regarding their participation in course-based undergraduate research experiences (CUREs) in astronomy. Each research experience adopted one or more projects from the Research Based Science Education for Undergraduates (RBSEU) curriculum, which teaches analysis of astronomical data coming from various national observatories. Participating students were enrolled in introductory astronomy courses at one of four universities using the curriculum. They were invited to respond to several instruments, including surveys (N =199 ), essays (N =94 ), and interviews (N =19 ). Each university implemented the curriculum differently with respect to content covered, length of instruction, and whether students' research results were contributed to the astronomical community. We found that participation in all versions of the curriculum had the potential to significantly increase students' perceived confidence participating in science. However, participation in experiences wherein results were contributed to the scientific community more often led to students' nuanced perceptions of science processes, including increased understanding of the role of analysis and the utility of scientific communities and collaborations. We frame our study according to a pathway model under study by discipline-based education researchers of CUREs and explore our findings' connections with psychological theories.
Network communities within and across borders
Cerina, Federica; Chessa, Alessandro; Pammolli, Fabio; Riccaboni, Massimo
2014-01-01
We investigate the impact of borders on the topology of spatially embedded networks. Indeed territorial subdivisions and geographical borders significantly hamper the geographical span of networks thus playing a key role in the formation of network communities. This is especially important in scientific and technological policy-making, highlighting the interplay between pressure for the internationalization to lead towards a global innovation system and the administrative borders imposed by the national and regional institutions. In this study we introduce an outreach index to quantify the impact of borders on the community structure and apply it to the case of the European and US patent co-inventors networks. We find that (a) the US connectivity decays as a power of distance, whereas we observe a faster exponential decay for Europe; (b) European network communities essentially correspond to nations and contiguous regions while US communities span multiple states across the whole country without any characteristic geographic scale. We confirm our findings by means of a set of simulations aimed at exploring the relationship between different patterns of cross-border community structures and the outreach index. PMID:24686380
Network communities within and across borders.
Cerina, Federica; Chessa, Alessandro; Pammolli, Fabio; Riccaboni, Massimo
2014-04-01
We investigate the impact of borders on the topology of spatially embedded networks. Indeed territorial subdivisions and geographical borders significantly hamper the geographical span of networks thus playing a key role in the formation of network communities. This is especially important in scientific and technological policy-making, highlighting the interplay between pressure for the internationalization to lead towards a global innovation system and the administrative borders imposed by the national and regional institutions. In this study we introduce an outreach index to quantify the impact of borders on the community structure and apply it to the case of the European and US patent co-inventors networks. We find that (a) the US connectivity decays as a power of distance, whereas we observe a faster exponential decay for Europe; (b) European network communities essentially correspond to nations and contiguous regions while US communities span multiple states across the whole country without any characteristic geographic scale. We confirm our findings by means of a set of simulations aimed at exploring the relationship between different patterns of cross-border community structures and the outreach index.
Moraes, Luis E.; Blow, Matthew J.; Hawley, Erik R.; ...
2017-02-16
Cyanobacteria have the potential to produce bulk and fine chemicals and members belonging to Nostoc sp. have received particular attention due to their relatively fast growth rate and the relative ease with which they can be harvested. Nostoc punctiforme is an aerobic, motile, Gram-negative, filamentous cyanobacterium that has been studied intensively to enhance our understanding of microbial carbon and nitrogen fixation. The genome of the type strain N. punctiforme ATCC 29133 was sequenced in 2001 and the scientific community has used these genome data extensively since then. Advances in bioinformatics tools for sequence annotation and the importance of this organismmore » prompted us to resequence and reanalyze its genome and to make both, the initial and improved annotation, available to the scientific community. The new draft genome has a total size of 9.1 Mbp and consists of 65 contiguous pieces of DNA with a GC content of 41.38% and 7664 protein-coding genes. Furthermore, the resequenced genome is slightly (5152 bp) larger and contains 987 more genes with functional prediction when compared to the previously published version. We deposited the annotation of both genomes in the Department of Energy’s IMG database to facilitate easy genome exploration by the scientific community without the need of in-depth bioinformatics skills. We expect that an facilitated access and ability to search the N. punctiforme ATCC 29133 for genes of interest will significantly facilitate metabolic engineering and genome prospecting efforts and ultimately the synthesis of biofuels and natural products from this keystone organism and closely related cyanobacteria.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moraes, Luis E.; Blow, Matthew J.; Hawley, Erik R.
Cyanobacteria have the potential to produce bulk and fine chemicals and members belonging to Nostoc sp. have received particular attention due to their relatively fast growth rate and the relative ease with which they can be harvested. Nostoc punctiforme is an aerobic, motile, Gram-negative, filamentous cyanobacterium that has been studied intensively to enhance our understanding of microbial carbon and nitrogen fixation. The genome of the type strain N. punctiforme ATCC 29133 was sequenced in 2001 and the scientific community has used these genome data extensively since then. Advances in bioinformatics tools for sequence annotation and the importance of this organismmore » prompted us to resequence and reanalyze its genome and to make both, the initial and improved annotation, available to the scientific community. The new draft genome has a total size of 9.1 Mbp and consists of 65 contiguous pieces of DNA with a GC content of 41.38% and 7664 protein-coding genes. Furthermore, the resequenced genome is slightly (5152 bp) larger and contains 987 more genes with functional prediction when compared to the previously published version. We deposited the annotation of both genomes in the Department of Energy’s IMG database to facilitate easy genome exploration by the scientific community without the need of in-depth bioinformatics skills. We expect that an facilitated access and ability to search the N. punctiforme ATCC 29133 for genes of interest will significantly facilitate metabolic engineering and genome prospecting efforts and ultimately the synthesis of biofuels and natural products from this keystone organism and closely related cyanobacteria.« less
Jao, Irene; Kombe, Francis; Mwalukore, Salim; Bull, Susan; Parker, Michael; Kamuya, Dorcas; Molyneux, Sassy; Marsh, Vicki
2015-07-01
Increased global sharing of public health research data has potential to advance scientific progress but may present challenges to the interests of research stakeholders, particularly in low-to-middle income countries. Policies for data sharing should be responsive to public views, but there is little evidence of the systematic study of these from low-income countries. This qualitative study explored views on fair data-sharing processes among 60 stakeholders in Kenya with varying research experience, using a deliberative approach. Stakeholders' attitudes were informed by perceptions of benefit and concerns for research data sharing, including risks of stigmatization, loss of privacy, and undermining scientific careers and validity, reported in detail elsewhere. In this article, we discuss institutional trust-building processes seen as central to perceptions of fairness in sharing research data in this setting, including forms of community involvement, individual prior awareness and agreement to data sharing, independence and accountability of governance mechanisms, and operating under a national framework. © The Author(s) 2015.
In the maw of the Ouroboros: an analysis of scientific literacy and democracy
NASA Astrophysics Data System (ADS)
Bang, Lars
2017-10-01
This paper explores the concept of scientific literacy through its relation to democracy and citizenship. Scientific literacy has received international attention in the twenty-first century as demonstrated by the Programme for International Student Assessment survey of 2006. It is no longer just a concept but has become a stated and testable outcome in the science education research community. This paper problematizes the `marriage' between scientific literacy and democracy, particularly the idea that scientific literacy is a presupposed necessity to proper citizenship and awareness of the role of science in modern society. A perusal of the science education literature can provide a history of scientific literacy, as it exists as a research category. Through Gilles Deleuze's notion of the Dogmatic Image of Thought and its relation to a Spinozist understanding of individuation/Becoming, it is argued that scientific literacy is not a recent invention and is problematic in its relation to democracy. This article is thus intended to act more as vehicle to move, stimulate and dramatize thought and potentially reconceptualise scientific literacy, than a comprehensive historical analysis. The concept of scientific literacy has undergone specific transformations in the last two centuries and has been enacted in different manifestations throughout modernity. Here the analysis draws upon Deleuze's reading of Michel Foucault and the notion of the Diagram related to Foucault's oeuvre, and is specifically using Foucault's notion of rationalities as actualized threads or clusters of discourse. The obvious link between science and democracy is an effect of specific rationalities within the epistemological field of science, rather than intrinsic, essential characteristics of science or scientific literacy. There is nothing intrinsic in its function for democracy. Through a case study of the work of Charles W. Eliot and Herbert Spencer and the modern enactment of scientific literacy in contemporary science education, this paper shows the cultural and historical contingencies on which the relation between scientific literacy and democracy has been constructed through a rationality this article calls the Man of Science. The mythical Ouroboros will be used as a Fresh Image of Thought to explore the movements and folds within the discursive formation of Scientific Literacy, the rationality of the Man of Science, and their relation to democracy.
Alzforum and SWAN: the present and future of scientific web communities.
Clark, Tim; Kinoshita, June
2007-05-01
Scientists drove the early development of the World Wide Web, primarily as a means for rapid communication, document sharing and data access. They have been far slower to adopt the web as a medium for building research communities. Yet, web-based communities hold great potential for accelerating the pace of scientific research. In this article, we will describe the 10-year experience of the Alzheimer Research Forum ('Alzforum'), a unique example of a thriving scientific web community, and explain the features that contributed to its success. We will then outline the SWAN (Semantic Web Applications in Neuromedicine) project, in which Alzforum curators are collaborating with informatics researchers to develop novel approaches that will enable communities to share richly contextualized information about scientific data, claims and hypotheses.
NASA Astrophysics Data System (ADS)
Cook, Kristin Leigh
Responding to calls for an empirical glimpse into a socioscientific issues (SSI)-based curriculum that aims to promote democratic participation, enhance students' connections to science, and empower students for the betterment of society (Dos Santos, 2008; Sadler, Barab, & Scott, 2007; Tal & Kedmi, 2006; Fusco & Barton, 2001; Hodson, 2003), this critical case study of 24 pre-service teachers (PSTs) enrolled in a scientific inquiry course offers curricular suggestions to empower learners to connect with the dynamic and socially-mediated process of science. In effect, incorporating nature of science-focused and place-based inquiry into a collaboration between PSTs and scientists were essential elements in enhancing students' connections to and feelings of inclusion in SSI. Propelled beyond a deficit model of public participation in science, the PSTs did indeed experience a public debate model and in some cases a knowledge production model in their collaborative efforts with scientists (Callon, 1999; Pouliot, 2009). While all of the PSTs engaged in rich discussion of their perspectives with scientists to enhance the investigation of their inquiry, some experienced a redistribution of the roles of participation in the production of scientific knowledge that was integrated into the scientists' decision-making processes. The materialization of these models depended on the structures of the student-scientists collaboration and the ways in which these malleable structures were flexed and negotiated. In effect, this study contributes to the literature on the potentials of SSI by providing an example of an educational approach that engages learners in a community practice as active participants in decision-making processes regarding socio-scientific issues, as well as focuses on empowering learners to be involved in the generation of scientific knowledge that contributes to their community.
Geophysics of Geothermal Areas: State of the Art and Future Development
NASA Astrophysics Data System (ADS)
Mabey, Don R.
In May 1980 a workshop organized by the Advanced School of Geophysics of the Ettore Majorana Center for Scientific Culture was held in Erice, Italy. The purpose was to present the state of the art and future development of geophysics as related to exploration for geothermal resources and the environmental impact of the development of geothermal systems. The workshop was addressed to “younger researchers working in scientific institutions and in public or private agencies and who are particularly interested in these aspects of the energy problem.” Fourteen formal lectures were presented to the workshop. This volume contains papers based on 10 of these lectures with a preface, forward, and introduction by the editors. The ten papers are “Heat Transfer in Geothermal Areas,” “Interpretation of Conductive Heat Flow Anomalies,” “Deep Electromagnetic Soundings in Geothermal Exploration,” “A Computation Method for dc Geoelectric Fields,” “Measurement of Ground Deformation in Geothermal Areas,” “Active Seismic Methods in Geothermal Exploration,” “The Role of Geophysical Investigations in the Discovery of the Latera Geothermal Field,” “Geothermal Resources Exploration in the European Community: The Geophysical Case,” “Activity Performed by AGIP (ENI Group) in the Field of Geothermal Energy,” and “Geothermal Exploration in the Western United States.” Six of the authors are from Italy, and one each is from Iceland, the Netherlands, West Germany, and the United States. All of the papers are in English.
NASA Astrophysics Data System (ADS)
Kruger, L. E.; Johnson, A. C.
2017-12-01
By engaging community members as research partners, people become not just the subject of the story, they become storytellers as well. Participatory community-based research that engages community residents in gathering and sharing their lived experiences is instrumental in connecting people to each other and their forests and forest science and helpful when confronted by change. Two examples of place-based research that engaged community members as researchers will be presented. What factors led to collaborative outcomes that integrated citizen-informed knowledge with scientific knowledge? What lessons were learned in how best to engage community members? How did working with high school students draw even hesitant members of the community to participate? By strengthening bonds between students and their communities, both natural and social environments, we can provide young people with opportunities to better understand how they fit into the greater community and their natural environment. Hands-on learning that explores experiences in nature across generations can benefit communities, especially youth, and can provide insights into social and ecosystem change.
Bridging the Gap between Scientific Data Producers and Consumers: A Provenance Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephan, Eric G.; Pinheiro da Silva, Paulo; Kleese van Dam, Kerstin
2013-06-03
Despite the methodical and painstaking efforts made by scientists to record their scientific findings and protocols, a knowledge gap problem continues to persist today between producers of scientific results and consumers because technology is performing the exchange of data as opposed to scientists making direct contact. Provenance is a means to formalize how this knowledge is transferred. However, for it to be meaningful to scientists, the provenance research community needs continued contributions from the scientific community to extend and leverage provenance-based vocabularies and technology from the provenance community. Going forward the provenance community must also be vigilant to meet scalabilitymore » needs of data intensive science« less
Scientific Networks on Data Landscapes: Question Difficulty, Epistemic Success, and Convergence
Grim, Patrick; Singer, Daniel J.; Fisher, Steven; Bramson, Aaron; Berger, William J.; Reade, Christopher; Flocken, Carissa; Sales, Adam
2014-01-01
A scientific community can be modeled as a collection of epistemic agents attempting to answer questions, in part by communicating about their hypotheses and results. We can treat the pathways of scientific communication as a network. When we do, it becomes clear that the interaction between the structure of the network and the nature of the question under investigation affects epistemic desiderata, including accuracy and speed to community consensus. Here we build on previous work, both our own and others’, in order to get a firmer grasp on precisely which features of scientific communities interact with which features of scientific questions in order to influence epistemic outcomes. Here we introduce a measure on the landscape meant to capture some aspects of the difficulty of answering an empirical question. We then investigate both how different communication networks affect whether the community finds the best answer and the time it takes for the community to reach consensus on an answer. We measure these two epistemic desiderata on a continuum of networks sampled from the Watts-Strogatz spectrum. It turns out that finding the best answer and reaching consensus exhibit radically different patterns. The time it takes for a community to reach a consensus in these models roughly tracks mean path length in the network. Whether a scientific community finds the best answer, on the other hand, tracks neither mean path length nor clustering coefficient. PMID:24683416
Scientific Networks on Data Landscapes: Question Difficulty, Epistemic Success, and Convergence.
Grim, Patrick; Singer, Daniel J; Fisher, Steven; Bramson, Aaron; Berger, William J; Reade, Christopher; Flocken, Carissa; Sales, Adam
2013-12-01
A scientific community can be modeled as a collection of epistemic agents attempting to answer questions, in part by communicating about their hypotheses and results. We can treat the pathways of scientific communication as a network. When we do, it becomes clear that the interaction between the structure of the network and the nature of the question under investigation affects epistemic desiderata, including accuracy and speed to community consensus. Here we build on previous work, both our own and others', in order to get a firmer grasp on precisely which features of scientific communities interact with which features of scientific questions in order to influence epistemic outcomes. Here we introduce a measure on the landscape meant to capture some aspects of the difficulty of answering an empirical question. We then investigate both how different communication networks affect whether the community finds the best answer and the time it takes for the community to reach consensus on an answer. We measure these two epistemic desiderata on a continuum of networks sampled from the Watts-Strogatz spectrum. It turns out that finding the best answer and reaching consensus exhibit radically different patterns. The time it takes for a community to reach a consensus in these models roughly tracks mean path length in the network. Whether a scientific community finds the best answer, on the other hand, tracks neither mean path length nor clustering coefficient.
ExplorEnz: a MySQL database of the IUBMB enzyme nomenclature
McDonald, Andrew G; Boyce, Sinéad; Moss, Gerard P; Dixon, Henry BF; Tipton, Keith F
2007-01-01
Background We describe the database ExplorEnz, which is the primary repository for EC numbers and enzyme data that are being curated on behalf of the IUBMB. The enzyme nomenclature is incorporated into many other resources, including the ExPASy-ENZYME, BRENDA and KEGG bioinformatics databases. Description The data, which are stored in a MySQL database, preserve the formatting of chemical and enzyme names. A simple, easy to use, web-based query interface is provided, along with an advanced search engine for more complex queries. The database is publicly available at . The data are available for download as SQL and XML files via FTP. Conclusion ExplorEnz has powerful and flexible search capabilities and provides the scientific community with the most up-to-date version of the IUBMB Enzyme List. PMID:17662133
ExplorEnz: a MySQL database of the IUBMB enzyme nomenclature.
McDonald, Andrew G; Boyce, Sinéad; Moss, Gerard P; Dixon, Henry B F; Tipton, Keith F
2007-07-27
We describe the database ExplorEnz, which is the primary repository for EC numbers and enzyme data that are being curated on behalf of the IUBMB. The enzyme nomenclature is incorporated into many other resources, including the ExPASy-ENZYME, BRENDA and KEGG bioinformatics databases. The data, which are stored in a MySQL database, preserve the formatting of chemical and enzyme names. A simple, easy to use, web-based query interface is provided, along with an advanced search engine for more complex queries. The database is publicly available at http://www.enzyme-database.org. The data are available for download as SQL and XML files via FTP. ExplorEnz has powerful and flexible search capabilities and provides the scientific community with the most up-to-date version of the IUBMB Enzyme List.
Planetary Protection and Mars Special Regions--A Suggestion for Updating the Definition.
Rettberg, Petra; Anesio, Alexandre M; Baker, Victor R; Baross, John A; Cady, Sherry L; Detsis, Emmanouil; Foreman, Christine M; Hauber, Ernst; Ori, Gian Gabriele; Pearce, David A; Renno, Nilton O; Ruvkun, Gary; Sattler, Birgit; Saunders, Mark P; Smith, David H; Wagner, Dirk; Westall, Frances
2016-02-01
We highlight the role of COSPAR and the scientific community in defining and updating the framework of planetary protection. Specifically, we focus on Mars "Special Regions," areas where strict planetary protection measures have to be applied before a spacecraft can explore them, given the existence of environmental conditions that may be conducive to terrestrial microbial growth. We outline the history of the concept of Special Regions and inform on recent developments regarding the COSPAR policy, namely, the MEPAG SR-SAG2 review and the Academies and ESF joint committee report on Mars Special Regions. We present some new issues that necessitate the update of the current policy and provide suggestions for new definitions of Special Regions. We conclude with the current major scientific questions that remain unanswered regarding Mars Special Regions.
The Future of NASA's Deep Space Network and Applications to Planetary Probe Missions
NASA Technical Reports Server (NTRS)
Deutsch, Leslie J.; Preston, Robert A.; Vrotsos, Peter
2010-01-01
NASA's Deep Space Network (DSN) has been an invaluable tool in the world's exploration of space. It has served the space-faring community for more than 45 years. The DSN has provided a primary communication pathway for planetary probes, either through direct- to-Earth links or through intermediate radio relays. In addition, its radiometric systems are critical to probe navigation and delivery to target. Finally, the radio link can also be used for direct scientific measurement of the target body ('radio science'). This paper will examine the special challenges in supporting planetary probe missions, the future evolution of the DSN and related spacecraft technology, the advantages and disadvantages of radio relay spacecraft, and the use of the DSN radio links for navigation and scientific measurements.
NASA Astrophysics Data System (ADS)
Baztan, J.; Vanderlinden, J. P.; Cordier, M.; Da Cunha, C.; Gaye, N.; Huctin, J. M.; Kane, A.; Quensiere, J.; Remvikos, Y.; Seck, A.
2016-12-01
The cultural dimensions of climate change impacts and adaptation have been increasingly examined in recent years through various disciplinary lenses, exposing a clear need for mainstream natural sciences to address the question of how to incorporate the values of communities facing global changes into their work. With this in mind, the work presented here addresses three main questions: (i) Do community members consider available scientific data and findings credible? Answering this question provides insight into whether available scientific knowledge expresses causal links that are mobilized by affected communities. (ii) Do community members consider available scientific data and findings salient? Answering this question provides insight into whether available scientific knowledge focuses on phenomena that those in affected communities think should receive attention. (iii) Do community members consider available scientific data and findings legitimate? Answering this question provides insight into whether available scientific knowledge expresses what is good, tolerable, and/or acceptable for affected communities. These three questions delve into the ways in which adaptation requires affected individuals and communities to adopt attitudes by integrating/woven from potentially conflicting evidence, relevance, and/or normative claims. These questions also shed light on the links between mainstream sciences and studied affected communities. The research presented here focuses on 2 communities: (i) Uummannaq, an island of 12km2 in a fjord, located along the middle of Greenland's west coast and (ii) Joal-Fadiouth & M'bour area in the wester African's coast, few Km south of Dakar, Senegal. This communication shares the results from field work experiences from ARTiticc's interdisciplinary approach to identifying the needs, values, and representations of the world of the communities, and how to fit these elements into mainstream sciences in order to bridge gaps between communities and research efforts and by doing so, determine the optimal adaptation strategies through which to engage global changes.
NASA Astrophysics Data System (ADS)
Schloss, J. A.
2009-12-01
While it began as a citizen water quality monitoring program to document long-term trends and find problem areas impacting lake watersheds the New Hampshire Lakes Lay Monitoring Program soon evolved into a model effort for engaging the participants to help investigate a wide range of scientific questions primarily derived through their concerns. As a true participatory effort, community members were involved in the design as well as the implementation of the research and also in the interpretation of the results. The research outcomes have provided benefits to both the local and scientific communities. In many cases productive partnerships between the research community and participants were initiated that continue to last to this day. In addition, participants have been empowered through their experience and have become local experts and community leaders. Collaborative research projects to date have explored fish condition, recreational impacts, nutrient loadings from watershed land use, morphometric determinants of lake productivity, ground truth for remote sensing of water quality, biological controls for invasive aquatic plants, in-lake resource co-occurrences, and cyanobacteria bloom toxin ecology. Participants were also instrumental in confirming a more accurate method for water clarity measurement. Results have not only provided the community with the information they require for the informed local stewardship of their resources but also have been useful to state agencies and decision-makers. Our success can be attributed to the development of quality assured methods acceptable to regional and state agencies, the cost efficiencies of using volunteer scientists, support from the University and Cooperative Extension, capturing the "local expertise" of our participants, providing timely feedback and support, and making sure the study results are reported back to the local community through the participants involved.
Chu, Joanna T W; Chan, Sophia S; Stewart, Sunita M; Zhou, Qianling; Leung, Charles Sai-Cheong; Wan, Alice; Lam, Tai Hing
2017-01-01
Community engagement is a powerful tool in bringing about positive social and community change. Community stakeholders possess critical experience and knowledge that are needed to inform the development of community-based projects. However, limited literature is available on the practical experience involved with planning and implementing community-based family programs. Even less has been published documenting efforts in Chinese communities. This paper explores community stakeholders' experiences with the enhancing family well-being project-part of a citywide project entitled the "FAMILY Project," aimed at promoting family health, happiness, and harmony in Hong Kong. This qualitative evaluation examined the perspectives of community stakeholders. Four focus groups with social workers ( n = 24) and six in-depth interviews with steering committee members were conducted from December 2012 to May 2013 in Hong Kong. Focus groups and in-depths interview were audiotaped, transcribed, and analyzed using thematic analysis techniques. Rich accounts were given by our respondents on various aspects of the project. Main themes and subthemes were identified and grouped into four categories (project conception, project implementation, project consolidation, and the overall impact of the project). Respondents described the practical challenges associated with the project (e.g., recruitment, balancing scientific research, and lack of resources) and identified the elements that are important to the success of the project. These included the commitment to a shared goal, multi-agency collaboration, and a platform for knowledge exchange. Finally, respondents perceived benefits of the project at both the individual and community level. Our project sheds light on many of the practical considerations and challenges associated with a designing and implementing a community-based family intervention project. Community stakeholders input provided important information on their perceived benefits and barriers and can inform and improve future development of community-based family intervention programs.
NASA Astrophysics Data System (ADS)
Camerlenghi, Angelo; Lofi, Johanna; Aloisi, Vanni; Flecker, Rachel
2017-04-01
The origin of the Mediterranean salt giant is linked to an extraordinary event in the geological history of the Mediterranean region, commonly referred to as the Messinian Salinity Crisis (MSC). After 45 years of intense yet disunited research efforts, the international scientific community at large faces a unique opportunity to access the deep and marginal basins Messinian depositional successions in the Mediterranean through scientific drilling, namely through the Integrated Ocean Discovery Program (IODP) and the International Continental Drilling Program (ICDP). Scientific activity to promote scientific drilling offshore and onshore is in progress under the broad umbrella of the Uncovering a Salt Giant' IODP Multi-Platform Drilling proposal, that has generated the Deep-Sea Records of the Messinian Salinity Crisis (DREAM) site-specific pre-proposal for riserless drilling on Messinian marginal basins and the related ICDP-IODP amphibious initiative Investigating Miocene Mediterranean- Atlantic gateway exchange (IMMAGE). Scientific networking has begun to establish a broad cross-disciplinary research community embracing geology, geophysics, geochemistry, microbiology, and paleoclimatology. Formal networking activities represent an opportunity for the scientific community to share objectives, data, expertise and tools with industry since there is considerable interest in oil and gas exploration, and consequent hazards, targeting the Mediterranean's deep salt deposits. With the acronym MEDSALT, we have established two networks working in close cooperation: (1) COST Action CA15103 Uncovering the Mediterranean salt giant (MEDSALT) (https://medsalt.eu/) is a 4-year long network established in May 2016 comprising scientific institutions from 28 states. This COST Action will provide an opportunity to develop further our knowledge of salt rock formation addressing four overarching scientific questions: a) What are the causes, timing and emplacement mechanisms of the Mediterranean salt giant? b) What are the factors responsible for and the socio-economic consequences of early salt deformation and fluid flow across and out of the halite layer? c) Do salt giants promote the development of a phylogenetically diverse and exceptionally active deep biosphere? d) What are the mechanisms underlying the spectacular vertical motions inside basins and their margins? (2) ANR Project 'Uncovering the Mediterranean Salt Giant' (MEDSALT) aims at establishing networking action to prepare an Integrated Ocean Discovery Program (IODP) full proposal to drill the Mediterranean Salt Giant with the R/V JOIDES Resolution. This 18-month long network consists of a core group of 22 scientists from 10 countries working in close cooperation with the brother COST Action MEDSALT. These inter-sectorial and multinational cooperation networks comprise a critical mass of both experienced and early-career researchers from Europe and beyond. The goal will be achieved through capacity building, researchers' mobility, skills development, knowledge exchange and scientific networking.
Considerations for the development of shale gas in the United Kingdom.
Hays, Jake; Finkel, Madelon L; Depledge, Michael; Law, Adam; Shonkoff, Seth B C
2015-04-15
The United States shale gas boom has precipitated global interest in the development of unconventional oil and gas resources. Recently, government ministers in the United Kingdom started granting licenses that will enable companies to begin initial exploration for shale gas. Meanwhile, concern is increasing among the scientific community about the potential impacts of shale gas and other types of unconventional natural gas development (UGD) on human health and the environment. Although significant data gaps remain, there has been a surge in the number of articles appearing in the scientific literature, nearly three-quarters of which has been published since the beginning of 2013. Important lessons can be drawn from the UGD experience in the United States. Here we explore these considerations and argue that shale gas development policies in the UK and elsewhere should be informed by empirical evidence generated on environmental, public health, and social risks. Additionally, policy decisions should take into account the measured effectiveness of harm reduction strategies as opposed to hypothetical scenarios and purported best practices that lack empirical support. Copyright © 2015 Elsevier B.V. All rights reserved.
Givens, Melissa L; Deuster, Patricia
2015-01-01
Androgen use outside of legitimate medical therapy is a perceived concern that is drawing attention across military and specifically Special Operations Forces (SOF) communities. For leadership and the medical community to properly address the issue and relate to those individuals who are using or considering use, it will be crucial to understand the scope of the problem. Limited data suggest that the prevalence of androgen use may be increasing, and inferences made from the scientific literature suggest that SOF may be a population of concern. While risks of androgen use are well known, there are little data specific to military performance that can be applied to a rigorous risk:benefit analysis, allowing myths and poorly supported theories to perpetuate within the community. Further efforts to define the potential benefits balanced against the short- and long-term risks should be undertaken. Providers within the SOF community should arm themselves with information to engage androgen users and leadership in meaningful discussion regarding androgen use. 2015.
Smith, Durelle
2013-01-01
Alaska Natives depend on local natural resources for nutritional and, for many, spiritual health. As a result, public health in Alaska is strongly influenced by the relationship between people and their surrounding physical, chemical, and biological environments. Alaska is vast with diverse wildlife and plant communities that are valued as subsistence foods (fig. 1). These resources are supported by equally diverse ecosystems and their underpinning landforms and geologies. The U.S. Geological Survey (USGS) is attempting to integrate physical, chemical, and biological information to better describe current (2013) environments and project scenarios for the future. Integrating ecological data into the public health dialogue is challenging for the more than 280 rural communities of Alaska. This fact sheet reviews a recent USGS effort, the Geographic Information System (GIS) Native Health Project, to better incorporate scientific information into such dialogue.
Fielding a current idea: exploring the public health impact of electromagnetic radiation.
Genuis, Stephen J
2008-02-01
Several publications in the scientific literature have raised concern about the individual and public health impact of adverse non-ionizing radiation (a-NIR) from electromagnetic field (EMF) exposure emanating from certain power, electrical and wireless devices commonly found in the home, workplace, school and community. Despite the many challenges in establishing irrefutable scientific proof of harm and the various gaps in elucidating the precise mechanisms of harm, epidemiological analyses continue to suggest considerable potential for injury and affliction as a result of a-NIR exposure. As environmental health has not been emphasized in medical education, some clinicians are not fully aware of possible EMF-related health problems and, as a result, manifestations of a-NIR may remain misdiagnosed and ineffectually managed. It is important for physicians and public health officials to be aware of the fundamental science and clinical implications of EMF exposure. A review of the scientific literature relating to the link between electromagnetic radiation and human health, several public health recommendations, and four case histories are presented for consideration.
Drilling informatics: data-driven challenges of scientific drilling
NASA Astrophysics Data System (ADS)
Yamada, Yasuhiro; Kyaw, Moe; Saito, Sanny
2017-04-01
The primary aim of scientific drilling is to precisely understand the dynamic nature of the Earth. This is the reason why we investigate the subsurface materials (rock and fluid including microbial community) existing under particular environmental conditions. This requires sample collection and analytical data production from the samples, and in-situ data measurement at boreholes. Current available data comes from cores, cuttings, mud logging, geophysical logging, and exploration geophysics, but these datasets are difficult to be integrated because of their different kinds and scales. Now we are producing more useful datasets to fill the gap between the exiting data and extracting more information from such datasets and finally integrating the information. In particular, drilling parameters are very useful datasets as geomechanical properties. We believe such approach, 'drilling informatics', would be the most appropriate to obtain the comprehensive and dynamic picture of our scientific target, such as the seismogenic fault zone and the Moho discontinuity surface. This presentation introduces our initiative and current achievements of drilling informatics.
Mercer, David
2002-04-01
Since the late 1970s, there has been considerable debate surrounding the question of whether or not exposures to non-ionizing radiation and electric and magnetic fields (EMF), produced by powerlines and electrical and telecommunications technologies, are harmful to health. Whilst there has been some recent evidence of regulatory fatigue, and attempts to enforce closure, the EMF debate nevertheless still continues. This paper will explore the rôle played by competing images of scientific method in the argumentative strategies used by two of the main protagonists in an Australian public inquiry (held in 1990-91) which investigated the EMF issue: 'Inquiry into Community Needs and High Voltage (132kv and above) Transmission Line Development', the so-called Gibbs Inquiry. Apart from documenting some of the epistemologically intricate features of the EMF controversy, the following discussion will also consider the way scientific method discourses can contribute to enhancing the durability of knowledge claims in legal and regulatory settings.
Increasing Resilience Through Engagement In Sea Level Rise Community Science Initiatives.
NASA Astrophysics Data System (ADS)
Chilton, L. A.; Rindge, H.
2017-12-01
Science literate and engaged members of the public, including students, are critical to building climate resilient communities. USC Sea Grant facilitates programs that work to build and strengthen these connections. The Urban Tides Community Science Initiative (Urban Tides) and the Youth Exploring Sea Level Rise Science Program (YESS) engage communities across the boundaries of public engagement, K-12 education, and informal education. YESS is an experiential sea level rise education program that combines classroom learning, field investigations and public presentations. Students explore sea level rise using a new curricula, collect their own data on sea level rise, develop communication products, and present their findings to city governments, researchers, and others. Urban Tides engages community members, informal education centers, K-12 students, and local government leaders in a citizen science program photo- documenting extreme high tides, erosion and coastal flooding in Southern California. Images provide critical information to help calibrate scientific models used to identify locations vulnerable to damage from future sea level rise. These tools and information enable community leaders and local governments to set priorities, guidelines, and update policies as they plan strategies that will help the region adapt. The program includes a mobile app for data collection, an open database to view photos, a lesson plan, and community beach walks. Urban Tides has led to an increase in data and data-gathering capacity for regional scientists, an increase in public participation in science, and an increase in ocean and climate literacy among initiative participants. Both of these programs bring informed and diverse voices into the discussion of how to adapt and build climate resilient communities. USC Sea Grant will share impacts and lessons learned from these two unique programs.
The Roles of Science in Local Resilience Policy Development: A Case Study of Three U.S. Cities
NASA Astrophysics Data System (ADS)
Clavin, C.; Gupta, N.
2015-12-01
The development and deployment of resilience policies within communities in the United States often respond to the place-based, hazard-specific nature of disasters. Prior to the onset of a disaster, municipal and regional decision makers establish long-term development policies, such as land use planning, infrastructure investment, and economic development policies. Despite the importance of incorporating disaster risk within community decision making, resilience and disaster risk are only one consideration community decision makers weigh when choosing how and whether to establish resilience policy. Using a case study approach, we examine the governance, organizational, management, and policy making processes and the involvement of scientific advice in designing and implementing resilience policy in three U.S. communities: Los Angeles, CA; Norfolk, VA; and Flagstaff, AZ. Disaster mitigation or resilience initiatives were developed and deployed in each community with differing levels and types of scientific engagement. Engagement spanned from providing technical support with traditional risk assessment to direct engagement with community decision makers and design of community resilience outreach. Best practices observed include embedding trusted, independent scientific advisors with strong community credibility within local government agencies, use of interdisciplinary and interdepartmental expert teams with management and technical skillsets, and establishing scientifically-informed disaster and hazard scenarios to enable community outreach. Case study evidence suggest science communication and engagement within and across municipal government agencies and scientifically-informed direct engagement with community stakeholders are effective approaches and roles that disaster risk scientists can fill to support resilience policy development.
NASA Astrophysics Data System (ADS)
Williams, J. W.; Grimm, E. C.; Ashworth, A. C.; Blois, J.; Charles, D. F.; Crawford, S.; Davis, E.; Goring, S. J.; Graham, R. W.; Miller, D. A.; Smith, A. J.; Stryker, M.; Uhen, M. D.
2017-12-01
The Neotoma Paleoecology Database supports global change research at the intersection of geology and ecology by providing a high-quality, community-curated data repository for paleoecological data. These data are widely used to study biological responses and feedbacks to past environmental change at local to global scales. The Neotoma data model is flexible and can store multiple kinds of fossil, biogeochemical, or physical variables measured from sedimentary archives. Data additions to Neotoma are growing and include >3.5 million observations, >16,000 datasets, and >8,500 sites. Dataset types include fossil pollen, vertebrates, diatoms, ostracodes, macroinvertebrates, plant macrofossils, insects, testate amoebae, geochronological data, and the recently added organic biomarkers, stable isotopes, and specimen-level data. Neotoma data can be found and retrieved in multiple ways, including the Explorer map-based interface, a RESTful Application Programming Interface, the neotoma R package, and digital object identifiers. Neotoma has partnered with the Paleobiology Database to produce a common data portal for paleobiological data, called the Earth Life Consortium. A new embargo management is designed to allow investigators to put their data into Neotoma and then make use of Neotoma's value-added services. Neotoma's distributed scientific governance model is flexible and scalable, with many open pathways for welcoming new members, data contributors, stewards, and research communities. As the volume and variety of scientific data grow, community-curated data resources such as Neotoma have become foundational infrastructure for big data science.
NASA Technical Reports Server (NTRS)
Horz, F.; Heggy, E.; Fong, T.; Kring, D.; Deans, M.; Anglade, A.; Mahiouz, K.; Bualat, M.; Lee, P.; Bluethmann, W.
2009-01-01
Probing radars have been widely recognized by the science community to be an efficient tool to explore lunar subsurface providing a unique capability to address several scientific and operational issues. A wideband (200 to 1200 MHz) Ground Penetrating Radar (GPR) mounted on a surface rover can provide high vertical resolution and probing depth from few tens of centimeters to few tens of meters depending on the sounding frequency and the ground conductivity. This in term can provide a better understand regolith thickness, elemental iron concentration (including ilmenite), volatile presence, structural anomalies and fracturing. All those objectives are of important significance for understanding the local geology and potential sustainable resources for future landing sites in particular exploring the thickness, structural heterogeneity and potential volatiles presence in the lunar regolith. While the operation and data collection of GPR is a straightforward case for most terrestrial surveys, it is a challenging task for remote planetary study especially on robotic platforms due to the complexity of remote operation in rough terrains and the data collection constrains imposed by the mechanical motion of the rover and limitation in data transfer. Nevertheless, Rover mounted GPR can be of great support to perform systematic subsurface surveys for a given landing site as it can provide scientific and operational support in exploring subsurface resources and sample collections which can increase the efficiency of the EVA activities for potential human crews as part of the NASA Constellation Program. In this study we attempt to explore the operational challenges and their impact on the EVA scientific return for operating a rover mounted GPR in support of potential human activity on the moon. In this first field study, we mainly focused on the ability of GPR to support subsurface sample collection and explore shallow subsurface volatiles.
Toward a global space exploration program: A stepping stone approach
NASA Astrophysics Data System (ADS)
Ehrenfreund, Pascale; McKay, Chris; Rummel, John D.; Foing, Bernard H.; Neal, Clive R.; Masson-Zwaan, Tanja; Ansdell, Megan; Peter, Nicolas; Zarnecki, John; Mackwell, Steve; Perino, Maria Antionetta; Billings, Linda; Mankins, John; Race, Margaret
2012-01-01
In response to the growing importance of space exploration in future planning, the Committee on Space Research (COSPAR) Panel on Exploration (PEX) was chartered to provide independent scientific advice to support the development of exploration programs and to safeguard the potential scientific assets of solar system objects. In this report, PEX elaborates a stepwise approach to achieve a new level of space cooperation that can help develop world-wide capabilities in space science and exploration and support a transition that will lead to a global space exploration program. The proposed stepping stones are intended to transcend cross-cultural barriers, leading to the development of technical interfaces and shared legal frameworks and fostering coordination and cooperation on a broad front. Input for this report was drawn from expertise provided by COSPAR Associates within the international community and via the contacts they maintain in various scientific entities. The report provides a summary and synthesis of science roadmaps and recommendations for planetary exploration produced by many national and international working groups, aiming to encourage and exploit synergies among similar programs. While science and technology represent the core and, often, the drivers for space exploration, several other disciplines and their stakeholders (Earth science, space law, and others) should be more robustly interlinked and involved than they have been to date. The report argues that a shared vision is crucial to this linkage, and to providing a direction that enables new countries and stakeholders to join and engage in the overall space exploration effort. Building a basic space technology capacity within a wider range of countries, ensuring new actors in space act responsibly, and increasing public awareness and engagement are concrete steps that can provide a broader interest in space exploration, worldwide, and build a solid basis for program sustainability. By engaging developing countries and emerging space nations in an international space exploration program, it will be possible to create a critical bottom-up support structure to support program continuity in the development and execution of future global space exploration frameworks. With a focus on stepping stones, COSPAR can support a global space exploration program that stimulates scientists in current and emerging spacefaring nations, and that will invite those in developing countries to participate—pursuing research aimed at answering outstanding questions about the origins and evolution of our solar system and life on Earth (and possibly elsewhere). COSPAR, in cooperation with national and international science foundations and space-related organizations, will advocate this stepping stone approach to enhance future cooperative space exploration efforts.
Detecting and analyzing research communities in longitudinal scientific networks.
Leone Sciabolazza, Valerio; Vacca, Raffaele; Kennelly Okraku, Therese; McCarty, Christopher
2017-01-01
A growing body of evidence shows that collaborative teams and communities tend to produce the highest-impact scientific work. This paper proposes a new method to (1) Identify collaborative communities in longitudinal scientific networks, and (2) Evaluate the impact of specific research institutes, services or policies on the interdisciplinary collaboration between these communities. First, we apply community-detection algorithms to cross-sectional scientific collaboration networks and analyze different types of co-membership in the resulting subgroups over time. This analysis summarizes large amounts of longitudinal network data to extract sets of research communities whose members have consistently collaborated or shared collaborators over time. Second, we construct networks of cross-community interactions and estimate Exponential Random Graph Models to predict the formation of interdisciplinary collaborations between different communities. The method is applied to longitudinal data on publication and grant collaborations at the University of Florida. Results show that similar institutional affiliation, spatial proximity, transitivity effects, and use of the same research services predict higher degree of interdisciplinary collaboration between research communities. Our application also illustrates how the identification of research communities in longitudinal data and the analysis of cross-community network formation can be used to measure the growth of interdisciplinary team science at a research university, and to evaluate its association with research policies, services or institutes.
Detecting and analyzing research communities in longitudinal scientific networks
Vacca, Raffaele; Kennelly Okraku, Therese; McCarty, Christopher
2017-01-01
A growing body of evidence shows that collaborative teams and communities tend to produce the highest-impact scientific work. This paper proposes a new method to (1) Identify collaborative communities in longitudinal scientific networks, and (2) Evaluate the impact of specific research institutes, services or policies on the interdisciplinary collaboration between these communities. First, we apply community-detection algorithms to cross-sectional scientific collaboration networks and analyze different types of co-membership in the resulting subgroups over time. This analysis summarizes large amounts of longitudinal network data to extract sets of research communities whose members have consistently collaborated or shared collaborators over time. Second, we construct networks of cross-community interactions and estimate Exponential Random Graph Models to predict the formation of interdisciplinary collaborations between different communities. The method is applied to longitudinal data on publication and grant collaborations at the University of Florida. Results show that similar institutional affiliation, spatial proximity, transitivity effects, and use of the same research services predict higher degree of interdisciplinary collaboration between research communities. Our application also illustrates how the identification of research communities in longitudinal data and the analysis of cross-community network formation can be used to measure the growth of interdisciplinary team science at a research university, and to evaluate its association with research policies, services or institutes. PMID:28797047
Recontextualization of Science from Lab to School: Implications for Science Literacy
ERIC Educational Resources Information Center
Sharma, Ajay; Anderson, Charles W.
2009-01-01
Scientists' science differs remarkably from school science. In order to be taught to students, science is recontextualized from scientific research communities to science classrooms. This paper examines scientific discourse in scientific research communities, and discusses its transformation from an internally-persuasive and authoritative…
NASA Astrophysics Data System (ADS)
Stephan, E.; Sivaraman, C.
2016-12-01
The Web brought together science communities creating collaborative opportunities that were previously unimaginable. This was due to the novel ways technology enabled users to share information that would otherwise not be available. This means that data and software that previously could not be discovered without direct contact with data or software creators can now be downloaded with the click of a mouse button, and the same products can now outlive the lifespan of their research projects. While in many ways these technological advancements provide benefit to collaborating scientists, a critical producer-consumer knowledge gap is created when collaborating scientists rely solely on web sites, web browsers, or similar technology to exchange services, software, and data. Without some best practices and common approaches from Web publishers, collaborating scientific consumers have no inherent way to trust the results or other products being shared, producers have no way to convey their scientific credibility, and publishers risk obscurity where data is hidden in the deep Web. By leveraging recommendations from the W3C Data Activity, scientific communities can adopt best practices for data publication enabling consumers to explore, reuse, reproduce, and contribute their knowledge about the data. This talk will discuss the application of W3C Data on the Web Best Practices in support of published earth science data and feature the Data Usage Vocabulary.
NASA Astrophysics Data System (ADS)
Muñoz-Écija, Teresa; Vargas-Quesada, Benjamín; Chinchilla-Rodríguez, Zaida
2017-02-01
The aim of this paper is to make manifest the intellectual and cognitive structure of nanoscience and nanotechnology (NST) by means of visualization techniques. To this end, we used data from the Web of Science (WoS), delimiting the data to the category NST during the period of 2000-2013, retrieving a total of 198,275 documents. Through direct author citation of these works, we identified their origins and the seminal papers, and through word co-occurrence extracted from the titles and abstracts, the main lines of research were identified. In view of both structures, we may affirm that NST is a young scientific discipline in constant expansion, needing time to establish its foundations but showing a strongly interdisciplinary character; its development is furthermore dependent upon knowledge from other disciplines, such as physics, chemistry, or material sciences. We believe that this information may be very useful for the NST scientific community, as it reflects a large-scale analysis of the research lines of NST and how research has changed over time in the diverse areas of NST. This study is moreover intended to offer a useful tool for the NST scientific community, revealing at a glance the main research lines and landmark papers. Finally, the methodology used in this study can be replicated in any other field of science to explore its intellectual and cognitive structure.
Factors Affecting Parent’s Perception on Air Quality—From the Individual to the Community Level
Guo, Yulin; Liu, Fengfeng; Lu, Yuanan; Mao, Zongfu; Lu, Hanson; Wu, Yanyan; Chu, Yuanyuan; Yu, Lichen; Liu, Yisi; Ren, Meng; Li, Na; Chen, Xi; Xiang, Hao
2016-01-01
The perception of air quality significantly affects the acceptance of the public of the government’s environmental policies. The aim of this research is to explore the relationship between the perception of the air quality of parents and scientific monitoring data and to analyze the factors that affect parents’ perceptions. Scientific data of air quality were obtained from Wuhan’s environmental condition reports. One thousand parents were investigated for their knowledge and perception of air quality. Scientific data show that the air quality of Wuhan follows an improving trend in general, while most participants believed that the air quality of Wuhan has deteriorated, which indicates a significant difference between public perception and reality. On the individual level, respondents with an age of 40 or above (40 or above: OR = 3.252; 95% CI: 1.170–9.040), a higher educational level (college and above: OR = 7.598; 95% CI: 2.244–25.732) or children with poor healthy conditions (poor: OR = 6.864; 95% CI: 2.212–21.302) have much more negative perception of air quality. On the community level, industrial facilities, vehicles and city construction have major effects on parents’ perception of air quality. Our investigation provides baseline information for environmental policy researchers and makers regarding the public’s perception and expectation of air quality and the benefits to the environmental policy completing and enforcing. PMID:27187432
Factors Affecting Parent's Perception on Air Quality-From the Individual to the Community Level.
Guo, Yulin; Liu, Fengfeng; Lu, Yuanan; Mao, Zongfu; Lu, Hanson; Wu, Yanyan; Chu, Yuanyuan; Yu, Lichen; Liu, Yisi; Ren, Meng; Li, Na; Chen, Xi; Xiang, Hao
2016-05-12
The perception of air quality significantly affects the acceptance of the public of the government's environmental policies. The aim of this research is to explore the relationship between the perception of the air quality of parents and scientific monitoring data and to analyze the factors that affect parents' perceptions. Scientific data of air quality were obtained from Wuhan's environmental condition reports. One thousand parents were investigated for their knowledge and perception of air quality. Scientific data show that the air quality of Wuhan follows an improving trend in general, while most participants believed that the air quality of Wuhan has deteriorated, which indicates a significant difference between public perception and reality. On the individual level, respondents with an age of 40 or above (40 or above: OR = 3.252; 95% CI: 1.170-9.040), a higher educational level (college and above: OR = 7.598; 95% CI: 2.244-25.732) or children with poor healthy conditions (poor: OR = 6.864; 95% CI: 2.212-21.302) have much more negative perception of air quality. On the community level, industrial facilities, vehicles and city construction have major effects on parents' perception of air quality. Our investigation provides baseline information for environmental policy researchers and makers regarding the public's perception and expectation of air quality and the benefits to the environmental policy completing and enforcing.
NASA Astrophysics Data System (ADS)
Brucato, John Robert
2016-07-01
A mature European planetary exploration program and evolving sample return mission plans gathers the interest of a wider scientific community. The interest is generated from studying extraterrestrial samples in the laborato-ry providing new opportunities to address fundamental issues on the origin and evolution of the Solar System, on the primordial cosmochemistry, and on the nature of the building blocks of terrestrial planets and on the origin of life. Major space agencies are currently planning for missions that will collect samples from a variety of Solar Sys-tem environments, from primitive (carbonaceous) small bodies, from the Moon, Mars and its moons and, final-ly, from icy moons of the outer planets. A dedicated sample return curation facility is seen as an essential re-quirement for the receiving, assessment, characterization and secure preservation of the collected extraterrestrial samples and potentially their safe distribution to the scientific community. EURO-CARES is a European Commission study funded under the Horizon-2020 program. The strategic objec-tive of EURO-CARES is to create a roadmap for the implementation of a European Extraterrestrial Sample Cu-ration Facility. The facility has to provide safe storage and handling of extraterrestrial samples and has to enable the preliminary characterization in order to achieve the required effectiveness and collaborative outcomes for the whole international scientific community. For example, samples returned from Mars could pose a threat on the Earth's biosphere if any living extraterrestrial organism are present in the samples. Thus planetary protection is an essential aspect of all Mars sample return missions that will affect the retrival and transport from the point of return, sample handling, infrastructure methodology and management of a future curation facility. Analysis of the state of the art of Planetary Protection technology shows there are considerable possibilities to define and develop technical and scientific features in a sample return mission and the infrastructural, procedur-al and legal issues that consequently rely on a curation facility. This specialist facility will be designed with con-sideration drawn from highcontainment laboratories and cleanroom facilities to protect the Earth from contami-nation with potential Martian organisms and the samples from Earth contaminations. This kind of integrated facility does not currently exist and this emphasises the need for an innovative design approach with an integrat-ed and multidisciplinary design to enable the ultimate science goals of such exploration. The issues of how the Planetary Protection considerations impact on the system technologies and scientific meaurements, with a final aim to prioritize outstanding technology needs is presented in the framework of sam-ple return study missions and the Horizon-2020 EURO-CARES project.
The ImageJ ecosystem: an open platform for biomedical image analysis
Schindelin, Johannes; Rueden, Curtis T.; Hiner, Mark C.; Eliceiri, Kevin W.
2015-01-01
Technology in microscopy advances rapidly, enabling increasingly affordable, faster, and more precise quantitative biomedical imaging, which necessitates correspondingly more-advanced image processing and analysis techniques. A wide range of software is available – from commercial to academic, special-purpose to Swiss army knife, small to large–but a key characteristic of software that is suitable for scientific inquiry is its accessibility. Open-source software is ideal for scientific endeavors because it can be freely inspected, modified, and redistributed; in particular, the open-software platform ImageJ has had a huge impact on life sciences, and continues to do so. From its inception, ImageJ has grown significantly due largely to being freely available and its vibrant and helpful user community. Scientists as diverse as interested hobbyists, technical assistants, students, scientific staff, and advanced biology researchers use ImageJ on a daily basis, and exchange knowledge via its dedicated mailing list. Uses of ImageJ range from data visualization and teaching to advanced image processing and statistical analysis. The software's extensibility continues to attract biologists at all career stages as well as computer scientists who wish to effectively implement specific image-processing algorithms. In this review, we use the ImageJ project as a case study of how open-source software fosters its suites of software tools, making multitudes of image-analysis technology easily accessible to the scientific community. We specifically explore what makes ImageJ so popular, how it impacts life science, how it inspires other projects, and how it is self-influenced by coevolving projects within the ImageJ ecosystem. PMID:26153368
The ImageJ ecosystem: An open platform for biomedical image analysis.
Schindelin, Johannes; Rueden, Curtis T; Hiner, Mark C; Eliceiri, Kevin W
2015-01-01
Technology in microscopy advances rapidly, enabling increasingly affordable, faster, and more precise quantitative biomedical imaging, which necessitates correspondingly more-advanced image processing and analysis techniques. A wide range of software is available-from commercial to academic, special-purpose to Swiss army knife, small to large-but a key characteristic of software that is suitable for scientific inquiry is its accessibility. Open-source software is ideal for scientific endeavors because it can be freely inspected, modified, and redistributed; in particular, the open-software platform ImageJ has had a huge impact on the life sciences, and continues to do so. From its inception, ImageJ has grown significantly due largely to being freely available and its vibrant and helpful user community. Scientists as diverse as interested hobbyists, technical assistants, students, scientific staff, and advanced biology researchers use ImageJ on a daily basis, and exchange knowledge via its dedicated mailing list. Uses of ImageJ range from data visualization and teaching to advanced image processing and statistical analysis. The software's extensibility continues to attract biologists at all career stages as well as computer scientists who wish to effectively implement specific image-processing algorithms. In this review, we use the ImageJ project as a case study of how open-source software fosters its suites of software tools, making multitudes of image-analysis technology easily accessible to the scientific community. We specifically explore what makes ImageJ so popular, how it impacts the life sciences, how it inspires other projects, and how it is self-influenced by coevolving projects within the ImageJ ecosystem. © 2015 Wiley Periodicals, Inc.
The Polaris Project: Undergraduate Research Catalyzing Advances in Arctic Science
NASA Astrophysics Data System (ADS)
Schade, J. D.; Holmes, R. M.; Natali, S.; Mann, P. J.; Bunn, A. G.; Frey, K. E.
2017-12-01
With guidance and sufficient resources, undergraduates can drive the exploration of new research directions, lead high impact scientific products, and effectively communicate the value of science to the public. As mentors, we must recognize the strong contribution undergraduates make to the advancement of scientific understanding and their unique ability and desire to be transdisciplinary and to translate ideas into action. Our job is to be sure students have the resources and tools to successfully explore questions that they care about, not to provide or lead them towards answers we already have. The central goal of the Polaris Project is to advance understanding of climate change in the Arctic through an integrated research, training, and outreach program that has at its heart a research expedition for undergraduates to a remote field station in the Arctic. Our integrative approach to training provides undergraduates with strong intellectual development and they bring fresh perspectives, creativity, and a unique willingness to take risks on new ideas that have an energizing effect on research and outreach. Since the projects inception in summer 2008, we have had >90 undergraduates participate in high-impact field expeditions and outreach activities. Over the years, we have also been fortunate enough to attract an ethnically, racially, and culturally diverse group of students, including students from Puerto Rico, Hispanic-, African- and Native-Americans, members of the LGBT community, and first-generation college students. Most of these students have since pursued graduate degrees in ecology, and many have received NSF fellowships and Fulbright scholarships. One of our major goals is to increase the diversity of the scientific community, and we have been successful in our short-term goal of recruiting and retaining a diverse group of students. The goal of this presentation is to provide a description of the mentoring model at the heart of the Polaris Project, share narratives to highlight student research and outreach activities, and summarize the impact these experiences have had on our students over the years. We hope that sharing our perspective will spur a wider conversation on the role of a diverse group of undergraduate researchers as catalysts of both scientific advancement and effective communication.
The Research Plan: Closing the ExMC Med02 "Pharmacy" Gap
NASA Technical Reports Server (NTRS)
Daniels, Vernie; Bayuse, Tina; Mulcahy, Robert; Shah, Ronak; Antonsen, Erik
2017-01-01
HRP Human Research Roadmap: Risk and Gap Risk of Adverse Health Outcomes and Decrements in Performance due to Inflight Medical Conditions. Med02 "Pharmacy" Gap: We do not have the capability to provide a safe and effective medication formulary for exploration missions delivering a recommendation for a chemically stable, safe, and effective medication formulary that will support the operational needs of exploration space missions research strategy evidence-based formulary and models innovative analytical tools and methodologies novel treatments and preventive measures Planned review by a panel of experts from the pharmaceutical industry, regulatory, and academic scientific communities Formulary Selection Formulary Potency and Shelf life Formulary Safety and Toxicity Novel Technology Proof-of-Concept Portable real-time chemical analysis Innovative drug development / design
Mathematical models for exploring different aspects of genotoxicity and carcinogenicity databases.
Benigni, R; Giuliani, A
1991-12-01
One great obstacle to understanding and using the information contained in the genotoxicity and carcinogenicity databases is the very size of such databases. Their vastness makes them difficult to read; this leads to inadequate exploitation of the information, which becomes costly in terms of time, labor, and money. In its search for adequate approaches to the problem, the scientific community has, curiously, almost entirely neglected an existent series of very powerful methods of data analysis: the multivariate data analysis techniques. These methods were specifically designed for exploring large data sets. This paper presents the multivariate techniques and reports a number of applications to genotoxicity problems. These studies show how biology and mathematical modeling can be combined and how successful this combination is.
Maximizing Launch Vehicle and Payload Design Via Early Communications
NASA Technical Reports Server (NTRS)
Morris, Bruce
2010-01-01
The United States? current fleet of launch vehicles is largely derived from decades-old designs originally made for payloads that no longer exist. They were built primarily for national security or human exploration missions. Today that fleet can be divided roughly into small-, medium-, and large-payload classes based on mass and volume capability. But no vehicle in the U.S. fleet is designed to accommodate modern payloads. It is usually the payloads that must accommodate the capabilities of the launch vehicles. This is perhaps most true of science payloads. It was this paradigm that the organizers of two weekend workshops in 2008 at NASA's Ames Research Center sought to alter. The workshops brought together designers of NASA's Ares V cargo launch vehicle (CLV) with scientists and payload designers in the astronomy and planetary sciences communities. Ares V was still in a pre-concept development phase as part of NASA?s Constellation Program for exploration beyond low Earth orbit (LEO). The space science community was early in a Decadal Survey that would determine future priorities for research areas, observations, and notional missions to make those observations. The primary purpose of the meetings in April and August of 2008, including the novel format, was to bring vehicle designers together with space scientists to discuss the feasibility of using a heavy lift capability to launch large observatories and explore the Solar System. A key question put to the science community was whether this heavy lift capability enabled or enhanced breakthrough science. The meetings also raised the question of whether some trade-off between mass/volume and technical complexity existed that could reduce technical and programmatic risk. By engaging the scientific community early in the vehicle design process, vehicle engineers sought to better understand potential limitations and requirements that could be added to the Ares V from the mission planning community. From the vehicle standpoint, while the human exploration mission could not be compromised to accommodate other payloads, the design might otherwise be tailored to not exclude other payload requirements. This paper summarizes the findings of the workshops and discusses the benefits of bringing together the vehicle design and science communities early in their concept phases
Zarit, Steven H.; Liu, Yin; Bangerter, Lauren R.; Rovine, Michael J.
2017-01-01
Objectives There is growing emphasis on empirical validation of the efficacy of community-based services for older people and their families, but research on services such as respite care faces methodological challenges that have limited the growth of outcome studies. We identify problems associated with the usual research approaches for studying respite care, with the goal of stimulating use of novel and more appropriate research designs that can lead to improved studies of community-based services. Method Using the concept of research validity, we evaluate the methodological approaches in the current literature on respite services, including adult day services, in-home respite and overnight respite. Results Although randomized control trials (RCTs) are possible in community settings, validity is compromised by practical limitations of randomization and other problems. Quasi-experimental and interrupted time series designs offer comparable validity to RCTs and can be implemented effectively in community settings. Conclusion An emphasis on RCTs by funders and researchers is not supported by scientific evidence. Alternative designs can lead to development of a valid body of research on community services such as respite. PMID:26729467
Zarit, Steven H; Bangerter, Lauren R; Liu, Yin; Rovine, Michael J
2017-03-01
There is growing emphasis on empirical validation of the efficacy of community-based services for older people and their families, but research on services such as respite care faces methodological challenges that have limited the growth of outcome studies. We identify problems associated with the usual research approaches for studying respite care, with the goal of stimulating use of novel and more appropriate research designs that can lead to improved studies of community-based services. Using the concept of research validity, we evaluate the methodological approaches in the current literature on respite services, including adult day services, in-home respite and overnight respite. Although randomized control trials (RCTs) are possible in community settings, validity is compromised by practical limitations of randomization and other problems. Quasi-experimental and interrupted time series designs offer comparable validity to RCTs and can be implemented effectively in community settings. An emphasis on RCTs by funders and researchers is not supported by scientific evidence. Alternative designs can lead to development of a valid body of research on community services such as respite.
Messina, Piero; Vennemann, Dietrich
2005-01-01
After a large consultation with the scientific and industrial communities in Europe, the Aurora Space Exploration Programme was unanimously approved at the European Space Agency (ESA) Council at ministerial level in Edinburgh in 2001. This marked the start of the programme's preparation phase that was due to finish by the end of 2004. Aurora features technology development robotic and crewed rehearsal missions aimed at preparing a human mission to Mars by 2033. Due to the evolving context, both international and European, ESA has undertaken a review of the goals and approach of its exploration programme. While maintaining the main robotic missions that had been conceived during Aurora, the European Space Exploration Programme that is currently being proposed to the Aurora participating states and other ESA Member States has a reviewed approach and will feature a greater synergy with other ESA programmes. The paper will present the process that led to the revision of ESA's plans in the field of exploration and will give the current status of the programme. c2005 Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Benveniste, J.; Regner, P.; Desnos, Y. L.
2015-12-01
The Scientific Exploitation of Operational Mission (SEOM) programme element (http://seom.esa.int/) is part of the ESA's Fourth Earth Observation Envelope Programme (2013-2017). The prime objective is to federate, support and expand the international research community that the ERS, ENVISAT and the Envelope programmes have built up over the last 25 years. It aims to further strengthen the leadership of the European Earth Observation research community by enabling them to extensively exploit future European operational EO missions. SEOM is enabling the science community to address new scientific research that are opened by free and open access to data from operational EO missions. The Programme is based on community-wide recommendations for actions on key research issues, gathered through a series of international thematic workshops and scientific user consultation meetings such as the Sentinel-3 for Science Workshop held last June in Venice, Italy (see http://seom.esa.int/S3forScience2015). The 2015 SEOM work plan includes the launch of new R&D studies for scientific exploitation of the Sentinels, the development of open-source multi-mission scientific toolboxes, the organization of advanced international training courses, summer schools and educational materials, as well as activities for promoting the scientific use of EO data, also via the organization of Workshops. This paper will report the recommendations from the International Scientific Community concerning the Sentinel-3 Scientific Exploitation, as expressed in Venice, keeping in mind that Sentinel-3 is an operational mission to provide operational services (see http://www.copernicus.eu).
NASA Astrophysics Data System (ADS)
Aufdenkampe, A. K.; Mayorga, E.; Horsburgh, J. S.; Lehnert, K. A.; Zaslavsky, I.; Valentine, D. W., Jr.; Richard, S. M.; Cheetham, R.; Meyer, F.; Henry, C.; Berg-Cross, G.; Packman, A. I.; Aronson, E. L.
2014-12-01
Here we present the prototypes of a new scientific software system designed around the new Observations Data Model version 2.0 (ODM2, https://github.com/UCHIC/ODM2) to substantially enhance integration of biological and Geological (BiG) data for Critical Zone (CZ) science. The CZ science community takes as its charge the effort to integrate theory, models and data from the multitude of disciplines collectively studying processes on the Earth's surface. The central scientific challenge of the CZ science community is to develop a "grand unifying theory" of the critical zone through a theory-model-data fusion approach, for which the key missing need is a cyberinfrastructure for seamless 4D visual exploration of the integrated knowledge (data, model outputs and interpolations) from all the bio and geoscience disciplines relevant to critical zone structure and function, similar to today's ability to easily explore historical satellite imagery and photographs of the earth's surface using Google Earth. This project takes the first "BiG" steps toward answering that need. The overall goal of this project is to co-develop with the CZ science and broader community, including natural resource managers and stakeholders, a web-based integration and visualization environment for joint analysis of cross-scale bio and geoscience processes in the critical zone (BiG CZ), spanning experimental and observational designs. We will: (1) Engage the CZ and broader community to co-develop and deploy the BiG CZ software stack; (2) Develop the BiG CZ Portal web application for intuitive, high-performance map-based discovery, visualization, access and publication of data by scientists, resource managers, educators and the general public; (3) Develop the BiG CZ Toolbox to enable cyber-savvy CZ scientists to access BiG CZ Application Programming Interfaces (APIs); and (4) Develop the BiG CZ Central software stack to bridge data systems developed for multiple critical zone domains into a single metadata catalog. The entire BiG CZ Software system is being developed on public repositories as a modular suite of open source software projects. It will be built around a new Observations Data Model Version 2.0 (ODM2) that has been developed by members of the BiG CZ project team, with community input, under separate funding.
30 CFR 251.8 - Inspection and reporting requirements for activities under a permit.
Code of Federal Regulations, 2010 CFR
2010-07-01
... activities. You must allow MMS representatives to inspect your exploration or scientific research activities... final report of exploration or scientific research activities under a permit within 30 days after the... and blocks in which any exploration or permitted scientific research activities were conducted...
Hood, Bernadette; Seedsman, Terence
2004-04-01
This paper explores the psychosocial outcomes for individuals and communities in rural Victoria who experienced the outbreak of Ovine Johne's Disease (OJD). The study uses a qualitative methodology to analyse the minutes of evidence provided by the inquiry into the control of OJD to identify the psychosocial events, experiences and outcomes associated with the control of this outbreak. The inquiry was undertaken by the Environment and Natural Resources Committee of the Victorian State Government. Public hearings were undertaken by the committee across several rural Victorian communities and the state capital, Melbourne. The transcripts detail 136 submissions from 98 individuals and 23 organisations. The analysis aimed to provide insight into the impact of the disease on individuals and communities and also to explore the factors individuals perceived as associated with these outcomes. While the paper identifies that aspects of stock loss associated with the outbreak caused substantial emotional and economic distress, for farmers the most significant finding was the impact of the government control program on individuals, families and rural communities. The control program was perceived as having very limited scientific credibility and its implementation was described as heartless, inflexible and authoritarian. Involvement with the program resulted in farmers reporting emotions, such as, trauma, shame, guilt and stigma. Families became discordant and the sense of community within rural townships fragmented. Psychological outcomes of grief, depression and anxiety emerged as prevalent themes within families and communities. These data highlight the need for significant attention to the management of rural disasters, such as, the OJD program. There is an acknowledgement in the literature that rural disasters have a significant impact on the well-being of individuals, families and communities. The major focus of the previous research has, however, been on the impact of economic losses with less recognition of the other psychosocial loss experiences that accompany the experience of rural disaster. This paper achieves a clear description of the experiences for individuals (trauma, stigma, sense of personal failure, loss of identity, diminished self esteem and family disruption) and communities (destroyed social cohesion, economic disharmony) caught up in the OJD disaster and explores the factors that individuals perceive as responsible for these outcomes. The mental health outcomes for individuals, such as, loss, grief and depression are also explored within this paper. This paper highlights the psychosocial complexity of the experience of rural disaster for individuals and communities significantly extending the current knowledge base in this area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grigoriev, Igor; Glass, N. Louise; Martin, Francis
The U.S. Department of Energy (DOE) Joint Genome Institute (JGI) managed by Lawrence Berkeley National Laboratory, is the only user facility in the world devoted to problems of energy and environment. With over one million species, fungi—which include mushrooms—represent one of the largest under-explored branches of the Tree of Life. Together with its community of more than 1,000 scientific collaborators, JGI helping to unlock the secrets encoded in the genomes of fungi to advance a better understanding of the global carbon cycle and to develop new biotechnology products, next-generation biofuels, and medicines.
International Polar Year (IPY), 2007-2008
,
2007-01-01
The International Polar Year is an intense scientific campaign to explore new frontiers in polar science, improve our understanding of the critical role of the polar regions in global processes, engage the public in polar discovery, and help attract the next generation of earth scientists. Participation in the IPY allows the USGS to celebrate this enduring tradition with the rest of the global polar research community and to renew our commitment to polar science at a time when the world is focused on the extraordinary changes happening in these regions.
NASA Technical Reports Server (NTRS)
Pinelli, Thomas E.; Kennedy, John M.; White, Terry F.
1991-01-01
This project is designed to explore the diffusion of scientific and technical information (STI) throughout the aerospace industry. The increased international competition and cooperation in the industry promises to significantly affect the STI standards of U.S. aerospace engineers and scientists. Therefore, it is important to understand the aerospace knowledge diffusion process itself and its implications at the individual, organizational, national, and international levels. Examined here is the role of STI in the academic aerospace community.
2014-11-03
Bob Richards, co-founder and chief executive officer of Moon Express Inc., of Moffett Field, California, speaks to the media during an event to announce the company's selection to use Kennedy Space Center's facilities as part of NASA's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative. The event took place at Kennedy's automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST.
2014-11-03
CAPE CANAVERAL, Fla. - Tom Engler, deputy director of Center Planning and Development at NASA's Kennedy Space Center in Florida, speaks to members of the media during an event to announce the agency's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative and introduced one of the partners, Moon Express Inc. of Moffett Field, California. The event took place at Kennedy's automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST. Photo credit: NASA/Ben Smegelsky
2014-11-03
CAPE CANAVERAL, Fla. - Greg C. Shavers, Lander Technology director at Marshall Space Flight Center in Alabama, speaks to members of the media during an event to announce the agency's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative and introduced one of the partners, Moon Express Inc. of Moffett Field, California. The event took place at Kennedy's automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST. Photo credit: NASA/Ben Smegelsky
2014-11-03
CAPE CANAVERAL, Fla. - Bob Richards, co-founder and chief executive officer of Moon Express Inc., of Moffett Field, California, speaks to the media during an event to announce the company's selection to use Kennedy Space Center's facilities as part of NASA's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative. The event took place at Kennedy's automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST. Photo credit: NASA/Ben Smegelsky
2014-11-03
Greg C. Shavers, Lander Technology director at Marshall Space Flight Center in Alabama, speaks to members of the media during an event to announce the agency's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative and introduced one of the partners, Moon Express Inc. of Moffett Field, California. The event took place at Kennedy's automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST.
2014-11-03
Rob Mueller, NASA senior technologist in the Surface Systems Office in Kennedy Space Center's Engineering and Technology Directorate, demonstrates the Regolith Advanced Surface System Operations Robot, or RASSOR, during a media event at Kennedy's automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility. The event was held to announce Moon Express Inc., of Moffett Field, California is selected to utilize Kennedy facilities for NASA's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST.
2014-11-03
Tom Engler, deputy director of Center Planning and Development at NASA's Kennedy Space Center in Florida, speaks to members of the media during an event to announce the agency's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative and introduced one of the partners, Moon Express Inc. of Moffett Field, California. The event took place at Kennedy's automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST.
Katzman, Braden; Tang, Doris; Santella, Anthony; Bao, Zhirong
2018-04-04
AceTree, a software application first released in 2006, facilitates exploration, curation and editing of tracked C. elegans nuclei in 4-dimensional (4D) fluorescence microscopy datasets. Since its initial release, AceTree has been continuously used to interact with, edit and interpret C. elegans lineage data. In its 11 year lifetime, AceTree has been periodically updated to meet the technical and research demands of its community of users. This paper presents the newest iteration of AceTree which contains extensive updates, demonstrates the new applicability of AceTree in other developmental contexts, and presents its evolutionary software development paradigm as a viable model for maintaining scientific software. Large scale updates have been made to the user interface for an improved user experience. Tools have been grouped according to functionality and obsolete methods have been removed. Internal requirements have been changed that enable greater flexibility of use both in C. elegans contexts and in other model organisms. Additionally, the original 3-dimensional (3D) viewing window has been completely reimplemented. The new window provides a new suite of tools for data exploration. By responding to technical advancements and research demands, AceTree has remained a useful tool for scientific research for over a decade. The updates made to the codebase have extended AceTree's applicability beyond its initial use in C. elegans and enabled its usage with other model organisms. The evolution of AceTree demonstrates a viable model for maintaining scientific software over long periods of time.
NASA Astrophysics Data System (ADS)
Ward, Tony J.; Delaloye, Naomi; Adams, Earle Raymond; Ware, Desirae; Vanek, Diana; Knuth, Randy; Hester, Carolyn Laurie; Marra, Nancy Noel; Holian, Andrij
2016-04-01
Air Toxics Under the Big Sky is an environmental science outreach/education program that incorporates the Next Generation Science Standards (NGSS) 8 Practices with the goal of promoting knowledge and understanding of authentic scientific research in high school classrooms through air quality research. This research explored: (1) how the program affects student understanding of scientific inquiry and research and (2) how the open-inquiry learning opportunities provided by the program increase student interest in science as a career path. Treatment students received instruction related to air pollution (airborne particulate matter), associated health concerns, and training on how to operate air quality testing equipment. They then participated in a yearlong scientific research project in which they developed and tested hypotheses through research of their own design regarding the sources and concentrations of air pollution in their homes and communities. Results from an external evaluation revealed that treatment students developed a deeper understanding of scientific research than did comparison students, as measured by their ability to generate good hypotheses and research designs, and equally expressed an increased interest in pursuing a career in science. These results emphasize the value of and need for authentic science learning opportunities in the modern science classroom.
NASA Astrophysics Data System (ADS)
Herbert, B. E.; Schielack, J. F.
2004-12-01
Teachers immersed in authentic science inquiry in professional development programs, with the goal of transferring the nature of scientific research to the classroom, face two enormous problems: (1) issues surrounding the required knowledgebase, skills set, and habits of mind of the teachers that control, to a large degree, the ability of teachers to immerse themselves in authentic scientific research in the available time, and (2) the difficulties in transferring this experience to the classroom. Most professional development programs utilize one of two design models, the first limits the authenticity of the scientific experience while placing more emphasis on pedagogical issues, and second where teachers are immersed in scientific research, often through mentoring programs with scientists, but with less explicit attention to problems of transfer to the classroom. The ITS Center for Teaching and Learning (its.tamu.edu), a five-year NSF-funded collaborative program that engages scientists, educational researchers, and educators in the use of information technology to improve science teaching and learning at all levels, has developed a model that supports teachers' learning about authentic scientific research, pedagogical training in inquiry-based learning, and educational research in their own classrooms on the impacts of using information technology to promote authentic science experiences for their students. This connection is achieved through scaffolding by information technology that supports the modeling, visualization and exploration of complex data sets to explore authentic scientific questions that can be integrated within the 7-16 curriculum. Our professional development model constitutes a Learning Research Cycle, which is characterized as a seamless continuum of inquiry activities and prolonged engagement in a learning community of educators, scientists, and mathematicians centered on the development of teachers' pedagogical content knowledge as it relates to the use of information technology in doing, learning, and teaching science. This talk will explore the design changes of the geoscience team of the ITS as it moved from Phase I (the planned program designed in-house) to Phase II (the experimental program being tested in-house) over two, two-year cohorts. We have assessed the impact of our Learning Research Cycle model on ITS participants using both a mixed model assessment of learning products, surveys, interviews, and teacher inquiry projects. Assessment results indicate that teachers involved in the second cohort improved their understanding of geoscience and inquiry-based learning, while improving their ability to establish authentic inquiry in their classrooms through the use of information technology and to assess student learning.
The configuration of the Brazilian scientific field.
Barata, Rita B; Aragão, Erika; de Sousa, Luis E P Fernandes; Santana, Taris M; Barreto, Mauricio L
2014-03-01
This article describes the configuration of the scientific field in Brazil, characterizing the scientific communities in every major area of knowledge in terms of installed capacity, ability to train new researchers, and capacity for academic production. Empirical data from several sources of information are used to characterize the different communities. Articulating the theoretical contributions of Pierre Bourdieu, Ludwik Fleck, and Thomas Kuhn, the following types of capital are analyzed for each community: social capital (scientific prestige), symbolic capital (dominant paradigm), political capital (leadership in S & T policy), and economic capital (resources). Scientific prestige is analyzed by taking into account the volume of production, activity index, citations, and other indicators. To characterize symbolic capital, the dominant paradigms that distinguish the natural sciences, the humanities, applied sciences, and technology development are analyzed theoretically. Political capital is measured by presidency in one of the main agencies in the S & T national system, and research resources and fellowships define the economic capital. The article discusses the composition of these different types of capital and their correspondence to structural capacities in various communities with the aim of describing the configuration of the Brazilian scientific field.
2017-12-08
Great Barrier Reef - August 8th, 1999 Description: What might be mistaken for dinosaur bones being unearthed at a paleontological dig are some of the individual reefs that make up the Great Barrier Reef, the world's largest tropical coral reef system. The reef stretches more than 2,000 kilometers (1,240 miles) along the coast of Queensland, Australia. It supports astoundingly complex and diverse communities of marine life and is the largest structure on the planet built by living organisms. Credit: USGS/NASA/Landsat 7 To learn more about the Landsat satellite go to: landsat.gsfc.nasa.gov/ NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook
Nanomedicines: addressing the scientific and regulatory gap.
Tinkle, Sally; McNeil, Scott E; Mühlebach, Stefan; Bawa, Raj; Borchard, Gerrit; Barenholz, Yechezkel Chezy; Tamarkin, Lawrence; Desai, Neil
2014-04-01
Nanomedicine is the application of nanotechnology to the discipline of medicine: the use of nanoscale materials for the diagnosis, monitoring, control, prevention, and treatment of disease. Nanomedicine holds tremendous promise to revolutionize medicine across disciplines and specialties, but this promise has yet to be fully realized. Beyond the typical complications associated with drug development, the fundamentally different and novel physical and chemical properties of some nanomaterials compared to materials on a larger scale (i.e., their bulk counterparts) can create a unique set of opportunities as well as safety concerns, which have only begun to be explored. As the research community continues to investigate nanomedicines, their efficacy, and the associated safety issues, it is critical to work to close the scientific and regulatory gaps to assure that nanomedicine drives the next generation of biomedical innovation. © 2014 New York Academy of Sciences.
Cost to Set up Common Languages
NASA Astrophysics Data System (ADS)
Latora, Vito
Complexity is a highly interdisciplinary science. Although there are drawbacks for researchers to work at the interface of different fields, such as the cost to set up common languages, and the risks associated with not being recognized by any of the well-established scientific communities, some of my recent work indicates that interdisciplinarity can be extremely rewarding. Drawing on large data sets on scientific production during several decades, we have shown that highly interdisciplinary scholars can outperform specialized ones, and that scientists can enhance their performance by seeking collaborators with expertise in various fields. My vision for complexity is based on the added value of its interdisciplinary nature. I list below three research directions that I am personally eager to explore, and that I think will be among the main challenges of complexity in the next 10 years...
Mars scientific investigations as a precursor for human exploration.
Ahlf, P; Cantwell, E; Ostrach, L; Pline, A
2000-01-01
In the past two years, NASA has begun to develop and implement plans for investigations on robotic Mars missions which are focused toward returning data critical for planning human missions to Mars. The Mars Surveyor Program 2001 Orbiter and Lander missions will mark the first time that experiments dedicated to preparation for human exploration will be carried out. Investigations on these missions and future missions range from characterization of the physical and chemical environment of Mars, to predicting the response of biology to the Mars environment. Planning for such missions must take into account existing data from previous Mars missions which were not necessarily focused on human exploration preparation. At the same time, plans for near term missions by the international community must be considered to avoid duplication of effort. This paper reviews data requirements for human exploration and applicability of existing data. It will also describe current plans for investigations and place them within the context of related international activities. c 2000 International Astronautical Federation. Published by Elsevier Science Ltd. All rights reserved.
Low-Latency Telerobotics from Mars Orbit: The Case for Synergy Between Science and Human Exploration
NASA Technical Reports Server (NTRS)
Valinia, A.; Garvin, J. B.; Vondrak, R.; Thronson, H.; Lester, D.; Schmidt, G.; Fong, T.; Wilcox, B.; Sellers, P.; White, N.
2012-01-01
Initial, science-directed human exploration of Mars will benefit from capabilities in which human explorers remain in orbit to control telerobotic systems on the surface (Figure 1). Low-latency, high-bandwidth telerobotics (LLT) from Mars orbit offers opportunities for what the terrestrial robotics community considers to be high-quality telepresence. Such telepresence would provide high quality sensory perception and situation awareness, and even capabilities for dexterous manipulation as required for adaptive, informed selection of scientific samples [1]. Astronauts on orbit in close communication proximity to a surface exploration site (in order to minimize communication latency) represent a capability that would extend human cognition to Mars (and potentially for other bodies such as asteroids, Venus, the Moon, etc.) without the challenges, expense, and risk of putting those humans on hazardous surfaces or within deep gravity wells. Such a strategy may be consistent with goals for a human space flight program that, are currently being developed within NASA.
Mars scientific investigations as a precursor for human exploration
NASA Technical Reports Server (NTRS)
Ahlf, P.; Cantwell, E.; Ostrach, L.; Pline, A.
2000-01-01
In the past two years, NASA has begun to develop and implement plans for investigations on robotic Mars missions which are focused toward returning data critical for planning human missions to Mars. The Mars Surveyor Program 2001 Orbiter and Lander missions will mark the first time that experiments dedicated to preparation for human exploration will be carried out. Investigations on these missions and future missions range from characterization of the physical and chemical environment of Mars, to predicting the response of biology to the Mars environment. Planning for such missions must take into account existing data from previous Mars missions which were not necessarily focused on human exploration preparation. At the same time, plans for near term missions by the international community must be considered to avoid duplication of effort. This paper reviews data requirements for human exploration and applicability of existing data. It will also describe current plans for investigations and place them within the context of related international activities. c 2000 International Astronautical Federation. Published by Elsevier Science Ltd. All rights reserved.
A quick guide for building a successful bioinformatics community.
Budd, Aidan; Corpas, Manuel; Brazas, Michelle D; Fuller, Jonathan C; Goecks, Jeremy; Mulder, Nicola J; Michaut, Magali; Ouellette, B F Francis; Pawlik, Aleksandra; Blomberg, Niklas
2015-02-01
"Scientific community" refers to a group of people collaborating together on scientific-research-related activities who also share common goals, interests, and values. Such communities play a key role in many bioinformatics activities. Communities may be linked to a specific location or institute, or involve people working at many different institutions and locations. Education and training is typically an important component of these communities, providing a valuable context in which to develop skills and expertise, while also strengthening links and relationships within the community. Scientific communities facilitate: (i) the exchange and development of ideas and expertise; (ii) career development; (iii) coordinated funding activities; (iv) interactions and engagement with professionals from other fields; and (v) other activities beneficial to individual participants, communities, and the scientific field as a whole. It is thus beneficial at many different levels to understand the general features of successful, high-impact bioinformatics communities; how individual participants can contribute to the success of these communities; and the role of education and training within these communities. We present here a quick guide to building and maintaining a successful, high-impact bioinformatics community, along with an overview of the general benefits of participating in such communities. This article grew out of contributions made by organizers, presenters, panelists, and other participants of the ISMB/ECCB 2013 workshop "The 'How To Guide' for Establishing a Successful Bioinformatics Network" at the 21st Annual International Conference on Intelligent Systems for Molecular Biology (ISMB) and the 12th European Conference on Computational Biology (ECCB).
Geissler, P Wenzel; Kelly, Ann; Imoukhuede, Babatunde; Pool, Robert
2008-09-01
This paper explores social relations within the 'trial community' (staff and volunteers) of a Malaria Vaccine Trial (MVT), implemented by the Medical Research Council (MRC) in The Gambia between 2001 and 2004. It situates ethical concerns with medical research within the everyday life of scientific fieldwork. Based upon discussions with volunteers and staff, we explore processes of mediation between scientific project and study population, and between formal ethics, local ethical debates and everyday practice. We observe that material contact and substantial transactions, notably of blood and medicine, are central to the construction of the MVT. These transactions are guided by a concrete and relational form of ethics, which contrasts with the abstract and vertical formal ethical principles underwriting the scientific study protocol. The success of the MVT owed much to these kinship-like ethics. One possible conclusion from these observations is that research ethics should be understood, not just as a quasi-legal frame but also as an open, searching movement, much in the same way that kinship is not merely a juridical institution and a prescriptive frame of rules, but a network made through relational work. However, this conclusion raises new problems: by contrasting formal, abstract principles to intimate, immediate relations, and economic justice to personal morality, we accept that the order of medical research is moved further out of the public and political, and into the domains of either quasi-legal claims or of private morality. Irrespective of the undeniable importance of clear-cut rules and of good face-to-face relations, a third essential foundation of medical research ethics is the democratically constituted public sphere, including equitable health services, and transparent institutions to facilitate open debate and regulate particular interests. Ultimately, the ethics of global science can rely neither on principles nor trust but requires citizenship and democratic government.
Ahmed, Syed M; Nelson, David; Kissack, Anne; Franco, Zeno; Whittle, Jeff; Kotchen, Theodore; Meurer, John R; Morzinski, Jeffrey; Brandenburg, Terry
2015-04-01
A major national priority is establishing an effective infrastructure for translation of scientific discoveries into the community. Knowledge and practice continue to accelerate in health research yet healthcare recommendation adoption remains slow for practitioners, patients, and communities. Two areas of research placed in the later stages of the translational research spectrum, Community Engagement in Research and Comparative Effectiveness Research, are ideal for approaching this challenge collaboratively. The Clinical and Translational Science Institute of Southeastern Wisconsin convened academics and community-based organizations familiar with these fields of research in a 1-day workshop to establish an initial dialogue on similarities and differences with a goal of exploring ways to operationalize a collective effort. Participants represented four academic institutions and twelve other healthcare and community-based service organizations. Primary fields of study included community engaged research, comparative effectiveness research, psychology, clinical research, administration, nursing, public health, education, and other professionals. This initial report outlines the results of this diverse discussion and provides insights into the priorities, diverging issues, and areas for future examination and practice. Key discoveries reveal clear crosscutting issues, value in philosophical and provocative discussions among investigators, a need for practice and lessons learned, and bidirectional exchange with community representation. © 2014 Wiley Periodicals, Inc.
Novel Scientific Visualization Interfaces for Interactive Information Visualization and Sharing
NASA Astrophysics Data System (ADS)
Demir, I.; Krajewski, W. F.
2012-12-01
As geoscientists are confronted with increasingly massive datasets from environmental observations to simulations, one of the biggest challenges is having the right tools to gain scientific insight from the data and communicate the understanding to stakeholders. Recent developments in web technologies make it easy to manage, visualize and share large data sets with general public. Novel visualization techniques and dynamic user interfaces allow users to interact with data, and modify the parameters to create custom views of the data to gain insight from simulations and environmental observations. This requires developing new data models and intelligent knowledge discovery techniques to explore and extract information from complex computational simulations or large data repositories. Scientific visualization will be an increasingly important component to build comprehensive environmental information platforms. This presentation provides an overview of the trends and challenges in the field of scientific visualization, and demonstrates information visualization and communication tools in the Iowa Flood Information System (IFIS), developed within the light of these challenges. The IFIS is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to and visualization of flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, and other flood-related data for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and rainfall conditions are available in the IFIS. 2D and 3D interactive visualizations in the IFIS make the data more understandable to general public. Users are able to filter data sources for their communities and selected rivers. The data and information on IFIS is also accessible through web services and mobile applications. The IFIS is optimized for various browsers and screen sizes to provide access through multiple platforms including tablets and mobile devices. Multiple view modes in the IFIS accommodate different user types from general public to researchers and decision makers by providing different level of tools and details. River view mode allows users to visualize data from multiple IFC bridge sensors and USGS stream gauges to follow flooding condition along a river. The IFIS will help communities make better-informed decisions on the occurrence of floods, and will alert communities in advance to help minimize damage of floods.
Global artificial photosynthesis project: a scientific and legal introduction.
Faunce, Thomas
2011-12-01
With the global human population set to exceed 10 billion by 2050, its collective energy consumption to rise from 400 to over 500 EJ/yr and with the natural environment under increasing pressure from these sources as well as from anthropogenic climate change, political solutions such as the creation of an efficient carbon price and trading scheme may arrive too late. In this context, the scientific community is exploring technological remedies. Central to these options is artificial photosynthesis--the creation, particularly through nanotechnology, of devices capable to doing what plants have done for millions of years - transforming sunlight, water and carbon dioxide into food and fuel. This article argues that a Global Artificial Photosynthesis (GAP) project can raise the public profile and encourage the pace, complexity and funding of scientific collaborations in artificial photosynthesis research. The legal structure of a GAP project will be critical to prevent issues such as state sovereignty over energy and food resources and corporate intellectual monopoly privileges unduly inhibiting the important contribution of artificial photosynthesis to global public health and environmental sustainability. The article presents an introduction to the scientific and legal concepts behind a GAP project.
Lunar Exploration and Science in ESA
NASA Astrophysics Data System (ADS)
Carpenter, J.; Houdou, B.; Fisackerly, R.; De Rosa, D.; Patti, B.; Schiemann, J.; Hufenbach, B.; Foing, B.
2014-04-01
ESA seeks to provide Europe with access to the lunar surface, and allow Europeans to benefit from the opening up of this new frontier, as part of a global endeavor. This will be best achieved through an exploration programme which combines the strengths and capabilities of both robotic and human explorers. ESA is preparing for future participation in lunar exploration through a combination of human and robotic activities, in cooperation with international partners. Future planned activities include the contribution of key technological capabilities to the Russian led robotic missions, Luna-Glob, Luna-Resurs orbiter and Luna-Resurs lander. For the Luna-Resurs lander ESA will provide analytical capabilities to compliment the already selected Russian led payload, focusing on the composition and isotopic abundances of lunar volatiles in polar regions. This should be followed by the contributions at the level of mission elements to a Lunar Polar Sample Return mission. This partnership will provide access for European investigators to the opportunities offered by the Russian led instruments on the missions, as well as providing Europe with a unique opportunity to characterize and utilize polar volatile populations. Ultimately samples of high scientific value, from as of yet unexplored and unsampled locations shall be made available to the scientific community. These robotic activities are being performed with a view to enabling a future more comprehensive programme in which robotic and human activities are integrated to provide the maximum benefits from lunar surface access. Activities on the ISS and ESA participation to the US led Multi-Purpose Crew Vehicle, which is planned for a first unmanned lunar flight in 2017, are also important steps towards achieving this. All of these activities are performed with a view to generating the technologies, capabilities, knowledge and heritage that will make Europe an indispensible partner in the exploration missions of the future. We report on the current status of the European elements in this cooperative scenario, with an emphasis on the investigations to be performed at the lunar surface. These investigations should generate knowledge that can be enabling for exploration in the future, and should also have a significant fundamental scientific return.
Lunar Exploration and Science Opportunities in ESA
NASA Astrophysics Data System (ADS)
Carpenter, J.; Houdou, B.; Fisackerly, R.; De Rosa, D.; Schiemann, J.; Patti, B.; Foing, B.
2014-04-01
ESA seeks to provide Europe with access to the lunar surface, and allow Europeans to benefit from the opening up of this new frontier, as part of a global endeavour. This will be best achieved through an exploration programme which combines the strengths and capabilities of both robotic and human explorers. ESA is preparing for future participation in lunar exploration through a combination of human and robotic activities, in cooperation with international partners. Future planned activities include the contribution of key technological capabilities to the Russian led robotic missions, Luna-Glob, Luna-Resurs orbiter and Luna-Resurs lander. For the Luna-Resurs lander ESA will provide analytical capabilities to compliment the already selected Russian led payload, focusing on the composition and isotopic abundances of lunar volatiles in polar regions. This should be followed by the contributions at the level of mission elements to a Lunar Polar Sample Return mission. This partnership will provide access for European investigators to the opportunities offered by the Russian led instruments on the missions, as well as providing Europe with a unique opportunity to characterize and utilize polar volatile populations. Ultimately samples of high scientific value, from as of yet unexplored and unsampled locations shall be made available to the scientific community. These robotic activities are being performed with a view to enabling a future more comprehensive programme in which robotic and human activities are integrated to provide the maximum benefits from lunar surface access. Activities on the ISS and ESA participation to the US led Multi-Purpose Crew Vehicle, which is planned for a first unmanned lunar flight in 2017, are also important steps towards achieving this. All of these activities are performed with a view to generating the technologies, capabilities, knowledge and heritage that will make Europe an indispensible partner in the exploration missions of the future. We report on the current status of the European elements in this cooperative scenario, with an emphasis on the investigations to be performed at the lunar surface. These investigations should generate knowledge that can be enabling for exploration in the future, and should also have a significant fundamental scientific return.
Drinking policies and exercise-associated hyponatraemia: is anyone still promoting overdrinking?
Beltrami, F G; Hew-Butler, T; Noakes, T D
2008-10-01
The purpose of this review is to describe the evolution of hydration research and advice on drinking during exercise from published scientific papers, books and non-scientific material (advertisements and magazine contents) and detail how erroneous advice is likely propagated throughout the global sports medicine community. Hydration advice from sports-linked entities, the scientific community, exercise physiology textbooks and non-scientific sources was analysed historically and compared with the most recent scientific evidence. Drinking policies during exercise have changed substantially throughout history. Since the mid-1990s, however, there has been an increase in the promotion of overdrinking by athletes. While the scientific community is slowly moving away from "blanket" hydration advice in which one form of advice fits all and towards more modest, individualised, hydration guidelines in which thirst is recognised as the best physiological indicator of each subject's fluid needs during exercise, marketing departments of the global sports drink industry continue to promote overdrinking.
U.S. Geological Survey scientific activities in the exploration of Antarctica: 1995-96 field season
Meunier, Tony K.; Williams, Richard S.; Ferrigno, Jane G.
2007-01-01
The U.S. Geological Survey (USGS) mapping program in Antarctica is one of the longest continuously funded projects in the United States Antarctic Program (USAP). This is the 46th U.S. expedition to Antarctica in which USGS scientists have participated. The financial support from the National Science Foundation, which extends back to the time of the International Geophysical Year (IGY) in 1956-57, can be attributed to the need for accurate maps of specific field areas or regions where NSF-funded science projects were planned. The epoch of Antarctic exploration during the IGY was being driven by science and, in a spirit of peaceful cooperation, the international scientific community wanted to limit military activities on the continent to logistical support. The USGS, a Federal civilian science agency in the Department of the Interior, had, since its founding in 1879, carried out numerous field-based national (and some international) programs in biology, geology, hydrology, and mapping. Therefore, the USGS was the obvious choice for these tasks, because it already had a professional staff of experienced mapmakers and program managers with the foresight, dedication, and understanding of the need for accurate maps to support the science programs in Antarctica when asked to do so by the U.S. National Academy of Sciences. Public Laws 85-743 and 87-626, signed in August 1958 and in September 1962, respectively, authorized the Secretary, U.S. Department of the Interior, through the USGS, to support mapping and scientific work in Antarctica. The USGS mapping and science programs still play a significant role in the advancement of science in Antarctica today. Antarctica is the planet's 5th largest continent (13.2 million km2 (5.1 million mi2)), it contains the world's largest (of two) remaining ice sheet, and it is considered to be one of the most important scientific laboratories on Earth. This report provides documentation of USGS scientific activities in the exploration of Antarctica during the 1995-96 field season (Mullins and Meunier, 1995).
U.S. Geological Survey scientific activities in the exploration of Antarctica: 2002-03 field season
Meunier, Tony K.; Williams, Richard S.; Ferrigno, Jane G.
2007-01-01
The U.S. Geological Survey (USGS) mapping program in Antarctica is one of the longest continuously funded projects in the United States Antarctic Program (USAP). This is the 53rd U.S. expedition to Antarctica in which USGS scientists have participated. The financial support from the National Science Foundation, which extends back to the time of the International Geophysical Year (IGY) in 1956–57, can be attributed to the need for accurate maps of specific field areas or regions where NSF-funded science projects were planned. The epoch of Antarctic exploration during the IGY was being driven by science, and, in a spirit of peaceful cooperation, the international scientific community wanted to limit military activities on the continent to logistical support. The USGS, a Federal civilian science agency in the Department of the Interior, had, since its founding in 1879, carried out numerous field-based national (and some international) programs in biology, geology, hydrology, and mapping. Therefore, the USGS was the obvious choice for these tasks, because it already had a professional staff of experienced mapmakers and program managers with the foresight, dedication, and understanding of the need for accurate maps to support the science programs in Antarctica when asked to do so by the U.S. National Academy of Sciences. Public Laws 85-743 and 87-626, signed in August 1958 and in September 1962, respectively, authorized the Secretary, U.S. Department of the Interior, through the USGS, to support mapping and scientific work in Antarctica. The USGS mapping and science programs still play a significant role in the advancement of science in Antarctica today. Antarctica is the planet's 5th largest continent [13.2 million km2 (5.1 million mi2)], it contains the world's largest (of two) remaining ice sheets, and it is considered to be one of the most important scientific laboratories on Earth. This report provides documentation of USGS scientific activities in the exploration of Antarctica during the 2002–03 field season (Mullins, 2002).
ESO and Chile: 10 Years of Productive Scientific Collaboration
NASA Astrophysics Data System (ADS)
2006-06-01
ESO and the Government of Chile launched today the book "10 Years Exploring the Universe", written by the beneficiaries of the ESO-Chile Joint Committee. This annual fund provides grants for individual Chilean scientists, research infrastructures, scientific congresses, workshops for science teachers and astronomy outreach programmes for the public. In a ceremony held in Santiago on 19 June 2006, the European Organisation for Astronomical Research in the Southern Hemisphere (ESO) and the Chilean Ministry of Foreign Affairs marked the 10th Anniversary of the Supplementary Agreement, which granted to Chilean astronomers up to 10 percent of the total observing time on ESO telescopes. This agreement also established an annual fund for the development of astronomy, managed by the so-called "ESO-Chile Joint Committee". ESO PR Photo 21/06 ESO PR Photo 21/06 Ten Years ESO-Chile Agreement Ceremony The celebration event was hosted by ESO Director General, Dr. Catherine Cesarsky, and the Director of Special Policy for the Chilean Ministry of Foreign Affairs, Ambassador Luis Winter. "ESO's commitment is, and always will be, to promote astronomy and scientific knowledge in the country hosting our observatories", said ESO Director General, Dr. Catherine Cesarsky. "We hope Chile and Europe will continue with great achievements in this fascinating joint adventure, the exploration of the universe." On behalf of the Government of Chile, Ambassador Luis Winter outlined the historical importance of the Supplementary Agreement, ratified by the Chilean Congress in 1996. "Such is the magnitude of ESO-Chile Joint Committee that, only in 2005, this annual fund represented 8 percent of all financing sources for Chilean astronomy, including those from Government and universities", Ambassador Winter said. The ESO Representative and Head of Science in Chile, Dr. Felix Mirabel, and the appointed Chilean astronomer for the ESO-Chile Joint Committee, Dr. Leonardo Bronfman, also took part in the ceremony, along with ambassadors in Chile of ESO members States, and representatives of the Chilean government and the scientific community. To review the impact of the numerous projects financed over the last decade, ESO presented the book "10 Years Exploring the Universe", based on the reports of the beneficiaries of the ESO-Chile fund. Since the beginning, the ESO-Chile fund has granted over 2.5 million euros to finance post-doc and astronomy professors for main Chilean universities, development of research infrastructure, organisation of scientific congresses, workshops for science teachers, and astronomy outreach programmes for the public. In addition to the 400,000 euros given annually by ESO to the ESO-Chile Joint Committee, around 550,000 euros are granted every year to finance regional collaboration programmes, fellowships for students in Chilean universities, and the development of radio astronomy through the ALMA-Chile Committee. In total, apart form the 10 percent of the observing time at all ESO telescopes, ESO contributes annually with 950,000 euros for the promotion of astronomy and scientific culture in Chile. The growth of astronomy and related sciences in Chile in the last years has been outstanding. According to a study by the Chilean Academy of Science in 2005, the number of astronomers has doubled over the last 20 years and there has been an 8-fold increase in the number of scientific publications. It is gratifying to see that 100 percent of the observing time granted by international observatories in Chile is actually used by the national community. The same study stated that astronomy could be the first scientific discipline in Chile with the standards of a developed country, with additional benefits in terms of technological improvement and growth of human resources. The English edition of the book "10 Years Exploring the Universe" is available here. The Spanish edition can be downloaded here.
Local Knowledge and Conservation of Seagrasses in the Tamil Nadu State of India
2011-01-01
Local knowledge systems are not considered in the conservation of fragile seagrass marine ecosystems. In fact, little is known about the utility of seagrasses in local coastal communities. This is intriguing given that some local communities rely on seagrasses to sustain their livelihoods and have relocated their villages to areas with a rich diversity and abundance of seagrasses. The purpose of this study is to assist in conservation efforts regarding seagrasses through identifying Traditional Ecological Knowledge (TEK) from local knowledge systems of seagrasses from 40 coastal communities along the eastern coast of India. We explore the assemblage of scientific and local traditional knowledge concerning the 1. classification of seagrasses (comparing scientific and traditional classification systems), 2. utility of seagrasses, 3. Traditional Ecological Knowledge (TEK) of seagrasses, and 4. current conservation efforts for seagrass ecosystems. Our results indicate that local knowledge systems consist of a complex classification of seagrass diversity that considers the role of seagrasses in the marine ecosystem. This fine-scaled ethno-classification gives rise to five times the number of taxa (10 species = 50 local ethnotaxa), each with a unique role in the ecosystem and utility within coastal communities, including the use of seagrasses for medicine (e.g., treatment of heart conditions, seasickness, etc.), food (nutritious seeds), fertilizer (nutrient rich biomass) and livestock feed (goats and sheep). Local communities are concerned about the loss of seagrass diversity and have considerable local knowledge that is valuable for conservation and restoration plans. This study serves as a case study example of the depth and breadth of local knowledge systems for a particular ecosystem that is in peril. Key words: local health and nutrition, traditional ecological knowledge (TEK), conservation and natural resources management, consensus, ethnomedicine, ethnotaxa, cultural heritage PMID:22112297
NASA Astrophysics Data System (ADS)
Ortega-Rodríguez, M.; Solís-Sánchez, H.; Boza-Oviedo, E.; Chaves-Cruz, K.; Guevara-Bertsch, M.; Quirós-Rojas, M.; Vargas-Hernández, S.; Venegas-Li, A.
2017-04-01
We assess the scientific value of Oppenheimer's research on black holes in order to explain its neglect by the scientific community, and even by Oppenheimer himself. Looking closely at the scientific culture and conceptual belief system of the 1930s, the present article seeks to supplement the existing literature by enriching the explanations and complicating the guiding questions. We suggest a rereading of Oppenheimer as a figure both more intriguing for the history of astrophysics and further ahead of his time than is commonly supposed.
Deciding to opt out of childhood vaccination mandates.
Gullion, Jessica Smartt; Henry, Lisa; Gullion, Greg
2008-01-01
We explore the attitudes and beliefs of parents who consciously choose not to vaccinate their children and the ways in which these parents process information on the pros and cons of vaccines. In-depth, semistructured interviews were conducted. The study population consisted of 25 parents who do not vaccinate their children, identified through snowball and targeted sampling. Participants were asked about their processes and actions when choosing not to vaccinate their children. Interviews were taped and transcribed, and the content was analyzed for emergent themes. Two predominant themes emerged in our data: a desire to collect information on vaccines and trust issues with the medical community. Evidence of sophisticated data collection and information processing was a repeated theme in the interview data. Simultaneously, while participants placed a high value on scientific knowledge, they also expressed high levels of distrust of the medical community. The challenge for public health is to balance scientific data with popular epidemiology and to maintain legitimacy. Understanding the differences in lay versus expert knowledge has implications for crafting health messages. How experts frame knowledge for consumption has an important impact on this group and their decision-making processes.
Implications of sustainability for the United States light-duty transportation sector
Gearhart, Chris
2016-08-08
This article reviews existing literature to assess the consensus of the scientific and engineering communities concerning the potential for the United States’ light-duty transportation sector to meet a goal of 80% reduction in vehicle emissions and examine what it will take to meet this target. Climate change is a problem that must be solved. The primary cause of this problem is burning of fossil fuels to generate energy. A dramatic reduction in carbon emissions must happen soon, and a significant fraction of this reduction must come from the transportation sector. This paper reviews existing literature to assess the consensus ofmore » the scientific and engineering communities concerning the potential for the United States' light-duty transportation sector to meet a goal of 80% reduction in vehicle emissions and examine what it will take to meet this target. It is unlikely that reducing energy consumption in just vehicles with gasoline-based internal combustion drivetrains will be sufficient to meet GHG emission-reduction targets. This paper explores what additional benefits are possible through the adoption of alternative energy sources, looking at three possible on-vehicle energy carriers: carbon-based fuels, hydrogen, and batteries.« less
Gilbert, Frédéric; Ovadia, Daniela
2011-01-01
Deep brain stimulation (DBS) is optimistically portrayed in contemporary media. This already happened with psychosurgery during the first half of the twentieth century. The tendency of popular media to hype the benefits of DBS therapies, without equally highlighting risks, fosters public expectations also due to the lack of ethical analysis in the scientific literature. Media are not expected (and often not prepared) to raise the ethical issues which remain unaddressed by the scientific community. To obtain a more objective portrayal of DBS in the media, a deeper collaboration between the science community and journalists, and particularly specialized ones, must be promoted. Access to databases and articles, directly or through science media centers, has also been proven effective in increasing the quality of reporting. This article has three main objectives. Firstly, to explore the past media coverage of leukotomy, and to examine its widespread acceptance and the neglect of ethical issues in its depiction. Secondly, to describe how current enthusiastic coverage of DBS causes excessive optimism and neglect of ethical issues in patients. Thirdly, to discuss communication models and strategies to enhance media and science responsibility.
Gilbert, Frédéric; Ovadia, Daniela
2011-01-01
Deep brain stimulation (DBS) is optimistically portrayed in contemporary media. This already happened with psychosurgery during the first half of the twentieth century. The tendency of popular media to hype the benefits of DBS therapies, without equally highlighting risks, fosters public expectations also due to the lack of ethical analysis in the scientific literature. Media are not expected (and often not prepared) to raise the ethical issues which remain unaddressed by the scientific community. To obtain a more objective portrayal of DBS in the media, a deeper collaboration between the science community and journalists, and particularly specialized ones, must be promoted. Access to databases and articles, directly or through science media centers, has also been proven effective in increasing the quality of reporting. This article has three main objectives. Firstly, to explore the past media coverage of leukotomy, and to examine its widespread acceptance and the neglect of ethical issues in its depiction. Secondly, to describe how current enthusiastic coverage of DBS causes excessive optimism and neglect of ethical issues in patients. Thirdly, to discuss communication models and strategies to enhance media and science responsibility. PMID:21617733
Echo Chambers: Emotional Contagion and Group Polarization on Facebook
NASA Astrophysics Data System (ADS)
Del Vicario, Michela; Vivaldo, Gianna; Bessi, Alessandro; Zollo, Fabiana; Scala, Antonio; Caldarelli, Guido; Quattrociocchi, Walter
2016-12-01
Recent findings showed that users on Facebook tend to select information that adhere to their system of beliefs and to form polarized groups - i.e., echo chambers. Such a tendency dominates information cascades and might affect public debates on social relevant issues. In this work we explore the structural evolution of communities of interest by accounting for users emotions and engagement. Focusing on the Facebook pages reporting on scientific and conspiracy content, we characterize the evolution of the size of the two communities by fitting daily resolution data with three growth models - i.e. the Gompertz model, the Logistic model, and the Log-logistic model. Although all the models appropriately describe the data structure, the Logistic one shows the best fit. Then, we explore the interplay between emotional state and engagement of users in the group dynamics. Our findings show that communities’ emotional behavior is affected by the users’ involvement inside the echo chamber. Indeed, to an higher involvement corresponds a more negative approach. Moreover, we observe that, on average, more active users show a faster shift towards the negativity than less active ones.
Automating CapCom: Pragmatic Operations and Technology Research for Human Exploration of Mars
NASA Technical Reports Server (NTRS)
Clancey, William J.
2003-01-01
During the Apollo program, NASA and the scientific community used terrestrial analog sites for understanding planetary features and for training astronauts to be scientists. More recently, computer scientists and human factors specialists have followed geologists and biologists into the field, learning how science is actually done on expeditions in extreme environments. Research stations have been constructed by the Mars Society in the Arctic and American southwest, providing facilities for hundreds of researchers to investigate how small crews might live and work on Mars. Combining these interests-science, operations, and technology-in Mars analog field expeditions provides tremendous synergy and authenticity to speculations about Mars missions. By relating historical analyses of Apollo and field science, engineers are creating experimental prototypes that provide significant new capabilities, such as a computer system that automates some of the functions of Apollo s CapCom. Thus, analog studies have created a community of practice-a new collaboration between scientists and engineers-so that technology begins with real human needs and works incrementally towards the challenges of the human exploration of Mars.
ERIC Educational Resources Information Center
Ledley, Tamara Shapiro; Taber, Michael R.; Lynds, Susan; Domenico, Ben; Dahlman, LuAnn
2012-01-01
Traditionally, there has been a large gap between the scientific and educational communities in terms of communication, which hinders the transfer of new scientific knowledge to teachers and students and the understanding of each other's needs and capabilities. In this paper, we describe a workshop model we have developed to facilitate…
ERIC Educational Resources Information Center
Estrada, Mica; Woodcock, Anna; Hernandez, Paul R.; Schultz, P. Wesley
2011-01-01
Students from several ethnic minority groups are underrepresented in the sciences, indicating that minority students more frequently drop out of the scientific career path than nonminority students. Viewed from a perspective of social influence, this pattern suggests that minority students do not integrate into the scientific community at the same…
Kretser, Alison; Murphy, Delia; Dwyer, Johanna
2017-01-01
ABSTRACT Scientific integrity is at the forefront of the scientific research enterprise. This paper provides an overview of key existing efforts on scientific integrity by federal agencies, foundations, nonprofit organizations, professional societies, and academia from 1989 to April 2016. It serves as a resource for the scientific community on scientific integrity work and helps to identify areas in which more action is needed. Overall, there is tremendous activity in this area and there are clear linkages among the efforts of the five sectors. All the same, scientific integrity needs to remain visible in the scientific community and evolve along with new research paradigms. High priority in instilling these values falls upon all stakeholders. PMID:27748637
Exploring biomedical ontology mappings with graph theory methods.
Kocbek, Simon; Kim, Jin-Dong
2017-01-01
In the era of semantic web, life science ontologies play an important role in tasks such as annotating biological objects, linking relevant data pieces, and verifying data consistency. Understanding ontology structures and overlapping ontologies is essential for tasks such as ontology reuse and development. We present an exploratory study where we examine structure and look for patterns in BioPortal, a comprehensive publicly available repository of live science ontologies. We report an analysis of biomedical ontology mapping data over time. We apply graph theory methods such as Modularity Analysis and Betweenness Centrality to analyse data gathered at five different time points. We identify communities, i.e., sets of overlapping ontologies, and define similar and closest communities. We demonstrate evolution of identified communities over time and identify core ontologies of the closest communities. We use BioPortal project and category data to measure community coherence. We also validate identified communities with their mutual mentions in scientific literature. With comparing mapping data gathered at five different time points, we identified similar and closest communities of overlapping ontologies, and demonstrated evolution of communities over time. Results showed that anatomy and health ontologies tend to form more isolated communities compared to other categories. We also showed that communities contain all or the majority of ontologies being used in narrower projects. In addition, we identified major changes in mapping data after migration to BioPortal Version 4.
MyMoon: Engaging the “Missing Link” in Lunar Science Exploration through New Media
NASA Astrophysics Data System (ADS)
Shaner, A.; Shupla, C.; Shipp, S. S.; Eriksson, A.
2009-12-01
NASA’s new scientific exploration of the Moon, coupled with the public’s interest in the Moon and innovative social networking approaches, is being leveraged to engage a fresh adult audience in lunar science and exploration. In July 2009 the Lunar and Planetary Institute (LPI) launched a lunar education new media portal, MyMoon. LPI is collaborating with lunar scientists, educators, artists - and the public - to populate the site with science content, diverse media exhibits, events, and opportunities for involvement. Through MyMoon, the general public interacts with lunar content that informs them about lunar science research and missions, and engages them in future plans for lunar exploration and eventual habitation. MyMoon’s objectives are to: 1) develop a dynamic, new media learning portal that will enable the general public, with a focus on adults ages 18-35; 2) host a growing, active audience that becomes further involved in NASA’s lunar exploration by sharing their ideas about lunar topics, creating their own materials, and participating in events and experiences; 3) build a community of enthusiasts through social networking media; 4) create a model for online engagement of audiences 18 to 35, and provide detailed evaluation data on best practices and strategies for success. Immersive new media technologies are changing the way that people interact, work, learn, and teach. These provide potentially high-impact opportunities for reaching an audience of young adults, age 18 to 35, that largely is not accessed by, or accessing, NASA (Dittmar, 2004). MyMoon strives to engage - and involve - this audience to build a community of enthusiasts for lunar scientific exploration through social networks and current and emerging new media platforms, including posting videos on YouTube, photo contests on Flickr, and sharing events and challenges on Facebook and Twitter. MyMoon features interactive exhibits that are audience driven and added on a quarterly basis. Contests and polls encourage audience involvement. Semi-monthly webcasts allow audience members to interact directly with scientists, authors, and artists. A guest blog encourages audience responses to current lunar events and provocative viewpoints. Evaluation is an integral component to the MyMoon project. Evaluation data are obtained in short bursts through visitor feedback, prompted by a virtual squirrel who dares visitors to share their impressions, ideas, and interests in lunar science and exploration. Based on evaluation data, the current challenge that faces MyMoon is marketing further to the target audience; numerous approaches are being tested and evaluated. Dittmar, M. 2004, “The Market Study for Space Exploration,” (Houston, TX, Dittmar Associates, Inc.)
The Arctic Research Consortium of the United States (ARCUS)
NASA Astrophysics Data System (ADS)
Fox, S. E.; Wiggins, H. V.
2011-12-01
The Arctic Research Consortium of the United States (ARCUS) is a nonprofit membership organization composed of universities and institutions that have a substantial commitment to research in the Arctic. ARCUS was formed in 1988 to serve as a forum for planning, facilitating, coordinating, and implementing interdisciplinary studies of the Arctic; to act as a synthesizer and disseminator of scientific information on arctic research; and to educate scientists and the general public about the needs and opportunities for research in the Arctic. ARCUS, in collaboration with the broader science community, relevant agencies and organizations, and other stakeholders, coordinates science planning and educational activities across disciplinary and organizational boundaries. Examples of ARCUS projects include: - Arctic Sea Ice Outlook - an international effort that provides monthly summer reports synthesizing community estimates of the expected sea ice minimum. - Sea Ice for Walrus Outlook - a resource for Alaska Native subsistence hunters, coastal communities, and others that provides weekly reports with information on sea ice conditions relevant to walrus in Alaska waters. - PolarTREC (Teachers and Researchers Exploring and Collaborating) - a program whereby K-12 educators and researchers work together in hands-on field experiences in the Arctic and Antarctic to advance polar science education. - ArcticInfo mailing list, Witness the Arctic newsletter, and the Arctic Calendar - communication tools for the arctic science community to keep apprised of relevant news, meetings, and announcements. - Coordination for the Study of Environmental Arctic Change (SEARCH) program, which aims to provide scientific understanding of arctic environmental change to help society understand and respond to a rapidly changing Arctic.
Analysis of Low-Biomass Microbial Communities in the Deep Biosphere.
Morono, Y; Inagaki, F
2016-01-01
Over the past few decades, the subseafloor biosphere has been explored by scientific ocean drilling to depths of about 2.5km below the seafloor. Although organic-rich anaerobic sedimentary habitats in the ocean margins harbor large numbers of microbial cells, microbial populations in ultraoligotrophic aerobic sedimentary habitats in the open ocean gyres are several orders of magnitude less abundant. Despite advances in cultivation-independent molecular ecological techniques, exploring the low-biomass environment remains technologically challenging, especially in the deep subseafloor biosphere. Reviewing the historical background of deep-biosphere analytical methods, the importance of obtaining clean samples and tracing contamination, as well as methods for detecting microbial life, technological aspects of molecular microbiology, and detecting subseafloor metabolic activity will be discussed. Copyright © 2016 Elsevier Inc. All rights reserved.
The Quest for Organic Carbon on Mars
NASA Technical Reports Server (NTRS)
Eigenbrode, Jennifer
2011-01-01
We are entering an era of Mars exploration in which organic carbon detection, characterization, and structural identification will be key to addressing some of the outstanding science objectives of the Mars Exploration Program. Success of these missions will depend on technical, scientific, and strategic elements--all of which are strongly determined based on terrestrial experience and knowledge of organic matter formation, concentration, and preservation. Analog studies including Precambrian sediments, modern endolithic communities, and experiments help us fine-tune these approaches, but we also need to expect the unexpected. This presentation will provide perspective on the challenges of detecting organic carbon on Mars, how we may achieve such detections with the in situ instruments, such as the SAM (Science Analysis at Mars) instrument suite onboard Curiosity, the rover for the 2011 Mars Science Laboratory mission.
Vision for the Future of Lws TR&T
NASA Astrophysics Data System (ADS)
Schwadron, N.; Mannucci, A. J.; Antiochos, S. K.; Bhattacharjee, A.; Gombosi, T. I.; Gopalswamy, N.; Kamalabadi, F.; Linker, J.; Pilewskie, P.; Pulkkinen, A. A.; Spence, H. E.; Tobiska, W. K.; Weimer, D. R.; Withers, P.; Bisi, M. M.; Kuznetsova, M. M.; Miller, K. L.; Moretto, T.; Onsager, T. G.; Roussev, I. I.; Viereck, R. A.
2014-12-01
The Living With a Star (LWS) program addresses acute societal needs for understanding the effects of space weather and developing scientific knowledge to support predictive capabilities. Our society's heavy reliance on technologies affected by the space environment, an enormous number of airline customers, interest in space tourism, and the developing plans for long-duration human exploration space missions are clear examples that demonstrate urgent needs for space weather models and detailed understanding of space weather effects and risks. Since its inception, the LWS program has provided a vehicle to innovate new mechanisms for conducting research, building highly effective interdisciplinary teams, and ultimately in developing the scientific understanding needed to transition research tools into operational models that support the predictive needs of our increasingly space-reliant society. The advances needed require broad-based observations that cannot be obtained by large missions alone. The Decadal Survey (HDS, 2012) outlines the nation's needs for scientific development that will build the foundation for tomorrow's space weather services. Addressing these goals, LWS must develop flexible pathways to space utilizing smaller, more diverse and rapid development of observational platforms. Expanding utilization of ground-based assets and shared launches will also significantly enhance opportunities to fulfill the growing LWS data needs. Partnerships between NASA divisions, national/international agencies, and with industry will be essential for leveraging resources to address increasing societal demand for space weather advances. Strengthened connections to user communities will enhance the quality and impact of deliverables from LWS programs. Thus, we outline the developing vision for the future of LWS, stressing the need for deeper scientific understanding to improve forecasting capabilities, for more diverse data resources, and for project deliverables that address the growing needs of user communities.
Exploring frontiers of the deep biosphere through scientific ocean drilling
NASA Astrophysics Data System (ADS)
Inagaki, F.; D'Hondt, S.; Hinrichs, K. U.
2015-12-01
Since the first deep biosphere-dedicated Ocean Drilling Program (ODP) Leg 201 using the US drill ship JOIDES Resolution in 2002, scientific ocean drilling has offered unique opportunities to expand our knowledge of the nature and extent of the deep biosphere. The latest estimate of the global subseafloor microbial biomass is ~1029cells, accounting for 4 Gt of carbon and ~1% of the Earth's total living biomass. The subseafloor microbial communities are evolutionarily diverse and their metabolic rates are extraordinarily slow. Nevertheless, accumulating activity most likely plays a significant role in elemental cycles over geological time. In 2010, during Integrated Ocean Drilling Program (IODP) Expedition 329, the JOIDES Resolutionexplored the deep biosphere in the open-ocean South Pacific Gyre—the largest oligotrophic province on our planet. During Expedition 329, relatively high concentrations of dissolved oxygen and significantly low biomass of microbial populations were observed in the entire sediment column, indicating that (i) there is no limit to life in open-ocean sediment and (ii) a significant amount of oxygen reaches through the sediment to the upper oceanic crust. This "deep aerobic biosphere" inhabits the sediment throughout up to ~37 percent of the world's oceans. The remaining ~63 percent of the oceans is comprised of higher productivity areas that contain the "deep anaerobic biosphere". In 2012, during IODP Expedition 337, the Japanese drill ship Chikyu explored coal-bearing sediments down to 2,466 meters below the seafloor off the Shimokita Peninsula, Japan. Geochemical and microbiological analyses consistently showed the occurrence of methane-producing communities associated with the coal beds. Cell concentrations in deep sediments were notably lower than those expected from the global regression line, implying that the bottom of the deep biosphere is approached in these beds. Taxonomic composition of the deep coal-bearing communities profoundly differs from those in shallower marine sediments and instead resembles organotrophic communities in forest soils. These findings suggest that the terrigenous microbial ecosystem has been partly retained from the original depositional setting over 20 million years and contributed to deep carbon cycling ever since.
How Does the Scientific Community Contribute to Gene Ontology?
Lovering, Ruth C
2017-01-01
Collaborations between the scientific community and members of the Gene Ontology (GO) Consortium have led to an increase in the number and specificity of GO terms, as well as increasing the number of GO annotations. A variety of approaches have been taken to encourage research scientists to contribute to the GO, but the success of these approaches has been variable. This chapter reviews both the successes and failures of engaging the scientific community in GO development and annotation, as well as, providing motivation and advice to encourage individual researchers to contribute to GO.
The ground truth about metadata and community detection in networks.
Peel, Leto; Larremore, Daniel B; Clauset, Aaron
2017-05-01
Across many scientific domains, there is a common need to automatically extract a simplified view or coarse-graining of how a complex system's components interact. This general task is called community detection in networks and is analogous to searching for clusters in independent vector data. It is common to evaluate the performance of community detection algorithms by their ability to find so-called ground truth communities. This works well in synthetic networks with planted communities because these networks' links are formed explicitly based on those known communities. However, there are no planted communities in real-world networks. Instead, it is standard practice to treat some observed discrete-valued node attributes, or metadata, as ground truth. We show that metadata are not the same as ground truth and that treating them as such induces severe theoretical and practical problems. We prove that no algorithm can uniquely solve community detection, and we prove a general No Free Lunch theorem for community detection, which implies that there can be no algorithm that is optimal for all possible community detection tasks. However, community detection remains a powerful tool and node metadata still have value, so a careful exploration of their relationship with network structure can yield insights of genuine worth. We illustrate this point by introducing two statistical techniques that can quantify the relationship between metadata and community structure for a broad class of models. We demonstrate these techniques using both synthetic and real-world networks, and for multiple types of metadata and community structures.
Harmony as Ideology: Questioning the Diversity-Stability Hypothesis.
Nikisianis, Nikos; Stamou, Georgios P
2016-03-01
The representation of a complex but stable, self-regulated and, finally, harmonious nature penetrates the whole history of Ecology, thus contradicting the core of the Darwinian evolution. Originated in the pre-Darwinian Natural History, this representation defined theoretically the various schools of early ecology and, in the context of the cybernetic synthesis of the 1950s, it assumed a typical mathematical form on account of α positive correlation between species diversity and community stability. After 1960, these two aforementioned concepts and their positive correlation were proposed as environmental management tools, in the face of the ecological crisis arising at the time. In the early 1970s, and particularly after May's evolutionary arguments, the consensus around this positive correlation collapsed for a while, only to be promptly restored for the purpose of attaching an ecological value on biodiversity. In this paper, we explore the history of the diversity-stability hypothesis and we review the successive terms that have been used to express community stability. We argue that this hypothesis has been motivated by the nodal ideological presuppositions of order and harmony and that the scientific developments in this field largely correspond to external social pressures. We conclude that the conflict about the diversity-stability relationship is in fact an ideological debate, referring mostly to the way we see nature and society rather than to an autonomous scientific question. From this point of view, we may understand why Ecology's concepts and perceptions may decline and return again and again, forming a pluralistic scientific history.
Paton, C; Hansen, M; Fernandez-Luque, L; Lau, A Y S
2012-01-01
This paper explores the range of self-tracking devices and social media platforms used by the self-tracking community, and examines the implications of widespread adoption of these tools for scientific progress in health informatics. A literature review was performed to investigate the use of social media and self-tracking technologies in the health sector. An environmental scan identified a range of products and services which were used to exemplify three levels of self-tracking: self-experimentation, social sharing of data and patient controlled electronic health records. There appears to be an increase in the use of self-tracking tools, particularly in the health and fitness sector, but also used in the management of chronic diseases. Evidence of efficacy and effectiveness is limited to date, primarily due to the health and fitness focus of current solutions as opposed to their use in disease management. Several key technologies are converging to produce a trend of increased personal health surveillance and monitoring, social connectedness and sharing, and integration of regional and national health information systems. These trends are enabling new applications of scientific techniques, from personal experimentation to e-epidemiology, as data gathered by individuals are aggregated and shared across increasingly connected healthcare networks. These trends also raise significant new ethical and scientific issues that will need to be addressed, both by health informatics researchers and the communities of self-trackers themselves.
Exploring culture, language and the perception of the nature of science
NASA Astrophysics Data System (ADS)
Sutherland, Dawn
2002-01-01
One dimension of early Canadian education is the attempt of the government to use the education system as an assimilative tool to integrate the First Nations and Me´tis people into Euro-Canadian society. Despite these attempts, many First Nations and Me´tis people retained their culture and their indigenous language. Few science educators have examined First Nations and Western scientific worldviews and the impact they may have on science learning. This study explored the views some First Nations (Cree) and Euro-Canadian Grade-7-level students in Manitoba had about the nature of science. Both qualitative (open-ended questions and interviews) and quantitative (a Likert-scale questionnaire) instruments were used to explore student views. A central hypothesis to this research programme is the possibility that the different world-views of two student populations, Cree and Euro-Canadian, are likely to influence their perceptions of science. This preliminary study explored a range of methodologies to probe the perceptions of the nature of science in these two student populations. It was found that the two cultural groups differed significantly between some of the tenets in a Nature of Scientific Knowledge Scale (NSKS). Cree students significantly differed from Euro-Canadian students on the developmental, testable and unified tenets of the nature of scientific knowledge scale. No significant differences were found in NSKS scores between language groups (Cree students who speak English in the home and those who speak English and Cree or Cree only). The differences found between language groups were primarily in the open-ended questions where preformulated responses were absent. Interviews about critical incidents provided more detailed accounts of the Cree students' perception of the nature of science. The implications of the findings of this study are discussed in relation to the challenges related to research methodology, further areas for investigation, science teaching in First Nations communities and science curriculum development.
Tracking the Short Term Planning (STP) Development Process
NASA Technical Reports Server (NTRS)
Price, Melanie; Moore, Alexander
2010-01-01
Part of the National Aeronautics and Space Administration?s mission is to pioneer the future in space exploration, scientific discovery and aeronautics research is enhanced by discovering new scientific tools to improve life on earth. Sequentially, to successfully explore the unknown, there has to be a planning process that organizes certain events in the right priority. Therefore, the planning support team has to continually improve their processes so the ISS Mission Operations can operate smoothly and effectively. The planning support team consists of people in the Long Range Planning area that develop timelines that includes International Partner?s Preliminary STP inputs all the way through to publishing of the Final STP. Planning is a crucial part of the NASA community when it comes to planning the astronaut?s daily schedule in great detail. The STP Process is in need of improvement, because of the various tasks that are required to be broken down in order to get the overall objective of developing a Final STP done correctly. Then a new project came along in order to store various data in a more efficient database. "The SharePoint site is a Web site that provides a central storage and collaboration space for documents, information, and ideas."
NASA Astrophysics Data System (ADS)
Hock, Emily; Sharp, Zoe
2016-03-01
Aspiring teachers and current teachers can gain insight about the scientific community through hands-on experience. As America's standards for elementary school and middle school become more advanced, future and current teachers must gain hands-on experience in the scientific community. For a teacher to be fully capable of teaching all subjects, they must be comfortable in the content areas, equipped to answer questions, and able to pass on their knowledge. Hands-on research experiences, like the Summer Astronomy Research Experience at California Polytechnic University, pair liberal studies students with a cooperative group of science students and instructors with the goal of doing research that benefits the scientific community and deepens the team members' perception of the scientific community. Teachers are then able to apply the basic research process in their classrooms, inspire students to do real life science, and understand the processes scientists' undergo in their workplace.
Exploration planning in the context of human exploration and development of the Moon
NASA Technical Reports Server (NTRS)
Duke, Michael B.; Morrison, Donald A.
1993-01-01
It is widely believed that the next step beyond low Earth orbit in attaining the United States' stated goal of 'Expanding human presence beyond the Earth' should be to reestablish a lunar capability, building on the Apollo program, and preparing the way for eventual human missions to Mars. The Moon offers important questions in planetary and Earth science, can provide a unique platform for making astronomical observations of high resolution and sensitivity, and can be in the development path for unlocking resources of the inner solar system to support space activities and return benefits to Earth. NASA's Office of Exploration has undertaken the planning of future lunar exploration missions with the assistance of the Solar System Exploration Division in matters dealing with the quality of scientific data and the manner in which it will be made available to the scientific community. The initial elements of the proposed program include the Lunar Scout missions, which consist of two small identical spacecraft in polar orbit around the Moon, which can accomplish most of the objectives associated with previous proposals for Lunar Polar Orbiters. These missions would be followed by 'Artemis' landers, capable of emplacing up to 200 kg payloads anywhere on the Moon. In addition, the exploration program must incorporate data obtained from other missions, including the Galileo lunar flybys, the Clementine high orbital observations, and Japanese penetrator missions. In the past year, a rather detailed plan for a 'First Lunar Outpost (FLO)' which would place 4 astronauts on the lunar surface for 45 days has been developed as a possible initial step of a renewed human exploration program. In the coming year, the FLO concept will be reviewed and evolved to become more highly integrated with planning for the initial human exploration of Mars, which could come perhaps 5 years after the reestablishment of lunar capability. Both programs could benefit from the common development of systems and subsystems, where that is sensible from a performance perspective.
NASA Education Forum at SAO on the Structure and Evolution of the Universe
NASA Technical Reports Server (NTRS)
Rosendhal, Jeffrey (Technical Monitor); Gould, Roy R.
2003-01-01
NASA's Structure and Evolution of the Universe (SEU) science theme offers an unparalleled opportunity to capture the public's imagination and inspire the next generation of scientific explorers-the generation that will determine America's lead in science and technology in the 21st century. The missions and research programs of SEU science are transporting the public to some of the universe's most exotic destinations: the beginning of time, the edge of space at the entrance to a black hole, and the great cycles of matter and energy that have slowly brought life to the universe. NASA's Office of Space Science (OSS) has put in place an Education and Public Outreach (EPO) initiative designed to do just that. Spanning all of NASA's OSS science themes, the initiative is a far-reaching partnership with the education community. As a result, NASA space science now reaches every avenue of education-from the nation's schools, science museums and planetariums, to libraries, community groups and after-school programs. As a partner in this enterprise, the,SEU Forum has successfully brought SEU science to a large and diverse audience. But this is an ongoing process, and much still needs to be done. Working with our colleagues in the OSS Support Network, and with our partners in the space science and education communities, we look forward to ensuring that the public supports and participates in the great explorations of the SEU theme. Working with the SEU missions and members of the OSS Support Network, the Forum will harness the assets of the SEU science community to: Inform, inspire, and involve the public in the explorations of the SEU science theme. Use the unique resources of the SEU science theme to enhance K-14 science, technology, and mathematics education. Identify and develop high-leverage opportunities for the SEU science community to contribute to education and outreach.
NASA Astrophysics Data System (ADS)
Worssam, J. B.
2017-12-01
Field research finally within classroom walls, data driven, hands on with students using a series of electronic projects to show evidence of scientific mentor collaboration. You do not want to miss this session in which I will be sharing the steps to develop an interactive mentor program between scientists in the field and students in the classroom. Using next generation science standards and common core language skills you will be able to blend scientific exploration with scientific writing and communication skills. Learn how to make connections in your own community with STEM businesses, agencies and organizations. Learn how to connect with scientists across the globe to make your classroom instruction interactive and live for all students. Scientists, you too will want to participate, see how you can reach out and be a part of the K-12 educational system with students learning about YOUR science, a great component for NSF grants! "Scientists in the Classroom," a model program for all, bringing real time science, data and knowledge into the classroom.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ripeanu, Matei; Al-Kiswany, Samer; Iamnitchi, Adriana
2009-03-01
The avalanche of data from scientific instruments and the ensuing interest from geographically distributed users to analyze and interpret it accentuates the need for efficient data dissemination. A suitable data distribution scheme will find the delicate balance between conflicting requirements of minimizing transfer times, minimizing the impact on the network, and uniformly distributing load among participants. We identify several data distribution techniques, some successfully employed by today's peer-to-peer networks: staging, data partitioning, orthogonal bandwidth exploitation, and combinations of the above. We use simulations to explore the performance of these techniques in contexts similar to those used by today's data-centric scientificmore » collaborations and derive several recommendations for efficient data dissemination. Our experimental results show that the peer-to-peer solutions that offer load balancing and good fault tolerance properties and have embedded participation incentives lead to unjustified costs in today's scientific data collaborations deployed on over-provisioned network cores. However, as user communities grow and these deployments scale, peer-to-peer data delivery mechanisms will likely outperform other techniques.« less
NASA Astrophysics Data System (ADS)
Walsh, E.; McGowan, V. C.
2015-12-01
The Next Generation Science Standards promote a vision in which learners engage in authentic knowledge in practice to tackle personally consequential science problems in the classroom. However, there is not yet a clear understanding amongst researchers and educators of what authentic practice looks like in a classroom and how this can be accomplished. This study explores these questions by examining interactions between scientists and students on a social media platform during two pilot enactments of a project-based curriculum focusing on the ecological impacts of climate change. During this unit, scientists provided feedback to students on infographics, visual representations of scientific information meant to communicate to an audience about climate change. We conceptualize the feedback and student work as boundary objects co-created by students and scientists moving between the school and scientific contexts, and analyze the structure and content of the scientists' feedback. We find that when giving feedback on a particular practice (e.g. argumentation), scientists would provide avenues, critiques and questions that incorporated many other practices (e.g. data analysis, visual communication); thus, scientists encouraged students to participate systemically in practices instead of isolating one particular practice. In addition, scientists drew attention to particular habits of mind that are valued in the scientific community and noted when students' work aligned with scientific values. In this way, scientists positioned students as capable of participating "scientifically." While traditionally, incorporating scientific inquiry in a classroom has emphasized student experimentation and data generation, in this work, we found that engaging with scientists around established scientific texts and data sets provided students with a platform for developing expertise in other important scientific practices during argment construction.
A Quick Guide for Building a Successful Bioinformatics Community
Budd, Aidan; Corpas, Manuel; Brazas, Michelle D.; Fuller, Jonathan C.; Goecks, Jeremy; Mulder, Nicola J.; Michaut, Magali; Ouellette, B. F. Francis; Pawlik, Aleksandra; Blomberg, Niklas
2015-01-01
“Scientific community” refers to a group of people collaborating together on scientific-research-related activities who also share common goals, interests, and values. Such communities play a key role in many bioinformatics activities. Communities may be linked to a specific location or institute, or involve people working at many different institutions and locations. Education and training is typically an important component of these communities, providing a valuable context in which to develop skills and expertise, while also strengthening links and relationships within the community. Scientific communities facilitate: (i) the exchange and development of ideas and expertise; (ii) career development; (iii) coordinated funding activities; (iv) interactions and engagement with professionals from other fields; and (v) other activities beneficial to individual participants, communities, and the scientific field as a whole. It is thus beneficial at many different levels to understand the general features of successful, high-impact bioinformatics communities; how individual participants can contribute to the success of these communities; and the role of education and training within these communities. We present here a quick guide to building and maintaining a successful, high-impact bioinformatics community, along with an overview of the general benefits of participating in such communities. This article grew out of contributions made by organizers, presenters, panelists, and other participants of the ISMB/ECCB 2013 workshop “The ‘How To Guide’ for Establishing a Successful Bioinformatics Network” at the 21st Annual International Conference on Intelligent Systems for Molecular Biology (ISMB) and the 12th European Conference on Computational Biology (ECCB). PMID:25654371
Comprehensive Case Analysis on Participatory Approaches, from Nexus Perspectives
NASA Astrophysics Data System (ADS)
Masuhara, N.; Baba, K.
2014-12-01
According to Messages from the Bonn2011 Conference, involving local communities fully and effectively in the planning and implementation processes related to water, energy and food nexus for local ownership and commitment should be strongly needed. The participatory approaches such as deliberative polling, "joint fact-finding" and so on have been applied so far to resolve various environmental disputes, however the drivers and barriers in such processes have not been necessarily enough analyzed in a comprehensive manner, especially in Japan. Our research aims to explore solutions for conflicts in the context of water-energy-food nexus in local communities. To achieve it, we clarify drivers and barriers of each approaches applied so far in water, energy and food policy, focusing on how to deal with scientific facts. We generate hypotheses primarily that multi-issue solutions through policy integration will be more effective for conflicts in the context of water-energy-food nexus than single issue solutions for each policy. One of the key factors to formulate effective solutions is to integrate "scientific fact (expert knowledge)" and "local knowledge". Given this primary hypothesis, more specifically, we assume that it is effective for building consensus to provide opportunities to resolve the disagreement of "framing" that stakeholders can offer experts the points for providing scientific facts and that experts can get common understanding of scientific facts in the early stage of the process. To verify the hypotheses, we develop a database of the cases which such participatory approaches have been applied so far to resolve various environmental disputes based on literature survey of journal articles and public documents of Japanese cases. At present, our database is constructing. But it's estimated that conditions of framing and providing scientific information are important driving factors for problem solving and consensus building. And it's important to refine the driving factors, evaluating if components of database are enough to present each process or not.
NASA Technical Reports Server (NTRS)
Murakawa, M. (Editor); Miyoshi, K. (Editor); Koga, Y. (Editor); Schaefer, L. (Editor); Tzeng, Y. (Editor)
2003-01-01
These are the Proceedings of the Seventh Applied Diamond Conference/Third Frontier Carbon Technology Joint Conference held at Epochal Tsukuba International Conference Center from August 18 to 21, 2003. The diamond CVD process was first reported by Dr. Spitsyn in 1981 and Prof. S. Iijima reported his discovery of carbon nanotubes in 1991. In the past years, both diamond-related materials and novel carbon materials have attracted considerable interest by the scientific, technological, and industrial community. Many practical and commercial products of diamond materials are reported in these proceedings. A broad variety of applications of carbon nanotubes and novel carbons have also been explored and demonstrated. Having more than 175 invited and contributing papers by authors from over 18 countries for presentations at ADC/FCT 2003 clearly demonstrates that these materials, due to the combination of their superior properties, are both scientifically amazing and economically significant.
Aesthetics and ethics in engineering: insights from Polanyi.
Dias, Priyan
2011-06-01
Polanyi insisted that scientific knowledge was intensely personal in nature, though held with universal intent. His insights regarding the personal values of beauty and morality in science are first enunciated. These are then explored for their relevance to engineering. It is shown that the practice of engineering is also governed by aesthetics and ethics. For example, Polanyi's three spheres of morality in science--that of the individual scientist, the scientific community and the wider society--has parallel entities in engineering. The existence of shared values in engineering is also demonstrated, in aesthetics through an example that shows convergence of practitioner opinion to solutions that represent accepted models of aesthetics; and in ethics through the recognition that many professional engineering institutions hold that the safety of the public supersedes the interests of the client. Such professional consensus can be seen as justification for studying engineering aesthetics and ethics as inter-subjective disciplines.
A Search for Viable Venus and Jupiter Sample Return Mission Trajectories for the Next Decade
NASA Technical Reports Server (NTRS)
Leong, Jason N.; Papadopoulos, Periklis
2005-01-01
Planetary exploration using unmanned spacecraft capable of returning geologic or atmospheric samples have been discussed as a means of gathering scientific data for several years. Both NASA and ESA performed initial studies for Sample Return Missions (SRMs) in the late 1990 s, but most suggested a launch before the year 2010. The GENESIS and STARDUST spacecraft are the only current examples of the SRM concept with the Mars SRM expected around 2015. A feasibility study looking at SRM trajectories to Venus and Jupiter, for a spacecraft departing the Earth between the years 2011 through 2020 was conducted for a university project. The objective of the study was to evaluate SRMs to planets other than Mars, which has already gained significant attention in the scientific community. This paper is a synopsis of the study s mission trajectory concept and the conclusions to the viability of such a mission with today s technology.
2017-12-08
NASA successfully launched the RockSat-X education payload on a Terrier-Improved Malemute suborbital sounding rocket at 7:33:30 a.m. EDT Aug. 17 from the Wallops Flight Facility in Virginia. Students from eight community colleges and universities from across the United States participated in the RockSat-X project.The payload carrying the experiments flew to an altitude of 95 miles. Data was received from most of the student experiments. However, the payload was not recovered as planned. NASA will investigate the anomaly. Credit: NASA/Wallops/A. Stancil NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Scientific and social landscapes: New frameworks and forums for water management and sustainability
Turner, Christine; Karl, Herman A.
2001-01-01
The Two Decades of Water Law and Policy Reform conference examines the agenda for reforming and improving water law that has developed during the past two decades in the West, assesses what has (and has not) been accomplished by pursuing these reforms, and explores lessons and implications for future water law and policy. The papers and discussion provide analysis and lessons that can guide the new administration, Congress, federal agencies, state governments, and communities as they seek to find policy solutions to the challenges posed by the tremendous economic and demographic changes occurring in the West, in order to ensure the sustainability of the region’s unique environment. Specific sessions focus on reforms such as improving the scientific and technical basis for water management, water conservation and efficiency, protecting environmental values in meeting water demands, and creating new models of governance for water issues.
NASA Technical Reports Server (NTRS)
Tzeng, Y. (Editor); Miyoshi, K. (Editor); Yoshikawa, M. (Editor); Murakawa, M. (Editor); Koga, Y. (Editor); Kobashi, K. (Editor); Amaratunga, G. A. J. (Editor)
2001-01-01
These are the Proceedings of the Sixth Applied Diamond Conference/Second Frontier Carbon Technology Joint Conference hosted by Auburn University from August 6 to 10, 2001. The diamond CVD process was first reported by Dr. Spitsyn in 1981 and Prof. S. Iijima reported his discovery of carbon nanotubes in 1991. In the past years, both diamond-related materials and novel carbon materials have attracted considerable interest by the scientific, technological, and industrial community. Many practical and commercial products of diamond materials are reported in these proceedings. A broad variety of applications of carbon nanotubes and novel carbons have also been explored and demonstrated. Having more than 200 invited and contributing papers by authors from over 20 countries for presentations at ADC/FCT 2001 clearly demonstrates that these materials, due to the combination of their superior properties, are both scientifically amazing and economically significant.
Final Technical Report for Riedo Georgia Tech
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riedo, Elisa
Nanosheets, nanotubes, nanowires, and nanoparticles are gaining a large interest in the scientific community for their exciting properties, and they hold the potential to become building blocks in integrated nano-electronic and photonic circuits, nano-sensors, batteries electrodes, energy harvesting nano-systems, and nano-electro-mechanical systems (NEMS). While several experiments and theoretical calculations have revealed exciting novel phenomena in these nanostructures, many scientific and technological questions remain open. A fundamental objective guiding the study of nanoscale materials is understanding what are the new rules governing nanoscale properties and at what extent well-known physical macroscopic laws still apply in the nano-world. The vision of thismore » DoE research program is to understand the mechanical properties of nanoscale materials by exploring new experimental methods and theoretical models at the boundaries between continuum mechanics and atomistic models, with the overarching goal of defining the basic laws of mechanics at the nanoscale.« less
The James Webb STEM Innovation Project: Bringing JWST to the Education Community
NASA Astrophysics Data System (ADS)
Eisenhamer, Bonnie; Harris, J.; Ryer, H.; Taylor, J.; Bishop, M.
2012-01-01
Building awareness of a NASA mission prior to launch and connecting that mission to the education community can be challenging. In order to address this challenge, the Space Telescope Science Institute's Office of Public Outreach has developed the James Webb STEM innovation Project (SIP) - an interdisciplinary project that focuses on the engineering aspects and potential scientific discoveries of JWST, while incorporating elements of project-based learning. Students in participating schools will use skills from multiple subject areas to research an aspect of the JWST's design or potential science and create models, illustrated essays, or technology-based projects to demonstrate their learning. Student projects will be showcased during special events at select venues in the project states - thus allowing parents and community members to also be benefactors of the project. Currently, the SIP is being piloted in New York, California, and Maryland. In addition, we will be implementing the SIP in partnership with NASA Explorer Schools in the states of New Mexico, Michigan, Texas, Tennessee, and Iowa.
Mindful attention and awareness: relationships with psychopathology and emotion regulation.
Gregório, Sónia; Pinto-Gouveia, José
2013-01-01
The growing interest in mindfulness from the scientific community has originated several self-report measures of this psychological construct. The Mindful Attention and Awareness Scale (MAAS) is a self-report measure of mindfulness at a trait-level. This paper aims at exploring MAAS psychometric characteristics and validating it for the Portuguese population. The first two studies replicate some of the original author's statistical procedures in two different samples from the Portuguese general community population, in particular confirmatory factor analyses. Results from both analyses confirmed the scale single-factor structure and indicated a very good reliability. Moreover, cross-validation statistics showed that this single-factor structure is valid for different respondents from the general community population. In the third study the Portuguese version of the MAAS was found to have good convergent and discriminant validities. Overall the findings support the psychometric validity of the Portuguese version of MAAS and suggest this is a reliable self-report measure of trait-mindfulness, a central construct in Clinical Psychology research and intervention fields.
The contamination of scientific literature: looking for an antidote
NASA Astrophysics Data System (ADS)
Liotta, Marcello
2017-04-01
Science may have very strong implications for society. The knowledge of the processes occurring around the society represents a good opportunity to take responsible decisions. This is particularly true in the field of geosciences. Earthquakes, volcanic eruptions, landslides, climate changes and many other natural phenomena still need to be further investigated. The role of the scientific community is to increase the knowledge. Each member can share his own ideas and data thus allowing the entire scientific community to receive a precious contribution. The latter one often derives from research activities, which are expensive in terms of consumed time and resources. Nowadays the sharing of scientific results occurs through the publication on scientific journals. The reading of available scientific literature thus represents a unique opportunity to define the state of the art on a specific topic and to address research activities towards something new. When published results are obtained through a rigorous scientific process, they constitute a solid background where each member can add his ideas and evidences. Differently, published results may be affected by scientific misconduct; they constitute a labyrinth where the scientists lose their time in the attempt of truly understanding the natural processes. The normal scientific dialectic should unmask such results, thus avoiding literature contamination and making the scientific framework more stimulating. The scientific community should look for the best practice to reduce the risk of literature contamination.
NASA Astrophysics Data System (ADS)
Minnett, R.; Koppers, A.; Jarboe, N.; Tauxe, L.; Constable, C.; Jonestrask, L.
2017-12-01
Challenges are faced by both new and experienced users interested in contributing their data to community repositories, in data discovery, or engaged in potentially transformative science. The Magnetics Information Consortium (https://earthref.org/MagIC) has recently simplified its data model and developed a new containerized web application to reduce the friction in contributing, exploring, and combining valuable and complex datasets for the paleo-, geo-, and rock magnetic scientific community. The new data model more closely reflects the hierarchical workflow in paleomagnetic experiments to enable adequate annotation of scientific results and ensure reproducibility. The new open-source (https://github.com/earthref/MagIC) application includes an upload tool that is integrated with the data model to provide early data validation feedback and ease the friction of contributing and updating datasets. The search interface provides a powerful full text search of contributions indexed by ElasticSearch and a wide array of filters, including specific geographic and geological timescale filtering, to support both novice users exploring the database and experts interested in compiling new datasets with specific criteria across thousands of studies and millions of measurements. The datasets are not large, but they are complex, with many results from evolving experimental and analytical approaches. These data are also extremely valuable due to the cost in collecting or creating physical samples and the, often, destructive nature of the experiments. MagIC is heavily invested in encouraging young scientists as well as established labs to cultivate workflows that facilitate contributing their data in a consistent format. This eLightning presentation includes a live demonstration of the MagIC web application, developed as a configurable container hosting an isomorphic Meteor JavaScript application, MongoDB database, and ElasticSearch search engine. Visitors can explore the MagIC Database through maps and image or plot galleries or search and filter the raw measurements and their derived hierarchy of analytical interpretations.
NASA Astrophysics Data System (ADS)
Tulaczyk, S. M.; Anandakrishnan, S.; Behar, A. E.; Christner, B. C.; Fisher, A. T.; Fricker, H. A.; Holland, D. M.; Jacobel, R. W.; Mikucki, J.; Mitchell, A. C.; Powell, R. D.; Priscu, J. C.; Scherer, R. P.; Severinghaus, J. P.
2009-12-01
The WISSARD project is a large, NSF-funded, interdisciplinary initiative focused on scientific drilling, exploration, and investigation of Antarctic subglacial aquatic environments. The project consists of three interrelated components: (1) LISSARD - Lake and Ice Stream Subglacial Access Research Drilling, (2) RAGES - Robotic Access to Grounding-zones for Exploration and Science, and (3) GBASE - GeomicroBiology of Antarctic Subglacial Environments). A number of previous studies in West Antarctica highlighted the importance of understanding ice sheet interactions with water, either at the basal boundary where ice streams come in contact with active subglacial hydrologic and geological systems or at the marine margin where the ice sheet is exposed to forcing from the global ocean and sedimentation. Recent biological investigations of Antarctic subglacial environments show that they provide a significant habitat for life and source of bacterial carbon in a setting that was previously thought to be inhospitable. Subglacial microbial ecosystems also enhance biogeochemical weathering, mobilizing elements from long term geological storage. The overarching scientific objective of WISSARD is to examine the subglacial hydrological system of West Antarctica in glaciological, geological, microbiological, geochemical, and oceanographic contexts. Direct sampling will yield seminal information on these systems and test the overarching hypothesis that active hydrological systems connect various subglacial environments and exert major control on ice sheet dynamics, subglacial sediment transfer, geochemistry, metabolic and phylogenetic diversity, and biogeochemical transformations and geological records of ice sheet history. Technological advances during WISSARD will provide the US-science community with a capability to access and study sub-ice sheet environments. Developing this technological infrastructure will benefit the broader science community and it will be available for future use. Furthermore, these projects will pioneer an approach implementing recommendations from the National Research Council committee on Principles of Environmental Stewardship for the Exploration and Study of Subglacial Environments.
Exploring TechQuests Through Open Source and Tools That Inspire Digital Natives
NASA Astrophysics Data System (ADS)
Hayden, K.; Ouyang, Y.; Kilb, D.; Taylor, N.; Krey, B.
2008-12-01
"There is little doubt that K-12 students need to understand and appreciate the Earth on which they live. They can achieve this understanding only if their teachers are well prepared". Dan Barstow, Director of Center for Earth and Space Science Education at TERC. The approach of San Diego County's Cyberinfrastructure Training, Education, Advancement, and Mentoring (SD Cyber-TEAM) project is to build understandings of Earth systems for middle school teachers and students through a collaborative that has engaged the scientific community in the use of cyber-based tools and environments for learning. The SD Cyber-TEAM has used Moodle, an open source management system with social networking tools, that engage digital native students and their teachers in collaboration and sharing of ideas and research related to Earth science. Teachers participate in on-line professional dialog through chat, wikis, blogs, forums, journals and other tools and choose the tools that will best fit their classroom. The use of Moodle during the Summer Cyber Academy developed a cyber-collaboratory environment where teaching strategies were discussed, supported and actualized by participants. These experiences supported digital immigrants (teachers) in adapting teaching strategies using technologies that are most attractive and familiar to students (digital natives). A new study by the National School Boards Association and Grunwald Associates LLC indicated that "the online behaviors of U.S. teens and 'tweens shows that 96 percent of students with online access use social networking technologies, such as chatting, text messaging, blogging, and visiting online communities such as Facebook, MySpace, and Webkinz". While SD Cyber-TEAM teachers are implementing TechQuests in classrooms they use these social networking elements to capture student interest and address the needs of digital natives. Through the Moodle environment, teachers have explored a variety of learning objects called TechQuests, to support classroom instruction previously outlined through a textbook. Project classrooms have participated in videoconferences over high-speed networks and through satellite connections with experts in the field investigating scientific data found in the CA State Park of Anza Borrego. Other engaging tools include: An Interactive Epicenter Locator Tool developed through the project in collaboration with the Scripps Institution of Oceanography to engage students in the use of data to determine earthquake epicenters during hands on investigations, and a TechQuest activity where GoogleEarth allows students to explore geographic locations and scientific data.
A Look at the Future of Controlled-Source Seismology
NASA Astrophysics Data System (ADS)
Keller, G. R.; Klemperer, S.; Hole, J.; Snelson, C.
2008-12-01
Facilities like EarthScope and IRIS/PASSCAL offer a framework in which to re-assess the role of our highest- resolution geophysical tool, controlled-source seismology. This tool is effective in near surface studies that focus on the upper 100 m of the crust to studies that focus on Moho structure and the lithospheric mantle. IRIS has now existed for over two decades and has transformed the way in which passive-source seismology in particular is carried out. Progress over these two decades has led to major discoveries about continental architecture and evolution through the development of three-dimensional images of the upper mantle and lithosphere. Simultaneously the hydrocarbon exploration industry has mapped increasingly large fractions of our sedimentary basins in three-dimensions and at unprecedented resolution and fidelity. Thanks to the additional instruments in the EarthScope facility, a clear scientific need and opportunity exists to map, at similar resolution, all of the crust - the igneous/metamorphic basement, the non-petroliferous basins that contain the record of continental evolution, and the seismogenic faults and active volcanoes that are the principal natural hazards we face. Controlled-source seismology remains the fundamental technology behind exploration for all fossil fuels and many water resources, and as such is a multi-billion-dollar industry centered in the USA. Academic scientists are leaders in developing the algorithms to process the most advanced industry data, but lack the academic data sets to which to apply this technology. University and government controlled-source seismologists, and their students who will populate the exploration industry, are increasingly divorced from that industry by their reliance on sparse spatial recording of usually only a single-component of the wavefield, generated by even sparser seismic sources. However, if we can find the resources, the technology now exists to provide seismic images of immense scientific and societal value that play a key role in fulfilling the ambitious missions of EarthScope and other NSF programs, as well as, those of agencies such as the U. S. Geological Survey and Department of Energy. US controlled-source community has self-organized to form an IASPEI U.S. National Committee on Controlled-Source Seismology to facilitate communication and to present and pursue the fundamental needs to sustain this scientific community as a resource for all earth scientists.
What are Scientific Leaders? The Introduction of a Normalized Impact Factor
NASA Astrophysics Data System (ADS)
Matsas, George E. A.
2012-12-01
We define a normalized impact factor (NIF) suitable for assessing in a simple way both the strength of scientific communities and the research influence of individuals. We define those with NIF ≥ 1 as scientific leaders because they influence their peers at least as much as they are influenced by them. The NIF has two outstanding characteristics: (a) it has a clear and universal meaning and (b) it is robust against self-citation misuse. We show how a single lognormal function obtained from a simplified version of the NIF leads to a clear "radiography" of the corresponding scientific community. An illustrative application analyzes a community derived from the list of outstanding referees recognized by the American Physical Society in 2008.
Hypoderma sinense: solving a century-old enigma.
Otranto, D; Colwell, D D; Pape, T
2005-09-01
Among the species of Hypoderma (Diptera: Oestridae) that have been described and named over the last three centuries, Hypoderma sinense Pleske has been the subject of several scientific discussions. Hypoderma sinense was described by T. Pleske in 1926 on the basis of only three females collected by the Russian explorer P. K. Kozlov nearly 25 years earlier during a scientific expedition to China (1900-1901). This species was examined by the foremost oestrid authorities and synonomized with H. lineatum. Recently a unique, unidentified species of Hypoderma was observed to infect cattle and yaks in China. Molecular and morphological observations confirmed the unique nature of the third-stage larvae. This data initiated a debate within the scientific community regarding the proper name of this species, in particular with reference to previous taxonomical discussion on the validity of H. sinense. The present work provides a historical overview of the Russian scientific expeditions that collected the specimens and of the explorers and the entomologists who contributed to the description of H. sinense. The morphological examination of the original type material of H. sinense and the comparison with females of H. lineatum indicated that the H. sinense lectotype, deposited at the Zoological Institute of the Russian Academy of Sciences, St Petersburg, was within the range of variation of H. lineatum. Comparisons of the cox1 (688 bp) sequence obtained from the leg of a paralectotype of H. sinense with those of H. bovis (Linneaus), H. lineatum (De Villers) and of a sixth valid species of Hypoderma identified as "H. sinense" available in GenBank revealed differences of 9.7%, 7.2% and 0.3%, respectively. On the basis of these results, we concluded that the nominal species H. sinense should be treated as valid.
Toby Owen, a visionary and charismatic scientist
NASA Astrophysics Data System (ADS)
Encrenaz, Therese
2017-10-01
Toby’s relationship with Paris Observatory goes back to the early beginning of the 1970s. While he was a professor at Sony Brook University (NY), he played a very active role in the development of the young planetology group at the Observatory. With Daniel Gautier, Catherine de Bergh, Michel Combes and Thérèse Encrenaz, he initiated many research projects around the composition and structure of planetary atmospheres, using space exploration and ground-based observations. With Jean-Pierre Maillard and the French planetology group, he made a series of major discoveries, in particular about the deuterium abundance in the solar system. In a visionary and multidisciplinary approach, he developed numerous research projects on all families of solar system objects, planets, satellites and comets, using all wavelength spectral ranges, from ground and space. In the early 1980s, with Daniel Gautier and Wing Ip, Toby became deeply involved in the development of the Cassini-Huygens space mission, jointly led by the United States and Europe, devoted to the exploration of Saturn and Titan. Beyond its exceptional scientific return, this mission has been an exemplary success in terms of international cooperation between different space agencies. Toby was strongly in favor of bringing together scientific communities beyond national frontiers. With his French friends and colleagues, at Paris Observatory and beyond, Toby has developed very strong links of scientific cooperation and friendship. In the early 2000s, he joined the High Scientific Council of Paris Observatory. In 2006, with Daniel Gautier and Jean-Pierre Lebreton, he received the Grand Prix Marcel Dassault of the French Academy of Sciences. In 2007, he became Doctor Honoris Causa of Paris Observatory. He is deeply missed by his friends and colleagues, who all remember his generosity, his availability, his kindness, his simplicity and modesty.
Whole earth modeling: developing and disseminating scientific software for computational geophysics.
NASA Astrophysics Data System (ADS)
Kellogg, L. H.
2016-12-01
Historically, a great deal of specialized scientific software for modeling and data analysis has been developed by individual researchers or small groups of scientists working on their own specific research problems. As the magnitude of available data and computer power has increased, so has the complexity of scientific problems addressed by computational methods, creating both a need to sustain existing scientific software, and expand its development to take advantage of new algorithms, new software approaches, and new computational hardware. To that end, communities like the Computational Infrastructure for Geodynamics (CIG) have been established to support the use of best practices in scientific computing for solid earth geophysics research and teaching. Working as a scientific community enables computational geophysicists to take advantage of technological developments, improve the accuracy and performance of software, build on prior software development, and collaborate more readily. The CIG community, and others, have adopted an open-source development model, in which code is developed and disseminated by the community in an open fashion, using version control and software repositories like Git. One emerging issue is how to adequately identify and credit the intellectual contributions involved in creating open source scientific software. The traditional method of disseminating scientific ideas, peer reviewed publication, was not designed for review or crediting scientific software, although emerging publication strategies such software journals are attempting to address the need. We are piloting an integrated approach in which authors are identified and credited as scientific software is developed and run. Successful software citation requires integration with the scholarly publication and indexing mechanisms as well, to assign credit, ensure discoverability, and provide provenance for software.
The Lederman Science Center: Past, Present, Future
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bardeen, Marjorie G.; /Fermilab
2011-11-01
For 30 years, Fermilab has offered K-12 education programs, building bridges between the Lab and the community. The Lederman Science Center is our home. We host field trips and tours, visit schools, offer classes and professional development workshops, host special events, support internships and have a strong web presence. We develop programs based on identified needs, offer programs with peer-leaders and improve programs from participant feedback. For some we create interest; for others we build understanding and develop relationships, engaging participants in scientific exploration. We explain how we created the Center, its programs, and what the future holds.
Hymen Restoration: "My" Discomfort, "Their" Culture, and Women's Missing Voice.
Schuster, Sylvie
2015-01-01
The discourse among medical and scientific communities on hymen restoration is largely missing the voice of women affected. This article calls for a more nuanced reflection on women's real life experiences and the complexities inherent in the negotiation process about the surgery going beyond "ideologies" and the extremes of rape and threats to life. By taking the clinical experience of a woman who requests restoration surgery before her arranged marriage, this article illuminates the grey zone beyond these extremes and explores an individual woman's options for making her own choices. Copyright 2015 The Journal of Clinical Ethics. All rights reserved.
Deserts in the Deluge: TerraPopulus and Big Human-Environment Data.
Manson, S M; Kugler, T A; Haynes, D
2016-01-01
Terra Populus, or TerraPop, is a cyberinfrastructure project that integrates, preserves, and disseminates massive data collections describing characteristics of the human population and environment over the last six decades. TerraPop has made a number of GIScience advances in the handling of big spatial data to make information interoperable between formats and across scientific communities. In this paper, we describe challenges of these data, or 'deserts in the deluge' of data, that are common to spatial big data more broadly, and explore computational solutions specific to microdata, raster, and vector data models.
The Lederman Science Center:. Past, Present, Future
NASA Astrophysics Data System (ADS)
Bardeen, Marjorie G.
2012-08-01
For 30 years, Fermilab has offered K-12 education programs, building bridges between the Lab and the community. The Lederman Science Center is our home. We host field trips and tours, visit schools, offer classes and professional development workshops, host special events, support internships and have a strong web presence. We develop programs based on identified needs, offer programs with peer-leaders and improve programs from participant feedback. For some we create interest; for others we build understanding and develop relationships, engaging participants in scientific exploration. We explain how we created the Center, its programs, and what the future holds.
The Habitable Zone Gallery and its Applications
NASA Astrophysics Data System (ADS)
Gelino, Dawn M.; Kane, S. R.
2012-05-01
The Habitable Zone Gallery (www.hzgallery.org) is a service to the exoplanet community which provides Habitable Zone (HZ) information for each of the exoplanetary systems with known planetary orbital parameters. The service includes a sortable table, a plot with the period and eccentricity of each of the planets with respect to their time spent in the HZ, a gallery of known systems which plot the orbits and the location of the HZ with respect to those orbits, and orbital movies. Here we discuss various educational and scientific applications of the site such as target selection, exploring planets with eccentric orbits, and investigating habitability.
Connecting Science Research and Education While Investigating Trans-Neptunian Objects
NASA Astrophysics Data System (ADS)
Buie, M. W.; Keller, J. M.
2016-12-01
The Research and Education Cooperative Occultation Network (RECON) is an innovative citizen science project to determine the sizes of trans-Neptunian objects (TNOs) as well as search for satellites and rings. We have more than 50 operating sites set from Oroville, WA south to Yuma, AZ with roughly 50 km average spacing. The full phase of the project started in April 2015 after all the participant training was completed. Each site is provided with a 0.28 cm telescope and video recording equipment to observe the occultation signatures. The system can be used on stars as faint as magnitude 16. Each site is formed from the community with teachers, amateur astronomers, and community members that are then also tasked with engaging students to conduct the observational campaigns. Most of the students are of high-school age but we have involvement from younger and older students, depending on the community. We have conducted numerous campaigns so far and have begun publishing scientific results. In addition to presenting a quick overview of results from these observation campaigns, we will describe lessons learned about recruitment, preparation, and retention of citizen scientists from rural communities to conduct authentic astronomy research. In our experience, recruitment and preparation were far easier than anticipated. The biggest challenge to the ongoing operation of RECON is due to the typical turnover rate among high-school teachers. Our team design is built to withstand the departure of one or two key people but some communities are small enough that we cannot build big enough teams for proper resiliency. Despite these challenges, we have successfully built a unique scientific community working to explore the Kuiper Belt. This material is based upon work supported by the National Science Foundation under Grant Nos. AST-1212159 and AST-1413287. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation (NSF).
NASA Astrophysics Data System (ADS)
Moosavi, S. C.
2017-12-01
By their very nature, the geosciences address societal challenges requiring a complex interplay between the research community, geoscience educators and public engagement with the general population to build their knowledge base and convince them to act appropriately to implement policies guided by scientific understanding. The most effective responses to geoscience challenges arise when strong collaborative structures connecting research, education and the public are in place to afford rapid communication and trust at all stages of the investigative and policy implementation processes. Educational programs that involve students and scientists via service learning exploring high profile issues of community interest and outreach to teachers through professional development build the network of relationships with geoscientists to respond rapidly to solve societal problems. These pre-existing personal connections simultaneously hold wider credibility with the public than unfamiliar scientific experts less accustomed to speaking to general audiences. The Geological Society of America is leveraging the research and educational experience of its members to build a self-sustaining state/regional network of K-12 professional development workshops designed to link the academic, research, governmental and industrial communities. The goal is not only to improve the content knowledge and pedagogical skills which teachers bring to their students, but also to build a diverse community of trust capable of responding to geoscience challenges in a fashion relevant to local communities. Dr. Moosavi is building this program by drawing on his background as a biogeochemistry researcher with 20 years experience focused on use of place-based approaches in general education and pre- and in-service teacher preparation in Research 1 and comprehensive universities, liberal arts and community colleges and high school. Experience with K-12 professional development working with the Minnesota Mineral Education Workshop and an undergraduate service learning research program related to beach erosion and the BP Oil Spill on Grand Isle, Louisiana are of particular value to this effort.
NASA Astrophysics Data System (ADS)
Glickson, D.; Amon, D.; Pomponi, S. A.; Fryer, P. B.; Elliott, K.; Lobecker, E.; Cantwell, K. L.; Kelley, C.
2016-12-01
From April to July 2016, an interdisciplinary team of ship-based and shore-based scientists investigated the biology and geology of the Marianas region as part of the 3-year NOAA Campaign to Address the Pacific monument Science, Technology, and Ocean NEeds (CAPSTONE) using the telepresence-enabled NOAA ship Okeanos Explorer. The focus of the expedition was on the Marianas Trench Marine National Monument and the waters of the Commonwealth of the Northern Mariana Islands. A variety of habitats were explored, including deep-sea coral and sponge communities, bottom fisheries, mud volcanoes, hydrothermal vents, Prime Crust Zone seamounts, and the Trench subduction zone. The expedition successfully collected baseline information at 41 sites at depths from 240 to 6,000 m. High-resolution imagery was obtained along the dive tracks, both in the water column and on the seafloor. Over 130 biological and geologic samples were collected. Many of the organisms documented are likely to be new species or new records of occurrence, and dozens of observations were the first ever collected in situ. Almost 74,000 square kilometers of seafloor were mapped, greatly improving both coverage and resolution in the region. New geologic features were mapped and explored, including ridges and new lava flow fields. Public engagement was substantial, with over 3.1 million total views of the live streaming video/audio feeds. The telepresence paradigm was tested rigorously, with active participation from 100 scientists in five countries and at least nine time zones. The shore-based team provided strong scientific expertise, complementing and expanding the knowledge of the ship-based science leads.
Lunar Exploration and Science in ESA
NASA Astrophysics Data System (ADS)
Carpenter, James; Houdou, Bérengère; Fisackerly, Richard; De Rosa, Diego; Patti, Bernardo; Schiemann, Jens; Hufenbach, Bernhard; Foing, Bernard
2014-05-01
ESA seeks to provide Europe with access to the lunar surface, and allow Europeans to benefit from the opening up of this new frontier, as part of a global endeavor. This will be best achieved through an exploration programme which combines the strengths and capabilities of both robotic and human explorers. ESA is preparing for future participation in lunar exploration through a combination of human and robotic activities, in cooperation with international partners. Future planned activities include the contribution of key technological capabilities to the Russian led robotic missions, Luna-Glob, Luna-Resurs orbiter and Luna-Resurs lander. For the Luna-Resurs lander ESA will provide analytical capabilities to compliment the already selected Russian led payload, focusing on the composition and isotopic abundances of lunar volatiles in polar regions. This should be followed by the contributions at the level of mission elements to a Lunar Polar Sample Return mission. This partnership will provide access for European investigators to the opportunities offered by the Russian led instruments on the missions, as well as providing Europe with a unique opportunity to characterize and utilize polar volatile populations. Ultimately samples of high scientific value, from as of yet unexplored and unsampled locations shall be made available to the scientific community. These robotic activities are being performed with a view to enabling a future more comprehensive programme in which robotic and human activities are integrated to provide the maximum benefits from lunar surface access. Activities on the ISS and ESA participation to the US led Multi-Purpose Crew Vehicle, which is planned for a first unmanned lunar flight in 2017, are also important steps towards achieving this. All of these activities are performed with a view to generating the technologies, capabilities, knowledge and heritage that will make Europe an indispensable partner in the exploration missions of the future.
NASA Astrophysics Data System (ADS)
Procter, Jonathan; Nemeth, Karoly
2017-04-01
Geological heritage or geoheritage focuses on the recognition and, to some extent, the protection of rocks, minerals, fossils, landforms, sediments, water and soils, and natural geomorphic processes that have some anthropomorphic value. These values are generally constrained by the geosite (sites of geological significance) having some scientific, educational, research and aesthetic significance. Criteria to determine the significance of a geosite are generally founded on conservation methodologies associated with ecology/biodiversity or the living components of the natural environment. These criteria presently focus on factors such as scale, scope and significance (from a scientific perspective). Very little value is attributed to the cultural connections of a geosite or the way a geosite has contributed to the development of a culture, its spirituality and understanding of the world. In the South Pacific, and in particular New Zealand, geosites and their related management (protection/conservation) mechanisms appear to be somewhat underutilized, possibly due to the fact that those mechanisms appear to the public as being initiatives related to the actions of the scientific community of which they may not consider themselves part. Indigenous communities of the South Pacific and New Zealand very rarely associate with the scientific community and view scientific methods as foreign to their own knowledge systems and worldviews. This generally results in conflict. In the South Pacific, the connection to volcanoes, volcanic landforms and features, and volcanic activity has been an important component to shaping various cultures over time. We present three case studies: (1) from Samoa that explores how important geosites are recorded through local knowledge repositories, (2) from the Auckland Volcanic Field where sites are being classified and protected with little recognition of indigenous peoples' values, and (3) from a UNESCO World Heritage Area that, while well protected and recognised from an bio-diversity, conservation viewpoint, the local indigenous people do have the same importance attributed to their geological heritage. These all highlight the importance of recognising the connections between indigenous peoples' culture, history and knowledge systems as key factors in defining a geoheritage area. It is proposed that assessment schemes and criteria adopt a holistic and integrated approach to defining and quantifying geoheritage values, rather than using a reductionist taxonomic approach to quantifying and qualifying geoheritage sites.
NASA Astrophysics Data System (ADS)
Pelz, M.; Heesemann, M.; Hoeberechts, M.
2017-12-01
This presentation outlines the pilot year of Girls' Remotely Operated Ocean Vehicle Exploration or GROOVE, a hands-on learning program created collaboratively with education partners Ocean Networks Canada and St. Margaret's School (Victoria, BC, Canada). The program features student-led activities, authentic student experiences, clearly outlined learning outcomes, teacher and student self-assessment tools, and curriculum-aligned content. Presented through the lens of STEM, students build a modified Seaperch ROV and explore and research thematic scientific concepts such as buoyancy, electronic circuitry, and deep-sea exploration. Further, students learn engineering skills such as isotropic scaling, soldering, and assembly as they build their ROV. Ocean Networks Canada (ONC), an initiative of the University of Victoria, develops, operates, and maintains cabled ocean observatory systems. These include technologies developed on the world-leading NEPTUNE and VENUS observatories and the ever-expanding network of community observatories in the Arctic and coastal British Columbia. These observatories, large and small, enable communities, users, scientists, teachers, and students to monitor real-time and historical data from the local marine environment from anywhere on the globe. GROOVE, Girls' Remotely Operated Ocean Vehicle Exploration, is ONC's newest educational program and is related to their foundational program K-12 Ocean Sense educational program. This presentation will share our experiences developing, refining, and assessing our efforts to implement GROOVE using a train-the-trainer model aimed at formal and informal K-12 educators. We will highlight lessons learned from multiple perspectives (students, participants, developers, and mentors) with the intent of informing future education and outreach initiatives.
NASA Astrophysics Data System (ADS)
Miller, M. K.; Rossiter, A.; Spitzer, W.
2016-12-01
The Exploratorium, a hands-on science museum, explores local environmental conditions of San Francisco Bay to connect audiences to the larger global implications of ocean acidification and climate change. The work is centered in the Fisher Bay Observatory at Pier 15, a glass-walled gallery sited for explorations of urban San Francisco and the Bay. Interactive exhibits, high-resolution data visualizations, and mediated activities and conversations communicate to public audiences the impacts of excess carbon dioxide in the atmosphere and ocean. Through a 10-year education partnership with NOAA and two environmental literacy grants funded by its Office of Education, the Exploratorium has been part of two distinct but complementary strategies to increase climate literacy beyond traditional classroom settings. We will discuss two projects that address the ways complex scientific information can be transformed into learning opportunities for the public, providing information citizens can use for decision-making in their personal lives and their communities. The Visualizing Change project developed "visual narratives" that combine scientific visualizations and other images with story telling about the science and potential solutions of climate impacts on the ocean. The narratives were designed to engage curiosity and provide the public with hopeful and useful information to stimulate solutions-oriented behavior rather than to communicate despair about climate change. Training workshops for aquarium and museum docents prepare informal educators to use the narratives and help them frame productive conversations with the pubic. The Carbon Networks project, led by the Exploratorium, uses local and Pacific Rim data to explore the current state of climate change and ocean acidification. The Exploratorium collects and displays local ocean and atmosphere data as a member of the Central and Northern California Ocean Observing System and as an observing station for NOAA's Pacific Marine Environment Lab's carbon buoy network. Other Carbon Network partners, the Pacific Science Center and Waikiki Aquarium, also have access to local carbon data from NOAA. The project collectively explores the development of hands-on activities, teaching resources, and workshops for museum educators and classroom teachers.
Review of NASA's Planned Mars Program
NASA Technical Reports Server (NTRS)
1996-01-01
Contents include the following: Executive Summary; Introduction; Scientific Goals for the Exploration of Mars; Overview of Mars Surveyor and Others Mars Missions; Key Issues for NASA's Mars Exploration Program; and Assessment of the Scientific Potential of NASA's Mars Exploration Program.
Memon, Aamir Raoof
2016-12-01
ResearchGate has been regarded as one of the most attractive academic social networking site for scientific community. It has been trying to improve user-centered interfaces to gain more attractiveness to scientists around the world. Display of journal related scietometric measures (such as impact factor, 5-year impact, cited half-life, eigenfactor) is an important feature in ResearchGate. Open access publishing has added more to increased visibility of research work and easy access to information related to research. Moreover, scientific community has been much interested in promoting their work and exhibiting its impact to others through reliable scientometric measures. However, with the growing market of publications and improvements in the field of research, this community has been victimized by the cybercrime in the form of ghost journals, fake publishers and magical impact measures. Particularly, ResearchGate more recently, has been lenient in its policies against this dark side of academic writing. Therefore, this communication aims to discuss concerns associated with leniency in ResearchGate policies and its impact of scientific community.
On using ethical principles of community-engaged research in translational science.
Khodyakov, Dmitry; Mikesell, Lisa; Schraiber, Ron; Booth, Marika; Bromley, Elizabeth
2016-05-01
The transfer of new discoveries into both clinical practice and the wider community calls for reliance on interdisciplinary translational teams that include researchers with different areas of expertise, representatives of health care systems and community organizations, and patients. Engaging new stakeholders in research, however, calls for a reconsideration or expansion of the meaning of ethics in translational research. We explored expert opinion on the applicability of ethical principles commonly practiced in community-engaged research (CEnR) to translational research. To do so, we conducted 2 online, modified-Delphi panels with 63 expert stakeholders who iteratively rated and discussed 9 ethical principles commonly used in CEnR in terms of their importance and feasibility for use in translational research. The RAND/UCLA appropriateness method was used to analyze the data and determine agreement and disagreement among participating experts. Both panels agreed that ethical translational research should be "grounded in trust." Although the academic panel endorsed "culturally appropriate" and "forthcoming with community about study risks and benefits," the mixed academic-community panel endorsed "scientifically valid" and "ready to involve community in interpretation and dissemination" as important and feasible principles of ethical translational research. These findings suggest that in addition to protecting human subjects, contemporary translational science models need to account for the interests of, and owe ethical obligations to, members of the investigative team and the community at large. Copyright © 2016 Elsevier Inc. All rights reserved.
Lessons from community-based payment for ecosystem service schemes: from forests to rangelands.
Dougill, Andrew J; Stringer, Lindsay C; Leventon, Julia; Riddell, Mike; Rueff, Henri; Spracklen, Dominick V; Butt, Edward
2012-11-19
Climate finance investments and international policy are driving new community-based projects incorporating payments for ecosystem services (PES) to simultaneously store carbon and generate livelihood benefits. Most community-based PES (CB-PES) research focuses on forest areas. Rangelands, which store globally significant quantities of carbon and support many of the world's poor, have seen little CB-PES research attention, despite benefitting from several decades of community-based natural resource management (CBNRM) projects. Lessons from CBNRM suggest institutional considerations are vital in underpinning the design and implementation of successful community projects. This study uses documentary analysis to explore the institutional characteristics of three African community-based forest projects that seek to deliver carbon-storage and poverty-reduction benefits. Strong existing local institutions, clear land tenure, community control over land management decision-making and up-front, flexible payment schemes are found to be vital. Additionally, we undertake a global review of rangeland CBNRM literature and identify that alongside the lessons learned from forest projects, rangeland CB-PES project design requires specific consideration of project boundaries, benefit distribution, capacity building for community monitoring of carbon storage together with awareness-raising using decision-support tools to display the benefits of carbon-friendly land management. We highlight that institutional analyses must be undertaken alongside improved scientific studies of the carbon cycle to enable links to payment schemes, and for them to contribute to poverty alleviation in rangelands.
Lessons from community-based payment for ecosystem service schemes: from forests to rangelands
Dougill, Andrew J.; Stringer, Lindsay C.; Leventon, Julia; Riddell, Mike; Rueff, Henri; Spracklen, Dominick V.; Butt, Edward
2012-01-01
Climate finance investments and international policy are driving new community-based projects incorporating payments for ecosystem services (PES) to simultaneously store carbon and generate livelihood benefits. Most community-based PES (CB-PES) research focuses on forest areas. Rangelands, which store globally significant quantities of carbon and support many of the world's poor, have seen little CB-PES research attention, despite benefitting from several decades of community-based natural resource management (CBNRM) projects. Lessons from CBNRM suggest institutional considerations are vital in underpinning the design and implementation of successful community projects. This study uses documentary analysis to explore the institutional characteristics of three African community-based forest projects that seek to deliver carbon-storage and poverty-reduction benefits. Strong existing local institutions, clear land tenure, community control over land management decision-making and up-front, flexible payment schemes are found to be vital. Additionally, we undertake a global review of rangeland CBNRM literature and identify that alongside the lessons learned from forest projects, rangeland CB-PES project design requires specific consideration of project boundaries, benefit distribution, capacity building for community monitoring of carbon storage together with awareness-raising using decision-support tools to display the benefits of carbon-friendly land management. We highlight that institutional analyses must be undertaken alongside improved scientific studies of the carbon cycle to enable links to payment schemes, and for them to contribute to poverty alleviation in rangelands. PMID:23045714
On Using Ethical Principles of Community-Engaged Research in Translational Science
Mikesell, Lisa; Schraiber, Ron; Booth, Marika; Bromley, Elizabeth
2015-01-01
The transfer of new discoveries into both clinical practice and the wider community calls for reliance on interdisciplinary translational teams that include researchers with different areas of expertise, representatives of healthcare systems and community organizations, and patients. Engaging new stakeholders in research, however, calls for a re-consideration or expansion of the meaning of ethics in translational research. We explored expert opinion on the applicability of ethical principles commonly practiced in community-engaged research (CEnR) to translational research. To do so, we conducted two online, modified-Delphi panels with 63 expert stakeholders who iteratively rated and discussed nine ethical principles commonly used in CEnR in terms of their importance and feasibility for use in translational research. The RAND/UCLA Appropriateness Method was used to analyze the data and determine agreement and disagreement among participating experts. Both panels agreed that ethical translational research should be “grounded in trust.” While the academic panel endorsed “culturally appropriate” and “forthcoming with community about study risks and benefits,” the mixed academic-community panel endorsed “scientifically valid” and “ready to involve community in interpretation and dissemination” as important and feasible principles of ethical translational research. These findings suggest that in addition to protecting human subjects, contemporary translational science models need to account for the interests of, and owe ethical obligations to, members of the investigative team and the community at large. PMID:26773561
EarthScope Plate Boundary Observatory Data in the College Classroom (Invited)
NASA Astrophysics Data System (ADS)
Eriksson, S. C.; Olds, S. E.
2009-12-01
The Plate Boundary Observatory (PBO) is the geodetic component of the EarthScope project, designed to study the 3-D strain field across the active boundary zone between the Pacific and North American tectonics plates in the western United States. All PBO data are freely available to scientific and educational communities and have been incorporated into a variety of activities for college and university classrooms. UNAVCO Education and Outreach program staff have worked closely with faculty users, scientific researchers, and facility staff to create materials that are scientifically and technically accurate as well as useful to the classroom user. Availability of processed GPS data is not new to the geoscience community. However, PBO data staff have worked with education staff to deliver data that are readily accessible to educators. The UNAVCO Data for Educators webpage, incorporating an embedded Google Map with PBO GPS locations and providing current GPS time series plots and downloadable data, extends and updates the datasets available to our community. Google Earth allows the visualization GPS data with other types of datasets, e.g. LiDAR, while maintaining the self-contained and easy-to-use interface of UNAVCO’s Jules Verne Voyager map tools, which have multiple sets of geological and geophysical data. Curricular materials provide scaffolds for using EarthScope data in a variety of forms for different learning goals. Simple visualization of earthquake epicenters and locations of volcanoes can be used with velocity vectors to make simple deductions of plate boundary behaviors. Readily available time series plots provide opportunities for additional science skills, and there are web and paper-based support materials for downloading data, manipulating tables, and using plotting programs for processed GPS data. Scientists have provided contextual materials to explore the importance of these data in interpreting the structure and dynamics of the Earth. These data and their scientific context are now incorporated into the Active Earth Display developed by IRIS. Formal and informal evaluations during the past five years have provided useful data for revision and on-line implementation.
Hybrid 2-D and 3-D Immersive and Interactive User Interface for Scientific Data Visualization
2017-08-01
visualization, 3-D interactive visualization, scientific visualization, virtual reality, real -time ray tracing 16. SECURITY CLASSIFICATION OF: 17...scientists to employ in the real world. Other than user-friendly software and hardware setup, scientists also need to be able to perform their usual...and scientific visualization communities mostly have different research priorities. For the VR community, the ability to support real -time user
Conventionalism and Methodological Standards in Contending with Skepticism about Uncertainty
NASA Astrophysics Data System (ADS)
Brumble, K. C.
2012-12-01
What it means to measure and interpret confidence and uncertainty in a result is often particular to a specific scientific community and its methodology of verification. Additionally, methodology in the sciences varies greatly across disciplines and scientific communities. Understanding the accuracy of predictions of a particular science thus depends largely upon having an intimate working knowledge of the methods, standards, and conventions utilized and underpinning discoveries in that scientific field. Thus, valid criticism of scientific predictions and discoveries must be conducted by those who are literate in the field in question: they must have intimate working knowledge of the methods of the particular community and of the particular research under question. The interpretation and acceptance of uncertainty is one such shared, community-based convention. In the philosophy of science, this methodological and community-based way of understanding scientific work is referred to as conventionalism. By applying the conventionalism of historian and philosopher of science Thomas Kuhn to recent attacks upon methods of multi-proxy mean temperature reconstructions, I hope to illuminate how climate skeptics and their adherents fail to appreciate the need for community-based fluency in the methodological standards for understanding uncertainty shared by the wider climate science community. Further, I will flesh out a picture of climate science community standards of evidence and statistical argument following the work of philosopher of science Helen Longino. I will describe how failure to appreciate the conventions of professionalism and standards of evidence accepted in the climate science community results in the application of naïve falsification criteria. Appeal to naïve falsification in turn has allowed scientists outside the standards and conventions of the mainstream climate science community to consider themselves and to be judged by climate skeptics as valid critics of particular statistical reconstructions with naïve and misapplied methodological criticism. Examples will include the skeptical responses to multi-proxy mean temperature reconstructions and congressional hearings criticizing the work of Michael Mann et al.'s Hockey Stick.
Bragazzi, Nicola Luigi; Toletone, Alessandra; Brigo, Francesco; Durando, Paolo
2016-01-01
Objective Silicosis is an untreatable but preventable occupational disease, caused by exposure to silica. It can progressively evolve to lung impairment, respiratory failure and death, even after exposure has ceased. However, little is known about occupational diseases-related interest at the level of scientific community, media coverage and web behavior. This article aims at filling in this gap of knowledge, taking the silicosis as a case study. Methods We investigated silicosis-related web-activities using Google Trends (GT) for capturing the Internet behavior worldwide in the years 2004–2015. GT-generated data were, then, compared with the silicosis-related scientific production (i.e., PubMed and Google Scholar), the media coverage (i.e., Google news), the Wikipedia traffic (i.e, Wikitrends) and the usage of new media (i.e., YouTube and Twitter). Results A peak in silicosis-related web searches was noticed in 2010–2011: interestingly, both scientific articles production and media coverage markedly increased after these years in a statistically significant way. The public interest and the level of the public engagement were witnessed by an increase in likes, comments, hashtags, and re-tweets. However, it was found that only a small fraction of the posted/uploaded material contained accurate scientific information. Conclusions GT could be useful to assess the reaction of the public and the level of public engagement both to novel risk-factors associated to occupational diseases, and possibly related changes in disease natural history, and to the effectiveness of preventive workplace practices and legislative measures adopted to improve occupational health. Further, occupational clinicians should become aware of the topics most frequently searched by patients and proactively address these concerns during the medical examination. Institutional bodies and organisms should be more present and active in digital tools and media to disseminate and communicate scientifically accurate information. This manuscript should be intended as preliminary, exploratory communication, paving the way for further studies. PMID:27806115
40 CFR 63.90 - Program overview.
Code of Federal Regulations, 2011 CFR
2011-07-01
... “proven technology” (generally accepted by the scientific community as equivalent or better) that is... enforceable test method involving “proven technology” (generally accepted by the scientific community as... interest; and (3) “Combining” a federally required method with another proven method for application to...
40 CFR 63.90 - Program overview.
Code of Federal Regulations, 2010 CFR
2010-07-01
... “proven technology” (generally accepted by the scientific community as equivalent or better) that is... enforceable test method involving “proven technology” (generally accepted by the scientific community as... interest; and (3) “Combining” a federally required method with another proven method for application to...
Assembling a Cellular User Manual for the Brain.
Sloan, Steven A; Barres, Ben A
2018-03-28
For many years, efforts to decipher the various cellular components that comprise the CNS were stymied by a lack of technical strategies for isolating and profiling the brain's resident cell types. The advent of transcriptional profiling, combined with powerful new purification schemes, changed this reality and transformed our understanding of the macroglial populations within the brain. Here, we chronicle the historical context and scientific setting for our efforts to transcriptionally profile neurons, astrocytes, and oligodendrocytes, and highlight some of the profound discoveries that were cultivated by these data.Following a lengthy battle with pancreatic cancer, Ben Barres passed away during the writing of this Progression piece. Among Ben's innumerable contributions to the greater scientific community, his addition of publicly available transcriptome databases of CNS cell types will forever remain a relic of his generous spirit and boundless scientific curiosity. Although he had impressively committed a majority of these enormous gene lists to memory, Ben could oftentimes be spotted at meetings buried in his cell phone on the Barres RNAseq database. Perhaps the only thing he enjoyed more than exploring these data himself, was knowing how useful these contributions had been (and will hopefully continue to be) to his scientific peers. Copyright © 2018 the authors 0270-6474/18/383149-05$15.00/0.
NASA Astrophysics Data System (ADS)
Venner, Laura
2008-05-01
Engaging "K-to-Gray” audiences (children, families, and older adults) in scientific exploration and discovery is the main goal of the NJMC Center for Environmental and Scientific Education and the William D. McDowell Observatory located in Lyndhurst, NJ. Perched atop a closed and reclaimed municipal solid waste landfill, our new LEED - certified building (certification pending) and William D. McDowell observatory will bring hands-on scientific experiences to the 25,000 students and 3,000 adults that visit our site from the NY/NJ region each year. Our programs adhere to the New Jersey Core Curriculum Content Standards and are modified for accessibility for the underserved communities that visit us, specifically those individuals that have mobility, sensory, and/or cognitive ability differences. The programs are conducted in a classroom setting and are designed to nourish the individual's inquisitive nature and provide an opportunity to function as a scientist by, making observations, performing experiments and recording data. We have an $850,000, three year NSF grant that targets adults with disabilities and older adults with age related limitations in vision, hearing, cognition and/or mobility. From dip netting in the marsh to astronomical investigation of the cosmos, the MEC/CESE remains committed to reaching the largest audience possible and leaving them with a truly exceptional scientific experience that serves to educate and inspire.
NASA Astrophysics Data System (ADS)
Van Horne, Katie
This dissertation investigates the implementation issues and the educational opportunities associated with "taking the practice turn" in science education. This pedagogical shift focuses instructional experiences on engaging students in the epistemic practices of science both to learn the core ideas of the disciplines, as well as to gain an understanding of and personal connection to the scientific enterprise. In Chapter 2, I examine the teacher-researcher co-design collaboration that supported the classroom implementation of a year-long, project-based biology curriculum that was under development. This study explores the dilemmas that arose when teachers implemented a new intervention and how the dilemmas arose and were managed throughout the collaboration of researchers and teachers and between the teachers. In the design-based research of Chapter 3, I demonstrate how students' engagement in epistemic practices in contemporary science investigations supported their conceptual development about genetics. The analysis shows how this involved a complex interaction between the scientific, school and community practices in students' lives and how through varied participation in the practices students come to write about and recognize how contemporary investigations can give them leverage for science-based action outside of the school setting. Finally, Chapter 4 explores the characteristics of learning environments for supporting the development of scientific practice-linked identities. Specific features of the learning environment---access to the intellectual work of the domain, authentic roles and accountability, space to make meaningful contributions in relation to personal interests, and practice-linked identity resources that arose from interactions in the learning setting---supported learners in stabilizing practice-linked science identities through their engagement in contemporary scientific practices. This set of studies shows that providing students with the tools and means of contemporary scientific inquiry allows them to gain conceptual development and proficiency with the scientific practices within the contexts of their lives, in ways that provided access to resources that promoted students' stabilization of practice-linked identities. For teachers implementing this instructional model in their classrooms, it brought up dilemmas and opportunities related to their school contexts and their personal history of instructional practices. The work collectively informs how interest-driven project-based science instruction can happen across a range of school contexts and how such models can support meaningful science learning and identification.
NASA Astrophysics Data System (ADS)
Andrée, Maria; Hansson, Lena
2014-08-01
Young people's interest in pursuing science and science-intense educations has been expressed as a concern in relation to societal, economic and democratic development by various stakeholders (governments, industry and university). From the perspective of the scientific communities, the issues at stake do not necessarily correspond to the overall societal aims. Rather, initiatives to recruit young people to science are also ways for the scientific community to engage in the social and cultural reproduction of itself. For a community to survive and produce a future, it needs to secure regeneration of itself in succeeding generations. The aim of this study is to, from a perspective of social and cultural production/reproduction, shed light on an initiative from the scientific community to recruit young people to science education. This is a case study of one recruitment campaign called the Chemistry Advent calendar. The calendar consists of 25 webcasted films, produced and published by the science/technology faculty at a university. The analysed data consist of the films and additional published material relating to the campaign such as working reports and articles published about the campaign. The analysis focussed on what messages are communicated to potential newcomers. The messages were categorised by means of a framework of subjective values. The results are discussed both from a perspective of how the messages mirror traditions and habits of the scientific community, and in relation to research on students' educational choices.
Enabling All-Access Mobility for Planetary Exploration Vehicles via Transformative Reconfiguration
NASA Technical Reports Server (NTRS)
Ferguson, Scott; Mazzoleni, Andre
2016-01-01
Effective large-scale exploration of planetary surfaces requires robotic vehicles capable of mobility across chaotic terrain. Characterized by a combination of ridges, cracks and valleys, the demands of this environment can cause spacecraft to experience significant reductions in operating footprint, performance, or even result in total system loss. Significantly increasing the scientific return of an interplanetary mission is facilitated by architectures capable of real-time configuration changes that go beyond that of active suspensions while concurrently meeting system, mass, power, and cost constraints. This Phase 1 report systematically explores how in-service architecture changes can expand system capabilities and mission opportunities. A foundation for concept generation is supplied by four Martian mission profiles spanning chasms, ice fields, craters and rocky terrain. A fifth mission profile centered on Near Earth Object exploration is also introduced. Concept generation is directed using four transformation principles - a taxonomy developed by the engineering design community to explain the cause of an architecture change and existing brainstorming techniques. This allowed early conceptual sketches of architecture changes to be organized by the principle driving the greatest increase in mission performance capability.
RADIOISOTOPE-DRIVEN DUAL-MODE PROPULSION SYSTEM FOR CUBESAT-SCALE PAYLOADS TO THE OUTER PLANETS
DOE Office of Scientific and Technical Information (OSTI.GOV)
N. D. Jerred; T. M. Howe; S. D. Howe
It is apparent the cost of planetary exploration is rising as mission budgets declining. Currently small scientific beds geared to performing limited tasks are being developed and launched into low earth orbit (LEO) in the form of small-scale satellite units, i.e., CubeSats. These micro- and nano-satellites are gaining popularity among the university and science communities due to their relatively low cost and design flexibility. To date these small units have been limited to performing tasks in LEO utilizing solar-based power. If a reasonable propulsion system could be developed, these CubeSat platforms could perform exploration of various extra-terrestrial bodies within themore » solar system engaging a broader range of researchers. Additionally, being mindful of mass, smaller cheaper launch vehicles (approximately 1,000 kgs to LEO) can be targeted. Thus, in effect, allows for beneficial exploration to be conducted within limited budgets. Researchers at the Center for Space Nuclear Research (CSNR) are proposing a low mass, radioisotope-based, dual-mode propulsion system capable of extending the exploration realm of these CubeSats out of LEO.« less
30 CFR 251.8 - Inspection and reporting requirements for activities under a permit.
Code of Federal Regulations, 2011 CFR
2011-07-01
... exploration or scientific research activities under a permit. They will determine whether operations are... operations. (2) You must submit a final report of exploration or scientific research activities under a... scientific research activities were conducted. Identify the lines of geophysical traverses and their...
Science in Writing: Learning Scientific Argument in Principle and Practice
ERIC Educational Resources Information Center
Cope, Bill; Kalantzis, Mary; Abd-El-Khalick, Fouad; Bagley, Elizabeth
2013-01-01
This article explores the processes of writing in science and in particular the "complex performance" of writing a scientific argument. The article explores in general terms the nature of scientific argumentation in which the author-scientist makes claims, provides evidence to support these claims, and develops chains of scientific…
44 CFR 67.8 - Appeal procedure.
Code of Federal Regulations, 2010 CFR
2010-10-01
... technical or scientific data submitted by the community that tend to negate or contradict the information... FLOOD ELEVATION DETERMINATIONS § 67.8 Appeal procedure. (a) If a community appeals the proposed flood... to an independent scientific body or appropriate Federal agency for advice. (c) The final...
44 CFR 67.8 - Appeal procedure.
Code of Federal Regulations, 2011 CFR
2011-10-01
... technical or scientific data submitted by the community that tend to negate or contradict the information... FLOOD ELEVATION DETERMINATIONS § 67.8 Appeal procedure. (a) If a community appeals the proposed flood... to an independent scientific body or appropriate Federal agency for advice. (c) The final...
40 CFR 63.90 - Program overview.
Code of Federal Regulations, 2012 CFR
2012-07-01
... calibration gases or test cells; (4) Use of an analytical technology that differs from that specified by a... “proven technology” (generally accepted by the scientific community as equivalent or better) that is... enforceable test method involving “proven technology” (generally accepted by the scientific community as...
40 CFR 63.90 - Program overview.
Code of Federal Regulations, 2013 CFR
2013-07-01
... calibration gases or test cells; (4) Use of an analytical technology that differs from that specified by a... “proven technology” (generally accepted by the scientific community as equivalent or better) that is... enforceable test method involving “proven technology” (generally accepted by the scientific community as...
40 CFR 63.90 - Program overview.
Code of Federal Regulations, 2014 CFR
2014-07-01
... calibration gases or test cells; (4) Use of an analytical technology that differs from that specified by a... “proven technology” (generally accepted by the scientific community as equivalent or better) that is... enforceable test method involving “proven technology” (generally accepted by the scientific community as...
2014-11-03
Members of the media watch a demonstration of the Regolith Advanced Surface System Operations Robot, or RASSOR, during a media event at the automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Tom Engler, center, in the suit, deputy director of Kennedy's Center Planning and Development, announced Moon Express Inc., of Moffett Field, California is selected to utilize Kennedy facilities for NASA's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST.
2014-11-03
CAPE CANAVERAL, Fla. - Rob Mueller, NASA senior technologist in the Surface Systems Office in Kennedy Space Center's Engineering and Technology Directorate, demonstrates the Regolith Advanced Surface System Operations Robot, or RASSOR, during a media event at Kennedy's automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility. The event was held to announce Moon Express Inc., of Moffett Field, California is selected to utilize Kennedy facilities for NASA's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST. Photo credit: NASA/Ben Smegelsky
2014-11-03
Rob Mueller, left, NASA senior technologist in the Surface Systems Office in Kennedy Space Center's Engineering and Technology Directorate, talks with former NASA Apollo astronaut Buzz Aldrin during a demonstration of the Regolith Advanced Surface Systems Operations Robot, or RASSOR, at the automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The event was held to announce Moon Express Inc., of Moffett Field, California is selected to utilize Kennedy facilities for NASA's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST.
2014-11-03
CAPE CANAVERAL, Fla. - Members of the media watch a demonstration of the Regolith Advanced Surface System Operations Robot, or RASSOR, during a media event at the automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Tom Engler, center, in the suit, deputy director of Kennedy's Center Planning and Development, announced Moon Express Inc., of Moffett Field, California is selected to utilize Kennedy facilities for NASA's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST. Photo credit: NASA/Ben Smegelsky
2014-11-03
Rob Mueller, left, NASA senior technologist in the Surface Systems Office in Kennedy Space Center's Engineering and Technology Directorate, talks with former NASA Apollo astronaut Buzz Aldrin during a demonstration of the Regolith Advanced Surface System Operations Robot, or RASSOR, at the automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The event was held to announce Moon Express Inc., of Moffett Field, California is selected to utilize Kennedy facilities for NASA's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST.
Getting Involved with the Discovery Program
NASA Technical Reports Server (NTRS)
Asplund, Shari
2000-01-01
NASA's Discovery Program represents the implementation of NASA Administrator Daniel Goldin's vision of 'faster, better, cheaper' planetary missions; encompasses a series of low-cost solar system exploration missions intended to accomplish high quality, focused planetary science investigations using innovative, streamlined, and efficient approaches to assure the highest science value for the cost; and aims to enhance our understanding of the solar system by exploring the planets, their moons and other small bodies, either by traveling to them or remotely from the vicinity of Earth. The objectives of this program include the following: (1) Provide exciting and important scientific data to the global community; (2) Pursue new and innovative ways of doing business; (3) Encourage technological development by designing and testing new technologies and transferring them to the private sector; (4) Increase public awareness of, and appreciation for, solar system exploration through exciting education and public outreach activities; (5) Support national education initiatives through mission-specific programs; and (6) Ensure participation of small disadvantaged businesses, women-owned businesses, HBCUs, and other minority educational institutions in procurements.
The ground truth about metadata and community detection in networks
Peel, Leto; Larremore, Daniel B.; Clauset, Aaron
2017-01-01
Across many scientific domains, there is a common need to automatically extract a simplified view or coarse-graining of how a complex system’s components interact. This general task is called community detection in networks and is analogous to searching for clusters in independent vector data. It is common to evaluate the performance of community detection algorithms by their ability to find so-called ground truth communities. This works well in synthetic networks with planted communities because these networks’ links are formed explicitly based on those known communities. However, there are no planted communities in real-world networks. Instead, it is standard practice to treat some observed discrete-valued node attributes, or metadata, as ground truth. We show that metadata are not the same as ground truth and that treating them as such induces severe theoretical and practical problems. We prove that no algorithm can uniquely solve community detection, and we prove a general No Free Lunch theorem for community detection, which implies that there can be no algorithm that is optimal for all possible community detection tasks. However, community detection remains a powerful tool and node metadata still have value, so a careful exploration of their relationship with network structure can yield insights of genuine worth. We illustrate this point by introducing two statistical techniques that can quantify the relationship between metadata and community structure for a broad class of models. We demonstrate these techniques using both synthetic and real-world networks, and for multiple types of metadata and community structures. PMID:28508065
The ESA Planetary Science Archive User Group (PSA-UG)
NASA Astrophysics Data System (ADS)
Rossi, A. P.; Cecconi, B.; Fraenz, M.; Hagermann, A.; Heather, D.; Rosenblatt, P.; Svedhem, H.; Widemann, T.
2014-04-01
ESA has established a Planetary Science Archive User Group (PSA-UG), with the task of offering independent advice to ESA's Planetary Science Archive (e.g. Heather et al., 2013). The PSA-UG is an official and independent body that continuously evaluates services and tools provided by the PSA to the community of planetary data scientific users. The group has been tasked with the following top level objectives: a) Advise ESA on future development of the PSA. b) Act as a focus for the interests of the scientific community. c) Act as an advocate for the PSA. d) Monitor the PSA activities. Based on this, the PSA-UG will report through the official ESA channels. Disciplines and subjects represented by PSA-UG members include: Remote Sensing of both Atmosphere and Solid Surfaces, Magnetospheres, Plasmas, Radio Science and Auxilliary data. The composition of the group covers ESA missions populating the PSA both now and in the near future. The first members of the PSA-UG were selected in 2013 and will serve for 3 years, until 2016. The PSA-UG will address the community through workshops, conferences and the internet. Written recommendations will be made to the PSA coordinator, and an annual report on PSA and the PSA-UG activities will be sent to the Solar System Exploration Working Group (SSEWG). Any member of the community and planetary data user can get in touch with individual members of the PSA-UG or with the group as a whole via the contacts provided on the official PSA-UG web-page: http://archives.esac.esa.int/psa/psa-ug The PSA is accessible via: http://archives.esac.esa.int/psa
The Arctic Research Consortium of the United States (ARCUS): Connecting Arctic Research
NASA Astrophysics Data System (ADS)
Rich, R. H.; Wiggins, H. V.; Creek, K. R.; Sheffield Guy, L.
2015-12-01
This presentation will highlight the recent activities of the Arctic Research Consortium of the United States (ARCUS) to connect Arctic research. ARCUS is a nonprofit membership organization of universities and institutions that have a substantial commitment to research in the Arctic. ARCUS was formed in 1988 to serve as a forum for planning, facilitating, coordinating, and implementing interdisciplinary studies of the Arctic; to act as a synthesizer and disseminator of scientific information on arctic research; and to educate scientists and the general public about the needs and opportunities for research in the Arctic. ARCUS, in collaboration with the broader science community, relevant agencies and organizations, and other stakeholders, coordinates science planning and educational activities across disciplinary and organizational boundaries. Examples of ARCUS projects include: Arctic Sea Ice Outlook - an international effort that provides monthly summer reports synthesizing community estimates of the expected sea ice minimum. Sea Ice for Walrus Outlook - a resource for Alaska Native subsistence hunters, coastal communities, and others that provides weekly reports with information on sea ice conditions relevant to walrus in Alaska waters. PolarTREC (Teachers and Researchers Exploring and Collaborating) - a program whereby K-12 educators and researchers work together in hands-on field experiences in the Arctic and Antarctic to advance polar science education. ArcticInfo mailing list, Witness the Arctic newsletter, and the Arctic Calendar - communication tools for the arctic science community to keep apprised of relevant news, meetings, and announcements. Coordination for the Study of Environmental Arctic Change (SEARCH) program, which aims to provide scientific understanding of arctic environmental change to help society understand and respond to a rapidly changing Arctic. More information about these and other ARCUS activities can be found at the ARCUS website at: http://www.arcus.org.
Sharp, Melissa K; Haneef, Romana; Ravaud, Philippe; Boutron, Isabelle
2017-11-03
To explore how the results from the 2014 dual antiplatelet therapy (DAPT) trial were disseminated to the scientific community and online media. A a systematic review of scholarly and public attention surrounding the DAPT study. Data were collected from the ISI Web of Knowledge, Google Scholar, PubMed Commons, EurekAlert, the DAPT study website (www.daptstudy.org) and the New England Journal of Medicine website (for scholarly attention) and Altmetric Explorer, Snap Bird, YouTube (for public attention) citing DAPT study results appearing from 16 November 2014 to 10 June 2015. No participants were involved in this study. Proportion of contents highlighting the increased risk of mortality and critical to the author's interpretation of the results. We identified 425 items reported by seven sources; 164 (39%) disseminated the authors' interpretation via an electronic link or a reference, with no additional text. Among 81 items (19 %), the message favoured prolonged treatment and consequently overstated the article conclusions. Among 119 items (28 %), the text was uncertain about the benefit of prolonged treatment but was reported with no or inappropriate mention of increased risk of mortality. Only 34 items (8 %) were uncertain about the benefit of prolonged treatment and mentioned increased risk of mortality. In all, 27 items (6 %) did not favour prolonged treatment, and only 12 of these (3 %) clearly raised some concerns about the reporting of increased risk of death. Dissemination of the DAPT study results to the scientific community and on different media sources rarely criticised the interpretation of the study results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Haneef, Romana; Ravaud, Philippe
2017-01-01
Objective To explore how the results from the 2014 dual antiplatelet therapy (DAPT) trial were disseminated to the scientific community and online media. Design A a systematic review of scholarly and public attention surrounding the DAPT study. Settings Data were collected from the ISI Web of Knowledge, Google Scholar, PubMed Commons, EurekAlert, the DAPT study website (www.daptstudy.org) and the New England Journal of Medicine website (for scholarly attention) and Altmetric Explorer, Snap Bird, YouTube (for public attention) citing DAPT study results appearing from 16 November 2014 to 10 June 2015. Participants No participants were involved in this study. Main outcome measure Proportion of contents highlighting the increased risk of mortality and critical to the author’s interpretation of the results. Results We identified 425 items reported by seven sources; 164 (39%) disseminated the authors’ interpretation via an electronic link or a reference, with no additional text. Among 81 items (19 %), the message favoured prolonged treatment and consequently overstated the article conclusions. Among 119 items (28 %), the text was uncertain about the benefit of prolonged treatment but was reported with no or inappropriate mention of increased risk of mortality. Only 34 items (8 %) were uncertain about the benefit of prolonged treatment and mentioned increased risk of mortality. In all, 27 items (6 %) did not favour prolonged treatment, and only 12 of these (3 %) clearly raised some concerns about the reporting of increased risk of death. Conclusion Dissemination of the DAPT study results to the scientific community and on different media sources rarely criticised the interpretation of the study results. PMID:29101129
Working with and promoting early career scientists within a larger community
NASA Astrophysics Data System (ADS)
Pratt, K.
2017-12-01
For many scientific communities, engaging early career researchers is critical for success. These young scientists (graduate students, postdocs, and newly appointed professors) are actively forming collaborations and instigating new research programs. They also stand to benefit hugely from being part of a scientific community, gaining access to career development activities, becoming part of strong collaborator networks, and achieving recognition in their field of study — all of which will help their professional development. There are many ways community leaders can work proactively to support and engage early career scientists, and it it is often a community manager's job to work with leadership to implement such activities. In this presentation, I will outline ways of engaging early career scientists at events and tailored workshops, of promoting development of their leadership skills, and of creating opportunities for recognizing early career scientists within larger scientific communities. In this talk, I will draw from my experience working with the Deep Carbon Observatory Early Career Scientist Network, supported by the Alfred P. Sloan Foundation.
EXTraS: Exploring the X-ray Transient and variable Sky
NASA Astrophysics Data System (ADS)
De Luca, A.; Salvaterra, R.; Tiengo, A.; D'Agostino, D.; Watson, M.; Haberl, F.; Wilms, J.
2017-10-01
The EXTraS project extracted all temporal domain information buried in the whole database collected by the EPIC cameras onboard the XMM-Newton mission. This included a search and characterisation of variability, both periodic and aperiodic, in hundreds of thousands of sources spanning more than eight orders of magnitude in time scale and six orders of magnitude in flux, as well as a search for fast transients, missed by standard image analysis. Phenomenological classification of variable sources, based on X-ray and multiwavelength information, has also been performed. All results and products of EXTraS are made available to the scientific community through a web public data archive. A dedicated science gateway will allow scientists to apply EXTraS pipelines on new observations. EXTraS is the most comprehensive analysis of variability, on the largest ever sample of soft X-ray sources. The resulting archive and tools disclose an enormous scientific discovery space to the community, with applications ranging from the search for rare events to population studies, with impact on the study of virtually all astrophysical source classes. EXTraS, funded within the EU/FP7 framework, is carried out by a collaboration including INAF (Italy), IUSS (Italy), CNR/IMATI (Italy), University of Leicester (UK), MPE (Germany) and ECAP (Germany).
GLOBE-al Impact through Diversity Bootcamps and Student Research Symposia
NASA Astrophysics Data System (ADS)
Bourgeault, J.; Murphy, T.; Johnson, J.; Sparrow, E. B.; Czajkowski, K. P.; Herron, S.; Falcon, P.
2016-12-01
Inclusion, diversity, underrepresented groups, underserved populations...the key words and phrases that represent the students, we, as science education professionals, want to reach and encourage to enter the geoscience pipeline. Wanting to do this is one thing and having the skills to succeed is very different. It is also one that the GLOBE Program, an international science and education program, is working on as a community. GLOBE encourages students from around the world to participate in authentic scientific research of the Earth system. Students use scientific protocols to explore their local environments, compare their findings with other GLOBE schools both in the U.S. and in other participating countries, and then share their findings via the GLOBE.gov website. In the last year, two initiatives, six face-to-face Student Research Symposia and two diversity-focused GLOBE Partner Bootcamps, set the GLOBE community of Partners, teachers and students on the path to being able to address this challenge. This presentation will include the framework for the student research symposia, the barriers the leadership team faced when recruiting and getting students there and the lessons learned. Agendas for the GLOBE Partner Bootcamps will be shared to demonstrate how facilitators supplemented a standard GLOBE Partner workshop to model a more inclusive environment, along with future improvements to the format.
Advancing the adverse outcome pathway framework and its ...
Regulatory agencies worldwide are confronted with the challenging task of assessing the risks of thousands of chemicals to protect both human health and the environment. Traditional toxicity testing largely relies on apical endpoints from whole animal studies, which, in addition to ethical concerns, is costly and time prohibitive. As a result, the utility of mechanism-based in silico, in vitro, and in vivo approaches to support chemical safety evaluations have increasingly been explored. An approach that has gained traction for capturing available knowledge describing the linkage between mechanistic data and apical toxicity endpoints, required for regulatory assessments, is the adverse outcome pathway (AOP) framework. A number of international workshops and expert meetings have been held over the past years focusing on the AOP framework and its applications to chemical risk assessment. Although, these interactions have illustrated the necessity of expert guidance in moving the science of AOPs and their applications forward, there is also the recognition that a broader survey of the scientific community could be useful in guiding future initiatives in the AOP arena. To that end, a Horizon Scanning exercise was conducted to solicit questions from the global scientific community concerning the challenges or limitations that must be addressed in order to realize the full potential of the AOP framework in research and regulatory decision making. Over a 4 month ques
Tracking Clouds on Venus using Venus Express Data
NASA Astrophysics Data System (ADS)
Pertzborn, Rosalyn; Limaye, Sanjay; Markiewicz, Wojciech; Jasmin, Tommy; Udgaonkar, Nishant
2014-05-01
In the US, a growing emphasis has been placed on the development of inclusive and authentic educational experiences which promote active participation by the K-12 learning community as well as the general public in NASA's earth and space science research activities. In the face of growing national and international budgetary constraints which present major challenges across all scientific research organizations around the world, the need for scientific communities to dramatically improve strategies for effective public engagement experiences, demonstrating the relevance of earth and space science research contributions to the citizenry, have become paramount. This presentation will provide an introduction to the online Venus Express Cloud tracking applet, an overview of feedback from educational users based on classroom/pilot implementation efforts, as well as the concept's potential viability for the promotion of expanded public participation in the analysis of data in future planetary exploration and research activities, nationally and internationally. Acknowledgements: We wish to acknowledge the contributions of Mr. Nishant Udgaonkar, a summer intern with the S.N. Bose Scholars Program, sponsored by the Science and Engineering Board, Department of Science and Technology, Government of India, the Indo-U.S. Science and Technology Forum, and the University of Wisconsin-Madison. We also wish to acknowledge the Space Science and Engineering Center as well as NASA for supporting this project.
Mirabile, Marco; Boccuni, Fabio; Gagliardi, Diana; Rondinone, Bruna Maria; Iavicoli, Sergio
2014-07-01
This study explores the way the publication of a National White Book on health and safety risks that affect workers in jobs involving Nanotechnologies and Nanomaterials influenced the key Italian stakeholders attitude toward this issue and identifies the standpoints and priorities shared among researchers and stakeholders to develop a policy framework to address this issue. The study not only highlights some important assumptions (i.e. the acknowledgment by the key stakeholders of the need for actions and the identification of objectives which can gain a wide consensus) for the establishment of a policy community that sustains the development of a policymaking process on the issue but, through the interaction between stakeholders and OSH researchers, it also identifies some in nuce proposals that represent the starting point for policy interventions aimed at meeting the needs of both stakeholders and scientific community. Results obtained in terms of clarification of interests at stake, identification of potential areas of consensus and level of key national actors' engagement achieved, show the potentialities of adopting a knowledge based and inclusive approach to policy-making to address the issue of prevention and management of health and safety risks related to technological innovation within a framework of scientific uncertainty. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Pedigrees, propaganda, and paranoia: family studies in a historical context.
Lombardo, P A
2001-01-01
This article reviews the uses of family studies carried out in the early 20th century under the banner of eugenics, a companion discipline to early genetics. It explores how, in an attempt to analyze and quantify purportedly biologic bases of social problems, the eugenicists constructed pedigree charts of notoriously "defective" families. Investigation of individuals with suspect traits formed the basis for instruction of field workers who linked those traits to larger groups. The resulting eugenic family studies provided a "scientific" face for a popular hereditarian mythology that claimed to explain all social failure in systematic terms. The eugenicists were successful in fueling public fear about the growing "army of idiots and imbeciles" graphically depicted in their pedigree charts. Their success was the result of a finely crafted educational program--propaganda that reduced science to simplistic terms. The tendency to oversimplify concepts of genetic causation and the rush to amplify the significance of research findings through the popular media is also apparent today. What begins as publicity has the potential to be transformed into propaganda. Although many in the scientific community are understandably reluctant to revisit the abuses of the past, that community must confront the history of eugenics as a necessary antidote to the genetic hype that surrounds us.
NASA Technical Reports Server (NTRS)
Keller, Richard M.
1991-01-01
The construction of scientific software models is an integral part of doing science, both within NASA and within the scientific community at large. Typically, model-building is a time-intensive and painstaking process, involving the design of very large, complex computer programs. Despite the considerable expenditure of resources involved, completed scientific models cannot easily be distributed and shared with the larger scientific community due to the low-level, idiosyncratic nature of the implemented code. To address this problem, we have initiated a research project aimed at constructing a software tool called the Scientific Modeling Assistant. This tool provides automated assistance to the scientist in developing, using, and sharing software models. We describe the Scientific Modeling Assistant, and also touch on some human-machine interaction issues relevant to building a successful tool of this type.
Antibody Scientific Committee | Office of Cancer Clinical Proteomics Research
The Antibody Scientific Committee provides scientific insight and guidance to the NCI's Antibody Characterization Program. Specifically, the members of this committee evaluate request from the external scientific community for development and characterization of antibodies by the program. The members of the Antibody Scientific Committee include:
Teaching science with technology: Using EPA's EnviroAtlas in ...
Background/Question/Methods U.S. EPA’s EnviroAtlas provides a collection of web-based, interactive tools and resources for exploring ecosystem goods and services. EnviroAtlas contains two primary tools: An Interactive Map, which provides access to 300+ maps at multiple extents for the U.S., and an Eco-Health Relationship Browser, which displays evidence from hundreds of scientific publications on the linkages between ecosystems, the services they provide, and human health. EnviroAtlas is readily available, only requires an internet browser to use, and can be used by anyone with some introduction, which this session will provide. This session introduces an educational curriculum that has been designed for use with the tools in EnviroAtlas. The curriculum contains three lesson plan packages for varying grade levels: Exploring Your Watershed for 4th and 5th grades, Making Connections Between Ecosystems and Human Health for 7th-12th grades, and a lesson that encourages students to be collaborative decision-makers in a role-playing exercise that integrates ecology, public health, and city-planning in Building a Greenway Case Study for high school and undergraduate classes. All lesson plans are free and available for download. Results/Conclusions These educational activities encourage critical thinking and engage students and community users in a variety of ways, including physical engagement and technological exploration of their local environment and communities.
Predicting the responsiveness of soil biodiversity to deforestation: a cross-biome study.
Crowther, Thomas W; Maynard, Daniel S; Leff, Jonathan W; Oldfield, Emily E; McCulley, Rebecca L; Fierer, Noah; Bradford, Mark A
2014-09-01
The consequences of deforestation for aboveground biodiversity have been a scientific and political concern for decades. In contrast, despite being a dominant component of biodiversity that is essential to the functioning of ecosystems, the responses of belowground biodiversity to forest removal have received less attention. Single-site studies suggest that soil microbes can be highly responsive to forest removal, but responses are highly variable, with negligible effects in some regions. Using high throughput sequencing, we characterize the effects of deforestation on microbial communities across multiple biomes and explore what determines the vulnerability of microbial communities to this vegetative change. We reveal consistent directional trends in the microbial community response, yet the magnitude of this vegetation effect varied between sites, and was explained strongly by soil texture. In sandy sites, the difference in vegetation type caused shifts in a suite of edaphic characteristics, driving substantial differences in microbial community composition. In contrast, fine-textured soil buffered microbes against these effects and there were minimal differences between communities in forest and grassland soil. These microbial community changes were associated with distinct changes in the microbial catabolic profile, placing community changes in an ecosystem functioning context. The universal nature of these patterns allows us to predict where deforestation will have the strongest effects on soil biodiversity, and how these effects could be mitigated. © 2014 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Gensemer, Patricia S.
The purpose of this qualitative study was to learn from Hispanic nursing students regarding their experiences as participants in science learning. The participants were four female nursing students of Hispanic origin attending a small, rural community college in a southeastern state. The overarching question of this study was "In what ways does being Hispanic mediate the science-related learning and practices of nursing students?" The following questions more specifically provided focal points for the research: (1) In what ways do students perceive being Hispanic as relevant to their science education experiences? (a) What does it mean to be Hispanic in the participants' home community? (b) What has it meant to be Hispanic in the science classroom? (2) In what ways might students' everyday knowledge (at home) relate to the knowledge or ways of knowing they practice in the nursing school community? The study took place in Alabama, which offered a rural context where Hispanic populations are rapidly increasing. A series of four interviews was conducted with each participant, followed by one focus group interview session. Results of the study were re presented in terms of portrayals of participant's narratives of identity and science learning, and then as a thematic interpretation collectively woven across the individuals' narratives. Portraitures of each participant draw upon the individual experiences of the four nursing students involved in this study in order to provide a beginning point towards exploring "community" as both personal and social aspects of science practices. Themes explored broader interpretations of communities of practice in relation to guiding questions of the study. Three themes emerged through the study, which included the following: Importance of Science to Nurses, Crossing with a Nurturing and Caring Identity, and Different Modes of Participation. Implications were discussed with regard to participation in a community of practice and rethinking scientific literacy in terms of different modes of participation that are brought to the community of science learning.
Engaging Students and Scientists through ROV Competitions
NASA Astrophysics Data System (ADS)
Zande, J.
2004-12-01
The Marine Advanced Technology Education (MATE) Center's network of regional and national remotely operated vehicle (ROV) competitions for students provide a unique and exciting way for the scientific community to get involved in education and outreach and meet broader impact requirements. From Hawaii to New England, MATE's ROV competitions also facilitate collaborations among the scientific community, professional societies, government agencies, business and industry, and public aquaria. Since 2001, the MATE Center and organizations such as the Marine Technology Society (MTS), NOAA's Office of Ocean Exploration, and the Birch Aquarium at Scripps Institution of Oceanography, among others, have challenged 1,000+ students to design and build ROVs for underwater tasks based on science and exploration missions taking place in the real world. From the Monterey Bay Aquarium Research Institute to Woods Hole Oceanographic Institution (WHOI), more than 60 scientists, engineers, and their organizations have supported the students participating in these events and, in doing so, have contributed to E&O and increased the awareness and impact of their work. What does it take to get involved with this E&O effort? That depends on the time, technical expertise, facilities, equipment, building materials, and/or funds that you can afford to contribute. Examples of how scientists and their institutions have and continue to support MATE's ROV competitions include: -Serving as technical advisors, judges, and competition-day technical assistants. -Sharing time and technical expertise as mentors. -Providing access to facilities and equipment. -Donating building materials and supplies. -Hosting the event at your institution. In addition to helping you to become involved in E&O and meet broader impact requirements, benefits to you include: -Exposing yourself to technologies that could support your science. -Getting ideas for creative and inexpensive solutions to challenges that you may face while doing your work. -Recruiting students to your institution. -Heightening your and your institution's visibility within the scientific community -Building a positive image within your own local community. -Networking with other scientists and research and academic institutions as well as professional societies, industry, government, and other organizations such as aquaria. Whether or not you use ROVs to support your work is not important. What is important are the knowledge and skills that you do use to accomplish your research goals. In the case of the competition, ROVs are the vehicle to teach concepts such as physics, oceanography, math, science, and engineering - the same concepts that you understand and apply when doing your science. By sharing your time and expertise, you can help students solidify what they are learning as they design and build their ROVs and make the connection to how it can be applied to other disciplines.
Committee on solar and space physics
NASA Astrophysics Data System (ADS)
Lanzerotti, L. J.
The Committee on Solar and Space Physics (CSSP) is the Committee of the Space Science Board (SSB) of the National Research Council that is responsible for providing scientific advice to NASA in areas of solar/solar-terrestrial/space-plasma physics. The committee, composed of members who serve 3-year terms, wishes to solicit comments from colleagues on topics of interest to them and related to issues in the field.Current subjects on which the committee is devoting considerable effort include the following: (a) considerations of data handling and data systems in solar-terrestrial research for the future (This is being carried out with the encouragement of the SSB and its Committee on Data Management. The activity is in collaboration with the Committee on Solar-Terrestrial Research (CSTR) of the Geophysics Research Board. The handling, integration, and dissemination of solar-terrestrial data obtained by all techniques will be addressed. Chairmen of the responsible subgroup are D. J. Williams (CSSP) and M. A. Shea (CSTR).); (b) consideration of the policies and issues associated with a revitalized Explorer satellite program responsive to the requirements of the solar-terrestrial physics community (Inputs of ideas for potential Explorer missions have been received from a wide range of the community and will be further elaborated upon by additional community participation. A number of these ideas and examples will form a portion of a report discussing solar-terrestrial science topics of high contemporary interest that could be well addressed with Explorerclass missions.); (c) inputs to a more comprehensive consideration of the requirements for theoretical research in all the space sciences (This is an overall task of the Space Science Board. The CSSP response relies heavily upon the Colgate committee report on space plasma physics.); (d) a future workshop, in collaboration with the Space Science Committee of the European Science foundation, on potential cooperative work in space plasma physics with European nations (Four major program items will be addressed, including reviews of several major scientific achievements within the field, a review of the status of solar and space plasma physics as academic subjects in the U.S. and in Western Europe, a review of future research programs, and a discussion of the forms of collaboration between the U.S. and European space plasma physics communities, with recommendations for the future. The workshop will be held in the U.S., tentatively during the 1982-83 academic year.); (e) continuing dialogue with NASA public relations officials and other knowledgeable individuals regarding the status of public knowledge of the results, importance, and applications of solar-terrestrial research.); (f) discussions with relevant officials concerning the issues of scientific funding in the United States, particularly as related to solar-terrestrial research.
Tamara Shapiro Ledley Receives 2013 Excellence in Geophysical Education Award: Citation
NASA Astrophysics Data System (ADS)
Reiff, Patricia
2014-01-01
It gives me great pleasure to cite Tamara Shapiro Ledley for the AGU Excellence in Geophysical Education Award "for her outstanding sustained leadership in Earth systems and climate change education." Tamara has shown an ongoing commitment to bridging the scientific and educational communities to make geophysical science knowledge and data accessible and usable to teachers and students and by extension to all citizens. She works extensively with both the scientific and educational communities. She began her educational work in 1990 as the leader for weather and climate in my Teacher Research program at Rice University. She continued as the lead for atmospheric sciences in our projects Earth Today and Museums Teaching Planet Earth, which introduced her to the Earth Science Information Partners (ESIP Federation). She has served many roles at ESIP, including creating the Standing Committee for Education and serving as vice president. ESIP recognized her many accomplishments with its President's Award in 2012. At TERC her education and outreach efforts have blossomed. She was the lead author of the "Earth as a System" investigation of the GLOBE Teacher's Guide. She was a member of the original Digital Library for Earth System Education (DLESE) Data Access Working Group in 2001, where the idea for a cookbook-like resource to facilitate the use of Earth science data by teachers and students resulted in her leading the development of the "Earth Exploration Toolbook" (EET), which allows teachers to easily access and use real scientific data in the classroom. Her efforts were recognized with the EET being awarded Science Magazine's Science Prize for Online Research in Education in 2011.
I Wonder…Scientific Exploration and Experimentation as a Practice of Christian Faith
ERIC Educational Resources Information Center
Shaver, Ruth E.
2016-01-01
"I Wonder...Gaining Wisdom and Growing Faith Through Scientific Exploration" is an intergenerational science curriculum designed to be used in congregations. The goal of this curriculum and the theoretical work underpinning it is to counter the perception that people of faith cannot also be people who possess a scientific understanding…
What makes computational open source software libraries successful?
NASA Astrophysics Data System (ADS)
Bangerth, Wolfgang; Heister, Timo
2013-01-01
Software is the backbone of scientific computing. Yet, while we regularly publish detailed accounts about the results of scientific software, and while there is a general sense of which numerical methods work well, our community is largely unaware of best practices in writing the large-scale, open source scientific software upon which our discipline rests. This is particularly apparent in the commonly held view that writing successful software packages is largely the result of simply ‘being a good programmer’ when in fact there are many other factors involved, for example the social skill of community building. In this paper, we consider what we have found to be the necessary ingredients for successful scientific software projects and, in particular, for software libraries upon which the vast majority of scientific codes are built today. In particular, we discuss the roles of code, documentation, communities, project management and licenses. We also briefly comment on the impact on academic careers of engaging in software projects.
Uncertainty Assessment: What Good Does it Do? (Invited)
NASA Astrophysics Data System (ADS)
Oreskes, N.; Lewandowsky, S.
2013-12-01
The scientific community has devoted considerable time and energy to understanding, quantifying and articulating the uncertainties related to anthropogenic climate change. However, informed decision-making and good public policy arguably rely far more on a central core of understanding of matters that are scientifically well established than on detailed understanding and articulation of all relevant uncertainties. Advocates of vaccination, for example, stress its overall efficacy in preventing morbidity and mortality--not the uncertainties over how long the protective effects last. Advocates for colonoscopy for cancer screening stress its capacity to detect polyps before they become cancerous, with relatively little attention paid to the fact that many, if not most, polyps, would not become cancerous even if left unremoved. So why has the climate science community spent so much time focused on uncertainty? One reason, of course, is that articulation of uncertainty is a normal and appropriate part of scientific work. However, we argue that there is another reason that involves the pressure that the scientific community has experienced from individuals and groups promoting doubt about anthropogenic climate change. Specifically, doubt-mongering groups focus public attention on scientific uncertainty as a means to undermine scientific claims, equating uncertainty with untruth. Scientists inadvertently validate these arguments by agreeing that much of the science is uncertain, and thus seemingly implying that our knowledge is insecure. The problem goes further, as the scientific community attempts to articulate more clearly, and reduce, those uncertainties, thus, seemingly further agreeing that the knowledge base is insufficient to warrant public and governmental action. We refer to this effect as 'seepage,' as the effects of doubt-mongering seep into the scientific community and the scientific agenda, despite the fact that addressing these concerns does little to alter the public debate or advance public policy. We argue that attempts to address public doubts by improving uncertainty assessment are bound to fail, insofar as the motives for doubt-mongering are independent of scientific uncertainty, and therefore remain unaffected even as those uncertainties are diminished. We illustrate this claim by consideration of the evolution of the debate over the past ten years over the relationship between hurricanes and anthropogenic climate change. We suggest that scientists should pursue uncertainty assessment if such assessment improves scientific understanding, but not as a means to reduce public doubts or advance public policy in relation to anthropogenic climate change.
Web Based Semi-automatic Scientific Validation of Models of the Corona and Inner Heliosphere
NASA Astrophysics Data System (ADS)
MacNeice, P. J.; Chulaki, A.; Taktakishvili, A.; Kuznetsova, M. M.
2013-12-01
Validation is a critical step in preparing models of the corona and inner heliosphere for future roles supporting either or both the scientific research community and the operational space weather forecasting community. Validation of forecasting quality tends to focus on a short list of key features in the model solutions, with an unchanging order of priority. Scientific validation exposes a much larger range of physical processes and features, and as the models evolve to better represent features of interest, the research community tends to shift its focus to other areas which are less well understood and modeled. Given the more comprehensive and dynamic nature of scientific validation, and the limited resources available to the community to pursue this, it is imperative that the community establish a semi-automated process which engages the model developers directly into an ongoing and evolving validation process. In this presentation we describe the ongoing design and develpment of a web based facility to enable this type of validation of models of the corona and inner heliosphere, on the growing list of model results being generated, and on strategies we have been developing to account for model results that incorporate adaptively refined numerical grids.
NASA Astrophysics Data System (ADS)
Werkheiser, W. H.
2016-12-01
10 Years of Scientific Integrity Policy at the U.S. Geological Survey The U.S. Geological Survey implemented its first scientific integrity policy in January 2007. Following the 2009 and 2010 executive memoranda aimed at creating scientific integrity policies throughout the federal government, USGS' policy served as a template to inform the U.S. Department of Interior's policy set forth in January 2011. Scientific integrity policy at the USGS and DOI continues to evolve as best practices come to the fore and the broader Federal scientific integrity community evolves in its understanding of a vital and expanding endeavor. We find that scientific integrity is best served by: formal and informal mechanisms through which to resolve scientific integrity issues; a well-communicated and enforceable code of scientific conduct that is accessible to multiple audiences; an unfailing commitment to the code on the part of all parties; awareness through mandatory training; robust protection to encourage whistleblowers to come forward; and outreach with the scientific integrity community to foster consistency and share experiences.
NASA Astrophysics Data System (ADS)
Werkheiser, W. H.
2017-12-01
10 Years of Scientific Integrity Policy at the U.S. Geological Survey The U.S. Geological Survey implemented its first scientific integrity policy in January 2007. Following the 2009 and 2010 executive memoranda aimed at creating scientific integrity policies throughout the federal government, USGS' policy served as a template to inform the U.S. Department of Interior's policy set forth in January 2011. Scientific integrity policy at the USGS and DOI continues to evolve as best practices come to the fore and the broader Federal scientific integrity community evolves in its understanding of a vital and expanding endeavor. We find that scientific integrity is best served by: formal and informal mechanisms through which to resolve scientific integrity issues; a well-communicated and enforceable code of scientific conduct that is accessible to multiple audiences; an unfailing commitment to the code on the part of all parties; awareness through mandatory training; robust protection to encourage whistleblowers to come forward; and outreach with the scientific integrity community to foster consistency and share experiences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wehner, Michael F.; Reed, Kevin A.; Loring, Burlen
The United Nations Framework Convention on Climate Change (UNFCCC) invited the scientific community to explore the impacts of a world in which anthropogenic global warming is stabilized at only 1.5°C above preindustrial average temperatures. In this paper, we present a projection of future tropical cyclone statistics for both 1.5 and 2.0°C stabilized warming scenarios with direct numerical simulation using a high-resolution global climate model. As in similar projections at higher warming levels, we find that even at these low warming levels the most intense tropical cyclones become more frequent and more intense, while simultaneously the frequency of weaker tropical stormsmore » is decreased. We also conclude that in the 1.5°C stabilization, the effect of aerosol forcing changes complicates the interpretation of greenhouse gas forcing changes.« less
NASA Astrophysics Data System (ADS)
Wehner, Michael F.; Reed, Kevin A.; Loring, Burlen; Stone, Dáithí; Krishnan, Harinarayan
2018-02-01
The United Nations Framework Convention on Climate Change (UNFCCC) invited the scientific community to explore the impacts of a world in which anthropogenic global warming is stabilized at only 1.5 °C above preindustrial average temperatures. We present a projection of future tropical cyclone statistics for both 1.5 and 2.0 °C stabilized warming scenarios with direct numerical simulation using a high-resolution global climate model. As in similar projections at higher warming levels, we find that even at these low warming levels the most intense tropical cyclones become more frequent and more intense, while simultaneously the frequency of weaker tropical storms is decreased. We also conclude that in the 1.5 °C stabilization, the effect of aerosol forcing changes complicates the interpretation of greenhouse gas forcing changes.
Fundamentalist physics: why Dark Energy is bad for astronomy
NASA Astrophysics Data System (ADS)
White, Simon D. M.
2007-06-01
Astronomers carry out observations to explore the diverse processes and objects which populate our Universe. High-energy physicists carry out experiments to approach the Fundamental Theory underlying space, time and matter. Dark Energy is a unique link between them, reflecting deep aspects of the Fundamental Theory, yet apparently accessible only through astronomical observation. Large sections of the two communities have therefore converged in support of astronomical projects to constrain Dark Energy. In this essay I argue that this convergence can be damaging for astronomy. The two communities have different methodologies and different scientific cultures. By uncritically adopting the values of an alien system, astronomers risk undermining the foundations of their own current success and endangering the future vitality of their field. Dark Energy is undeniably an interesting problem to tackle through astronomical observation, but it is one of many and not necessarily the one where significant progress is most likely to follow a major investment of resources.
Risk Behavior and Perception Among Youths Residing in Urban Public Housing Developments
Li, Xiaoming; Stanton, Bonita; Black, Maureen M.; Romer, Daniel; Ricardo, Izabel; Kaljee, Linda
1994-01-01
The scientific literature and popular media suggest that variations in housing structure and neighborhood influence risk behaviors among youths living in low-income urban communities. To explore the importance of these factors on early sexual intercourse, substance use, drug trafficking, and school truancy, data from a community-based survey, conducted in six public housing developments in a major eastern metropolis, were analyzed. The survey group consisted of 300 youths aged 9 through 15 years. There were minimal differences in three potential mediators of risk behaviors (e.g., perceived social support, parenting style, and perceived risk exposure) and in self-reported adolescent risk behaviors among youths residing in different housing developments and between youths residing in high-rise and in low-rise structures. These findings do not support the hypothesis that within a risk-dense low-income environment, variations in building structure or in neighborhood are associated with differences in adolescent risk behaviors. PMID:19313105
NASA Technical Reports Server (NTRS)
Rummel, John D.; Harper, Lynn; Andersen, Dale
1992-01-01
The goal of NASA's Exobiology Program is to understand the origin, evolution, and distribution of life in the universe. To do this, the Exobiology Program seeks to provide a critical framework and some key research to allow NASA to bear the combined talents and capabilities of the agency and the scientific community, and the unique opportunities afforded by space exploration. To provide structure and direction to the quest for answers, the Exobiology Program has instituted a comprehensive research program divided into four elements which are being implemented at several of NASA's research centers and in the university community. These program elements correspond to the four major epochs in the evolution of living systems: (1) cosmic evolution of the biogenic compounds; (2) prebiotic evolution; (3) origin and early evolution of life; and (4) evolution of advanced life. The overall research program is designed to trace the pathways leading from the origin of the universe through the major epochs in the story of life.
From Ice Sheets to Main Streets: Intermediaries Connect Climate Scientists to Coastal Adaptation
NASA Astrophysics Data System (ADS)
Ultee, Lizz; Arnott, James C.; Bassis, Jeremy; Lemos, Maria Carmen
2018-03-01
Despite the societal relevance of sea-level research, a knowledge-to-action gap remains between researchers and coastal communities. In the agricultural and water-management sectors, intermediaries such as consultants and extension agencies have a long and well-documented history of helping to facilitate the application of scientific knowledge on the ground. However, the role of such intermediaries in adaptation to sea-level rise, though potentially of vital importance, has been less thoroughly explored. In this commentary, we describe three styles of science intermediation that can connect researchers working on sea-level projections with decision-makers relying on those projections. We illustrate these styles with examples of recent and ongoing contexts for the application of sea-level research, at different spatial scales and political levels ranging from urban development projects to international organizations. Our examples highlight opportunities and drawbacks for the researchers involved and communities adapting to rising seas.
Wehner, Michael F.; Reed, Kevin A.; Loring, Burlen; ...
2018-02-28
The United Nations Framework Convention on Climate Change (UNFCCC) invited the scientific community to explore the impacts of a world in which anthropogenic global warming is stabilized at only 1.5°C above preindustrial average temperatures. In this paper, we present a projection of future tropical cyclone statistics for both 1.5 and 2.0°C stabilized warming scenarios with direct numerical simulation using a high-resolution global climate model. As in similar projections at higher warming levels, we find that even at these low warming levels the most intense tropical cyclones become more frequent and more intense, while simultaneously the frequency of weaker tropical stormsmore » is decreased. We also conclude that in the 1.5°C stabilization, the effect of aerosol forcing changes complicates the interpretation of greenhouse gas forcing changes.« less
Building Bridges through Scientific Conferences.
Zierath, Juleen R
2016-11-17
Getting together to exchange ideas, forge collaborations, and disseminate knowledge is a long-standing tradition of scientific communities. How conferences are serving the community, what their current challenges are, and what is in store for the future of conferences are the topics covered in this Commentary. Copyright © 2016 Elsevier Inc. All rights reserved.
Must Invisible Colleges Be Invisible? An Approach to Examining Large Communities of Network Users.
ERIC Educational Resources Information Center
Ruth, Stephen R.; Gouet, Raul
1993-01-01
Discussion of characteristics of users of computer-mediated communication systems and scientific networks focuses on a study of the scientific community in Chile. Topics addressed include users and nonusers; productivity; educational level; academic specialty; age; gender; international connectivity; public policy issues; and future research…
Huff, Marlene B.; McClanahan, Kimberly K.; Omar, Hatim A.
2006-01-01
The growing popularity and use of therapeutic touch (TT) is an issue that has generated controversy and concern within the medical community. While anecdotal and traditional scientific evidence suggest that TT would be an advantageous addition for clinics and hospitals to include in their armamentarium of complementary interventions within the realm of traditional medicine, TT has not become widely available in the U.S. One reason for the lack of availability may be the dearth of conclusive scientific support for TT's efficacy and, therefore, its inclusion in clinic and hospital treatment planning would give it the appearance of legitimate practice, which it may not yet deserve. Whether or not deserved, if TT were added to hospital and clinic treatment protocols without substantial scientific support, it would be thought to have the implicit support of the scientific community, at which point the question of its efficacy would be moot in the minds of many people; thus patients would utilize it, because they believe it works rather than because it works. Since TT has not yet been scientifically proven as per Western standards, leaders of the health care community are likely wary of lending support to TT at this time. If TT can be found to be a scientifically sound therapeutic technique, then it will be more readily accepted in the health care community. This paper reviews TT. PMID:17370014
NASA Astrophysics Data System (ADS)
Arur, Aditi Ashok
This dissertation is an ethnographic case study of a community-based teaching program (CBTP) in public health at a medical college in South India that explored how the CBTP produced particular ways of seeing and understanding rural and urban poor communities. Drawing from critical, feminist, and postcolonial scholars, I suggest that the knowledge produced in the CBTP can be understood as "science/fictions", that is, as cultural texts shaped by transnational development discourses as well as medical teachers' and students' sociospatial imaginations of the rural and urban poor. I explored how these science/fictions mediated medical students' performative actions and interactions with a rural and an urban poor community in the context of the CBTP. At the same time, I also examined how knowledge produced in students' encounters with these communities disrupted their naturalized understandings about these communities, and how it was taken up to renarrativize science/fictions anew. Data collection and analyses procedures were informed by critical ethnographic and critical discourse analysis approaches. Data sources includes field notes constructed from observations of the CBTP, interviews with medical teachers and students, and curricular texts including the standardized national textbook of public health. The findings of this study illustrate how the CBTP staged the government and technology as central actors in the production of healthy bodies, communities, and environments, and implicitly positioned medical teachers and students as productive citizens of a modern nation while rural and urban poor communities were characterized sometimes as empowered, and at other times as not-yet-modern and in need of reform. However, the community also constituted an alternate pedagogical site of engagement in that students' encounters with community members disrupted students' assumptions about these communities to an extent. Nevertheless, institutionalized practices of assessment, and epistemological and ontological understandings of the nature of science tended to privilege the standardized curriculum and popular cultural stereotypes as scientific knowledge thereby excluding the place-based narratives of local communities, medical students, and teachers. This study, therefore, argues that interactions with local communities in community-based education and development programs cannot democratize knowledge production in medical education without a simultaneous engagement with post-foundational epistemologies in the social sciences and humanities.
Story of Stone Soup: A Recipe to Improve Health Disparities
Chung, Bowen; Jones, Loretta; Terry, Chrystene; Jones, Andrea; Forge, Nell; Norris, Keith C.
2013-01-01
Just as scientific articles are used as a way of sharing knowledge in scientific communities, stories are used as a way of transferring knowledge within African American communities. This article uses the story and metaphor of Stone Soup to illustrate the Healthy African American Families' (HAAF) Community Partnered Participatory Research (CPPR) method of engaging diverse partners to address health issues, such as preterm birth, depression, diabetes, and kidney disease, and to create community-wide change through education, capacity building, resource sharing, and intervention development. PMID:20629241
Exploration Science Opportunities for Students within Higher Education
NASA Astrophysics Data System (ADS)
Bailey, Brad; Minafra, Joseph; Schmidt, Gregory
2016-10-01
The NASA Solar System Exploration Research Virtual Institute (SSERVI) is a virtual institute focused on exploration science related to near-term human exploration targets, training the next generation of lunar scientists, and education and public outreach. As part of the SSERVI mission, we act as a hub for opportunities that engage the public through education and outreach efforts in addition to forming new interdisciplinary, scientific collaborations.SSERVI provides opportunities for students to bridge the scientific and generational gap currently existing in the planetary exploration field. This bridge is essential to the continued international success of scientific, as well as human and robotic, exploration.The decline in funding opportunities after the termination of the Apollo missions to the Moon in the early 1970's produced a large gap in both the scientific knowledge and experience of the original lunar Apollo researchers and the resurgent group of young lunar/NEA researchers that have emerged within the last 15 years. One of SSERVI's many goals is to bridge this gap through the many networking and scientific connections made between young researchers and established planetary principle investigators. To this end, SSERVI has supported the establishment of NextGen Lunar Scientists and Engineers group (NGLSE), a group of students and early-career professionals designed to build experience and provide networking opportunities to its members. SSERVI has also created the LunarGradCon, a scientific conference dedicated solely to graduate and undergraduate students working in the lunar field. Additionally, SSERVI produces monthly seminars and bi-yearly virtual workshops that introduce students to the wide variety of exploration science being performed in today's research labs. SSERVI also brokers opportunities for domestic and international student exchange between collaborating laboratories as well as internships at our member institutions. SSERVI provides a bridge that is essential to the continued international success of scientific, as well as human and robotic, exploration.
Diversity of Communications, Diversity of Communities: Strategic Choices for Maximum Engagement
NASA Astrophysics Data System (ADS)
Bartel, B. A.; Unger, M.
2017-12-01
One of the challenges around the edges of scientific research is finding ways to effectively communicate about that research beyond the confines of a highly specialized scientific community. While peer-review, publication, and scientific conferences and workshops allow scientists to effectively share their research with colleagues in their field, these exclusive communications do little to reach outside of those circles. Amid increasing requirements to demonstrate the value of research, and threats to funding of both basic and applied research, it becomes increasingly important for scientists and those in fields related to science communications to find, and continually update, tools for effectively reaching broad audiences. Drawing on experiences in science communications from various entities including the National Center for Atmospheric Research, UNAVCO, and the National Snow and Ice Data Center, we will present lessons learned that can be applied to communications endeavors on all scales, from individual researchers to large organizations. We will explore various channels, messengers, messages, and methods we have used effectively to reach diverse and broad audiences. In thinking about science communications, it is critical to not only understand the audiences we are attempting to reach, but also to meet them in the spaces they frequent. Therefore, we have found value in diversifying communications strategies in order to engage with diverse demographics, using the means most likely to connect with each. Multiple communications channels and strategies reach different age groups, speakers of different languages, and audiences of varying knowledge, experience, age, and interest levels. For example, on social media, Instagram reaches a young demographic and Pinterest is an ideal way to reach educators. Diversity in communications products and channels also addresses varying learning styles and moods, offering opportunities for explanations (e.g, videos), explorations (e.g., museum exhibits and online tools), and conversations (e.g., events). In addition to these topics, we will discuss how different channels can be used concurrently to support a communications campaign, the value of accessibility, choice of messaging, and the challenges in evaluating the success of each.
Rykov, Yuri; Koltsova, Olessia; Koltsov, Sergey
2014-01-01
Background The rise of social media proved to be a fertile ground for the expansion of the acquired immune deficiency syndrome (AIDS)-denialist movement (in the form of online communities). While there is substantial literature devoted to disproving AIDS-denialist views, there is a lack of studies exploring AIDS-denialists online communities that interact with an external environment. Objective We explored three research areas: (1) reasons for newcomers to come to an AIDS-denialist community, (2) the patterns of interactions of the community with the newcomers, and (3) rhetorical strategies that denialists use for persuasion in the veracity of their views. Methods We studied the largest AIDS-denialist community on one of the most popular social networking services in Russia. We used netnography as a method for collecting data for qualitative analysis and observed the community for 9 months (at least 2-3 times a week). While doing netnography, we periodically downloaded community discussions. In total, we downloaded 4821 posts and comments for analysis. Grounded theory approach was used for data analysis. Results Most users came to the community for the following reasons: their stories did not fit the unitary picture of AIDS disease progression translated by popular medical discourse, health problems, concern about HIV-positive tests, and desire to dissuade community members from false AIDS beliefs. On the basis of strength in AIDS-denialist beliefs, we constructed a typology of the newcomers consisting of three ideal-typical groups: (1) convinced: those who already had become denialists before coming to the group, (2) doubters: those who were undecided about the truth of either human immunodeficiency virus (HIV) science theory or AIDS-denialist theory, and (3) orthodox: those who openly held HIV science views. Reception of a newcomer mainly depended on the newcomer’s belief status. Reception was very warm for the convinced, cold or slightly hostile for the doubters, and extremely hostile or derisive for the orthodox. We identified seven main rhetorical strategies of persuasion used by the denialists on the “undecided”. Conclusions Contrary to the widespread public health depiction of AIDS denialists as totally irrational, our study suggests that some of those who become AIDS denialists have sufficiently reasonable grounds to suspect that “something is wrong” with scientific theory, because their personal experience contradicts the unitary picture of AIDS disease progression. Odd and inexplicable practices of some AIDS centers only fuel these people’s suspicions. We can conclude that public health practitioners’ practices may play a role in generating AIDS-denialist sentiments. In interactions with the newcomers, the experienced community members highlighted the importance of personal autonomy and freedom of choice in decision making consistent with the consumerist ideology of health care. The study findings suggest that health care workers should change a one-size-fits-all mode of counseling for a more complex and patient-tailored approach, allowing for diversity of disease progression scenarios and scientific uncertainty. PMID:25403351
NASA Astrophysics Data System (ADS)
Godinez, H. C.; Rougier, E.; Osthus, D.; Srinivasan, G.
2017-12-01
Fracture propagation play a key role for a number of application of interest to the scientific community. From dynamic fracture processes like spall and fragmentation in metals and detection of gas flow in static fractures in rock and the subsurface, the dynamics of fracture propagation is important to various engineering and scientific disciplines. In this work we implement a global sensitivity analysis test to the Hybrid Optimization Software Suite (HOSS), a multi-physics software tool based on the combined finite-discrete element method, that is used to describe material deformation and failure (i.e., fracture and fragmentation) under a number of user-prescribed boundary conditions. We explore the sensitivity of HOSS for various model parameters that influence how fracture are propagated through a material of interest. The parameters control the softening curve that the model relies to determine fractures within each element in the mesh, as well a other internal parameters which influence fracture behavior. The sensitivity method we apply is the Fourier Amplitude Sensitivity Test (FAST), which is a global sensitivity method to explore how each parameter influence the model fracture and to determine the key model parameters that have the most impact on the model. We present several sensitivity experiments for different combination of model parameters and compare against experimental data for verification.
Exploration of Anomalous Gravity Effects by rf-Pumped Magnetized High-T(c) Superconducting Oxides
NASA Technical Reports Server (NTRS)
Robertson, Tony; Litchford, Ron; Peters, Randall; Thompson, Byran; Rodgers, Stephen L. (Technical Monitor)
2001-01-01
A number of anomalous gravitational effects have been reported in the scientific literature during recent years, but there has been no independent confirmation with regard to any of these claims. Therefore, the NASA Marshall Space Flight Center, in response to the propulsion challenges specified by NASA's Breakthrough Propulsion Physics (BPP) program, proposed to explore the possibility of observing anomalous gravitation behavior through the manipulation of Josephson junction effects in magnetized high-Tc superconducting oxides. The technical goal was to critically test this revolutionary physical claim and provide a rigorous, independent, empirical confirmation (or refutation) of anomalous effects related to the manipulation of gravity by radio frequency (rf)-pumped magnetized type-2 superconductors. Because the current empirical evidence for gravity modification is anecdotal, our objective was to design, construct, and meticulously implement a discriminating experiment, which would put these observations on a more firm footing within the scientific community. Our approach is unique in that we advocate the construction of an extremely sensitive torsion balance with which to measure gravity modification effects by rf-pumped type-2 superconductor test masses. This paper reviews the anecdotal evidence for anomalous gravity effects, describes the design and development of a simplified torsion balance experiment for empirically investigating these claims, and presents the results of preliminary experiments.
Valaitis, Ruta K; Akhtar-Danesh, Noori; Brooks, Fiona; Binks, Sally; Semogas, Dyanne
2011-06-01
This study explored community health nurses' viewpoints about a Canadian online community of practice to support their practice with homeless or under-housed populations. Community health nurses who specifically work with homeless and marginally housed populations often report feelings of isolation and stress in managing complex problems in resource constraints. To strengthen intra-professional ties and enhance information access, an online community of practice was designed, implemented and evaluated by and for them. Q-methodology was used. Sixty-six statements about the community of practice were collected from an online survey and focus groups, refined and reduced to 44 statements. In 2009, sixteen participants completed the Q-sort activity, rating each statement relative to the others. Scores for each participant were subjected to by-person factor analysis. Respondents fell into two groups -tacit knowledge warriors and tacit knowledge communicators. Warriors strongly believed that the community of practice could combat stigma associated with homelessness and promote awareness of homelessness issues, and valued its potential to validate and improve practice. Communicators would have used the community of practice more with increased discussion, facilitation and prompt responses. Generally, nurses viewed the community of practice as a place to share stories, validate practice and adapt best practices to their work context. Online communities of practice can be valuable to nurses in specialized fields with limited peer support and access to information resources. Tacit knowledge development is important to nurses working with homeless populations: this needs to be valued in conjunction with scientifically based knowledge. © 2011 The Authors. Journal of Advanced Nursing © 2011 Blackwell Publishing Ltd.
Advancing the Science of Community-Level Interventions
Beehler, Sarah; Deutsch, Charles; Green, Lawrence W.; Hawe, Penelope; McLeroy, Kenneth; Miller, Robin Lin; Rapkin, Bruce D.; Schensul, Jean J.; Schulz, Amy J.; Trimble, Joseph E.
2011-01-01
Community interventions are complex social processes that need to move beyond single interventions and outcomes at individual levels of short-term change. A scientific paradigm is emerging that supports collaborative, multilevel, culturally situated community interventions aimed at creating sustainable community-level impact. This paradigm is rooted in a deep history of ecological and collaborative thinking across public health, psychology, anthropology, and other fields of social science. The new paradigm makes a number of primary assertions that affect conceptualization of health issues, intervention design, and intervention evaluation. To elaborate the paradigm and advance the science of community intervention, we offer suggestions for promoting a scientific agenda, developing collaborations among professionals and communities, and examining the culture of science. PMID:21680923
Goldstein, Daniel
2008-09-01
By the second half of the nineteenth century, local and regional voluntary societies were among the most widespread, accessible, and familiar public scientific institutions in America. Collectively, they made up an institutional network that converted individuals' private interest in science into a public activity. They played an essential role in the dissemination of scientific information, the growth of a scientifically literate population, and the extension of public support for science in the decades after the Civil War. This essay delineates and maps the spread of these societies throughout the country, as well as the flow of scientific information both among societies and between a society and its regional hinterland. Using the Davenport [Iowa] Academy of Natural Sciences as an example, it demonstrates how local societies were embedded in a national scientific community and mediated between it and local scientific enthusiasts, to the benefit of both.
Realism without truth: a review of Giere's science without laws and scientific perspectivism.
Hackenberg, Timothy D
2009-05-01
An increasingly popular view among philosophers of science is that of science as action-as the collective activity of scientists working in socially-coordinated communities. Scientists are seen not as dispassionate pursuers of Truth, but as active participants in a social enterprise, and science is viewed on a continuum with other human activities. When taken to an extreme, the science-as-social-process view can be taken to imply that science is no different from any other human activity, and therefore can make no privileged claims about its knowledge of the world. Such extreme views are normally contrasted with equally extreme views of classical science, as uncovering Universal Truth. In Science Without Laws and Scientific Perspectivism, Giere outlines an approach to understanding science that finds a middle ground between these extremes. He acknowledges that science occurs in a social and historical context, and that scientific models are constructions designed and created to serve human ends. At the same time, however, scientific models correspond to parts of the world in ways that can legitimately be termed objective. Giere's position, perspectival realism, shares important common ground with Skinner's writings on science, some of which are explored in this review. Perhaps most fundamentally, Giere shares with Skinner the view that science itself is amenable to scientific inquiry: scientific principles can and should be brought to bear on the process of science. The two approaches offer different but complementary perspectives on the nature of science, both of which are needed in a comprehensive understanding of science.
REALISM WITHOUT TRUTH: A REVIEW OF GIERE'S SCIENCE WITHOUT LAWS AND SCIENTIFIC PERSPECTIVISM
Hackenberg, Timothy D
2009-01-01
An increasingly popular view among philosophers of science is that of science as action—as the collective activity of scientists working in socially-coordinated communities. Scientists are seen not as dispassionate pursuers of Truth, but as active participants in a social enterprise, and science is viewed on a continuum with other human activities. When taken to an extreme, the science-as-social-process view can be taken to imply that science is no different from any other human activity, and therefore can make no privileged claims about its knowledge of the world. Such extreme views are normally contrasted with equally extreme views of classical science, as uncovering Universal Truth. In Science Without Laws and Scientific Perspectivism, Giere outlines an approach to understanding science that finds a middle ground between these extremes. He acknowledges that science occurs in a social and historical context, and that scientific models are constructions designed and created to serve human ends. At the same time, however, scientific models correspond to parts of the world in ways that can legitimately be termed objective. Giere's position, perspectival realism, shares important common ground with Skinner's writings on science, some of which are explored in this review. Perhaps most fundamentally, Giere shares with Skinner the view that science itself is amenable to scientific inquiry: scientific principles can and should be brought to bear on the process of science. The two approaches offer different but complementary perspectives on the nature of science, both of which are needed in a comprehensive understanding of science. PMID:19949495
NASA Astrophysics Data System (ADS)
Kotwicki, Lech; Grzelak, Katarzyna; Bełdowski, Jacek
2016-06-01
Assessment of biological effects of chemical warfare agents (CWAs) dumped in the Baltic Sea has been one of the tasks of the Chemical Munitions Search & Assessment (CHEMSEA) project. Three sites have been selected for investigation: Bornholm Deep, Gotland Deep and Gdansk Deep. Fauna collected from these locations were compared with the reference area located between the studied regions at similar depths below 70 m. In total, four scientific cruises occurred in different seasons between 2011 and 2013. The total lack of any representatives of macrozoobenthos in all of the investigated dumping sites was noted. As a practical matter, the Baltic deeps were inhabited by nematodes as the only meiofauna representatives. Therefore, nematodes were used as a key group to explore the faunal communities inhabiting chemical dumping sites in the Baltic deeps. In total, 42 nematode genera belonging to 18 families were identified, and the dominant genus was Sabatieria (Comesomatidae), which constituted 37.6% of the overall nematode community. There were significant differences in nematode community structure (abundance and taxa composition) between the dumping areas and the reference site (Kruskal-Wallis H=30.96, p<0.0001). Such clear differences suggest that nematode assemblages could mirror the environmental conditions.
Exploring decision-making for environmental health services: perspectives from four cities.
Hunt, C; Lewin, S
2000-01-01
Increasing resources are being allocated to environmental health monitoring, especially for developing methods and collecting data to construct environmental health indicators (EHIs). Yet, little research has focused on understanding how communities and service providers make decisions with regard to environmental health priorities and the role of indicators in this process. This paper presents insights regarding local decision-making that arose from a project to test the feasibility of using community-based EHIs to facilitate communication between the providers and the recipients of environmental services in four developing-country cities. The results of the study indicate that decision-making for environmental health services is complex and iterative rather than rational and linear. Contextual and process factors play an important role. These factors include the morale of service providers, the extent of collaboration between service agencies, the priorities of different community groups and relations between service providers and communities. Scientific information, in the form of EHIs, did not appear to be a key element of decision-making in the settings studied. As tools, EHIs are unlikely to become part of the decision-making process unless they are integrated with local agendas and backed by strong local representation.
From Data-Sharing to Model-Sharing: SCEC and the Development of Earthquake System Science (Invited)
NASA Astrophysics Data System (ADS)
Jordan, T. H.
2009-12-01
Earthquake system science seeks to construct system-level models of earthquake phenomena and use them to predict emergent seismic behavior—an ambitious enterprise that requires high degree of interdisciplinary, multi-institutional collaboration. This presentation will explore model-sharing structures that have been successful in promoting earthquake system science within the Southern California Earthquake Center (SCEC). These include disciplinary working groups to aggregate data into community models; numerical-simulation working groups to investigate system-specific phenomena (process modeling) and further improve the data models (inverse modeling); and interdisciplinary working groups to synthesize predictive system-level models. SCEC has developed a cyberinfrastructure, called the Community Modeling Environment, that can distribute the community models; manage large suites of numerical simulations; vertically integrate the hardware, software, and wetware needed for system-level modeling; and promote the interactions among working groups needed for model validation and refinement. Various socio-scientific structures contribute to successful model-sharing. Two of the most important are “communities of trust” and collaborations between government and academic scientists on mission-oriented objectives. The latter include improvements of earthquake forecasts and seismic hazard models and the use of earthquake scenarios in promoting public awareness and disaster management.
NASA Astrophysics Data System (ADS)
Ickert, Johanna; Stewart, Iain S.
2016-05-01
An important paradox of hazard communication is that the more effectively a potential physical threat is made public by the scientist, the more readily the scientific message becomes normalized into the daily discourses of ordinary life. As a result, a heightened risk awareness does not necessarily motivate personal or collective preparedness. If geoscientists are to help at-risk communities adopt meaningful measures to protect themselves, new strategies are needed for public communication and community engagement. This paper outlines an attempt to develop a novel approach to train geoscientists, using doctoral and post-doctoral researchers in an EU integrated training network studying tectonic processes and geohazards in Turkey. An urban field visit to seismically vulnerable neighbourhoods in Istanbul allowed the researchers to meet with local residents facing the seismic threat. Those meetings exposed the complex social, political and cultural concerns among Istanbul's at-risk urban communities. These concerns were used to provoke subsequent focus group discussions among the group of geoscientists about roles, responsibilities and methods of communicating hazard information to the public. Through the direct testimony of local residents and geoscientists, we explore the form that new strategies for public communication and community engagement might take.
NASA Astrophysics Data System (ADS)
Orland, B.; Doan, W. J.; Russell, S. B.; Belser, A.
2014-12-01
Marcellus shale gas is being developed with unprecedented speed. The highly capitalized energy industry has influenced major changes in the regulatory framework at federal and state levels and entered into mineral lease agreements 100-fold bigger that previously seen in Northern Pennsylvania. At the same time, the technical and scientific issues at play from geology and hydrology through ecology and sociology effectively block local citizens from fully understanding and participating in decision-making about their own futures. The Marcellus Community-Based Performance Program engages adult residents, landowners, and local decision makers in knowledge-generating performances made collectively with those most impacted by shale gas development. Unlike traditional proscenium stage theatre, community-based performance is a collaborative means for exploring a collectively significant issue or circumstance. The choice to use a community-based theatre method, which engages the spectators in the performance itself as a way of making meaning, was based on the following goals to achieve good debate; to engage community participants in discussion through the exchange of ideas, argument and counter-argument, in an effort to further the education of all; to facilitate the perspectives of citizens in communities where different responses to the risk issues exist because of local economies and legacies with resource extraction. The plays and performances, developed around the broad theme of Living with Risk and Uncertainty, use existing research, reports, newspaper articles, and interviews to present the range of perceptions, facts, and issues surrounding the environmental risks associated with natural gas drilling and focused on developing scientific understanding. Performances have been assessed by seeking direct feedback from participants through pre-performance surveys, post-performance dialogues (talk-backs), and exit interviews. Participants have reported the highest levels of interest in performances related to the economy, health impacts of drilling, environmental impacts, and in learning from what other people have to say.
Today's and Tomorrow's Instruments.
Conty, Claude
2001-03-01
This article will discuss the importance of Raimond Castaing's thesis on the genesis of a nondestructive and truly quantitative microanalytical method that assisted the scientific community in moving forward in the development of microanalytical instruments. I will also share with you my recollection of the decades of improvement in the electron probe microanalyzer (EPMA), that has allowed us to reach our present level of instrument sophistication, and I will explore with you my thoughts on the future evolution of this technique. To conclude, I will present the current status of related microanalysis techniques developed under Castaing in Orsay in the 1960s, as Castaing's interest in microanalysis was not limited to electron probe microanalysis alone.
Harnessing the Flow of Data from Fungi at JGI
Grigoriev, Igor; Glass, N. Louise; Martin, Francis; Turgeon, Gillian; Spatafora, Joey; Berka, Randy
2018-06-12
The U.S. Department of Energy (DOE) Joint Genome Institute (JGI) managed by Lawrence Berkeley National Laboratory, is the only user facility in the world devoted to problems of energy and environment. With over one million species, fungiâwhich include mushroomsârepresent one of the largest under-explored branches of the Tree of Life. Together with its community of more than 1,000 scientific collaborators, JGI helping to unlock the secrets encoded in the genomes of fungi to advance a better understanding of the global carbon cycle and to develop new biotechnology products, next-generation biofuels, and medicines.
Paradoxical empowerment of produsers in the context of informational capitalism
NASA Astrophysics Data System (ADS)
Proulx, Serge; Heaton, Lorna; Kwok Choon, Mary Jane; Millette, Mélanie
2011-04-01
This article develops a critical perspective on how online contribution practices participate in the creation of economic value under informational capitalism. It discusses the theoretical relevance of the concept of empowerment for exploring online contribution practices. We argue that produsage practices are paradoxical insofar as they can be simultaneously alienating and emancipatory. This theoretical lens allows us to take a fresh look at the collective intelligence of produsers and the role of communities in the collective production of content. We illustrate the fruitfulness of this conceptual approach with two case studies: Facebook and TelaBotanica, a platform for the collaborative production of scientific knowledge.
Health behind bars: can exploring the history of prison health systems impact future policy?
Weston, Kathryn M; McCarthy, Louella R; Meyering, Isobelle Barrett; Hampton, Stephen; Mackinnon, Tobias
2018-02-01
The value of history is, indeed, not scientific but moral … it prepares us to live more humanely in the present, and to meet rather than to foretell, the future - Carl Becker. Becker's quote reminds us of the importance of revealing and understanding historical practices in order to influence actions in the future. There are compelling reasons for uncovering this history, in particular to better inform government policy makers and health advocates, and to address the impacts of growing community expectations to 'make the punishment fit the crime'. Copyright © 2018 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
The Role of the Spacecraft Operator in Scientific Exploration
NASA Astrophysics Data System (ADS)
Love, S. G.
2011-03-01
Pilot and flight engineer crew members can improve scientific exploration missions and effectively support field work that they may not understand by contributing leadership, teamwork, communication, and operational thinking skills.
Community Level Stressors and Their Impacts on Food ...
Research is needed to understand a community’s food resources, utilization of those resources, and how the built and natural environment impact access to resources and potential chemical exposures. This research will identify stressors, relationships between those stressors, and explore potential interactions between food resources and chemical and non-chemical stressors. By evaluating various chemical and non-chemical stressors, an understanding of a community’s food resources and utilization with potential exposures can be obtained. With this understanding about the community’s potential dietary exposures and contributing factors, it will be possible to evaluate ways to mitigate and alleviate issues that could impact public health. The objectives of this research are 1) to obtain information on a community’s environmental exposures (chemical and non-chemical stressors) from various available databases and data and 2) to evaluate impacts on dietary exposure which may lead to adverse public health outcomes. This research will enhance public tools, in particular, the Community-Focused Exposure and Risk Screening Tool (CFERST), which can be utilized by community leaders in decision making by bridging all pertinent information to inform policy. Community level health analyses can support protective actions, be used by communities to identify and prioritize their risks based on scientific data and ensure that resources are directed where they will provi
[Earth and Space Sciences Project Services for NASA HPCC
NASA Technical Reports Server (NTRS)
Merkey, Phillip
2002-01-01
This grant supported the effort to characterize the problem domain of the Earth Science Technology Office's Computational Technologies Project, to engage the Beowulf Cluster Computing Community as well as the High Performance Computing Research Community so that we can predict the applicability of said technologies to the scientific community represented by the CT project and formulate long term strategies to provide the computational resources necessary to attain the anticipated scientific objectives of the CT project. Specifically, the goal of the evaluation effort is to use the information gathered over the course of the Round-3 investigations to quantify the trends in scientific expectations, the algorithmic requirements and capabilities of high-performance computers to satisfy this anticipated need.
[Earth Science Technology Office's Computational Technologies Project
NASA Technical Reports Server (NTRS)
Fischer, James (Technical Monitor); Merkey, Phillip
2005-01-01
This grant supported the effort to characterize the problem domain of the Earth Science Technology Office's Computational Technologies Project, to engage the Beowulf Cluster Computing Community as well as the High Performance Computing Research Community so that we can predict the applicability of said technologies to the scientific community represented by the CT project and formulate long term strategies to provide the computational resources necessary to attain the anticipated scientific objectives of the CT project. Specifically, the goal of the evaluation effort is to use the information gathered over the course of the Round-3 investigations to quantify the trends in scientific expectations, the algorithmic requirements and capabilities of high-performance computers to satisfy this anticipated need.
Communicating the Science of Nasa's Maven Mission through Public Engagement
NASA Astrophysics Data System (ADS)
Mason, T.; Peticolas, L. M.; Wood, E. L.
2014-12-01
As education, public outreach, and communications professionals, we see the direct benefits of online outreach and other public engagement strategies in communicating complex scientific concepts. While public understanding of science and scientific literacy rates has stagnated at best, online engagement has never been more active. About 40% of Americans receive information about science and technology primarily from online sources; however, the ability to pursue enhanced learning opportunities is directly correlated with higher education and income. The MAVEN E/PO team has recognized an opportunity to bring the science of the mission to a growing, online community of engaged learners and potential supporters of future scientific research and data. We have taken a wide variety of approaches to educate the public—particularly non-traditional audiences—about a mission that is not as "sexy" as many other NASA missions, but is critical to understanding the evolution of Mars over time as part of an ongoing, long-term effort by NASA's Mars Exploration Program. We will highlight some of the tools—including online platforms—that we have used to share the science of MAVEN and will present preliminary evaluation results from our education and public outreach projects.
Advancing Science through Mining Libraries, Ontologies, and Communities*
Evans, James A.; Rzhetsky, Andrey
2011-01-01
Life scientists today cannot hope to read everything relevant to their research. Emerging text-mining tools can help by identifying topics and distilling statements from books and articles with increased accuracy. Researchers often organize these statements into ontologies, consistent systems of reality claims. Like scientific thinking and interchange, however, text-mined information (even when accurately captured) is complex, redundant, sometimes incoherent, and often contradictory: it is rooted in a mixture of only partially consistent ontologies. We review work that models scientific reason and suggest how computational reasoning across ontologies and the broader distribution of textual statements can assess the certainty of statements and the process by which statements become certain. With the emergence of digitized data regarding networks of scientific authorship, institutions, and resources, we explore the possibility of accounting for social dependences and cultural biases in reasoning models. Computational reasoning is starting to fill out ontologies and flag internal inconsistencies in several areas of bioscience. In the not too distant future, scientists may be able to use statements and rich models of the processes that produced them to identify underexplored areas, resurrect forgotten findings and ideas, deconvolute the spaghetti of underlying ontologies, and synthesize novel knowledge and hypotheses. PMID:21566119
Wong, Michelle; Bejarano, Esther; Carvlin, Graeme; Fellows, Katie; King, Galatea; Lugo, Humberto; Jerrett, Michael; Meltzer, Dan; Northcross, Amanda; Olmedo, Luis; Seto, Edmund; Wilkie, Alexa; English, Paul
2018-03-15
Air pollution continues to be a global public health threat, and the expanding availability of small, low-cost air sensors has led to increased interest in both personal and crowd-sourced air monitoring. However, to date, few low-cost air monitoring networks have been developed with the scientific rigor or continuity needed to conduct public health surveillance and inform policy. In Imperial County, California, near the U.S./Mexico border, we used a collaborative, community-engaged process to develop a community air monitoring network that attains the scientific rigor required for research, while also achieving community priorities. By engaging community residents in the project design, monitor siting processes, data dissemination, and other key activities, the resulting air monitoring network data are relevant, trusted, understandable, and used by community residents. Integration of spatial analysis and air monitoring best practices into the network development process ensures that the data are reliable and appropriate for use in research activities. This combined approach results in a community air monitoring network that is better able to inform community residents, support research activities, guide public policy, and improve public health. Here we detail the monitor siting process and outline the advantages and challenges of this approach.
Wong, Michelle; Bejarano, Esther; Carvlin, Graeme; King, Galatea; Lugo, Humberto; Jerrett, Michael; Northcross, Amanda; Olmedo, Luis; Seto, Edmund; Wilkie, Alexa; English, Paul
2018-01-01
Air pollution continues to be a global public health threat, and the expanding availability of small, low-cost air sensors has led to increased interest in both personal and crowd-sourced air monitoring. However, to date, few low-cost air monitoring networks have been developed with the scientific rigor or continuity needed to conduct public health surveillance and inform policy. In Imperial County, California, near the U.S./Mexico border, we used a collaborative, community-engaged process to develop a community air monitoring network that attains the scientific rigor required for research, while also achieving community priorities. By engaging community residents in the project design, monitor siting processes, data dissemination, and other key activities, the resulting air monitoring network data are relevant, trusted, understandable, and used by community residents. Integration of spatial analysis and air monitoring best practices into the network development process ensures that the data are reliable and appropriate for use in research activities. This combined approach results in a community air monitoring network that is better able to inform community residents, support research activities, guide public policy, and improve public health. Here we detail the monitor siting process and outline the advantages and challenges of this approach. PMID:29543726
NASA Astrophysics Data System (ADS)
Mendoza, A. M.; Bakshi, S.; Berrios, D.; Chulaki, A.; Evans, R. M.; Kuznetsova, M. M.; Lee, H.; MacNeice, P. J.; Maddox, M. M.; Mays, M. L.; Mullinix, R. E.; Ngwira, C. M.; Patel, K.; Pulkkinen, A.; Rastaetter, L.; Shim, J.; Taktakishvili, A.; Zheng, Y.
2012-12-01
Community Coordinated Modeling Center (CCMC) was established to enhance basic solar terrestrial research and to aid in the development of models for specifying and forecasting conditions in the space environment. In achieving this goal, CCMC has developed and provides a set of innovative tools varying from: Integrated Space Weather Analysis (iSWA) web -based dissemination system for space weather information, Runs-On-Request System providing access to unique collection of state-of-the-art solar and space physics models (unmatched anywhere in the world), Advanced Online Visualization and Analysis tools for more accurate interpretation of model results, Standard Data formats for Simulation Data downloads, and recently Mobile apps (iPhone/Android) to view space weather data anywhere to the scientific community. The number of runs requested and the number of resulting scientific publications and presentations from the research community has not only been an indication of the broad scientific usage of the CCMC and effective participation by space scientists and researchers, but also guarantees active collaboration and coordination amongst the space weather research community. Arising from the course of CCMC activities, CCMC also supports community-wide model validation challenges and research focus group projects for a broad range of programs such as the multi-agency National Space Weather Program, NSF's CEDAR (Coupling, Energetics and Dynamics of Atmospheric Regions), GEM (Geospace Environment Modeling) and Shine (Solar Heliospheric and INterplanetary Environment) programs. In addition to performing research and model development, CCMC also supports space science education by hosting summer students through local universities; through the provision of simulations in support of classroom programs such as Heliophysics Summer School (with student research contest) and CCMC Workshops; training next generation of junior scientists in space weather forecasting; and educating the general public about the importance and impacts of space weather effects. Although CCMC is organizationally comprised of United States federal agencies, CCMC services are open to members of the international science community and encourages interagency and international collaboration. In this poster, we provide an overview of using Community Coordinated Modeling Center (CCMC) tools and services to support worldwide space weather scientific communities and networks.;
Artificial Gravity as a Multi-System Countermeasure for Exploration Class Space Flight Missions
NASA Technical Reports Server (NTRS)
Paloski, William H.; Dawson, David L. (Technical Monitor)
2000-01-01
NASA's vision for space exploration includes missions of unprecedented distance and duration. However, during 30 years of human space flight experience, including numerous long-duration missions, research has not produced any single countermeasure or combination of countermeasures that is completely effective. Current countermeasures do not fully protect crews in low-Earth orbit, and certainly will not be appropriate for crews journeying to Mars and back over a three-year period. The urgency for exploration-class countermeasures is compounded by continued technical and scientific successes that make exploration class missions increasingly attractive. The critical and possibly fatal problems of bone loss, cardiovascular deconditioning, muscle weakening, neurovestibular disturbance, space anemia, and immune compromise may be alleviated by the appropriate application of artificial gravity (AG). However, despite a manifest need for new countermeasure approaches, concepts for applying AG as a countermeasure have not developed apace. To explore the utility of AG as a multi-system countermeasure during long-duration, exploration-class space flight, eighty-three members of the international space life science and space flight community met earlier this year. They concluded unanimously that the potential of AG as a multi-system countermeasure is indeed worth pursuing, and that the requisite AG research needs to be supported more systematically by NASA. This presentation will review the issues discussed and recommendations made.
Towards AN Integrated Scientific and Social Case for Human Space Exploration
NASA Astrophysics Data System (ADS)
Crawford, I. A.
2004-06-01
I will argue that an ambitious programme of human space exploration, involving a return to the Moon, and eventually human missions to Mars, will add greatly to human knowledge. Gathering such knowledge is the primary aim of science, but science’s compartmentalisation into isolated academic disciplines tends to obscure the overall strength of the scientific case. Any consideration of the scientific arguments for human space exploration must therefore take a holistic view, and integrate the potential benefits over the entire spectrum of human knowledge. Moreover, science is only one thread in a much larger overall case for human space exploration. Other threads include economic, industrial, educational, geopolitical and cultural benefits. Any responsibly formulated public space policy must weigh all of these factors before deciding whether or not an investment in human space activities is scientifically and socially desirable.
Gene regulation knowledge commons: community action takes care of DNA binding transcription factors
Tripathi, Sushil; Vercruysse, Steven; Chawla, Konika; Christie, Karen R.; Blake, Judith A.; Huntley, Rachael P.; Orchard, Sandra; Hermjakob, Henning; Thommesen, Liv; Lægreid, Astrid; Kuiper, Martin
2016-01-01
A large gap remains between the amount of knowledge in scientific literature and the fraction that gets curated into standardized databases, despite many curation initiatives. Yet the availability of comprehensive knowledge in databases is crucial for exploiting existing background knowledge, both for designing follow-up experiments and for interpreting new experimental data. Structured resources also underpin the computational integration and modeling of regulatory pathways, which further aids our understanding of regulatory dynamics. We argue how cooperation between the scientific community and professional curators can increase the capacity of capturing precise knowledge from literature. We demonstrate this with a project in which we mobilize biological domain experts who curate large amounts of DNA binding transcription factors, and show that they, although new to the field of curation, can make valuable contributions by harvesting reported knowledge from scientific papers. Such community curation can enhance the scientific epistemic process. Database URL: http://www.tfcheckpoint.org PMID:27270715
Hanauer, David I; Graham, Mark J; Betancur, Laura; Bobrownicki, Aiyana; Cresawn, Steven G; Garlena, Rebecca A; Jacobs-Sera, Deborah; Kaufmann, Nancy; Pope, Welkin H; Russell, Daniel A; Jacobs, William R; Sivanathan, Viknesh; Asai, David J; Hatfull, Graham F
2017-12-19
Engaging undergraduate students in scientific research promises substantial benefits, but it is not accessible to all students and is rarely implemented early in college education, when it will have the greatest impact. An inclusive Research Education Community (iREC) provides a centralized scientific and administrative infrastructure enabling engagement of large numbers of students at different types of institutions. The Science Education Alliance-Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) is an iREC that promotes engagement and continued involvement in science among beginning undergraduate students. The SEA-PHAGES students show strong gains correlated with persistence relative to those in traditional laboratory courses regardless of academic, ethnic, gender, and socioeconomic profiles. This persistent involvement in science is reflected in key measures, including project ownership, scientific community values, science identity, and scientific networking. Copyright © 2017 the Author(s). Published by PNAS.
Beem, Betsi
2012-05-01
This paper argues that information produced and then taken up for policy decision making is a function of a complex interplay within the scientific community and between scientists and the broader policy network who are all grappling with issues in a complex environment with a high degree of scientific uncertainty. The dynamics of forming and re-forming the scientific community are shaped by political processes, as are the directions and questions scientists attend to in their roles as policy advisors. Three factors: 1) social construction of scientific communities, 2) the indeterminacy of science, and 3) demands by policy makers to have concrete information for decision making; are intertwined in the production and dissemination of information that may serve as the basis for policy learning. Through this process, however, what gets learned may not be what is needed to mitigate the problem, be complete in terms of addressing multiple causations, or be correct.
Hanauer, David I.; Graham, Mark J.; Betancur, Laura; Bobrownicki, Aiyana; Cresawn, Steven G.; Garlena, Rebecca A.; Jacobs-Sera, Deborah; Kaufmann, Nancy; Pope, Welkin H.; Russell, Daniel A.; Jacobs, William R.; Sivanathan, Viknesh; Asai, David J.
2017-01-01
Engaging undergraduate students in scientific research promises substantial benefits, but it is not accessible to all students and is rarely implemented early in college education, when it will have the greatest impact. An inclusive Research Education Community (iREC) provides a centralized scientific and administrative infrastructure enabling engagement of large numbers of students at different types of institutions. The Science Education Alliance–Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) is an iREC that promotes engagement and continued involvement in science among beginning undergraduate students. The SEA-PHAGES students show strong gains correlated with persistence relative to those in traditional laboratory courses regardless of academic, ethnic, gender, and socioeconomic profiles. This persistent involvement in science is reflected in key measures, including project ownership, scientific community values, science identity, and scientific networking. PMID:29208718
Mapping the Evolution of Scientific Fields
Herrera, Mark; Roberts, David C.; Gulbahce, Natali
2010-01-01
Despite the apparent cross-disciplinary interactions among scientific fields, a formal description of their evolution is lacking. Here we describe a novel approach to study the dynamics and evolution of scientific fields using a network-based analysis. We build an idea network consisting of American Physical Society Physics and Astronomy Classification Scheme (PACS) numbers as nodes representing scientific concepts. Two PACS numbers are linked if there exist publications that reference them simultaneously. We locate scientific fields using a community finding algorithm, and describe the time evolution of these fields over the course of 1985–2006. The communities we identify map to known scientific fields, and their age depends on their size and activity. We expect our approach to quantifying the evolution of ideas to be relevant for making predictions about the future of science and thus help to guide its development. PMID:20463949
Mapping the evolution of scientific fields.
Herrera, Mark; Roberts, David C; Gulbahce, Natali
2010-05-04
Despite the apparent cross-disciplinary interactions among scientific fields, a formal description of their evolution is lacking. Here we describe a novel approach to study the dynamics and evolution of scientific fields using a network-based analysis. We build an idea network consisting of American Physical Society Physics and Astronomy Classification Scheme (PACS) numbers as nodes representing scientific concepts. Two PACS numbers are linked if there exist publications that reference them simultaneously. We locate scientific fields using a community finding algorithm, and describe the time evolution of these fields over the course of 1985-2006. The communities we identify map to known scientific fields, and their age depends on their size and activity. We expect our approach to quantifying the evolution of ideas to be relevant for making predictions about the future of science and thus help to guide its development.
Life Support and Habitation and Planetary Protection Workshop
NASA Technical Reports Server (NTRS)
Hogan, John A. (Editor); Race, Margaret S. (Editor); Fisher, John W. (Editor); Joshi, Jitendra A. (Editor); Rummel, John D. (Editor)
2006-01-01
A workshop entitled "Life Support and Habitation and Planetary Protection Workshop" was held in Houston, Texas on April 27-29, 2005 to facilitate the development of planetary protection guidelines for future human Mars exploration missions and to identify the potential effects of these guidelines on the design and selection of related human life support, extravehicular activity and monitoring and control systems. This report provides a summary of the workshop organization, starting assumptions, working group results and recommendations. Specific result topics include the identification of research and technology development gaps, potential forward and back contaminants and pathways, mitigation alternatives, and planetary protection requirements definition needs. Participants concluded that planetary protection and science-based requirements potentially affect system design, technology trade options, development costs and mission architecture. Therefore early and regular coordination between the planetary protection, scientific, planning, engineering, operations and medical communities is needed to develop workable and effective designs for human exploration of Mars.
Topographies of forensic practice in Imperial Germany.
Engstrom, Eric J
2014-01-01
This article examines the topography and "cultural machinery" of forensic jurisdictions in Imperial Germany. It locates the sites at which boundary disputes between psychiatric and legal professionals arose and explores the strategies and practices that governed the division of expert labor between them. It argues that the over-determined paradigms of 'medicalization' and 'biologization' have lost much of their explanatory force and that historians need to refocus their attention on the institutional and administrative configuration of forensic practices in Germany. After first sketching the statutory context of those practices, the article explores how contentious jurisdictional negotiations pitted various administrative, financial, public security, and scientific interests against one another. The article also assesses the contested status of psychiatric expertise in the courtroom, as well as post-graduate forensic psychiatric training courses and joint professional organizations, which drew the two professional communities closer together and mediated their jurisdictional disputes. © 2013.
Butyaev, Alexander; Mavlyutov, Ruslan; Blanchette, Mathieu; Cudré-Mauroux, Philippe; Waldispühl, Jérôme
2015-09-18
Recent releases of genome three-dimensional (3D) structures have the potential to transform our understanding of genomes. Nonetheless, the storage technology and visualization tools need to evolve to offer to the scientific community fast and convenient access to these data. We introduce simultaneously a database system to store and query 3D genomic data (3DBG), and a 3D genome browser to visualize and explore 3D genome structures (3DGB). We benchmark 3DBG against state-of-the-art systems and demonstrate that it is faster than previous solutions, and importantly gracefully scales with the size of data. We also illustrate the usefulness of our 3D genome Web browser to explore human genome structures. The 3D genome browser is available at http://3dgb.cs.mcgill.ca/. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Butyaev, Alexander; Mavlyutov, Ruslan; Blanchette, Mathieu; Cudré-Mauroux, Philippe; Waldispühl, Jérôme
2015-01-01
Recent releases of genome three-dimensional (3D) structures have the potential to transform our understanding of genomes. Nonetheless, the storage technology and visualization tools need to evolve to offer to the scientific community fast and convenient access to these data. We introduce simultaneously a database system to store and query 3D genomic data (3DBG), and a 3D genome browser to visualize and explore 3D genome structures (3DGB). We benchmark 3DBG against state-of-the-art systems and demonstrate that it is faster than previous solutions, and importantly gracefully scales with the size of data. We also illustrate the usefulness of our 3D genome Web browser to explore human genome structures. The 3D genome browser is available at http://3dgb.cs.mcgill.ca/. PMID:25990738
An Exploration of Hmong Women's Perspectives on Cancer.
Baisch, Mary Jo; Vang, Pang C; Peterman, Beth R
2008-06-01
The purpose of this study was to explore the perspectives of Hmong women on cancer, using focus groups as the research method. Two focus group interviews were conducted and the narrative data were analyzed using thematic content analysis. Themes that emerged from the focus group discussions included "fatalistic and 'black and white' thinking", "valuing rumors rather than scientific information", "strong adherence to traditional medicine", "male leaders controlling health care decisions", "embarrassment discussing women's bodies", and "preferred strategies in addressing cancer". Many Hmong people in the United States believe that both traditional and Western health care practices are effective, but when health professionals do not address differences in language, communication, and beliefs about health, trust between the provider and client may erode. The findings of this study provide new insight into the importance of cultural accommodation to improve early cancer detection in the Hmong community.