How to Access and Sample the Deep Subsurface of Mars
NASA Technical Reports Server (NTRS)
Briggs, G.; Blacic, J.; Dreesen, D.; Mockler, T.
2000-01-01
We are developing a technology roadmap to support a series of Mars lander missions aimed at successively deeper and more comprehensive explorations of the Martian subsurface. The proposed mission sequence is outlined. Key to this approach is development of a drilling and sampling technology robust and flexible enough to successfully penetrate the presently unknown subsurface geology and structure. Martian environmental conditions, mission constraints of power and mass and a requirement for a high degree of automation all limit applicability of many proven terrestrial drilling technologies. Planetary protection and bioscience objectives further complicate selection of candidate systems. Nevertheless, recent advances in drilling technologies for the oil & gas, mining, underground utility and other specialty drilling industries convinces us that it will be possible to meet science and operational objectives of Mars subsurface exploration.
The Astrobiology of the Subsurface: Caves and Rock Fracture Habitats on Earth, Mars and Beyond
NASA Technical Reports Server (NTRS)
Boston, Penelope J.
2017-01-01
The Astrobiology of the Subsurface: Exploring Cave Habitats on Earth, Mars and Beyond. We are using the spectacular underground landscapes of Earth caves as models for the subsurfaces of other planets. Caves have been detected on the Moon and Mars and are strongly suspected for other bodies in the Solar System including some of the ice covered Ocean Worlds that orbit gas giant planets. The caves we explore and study include many extreme conditions of relevance to planetary astrobiology exploration including high and low temperatures, gas atmospheres poisonous to humans but where exotic microbes can fluorish, highly acidic or salty fluids, heavy metals, and high background radiation levels. Some cave microorganisms eat their way through bedrock, some live in battery acid conditions, some produce unusual biominerals and rare cave formations, and many produce compounds of potential pharmaceutical and industrial significance. We study these unique lifeforms and the physical and chemical biosignatures that they leave behind. Such traces can be used to provide a Field Guide to Unknown Organisms for developing life detection space missions.
Autonomous Sample Acquisition for Planetary and Small Body Explorations
NASA Technical Reports Server (NTRS)
Ghavimi, Ali R.; Serricchio, Frederick; Dolgin, Ben; Hadaegh, Fred Y.
2000-01-01
Robotic drilling and autonomous sample acquisition are considered as the key technology requirements in future planetary or small body exploration missions. Core sampling or subsurface drilling operation is envisioned to be off rovers or landers. These supporting platforms are inherently flexible, light, and can withstand only limited amount of reaction forces and torques. This, together with unknown properties of sampled materials, makes the sampling operation a tedious task and quite challenging. This paper highlights the recent advancements in the sample acquisition control system design and development for the in situ scientific exploration of planetary and small interplanetary missions.
The Astrobiology of the Subsurface: Exploring Cave Habitats on Earth, Mars and Beyond
NASA Technical Reports Server (NTRS)
Boston, Penelope Jane
2016-01-01
We are using the spectacular underground landscapes of Earth caves as models for the subsurfaces of other planets. Caves have been detected on the Moon and Mars and are strongly suspected for other bodies in the Solar System including some of the ice covered Ocean Worlds that orbit gas giant planets. The caves we explore and study include many extreme conditions of relevance to planetary astrobiology exploration including high and low temperatures, gas atmospheres poisonous to humans but where exotic microbes can flourish, highly acidic or salty fluids, heavy metals, and high background radiation levels. Some cave microorganisms eat their way through bedrock, some live in battery acid conditions, some produce unusual biominerals and rare cave formations, and many produce compounds of potential pharmaceutical and industrial significance. We study these unique lifeforms and the physical and chemical biosignatures that they leave behind. Such traces can be used to provide a "Field Guide to Unknown Organisms" for developing life detection space missions.
Investigation of North Pond crustal fluids by poised potential methods
NASA Astrophysics Data System (ADS)
Jones, R. M.; Orcutt, B.
2017-12-01
Microbes are present in the deep subsurface but their rates of activity, potential metabolisms and roles in the environment are still largely unknown. The marine deep crustal subsurface accounts for approximately 2.3x1018 m2 of the earth's volume, making this environment potentially significant to earth processes despite low productivity inherent in resource limited conditions. This has implications for geochemical cycling and exploring limits of life, linking to the `follow the energy' approach for defining habitability on earth and further afield. Most resources for life in the marine deep crust originate from rock. One subset of lithotrophic interactions involves direct transfer between electron acceptors and donors embedded in minerals and microbes. In this investigation, poised potential methods such as chronoamperometry were used to investigate mineral-microbe electron transfer interactions in the context of North Pond, a Mid-Atlantic ridge site representative of cool, sediment-covered basalts that make up the majority of the deep marine subsurface. Electrodes were poised at potentials corresponding approximately to particular lithotrophic oxidation reactions to enrich for sub-sections of North Pond deep subsurface fluid communities that were associated with direct electron transfer at these potentials.
Griffioen, Jasper; van Wensem, Joke; Oomes, Justine L M; Barends, Frans; Breunese, Jaap; Bruining, Hans; Olsthoorn, Theo; Stams, Alfons J M; van der Stoel, Almer E C
2014-07-01
In response to increasing use of the subsurface, there is a need to modernise policies on sustainable use of the subsurface. This holds in particular for the densely populated Netherlands. We aimed to analyse current practice of subsurface management and the associated pressure points and to establish a conceptual overview of the technical issues related to sustainable management of the subsurface. Case studies on the exploitation of subsurface resources (including spatial use of the subsurface) were analysed, examining social relevance, environmental impact, pressure points and management solutions. The case studies ranged from constructing underground garages to geothermal exploitation. The following issues were identified for the technological/scientific aspects: site investigation, suitability, risk assessment, monitoring and measures in the event of failure. Additionally, the following general issues were identified for the administrative aspects: spatial planning, option assessment, precaution, transparency, responsibility and liability. These issues were explored on their technological implications within the framework of sustainable management of the subsurface. This resulted into the following key aspects: (1) sustainability assessment, (2) dealing with uncertainty and (3) policy instruments and governance. For all three aspects, different options were identified which might have a legal, economic or ethical background. The technological implications of these backgrounds have been identified. A set of recommendations for sustainable management of the subsurface resources (incl. space) was established: (1) management should be driven by scarcity, (2) always implement closed loop monitoring when the subsurface activities are high-risk, (3) when dealing with unknown features and heterogeneity, apply the precautionary principle, (4) responsibility and liability for damage must be set out in legislation and (5) sustainability should be incorporated in all relevant legislation and not only in environmental legislation. Other aspects to be considered are the reversibility of the impacts from subsurface activities and the abandonment of installations. Copyright © 2014 Elsevier B.V. All rights reserved.
A stochastic approach for model reduction and memory function design in hydrogeophysical inversion
NASA Astrophysics Data System (ADS)
Hou, Z.; Kellogg, A.; Terry, N.
2009-12-01
Geophysical (e.g., seismic, electromagnetic, radar) techniques and statistical methods are essential for research related to subsurface characterization, including monitoring subsurface flow and transport processes, oil/gas reservoir identification, etc. For deep subsurface characterization such as reservoir petroleum exploration, seismic methods have been widely used. Recently, electromagnetic (EM) methods have drawn great attention in the area of reservoir characterization. However, considering the enormous computational demand corresponding to seismic and EM forward modeling, it is usually a big problem to have too many unknown parameters in the modeling domain. For shallow subsurface applications, the characterization can be very complicated considering the complexity and nonlinearity of flow and transport processes in the unsaturated zone. It is warranted to reduce the dimension of parameter space to a reasonable level. Another common concern is how to make the best use of time-lapse data with spatial-temporal correlations. This is even more critical when we try to monitor subsurface processes using geophysical data collected at different times. The normal practice is to get the inverse images individually. These images are not necessarily continuous or even reasonably related, because of the non-uniqueness of hydrogeophysical inversion. We propose to use a stochastic framework by integrating minimum-relative-entropy concept, quasi Monto Carlo sampling techniques, and statistical tests. The approach allows efficient and sufficient exploration of all possibilities of model parameters and evaluation of their significances to geophysical responses. The analyses enable us to reduce the parameter space significantly. The approach can be combined with Bayesian updating, allowing us to treat the updated ‘posterior’ pdf as a memory function, which stores all the information up to date about the distributions of soil/field attributes/properties, then consider the memory function as a new prior and generate samples from it for further updating when more geophysical data is available. We applied this approach for deep oil reservoir characterization and for shallow subsurface flow monitoring. The model reduction approach reliably helps reduce the joint seismic/EM/radar inversion computational time to reasonable levels. Continuous inversion images are obtained using time-lapse data with the “memory function” applied in the Bayesian inversion.
NASA Technical Reports Server (NTRS)
Collins, R. J.; Mccown, F. P.; Stonis, L. P.; Petzel, G.; Everett, J. R.
1974-01-01
This experiment was designed to determine the types and amounts of information valuable to petroleum exploration extractable from ERTS data and the cost of obtaining the information using traditional or conventional means. It was desired that an evaluation of this new petroleum exploration tool be made in a geologically well known area in order to assess its usefulness in an unknown area. The Anadarko Basin lies in western Oklahoma and the panhandle of Texas. It was chosen as a test site because there is a great deal of published information available on the surface and subsurface geology of the area, and there are many known structures that act as traps for hydrocarbons. This basin is similar to several other large epicontinental sedimentary basins. It was found that ERTS imagery is an excellent tool for reconnaissance exploration of large sedimentary basins or new exploration provinces. For the first time, small and medium size oil companies can rapidly and effectively analyze exploration provinces as a whole.
Landing Site and Traverse Plan Development for Resource Prospector
NASA Technical Reports Server (NTRS)
Elphic, R. C.; Colaprete, A.; Shirley, M.; McGovern, A.; Beyer, R.; Siegler, M. A.
2017-01-01
Resource Prospector (RP) will be the first lunar surface robotic expedition to explore the character and feasibility of in situ resource utilization at the lunar poles. It is aimed at determining where, and how much, hydrogen-bearing and other volatiles are sequestered in polar cold traps. To meet its goals, the mission should land where the likelihood of finding polar volatiles is high [1,2,3]. The operational environment is challenging: very low sun elevations, long shadows cast by even moderate relief, cryogenic subsurface temperatures, unknown regolith properties, and very dynamic sun and Earth communications geometries force a unique approach to landing, traverse design and mission operations.
Resource Prospector Landing Site and Traverse Plan Development
NASA Technical Reports Server (NTRS)
Elphic, R. C.; Colaprete, A.; Shirley, M.; McGovern, A.; Beyer, R.
2016-01-01
Resource Prospector (RP) will be the first lunar surface robotic expedition to explore the character and feasibility of in situ resource utilization at the lunar poles. It is aimed at determining where, and how much, hydrogen-bearing and other volatiles are sequestered in polar cold traps. To meet its goals, the mission should land where the likelihood of finding polar volatiles is high. The operational environment is challenging: very low sun elevations, long shadows cast by even moderate relief, cryogenic subsurface temperatures, unknown regolith properties, and very dynamic sun and Earth communications geometries force a unique approach to landing, traverse design and mission operations.
Landing Site and Traverse Plan Development for Resource Prospector
NASA Technical Reports Server (NTRS)
Elphic, R. C.; Colaprete, A.; Shirley, M.; A.McGovern; Beyer, R.; Siegler, M. A.
2017-01-01
Resource Prospector (RP) will be the first lunar surface robotic expedition to explore the character and feasibility of in situ resource utilization at the lunar poles. It is aimed at determining where, and how much, hydrogen-bearing and other volatiles are sequestered in polar cold traps. To meet its goals, the mission should land where the likelihood of finding polar volatiles is high. The operational environment is challenging: very low sun elevations, long shadows cast by even moderate relief, cryogenic subsurface temperatures, unknown regolith properties, and very dynamic sun and Earth communications geometries force a unique approach to landing, traverse design and mission operations.
Longevity of shallow subsurface drip irrigation tubing under three tillage practices
USDA-ARS?s Scientific Manuscript database
Shallow Sub-Surface drip irrigation (S3DI) has drip tubing buried about 2-in below the soil surface. It is unknown how long drip tubing would be viable at this shallow soil depth using strip- or no-tillage systems. The objectives were to determine drip tube longevity, resultant crop yield, and parti...
USDA-ARS?s Scientific Manuscript database
Whether yield reduction risk of cotton fertilized with fall-applied poultry litter in regions with warm fall or winter months can be minimized by applying the litter in subsurface bands in conjunction with winter cover crop is unknown. A field study was conducted in Mississippi to test whether litte...
NASA Technical Reports Server (NTRS)
Moghaddam, Mahta; Pierce, Leland; Tabatabaeenejad, Alireza; Rodriguez, Ernesto
2005-01-01
Knowledge of subsurface characteristics such as permittivity variations and layering structure could provide a breakthrough in many terrestrial and planetary science disciplines. For Earth science, knowledge of subsurface and subcanopy soil moisture layers can enable the estimation of vertical flow in the soil column linking surface hydrologic processes with that in the subsurface. For planetary science, determining the existence of subsurface water and ice is regarded as one of the most critical information needs for the study of the origins of the solar system. The subsurface in general can be described as several near-parallel layers with rough interfaces. Each homogenous rough layer can be defined by its average thickness, permittivity, and rms interface roughness assuming a known surface spectral distribution. As the number and depth of layers increase, the number of measurements needed to invert for the layer unknowns also increases, and deeper penetration capability would be required. To nondestructively calculate the characteristics of the rough layers, a multifrequency polarimetric radar backscattering approach can be used. One such system is that we have developed for data prototyping of the Microwave Observatory of Subcanopy and Subsurface (MOSS) mission concept. A tower-mounted radar makes backscattering measurements at VHF, UHF, and L-band frequencies. The radar is a pulsed CW system, which uses the same wideband antenna to transmit and receive the signals at all three frequencies. To focus the beam at various incidence angles within the beamwidth of the antenna, the tower is moved vertically and measurements made at each position. The signals are coherently summed to achieve focusing and image formation in the subsurface. This requires an estimate of wave velocity profiles. To solve the inverse scattering problem for subsurface velocity profile simultaneously with radar focusing, we use an iterative technique based on a forward numerical solution of the layered rough surface problem. The layers are each defined in terms of a small number of unknown distributions as given above. An a priori estimate of the solution is first assumed, based on which the forward problem is solved for the backscattered measurements. This is compared with the measured data and using iterative techniques an update to the solution for the unknowns is calculated. The process continues until convergence is achieved. Numerical results will be shown using actual radar data acquired with the MOSS tower radar system in Arizona in Fall 2003, and compared with in-situ measurements.
Subsurface Exploration Methods for Soft Ground Rapid Transit Tunnels : Volume 2. Appendixes A-F.
DOT National Transportation Integrated Search
1976-04-01
This study assesses subsurface exploration methods with respect to their ability to provide adequate data for the construction of rapid transit, soft-ground bored and cut-and-cover tunnels. Geophysical and other exploration tools not now widely used ...
Issues in subsurface exploration of ice sheets
NASA Technical Reports Server (NTRS)
French, L.; Carsey, F.; Zimmerman, W.
2000-01-01
Exploration of the deep subsurface ice sheets of Earth, Mars, Europa, and Titan has become a major consideration in addressing scientific objectives in climate change, extremophile biology, exobiology,chemical weathering, planetary evolution and ice dynamics.
Field Evaluation of Advanced Methods of Subsurface Exploration for Transit Tunneling
DOT National Transportation Integrated Search
1980-06-01
This report presents the results of a field evaluation of advanced methods of subsurface exploration on an ongoing urban rapid transit tunneling project. The objective of this study is to evaluate, through a field demonstration project, the feasibili...
NASA Astrophysics Data System (ADS)
Payler, Samuel J.; Biddle, Jennifer F.; Coates, Andrew J.; Cousins, Claire R.; Cross, Rachel E.; Cullen, David C.; Downs, Michael T.; Direito, Susana O. L.; Edwards, Thomas; Gray, Amber L.; Genis, Jac; Gunn, Matthew; Hansford, Graeme M.; Harkness, Patrick; Holt, John; Josset, Jean-Luc; Li, Xuan; Lees, David S.; Lim, Darlene S. S.; McHugh, Melissa; McLuckie, David; Meehan, Emma; Paling, Sean M.; Souchon, Audrey; Yeoman, Louise; Cockell, Charles S.
2017-04-01
The subsurface exploration of other planetary bodies can be used to unravel their geological history and assess their habitability. On Mars in particular, present-day habitable conditions may be restricted to the subsurface. Using a deep subsurface mine, we carried out a program of extraterrestrial analog research - MINe Analog Research (MINAR). MINAR aims to carry out the scientific study of the deep subsurface and test instrumentation designed for planetary surface exploration by investigating deep subsurface geology, whilst establishing the potential this technology has to be transferred into the mining industry. An integrated multi-instrument suite was used to investigate samples of representative evaporite minerals from a subsurface Permian evaporite sequence, in particular to assess mineral and elemental variations which provide small-scale regions of enhanced habitability. The instruments used were the Panoramic Camera emulator, Close-Up Imager, Raman spectrometer, Small Planetary Linear Impulse Tool, Ultrasonic drill and handheld X-ray diffraction (XRD). We present science results from the analog research and show that these instruments can be used to investigate in situ the geological context and mineralogical variations of a deep subsurface environment, and thus habitability, from millimetre to metre scales. We also show that these instruments are complementary. For example, the identification of primary evaporite minerals such as NaCl and KCl, which are difficult to detect by portable Raman spectrometers, can be accomplished with XRD. By contrast, Raman is highly effective at locating and detecting mineral inclusions in primary evaporite minerals. MINAR demonstrates the effective use of a deep subsurface environment for planetary instrument development, understanding the habitability of extreme deep subsurface environments on Earth and other planetary bodies, and advancing the use of space technology in economic mining.
NASA Technical Reports Server (NTRS)
Everett, J. R.; Petzel, G.
1974-01-01
This investigation was undertaken to determine the types and amounts of information valuable to petroleum exploration that are extractable from ERTS data and to determine the cost of obtaining the information from ERTS relative to costs using traditional or conventional means. In particular, it was desirable to evaluate this new petroleum exploration tool in a geologically well-known area in order to assess its potential usefulness in an unknown area. In light of the current energy situation, it is felt that such an evaluation is important in order to best utilize technical efforts with customary exploration tools, by rapidly focusing attention on the most promising areas in order to reduce the time required to go through the exploration cycle and to maximize cost savings. The Anadarko Basin lies in western Oklahoma and the panhandle of Texas (Figure 1). It was chosen as a test site because there is a great deal of published information available on the surface and subsurface geology of the area, there are many known structures that act as traps for hydrocarbons, and it is similar to several other large epicontinental sedimentary basins.
Complete Subsurface Elemental Composition Measurements With PING
NASA Technical Reports Server (NTRS)
Parsons, A. M.
2012-01-01
The Probing In situ with Neutrons and Gamma rays (PING) instrument will measure the complete bulk elemental composition of the subsurface of Mars as well as any other solid planetary body. PING can thus be a highly effective tool for both detailed local geochemistry science investigations and precision measurements of Mars subsurface reSOurces in preparation for future human exploration. As such, PING is thus fully capable of meeting a majority of both ncar and far term elements in Challenge #1 presented for this conference. Measuring the ncar subsurface composition of Mars will enable many of the MEPAG science goals and will be key to filling an important Strategic Knowledge Gap with regard to In situ Resources Utilization (ISRU) needs for human exploration. [1, 2] PING will thus fill an important niche in the Mars Exploration Program.
Analysis of Surface Heterogeneity Effects with Mesoscale Terrestrial Modeling Platforms
NASA Astrophysics Data System (ADS)
Simmer, C.
2015-12-01
An improved understanding of the full variability in the weather and climate system is crucial for reducing the uncertainty in weather forecasting and climate prediction, and to aid policy makers to develop adaptation and mitigation strategies. A yet unknown part of uncertainty in the predictions from the numerical models is caused by the negligence of non-resolved land surface heterogeneity and the sub-surface dynamics and their potential impact on the state of the atmosphere. At the same time, mesoscale numerical models using finer horizontal grid resolution [O(1)km] can suffer from inconsistencies and neglected scale-dependencies in ABL parameterizations and non-resolved effects of integrated surface-subsurface lateral flow at this scale. Our present knowledge suggests large-eddy-simulation (LES) as an eventual solution to overcome the inadequacy of the physical parameterizations in the atmosphere in this transition scale, yet we are constrained by the computational resources, memory management, big-data, when using LES for regional domains. For the present, there is a need for scale-aware parameterizations not only in the atmosphere but also in the land surface and subsurface model components. In this study, we use the recently developed Terrestrial Systems Modeling Platform (TerrSysMP) as a numerical tool to analyze the uncertainty in the simulation of surface exchange fluxes and boundary layer circulations at grid resolutions of the order of 1km, and explore the sensitivity of the atmospheric boundary layer evolution and convective rainfall processes on land surface heterogeneity.
Localized rapid warming of West Antarctic subsurface waters by remote winds
NASA Astrophysics Data System (ADS)
Spence, Paul; Holmes, Ryan M.; Hogg, Andrew Mcc.; Griffies, Stephen M.; Stewart, Kial D.; England, Matthew H.
2017-08-01
The highest rates of Antarctic glacial ice mass loss are occurring to the west of the Antarctica Peninsula in regions where warming of subsurface continental shelf waters is also largest. However, the physical mechanisms responsible for this warming remain unknown. Here we show how localized changes in coastal winds off East Antarctica can produce significant subsurface temperature anomalies (>2 °C) around much of the continent. We demonstrate how coastal-trapped barotropic Kelvin waves communicate the wind disturbance around the Antarctic coastline. The warming is focused on the western flank of the Antarctic Peninsula because the circulation induced by the coastal-trapped waves is intensified by the steep continental slope there, and because of the presence of pre-existing warm subsurface water offshore. The adjustment to the coastal-trapped waves shoals the subsurface isotherms and brings warm deep water upwards onto the continental shelf and closer to the coast. This result demonstrates the vulnerability of the West Antarctic region to a changing climate.
The subsurface record for the Anthropocene based on the global analysis of deep wells
NASA Astrophysics Data System (ADS)
Rose, K.
2016-12-01
While challenges persist in the characterization of Earth's subsurface, over two centuries of exploration resulting in more than six million deep wellbores, offer insights into these systems. Characteristics of the subsurface vary and can be analyzed on a variety of spatial scales using geospatial tools and methods. Characterization and prediction of subsurface properties, such as depth, thickness, porosity, permeability, pressure and temperature, are important for models and interpretations of the subsurface. Subsurface studies contribute to insights and understanding of natural system but also enable predictions and assessments of subsurface resources and support environmental and geohazard assessments. As the geo-data science landscape shifts, becoming more open, there are increasing opportunities to fill knowledge gaps, mine large, interrelated datasets, and develop innovative methods to improve our understanding of the subsurface and the impacts of its exploration. In this study, a global dataset of more than 6,000,000 deep subsurface wells has been assembled using ArcGIS and Access, which reflects to a first order, the cumulative representation of over two centuries of drilling. Wellbore data, in general represent the only portal for direct measurement and characterization of deep subsurface properties. As human engineering of the subsurface evolves from a focus on hydrocarbon resource development to include subsurface waste product disposal (e.g. CO2, industrial waste, etc) and production of other deep subsurface resources, such as heat and water resources, there is the increasing need to improve characterization techniques and understand local and global ramifications of anthropogenic interaction with the subsurface. Data and geospatial analyses are reviewed to constrain the extent to which human interactions, not just with Earth's surface systems, atmospheric and geologic, but subsurface systems will result in an enduring signature of human influences on the planet. Specifically, the extent and enduring signature of subsurface interactions with the planet, utilizing the four-dimensional, spatial and temporal, record for known deep wellbores is utilized.
The Mojave Subsurface Bio-Geochemistry Explorer (MOSBE)
NASA Technical Reports Server (NTRS)
Guerrero, J.; Beegle, L.; Abbey, W.; Bhartia, R.; Kounaves, S.; Russell, M.; Towles, D.
2012-01-01
The MOSBE Team has developed a terrestrial field campaign to explore two subsurface biological habitats under the Mojave Desert. This field campaign will not only help us understand terrestrial desert biology, but also will develop methodologies and strategies for potential future Mars missions that would seek to explore the Martian subsurface. We have proposed to the ASTEP program to integrate a suite of field demonstrated instruments with a 20 m subsurface drill as a coherent unit, the Mojave Subsurface Bio-geochemistry Explorer. The ATK Space Modular Planetary Drill System (MPDS) requires no drilling fluid, which allows aseptic sampling, can penetrate lithic ground up to 20 meters of depth, and utilizes less than 100 Watts throughout the entire depth. The drill has been developed and demonstrated in field testing to a depth of 10 meters in Arizona, December 2002. In addition to caching a continuous core throughout the drilling depth, it also generates and caches cuttings and fines that are strata-graphically correlated with the core. As a core segment is brought to the surface, it will be analyzed for texture and structure by a color microscopic imager and for relevant chemistry and mineralogy with a UV fluorescence/Raman spectrometer. Organic and soluble ionic species will be identified through two instruments -- a microcapillary electrophoresis, and an ion trap mass spectrometer that have been developed under PIDDP, ASTID and MIDP funding.
NASA Astrophysics Data System (ADS)
Stoker, C. R.
2007-07-01
Drilling for subsurface life should be a goal of future Mars missions. The approach is illustrated by MARTE: A search for subsurface life in Rio Tinto, Spain explored a biosphere using reduced iron and sulfur minerals and demonstrated automated drilling, sample handling, and life detection.
Subsurface examination of a foliar biofilm using scanning electron- and focused-ion-beam microscopy
USDA-ARS?s Scientific Manuscript database
The dual beam scanning electron microscope, equipped with both a focused ion- and scanning electron- beam (FIB SEM) is a novel tool for the exploration of the subsurface structure of biological tissues. The FIB is capable of removing small cross sections to view the subsurface features and may be s...
NASA Astrophysics Data System (ADS)
Paillou, P.; Grandjean, G.; Heggy, E.; Farr, T.
2004-05-01
For several years, we have conducted a quantitative study of radar penetration performances in various desert arid environments. This study combines both SAR (Synthetic Aperture Radar) imaging from orbital and airborne platforms and in situ GPR (Ground Penetrating Radar) measurements. Laboratory characterization of various minerals and rocks are used as input to electromagnetic models such as IEM (Integral Equation Model) and FDTD (Finite Difference Time Domain) that describe the subsurface scattering process for inversion purposes. Several test sites were explored, mainly the Sahara. Our first experiment was realized in Republic of Djibouti, an arid volcanic area which is a good analog to Mars. We observed a very little radar penetration there because of the presence of iron oxides and salts in the subsurface that make the soil conductive [Paillou et al., GRL, 2001]. A more favorable site for radar penetration was then explored in southern Egypt: the Bir Safsaf area where buried river channels were discovered using orbital SAR images. We showed how to combine SAR and GPR in order to obtain a complete description of subsurface geology down to several meters [Paillou et al., IEEE TGRS, 2003]. Such field experiments were the basis for more systematic laboratory measurements of the electromagnetic properties of various rocks and minerals which were used in numerical models in order to simulate the performances of future Martian radars, e.g. MARSIS and NETLANDER low frequency radars [Heggy et al., Icarus, 2001; Berthelier et al., JGR, 2003; Heggy et al., JGR, 2003]. More recently, new explorations were conducted in Mauritania in order to demonstrate radar capacities for geologic mapping [Grandjean et al., Coll. Afr. Geol., 2004] and in Libya where radar discovered a double impact crater in the southern desert [Paillou et al., C.R. Geoscience, 2003]. More local radar experiments were also conducted on a test site located in France, the Pyla sand dune, where we observed and modeled a radar signature of subsurface water [Grandjean et al., IEEE TGRS, 2001; Paillou et al., IGARSS'03, 2003]. All of these results shall be used in the context of "terrestrial analogs to Mars" studies in order to prepare for future Mars exploration using radars [Farr et al., Planet. Dec. Study, 2002; Paillou et al., 35th LPSC, 2004]: it concerns both GPR instruments onboard rovers and landers devoted to the exploration of the deep subsurface [Berthelier at al., ESA Pasteur, 2003] and SAR imaging systems onboard orbital platforms for global mapping of the shallow subsurface geology [Paillou et al., Conf. Water Mars, 2001].
Time-marching multi-grid seismic tomography
NASA Astrophysics Data System (ADS)
Tong, P.; Yang, D.; Liu, Q.
2016-12-01
From the classic ray-based traveltime tomography to the state-of-the-art full waveform inversion, because of the nonlinearity of seismic inverse problems, a good starting model is essential for preventing the convergence of the objective function toward local minima. With a focus on building high-accuracy starting models, we propose the so-called time-marching multi-grid seismic tomography method in this study. The new seismic tomography scheme consists of a temporal time-marching approach and a spatial multi-grid strategy. We first divide the recording period of seismic data into a series of time windows. Sequentially, the subsurface properties in each time window are iteratively updated starting from the final model of the previous time window. There are at least two advantages of the time-marching approach: (1) the information included in the seismic data of previous time windows has been explored to build the starting models of later time windows; (2) seismic data of later time windows could provide extra information to refine the subsurface images. Within each time window, we use a multi-grid method to decompose the scale of the inverse problem. Specifically, the unknowns of the inverse problem are sampled on a coarse mesh to capture the macro-scale structure of the subsurface at the beginning. Because of the low dimensionality, it is much easier to reach the global minimum on a coarse mesh. After that, finer meshes are introduced to recover the micro-scale properties. That is to say, the subsurface model is iteratively updated on multi-grid in every time window. We expect that high-accuracy starting models should be generated for the second and later time windows. We will test this time-marching multi-grid method by using our newly developed eikonal-based traveltime tomography software package tomoQuake. Real application results in the 2016 Kumamoto earthquake (Mw 7.0) region in Japan will be demonstrated.
Applications of Surface Penetrating Radar for Mars Exploration
NASA Astrophysics Data System (ADS)
Li, H.; Li, C.; Ran, S.; Feng, J.; Zuo, W.
2015-12-01
Surface Penetrating Radar (SPR) is a geophysical method that uses electromagnetic field probe the interior structure and lithological variations of a lossy dielectric materials, it performs quite well in dry, icy and shallow-soil environments. The first radar sounding of the subsurface of planet was carried out by Apollo Lunar Sounder Experiment (ALSE) of the Apollo 17 in 1972. ALSE provided very precise information about the moon's topography and revealed structures beneath the surface in both Mare Crisium and Mare Serenitatis. Russian Mars'92 was the first Mars exploration mission that tried to use SPR to explore martian surface, subsurface and ionosphere. Although Mars'96 launch failed in 1996, Russia(Mars'98, cancelled in 1998; Phobos-Grunt, launch failed in 2011), ESA(Mars Express, succeeded in 2003; Netlander, cancelled in 2003; ExoMars 2018) and NASA(MRO, succeeded in 2005; MARS 2020) have been making great effects to send SPR to Mars, trying to search for the existence of groundwater and life in the past 20 years. So far, no Ground Penetrating Radar(GPR) has yet provided in situ observations on the surface of Mars. In December 2013, China's CE-3 lunar rover (Yuto) equipped with a GPR made the first direct measurement of the structure and depth of the lunar soil, and investigation of the lunar crust structure along the rover path. China's Mars Exploration Program also plans to carry the orbiting radar sounder and rover GPR to characterize the nature of subsurface water or ices and the layered structure of shallow subsurface of Mars. SPR can provide diversity of applications for Mars exploration , that are: to map the distribution of solid and liquid water in the upper portions of the Mars' crust; to characterize the subsurface geologic environment; to investigate the planet's subsurface to better understand the evolution and habitability of Mars; to perform the martain ionosphere sounding. Based on SPR's history and achievements, combined with the development of radar technology, SPR's technological trends applied in moon and deep space exploration are summarized in the following: Technological convergence in SPR and SAR(Synthetic Aperture Radar); Muliti-frequency and Multi-polarization; Bistatic or multistatic SPRs for geophysical network; Tomography.
NASA Astrophysics Data System (ADS)
Bell, Peter M.
Artificial intelligence techniques are being used for the first time to evaluate geophysical, geochemical, and geologic data and theory in order to locate ore deposits. After several years of development, an intelligent computer code has been formulated and applied to the Mount Tolman area in Washington state. In a project funded by the United States Geological Survey and the National Science Foundation a set of computer programs, under the general title Prospector, was used successfully to locate a previously unknown ore-grade porphyry molybdenum deposit in the vicinity of Mount Tolman (Science, Sept. 3, 1982).The general area of the deposit had been known to contain exposures of porphyry mineralization. Between 1964 and 1978, exploration surveys had been run by the Bear Creek Mining Company, and later exploration was done in the area by the Amax Corporation. Some of the geophysical data and geochemical and other prospecting surveys were incorporated into the programs, and mine exploration specialists contributed to a set of rules for Prospector. The rules were encoded as ‘inference networks’ to form the ‘expert system’ on which the artificial intelligence codes were based. The molybdenum ore deposit discovered by the test is large, located subsurface, and has an areal extent of more than 18 km2.
NASA Technical Reports Server (NTRS)
Battler, M.; Stoker, C.
2005-01-01
Water is unstable on the surface of Mars, and therefore the Martian surface is not likely to support life. It is possible, however, that liquid water exists beneath the surface of Mars, and thus life might also be found in the subsurface. Subsurface life would most likely be microbial, anaerobic, and chemoautotrophic; these types of biospheres on Earth are rare, and not well understood. Finding water and life are high priorities for Mars exploration, and therefore it is important that we learn to explore the subsurface robotically, by drilling. The Mars Analog Rio Tinto Experiment (MARTE), has searched successfully for a subsurface biosphere at Rio Tinto, Spain [1,2,3,4]. The Rio Tinto study site was selected to search for a subsurface biosphere because the extremely low pH and high concentrations of elements such as iron and copper in the Tinto River suggest the presence of a chemoautotrophic biosphere in the subsurface beneath the river. The Rio Tinto has been recognized as an important mineralogical analog to the Sinus Meridiani site on Mars [5].
Habitat Inspection Scanner, Bio-Structure Scanner, and In Situ Sub-Surface Composition Sensor
NASA Technical Reports Server (NTRS)
VanSteenberg, Michael
2004-01-01
The extension of dielectric and inductive spectroscopy into in situ observations represents a significant exploration-enabling tool. This technology can be widely applied from microscopic to macroscopic. Dielectrometry and inductometry can measure sub-surface composition and its distribution. The primary environment that we cannot easily explored is the sub-surface of solid bodies. Weather as part of our equipment that we bring with us, or the locations we are exploring. These fundamental questions lie at the core of the exploration Initiative. To answer them we must use a whole host of complimentary tools including those that allow us to practically examine the sub-surface environment. A nondestructive approach offers significant advantages for both the initial identification of likely samples but also the monitoring of ecosystems and crew health. These include materials characterization, nondestructive inspection, and process quality control, damage monitoring, and hidden object detection and identification. The identification of natural resources such as water on the Moon or Mars is of great importance to the utilization of local resource in the support of human exploration crews. On the macroscopic scale, the understanding of what resources are available and how they are distributed is of primary importance to their productive utilization. Even if initial explorations do not require the use of local resources to succeed, eventual settlement and commercial development will. The routine examination of the structural integrity (micro cracks, leaks) of hi.inafi habitats in harsh envkmments ww!d also be enabled.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Os, Herman W.A. van, E-mail: h.w.a.van.os@rug.nl; Herber, Rien, E-mail: rien.herber@rug.nl; Scholtens, Bert, E-mail: l.j.r.scholtens@rug.nl
We investigate how the decision support system ‘Modular Evaluation Method Subsurface Activities’ (MEMSA) can help facilitate an informed decision-making process for permit applications of subsurface activities. To this end, we analyze the extent the MEMSA approach allows for a dialogue between stakeholders in a transparent manner. We use the exploration permit for the underground gas storage facility at the Pieterburen salt dome (Netherlands) as a case study. The results suggest that the MEMSA approach is flexible enough to adjust to changing conditions. Furthermore, MEMSA provides a novel way for identifying structural problems and possible solutions in permit decision-making processes formore » subsurface activities, on the basis of the sensitivity analysis of intermediate rankings. We suggest that the planned size of an activity should already be specified in the exploration phase, because this would allow for a more efficient use of the subsurface as a whole. We conclude that the host community should be involved to a greater extent and in an early phase of the permit decision-making process, for example, already during the initial analysis of the project area of a subsurface activity. We suggest that strategic national policy goals are to be re-evaluated on a regular basis, in the form of a strategic vision for the subsurface, to account for timing discrepancies between the realization of activities and policy deadlines, because this discrepancy can have a large impact on the necessity and therefore acceptance of a subsurface activity.« less
Huang, Ping; Lin, I-I; Chou, Chia; Huang, Rong-Hui
2015-05-18
Tropical cyclones (TCs) are hazardous natural disasters. Because TC intensification is significantly controlled by atmosphere and ocean environments, changes in these environments may cause changes in TC intensity. Changes in surface and subsurface ocean conditions can both influence a TC's intensification. Regarding global warming, minimal exploration of the subsurface ocean has been undertaken. Here we investigate future subsurface ocean environment changes projected by 22 state-of-the-art climate models and suggest a suppressive effect of subsurface oceans on the intensification of future TCs. Under global warming, the subsurface vertical temperature profile can be sharpened in important TC regions, which may contribute to a stronger ocean coupling (cooling) effect during the intensification of future TCs. Regarding a TC, future subsurface ocean environments may be more suppressive than the existing subsurface ocean environments. This suppressive effect is not spatially uniform and may be weak in certain local areas.
Huang, Ping; Lin, I. -I; Chou, Chia; Huang, Rong-Hui
2015-01-01
Tropical cyclones (TCs) are hazardous natural disasters. Because TC intensification is significantly controlled by atmosphere and ocean environments, changes in these environments may cause changes in TC intensity. Changes in surface and subsurface ocean conditions can both influence a TC's intensification. Regarding global warming, minimal exploration of the subsurface ocean has been undertaken. Here we investigate future subsurface ocean environment changes projected by 22 state-of-the-art climate models and suggest a suppressive effect of subsurface oceans on the intensification of future TCs. Under global warming, the subsurface vertical temperature profile can be sharpened in important TC regions, which may contribute to a stronger ocean coupling (cooling) effect during the intensification of future TCs. Regarding a TC, future subsurface ocean environments may be more suppressive than the existing subsurface ocean environments. This suppressive effect is not spatially uniform and may be weak in certain local areas. PMID:25982028
Microbial Life in the Deep Subsurface: Deep, Hot and Radioactive
NASA Technical Reports Server (NTRS)
DeStefano, Andrea L.; Ford, Jill C.; Winsor, Seana K.; Allen, Carlton C.; Miller, Judith; McNamara, Karen M.; Gibson, Everett K., Jr.
2000-01-01
Recent studies, motivated in part by the search for extraterrestrial life, continue to expand the recognized limits of Earth's biosphere. This work explored evidence for life a high-temperature, radioactive environment in the deep subsurface.
A model reduction approach to numerical inversion for a parabolic partial differential equation
NASA Astrophysics Data System (ADS)
Borcea, Liliana; Druskin, Vladimir; Mamonov, Alexander V.; Zaslavsky, Mikhail
2014-12-01
We propose a novel numerical inversion algorithm for the coefficients of parabolic partial differential equations, based on model reduction. The study is motivated by the application of controlled source electromagnetic exploration, where the unknown is the subsurface electrical resistivity and the data are time resolved surface measurements of the magnetic field. The algorithm presented in this paper considers inversion in one and two dimensions. The reduced model is obtained with rational interpolation in the frequency (Laplace) domain and a rational Krylov subspace projection method. It amounts to a nonlinear mapping from the function space of the unknown resistivity to the small dimensional space of the parameters of the reduced model. We use this mapping as a nonlinear preconditioner for the Gauss-Newton iterative solution of the inverse problem. The advantage of the inversion algorithm is twofold. First, the nonlinear preconditioner resolves most of the nonlinearity of the problem. Thus the iterations are less likely to get stuck in local minima and the convergence is fast. Second, the inversion is computationally efficient because it avoids repeated accurate simulations of the time-domain response. We study the stability of the inversion algorithm for various rational Krylov subspaces, and assess its performance with numerical experiments.
Method and apparatus for subsurface exploration
NASA Technical Reports Server (NTRS)
Wilcox, Brian (Inventor)
2002-01-01
A subsurface explorer (SSX) for exploring beneath the terrestrial surface of planetary bodies such as the Earth, Mars, or comets. This exploration activity utilizes appropriate sensors and instrument to evaluate the composition, structure, mineralogy and possibly biology of the subsurface medium, as well as perhaps the ability to return samples of that medium back to the surface. The vehicle comprises an elongated skin or body having a front end and a rear end, with a nose piece at the front end for imparting force to composition material of the planetary body. Force is provided by a hammer mechanism to the back side of a nose piece from within the body of the vehicle. In the preferred embodiment, a motor spins an intermediate shaft having two non-uniform threads along with a hammer which engages these threads with two conical rollers. A brake assembly halts the rotation of the intermediate shaft, causing the conical roller to spin down the non-uniform thread to rapidly and efficiently convert the rotational kinetic energy of the hammer into translational energy.
The Hebrus Valles Exploration Zone: Access to the Martian Surface and Subsurface
NASA Astrophysics Data System (ADS)
Davila, A.; Fairén, A. G.; Rodríguez, A. P.; Schulze-Makuch, D.; Rask, J.; Zavaleta, J.
2015-10-01
The Hebrus Valles EZ represents a diverse setting with multiple geological contacts and layers, possible remnant water ice and protected subsurface environments, which could be critical for the establishment of long-term human settlements.
Distribution, formation mechanisms, and significance of lunar pits
NASA Astrophysics Data System (ADS)
Wagner, Robert V.; Robinson, Mark S.
2014-07-01
Lunar Reconnaissance Orbiter Camera images reveal the presence of steep-walled pits in mare basalt (n = 8), impact melt deposits (n = 221), and highland terrain (n = 2). Pits represent evidence of subsurface voids of unknown extents. By analogy with terrestrial counterparts, the voids associated with mare pits may extend for hundreds of meters to kilometers in length, thereby providing extensive potential habitats and access to subsurface geology. Because of their small sizes relative to the local equilibrium crater diameters, the mare pits are likely to be post-flow features rather than volcanic skylights. The impact melt pits are indirect evidence both of extensive subsurface movement of impact melt and of exploitable sublunarean voids. Due to the small sizes of pits (mare, highland, and impact melt) and the absolute ages of their host materials, it is likely that most pits formed as secondary features.
NASA Astrophysics Data System (ADS)
Yang, Minghong; Qi, Hongji; Zhao, Yuanan; Yi, Kui
2012-01-01
The 355 nm laser-induced damage thresholds (LIDTs) of polished fused silica with and without the residual subsurface cracks were explored. HF based wet etching and magnetorheological finishing was used to remove the subsurface cracks. To isolate the effect of subsurface cracks, chemical leaching was used to eliminate the photoactive impurities in the polishing layer. Results show that the crack number density decreased from~103 to <1cm-2, and the LIDT was improved as high as 2.8-fold with both the subsurface cracks and the polishing layer being removed. Subsurface cracks play a significant role in laser damage at fluencies between 15~31 J/cm2 (355nm, 8ns). HF Etching of the cracks was shown to increase the damage performance as nearly high as that of the samples in which subsurface cracks are well controlled.
Barr, G.L.
1993-01-01
Ground-penetrating radar (GPR) is useful as a surface geophysical method for exploring geology and subsurface features in karst settings. Interpretation of GPR data was used to infer lithology and hydrogeologic conditions in west-central Florida. This study demonstrates how GPR methods can be used to investigate the hydrogeology of an area. GPR transmits radio- frequency electromagnetic waves into the ground and receives reflected energy waves from subsurface interfaces. Subsurface profiles showing sediment thickness, depth to water table and clay beds, karst development, buried objects, and lake-bottom structure were produced from GPR traverses obtained during December 1987 and March 1990 in Pinellas, Hillsborough, and Hardee Counties in west-central Florida. Performance of the GPR method is site specific, and data collected are principally affected by the sediment and pore fluids, conductances and dielectric constants. Effective exploration depths of the GPR surveys through predominately unsaturated and saturated sand and clay sediments at five study sites ranged from a few feet to greater than 50 feet below land surface. Exploration depths were limited when high conductivity clay was encountered, whereas greater exploration depths were possible in material composed of sand. Application of GPR is useful in profiling subsurface conditions, but proper interpretation depends upon the user's knowledge of the equipment and the local hydrogeological setting, as well as the ability to interpret the graphic profile.
Japan's exploration of vertical holes and subsurface caverns on the Moon and Mars
NASA Astrophysics Data System (ADS)
Haruyama, J.; Kawano, I.; Kubota, T.; Yoshida, K.; Kawakatsu, Y.; Kato, H.; Otsuki, M.; Watanabe, K.; Nishibori, T.; Yamamoto, Y.; Iwata, T.; Ishigami, G.; Yamada, T. T.
2013-12-01
Recently, gigantic vertical holes exceeding several tens of meters in diameter and depth were discovered on the Moon and Mars. Based on high-resolution image data, lunar holes and some Martian pits (called 'holes' hereafter) are probably skylights of subsurface caverns such as lava tubes or magma chambers. We are starting preparations for exploring the caverns through the vertical holes. The holes and subsurface caverns have high potential as resources for scientific studies. Various important geological and mineralogical processes could be uniquely and effectively observed inside these holes and subsurface caverns. The exposed fresh lava layers on the vertical walls of the lunar and Martian holes would provide information on volcanic eruption histories. The lava layers may also provide information on past magnetic fields of the celestial bodies. The regolith layers may be sandwiched between lava layers and may preserve volatile elements including solar wind protons that could be a clue to understanding past solar activities. Water molecules from solar winds or cometary/meteorite impacts may be stored inside the caverns because of mild temperatures there. The fresh lava materials forming the walls and floors of caverns might trap endogenic volatiles from magma eruptions that will be key materials for revealing the formation and early evolution of the Moon and Mars. Furthermore, the Martian subsurface caverns are highly expected to be life cradles where the temperatures are probably stable and that are free from ultra-violet and other cosmic rays that break chemical bonds, thus avoiding polymerization of molecules. Discovering extraterrestrial life and its varieties is one of our ultimate scientific purposes for exploring the lunar and Martian subsurface caverns. In addition to scientific interests, lunar and Martian subsurface caverns are excellent candidates for future lunar bases. We expect such caverns to have high potential due to stable temperatures; absence of ultra-violet rays, cosmic rays, and meteorite impacts; spacious volumes based on analogues of terrestrial lava tubes; tight walls and floors possibly glass-coated by rapid cooling inside the caverns; and so on. Exploration of subsurface caverns of the Moon and Mars would provide answers to various basic and applied scientific questions fundamental to understanding the nature of the Moon, Mars, and life. Furthermore, it could provide knowledge to enable constructing lunar and Martian bases for robotic and/or manned activities there. However, Japan does not have the technology for soft-landing on gravitational celestial bodies. First, we should acquire that technology. Next, we should acquire the technology for approaching and descending into holes that could be skylights of caverns. We should also develop the technology to move on the floors where there are many boulders and/or a mound of dusts. We should also consider how to investigate the dark inside of the caverns. There are many engineering challenges for exploring the lunar and Martian subsurface caverns, but our team is prepared to meet them.
Desert Studies - A Global View
1985-08-23
Exploration, Dec. 6-10, 1982, Ft. Worth, TX, p. 39-40. 1983: 2 abs. published, 2 papers submitted for publication Breed, C. S., 1983, Subsurface imaging with...2-10 (in Chinese). Elachi, C., Roth, L. E., and Schaber, G. G., 1984, Spaceborne radar subsurface imaging in hyperarid regions, 1984: IEEE...are 55) km o. 18t BIBLIOGRAPHY (CITED REFERENCES) Breed, C. S., 1983, Subsurface imaging with SIR-A in the Egyptian Desert (abs.): Summaries, 17th
NASA Technical Reports Server (NTRS)
Horz, F.; Heggy, E.; Fong, T.; Kring, D.; Deans, M.; Anglade, A.; Mahiouz, K.; Bualat, M.; Lee, P.; Bluethmann, W.
2009-01-01
Probing radars have been widely recognized by the science community to be an efficient tool to explore lunar subsurface providing a unique capability to address several scientific and operational issues. A wideband (200 to 1200 MHz) Ground Penetrating Radar (GPR) mounted on a surface rover can provide high vertical resolution and probing depth from few tens of centimeters to few tens of meters depending on the sounding frequency and the ground conductivity. This in term can provide a better understand regolith thickness, elemental iron concentration (including ilmenite), volatile presence, structural anomalies and fracturing. All those objectives are of important significance for understanding the local geology and potential sustainable resources for future landing sites in particular exploring the thickness, structural heterogeneity and potential volatiles presence in the lunar regolith. While the operation and data collection of GPR is a straightforward case for most terrestrial surveys, it is a challenging task for remote planetary study especially on robotic platforms due to the complexity of remote operation in rough terrains and the data collection constrains imposed by the mechanical motion of the rover and limitation in data transfer. Nevertheless, Rover mounted GPR can be of great support to perform systematic subsurface surveys for a given landing site as it can provide scientific and operational support in exploring subsurface resources and sample collections which can increase the efficiency of the EVA activities for potential human crews as part of the NASA Constellation Program. In this study we attempt to explore the operational challenges and their impact on the EVA scientific return for operating a rover mounted GPR in support of potential human activity on the moon. In this first field study, we mainly focused on the ability of GPR to support subsurface sample collection and explore shallow subsurface volatiles.
Vanguard - a proposed European astrobiology experiment on Mars
NASA Astrophysics Data System (ADS)
Ellery, A. A.; Cockell, C. S.; Edwards, H. G. M.; Dickensheets, D. L.; Welch, C. S.
2002-07-01
We propose a new type of robotic mission for the exploration of Mars. This mission is called Vanguard and represents the fruits of a collaboration that is both international and multi-disciplinary. Vanguard is designed for sub-surface penetration and investigation using remote instruments and unlike previous robotic architectures it offers the opportunity for multiple subsurface site analysis using three moles. The moles increase the probability that a subsurface signature of life can be found and by accomplishing subsurface analysis across a transect, the statistical rigour of Martian scientific exploration would be improved. There is no provision for returning samples to the surface for analysis by a gas-chromatograph/mass-spectrometer (GCMS) this minimizes the complexity invoked by sophisticated robotic overheads. The primary scientific instruments to be deployed are the Raman spectrometer, infrared spectrometer and laser-induced breakdown spectroscope the Raman spectrometer in particular is discussed. We concentrate primarily on the scientific rationale for the Vanguard mission proposal. The Vanguard mission proposal represents a logical opportunity for extending European robotic missions to Mars.
Lunar and Martian Sub-surface Habitat Structure Technology Development and Application
NASA Technical Reports Server (NTRS)
Boston, Penelope J.; Strong, Janet D.
2005-01-01
NASA's human exploration initiative poses great opportunity and great risk for manned missions to the Moon and Mars. Subsidace structures such as caves and lava tubes offer readily available and existing in-situ habitat options. Sub-surface dwellings can provide complete radiation, micro-meteorite and exhaust plume shielding and a moderate and constant temperature environment; they are, therefore, excellent pre-existing habitat risk mitigation elements. Technical challenges to subsurface habitat structure development include surface penetration (digging and mining equipment), environmental pressurization, and psychological environment enhancement requirements. Lunar and Martian environments and elements have many beneficial similarities. This will allow for lunar testing and design development of subsurface habitat structures for Martian application; however, significant differences between lunar and Martian environments and resource elements will mandate unique application development. Mars is NASA's ultimate exploration goal and is known to have many very large lava tubes. Other cave types are plausible. The Moon has unroofed rilles and lava tubes, but further research will, in the near future, define the extent of Lunar and Martian differences and similarities. This paper will discuss Lunar and Martian subsurface habitation technology development challenges and opportunities.
Localized Rapid Warming of West Antarctic Subsurface Waters by Remote Winds
NASA Astrophysics Data System (ADS)
Griffies, S. M.; Spence, P.; Holmes, R.; Hogg, A. M.; Stewart, K. D.; England, M. H.
2017-12-01
The largest rates of Antarctic glacial ice mass loss are occurring tothe west of the Antarctica Peninsula in regions where warming ofsubsurface continental shelf waters is also largest. However, thephysical mechanisms responsible for this warming remain unknown. Herewe show how localized changes in coastal winds off East Antarctica canproduce significant subsurface temperature anomalies (>2C) around theentire continent. We demonstrate how coastal-trapped Kelvin wavescommunicate the wind disturbance around the Antarctic coastline. Thewarming is focused on the western flank of the Antarctic Peninsulabecause the anomalous circulation induced by the coastal-trapped wavesis intensified by the steep continental slope there, and because ofthe presence of pre-existing warm subsurface water. Thecoastal-trapped waves leads to an adjustment of the flow that shoalsisotherms and brings warm deep water upwards onto the continentalshelf and closer to the coast. This result demonstrates the uniquevulnerability of the West Antarctic region to a changing climate.
The existing knowledge base regarding the presence and significance of chemicals foreign to the subsurface environment is large and growing -the papers in this volume serving as recent testament. But complex questions with few answers surround the unknowns regarding the potenti...
The Influence of Plant Root Systems on Subsurface Flow: Implications for Slope Stability
Although research has explained how plant roots mechanically stabilize soils, in this article we explore how root systems create networks of preferential flow and thus influence water pressures in soils to trigger landslides. Root systems may alter subsurface flow: Hydrological m...
NASA Astrophysics Data System (ADS)
Hill, J. R.; Plaut, J. J.; Christensen, P. R.
2016-12-01
At the First Landing Site and Exploration Zone Workshop for Human Missions to the Surface of Mars (Oct 27-30, 2015, Houston, TX), planetary scientists, students and members of the public proposed forty-seven sites that meet the engineering requirements for a human mission and would also allow astronauts to investigate important scientific questions while on the surface. The chloride deposits in western Noachis Terra at -37.2°N, 350.5°E were proposed as a potential exploration zone due to their proximity to craters containing glacier-like forms and imperfectly-formed concentric crater fill. The high astrobiological preservation potential of the chloride deposits exposed on the surface would allow astronauts to investigate the past habitability of a well-preserved Noachian fluvial system, while the subsurface ice features suggest astronauts would have relatively easy access to enough water to meet the requirements of NASA's current baseline mission architecture. Since the workshop, the proposed exploration zone has been further characterized using additional datasets, as well as new data collected by the Mars Reconnaissance Orbiter as part of the exploration zone data acquisition effort organized by NASA's Human Landing Sites Study (HLS2) team. First, SHARAD radar data were used to constrain the subsurface structure of the imperfectly-formed concentric crater fill within the two large craters, which makes a more accurate assessment of the potential subsurface water ice resources possible. Second, newly acquired HiRISE images were used to better assess the traversability of the terrain between the habitation zone and the primary resource and science regions-of-interest (ROIs). And third, the exploration zone was shifted in order to place the central landing site closer to potential subsurface water ice resources. Although this would require crews to travel further to investigate the chloride deposits, it reduces the distance between the subsurface water ice locations and the central habitation zone, where the excavated water would be processed and utilized. The analysis of this additional data has further demonstrated that the western Noachis Terra chloride deposits are an ideal location for astronauts to safely and effectively conduct astrobiological investigations on the Martian surface.
Exobiological Exploration of Europa (E3) Europa Lander
NASA Technical Reports Server (NTRS)
Stillwagen, F. H.; Manvi, Ramachandra; Seywald, Hans; Park, Sang-Young; Kolacinski, Rick
2002-01-01
The search for life outside Earth's protected atmosphere is a compelling testament to the quest by mankind to determine if "we" are alone in the universe. The phenomenal success of the NASA Galileo spacecraft has indicated that the moons of Jupiter, and most notably Europa, may indeed contain subsurface liquid under an icy surface. This speculation of a salty liquid subsurface fuels expert opinions that biological products may exist. The Revolutionary Aerospace Systems Concepts (RASC) effort at Langley Research Center, initiated by NASA Headquarters, pushes NASA and the Aerospace/Science community to target advanced evolutionary technology usage to provide a Europa Lander concept targeted for completion within the next 50 years. The study effort indicates the use of certain advanced technologies to achieve a subsurface penetrator and liquid explorer in the approximately 2040 timeframe.
Researchers Mine Information from Next-Generation Subsurface Flow Simulations
Gedenk, Eric D.
2015-12-01
A research team based at Virginia Tech University leveraged computing resources at the US Department of Energy's (DOE's) Oak Ridge National Laboratory to explore subsurface multiphase flow phenomena that can't be experimentally observed. Using the Cray XK7 Titan supercomputer at the Oak Ridge Leadership Computing Facility, the team took Micro-CT images of subsurface geologic systems and created two-phase flow simulations. The team's model development has implications for computational research pertaining to carbon sequestration, oil recovery, and contaminant transport.
Single cell genomic study of Dehalococcoidites in deep sea sediments of Peru Margin 1230
NASA Astrophysics Data System (ADS)
Kaster, A.; Meyer-Blackwell, K.; Spormann, A. M.
2013-12-01
Dehalogenating Chloroflexi, such as Dehalococcoidites Dhc were originally discovered as the key microorganisms mediating reductive dehalogenation of the prevalent groundwater contaminants tetrachloroethene and trichloroethene. Molecular and genomic studies on their key enzymes for energy conservation, reductive dehalogenases rdh, have provided evidence for ubiquitous horizontal gene transfer. A pioneering study by Futagami et al. discovered novel putative rdh phylotypes in sediments from the Pacific, revealing an unknown and surprising abundance of rdh genes in pristine habitats. The frequent detection of Dhc-related 16S rRNA genes from these environments implied the occurrence of dissimilatory dehalorespiration in marine subsurface sediments, however, pristine Dhc could never be linked to this activity. Despite being ubiquitous in those environments, metabolic life style or ecological function of Dhc in the absence of anthropogenic contaminants is still completely unknown. We therefore analyzed a non-contaminated deep sea sediment sample of the Peru Margin 1230 site by a single cell genomic (SGC) approach. We present for the first time data on three single Dhc cells, helping to elucidate their role in the poorly understood oligotrophic marine sub-surface environment.
NASA Astrophysics Data System (ADS)
Ameli, Ali; McDonnell, Jeffrey; Laudon, Hjalmar; Bishop, Kevin
2017-04-01
The stable isotopes of water have served science well as hydrological tracers which have demonstrated that there is often a large component of "old" water in stream runoff. It has been more problematic to define the full transit time distribution of that stream water. Non-linear mixing of previous precipitation signals that is stored for extended periods and slowly travel through the subsurface before reaching the stream results in a large range of possible transit times. It difficult to find tracers can represent this, especially if all that one has is data on the precipitation input and the stream runoff. In this paper, we explicitly characterize this "old water" displacement using a novel quasi-steady physically-based flow and transport model in the well-studied S-Transect hillslope in Sweden where the concentration of hydrological tracers in the subsurface and stream has been measured. We explore how subsurface conductivity profile impacts the characteristics of old water displacement, and then test these scenarios against the observed dynamics of conservative hydrological tracers in both the stream and subsurface. This work explores the efficiency of convolution-based approaches in the estimation of stream "young water" fraction and time-variant mean transit times. We also suggest how celerity and velocity differ with landscape structure
Summary of the Issues Regarding The Martian Subsurface Explorer
NASA Technical Reports Server (NTRS)
Eustes, A. W., III; Gertsch, L. S.; Lu, N.; Bridgford, E.; Tischler, A.; Stoner, M. S.; Wilcox, B. H.
2000-01-01
This is a summary of research work accomplished to date for the Jet Propulsion Laboratory by the Colorado School of Mines and the Michigan Technological University for the Martian Subsurface Explorer (SSX). The task involved a thorough review of the state of the art in drilling in the petroleum and mining industries in the following areas: 1) Drilling mechanics and energy requirements. 2) Sidewall friction in boreholes. 3) Rock property characteristics of basalt, permafrost, and ice. 4) Cuttings transport and recompaction of cuttings. and 5) Directional control at odd angle interfaces.
Sustainable intensive thermal use of the shallow subsurface-a critical view on the status quo.
Vienken, T; Schelenz, S; Rink, K; Dietrich, P
2015-01-01
Thermal use of the shallow subsurface for heat generation, cooling, and thermal energy storage is increasingly gaining importance in reconsideration of future energy supplies. Shallow geothermal energy use is often promoted as being of little or no costs during operation, while simultaneously being environmentally friendly. Hence, the number of installed systems has rapidly risen over the last few decades, especially among newly built houses. While the carbon dioxide reduction potential of this method remains undoubted, concerns about sustainability and potential negative effects on the soil and groundwater due to an intensified use have been raised-even as far back as 25 years ago. Nevertheless, consistent regulation and management schemes for the intensified thermal use of the shallow subsurface are still missing-mainly due to a lack of system understanding and process knowledge. In the meantime, large geothermal applications, for example, residential neighborhoods that are entirely dependent up on shallow geothermal energy use or low enthalpy aquifer heat storage, have been developed throughout Europe. Potential negative effects on the soil and groundwater due to an intensive thermal use of the shallow subsurface as well as the extent of potential system interaction still remain unknown. © 2014, National Ground Water Association.
Methane clathrate stability zone variations and gas transport in the Martian subsurface
NASA Astrophysics Data System (ADS)
Karatekin, O.; Gloesener, E.; Dehant, V. M. A.; Temel, O.
2016-12-01
During the last years, several detections of methane in the atmosphere of Mars were reported from Earth-based and Mars orbit instruments with abundances ranging to tens of parts-per-billion by volume (ppbv). Recently, the Curiosity rover detected methane with background levels of 0.7 ppbv and episodic releases of 7 ppbv. Although the methane sources are still unknown, this gas may have been stored in reservoirs of clathrate hydrate in the Martian subsurface where thermodynamics conditions are favourable to their presence. Clathrate hydrates are crystalline compounds constituted by cages formed by hydrogen-bonded water molecules inside of which guest gas molecules are trapped. In this study, methane clathrate stability in the Martian subsurface are investigated and their temporal and spatial variations are studied. Present-day maps of methane clathrate stability zone are produced by coupling the stability conditions of methane clathrate with a subsurface model using the available observations such as the the thermal inertia derived from TES MGS data. Then, a gas transport model has been used to study the methane flux at the surface due to the diffusion of different plausible methane volumes released by clathrate hydrates at variable depths under the Martian surface.
Microbial Life of North Pacific Oceanic Crust
NASA Astrophysics Data System (ADS)
Schumann, G.; Koos, R.; Manz, W.; Reitner, J.
2003-12-01
Information on the microbiology of the deep subsurface is necessary in order to understand the factors controlling the rate and extent of the microbially catalyzed reactions that influence the geophysical properties of these environments. Drilling into 45-Ma oceanic basaltic crust in a deepwater environment during ODP Leg 200 provided a promising opportunity to explore the abundance, diversity and activity of micro-organisms. The combined use of culture-independent molecular phylogenetic analyses and enrichment culture techniques is an advantageous approach in investigating subsurface microbial ecosystems. Enrichment culture methods allow the evaluation of potential activities and functions. Microbiological investigations revealed few aerobic cultivable, in part hitherto unknown, micro-organisms in deep submarine sediments and basaltic lava flows. 16S rDNA sequencing of isolates from sediment revealed the next relatives to be members of the genera Halomonas, Pseudomonas, and Lactobacillus. Within the Pseudomonadaceae the closest relative is Acinetobacter sp., which was isolated from a deep subsurface environment. The next phylogenetical relatives within the Halomonadaceae are bacteria typically isolated from Soda lakes, which are considered as model of early life conditions. Interestingly, not only sediment bacteria could be obtained in pure culture. Aerobic strains could also be successfully isolated from the massive tholeiitic basalt layer at a depth of 76.16 mbsf (46 m below the sediment/basement contact). These particular isolates are gram-positive with low G+C content of DNA, phylogenetically affiliated to the phylum Firmicutes. The closest neighbors are e.g. a marine Bacillus isolated from the Gulf of Mexico and a low G+C gram-positive bacterium, which belongs to the microbial flora in the deepest sea mud of the Mariana Trench, isolated from a depth of 10,897 m. Based on the similarity values, the isolates represent hitherto undescribed species of the deep biosphere. Molecular microbial diversity is currently determined by cloning und comparative 16S rRNA gene analyses. The first results will also be presented. In summary, the low number of isolates, cultivated under aerobic conditions, is in good agreement with the common opinion that most of the bacteria within the deep biosphere are anaerobic. Thus, studies of microbial community structure in solid geological materials are feasible and constitute further evidence that continuing microbiological activity in the challenging exploration of the deep sub-seafloor biosphere environment is absolutely promising.
NASA Astrophysics Data System (ADS)
Xie, Jiayu; Wang, Gongwen; Sha, Yazhou; Liu, Jiajun; Wen, Botao; Nie, Ming; Zhang, Shuai
2017-04-01
Integrating multi-source geoscience information (such as geology, geophysics, geochemistry, and remote sensing) using GIS mapping is one of the key topics and frontiers in quantitative geosciences for mineral exploration. GIS prospective mapping and three-dimensional (3D) modeling can be used not only to extract exploration criteria and delineate metallogenetic targets but also to provide important information for the quantitative assessment of mineral resources. This paper uses the Shangnan district of Shaanxi province (China) as a case study area. GIS mapping and potential granite-hydrothermal uranium targeting were conducted in the study area combining weights of evidence (WofE) and concentration-area (C-A) fractal methods with multi-source geoscience information. 3D deposit-scale modeling using GOCAD software was performed to validate the shapes and features of the potential targets at the subsurface. The research results show that: (1) the known deposits have potential zones at depth, and the 3D geological models can delineate surface or subsurface ore-forming features, which can be used to analyze the uncertainty of the shape and feature of prospectivity mapping at the subsurface; (2) single geochemistry anomalies or remote sensing anomalies at the surface require combining the depth exploration criteria of geophysics to identify potential targets; and (3) the single or sparse exploration criteria zone with few mineralization spots at the surface has high uncertainty in terms of the exploration target.
Wall, Marlene; Schmidt, Gertraud Maria; Janjang, Pornpan; Khokiattiwong, Somkiat; Richter, Claudio
2012-01-01
The Andaman Sea and other macrotidal semi-enclosed tropical seas feature large amplitude internal waves (LAIW). Although LAIW induce strong fluctuations i.e. of temperature, pH, and nutrients, their influence on reef development is so far unknown. A better-known source of disturbance is the monsoon affecting corals due to turbulent mixing and sedimentation. Because in the Andaman Sea both, LAIW and monsoon, act from the same westerly direction their relative contribution to reef development is difficult to discern. Here, we explore the framework development in a number of offshore island locations subjected to differential LAIW- and SW-monsoon impact to address this open question. Cumulative negative temperature anomalies - a proxy for LAIW impact - explained a higher percentage of the variability in coral reef framework height, than sedimentation rates which resulted mainly from the monsoon. Temperature anomalies and sediment grain size provided the best correlation with framework height suggesting that so far neglected subsurface processes (LAIW) play a significant role in shaping coral reefs.
NASA Astrophysics Data System (ADS)
Stillman, D. E.; Grimm, R. E.
2013-12-01
Water ice is ubiquitous in our Solar System and is a probable target for planetary exploration. Mapping the lateral and vertical concentration of subsurface ice from or near the surface could determine the origin of lunar and martian ice and quantify a much-needed resource for human exploration. Determining subsurface ice concentration on Earth is not trivial and has been attempted previously with electrical resistivity tomography (ERT), ground penetrating radar (GPR), airborne EM (AEM), and nuclear magnetic resonance (NMR). These EM geophysical techniques do not actually detect ice, but rather the absence of unfrozen water. This causes a non-unique interpretation of frozen and dry subsurface sediments. This works well in the arctic because most locations are not dry. However, for planetary exploration, liquid water is exceedingly rare and subsurface mapping must discriminate between an ice-rich and a dry subsurface. Luckily, nature has provided a unique electrical signature of ice: its dielectric relaxation. The dielectric relaxation of ice creates a temperature and frequency dependence of the electrical properties and varies the relative dielectric permittivity from ~3.1 at radar frequencies to >100 at low frequencies. On Mars, sediments smaller than silt size can hold enough adsorbed unfrozen water to complicate the measurement. This is because the presence of absorbed water also creates frequency-dependent electrical properties. The dielectric relaxation of adsorbed water and ice can be separated as they have different shapes and frequency ranges as long as a spectrum spanning the two relaxations is measured. The volume concentration of ice and adsorbed water is a function of the strength of their relaxations. Therefore, we suggest that capacitively-coupled dielectric spectroscopy (a.k.a. spectral induced polarization or complex resistivity) can detect the concentration of both ice and adsorbed water in the subsurface. To prove this concept we have collected dielectric spectroscopy at the Cold Regions Research and Engineering Laboratory (CRREL) permafrost tunnel in Fox, AK. We were able to detect the ice relaxation in the subsurface despite the considerable amount of subsurface unfrozen water due to the presence of montmorillonite clay and much warmer temperatures than Mars or permanently shadowed regions of the Moon. While dielectric spectroscopy can be used to determine ice and adsorbed water content it does not possess the high resolution mapping capability of a GPR. Moreover, GPR cannot detect subsurface ice content in ice-sediment mixtures as evidenced in the interpretation of the Medusae Fossae Formation. Orbital radar surveys show this unit has a low attenuation and a dielectric permittivity near 4. This allows the formation to be interpreted as ice-rich or a dry high-porosity volcanic tuff unit. Therefore, combining GPR and dielectric spectroscopy will enable high-resolution structural and volatile mapping of the subsurface. Furthermore, the addition of neutron spectroscopy would add total hydrogen abundance in the top meter. This could lead to the determination of how much hydrogen resides in ice, adsorbed water, and minerals.
NASA Astrophysics Data System (ADS)
Sun, J.; Li, Y.
2017-12-01
Magnetic data contain important information about the subsurface rocks that were magnetized in the geological history, which provides an important avenue to the study of the crustal heterogeneities associated with magmatic and hydrothermal activities. Interpretation of magnetic data has been widely used in mineral exploration, basement characterization and large scale crustal studies for several decades. However, interpreting magnetic data has been often complicated by the presence of remanent magnetizations with unknown magnetization directions. Researchers have developed different methods to deal with the challenges posed by remanence. We have developed a new and effective approach to inverting magnetic data for magnetization vector distributions characterized by region-wise consistency in the magnetization directions. This approach combines the classical Tikhonov inversion scheme with fuzzy C-means clustering algorithm, and constrains the estimated magnetization vectors to a specified small number of possible directions while fitting the observed magnetic data to within noise level. Our magnetization vector inversion recovers both the magnitudes and the directions of the magnetizations in the subsurface. Magnetization directions reflect the unique geological or hydrothermal processes applied to each geological unit, and therefore, can potentially be used for the purpose of differentiating various geological units. We have developed a practically convenient and effective way of assessing the uncertainty associated with the inverted magnetization directions (Figure 1), and investigated how geological differentiation results might be affected (Figure 2). The algorithm and procedures we have developed for magnetization vector inversion and uncertainty analysis open up new possibilities of extracting useful information from magnetic data affected by remanence. We will use a field data example from exploration of an iron-oxide-copper-gold (IOCG) deposit in Brazil to illustrate how to solve the inverse problem, assess uncertainty, and perform geology differentiation in practice. We will also discuss the potential applications of this new method to large scale crustal studies.
Geomicrobiology and Metagenomics of Terrestrial Deep Subsurface Microbiomes.
Itävaara, M; Salavirta, H; Marjamaa, K; Ruskeeniemi, T
2016-01-01
Fractures in the deep subsurface of Earth's crust are inhabited by diverse microbial communities that participate in biogeochemical cycles of the Earth. Life on Earth, which arose c. 3.5-4.0 billion years ago, reaches down at least 5 km in the crust. Deep mines, caves, and boreholes have provided scientists with opportunities to sample deep subsurface microbiomes and to obtain information on the species diversity and functions. A wide variety of bacteria, archaea, eukaryotes, and viruses are now known to reside in the crust, but their functions are still largely unknown. The crust at different depths has varying geological composition and hosts endemic microbiomes accordingly. The diversity is driven by geological formations and gases evolving from deeper depths. Cooperation among different species is still mostly unexplored, but viruses are known to restrict density of bacterial and archaeal populations. Due to the complex growth requirements of the deep subsurface microbiomes, the new knowledge about their diversity and functions is mostly obtained by molecular methods, eg, meta'omics'. Geomicrobiology is a multidisciplinary research area combining disciplines from geology, mineralogy, geochemistry, and microbiology. Geomicrobiology is concerned with the interaction of microorganisms and geological processes. At the surface of mineralogical or rock surfaces, geomicrobial processes occur mainly under aerobic conditions. In the deep subsurface, however, the environmental conditions are reducing and anaerobic. The present chapter describes the world of microbiomes in deep terrestrial geological environments as well as metagenomic and metatranscriptomic methods suitable for studies of these enigmatic communities. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Yeohoon; Du, Yingge; Garcia, Juan C.
2015-02-02
Using combination of STM, DFT and SIMS, we explored the interplay and relative impact of surface vs. subsurface defects on the surface chemistry of rutile TiO2. STM results show that surface O vacancies (VO’s) are virtually absent in the vicinity of positively-charged subsurface point-defects. This observation is consistent with DFT calculations of impact of subsurface defect proximity on VO formation energy. To monitor the influence of such lateral anticorrelation on surface redox chemistry, a test reaction of the dissociative adsorption of O2 is employed, which is observed to be suppressed around them. DFT results attribute this to a perceived absencemore » of the intrinsic (Ti) (and likely extrinsic) interstitials in the nearest subsurface layer beneath “inhibited” areas. We also postulate that the entire nearest subsurface region could be voided of any charged point-defects, whereas prevalent VO’s are largely responsible for mediation of the redox chemistry at reduced TiO2(110) surface.« less
Peeking Beneath the Caldera: Communicating Subsurface Knowledge of Newberry Volcano
NASA Astrophysics Data System (ADS)
Mark-Moser, M.; Rose, K.; Schultz, J.; Cameron, E.
2016-12-01
"Imaging the Subsurface: Enhanced Geothermal Systems and Exploring Beneath Newberry Volcano" is an interactive website that presents a three-dimensional subsurface model of Newberry Volcano developed at National Energy Technology Laboratory (NETL). Created using the Story Maps application by ArcGIS Online, this format's dynamic capabilities provide the user the opportunity for multimedia engagement with the datasets and information used to build the subsurface model. This website allows for an interactive experience that the user dictates, including interactive maps, instructive videos and video capture of the subsurface model, and linked information throughout the text. This Story Map offers a general background on the technology of enhanced geothermal systems and the geologic and development history of Newberry Volcano before presenting NETL's modeling efforts that support the installation of enhanced geothermal systems. The model is driven by multiple geologic and geophysical datasets to compare and contrast results which allow for the targeting of potential EGS sites and the reduction of subsurface uncertainty. This Story Map aims to communicate to a broad audience, and provides a platform to effectively introduce the model to researchers and stakeholders.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Probst, Alexander J.; Ladd, Bethany; Jarett, Jessica K.
An enormous diversity of previously unknown bacteria and archaea has been discovered recently, yet their functional capacities and distributions in the terrestrial subsurface remain uncertain. Here, we continually sampled a CO 2-driven geyser (Colorado Plateau, Utah, USA) over its 5-day eruption cycle to test the hypothesis that stratified, sandstone-hosted aquifers sampled over three phases of the eruption cycle have microbial communities that differ both in membership and function. Genome-resolved metagenomics, single-cell genomics and geochemical analyses confirmed this hypothesis and linked microorganisms to groundwater compositions from different depths. Autotrophic Candidatus “Altiarchaeum sp.” and phylogenetically deep-branching nanoarchaea dominate the deepest groundwater. Amore » nanoarchaeon with limited metabolic capacity is inferred to be a potential symbiont of the Ca. “Altiarchaeum”. Candidate Phyla Radiation bacteria are also present in the deepest groundwater and they are relatively abundant in water from intermediate depths. During the recovery phase of the geyser, microaerophilic Fe- and S-oxidizers have high in situ genome replication rates. Autotrophic Sulfurimonas sustained by aerobic sulfide oxidation and with the capacity for N 2 fixation dominate the shallow aquifer. Overall, 104 different phylum-level lineages are present in water from these subsurface environments, with uncultivated archaea and bacteria partitioned to the deeper subsurface.« less
Probst, Alexander J.; Ladd, Bethany; Jarett, Jessica K.; ...
2018-01-29
An enormous diversity of previously unknown bacteria and archaea has been discovered recently, yet their functional capacities and distributions in the terrestrial subsurface remain uncertain. Here, we continually sampled a CO 2-driven geyser (Colorado Plateau, Utah, USA) over its 5-day eruption cycle to test the hypothesis that stratified, sandstone-hosted aquifers sampled over three phases of the eruption cycle have microbial communities that differ both in membership and function. Genome-resolved metagenomics, single-cell genomics and geochemical analyses confirmed this hypothesis and linked microorganisms to groundwater compositions from different depths. Autotrophic Candidatus “Altiarchaeum sp.” and phylogenetically deep-branching nanoarchaea dominate the deepest groundwater. Amore » nanoarchaeon with limited metabolic capacity is inferred to be a potential symbiont of the Ca. “Altiarchaeum”. Candidate Phyla Radiation bacteria are also present in the deepest groundwater and they are relatively abundant in water from intermediate depths. During the recovery phase of the geyser, microaerophilic Fe- and S-oxidizers have high in situ genome replication rates. Autotrophic Sulfurimonas sustained by aerobic sulfide oxidation and with the capacity for N 2 fixation dominate the shallow aquifer. Overall, 104 different phylum-level lineages are present in water from these subsurface environments, with uncultivated archaea and bacteria partitioned to the deeper subsurface.« less
Efficacy of different whitening modalities on bovine enamel and dentin.
Wiegand, Annette; Vollmer, Doreen; Foitzik, Magdalena; Attin, Rengin; Attin, Thomas
2005-06-01
Previous studies have shown that bleaching treatment may be efficient in both enamel and dentin, but it is still unknown how much the subsurface dentin contributes to the color change of teeth. This in vitro study evaluated the whitening effect of different external bleaching agents on enamel-dentin slabs and subsurface dentin. Ninety bovine teeth were distributed among six groups (A, Opalescence 10%; B, Opalescence PF 15%; C, Opalescence Quick; D, Opalescence Extra Boost; E, Rapid White; F, Whitestrips). Two enamel-dentin specimens were prepared from the labial surface of each teeth. In one of the specimens enamel was removed, resulting in a dentin (CD) disc of 1 mm high. The labial and the pulpal sides of the second specimen were ground until the remaining enamel and dentin layers of the enamel-dentin sample (ED) were 1 mm each. Whitening treatment of the ED specimens was performed according to manufacturers' instructions. Pre- and posttreatment Lab values of ED samples were analyzed using CIE-Lab. Baseline Lab values of dentin were analyzed by evaluation of the CD specimen. Finally, enamel of the ED specimens was removed and color change of the exposed dentin (D) was recorded. For all treatment agents significant color changes (DeltaE) were observed for enamel-dentin samples and subsurface dentin specimens compared to controls. In groups A-D DeltaE was significantly higher in dentin than enamel-dentin. Furthermore, L and b values of bleached enamel-dentin and subsurface dentin samples differed significantly from baseline. Treatment with the tested external whitening bleaching agents resulted in color change of both enamel-dentin and subsurface dentin samples. The results indicate that color change of treated teeth might be highly influenced by color change of the subsurface dentin.
A Study for Anisotropic Wavefield Analysis with Elastic Layered Models
NASA Astrophysics Data System (ADS)
Yoneki, R.; Mikada, H.; Takekawa, J.
2015-12-01
Subsurface materials are generally anisotropic due to complicated geological conditions, for example, sedimentary materials, fractures reflecting various stress conditions in the past and present in the subsurface. There are many studies on seismic wave propagation in TI (transversely isotropic) and orthorhombic media (e.g., Thomsen, 1986; Alkhalifah, 2000; Bansal and Sen, 2008). In most of those studies, the magnitude of anisotropy is assumed to be weak. Therefore, it may be not appropriate to apply their theories directly to strongly anisotropic subsurface media in seismic exploration. It is necessary to understand the effects of the anisotropy on the behavior of seismic wave propagation in strongly anisotropic media in the seismic exploration. In this study, we investigate the influence of strong anisotropy on received seismic waveforms using three-dimensional numerical models, and verified capability of detecting subsurface anisotropy. Our numerical models contain an isotropic and an anisotropic (VTI, transversely isotropic media with vertical symmetry axis) layer, respectively, in the isotropic background subsurface. Since the difference between the two models is only the anisotropy in the vertical propagation velocity, we could look at the influence of anisotropy in the residual wavefield that is the difference in the observed wavefields of two models. We analyzed the orbital motions of the residual wavefield to see what kind of wave motions the waveforms show. We found that the residual waveforms generated by the anisotropic layer include the orbital motions of shear waves right after the first arrival, i.e., mode conversion from the compressional waves due to the anisotropy. The residual waveforms could be exploited to estimate both the order of anisotropy and the thickness of anisotropic layer in subsurface.
Resource Exploration Approaches on Mars Using Multidisciplinary Earth-based Techniques
NASA Astrophysics Data System (ADS)
Wyrick, D. Y.; Ferrill, D. A.; Morris, A. P.; Smart, K. J.
2005-12-01
Water is the most important Martian exploration target - key to finding evidence of past life and providing a crucial resource for future exploration. Water is thought to be present in vapor, liquid, and ice phases on Mars. Except for ice in polar regions, little direct evidence of current surface accumulation of water has been found. Existing research has addressed potential source areas, including meteoric water, glacial ice, and volcanic centers and areas of discharge such as large paleo-outflow channels. Missing from these analyses is characterization of migration pathways of water in the subsurface from sources to discharge areas, and the present distribution of water. It has been estimated that ~90% of the global inventory of water on Mars resides in the subsurface. Targeting potential subsurface accumulations has relied primarily on theoretical modeling and geomorphic analysis. While global scale thermal modeling and analysis of the stability of ground ice provide important constraints on potential locations of large deposits of ice or liquid water, these studies have not accounted for variations in stratigraphy and structure that may strongly influence local distribution. Depth to water or ice on Mars is thought to be controlled primarily by latitude and elevation. However, the distribution of outflow channels clearly indicates that structural, stratigraphic, and geomorphic features all play important roles in determining past and present distribution of water and ice on Mars as they do on Earth. Resource exploration and extraction is a multi-billion dollar industry on Earth that has developed into a highly sophisticated enterprise with constantly improving exploration technologies. Common to all successful exploration programs, whether for hydrocarbons or water, is detailed analysis and integration of all available geologic, geophysical and remotely sensed data. The primary issues for identification and characterization of water or hydrocarbon resource accumulations can be summarized by three factors: trap, reservoir and charge. This presentation focuses on a detailed characterization of the fundamental elements believed to control trap, reservoir, and charge with respect to the identification of locations for extractable resources on Mars, primarily water and ice, but also gas hydrates. This new approach to resource exploration will also provide guidance for future research and exploration activities, including movement of methane from the subsurface to the surface and potential habitat sites for past or current life on Mars.
NASA Astrophysics Data System (ADS)
Yustin Kamah, Muhammad; Armando, Adilla; Larasati Rahmani, Dinda; Paramitha, Shabrina
2017-12-01
Geophysical methods such as gravity and magnetotelluric methods commonly used in conventional and unconventional energy exploration, notably for exploring geothermal prospect. They used to identify the subsurface geology structures which is estimated as a path of fluid flow. This study was conducted in Kamojang Geothermal Field with the aim of highlighting the volcanic lineament in West Java, precisely in Guntur-Papandayan chain where there are three geothermal systems. Kendang Fault has predominant direction NE-SW, identified by magnetotelluric techniques and gravity data processing techniques. Gravity techniques such as spectral analysis, derivative solutions, and Euler deconvolution indicate the type and geometry of anomaly. Magnetotelluric techniques such as inverse modeling and polar diagram are required to know subsurface resistivity charactersitics and major orientation. Furthermore, the result from those methods will be compared to geology information and some section of well data, which is sufficiently suitable. This research is very useful to trace out another potential development area.
Quantitative subsurface analysis using frequency modulated thermal wave imaging
NASA Astrophysics Data System (ADS)
Subhani, S. K.; Suresh, B.; Ghali, V. S.
2018-01-01
Quantitative depth analysis of the anomaly with an enhanced depth resolution is a challenging task towards the estimation of depth of the subsurface anomaly using thermography. Frequency modulated thermal wave imaging introduced earlier provides a complete depth scanning of the object by stimulating it with a suitable band of frequencies and further analyzing the subsequent thermal response using a suitable post processing approach to resolve subsurface details. But conventional Fourier transform based methods used for post processing unscramble the frequencies with a limited frequency resolution and contribute for a finite depth resolution. Spectral zooming provided by chirp z transform facilitates enhanced frequency resolution which can further improves the depth resolution to axially explore finest subsurface features. Quantitative depth analysis with this augmented depth resolution is proposed to provide a closest estimate to the actual depth of subsurface anomaly. This manuscript experimentally validates this enhanced depth resolution using non stationary thermal wave imaging and offers an ever first and unique solution for quantitative depth estimation in frequency modulated thermal wave imaging.
NASA Astrophysics Data System (ADS)
Auken, E.; Tulaczyk, S. M.; Foley, N.; Dugan, H.; Schamper, C.; Peter, D.; Virginia, R. A.; Sørensen, K.
2015-12-01
Here, we demonstrate how high powered airborne electromagnetic resistivity is efficiently used to map 3D domains of unfrozen water below glaciers and permafrost in the cold regions of the Earth. Exploration in these parts of the world has typically been conducted using radar methods, either ground-based or from an airborne platform. Radar is an excellent method if the penetrated material has a low electrical conductivity, but in materials with higher conductivity, such as sediments with liquid water, the energy is attenuated . Such cases are efficiently explored with electromagnetic methods, which attenuate less quickly in conductive media and can therefore 'see through' conductors and return valuable information about their electrical properties. In 2011, we used a helicopter-borne, time-domain electromagnetic sensor to map resistivity in the subsurface across the McMurdo Dry Valleys (MDV). The MDV are a polar desert in coastal Antarctica where glaciers, permafrost, ice-covered lakes, and ephemeral summer streams coexist. In polar environments, this airborne electromagnetic system excels at finding subsurface liquid water, as water which remains liquid under cold conditions must be sufficiently saline, and therefore electrically conductive. In Taylor Valley, in the MDV, our data show extensive subsurface low resistivity layers beneath higher resistivity layers, which we interpret as cryoconcentrated hypersaline brines lying beneath glaciers and frozen permafrost. These brines appear to be contiguous with surface lakes, subglacial regions, and the Ross Sea, which could indicate a regional hydrogeologic system wherein solutes may be transported between surface reservoirs by ionic diffusion and subsurface flow. The system as of 2011 had a maximum exploration depth of about 300 m. However, newer and more powerful airborne systems can explore to a depth of 500 - 600 m and new ground based instruments will get to 1000 m. This is sufficient to penetrate to the base of almost all coastal Antarctic glaciers. The MDV, where conductive brines exist beneath resistive glacial ice and frozen permafrost, are especially well suited to exploration by airborne electromagnetic, but similarly suitable systems are likely to exist elsewhere in the cryosphere.
Episodic subsurface injections in the oligotrophic North Pacific observed from BioArgo
NASA Astrophysics Data System (ADS)
Wilson, C.
2016-12-01
Summer blooms of chlorophyll often develop in the oligotrophic North Pacific Ocean in the region between Hawaii and 30°N. Episodic injections of subsurface nutrients have been hypothesized to fuel these blooms, but the exact mechanism is unknown. Here we examine oxygen data from 13 BioArgo floats deployed near Hawaii between September 2002 to April 2016 to look for evidence of subsurface mixing that could be driving the development of the surface chlorophyll features. Twelve injection events (defined as oxygen values < 2 standard deviations below the mean at 100 m depth) were observed. Nine (75%) of the events happened in winter (Dec-Mar), when surface chl blooms do not generally develop. While most of the events were short-lived (< 5 days), several events lasted a month or two. An event that began in August 2014, and lasted almost 2 months, is examined in detail. The start of the event preceded by a few days the development of a surface increase in chlorophyll in the surrounding area evident from satellite data.
Strategic Planning for Exploration of the Martian Subsurface
NASA Technical Reports Server (NTRS)
Beaty, D. W.; Briggs, G.; Clifford, S. M.
2000-01-01
Exploration of the upper 2-5 km of the martian crust (i.e. the portion that we can realistically envision physically accessing) is a tantalizing prospect. This may provide our best opportunity to advance the three current objectives of the Mars exploration program: Life, Climate, and Resources, with a common theme of water.
Implementing Monitored Natural Attenuation and Expediting Closure at Fuel-Release Sites
2004-08-01
Center for Environmental Excellence AFCEE/ERS Air Force Center for Environmental Excellence/Science and Engineering Division AFRPA Air Force Real...auger, air - or mud- rotary , cable-tool) was and is dependent on the target drilling depths and the types of subsurface materials expected to be...95(2000) ASTM. 1995c. Guide for the use of direct air - rotary drilling for geoenvironmental exploration and installation of subsurface water quality
Sensitivity of transpiration to subsurface properties: Exploration with a 1-D model
NASA Astrophysics Data System (ADS)
Vrettas, Michail D.; Fung, Inez Y.
2017-06-01
The amount of moisture transpired by vegetation is critically tied to the moisture supply accessible to the root zone. In a Mediterranean climate, integrated evapotranspiration (ET) is typically greater in the dry summer when there is an uninterrupted period of high insolation. We present a 1-D model to explore the subsurface factors that may sustain ET through the dry season. The model includes a stochastic parameterization of hydraulic conductivity, root water uptake efficiency, and hydraulic redistribution by plant roots. Model experiments vary the precipitation, the magnitude and seasonality of ET demand, as well as rooting profiles and rooting depths of the vegetation. The results show that the amount of subsurface moisture remaining at the end of the wet winter is determined by the competition among abundant precipitation input, fast infiltration, and winter ET demand. The weathered bedrock retains ˜30% of the winter rain and provides a substantial moisture reservoir that may sustain ET of deep-rooted (>8 m) trees through the dry season. A small negative feedback exists in the root zone, where the depletion of moisture by ET decreases hydraulic conductivity and enhances the retention of moisture. Hence, hydraulic redistribution by plant roots is impactful in a dry season, or with a less conductive subsurface. Suggestions for implementing the model in the CESM are discussed.
Seismic reflection study of the East Potrillo Fault, southwestern Dona Ana County, New Mexico
NASA Astrophysics Data System (ADS)
Carley, Shane Alan
The East Potrillo Mountains are located just north of the U.S.-Mexico border in southwestern Dona Ana County, New Mexico. Laramide and Rio Grande rift deformation has formed low-angle and high-angle Tertiary normal faults that are exposed in the area. Along the east flank of the range is the East Potrillo Fault identified on the surface as a north-striking scarp. Fault scarps associated with the East Potrillo Fault have been dated using slope degradation models and they range between 56 ka and 377 ka in age. Offset of geomorphic surfaces interpreted to be tectonic terraces records at least four earthquakes over that period of time, leading to an estimated recurrence interval of 33.5 kyr. Because of this paleoseismic history, the East Potrillo Fault potentially poses a significant seismic hazard to the over 2 million residents living in the border region. Our study presents two 2D seismic reflection profiles to give the first subsurface image of the East Potrillo Fault and potentially other subsidiary faults that have not broken the surface. Three faults are identified in the subsurface, two of which were previously unknown. The range bounding fault is identified 300 m west of observed fault scarps. The fault scarp is found to be formed from one of two secondary faults. It dips 75°s east and has a fault offset of 150 m. The other secondary fault is an antithetic fault dipping 75°s west and forms a graben within the EPF system. The vibroseis source data acquisition is found to be beneficial for characterizing unknown subsurface features.
Mapping planetary caves with an autonomous, heterogeneous robot team
NASA Astrophysics Data System (ADS)
Husain, Ammar; Jones, Heather; Kannan, Balajee; Wong, Uland; Pimentel, Tiago; Tang, Sarah; Daftry, Shreyansh; Huber, Steven; Whittaker, William L.
Caves on other planetary bodies offer sheltered habitat for future human explorers and numerous clues to a planet's past for scientists. While recent orbital imagery provides exciting new details about cave entrances on the Moon and Mars, the interiors of these caves are still unknown and not observable from orbit. Multi-robot teams offer unique solutions for exploration and modeling subsurface voids during precursor missions. Robot teams that are diverse in terms of size, mobility, sensing, and capability can provide great advantages, but this diversity, coupled with inherently distinct low-level behavior architectures, makes coordination a challenge. This paper presents a framework that consists of an autonomous frontier and capability-based task generator, a distributed market-based strategy for coordinating and allocating tasks to the different team members, and a communication paradigm for seamless interaction between the different robots in the system. Robots have different sensors, (in the representative robot team used for testing: 2D mapping sensors, 3D modeling sensors, or no exteroceptive sensors), and varying levels of mobility. Tasks are generated to explore, model, and take science samples. Based on an individual robot's capability and associated cost for executing a generated task, a robot is autonomously selected for task execution. The robots create coarse online maps and store collected data for high resolution offline modeling. The coordination approach has been field tested at a mock cave site with highly-unstructured natural terrain, as well as an outdoor patio area. Initial results are promising for applicability of the proposed multi-robot framework to exploration and modeling of planetary caves.
Vroblesky, Don A.
2008-01-01
Analysis of the volatile organic compound content of tree cores is an inexpensive, rapid, simple approach to examining the distribution of subsurface volatile organic compound contaminants. The method has been shown to detect several volatile petroleum hydrocarbons and chlorinated aliphatic compounds associated with vapor intrusion and ground-water contamination. Tree cores, which are approximately 3 inches long, are obtained by using an increment borer. The cores are placed in vials and sealed. After a period of equilibration, the cores can be analyzed by headspace analysis gas chromatography. Because the roots are exposed to volatile organic compound contamination in the unsaturated zone or shallow ground water, the volatile organic compound concentrations in the tree cores are an indication of the presence of subsurface volatile organic compound contamination. Thus, tree coring can be used to detect and map subsurface volatile organic compound contamination. For comparison of tree-core data at a particular site, it is important to maintain consistent methods for all aspects of tree-core collection, handling, and analysis. Factors affecting the volatile organic compound concentrations in tree cores include the type of volatile organic compound, the tree species, the rooting depth, ground-water chemistry, the depth to the contaminated horizon, concentration differences around the trunk related to variations in the distribution of subsurface volatile organic compounds, concentration differences with depth of coring related to volatilization loss through the bark and possibly other unknown factors, dilution by rain, seasonal influences, sorption, vapor-exchange rates, and within-tree volatile organic compound degradation.
Interpretation of Data from Uphole Refraction Surveys
1980-06-01
Seismic refraction Seismic refraction method Seismic surveys Subsurface exploration ""-. 20, AI0SrRACT -(CmtuamU 00MvaO eL If naaaaamr and Identlfyby...by the presence of subsurface cavities and large cavities are identifiable, the sensitivity of the method is marginal for practical use in cavity...detection. Some cavities large enough to be of engineering signifi- cance (e.g., a tunnel of h-m diameter) may be practically undetectable by this method
Evidence of Geobacter-associated phage in a uranium-contaminated aquifer
Holmes, Dawn E; Giloteaux, Ludovic; Chaurasia, Akhilesh K; Williams, Kenneth H; Luef, Birgit; Wilkins, Michael J; Wrighton, Kelly C; Thompson, Courtney A; Comolli, Luis R; Lovley, Derek R
2015-01-01
Geobacter species may be important agents in the bioremediation of organic and metal contaminants in the subsurface, but as yet unknown factors limit the in situ growth of subsurface Geobacter well below rates predicted by analysis of gene expression or in silico metabolic modeling. Analysis of the genomes of five different Geobacter species recovered from contaminated subsurface sites indicated that each of the isolates had been infected with phage. Geobacter-associated phage sequences were also detected by metagenomic and proteomic analysis of samples from a uranium-contaminated aquifer undergoing in situ bioremediation, and phage particles were detected by microscopic analysis in groundwater collected from sediment enrichment cultures. Transcript abundance for genes from the Geobacter-associated phage structural proteins, tail tube Gp19 and baseplate J, increased in the groundwater in response to the growth of Geobacter species when acetate was added, and then declined as the number of Geobacter decreased. Western blot analysis of a Geobacter-associated tail tube protein Gp19 in the groundwater demonstrated that its abundance tracked with the abundance of Geobacter species. These results suggest that the enhanced growth of Geobacter species in the subsurface associated with in situ uranium bioremediation increased the abundance and activity of Geobacter-associated phage and show that future studies should focus on how these phages might be influencing the ecology of this site. PMID:25083935
Role of Subsurface Physics in the Assimilation of Surface Soil Moisture Observations
NASA Technical Reports Server (NTRS)
Reichle, R. H.
2010-01-01
Root zone soil moisture controls the land-atmosphere exchange of water and energy and exhibits memory that may be useful for climate prediction at monthly scales. Assimilation of satellite-based surface soil moisture observations into a land surface model is an effective way to estimate large-scale root zone soil moisture. The propagation of surface information into deeper soil layers depends on the model-specific representation of subsurface physics that is used in the assimilation system. In a suite of experiments we assimilate synthetic surface soil moisture observations into four different models (Catchment, Mosaic, Noah and CLM) using the Ensemble Kalman Filter. We demonstrate that identical twin experiments significantly overestimate the information that can be obtained from the assimilation of surface soil moisture observations. The second key result indicates that the potential of surface soil moisture assimilation to improve root zone information is higher when the surface to root zone coupling is stronger. Our experiments also suggest that (faced with unknown true subsurface physics) overestimating surface to root zone coupling in the assimilation system provides more robust skill improvements in the root zone compared with underestimating the coupling. When CLM is excluded from the analysis, the skill improvements from using models with different vertical coupling strengths are comparable for different subsurface truths. Finally, the skill improvements through assimilation were found to be sensitive to the regional climate and soil types.
Human utilization of subsurface extraterrestrial environments.
Boston, P J; Frederick, R D; Welch, S M; Werker, J; Meyer, T R; Sprungman, B; Hildreth-Werker, V; Thompson, S L; Murphy, D L
2003-06-01
Caves have been used in the ancient past as shelter or habitat by many organisms (including humans). Since antiquity, humans have explored caves for the minerals they contain and sometimes for ceremonial purposes. Over the past century, caves have become the target of increasing exploration, scientific research, and recreation. The use of caves on extraterrestrial bodies for human habitation has been suggested by several investigators. Lunar lava tube bases received early attention because lava tubes were clearly visible in lunar images from the Apollo Era. More recently, Mars Observer Camera data has shown us clear evidence of large tubes visible in a number of volcanic regions on Mars. The budding field of cave geomicrobiology has direct application to questions about subsurface life on other planets. Caves contain many unusual organisms making their living from unlikely materials like manganese, iron, and sulfur. This makes caves and other subsurface habitats prime targets for astrobiological missions to Mars and possibly other bodies. We present the results of a completed Phase I and on-going Phase II NASA Institute for Advanced Concepts (NIAC) study that intensively examines the possibilities of using extraterrestrial caves as both a resource for human explorers and as a highly promising scientific target for both robotic and future human missions to Mars and beyond.
Turning Noise into Signal: Utilizing Impressed Pipeline Currents for EM Exploration
NASA Astrophysics Data System (ADS)
Lindau, Tobias; Becken, Michael
2017-04-01
Impressed Current Cathodic Protection (ICCP) systems are extensively used for the protection of central Europe's dense network of oil-, gas- and water pipelines against destruction by electrochemical corrosion. While ICCP systems usually provide protection by injecting a DC current into the pipeline, mandatory pipeline integrity surveys demand a periodical switching of the current. Consequently, the resulting time varying pipe currents induce secondary electric- and magnetic fields in the surrounding earth. While these fields are usually considered to be unwanted cultural noise in electromagnetic exploration, this work aims at utilizing the fields generated by the ICCP system for determining the electrical resistivity of the subsurface. The fundamental period of the switching cycles typically amounts to 15 seconds in Germany and thereby roughly corresponds to periods used in controlled source EM applications (CSEM). For detailed studies we chose an approximately 30km long pipeline segment near Herford, Germany as a test site. The segment is located close to the southern margin of the Lower Saxony Basin (LSB) and part of a larger gas pipeline composed of multiple segments. The current injected into the pipeline segment originates in a rectified 50Hz AC signal which is periodically switched on and off. In contrast to the usual dipole sources used in CSEM surveys, the current distribution along the pipeline is unknown and expected to be non-uniform due to coating defects that cause current to leak into the surrounding soil. However, an accurate current distribution is needed to model the fields generated by the pipeline source. We measured the magnetic fields at several locations above the pipeline and used Biot-Savarts-Law to estimate the currents decay function. The resulting frequency dependent current distribution shows a current decay away from the injection point as well as a frequency dependent phase shift which is increasing with distance from the injection point. Electric field data were recorded at 45 stations located in an area of about 60 square kilometers in the vicinity to the pipeline. Additionally, the injected source current was recorded directly at the injection point. Transfer functions between the local electric fields and the injected source current are estimated for frequencies ranging from 0.03Hz to 15Hz using robust time series processing techniques. The resulting transfer functions are inverted for a 3D conductivity model of the subsurface using an elaborate pipeline model. We interpret the model with regards to the local geologic setting, demonstrating the methods capabilities to image the subsurface.
NASA Technical Reports Server (NTRS)
Drake, Bret G.
2013-01-01
The first three human missions to Mars should be to three different geographic sites. Maximize mobility to extend the reach of human exploration beyond the landing site. Maximize the amount of time that the astronauts spend exploring the planet. Provide subsurface access. Return a minimum of 250 kg of samples to Earth.
Technical Challenges of Drilling on Mars
NASA Technical Reports Server (NTRS)
Briggs, Geoffrey; Gross, Anthony; Condon, Estelle (Technical Monitor)
2002-01-01
In the last year, NASA's Mars science advisory committee (MEPAG: Mars Exploration Payload Advisory Group) has formally recommended that deep drilling be undertaken as a priority investigation to meet astrobiology and geology goals. This proposed new dimension in Mars exploration has come about for several reasons. Firstly, geophysical models of the martian subsurface environment indicate that we may well find liquid water (in the form of brines) under ground-ice at depths of several kilometers near the equator. On Earth we invariably find life forms associated with any environmental niche that supports liquid water. New data from the Mars Global Surveyor have shown that the most recent volcanism on Mars is very young so we cannot rule out contemporary volcanism -- in which case subsurface temperatures consistent with having water in its liquid phase may be found at relatively shallow depths. Secondly, in recent decades we have learned to our surprise that the Earth's subsurface (microbial) biosphere extends to depths of many kilometers and this discovery provides the basis for planning to explore the martian subsurface in search of ancient or even extant microbial life forms. We know (from Viking measurements) that all the biogenic elements (C, H, O, N, P, S) are available on Mars. What we therefore hope to learn is whether or not the evolution of life is inevitable given the necessary ingredients and, by implication, whether the Universe may be teeming with life. The feasibility of drilling deep into the surface of Mars has been the subject of increasing attention within NASA (and more recently among some of its international partners) for several years and this led to a broad-based feasibility study carried out by the Los Alamos National Laboratory and, subsequently, to the development of several hardware prototypes. This paper is intended to provide a general survey of that activity.
Ground-penetrating radar: use and misuse
NASA Astrophysics Data System (ADS)
Olhoeft, Gary R.
1999-10-01
Ground penetrating radar (GPR) has been used to explore the subsurface of the earth since 1929. Over the past 70 years, it has been widely used, misused and abused. Use includes agriculture, archaeology, environmental and geotechnical site characterization, minerals, groundwater and permafrost exploration, tunnel, utility, and unexploded ordnance location, dam inspection, and much more. Misuse includes mistaking above ground reflections for subsurface events or mapping things from off to the side as if they were directly below, synthetic aperture processing of dispersive data, minimum phase deconvolution, locating objects smaller than resolution limits of the wavelength in the ground, ignoring Fresnel zone limitations in mapping subsurface structure, processing radar data through seismic software packages without allowing for the differences, mapping the bottom of metal pipes from the top, claiming to see through thousands of feet of sediments, and more. GPR is also being abused as the regulatory environment changes and the radiofrequency spectrum is becoming more crowded by cellular phones, pagers, garage door openers, wireless computer networks, and the like. It is often thought to be a source of interference (though it never is) and it is increasingly interfered with by other radiofrequency transmitters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoak, T.E.; Klawitter, A.L.
Fractured production trends in Piceance Basin Cretaceous-age Mesaverde Group gas reservoirs are controlled by subsurface structures. Because many of the subsurface structures are controlled by basement fault trends, a new interpretation of basement structure was performed using an integrated interpretation of Landsat Thematic Mapper (TM), side-looking airborne radar (SLAR), high altitude, false color aerial photography, gas and water production data, high-resolution aeromagnetic data, subsurface geologic information, and surficial fracture maps. This new interpretation demonstrates the importance of basement structures on the nucleation and development of overlying structures and associated natural fractures in the hydrocarbon-bearing section. Grand Valley, Parachute, Rulison, Plateau,more » Shire Gulch, White River Dome, Divide Creek and Wolf Creek fields all produce gas from fractured tight gas sand and coal reservoirs within the Mesaverde Group. Tectonic fracturing involving basement structures is responsible for development of permeability allowing economic production from the reservoirs. In this context, the significance of detecting natural fractures using the intergrated fracture detection technique is critical to developing tight gas resources. Integration of data from widely-available, relatively inexpensive sources such as high-resolution aeromagnetics, remote sensing imagery analysis and regional geologic syntheses provide diagnostic data sets to incorporate into an overall methodology for targeting fractured reservoirs. The ultimate application of this methodology is the development and calibration of a potent exploration tool to predict subsurface fractured reservoirs, and target areas for exploration drilling, and infill and step-out development programs.« less
Sensitivity of transpiration to subsurface properties: Exploration with a 1-D model
Vrettas, Michail D.; Fung, Inez Y.
2017-05-04
The amount of moisture transpired by vegetation is critically tied to the moisture supply accessible to the root zone. In a Mediterranean climate, integrated evapotranspiration (ET) is typically greater in the dry summer when there is an uninterrupted period of high insolation. We present a 1-D model to explore the subsurface factors that may sustain ET through the dry season. The model includes a stochastic parameterization of hydraulic conductivity, root water uptake efficiency, and hydraulic redistribution by plant roots. Model experiments vary the precipitation, the magnitude and seasonality of ET demand, as well as rooting profiles and rooting depths ofmore » the vegetation. The results show that the amount of subsurface moisture remaining at the end of the wet winter is determined by the competition among abundant precipitation input, fast infiltration, and winter ET demand. The weathered bedrock retains math formula of the winter rain and provides a substantial moisture reservoir that may sustain ET of deep-rooted (>8 m) trees through the dry season. A small negative feedback exists in the root zone, where the depletion of moisture by ET decreases hydraulic conductivity and enhances the retention of moisture. Hence, hydraulic redistribution by plant roots is impactful in a dry season, or with a less conductive subsurface. Suggestions for implementing the model in the CESM are discussed.« less
9. Photographic copy of photograph, dated June 1971 (original print ...
9. Photographic copy of photograph, dated June 1971 (original print in possession of James E. Zielinski, Earth Tech, Huntsville, AL). Photographer unknown. View of sprint missile silo liners, prior to their installation within the subsurface holes at the missile launch site (June 1971). Not the silo liner at right; atop this is the launch preparation equipment chamber (LPEC). - Stanley R. Mickelsen Safeguard Complex, Missile Launch Area, Within Exclusion Area, Nekoma, Cavalier County, ND
Meyer-Dombard, D'Arcy R; Casar, Caitlin P; Simon, Alexander G; Cardace, Dawn; Schrenk, Matthew O; Arcilla, Carlo A
2018-05-01
Terrestrial serpentinizing systems harbor microbial subsurface life. Passive or active microbially mediated iron transformations at alkaline conditions in deep biosphere serpentinizing ecosystems are understudied. We explore these processes in the Zambales (Philippines) and Coast Range (CA, USA) ophiolites, and associated surface ecosystems by probing the relevance of samples acquired at the surface to in situ, subsurface ecosystems, and the nature of microbe-mineral associations in the subsurface. In this pilot study, we use microcosm experiments and batch culturing directed at iron redox transformations to confirm thermodynamically based predictions that iron transformations may be important in subsurface serpentinizing ecosystems. Biofilms formed on rock cores from the Zambales ophiolite on surface and in-pit associations, confirming that organisms from serpentinizing systems can form biofilms in subsurface environments. Analysis by XPS and FTIR confirmed that enrichment culturing utilizing ferric iron growth substrates produced reduced, magnetic solids containing siderite, spinels, and FeO minerals. Microcosms and enrichment cultures supported organisms whose near relatives participate in iron redox transformations. Further, a potential 'principal' microbial community common to solid samples in serpentinizing systems was identified. These results indicate collectively that iron redox transformations should be more thoroughly and universally considered when assessing the function of terrestrial subsurface ecosystems driven by serpentinization.
The Search for Subsurface Ice Caps on Mercury
NASA Astrophysics Data System (ADS)
Allen, R. A.; Barlow, N. G.; Vilas, F.
1996-03-01
Recent ground-based radar observations of Mercury have detected strong, highly depolarized echoes from the north and south polar regions which have been interpreted as possible polar ice deposits. These radar echoes have been correlated with a number of impact craters. Theoretical studies indicate that such surface ice can be stable within permanently shadowed areas, such as the floors of high latitude impact craters. One proposed hypothesis suggests that stable subsurface ice caps exist at the poles of Mercury, and that several of the impact events that created the high latitude craters exposed this subsurface ice. Thus, our study focused on the possibility of ice caps extending below the mercurian surface, down to some unknown latitude in the polar regions. We used the experiences from Mars, where the depth/diameter ratio (d/D) is smaller for ice rich areas, to investigate whether a comparable latitudinal change in d/D is detectable on Mercury. We found no significant latitudinal differences within the two polar regions of our study or between the north polar and equatorial quadrangles, but craters in the south polar region tend to have slightly lower d/D than those in the north polar region.
NASA Astrophysics Data System (ADS)
Kelley, N.; Mount, G.; Terry, N.; Herndon, E.; Singer, D. M.
2017-12-01
The Critical Zone represents the surficial and shallow layer of rock, air, water, and soil where most interactions between living organisms and the Earth occur. Acid mine drainage (AMD) resulting from coal extraction can influence both biological and geochemical processes across this zone. Conservative estimates suggest that more than 300 million gallons of AMD are released daily, making this acidic solution of water and contaminants a common issue in areas with legacy or current coal extraction. Electrical resistivity imaging (ERI) provides a rapid and minimally invasive method to identify and monitor contaminant pathways from AMD remediation systems in the subsurface of the Critical Zone. The technique yields spatially continuous data of subsurface resistivity that can be inverted to determine electrical conductivity as a function of depth. Since elevated concentrations of heavy metals can directly influence soil conductivity, ERI data can be used to trace the flow pathways or perhaps unknown mine conduits and transport of heavy metals through the subsurface near acid mine drainage sources. This study aims to examine preferential contaminant migration from those sources through substrate pores, fractures, and shallow mine workings in the near subsurface surrounding AMD sites in eastern Ohio and western Pennsylvania. We utilize time lapse ERI measures during different hydrologic conditions to better understand the variability of preferential flow pathways in relation to changes in stage and discharge within the remediation systems. To confirm ERI findings, and provide constraint to geochemical reactions occurring in the shallow subsurface, we conducted Inductively Coupled Plasma (ICP) spectrometry analysis of groundwater samples from boreholes along the survey transects. Through these combined methods, we can provide insight into the ability of engineered systems to contain and isolate metals in passive acid mine drainage treatment systems.
Osburn, Magdalena R.; LaRowe, Douglas E.; Momper, Lily M.; Amend, Jan P.
2014-01-01
The deep subsurface is an enormous repository of microbial life. However, the metabolic capabilities of these microorganisms and the degree to which they are dependent on surface processes are largely unknown. Due to the logistical difficulty of sampling and inherent heterogeneity, the microbial populations of the terrestrial subsurface are poorly characterized. In an effort to better understand the biogeochemistry of deep terrestrial habitats, we evaluate the energetic yield of chemolithotrophic metabolisms and microbial diversity in the Sanford Underground Research Facility (SURF) in the former Homestake Gold Mine, SD, USA. Geochemical data, energetic modeling, and DNA sequencing were combined with principle component analysis to describe this deep (down to 8100 ft below surface), terrestrial environment. SURF provides access into an iron-rich Paleoproterozoic metasedimentary deposit that contains deeply circulating groundwater. Geochemical analyses of subsurface fluids reveal enormous geochemical diversity ranging widely in salinity, oxidation state (ORP 330 to −328 mV), and concentrations of redox sensitive species (e.g., Fe2+ from near 0 to 6.2 mg/L and Σ S2- from 7 to 2778μg/L). As a direct result of this compositional buffet, Gibbs energy calculations reveal an abundance of energy for microorganisms from the oxidation of sulfur, iron, nitrogen, methane, and manganese. Pyrotag DNA sequencing reveals diverse communities of chemolithoautotrophs, thermophiles, aerobic and anaerobic heterotrophs, and numerous uncultivated clades. Extrapolated across the mine footprint, these data suggest a complex spatial mosaic of subsurface primary productivity that is in good agreement with predicted energy yields. Notably, we report Gibbs energy normalized both per mole of reaction and per kg fluid (energy density) and find the later to be more consistent with observed physiologies and environmental conditions. Further application of this approach will significantly expand our understanding of the deep terrestrial biosphere. PMID:25429287
Washington Geothermal Play Fairway Analysis Data From Potential Field Studies
Anderson, Megan; Ritzinger, Brent; Glen, Jonathan; Schermerhorn, William
2017-12-20
A recent study which adapts play fairway analysis (PFA) methodology to assess geothermal potential was conducted at three locations (Mount Baker, Mount St. Helens seismic zone, and Wind River valley) along the Washington Cascade Range (Forson et al. 2017). Potential field (gravity and magnetic) methods which can detect subsurface contrasts in physical properties, provides a means for mapping and modeling subsurface geology and structure. As part of the WA-Cascade PFA project, we performed potential field studies by collecting high-resolution gravity and ground-magnetic data, and rock property measurements to (1) identify and constrain fault geometries (2) constrain subsurface lithologic distribution (3) study fault interactions (4) identify areas favorable to hydrothermal flow, and ultimately (5) guide future geothermal exploration at each location.
Study of Geological Analogues for Understanding the Radar Sounder Response of the RIME Targets
NASA Astrophysics Data System (ADS)
Thakur, S.; Bruzzone, L.
2017-12-01
Radar for Icy Moon Exploration (RIME), the radar sounder onboard the Jupiter Icy Moons Explorer (JUICE), is aimed at characterizing the ice shells of the Jovian moons - Ganymede, Europa and Callisto. RIME is optimized to operate at 9 MHz central frequency with bandwidth of 1 MHz and 2.7 MHz to achieve a penetration depth up to 9 km through ice. We have developed an approach to the definition of a database of simulated RIME radargrams by leveraging the data available from airborne and orbital radar sounder acquisitions over geological analogues of the expected icy moon features. These simulated radargrams are obtained by merging real radar sounder data with models of the subsurface of the Jupiter icy moons. They will be useful for geological interpretation of the RIME radargrams and for better predicting the performance of RIME. The database will also be useful in developing pre-processing and automatic feature extraction algorithms to support data analysis during the mission phase of RIME. Prior to the JUICE mission exploring the Jovian satellites with RIME, there exist radar sounders such as SHARAD (onboard MRO) and MARSIS (onboard MEX) probing Mars, the LRS (onboard SELENE) probing the Moon, and many airborne sounders probing the polar regions of Earth. Analogues have been identified in these places based on similarity in geo-morphological expression. Moreover, other analogues have been identified on the Earth for possible dedicated acquisition campaigns before the RIME operations. By assuming that the subsurface structure of the RIME targets is approximately represented in the analogue radargrams, the difference in composition is accounted for by imposing different dielectric and subsurface attenuation models. The RIME radargrams are simulated from the analogue radargrams using the radar equation and the RIME processing chain and accounting for different possible scenarios in terms of subsurface structure, dielectric properties and instrument parameters. For cross-validation, the database is compared with radargrams simulated from the analysis of radio wave propagation through geo-electrical models representing the subsurface hypotheses for the RIME targets.
On Space Exploration and Human Error: A Paper on Reliability and Safety
NASA Technical Reports Server (NTRS)
Bell, David G.; Maluf, David A.; Gawdiak, Yuri
2005-01-01
NASA space exploration should largely address a problem class in reliability and risk management stemming primarily from human error, system risk and multi-objective trade-off analysis, by conducting research into system complexity, risk characterization and modeling, and system reasoning. In general, in every mission we can distinguish risk in three possible ways: a) known-known, b) known-unknown, and c) unknown-unknown. It is probably almost certain that space exploration will partially experience similar known or unknown risks embedded in the Apollo missions, Shuttle or Station unless something alters how NASA will perceive and manage safety and reliability
NASA Astrophysics Data System (ADS)
Wang, Gongwen; Ma, Zhenbo; Li, Ruixi; Song, Yaowu; Qu, Jianan; Zhang, Shouting; Yan, Changhai; Han, Jiangwei
2017-04-01
In this paper, multi-source (geophysical, geochemical, geological and remote sensing) datasets were used to construct multi-scale (district-, deposit-, and orebody-scale) 3D geological models and extract 3D exploration criteria for subsurface Mo-polymetallic exploration targeting in the Luanchuan district in China. The results indicate that (i) a series of region-/district-scale NW-trending thrusts controlled main Mo-polymetallic forming, and they were formed by regional Indosinian Qinling orogenic events, the secondary NW-trending district-scale folds and NE-trending faults and the intrusive stock structure are produced based on thrust structure in Caledonian-Indosinian orogenic events; they are ore-bearing zones and ore-forming structures; (ii) the NW-trending district-scale and NE-trending deposit-scale normal faults were crossed and controlled by the Jurassic granite stocks in 3D space, they are associated with the magma-skarn Mo polymetallic mineralization (the 3D buffer distance of ore-forming granite stocks is 600 m) and the NW-trending hydrothermal Pb-Zn deposits which are surrounded by the Jurassic granite stocks and constrained by NW-trending or NE-trending faults (the 3D buffer distance of ore-forming fault is 700 m); and (iii) nine Mo polymetallic and four Pb-Zn targets were identified in the subsurface of the Luanchuan district.
NASA Technical Reports Server (NTRS)
Stoker, Carol; Dunagan, Stephen; Stevens, Todd; Amils, Ricardo; Gomez-Elvira, Javier; Fernandez, David; Hall, James; Lynch, Kennda; Cannon, Howard; Zavaleta, Jhony
2004-01-01
The MARTE (Mars Astrobiology Research and Technology Experiment) project, an ASTEP field experiment, is exploring for a hypothesized subsurface anaerobic chemoautotrophic biosphere in the region of the Tinto River- or Rio Tinto- in southwestern Spain. It is also demonstrating technology needed to search for a subsurface biosphere on Mars. The project has three primary objectives: (1) search for and characterize subsurface life at Rio Tinto along with the physical and chemical properties and sustaining energy sources of its environment, (2) perform a high fidelity simulation of a robotic Mars drilling mission to search for life, and (3) demonstrate the drilling, sample handling, and instrument technologies relevant to searching for life on Mars. The simulation of the robotic drilling mission is guided by the results of the aseptic drilling campaign to search for life at Rio Tinto. This paper describes results of the first phase of the aseptic drilling campaign.
Mars Exploration Rover surface operations: driving spirit at Gusev Crater
NASA Technical Reports Server (NTRS)
Leger, Chris; Trebi-Ollennu, Ashitey; Wright, John; Maxwell, Scott; Bonitz, Bob; Biesiadecki, Jeff; Hartman, Frank; Cooper, Brian; Baumgartner, Eric; Maimone, Mark
2005-01-01
Spirit is one of two rovers, that landed on Mars in January 2004 as part of NASA's Mars Exploration Rovers mission. Since then, Spirit has traveled over 4 kilometers accross the Martian surface while investigating rocks and soils, digging trenches to examine the subsurface environment, and climbing hills to reach outcrops of bedrock.
A coupled subsurface-boundary layer model of water on Mars
NASA Astrophysics Data System (ADS)
Zent, A. P.; Haberle, R. M.; Houben, H. C.; Jakosky, B. M.
1993-02-01
A 1D numerical model of the exchange of H2O between the atmosphere and subsurface of Mars through the PBL is employed to explore the mechanisms of H2O exchange and to elucidate the role played by the regolith in the local H2O budget. The atmospheric model includes effects of Coriolis, pressure gradient, and frictional forces for momentum: radiation, sensible heat flux, and advection for heat. It is suggested that in most cases, the flux through the Martian surface reverses twice in the course of each sol. The effects of surface albedo, thermal inertia, solar declination, atmospheric optical depth, and regolith pore structure are explored. It is proposed that higher thermal inertia forces more H2O into the atmosphere because the regolith is warmer at depth.
Electromagnetic Induction Spectroscopy for the Detection of Subsurface Targets
2012-12-01
curves of the proposed method and that of Fails et al.. For the kNN ROC curve, k = 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81...et al. [6] and Ramachandran et al. [7] both demonstrated success in detecting mines using the k-nearest-neighbor ( kNN ) algorithm based on the EMI...error is also included in the feature vector. The kNN labels an unknown target based on the closest targets in a training set. Collins et al. [2] and
Microbial community assembly and evolution in subseafloor sediment.
Starnawski, Piotr; Bataillon, Thomas; Ettema, Thijs J G; Jochum, Lara M; Schreiber, Lars; Chen, Xihan; Lever, Mark A; Polz, Martin F; Jørgensen, Bo B; Schramm, Andreas; Kjeldsen, Kasper U
2017-03-14
Bacterial and archaeal communities inhabiting the subsurface seabed live under strong energy limitation and have growth rates that are orders of magnitude slower than laboratory-grown cultures. It is not understood how subsurface microbial communities are assembled and whether populations undergo adaptive evolution or accumulate mutations as a result of impaired DNA repair under such energy-limited conditions. Here we use amplicon sequencing to explore changes of microbial communities during burial and isolation from the surface to the >5,000-y-old subsurface of marine sediment and identify a small core set of mostly uncultured bacteria and archaea that is present throughout the sediment column. These persisting populations constitute a small fraction of the entire community at the surface but become predominant in the subsurface. We followed patterns of genome diversity with depth in four dominant lineages of the persisting populations by mapping metagenomic sequence reads onto single-cell genomes. Nucleotide sequence diversity was uniformly low and did not change with age and depth of the sediment. Likewise, there was no detectable change in mutation rates and efficacy of selection. Our results indicate that subsurface microbial communities predominantly assemble by selective survival of taxa able to persist under extreme energy limitation.
NASA Astrophysics Data System (ADS)
Mansour, Khamis; Omar, Khaled; Ali, Kamal; Abdel Zaher, Mohamed
2018-06-01
The role of the fracture system is important for enhancing the recharge or discharge of fluids in the subsurface reservoir. The Lake Nasser is consider one of the largest artificial lakes all over the world and contains huge bulk of storage water. In this study, the influence of fracture zones on subsurface fluid flow in groundwater reservoirs is investigated using geophysical techniques including seismicity, geoelectric and gravity data. These data have been utilized for exploring structural structure in south west Lake Nasser, and subsurface discontinuities (joints or faults) notwithstanding its related fracture systems. Seismicity investigation gave us the comprehension of the dynamic geological structure sets and proposing the main recharging paths for the Nubian aquifer from Lake Nasser surface water. Processing and modelling of aerogravity data show that the greater thickness of sedimentary cover (700 m) is located eastward and northward while basement outcrops occur at Umm Shaghir and Al Asr areas. Sixty-nine vertical electrical soundings (VES's) were used to delineate the subsurface geoelectric layers along eight profiles that help to realize the subsurface geological structure behind the hydrogeological conditions of the studied area.
NASA Technical Reports Server (NTRS)
Stoker, C. R.; Zavaleta, J.; Bell, M.; Direto, S.; Foing, B.; Blake, D.; Kim, S.
2010-01-01
DOMEX (Drilling on the Moon and Mars in Human Exploration) is using analog missions to develop the approach for using human crews to perform science activities on the Moon and Mars involving exploration and sampling of the subsurface. Subsurface science is an important activity that may be uniquely enabled by human crews. DOMEX provides an opportunity to plan and execute planetary mission science activities without the expense and overhead of a planetary mission. Objectives: The objective of this first in a series of DOMEX missions were to 1) explore the regional area to understand the geologic context and determine stratigraphy and geologic history of various geologic units in the area. 2) Explore for and characterize sites for deploying a deep (10 m depth) drilling system in a subsequent field season. 3) Perform GPR on candidate drill sites. 4) Select sites that represent different geological units deposited in different epochs and collect soil cores using sterile procedures for mineralogical, organic and biological analysis. 5) Operate the MUM in 3 different sites representing different geological units and soil characteristics. 6) Collect rock and soil samples of sites visited and analyze them at the habitat. Results: At mission start the crew performed a regional survey to identify major geologic units that were correlated to recognized stratigraphy and regional geologic maps. Several candidate drill sites were identified. During the rest of the mission, successful GPR surveys were conducted in four locations. Soil cores were collected in 5 locations representing soils from 4 different geologic units, to depths up to 1m. Soil cores from two locations were analyzed with PCR in the laboratory. The remainder were reserved for subsequent analysis. XRD analysis was performed in the habitat and in the field on 39 samples, to assist with sample characterization, conservation, and archiving. MUM was deployed at 3 field locations and 1 test location (outside the habitat) where it operated autonomously for 2-4 hours at each site. Depths achieved ranged from 15 to 70 cm depending on the soil compressive strength and the presence and depth of subsurface indurated layers. Subsurface samples weighing 0.5 to 1 g were collected at the deepest depth encountered at each of the sites using the MUM automated sample collection system, and subsequently analyzed with XRD. Downhole inspection of holes produced by MUM with the Raman spectrometer was acquired on two of the holes and spectral features associated with selenite were identified in specific soil layers. Previously unreported fossilized remains of vertebrate fauna from the Jurassic era were discovered during our mission. Analysis of mineral biomarkers associated with this discovery are underway.
Integrated geophysical methods for geotechnical subsurface investigations : final report.
DOT National Transportation Integrated Search
2006-01-01
This report summarizes the New Hampshire Department of Transportations (NHDOTs) investigation of : geophysical techniques to supplement conventional test borings and other explorations on transportation projects. : The Departments geotechnic...
Radar Imaging of Europa's Subsurface Properties and Processes: The View from Earth
NASA Astrophysics Data System (ADS)
Blankenship, D. D.; Moore, W. B.; Young, D. A.; Peters, M. E.
2007-12-01
A primary objective of future Europa studies will be to characterize the distribution of shallow subsurface water as well as to identify any ice-ocean interface. Another objective will be to understand the formation of surface and subsurface features associated with interchange processes between any ocean and the surface. Achieving these objectives will require either direct or inferred knowledge of the position of any ice/water interfaces as well as any brine or layer pockets. We will review the hypothesized processes that control the thermal, compositional and structural (TCS) properties, and therefore the dielectric character, of the subsurface of Europa's icy shell. Our approach will be to extract the TCS properties for various subsurface processes thought to control the formation of major surface (e.g., ridges/bands, lenticulae, chaos, cratering...) and subsurface (e.g., rigid shell eutectics, diapirs, accretionary lenses ...) features on Europa. We will then assess the spectrum of analog processes and TCS properties represented by Earth's cryosphere including both Arctic and Antarctic ice sheets, ice shelves and valley glaciers. There are few complete analogs over the full TCS space but, because of the wide range of ice thickness, impurities and strain rates for Earth's cryosphere, there are many more analogs than many Earth and planetary researchers might imagine for significant portions of this space (e.g., bottom crevasses, marine ice shelf/subglacial lake accretion, surging polythermal glaciers...).Our ultimate objective is to use these Earth analog studies to define the radar imaging approach for Europa's subsurface that will be most useful for supporting/refuting the hypotheses for the formation of major surface/subsurface features as well as for "pure" exploration of Europa's icy shell and its interface with the underlying ocean.
Soil-Gas Radon Anomaly Map of an Unknown Fault Zone Area, Chiang Mai, Northern Thailand
NASA Astrophysics Data System (ADS)
Udphuay, S.; Kaweewong, C.; Imurai, W.; Pondthai, P.
2015-12-01
Soil-gas radon concentration anomaly map was constructed to help detect an unknown subsurface fault location in San Sai District, Chiang Mai Province, Northern Thailand where a 5.1-magnitude earthquake took place in December 2006. It was suspected that this earthquake may have been associated with an unrecognized active fault in the area. In this study, soil-gas samples were collected from eighty-four measuring stations covering an area of approximately 50 km2. Radon in soil-gas samples was quantified using Scintrex Radon Detector, RDA-200. The samplings were conducted twice: during December 2014-January 2015 and March 2015-April 2015. The soil-gas radon map obtained from this study reveals linear NNW-SSE trend of high concentration. This anomaly corresponds to the direction of the prospective fault system interpreted from satellite images. The findings from this study support the existence of this unknown fault system. However a more detailed investigation should be conducted in order to confirm its geometry, orientation and lateral extent.
Field Simulation of a Drilling Mission to Mars to Search for Subsurface Life
NASA Technical Reports Server (NTRS)
Stoker, C. R.; Lemke, L. G.; Cannon, H.; Glass, B.; Dunagan, S.; Zavaleta, J.; Miller, D.; Gomez-Elvira, J.
2005-01-01
The discovery of near surface ground ice by the Mars Odyssey mission and the abundant evidence for recent Gulley features observed by the Mars Global Surveyor mission support longstanding theoretical arguments for subsurface liquid water on Mars. Thus, implementing the Mars program goal to search for life points to drilling on Mars to reach liquid water, collecting samples and analyzing them with instrumentation to detect in situ organisms and biomarker compounds. Searching for life in the subsurface of Mars will require drilling, sample extraction and handling, and new technologies to find and identify biomarker compounds and search for living organisms. In spite of its obvious advantages, robotic drilling for Mars exploration is in its technological infancy and has yet to be demonstrated in even a terrestrial field environment.
Tran, Anh Phuong; Dafflon, Baptiste; Hubbard, Susan S.; ...
2016-04-25
Improving our ability to estimate the parameters that control water and heat fluxes in the shallow subsurface is particularly important due to their strong control on recharge, evaporation and biogeochemical processes. The objectives of this study are to develop and test a new inversion scheme to simultaneously estimate subsurface hydrological, thermal and petrophysical parameters using hydrological, thermal and electrical resistivity tomography (ERT) data. The inversion scheme-which is based on a nonisothermal, multiphase hydrological model-provides the desired subsurface property estimates in high spatiotemporal resolution. A particularly novel aspect of the inversion scheme is the explicit incorporation of the dependence of themore » subsurface electrical resistivity on both moisture and temperature. The scheme was applied to synthetic case studies, as well as to real datasets that were autonomously collected at a biogeochemical field study site in Rifle, Colorado. At the Rifle site, the coupled hydrological-thermal-geophysical inversion approach well predicted the matric potential, temperature and apparent resistivity with the Nash-Sutcliffe efficiency criterion greater than 0.92. Synthetic studies found that neglecting the subsurface temperature variability, and its effect on the electrical resistivity in the hydrogeophysical inversion, may lead to an incorrect estimation of the hydrological parameters. The approach is expected to be especially useful for the increasing number of studies that are taking advantage of autonomously collected ERT and soil measurements to explore complex terrestrial system dynamics.« less
Model Reduction via Principe Component Analysis and Markov Chain Monte Carlo (MCMC) Methods
NASA Astrophysics Data System (ADS)
Gong, R.; Chen, J.; Hoversten, M. G.; Luo, J.
2011-12-01
Geophysical and hydrogeological inverse problems often include a large number of unknown parameters, ranging from hundreds to millions, depending on parameterization and problems undertaking. This makes inverse estimation and uncertainty quantification very challenging, especially for those problems in two- or three-dimensional spatial domains. Model reduction technique has the potential of mitigating the curse of dimensionality by reducing total numbers of unknowns while describing the complex subsurface systems adequately. In this study, we explore the use of principal component analysis (PCA) and Markov chain Monte Carlo (MCMC) sampling methods for model reduction through the use of synthetic datasets. We compare the performances of three different but closely related model reduction approaches: (1) PCA methods with geometric sampling (referred to as 'Method 1'), (2) PCA methods with MCMC sampling (referred to as 'Method 2'), and (3) PCA methods with MCMC sampling and inclusion of random effects (referred to as 'Method 3'). We consider a simple convolution model with five unknown parameters as our goal is to understand and visualize the advantages and disadvantages of each method by comparing their inversion results with the corresponding analytical solutions. We generated synthetic data with noise added and invert them under two different situations: (1) the noised data and the covariance matrix for PCA analysis are consistent (referred to as the unbiased case), and (2) the noise data and the covariance matrix are inconsistent (referred to as biased case). In the unbiased case, comparison between the analytical solutions and the inversion results show that all three methods provide good estimates of the true values and Method 1 is computationally more efficient. In terms of uncertainty quantification, Method 1 performs poorly because of relatively small number of samples obtained, Method 2 performs best, and Method 3 overestimates uncertainty due to inclusion of random effects. However, in the biased case, only Method 3 correctly estimates all the unknown parameters, and both Methods 1 and 2 provide wrong values for the biased parameters. The synthetic case study demonstrates that if the covariance matrix for PCA analysis is inconsistent with true models, the PCA methods with geometric or MCMC sampling will provide incorrect estimates.
Variable Grid Traveltime Tomography for Near-surface Seismic Imaging
NASA Astrophysics Data System (ADS)
Cai, A.; Zhang, J.
2017-12-01
We present a new algorithm of traveltime tomography for imaging the subsurface with automated variable grids upon geological structures. The nonlinear traveltime tomography along with Tikhonov regularization using conjugate gradient method is a conventional method for near surface imaging. However, model regularization for any regular and even grids assumes uniform resolution. From geophysical point of view, long-wavelength and large scale structures can be reliably resolved, the details along geological boundaries are difficult to resolve. Therefore, we solve a traveltime tomography problem that automatically identifies large scale structures and aggregates grids within the structures for inversion. As a result, the number of velocity unknowns is reduced significantly, and inversion intends to resolve small-scale structures or the boundaries of large-scale structures. The approach is demonstrated by tests on both synthetic and field data. One synthetic model is a buried basalt model with one horizontal layer. Using the variable grid traveltime tomography, the resulted model is more accurate in top layer velocity, and basalt blocks, and leading to a less number of grids. The field data was collected in an oil field in China. The survey was performed in an area where the subsurface structures were predominantly layered. The data set includes 476 shots with a 10 meter spacing and 1735 receivers with a 10 meter spacing. The first-arrival traveltime of the seismogram is picked for tomography. The reciprocal errors of most shots are between 2ms and 6ms. The normal tomography results in fluctuations in layers and some artifacts in the velocity model. In comparison, the implementation of new method with proper threshold provides blocky model with resolved flat layer and less artifacts. Besides, the number of grids reduces from 205,656 to 4,930 and the inversion produces higher resolution due to less unknowns and relatively fine grids in small structures. The variable grid traveltime tomography provides an alternative imaging solution for blocky structures in the subsurface and builds a good starting model for waveform inversion and statics.
Subsurface Exploration Technologies and Strategies for Europa
NASA Technical Reports Server (NTRS)
French, L. C.; Anderson, F. S.; Carsey, F. D.; Green, J. R.; Lane, A. L.; Zimmerman, W. F.
2001-01-01
The Galileo data from Europa has resulted in the strong suggestion of a large, cold, salty, old subglacial ocean and is of great importance. We have examined technology requirements for subsurface exploration of Europa and determined that scientific access to the hypothesized Europa ocean is a key requirement. By 'scientific access' we intend to direct attention to the fact that several aspects of exploration of a site such as Europa must be addressed at the system level. Specifically needed are a robotic vehicle that can descend through ice, scientific instrumentation that can interrogate the ice near the vehicle (but largely unaffected by its presence), scientific instrumentation for the subglacial ocean, communication for data and control, chemical analysis of the environment of the vehicle in the ice as well as the ocean, and methods for conducting the mission without contamination. We have embarked on a part of this extremely ambitious development sequence by developing the Active Thermal Probe, or Cryobot. Additional information is contained in the original extended abstract.
Subsurface Feature Mapping of Mars using a High Resolution Ground Penetrating Radar System
NASA Astrophysics Data System (ADS)
Wu, T. S.; Persaud, D. M.; Preudhomme, M. A.; Jurg, M.; Smith, M. K.; Buckley, H.; Tarnas, J.; Chalumeau, C.; Lombard-Poirot, N.; Mann, B.
2015-12-01
As the closest Earth-like, potentially life-sustaining planet in the solar system, Mars' future of human exploration is more a question of timing than possibility. The Martian surface remains hostile, but its subsurface geology holds promise for present or ancient astrobiology and future habitation, specifically lava tube (pyroduct) systems, whose presence has been confirmed by HiRISE imagery.The location and characterization of these systems could provide a basis for understanding the evolution of the red planet and long-term shelters for future manned missions on Mars. To detect and analyze the subsurface geology of terrestrial bodies from orbit, a novel compact (smallsat-scale) and cost-effective approach called the High-resolution Orbiter for Mapping gEology by Radar (HOMER) has been proposed. Adapting interferometry techniques with synthetic aperture radar (SAR) to a ground penetrating radar system, a small satellite constellation is able to achieve a theoretical resolution of 50m from low-Mars orbit (LMO). Alongside this initial prototype design of HOMER, proposed data processing methodology and software and a Mars mission design are presented. This project was developed as part of the 2015 NASA Ames Academy for Space Exploration.
The Serpentinite Subsurface Microbiome
NASA Astrophysics Data System (ADS)
Schrenk, M. O.; Nelson, B. Y.; Brazelton, W. J.
2011-12-01
Microbial habitats hosted in ultramafic rocks constitute substantial, globally-distributed portions of the subsurface biosphere, occurring both on the continents and beneath the seafloor. The aqueous alteration of ultramafics, in a process known as serpentinization, creates energy rich, high pH conditions, with low concentrations of inorganic carbon which place fundamental constraints upon microbial metabolism and physiology. Despite their importance, very few studies have attempted to directly access and quantify microbial activities and distributions in the serpentinite subsurface microbiome. We have initiated microbiological studies of subsurface seeps and rocks at three separate continental sites of serpentinization in Newfoundland, Italy, and California and compared these results to previous analyses of the Lost City field, near the Mid-Atlantic Ridge. In all cases, microbial cell densities in seep fluids are extremely low, ranging from approximately 100,000 to less than 1,000 cells per milliliter. Culture-independent analyses of 16S rRNA genes revealed low-diversity microbial communities related to Gram-positive Firmicutes and hydrogen-oxidizing bacteria. Interestingly, unlike Lost City, there has been little evidence for significant archaeal populations in the continental subsurface to date. Culturing studies at the sites yielded numerous alkaliphilic isolates on nutrient-rich agar and putative iron-reducing bacteria in anaerobic incubations, many of which are related to known alkaliphilic and subsurface isolates. Finally, metagenomic data reinforce the culturing results, indicating the presence of genes associated with organotrophy, hydrogen oxidation, and iron reduction in seep fluid samples. Our data provide insight into the lifestyles of serpentinite subsurface microbial populations and targets for future quantitative exploration using both biochemical and geochemical approaches.
NASA Technical Reports Server (NTRS)
Michalski, Joseph; Niles, Paul
2015-01-01
On Earth, the deep biosphere remains a largely unexplored, but clearly important carbon reservoir. Results from some uplifted central peaks in craters on Mars indicate that substantial carbon was also present at depth and might have helped sustain a deep biosphere. In fact, many factors relevant to deep biosphere habitability are more favorable on Mars than on Earth (e.g. porosity of the crust, geothermal gradient). Future exploration of Mars should include landing sites where materials have been exhumed from depth by meteor impact or basins where subsurface fluids have emerged, carrying clues to subsurface habitability. One of the most astrobiologically interesting sites on Mars McLaughlin Crater, a 93 km-diameter impact crater that formed approximately 4 b.y. ago. On the floor of the crater is a stratigraphic section of subhorizontal, layered sedimentary rocks with strong spectroscopic evidence for Fe-rich clay minerals and Mg-rich carbonates, which we interpret as ancient lacustrine deposits. The fluids that formed these materials likely originated in the subsurface, based on the paucity of channels leading into the crater basin and the fact that this is one of the deepest basins on Mars - a good candidate to have experienced upwelling of subsurface fluids. Therefore, the deposits within McLaughlin crater provide insight into subsurface processes on Mars. In this presentation, we will discuss the habitability of the martian subsurface as well as the geology of McLaughlin Crater and the possibility to detect biomarkers at that site with a future landed mission.
NASA Astrophysics Data System (ADS)
Kerber, L.; Nesnas, I.; Keszthelyi, L.; Head, J. W.; Denevi, B.; Hayne, P. O.; Mitchell, K.; Ashley, J. W.; Whitten, J. L.; Stickle, A. M.; Parness, A.; McGarey, P.; Paton, M.; Donaldson-Hanna, K.; Anderson, R. C.; Needham, D.; Isaacson, P.; Jozwiak, L.; Bleacher, J.; Parcheta, C.
2018-04-01
Moon Diver is a Discovery-class mission concept designed to explore a lunar mare pit. It would be the first mission to examine an in-place bedrock stratigraphy on the Moon, and the first to venture into the subsurface of another planetary body.
Lander Trench Dug by Opportunity
2015-01-27
On March 20, 2004, NASA Mars Exploration Rover Opportunity used a wheel to dig a trench revealing subsurface material beside the lander hardware that carried the rover to the surface of Mars 55 Martian days earlier.
Forward modeling of gravity data using geostatistically generated subsurface density variations
Phelps, Geoffrey
2016-01-01
Using geostatistical models of density variations in the subsurface, constrained by geologic data, forward models of gravity anomalies can be generated by discretizing the subsurface and calculating the cumulative effect of each cell (pixel). The results of such stochastically generated forward gravity anomalies can be compared with the observed gravity anomalies to find density models that match the observed data. These models have an advantage over forward gravity anomalies generated using polygonal bodies of homogeneous density because generating numerous realizations explores a larger region of the solution space. The stochastic modeling can be thought of as dividing the forward model into two components: that due to the shape of each geologic unit and that due to the heterogeneous distribution of density within each geologic unit. The modeling demonstrates that the internally heterogeneous distribution of density within each geologic unit can contribute significantly to the resulting calculated forward gravity anomaly. Furthermore, the stochastic models match observed statistical properties of geologic units, the solution space is more broadly explored by producing a suite of successful models, and the likelihood of a particular conceptual geologic model can be compared. The Vaca Fault near Travis Air Force Base, California, can be successfully modeled as a normal or strike-slip fault, with the normal fault model being slightly more probable. It can also be modeled as a reverse fault, although this structural geologic configuration is highly unlikely given the realizations we explored.
Strategies towards an optimized use of the shallow geothermal potential
NASA Astrophysics Data System (ADS)
Schelenz, S.; Firmbach, L.; Kalbacher, T.; Goerke, U.; Kolditz, O.; Dietrich, P.; Vienken, T.
2013-12-01
Thermal use of the shallow subsurface for heat generation, cooling and thermal energy storage is increasingly gaining importance in reconsideration of future energy supplies, e.g. in the course of German energy transition, with application shifting from isolated to intensive use. The planning and dimensioning of (geo-)thermal applications is strongly influenced by the availability of exploration data. Hence, reliable site-specific dimensioning of systems for the thermal use of the shallow subsurface will contribute to an increase in resource efficiency, cost reduction during installation and operation, as well as reduction of environmental impacts and prevention of resource over-exploitation. Despite large cumulative investments that are being made for the utilization of the shallow thermal potential, thermal energy is in many cases exploited without prior on-site exploration and investigation of the local geothermal potential, due to the lack of adequate and cost-efficient exploration techniques. We will present new strategies for an optimized utilization of urban thermal potential, showcased at a currently developed residential neighborhood with high demand for shallow geothermal applications, based on a) enhanced site characterization and b) simulation of different site specific application scenarios. For enhanced site characterization, surface geophysics and vertical high resolution direct push-profiling were combined for reliable determination of aquifer structure and aquifer parameterization. Based on the site characterization, different site specific geothermal application scenarios, including different system types and system configurations, were simulated using OpenGeoSys to guarantee an environmental and economic sustainable thermal use of the shallow subsurface.
NASA Astrophysics Data System (ADS)
Power, C.; Gerhard, J. I.; Tsourlos, P.; Giannopoulos, A.
2011-12-01
Remediation programs for sites contaminated with dense non-aqueous phase liquids (DNAPLs) would benefit from an ability to non-intrusively map the evolving volume and extent of the DNAPL source zone. Electrical resistivity tomography (ERT) is a well-established geophysical tool, widely used outside the remediation industry, that has significant potential for mapping DNAPL source zones. However, that potential has not been realized due to challenges in data interpretation from contaminated sites - in either a qualitative or quantitative way. The objective of this study is to evaluate the potential of ERT to map realistic, evolving DNAPL source zones within complex subsurface environments during remedial efforts. For this purpose, a novel coupled model was developed that integrates a multiphase flow model (DNAPL3D-MT), which generates realistic DNAPL release scenarios, with 3DINV, an ERT model which calculates the corresponding resistivity response. This presentation will describe the developed model coupling methodology, which integrates published petrophysical relationships to generate an electrical resistivity field that accounts for both the spatial heterogeneity of subsurface soils and the evolving spatial distribution of fluids (including permeability, porosity, clay content and air/water/DNAPL saturation). It will also present an example in which the coupled model was employed to explore the ability of ERT to track the remediation of a DNAPL source zone. A field-scale, three-dimensional release of chlorinated solvent DNAPL into heterogeneous clayey sand was simulated, including the subsurface migration and subsequent removal of the DNAPL source zone via dissolution in groundwater. Periodic surveys of this site via ERT applied at the surface were then simulated and inversion programs were used to calculate the subsurface distribution of electrical properties. This presentation will summarize this approach and its potential as a research tool exploring the range of site conditions under which ERT may prove useful in aiding DNAPL site remediation. Moreover, it is expected to provide a cost-effective avenue to test optimum ERT data acquisition, inversion and interpretative tools at contaminated sites.
Mars SubsurfAce Sounding by Time-Domain Electromagnetic MeasuRements
NASA Astrophysics Data System (ADS)
Tacconi, G.; Minna, L.; Pagnan, S.; Tacconi, M.
1999-09-01
MASTER (Mars subsurfAce Sounding by Time-domain Electromagnetic measuRements) is an experimental project proposed to fly aboard the Italian Drill (DEEDRI) payload for the Mars Surveyor Program 2003. MASTER will offer the scientific community the first opportunity to scan Mars subsurface structure by means of the technique employing time-domain electromagnetic measurements TDEM. Up today proposed experiments for scanning the Martian subsurface have focused on exploring the crust of the planet Mars up to few meters, while MASTER will explore electrical structures and related soil characteristics and processes at depths up to hundreds meters at least. TDEM represents an active remote sensing system and will be used likely a ULF/ELF/VLF ``radar." If a certain volumetric zone has different electrical conductivity, the current in the sample will vary generating a secondary scattered electromagnetic field containing the information about the explored volume. The volumetric mean value of the conductivity will be estimated according to the implicit near field e.m. propagation conditions, considering the skin depth (d) and the apparent resistivity (ra) as the most representative and critical parameters. As any active remotely sensed measurements the TDEM system behaves like a ``bistatic" communication channel and is mandatory to investigate the characteristics of the background noise at the receiver site. The MASTER system, can operate also as a passive listening device of the possible electromagnetic background noise on the Mars surface at ULF/ELF/VLF bands. Present paper will describe in details the application of the TDEM method as well as the approaches to the detection and estimation of the e.m. BGN on Mars surface, in terms of man made, natural BGN and intrinsic noise of the sensors and electronic systems. The electromagnetic background noise detection/estimation represents by itself a no cost experiment and the first experiment of this type on Mars.
Microbial Metagenomics Reveals Climate-Relevant Subsurface Biogeochemical Processes.
Long, Philip E; Williams, Kenneth H; Hubbard, Susan S; Banfield, Jillian F
2016-08-01
Microorganisms play key roles in terrestrial system processes, including the turnover of natural organic carbon, such as leaf litter and woody debris that accumulate in soils and subsurface sediments. What has emerged from a series of recent DNA sequencing-based studies is recognition of the enormous variety of little known and previously unknown microorganisms that mediate recycling of these vast stores of buried carbon in subsoil compartments of the terrestrial system. More importantly, the genome resolution achieved in these studies has enabled association of specific members of these microbial communities with carbon compound transformations and other linked biogeochemical processes-such as the nitrogen cycle-that can impact the quality of groundwater, surface water, and atmospheric trace gas concentrations. The emerging view also emphasizes the importance of organism interactions through exchange of metabolic byproducts (e.g., within the carbon, nitrogen, and sulfur cycles) and via symbioses since many novel organisms exhibit restricted metabolic capabilities and an associated extremely small cell size. New, genome-resolved information reshapes our view of subsurface microbial communities and provides critical new inputs for advanced reactive transport models. These inputs are needed for accurate prediction of feedbacks in watershed biogeochemical functioning and their influence on the climate via the fluxes of greenhouse gases, CO2, CH4, and N2O. Copyright © 2016 Elsevier Ltd. All rights reserved.
Payzan-LeNestour, Élise; Bossaerts, Peter
2012-01-01
Little is known about how humans solve the exploitation/exploration trade-off. In particular, the evidence for uncertainty-driven exploration is mixed. The current study proposes a novel hypothesis of exploration that helps reconcile prior findings that may seem contradictory at first. According to this hypothesis, uncertainty-driven exploration involves a dilemma between two motives: (i) to speed up learning about the unknown, which may beget novel reward opportunities; (ii) to avoid the unknown because it is potentially dangerous. We provide evidence for our hypothesis using both behavioral and simulated data, and briefly point to recent evidence that the brain differentiates between these two motives. PMID:23087606
Subsurface site conditions and geology in the San Fernando earthquake area
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duke, C.M.; Johnson, J.A.; Kharraz, Y.
1971-12-01
The report presents the progress to date in establishing the facts about dynamic subsurface properties and geological features in the area affected by the San Fernando earthquake of February 9, 1971. Special emphasis is given to the locations of accelerographs, seismoscopes and Seismological Field Survey aftershock instruments. Thirty shallow geophysical surveys were made for determination of S and P velocities, with damping measured at some sites. Deep velocity data were obtained from geophysical surveys by others. Soil Mechanics and water well borings by others were utilized. Published and ongoing geological studies were applied. Results are presented in the form ofmore » five geological cross-sections, nine subsurface exploration models extending through basement complex to depths of 14,000 feet, a general geologic map, the shallow geophysical surveys, and selected data on damping.« less
NASA Astrophysics Data System (ADS)
Hartogh, P.; Ilyushin, Ya. A.
2016-10-01
Exploration of subsurface oceans on Jovian icy moons is a key issue of the icy moons' geology. Electromagnetic wave propagation is the only way to probe their icy mantles from the orbit. In the present paper, a principal concept of a passive interferometric instrument for deep sounding of the icy moons' crust is proposed. Its working principle is measuring and correlating Jupiter's radio wave emissions with reflections from the deep sub-surface of the icy moons. A number of the functional aspects of the proposed experiment are studied, in particular, impact of the wave scattering on the surface terrain on the instrument performance and digital sampling of the noisy signal. Results of the test of the laboratory prototype of the instrument are also presented in the paper.
NASA Astrophysics Data System (ADS)
Nixon, S. L.; Montgomery, W.; Sephton, M. A.; Cockell, C. S.
2014-12-01
More than 90% of organic material on Earth resides in sedimentary rocks in the form of kerogens; fossilized organic matter formed through selective preservation of high molecular weight biopolymers under anoxic conditions. Despite its prevalence in the subsurface, the extent to which this material supports microbial metabolisms is unknown. Whilst aerobic microorganisms are known to derive energy from kerogens within shales, utilization in anaerobic microbial metabolisms that proliferate in the terrestrial subsurface, such as microbial iron reduction, has yet to be demonstrated. Data are presented from microbial growth experiments in which kerogens and shales were supplied as the sole electron donor source for microbial iron reduction by an enrichment culture. Four well-characterized kerogens samples (representative of Types I-IV, classified by starting material), and two shale samples, were assessed. Organic analysis was carried out to investigate major compound classes present in each starting material. Parallel experiments were conducted to test inhibition of microbial iron reduction in the presence of each material when the culture was supplied with a full redox couple. The results demonstrate that iron-reducing microorganisms in this culture were unable to use kerogens and shales as a source of electron donors for energy acquisition, despite the presence of compound classes known to support this metabolism. Furthermore, the presence of these materials was found to inhibit microbial iron reduction to varying degrees, with some samples leading to complete inhibition. These results suggest that recalcitrant carbonaceous material in the terrestrial subsurface is not available for microbial iron reduction and similar metabolisms, such as sulphate-reduction. Further research is needed to investigate the inhibition exerted by these materials, and to assess whether these findings apply to other microbial consortia. These results may have significant implications for the role of anaerobic microbial metabolisms in the subsurface terrestrial carbon cycle. Kerogens are chemically similar to organic material in carbonaceous chondrites. As such, further study may provide insight into the potential availability of organic compounds for microbial metabolisms operating in the subsurface of Mars.
In-situ Planetary Subsurface Imaging System
NASA Astrophysics Data System (ADS)
Song, W.; Weber, R. C.; Dimech, J. L.; Kedar, S.; Neal, C. R.; Siegler, M.
2017-12-01
Geophysical and seismic instruments are considered the most effective tools for studying the detailed global structures of planetary interiors. A planet's interior bears the geochemical markers of its evolutionary history, as well as its present state of activity, which has direct implications to habitability. On Earth, subsurface imaging often involves massive data collection from hundreds to thousands of geophysical sensors (seismic, acoustic, etc) followed by transfer by hard links or wirelessly to a central location for post processing and computing, which will not be possible in planetary environments due to imposed mission constraints on mass, power, and bandwidth. Emerging opportunities for geophysical exploration of the solar system from Venus to the icy Ocean Worlds of Jupiter and Saturn dictate that subsurface imaging of the deep interior will require substantial data reduction and processing in-situ. The Real-time In-situ Subsurface Imaging (RISI) technology is a mesh network that senses and processes geophysical signals. Instead of data collection then post processing, the mesh network performs the distributed data processing and computing in-situ, and generates an evolving 3D subsurface image in real-time that can be transmitted under bandwidth and resource constraints. Seismic imaging algorithms (including traveltime tomography, ambient noise imaging, and microseismic imaging) have been successfully developed and validated using both synthetic and real-world terrestrial seismic data sets. The prototype hardware system has been implemented and can be extended as a general field instrumentation platform tailored specifically for a wide variety of planetary uses, including crustal mapping, ice and ocean structure, and geothermal systems. The team is applying the RISI technology to real off-world seismic datasets. For example, the Lunar Seismic Profiling Experiment (LSPE) deployed during the Apollo 17 Moon mission consisted of four geophone instruments spaced up to 100 meters apart, which in essence forms a small aperture seismic network. A pattern recognition technique based on Hidden Markov Models was able to characterize this dataset, and we are exploring how the RISI technology can be adapted for this dataset.
NASA Astrophysics Data System (ADS)
Marie, S.; Irving, J. D.; Looms, M. C.; Nielsen, L.; Holliger, K.
2011-12-01
Geophysical methods such as ground-penetrating radar (GPR) can provide valuable information on the hydrological properties of the vadose zone. In particular, there is evidence to suggest that the stochastic inversion of such data may allow for significant reductions in uncertainty regarding subsurface van-Genuchten-Mualem (VGM) parameters, which characterize unsaturated hydrodynamic behaviour as defined by the combination of the water retention and hydraulic conductivity functions. A significant challenge associated with the use of geophysical methods in a hydrological context is that they generally exhibit an indirect and/or weak sensitivity to the hydraulic parameters of interest. A novel and increasingly popular means of addressing this issue involves the acquisition of geophysical data in a time-lapse fashion while changes occur in the hydrological condition of the probed subsurface region. Another significant challenge when attempting to use geophysical data for the estimation of subsurface hydrological properties is the inherent non-linearity and non-uniqueness of the corresponding inverse problems. Stochastic inversion approaches have the advantage of providing a comprehensive exploration of the model space, which makes them ideally suited for addressing such issues. In this work, we present the stochastic inversion of time-lapse zero-offset-profile (ZOP) crosshole GPR traveltime data, collected during a forced infiltration experiment at the Arreneas field site in Denmark, in order to estimate subsurface VGM parameters and their corresponding uncertainties. We do this using a Bayesian Markov-chain-Monte-Carlo (MCMC) inversion approach. We find that the Bayesian-MCMC methodology indeed allows for a substantial refinement in the inferred posterior parameter distributions of the VGM parameters as compared to the corresponding priors. To further understand the potential impact on capturing the underlying hydrological behaviour, we also explore how the posterior VGM parameter distributions affect the hydrodynamic characteristics. In doing so, we find clear evidence that the approach pursued in this study allows for effective characterization of the hydrological behaviour of the probed subsurface region.
Space Station Views of African Sedimentary Basins-Analogs for Subsurface Patterns
NASA Technical Reports Server (NTRS)
Wilkinson, M. Justin
2007-01-01
Views of African sedimentary basins from the International Space Station (ISS) is presented. The images from ISS include: 1) Inland deltas; 2) Prediction; 3) Significance; 4) Exploration applications; and 5) Coastal megafans
Drilling Automation Demonstrations in Subsurface Exploration for Astrobiology
NASA Technical Reports Server (NTRS)
Glass, Brian; Cannon, H.; Lee, P.; Hanagud, S.; Davis, K.
2006-01-01
This project proposes to study subsurface permafrost microbial habitats at a relevant Arctic Mars-analog site (Haughton Crater, Devon Island, Canada) while developing and maturing the subsurface drilling and drilling automation technologies that will be required by post-2010 missions. It builds on earlier drilling technology projects to add permafrost and ice-drilling capabilities to 5m with a lightweight drill that will be automatically monitored and controlled in-situ. Frozen cores obtained with this drill under sterilized protocols will be used in testing three hypotheses pertaining to near-surface physical geology and ground H2O ice distribution, viewed as a habitat for microbial life in subsurface ice and ice-consolidated sediments. Automation technologies employed will demonstrate hands-off diagnostics and drill control, using novel vibrational dynamical analysis methods and model-based reasoning to monitor and identify drilling fault states before and during faults. Three field deployments, to a Mars-analog site with frozen impact crater fallback breccia, will support science goals, provide a rigorous test of drilling automation and lightweight permafrost drilling, and leverage past experience with the field site s particular logistics.
Role of subsurface ocean in decadal climate predictability over the South Atlantic.
Morioka, Yushi; Doi, Takeshi; Storto, Andrea; Masina, Simona; Behera, Swadhin K
2018-06-04
Decadal climate predictability in the South Atlantic is explored by performing reforecast experiments using a coupled general circulation model with two initialization schemes; one is assimilated with observed sea surface temperature (SST) only, and the other is additionally assimilated with observed subsurface ocean temperature and salinity. The South Atlantic is known to undergo decadal variability exhibiting a meridional dipole of SST anomalies through variations in the subtropical high and ocean heat transport. Decadal reforecast experiments in which only the model SST is initialized with the observation do not predict well the observed decadal SST variability in the South Atlantic, while the other experiments in which the model SST and subsurface ocean are initialized with the observation skillfully predict the observed decadal SST variability, particularly in the Southeast Atlantic. In-depth analysis of upper-ocean heat content reveals that a significant improvement of zonal heat transport in the Southeast Atlantic leads to skillful prediction of decadal SST variability there. These results demonstrate potential roles of subsurface ocean assimilation in the skillful prediction of decadal climate variability over the South Atlantic.
NASA Astrophysics Data System (ADS)
Chen, Y.; Huang, X. J.; Kong, J. X.
2018-03-01
In this paper, the focused ion beam was used to study the subsurface deformed layer of single crystal copper caused by the nanoscale single-point diamond fly cutting, and the possibility of using nanometer ultra-precision cutting to remove the larger deformation layer caused by traditional rough cutting process was explored. The maximum cutting thickness of single-point diamond cutting was about 146 nm, and the surface of the single-crystal copper after cutting was etched and observed by using the focused ion beam method. It was found that the morphology of the near-surface layer and the intermediate layer of the copper material were larger differences: the near-surface of the material was smaller and more compact, and the intermediate material layer of the material was more coarse sparse. The results showed that the traditional precision cutting would residual significant subsurface deformed layer and the thickness was on micron level. Even more, the subsurface deformed layer was obviously removed from about 12μm to 5μm after single-point diamond fly cutting in this paper. This paper proved that the large-scale subsurface deformed layer caused by traditional cutting process could be removed by nanometer ultra-precision cutting. It was of great significance to further establish the method that control of the deformation of weak rigid components by reducing the depth of the subsurface deformed layers.
NASA Astrophysics Data System (ADS)
Golmohammadi, A.; Jafarpour, B.; M Khaninezhad, M. R.
2017-12-01
Calibration of heterogeneous subsurface flow models leads to ill-posed nonlinear inverse problems, where too many unknown parameters are estimated from limited response measurements. When the underlying parameters form complex (non-Gaussian) structured spatial connectivity patterns, classical variogram-based geostatistical techniques cannot describe the underlying connectivity patterns. Modern pattern-based geostatistical methods that incorporate higher-order spatial statistics are more suitable for describing such complex spatial patterns. Moreover, when the underlying unknown parameters are discrete (geologic facies distribution), conventional model calibration techniques that are designed for continuous parameters cannot be applied directly. In this paper, we introduce a novel pattern-based model calibration method to reconstruct discrete and spatially complex facies distributions from dynamic flow response data. To reproduce complex connectivity patterns during model calibration, we impose a feasibility constraint to ensure that the solution follows the expected higher-order spatial statistics. For model calibration, we adopt a regularized least-squares formulation, involving data mismatch, pattern connectivity, and feasibility constraint terms. Using an alternating directions optimization algorithm, the regularized objective function is divided into a continuous model calibration problem, followed by mapping the solution onto the feasible set. The feasibility constraint to honor the expected spatial statistics is implemented using a supervised machine learning algorithm. The two steps of the model calibration formulation are repeated until the convergence criterion is met. Several numerical examples are used to evaluate the performance of the developed method.
The Extraterrestrial Materials Simulation Laboratory
NASA Technical Reports Server (NTRS)
Green, J. R.
2001-01-01
In contrast to fly-by and orbital missions, in situ missions face an incredible array of challenges in near-target navigation, landing site selection, descent, landing, science operations, sample collection and handling, drilling, anchoring, subsurface descent, communications, and contamination. The wide range of materials characteristics and environments threaten mission safety and success. For example, many physical properties are poorly characterized, including strength, composition, heterogeneity, phase change, texture, thermal properties, terrain features, atmospheric interaction, and stratigraphy. Examples of the range of materials properties include, for example: (1) Comets, with a possible compressive strength ranging from a light fluff to harder than concrete: 10(exp 2) to 10 (exp 8) Pa; (2) Europa, including a possible phase change at the surface, unknown strength and terrain roughness; and (3) Titan, with a completely unknown surface and possible liquid ocean. Additional information is contained in the original extended abstract.
NASA Astrophysics Data System (ADS)
Anantharaman, K.; Brown, C. T.; Hug, L. A.; Sharon, I.; Castelle, C. J.; Shelton, A.; Bonet, B.; Probst, A. J.; Thomas, B. C.; Singh, A.; Wilkins, M.; Williams, K. H.; Tringe, S. G.; Beller, H. R.; Brodie, E.; Hubbard, S. S.; Banfield, J. F.
2015-12-01
Microorganisms drive the transformations of carbon compounds in the terrestrial subsurface, a key reservoir of carbon on earth, and impact other linked biogeochemical cycles. Our current knowledge of the microbial ecology in this environment is primarily based on 16S rRNA gene sequences that paint a biased picture of microbial community composition and provide no reliable information on microbial metabolism. Consequently, little is known about the identity and metabolic roles of the uncultivated microbial majority in the subsurface. In turn, this lack of understanding of the microbial processes that impact the turnover of carbon in the subsurface has restricted the scope and ability of biogeochemical models to capture key aspects of the carbon cycle. In this study, we used a culture-independent, genome-resolved metagenomic approach to decipher the metabolic capabilities of microorganisms in an aquifer adjacent to the Colorado River, near Rifle, CO, USA. We sequenced groundwater and sediment samples collected across fifteen different geochemical regimes. Sequence assembly, binning and manual curation resulted in the recovery of 2,542 high-quality genomes, 27 of which are complete. These genomes represent 1,300 non-redundant organisms comprising both abundant and rare community members. Phylogenetic analyses involving ribosomal proteins and 16S rRNA genes revealed the presence of up to 34 new phyla that were hitherto unknown. Less than 11% of all genomes belonged to the 4 most commonly represented phyla that constitute 93% of all currently available genomes. Genome-specific analyses of metabolic potential revealed the co-occurrence of important functional traits such as carbon fixation, nitrogen fixation and use of electron donors and electron acceptors. Finally, we predict that multiple organisms are often required to complete redox pathways through a complex network of metabolic handoffs that extensively cross-link subsurface biogeochemical cycles.
NASA Astrophysics Data System (ADS)
Lauro, S. E.; Mattei, E.; Cosciotti, B.; Di Paolo, F.; Arcone, S. A.; Viccaro, M.; Pettinelli, E.
2017-07-01
Ground-penetrating radar (GPR) is a well-established geophysical terrestrial exploration method and has recently become one of the most promising for planetary subsurface exploration. Several future landing vehicles like EXOMARS, 2020 NASA ROVER, and Chang'e-4, to mention a few, will host GPR. A GPR survey has been conducted on volcanic deposits on Mount Etna (Italy), considered a good analogue for Martian and Lunar volcanic terrains, to test a novel methodology for subsoil dielectric properties estimation. The stratigraphy of the volcanic deposits was investigated using 500 MHz and 1 GHz antennas in two different configurations: transverse electric and transverse magnetic. Sloping discontinuities have been used to estimate the loss tangents of the upper layer of such deposits by applying the amplitude-decay and frequency shift methods and approximating the GPR transmitted signal by Gaussian and Ricker wavelets. The loss tangent values, estimated using these two methodologies, were compared and validated with those retrieved from time domain reflectometry measurements acquired along the radar profiles. The results show that the proposed analysis, together with typical GPR methods for the estimation of the real part of permittivity, can be successfully used to characterize the electrical properties of planetary subsurface and to define some constraints on its lithology of the subsurface.
Electrical Resistivity Imaging
Electrical resistivity imaging (ERI) is a geophysical method originally developed within the mining industry where it has been used for decades to explore for and characterize subsurface mineral deposits. It is one of the oldest geophysical methods with the first documented usag...
Solid-State Multimission Magnetometer (SSM(3)): Application to Groundwater Exploration on Mars
NASA Technical Reports Server (NTRS)
Grimm, Robert E.
2002-01-01
This report describes work to develop solid-state magnetometers using magnetoresistive thin films, low-frequency electric-field measurements, and methods for electromagnetic detection of water and ice in the subsurface of Mars.
Development of Hand-Held Thermographic Inspection Technologies
DOT National Transportation Integrated Search
2009-09-01
This study explored the application of hand-held thermographic cameras for the detection of subsurface delaminations in concrete bridges. The goal of the research was to provide maintenance and inspection personnel with an effective tool for detectin...
Development of hand-held thermographic inspection technologies.
DOT National Transportation Integrated Search
2009-09-01
This study explored the application of hand-held thermographic cameras for the detection of subsurface delaminations in concrete : bridges. The goal of the research was to provide maintenance and inspection personnel with an effective tool for detect...
43 CFR 3252.11 - What environmental requirements must I meet when conducting exploration operations?
Code of Federal Regulations, 2011 CFR
2011-10-01
... operations in a manner that: (1) Protects the quality of surface and subsurface waters, air, and other natural resources, including wildlife, soil, vegetation, and natural history; (2) Protects the quality of...
Reid, Jeffrey C.
1989-01-01
Computer processing and high resolution graphics display of geochemical data were used to quickly, accurately, and efficiently obtain important decision-making information for tin (cassiterite) exploration, Seward Peninsula, Alaska (USA). Primary geochemical dispersion patterns were determined for tin-bearing intrusive granite phases of Late Cretaceous age with exploration bedrock lithogeochemistry at the Kougarok tin prospect. Expensive diamond drilling footage was required to reach exploration objectives. Recognition of element distribution and dispersion patterns was useful in subsurface interpretation and correlation, and to aid location of other holes.
System concepts and enabling technologies for an ESA low-cost mission to Jupiter / Europa
NASA Astrophysics Data System (ADS)
Renard, P.; Koeck, C.; Kemble, Steve; Atzei, Alessandro; Falkner, Peter
2004-11-01
The European Space Agency is currently studying the Jovian Minisat Explorer (JME), as part of its Technology Reference Studies (TRS), used for its development plan of technologies enabling future scientific missions. The JME focuses on the exploration of the Jovian system and particularly of Europa. The Jupiter Minisat Orbiter (JMO) study concerns the first mission phase of JME that counts up to three missions using pairs of minisats. The scientific objectives are the investigation of Europa's global topography, the composition of its (sub)surface and the demonstration of existence of a subsurface ocean below its icy crust. The present paper describes the candidate JMO system concept, based on a Europa Orbiter (JEO) supported by a communications relay satellite (JRS), and its associated technology development plan. It summarizes an analysis performed in 2004 jointly by ESA and the EADS-Astrium Company in the frame of an industrial technical assistance to ESA.
Mars Radar Opens a Planet's Third Dimension
NASA Technical Reports Server (NTRS)
2008-01-01
Radar sounder instruments orbiting Mars have looked beneath the Martian surface and opened up the third dimension for planetary exploration. The technique's success is prompting scientists to think of all the other places in the Solar System where they would like to use radar sounders. The first radar sounder at Mars was the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) on the European Space Agency's Mars Express Orbiter. It has been joined by the complementary Shallow Subsurface Radar (SHARAD), operating at a different wavelength aboard NASA's Mars Reconnaissance Orbiter. The data in this animation are from SHARAD.WISDOM measurements in a cold artificial and controlled environment
NASA Astrophysics Data System (ADS)
Dechambre, M.; Saintenoy, A.; Ciarletti, V.; Biancheri-Astier, M.; Costard, F.; Hassen-Khodja, R.
2011-10-01
The WISDOM (500MHz - 3GHz) GPR is one of the instruments that have been selected as part of the Pasteur payload of ESA's 2018 ExoMars Rover mission. One of the main scientific objectives of the mission is to characterize the nature of the shallow sub-surface on Mars and WISDOM has been designed to explore the first ~ 3 meters of the subsurface with a vertical resolution of a few centimetres. Full polarimetric measurements in cold artificial and controlled conditions have been performed by the prototype to illustrate and quantify the instrument performance. Preliminary results are presented.
NASA Astrophysics Data System (ADS)
Carvalho, João; Inverno, Carlos; Matos, João Xavier; Rosa, Carlos; Granado, Isabel; Branch, Tim; Represas, Patrícia; Carabaneanu, Livia; Matias, Luís; Sousa, Pedro
2017-04-01
The Iberian Pyrite Belt (IPB) hosts world-class massive sulphide deposits, such as Neves-Corvo in Portugal and Rio Tinto in Spain. In Portugal, the Palaeozoic Volcanic-Sedimentary Complex (VSC) hosts these ore deposits, extending from the Grândola-Alcácer region to the Spanish border with a NW-SE to WNW-ESE trend. In the study area, between the Neves-Corvo mine region and Alcoutim (close to the Spanish border), the VSC outcrops only in a small horst near Alcoutim. Sparse exploration drill-hole data indicate that the depth to the top of the VSC varies from several 100 m to about 1 km beneath the Mértola Formation Flysch cover. Mapping of the VSC to the SE of Neves-Corvo mine is an important exploration goal and motivated the acquisition of six 2D seismic reflection profiles with a total length of approximately 82 km in order to map the hidden extension of the VSC. The data, providing information deeper than 10 km at some locations, were integrated in a 3D software environment along with potential-field, geological and drill-hole data to form a 3D structural framework model. Seismic data show strong reflections that represent several long Variscan thrust planes that smoothly dip to the NNE. Outcropping and previously unknown Late Variscan near-vertical faults were also mapped. Our data strongly suggest that the structural framework of Neves-Corvo extends south-eastwards to Alcoutim. Furthermore, the VSC top is located at depths that show the existence within the IPB of new areas with good potential to develop exploration projects envisaging the discovery of massive sulphide deposits of the Neves-Corvo type.
Li, L; Wing, B A; Bui, T H; McDermott, J M; Slater, G F; Wei, S; Lacrampe-Couloume, G; Lollar, B Sherwood
2016-10-27
The discovery of hydrogen-rich waters preserved below the Earth's surface in Precambrian rocks worldwide expands our understanding of the habitability of the terrestrial subsurface. Many deep microbial ecosystems in these waters survive by coupling hydrogen oxidation to sulfate reduction. Hydrogen originates from water-rock reactions including serpentinization and radiolytic decomposition of water induced by decay of radioactive elements in the host rocks. The origin of dissolved sulfate, however, remains unknown. Here we report, from anoxic saline fracture waters ∼2.4 km below surface in the Canadian Shield, a sulfur mass-independent fractionation signal in dissolved sulfate. We demonstrate that this sulfate most likely originates from oxidation of sulfide minerals in the Archaean host rocks through the action of dissolved oxidants (for example, HO · and H 2 O 2 ) themselves derived from radiolysis of water, thereby providing a coherent long-term mechanism capable of supplying both an essential electron donor (H 2 ) and a complementary acceptor (sulfate) for the deep biosphere.
Li, L.; Wing, B. A.; Bui, T. H.; McDermott, J. M.; Slater, G. F.; Wei, S.; Lacrampe-Couloume, G.; Lollar, B. Sherwood
2016-01-01
The discovery of hydrogen-rich waters preserved below the Earth's surface in Precambrian rocks worldwide expands our understanding of the habitability of the terrestrial subsurface. Many deep microbial ecosystems in these waters survive by coupling hydrogen oxidation to sulfate reduction. Hydrogen originates from water–rock reactions including serpentinization and radiolytic decomposition of water induced by decay of radioactive elements in the host rocks. The origin of dissolved sulfate, however, remains unknown. Here we report, from anoxic saline fracture waters ∼2.4 km below surface in the Canadian Shield, a sulfur mass-independent fractionation signal in dissolved sulfate. We demonstrate that this sulfate most likely originates from oxidation of sulfide minerals in the Archaean host rocks through the action of dissolved oxidants (for example, HO· and H2O2) themselves derived from radiolysis of water, thereby providing a coherent long-term mechanism capable of supplying both an essential electron donor (H2) and a complementary acceptor (sulfate) for the deep biosphere. PMID:27807346
Extraordinary phylogenetic diversity and metabolic versatility in aquifer sediment
Castelle, Cindy J.; Hug, Laura A.; Wrighton, Kelly C.; ...
2013-08-27
Microorganisms in the subsurface represent a substantial but poorly understood component of the Earth’s biosphere. Subsurface environments are complex and difficult to characterize; thus, their microbiota have remained as a ‘dark matter’ of the carbon and other biogeochemical cycles. Here we deeply sequence two sediment-hosted microbial communities from an aquifer adjacent to the Colorado River, CO, USA. No single organism represents more than ~1% of either community. Remarkably, many bacteria and archaea in these communities are novel at the phylum level or belong to phyla lacking a sequenced representative. The dominant organism in deeper sediment, RBG-1, is a member ofmore » a new phylum. On the basis of its reconstructed complete genome, RBG-1 is metabolically versatile. Its wide respiration-based repertoire may enable it to respond to the fluctuating redox environment close to the water table. We document extraordinary microbial novelty and the importance of previously unknown lineages in sediment biogeochemical transformations.« less
NASA Technical Reports Server (NTRS)
Hofmann, Beda A.; Farmer, Jack; Chang, Sherwood (Technical Monitor)
1997-01-01
The recognition of biological signatures in ancient epithermal deposits has special relevance for studies of early blaspheme evolution and in exploring for past life on Mars. Recently, proposals for the existence of an extensive subsurface blaspheme on Earth, dominated by chemoautotrophic microbial life, has gained prominence. However, reports of fossilized microbial remains, or biosedimentary structures (e.g. stromatolites) from the deposits of ancient subsurface systems, are rare. Microbial preservation is favoured where high population densities co-exist with rapid mineral precipitation. Near-surface epithetical systems with strong gradients in temperature and redox are good candidates for the abundant growth and fossilization of microorganisms, and are also favorable environments for the precipitation of ore minerals. Therefore, we might expect microbial remain, to be particularly well preserved in various kinds of hydrothermal and diagenetic mineral precipitates that formed below the upper temperature limit for life (approx. 120 C).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Padbury, Richard P.; Jur, Jesse S., E-mail: jsjur@ncsu.edu
Previous research exploring inorganic materials nucleation behavior on polymers via atomic layer deposition indicates the formation of hybrid organic–inorganic materials that form within the subsurface of the polymer. This has inspired adaptations to the process, such as sequential vapor infiltration, which enhances the diffusion of organometallic precursors into the subsurface of the polymer to promote the formation of a hybrid organic–inorganic coating. This work highlights the fundamental difference in mass uptake behavior between atomic layer deposition and sequential vapor infiltration using in-situ methods. In particular, in-situ quartz crystal microgravimetry is used to compare the mass uptake behavior of trimethyl aluminummore » in poly(butylene terephthalate) and polyamide-6 polymer thin films. The importance of trimethyl aluminum diffusion into the polymer subsurface and the subsequent chemical reactions with polymer functional groups are discussed.« less
NASA Technical Reports Server (NTRS)
Latorraca, G. A.; Bannister, L. H.
1974-01-01
Techniques developed for electromagnetic probing of the lunar interior, and techniques developed for the generation of high power audio frequencies were combined to make practical a magnetic inductive coupling system for the rapid measurement of ground conductivity profiles which are helpful when prospecting for the presence and quality of subsurface water. A system which involves the measurement of the direction, intensity, and time phase of the magnetic field observed near the surface of the earth at a distance from a horizontal coil energized so as to create a field that penetrates the earth was designed and studied to deduce the conductivity and stratification of the subsurface. Theoretical studies and a rudimentary experiment in an arid region showed that the approach is conceptually valid and that this geophysical prospecting technique can be developed for the economical exploration of subterranean water resources.
NASA Technical Reports Server (NTRS)
Hecht, Michael; Carsey, Frank
2005-01-01
The subsurface ice probe (SIPR) is a proposed apparatus that would bore into ice to depths as great as hundreds of meters by melting the ice and pumping the samples of meltwater to the surface. Originally intended for use in exploration of subsurface ice on Mars and other remote planets, the SIPR could also be used on Earth as an alternative to coring, drilling, and melting apparatuses heretofore used to sample Arctic and Antarctic ice sheets. The SIPR would include an assembly of instrumentation and electronic control equipment at the surface, connected via a tether to a compact assembly of boring, sampling, and sensor equipment in the borehole (see figure). Placing as much equipment as possible at the surface would help to attain primary objectives of minimizing power consumption, sampling with high depth resolution, and unobstructed imaging of the borehole wall. To the degree to which these requirements would be satisfied, the SIPR would offer advantages over the aforementioned ice-probing systems.
The InSight Mars Lander and Its Effect on the Subsurface Thermal Environment
NASA Astrophysics Data System (ADS)
Siegler, Matthew A.; Smrekar, Suzanne E.; Grott, Matthias; Piqueux, Sylvain; Mueller, Nils; Williams, Jean-Pierre; Plesa, Ana-Catalina; Spohn, Tilman
2017-10-01
The 2018 InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) Mission has the mission goal of providing insitu data for the first measurement of the geothermal heat flow of Mars. The Heat Flow and Physical Properties Package (HP3) will take thermal conductivity and thermal gradient measurements to approximately 5 m depth. By necessity, this measurement will be made within a few meters of the lander. This means that thermal perturbations from the lander will modify local surface and subsurface temperature measurements. For HP3's sensitive thermal gradient measurements, this spacecraft influence will be important to model and parameterize. Here we present a basic 3D model of thermal effects of the lander on its surroundings. Though lander perturbations significantly alter subsurface temperatures, a successful thermal gradient measurement will be possible in all thermal conditions by proper (>3 m depth) placement of the heat flow probe.
Dielectric properties of Jovian satellite ice analogs for subsurface radar exploration: A review
NASA Astrophysics Data System (ADS)
Pettinelli, Elena; Cosciotti, Barbara; Di Paolo, Federico; Lauro, Sebastian Emanuel; Mattei, Elisabetta; Orosei, Roberto; Vannaroni, Giuliano
2015-09-01
The first European mission dedicated to the exploration of Jupiter and its icy moons (JUpiter ICy moons Explorer—JUICE) will be launched in 2022 and will reach its final destination in 2030. The main goals of this mission are to understand the internal structure of the icy crusts of three Galilean satellites (Europa, Ganymede, and Callisto) and, ultimately, to detect Europa's subsurface ocean, which is believed to be the closest to the surface among those hypothesized to exist on these moons. JUICE will be equipped with the 9 MHz subsurface-penetrating radar RIME (Radar for Icy Moon Exploration), which is designed to image the ice down to a depth of 9 km. Moreover, a parallel mission to Europa, which will host onboard REASON (Radar for Europa Assessment and Sounding: Ocean to Near-surface) equipped with 9MHz and 60MHz antennas, has been recently approved by NASA. The success of these experiments strongly relies on the accurate prediction of the radar performance and on the optimal processing and interpretation of radar echoes that, in turn, depend on the dielectric properties of the materials composing the icy satellite crusts. In the present review we report a complete range of potential ice types that may occur on these icy satellites to understand how they may affect the results of the proposed missions. First, we discuss the experimental results on pure and doped water ice in the framework of the Jaccard theory, highlighting the critical aspects in terms of a lack of standard laboratory procedures and inconsistency in data interpretation. We then describe the dielectric behavior of extraterrestrial ice analogs like hydrates and icy mixtures, carbon dioxide ice and ammonia ice. Building on this review, we have selected the most suitable data to compute dielectric attenuation, velocity, vertical resolution, and reflection coefficients for such icy moon environments, with the final goal being to estimate the potential capabilities of the radar missions as a function of the frequency and temperature ranges of interest for the subsurface sounders. We present the different subsurface scenarios and associated radar signal attenuation models that have been proposed so far to simulate the structure of the crust of Europa and discuss the physical and geological nature of various dielectric targets potentially detectable with RIME. Finally, we briefly highlight several unresolved issues that should be addressed, in near future, to improve our capability to produce realistic electromagnetic models of icy moon crusts. The present review is of interest for the geophysical exploration of all solar system bodies, including the Earth, where ice can be present at the surface or at relatively shallow depths.
The DESMEX Project - Deep Electromagnetic Sounding for Mineral EXploration
NASA Astrophysics Data System (ADS)
Meyer, U.; Becken, M.; Stolz, R.; Nittinger, C.; Cherevatova, M.; Siemon, B.; Martin, T.; Petersen, H.; Steuer, A.
2017-12-01
The DESMEX project (Deep Electromagnetic Sounding for Mineral Exploration) aims to develop independent semi-airborne frequency domain systems for mineral exploration down to depths of 1 km and deeper. Two different helicopter-towed systems are being designed and tested using source installations on ground. One system uses among other equipment conventional three axis induction coils, a 3D-fluxgate and a high precision inertial motion unit. The use of the two different magnetometers allows to record data in a broad frequency range from 1 Hz to 10 kHz. The second system uses a newly developed SQUID-based sensing system of a similar frequency range and a self made inertial motion unit. Horizontal electric dipole transmitters provided by the Leibniz Institute for Applied Geophysics in Hannover and the Institute of Geophysics and Meteorology of the University in Cologne are used as ground based sources. First system tests showed a good performance of both systems with general noise levels below 50 pT/root(Hz). Test flights above the common survey area proved that the desired depth of investigation can be achieved and that the data is consistent with the subsurface conductivity structures. In order to verify the data acquired from the newly developed system at shallow depths and to provide a better starting model for later inversion calculations helicopter borne frequency domain electromagnetics has been acquired and fully processed over the test site Schleiz - Greiz in Germany. To further relate the subsurface conductivity models to the subsurface geology and mineralogy, petrophysical investigations have been performed on rock samples from the site of investigation and analogue samples.
Bio-Inspired Engineering of Exploration Systems
NASA Technical Reports Server (NTRS)
Thakoor, Sanita
2003-01-01
The multidisciplinary concept of "bioinspired engineering of exploration systems" (BEES) is described, which is a guiding principle of the continuing effort to develop biomorphic explorers as reported in a number of articles in the past issues of NASA Tech Briefs. The intent of BEES is to distill from the principles found in successful nature-tested mechanisms of specific crucial functions that are hard to accomplish by conventional methods but that are accomplished rather deftly in nature by biological organisms. The intent is not just to mimic operational mechanisms found in a specific biological organism but to imbibe the salient principles from a variety of diverse bio-organisms for the desired crucial function. Thereby, we can build explorer systems that have specific capabilities endowed beyond nature, as they will possess a combination of the best nature-tested mechanisms for that particular function. The approach consists of selecting a crucial function, for example, flight or some selected aspects of flight, and develop an explorer that combines the principles of those specific attributes as seen in diverse flying species into one artificial entity. This will allow going beyond biology and achieving unprecedented capability and adaptability needed in encountering and exploring what is as yet unknown. A classification of biomorphic flyers into two main classes of surface and aerial explorers is illustrated in the figure, with examples of a variety of biological organisms that provide the inspiration in each respective subclass. Such biomorphic explorers may possess varied mobility modes: surface-roving, burrowing, hopping, hovering, or flying, to accomplish surface, subsurface, and aerial exploration. Preprogrammed for a specific function, they could serve as one-way communicating beacons, spread over the exploration site, autonomously looking for/at the targets of interest. In a hierarchical organization, these biomorphic explorers would report to the next level of exploration mode (say, a large conventional lander/rover) in the vicinity. A widespread and affordable exploration of new/hazardous sites at lower cost and risk would thus become possible by utilizing a faster aerial flyer to cover long ranges and deploying a variety of function- specific, smaller biomorphic explorers for distributed sensing and local sample acquisition. Several conceptual biomorphic missions for planetary and terrestrial exploration applications have been illustrated in "Surface-Launched Explorers for Reconnaissance/ Scouting" (NPO-20871), NASA Tech Briefs, Vol. 26, No. 4 (April, 2002), page 69 and "Bio-Inspired Engineering of Exploration Systems," Journal of Space Mission Architecture, Issue 2, Fall 2000, pages 49-79.
Validation of Innovative Exploration Technologies for Newberry Volcano: Drill Site Location Map 2010
Jaffe, Todd
2012-01-01
Newberry seeks to explore "blind" (no surface evidence) convective hydrothermal systems associated with a young silicic pluton on the flanks of Newberry Volcano. This project will employ a combination of innovative and conventional techniques to identify the location of subsurface geothermal fluids associated with the hot pluton. Newberry project drill site location map 2010. Once the exploration mythology is validated, it can be applied throughout the Cascade Range and elsewhere to locate and develop “blind” geothermal resources.
Exploring Agricultural Drainage's Influence on Wetland and Watershed Connectivity
Artificial agricultural drainage (i.e. surface ditches or subsurface tile) is an important agricultural management tool. Artificial drainage allows for timely fieldwork and adequate root aeration, resulting in greater crop yields for farmers. This practice is widespread throughou...
Subsurface soil carbon losses offset surface carbon accumulation in abandoned agricultural fields
NASA Astrophysics Data System (ADS)
Yang, Y.; Knops, J. M. H.
2017-12-01
Soil carbon is widely understood to accumulate after agricultural abandonment. However, most of the studies have been focused on shallow depths (10 to 30 cm), and there is a lack of deeper soil carbon data. It was reported that in temperate grasslands, 58% of the soil organic carbon in the first meter was stored between 20 and 100 cm, and organic matter in deeper soil might also be susceptible to agricultural disturbance. We used repeated sampling in 2001 and 2014 to directly measure rates of soil carbon change in both surface and subsurface soil in 21 abandoned agricultural fields at Cedar Creek Ecosystem Science Reserve, MN. Congruent with many other studies, we found carbon accumulated 384.2 C g/m2 in surface soil (0 - 20 cm) over the 13 years. However, we also found carbon pool declined 688.1 C g/m2 in the subsurface soil (40-100 cm), which resulted in a net total loss of soil carbon. We investigated the ecosystem carbon pools and fluxes to explore the mechanisms of the observed soil carbon changes. We found root carbon was not significantly correlated with soil carbon in any of the depth. In situ soil incubation showed nitrogen mineralization rates in subsurface soil are lower than that of surface soil. However, the estimated nitrogen and carbon output through decomposition is higher than inputs from roots, therefore leading to carbon loss in subsurface soil. These results suggest that the decomposition of soil organic matter by microorganisms in subsurface soil is significant, and should be incorporated in ecosystem carbon budget models.
Impact of Subsurface Heterogeneities on nano-Scale Zero Valent Iron Transport
NASA Astrophysics Data System (ADS)
Krol, M. M.; Sleep, B. E.; O'Carroll, D. M.
2011-12-01
Nano-scale zero valent iron (nZVI) has been applied as a remediation technology at sites contaminated with chlorinated compounds and heavy metals. Although laboratory studies have demonstrated high reactivity for the degradation of target contaminants, the success of nZVI in the field has been limited due to poor subsurface mobility. When injected into the subsurface, nZVI tends to aggregate and be retained by subsurface soils. As such nZVI suspensions need to be stabilized for increased mobility. However, even with stabilization, soil heterogeneities can still lead to non-uniform nZVI transport, resulting in poor distribution and consequently decreased degradation of target compounds. Understanding how nZVI transport can be affected by subsurface heterogeneities can aid in improving the technology. This can be done with the use of a numerical model which can simulate nZVI transport. In this study CompSim, a finite difference groundwater model, is used to simulate the movement of nZVI in a two-dimensional domain. CompSim has been shown in previous studies to accurately predict nZVI movement in the subsurface, and is used in this study to examine the impact of soil heterogeneity on nZVI transport. This work also explores the impact of different viscosities of the injected nZVI suspensions (corresponding to different stabilizing polymers) and injection rates on nZVI mobility. Analysis metrics include travel time, travel distance, and average nZVI concentrations. Improving our understanding of the influence of soil heterogeneity on nZVI transport will lead to improved field scale implementation and, potentially, to more effective remediation of contaminated sites.
NASA Technical Reports Server (NTRS)
Delory, G. T.; Grimm, R. E.
2003-01-01
Low-frequency electromagnetic soundings of the subsurface can identify liquid water at depths ranging from hundreds of meters to approx. 10 km in an environment such as Mars. Among the tools necessary to perform these soundings are low-frequency electric and magnetic field sensors capable of being deployed from a lander or rover such that horizontal and vertical components of the fields can be measured free of structural or electrical interference. Under a NASA Planetary Instrument Definition and Development Program (PIDDP), we are currently engaged in the prototype stages of low frequency sensor implementations that will enable this technique to be performed autonomously within the constraints of a lander platform. Once developed, this technique will represent both a complementary and alternative method to orbital radar sounding investigations, as the latter may not be able to identify subsurface water without significant ambiguities. Low frequency EM methods can play a crucial role as a ground truth measurement, performing deep soundings at sites identified as high priority areas by orbital radars. Alternatively, the penetration depth and conductivity discrimination of low-frequency methods may enable detection of subsurface water in areas that render radar methods ineffective. In either case, the sensitivity and depth of penetration inherent in low frequency EM exploration makes this tool a compelling candidate method to identify subsurface liquid water from a landed platform on Mars or other targets of interest.
A high frequency electromagnetic impedance imaging system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tseng, Hung-Wen; Lee, Ki Ha; Becker, Alex
2003-01-15
Non-invasive, high resolution geophysical mapping of the shallow subsurface is necessary for delineation of buried hazardous wastes, detecting unexploded ordinance, verifying and monitoring of containment or moisture contents, and other environmental applications. Electromagnetic (EM) techniques can be used for this purpose since electrical conductivity and dielectric permittivity are representative of the subsurface media. Measurements in the EM frequency band between 1 and 100 MHz are very important for such applications, because the induction number of many targets is small and the ability to determine the subsurface distribution of both electrical properties is required. Earlier workers were successful in developing systemsmore » for detecting anomalous areas, but quantitative interpretation of the data was difficult. Accurate measurements are necessary, but difficult to achieve for high-resolution imaging of the subsurface. We are developing a broadband non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using an EM impedance approach similar to the MT exploration technique. Electric and magnetic sensors were tested to ensure that stray EM scattering is minimized and the quality of the data collected with the high-frequency impedance (HFI) system is good enough to allow high-resolution, multi-dimensional imaging of hidden targets. Additional efforts are being made to modify and further develop existing sensors and transmitters to improve the imaging capability and data acquisition efficiency.« less
Relative contributions of microbial and infrastructure heat at a crude oil-contaminated site
NASA Astrophysics Data System (ADS)
Warren, Ean; Bekins, Barbara A.
2018-04-01
Biodegradation of contaminants can increase the temperature in the subsurface due to heat generated from exothermic reactions, making temperature observations a potentially low-cost approach for determining microbial activity. For this technique to gain more widespread acceptance, it is necessary to better understand all the factors affecting the measured temperatures. Biodegradation has been occurring at a crude oil-contaminated site near Bemidji, Minnesota for 39 years, creating a quasi-steady-state plume of contaminants and degradation products. A model of subsurface heat generation and transport helps elucidate the contribution of microbial and infrastructure heating to observed temperature increases at this site. We created a steady-state, two-dimensional, heat transport model using previous-published parameter values for physical, chemical and biodegradation properties. Simulated temperature distributions closely match the observed average annual temperatures measured in the contaminated area at the site within less than 0.2 °C in the unsaturated zone and 0.4 °C in the saturated zone. The model results confirm that the observed subsurface heat from microbial activity is due primarily to methane oxidation in the unsaturated zone resulting in a 3.6 °C increase in average annual temperature. Another important source of subsurface heat is from the active, crude-oil pipelines crossing the site. The pipelines impact temperatures for a distance of 200 m and contribute half the heat. Model results show that not accounting for the heat from the pipelines leads to overestimating the degradation rates by a factor of 1.7, demonstrating the importance of identifying and quantifying all heat sources. The model results also highlighted a zone where previously unknown microbial activity is occurring at the site.
Relative contributions of microbial and infrastructure heat at a crude oil-contaminated site.
Warren, Ean; Bekins, Barbara A
2018-04-01
Biodegradation of contaminants can increase the temperature in the subsurface due to heat generated from exothermic reactions, making temperature observations a potentially low-cost approach for determining microbial activity. For this technique to gain more widespread acceptance, it is necessary to better understand all the factors affecting the measured temperatures. Biodegradation has been occurring at a crude oil-contaminated site near Bemidji, Minnesota for 39 years, creating a quasi-steady-state plume of contaminants and degradation products. A model of subsurface heat generation and transport helps elucidate the contribution of microbial and infrastructure heating to observed temperature increases at this site. We created a steady-state, two-dimensional, heat transport model using previous-published parameter values for physical, chemical and biodegradation properties. Simulated temperature distributions closely match the observed average annual temperatures measured in the contaminated area at the site within less than 0.2 °C in the unsaturated zone and 0.4 °C in the saturated zone. The model results confirm that the observed subsurface heat from microbial activity is due primarily to methane oxidation in the unsaturated zone resulting in a 3.6 °C increase in average annual temperature. Another important source of subsurface heat is from the active, crude-oil pipelines crossing the site. The pipelines impact temperatures for a distance of 200 m and contribute half the heat. Model results show that not accounting for the heat from the pipelines leads to overestimating the degradation rates by a factor of 1.7, demonstrating the importance of identifying and quantifying all heat sources. The model results also highlighted a zone where previously unknown microbial activity is occurring at the site. Published by Elsevier B.V.
Asymmetric Signature of Glacial Antarctic Intermediate Water in the Central South Pacific
NASA Astrophysics Data System (ADS)
Tapia, R.; Nuernberg, D.; Ho, S. L.; Lamy, F.; Ullermann, J.; Gersonde, R.; Tiedemann, R.
2017-12-01
Southern Ocean Intermediate Waters (SOIWs) play a key role in modulating the global climate on glacial-interglacial time scales as they connect the Southern Ocean and the tropics. Despite their importance, the past evolution of the SOIWs in the central South Pacific is largely unknown due to a dearth of sedimentary archives. Here we compare Mg/Ca-temperature, stable carbon and oxygen isotope records from surface-dwelling (G. bulloides) and deep-dwelling (G. inflata) planktic foraminifera at site PS75/059-2 (54°12.9' S, 125°25.53' W; recovery 13.98 m; 3.613 m water depth), located north of the modern Subantarctic Front. Our study focuses on the temperature and salinity variability controlled by SOIWs, which were subducted at the Subantarctic Front during the Last Glacial Maximum (LGM; 29-17ka BP) and the Penultimate Glacial Maximum (PGM; 180-150ka BP). During both glacial periods conditions at the subsurface ocean were colder and fresher relative to the Holocene (<10ka) suggesting an enhanced presence of SOIWs. In spite of the comparable subsurface cooling during both glacial, the subsurface ocean during the PGM was saltier and 0.35‰ more depleted in δ13C in comparison to the LGM. Interestingly, the mean δ13C value of the PGM is comparable to the Carbon Isotope Minimum Events, which might suggests a larger contribution of "old" low δ13C deep waters to the study site during the PGM. A Latitudinal comparison of subsurface proxies suggests glacial asymmetries in the advection of SOIWs into the central Pacific, plausibly related to glacial changes in the convection depth of SOIWs at the South Antarctic Front area rather than changes in production of the SOIWs.
NASA Astrophysics Data System (ADS)
Jackisch, Conrad; Angermann, Lisa; Allroggen, Niklas; Sprenger, Matthias; Blume, Theresa; Tronicke, Jens; Zehe, Erwin
2017-07-01
The study deals with the identification and characterization of rapid subsurface flow structures through pedo- and geo-physical measurements and irrigation experiments at the point, plot and hillslope scale. Our investigation of flow-relevant structures and hydrological responses refers to the general interplay of form and function, respectively. To obtain a holistic picture of the subsurface, a large set of different laboratory, exploratory and experimental methods was used at the different scales. For exploration these methods included drilled soil core profiles, in situ measurements of infiltration capacity and saturated hydraulic conductivity, and laboratory analyses of soil water retention and saturated hydraulic conductivity. The irrigation experiments at the plot scale were monitored through a combination of dye tracer, salt tracer, soil moisture dynamics, and 3-D time-lapse ground penetrating radar (GPR) methods. At the hillslope scale the subsurface was explored by a 3-D GPR survey. A natural storm event and an irrigation experiment were monitored by a dense network of soil moisture observations and a cascade of 2-D time-lapse GPR trenches
. We show that the shift between activated and non-activated state of the flow paths is needed to distinguish structures from overall heterogeneity. Pedo-physical analyses of point-scale samples are the basis for sub-scale structure inference. At the plot and hillslope scale 3-D and 2-D time-lapse GPR applications are successfully employed as non-invasive means to image subsurface response patterns and to identify flow-relevant paths. Tracer recovery and soil water responses from irrigation experiments deliver a consistent estimate of response velocities. The combined observation of form and function under active conditions provides the means to localize and characterize the structures (this study) and the hydrological processes (companion study Angermann et al., 2017, this issue).
Yang, Sheng-long; Jin, Shao-fei; Hua, Cheng-jun; Dai, Yang
2015-02-01
In order to analyze the correlation between spatial-temporal distribution of the bigeye tuna ( Thunnus obesus) and subsurface factors, the study explored the isothermal distribution of subsurface temperatures in the bigeye tuna fishing grounds in the tropical Atlantic Ocean, and built up the spatial overlay chart of the isothermal lines of 9, 12, 13 and 15 °C and monthly CPUE (catch per unit effort) from bigeye tuna long-lines. The results showed that the bigeye tuna mainly distributed in the water layer (150-450 m) below the lower boundary depth of thermocline. At the isothermal line of 12 °C, the bigeye tuna mainly lived in the water layer of 190-260 m, while few individuals were found at water depth more than 400 m. As to the 13 °C isothermal line, high CPUE often appeared at water depth less than 250 m, mainly between 150-230 m, while no CPUE appeared at water depth more than 300 m. The optimum range of subsurface factors calculated by frequency analysis and empirical cumulative distribution function (ECDF) exhibited that the optimum depth range of 12 °C isothermal depth was 190-260 m and the 13 °C isothermal depth was 160-240 m, while the optimum depth difference range of 12 °C isothermal depth was -10 to 100 m and the 13 °C isothermal depth was -40 to 60 m. The study explored the optimum range of subsurface factors (water temperature and depth) that drive horizontal and vertical distribution of bigeye tuna. The preliminary result would help to discover the central fishing ground, instruct fishing depth, and provide theoretical and practical references for the longline production and resource management of bigeye tuna in the Atlantic Ocean.
NASA Astrophysics Data System (ADS)
Meyer-Dombard, D. R.; Cardace, D.; Woycheese, K. M.; Vallalar, B.; Casar, C.; Simon, A.; Arcilla, C. A.
2016-12-01
Serpentinization in the subsurface produces highly reduced, high pH fluids that provide microbial habitats. It is assumed that these deep subsurface fluids contain copious H2 and CH4 gas, little/no inorganic carbon, and limited electron acceptors. As serpentinized fluids reach the oxygenated surface environment, microbial biomes shift and organisms capable of metabolizing O2 thrive (Woycheese et al., 2015). However, the relationship of microbial communities found in surface expressions of serpentinizing fluids to the subsurface biosphere is still a target of exploration. Our work in the Zambales ophiolite (Philippines) defines surface microbial habitats with geochemistry, targeted culturing efforts, and community analysis (Cardace et al., 2015; Woycheese et al., 2015). Springs range from pH 9-11.5, and contain 0.06-2 ppm DO, 0-3.7 ppm sulfide, 30-800 ppm silica. Gases include H2 and CH4 > 10uM, CO2 > 1 mM, and trace amounts of CO. These surface data allow prediction of the subsurface metabolic landscape. For example, Cardace et al., (2015) predicted that metabolism of iron is important in both biospheres. Growth media were designed to target iron reduction yielding heterotrophic and autotrophic iron reducers at high pH. Reduced iron minerals were produced in several cultures (Casar et al., sub.), and isolation efforts are underway. Shotgun metagenomic analysis shows the metabolic capacity for methanogenesis, suggesting microbial origins for some CH4 present. The enzymes methyl coenzyme M reductase, and formylmethanofuran dehydrogenase were detected, and relative abundance increased near the near-anoxic spring source. The metagenomes indicate carbon cycling at these sites is reliant on methanogenesis, acetogenesis, sulfate reduction, and H2 and CH4 oxidation. In this tropical climate, cellulose is also a likely carbon source; cellulose degrading isolates have been obtained. These results indicate a metabolically flexible community at the surface where serpentinizing fluids are expressed. The next step is to understand what these surface systems might tell us about the subsurface biosphere. References: Cardace et al., 2015 Frontiers in Extreme Microbiology 6: doi: 10.3389/fmicb.2015.00010 Woycheese et al., 2015 Frontiers in Extreme Microbiology 6: doi: 10.3389/fmicb.2015.00044
NASA Astrophysics Data System (ADS)
Banz, B.; Bohling, G.; Doveton, J.
2008-12-01
Traditional programs of geological education continue to be focused primarily on the evaluation of surface or near-surface geology accessed at outcrops and shallow boreholes. However, most students who graduate to careers in geology work almost entirely on subsurface problems, interpreting drilling records and petrophysical logs from exploration and production wells. Thus, college graduates commonly find themselves ill-prepared when they enter the petroleum industry and require specialized training in drilling and petrophysical log interpretation. To aid in this training process, we are developing an environment for interactive instruction in the geological aspects of petroleum reservoir characterization employing a virtual subsurface closely reflecting the geology of the US mid-continent, in the fictional setting of Small County, Kansas. Stochastic simulation techniques are used to generate the subsurface characteristics, including the overall geological structure, distributions of facies, porosity, and fluid saturations, and petrophysical logs. The student then explores this subsurface by siting exploratory wells and examining drilling and petrophysical log records obtained from those wells. We are developing the application using the Eclipse Rich Client Platform, which allows for the rapid development of a platform-agnostic application while providing an immersive graphical interface. The application provides an array of views to enable relevant data display and student interaction. One such view is an interactive map of the county allowing the student to view the locations of existing well bores and select pertinent data overlays such as a contour map of the elevation of an interesting interval. Additionally, from this view a student may choose the site of a new well. Another view emulates a drilling log, complete with drilling rate plot and iconic representation of examined drill cuttings. From here, students are directed to stipulate subsurface lithology and interval tops as they progress through the drilling operation. Once the interpretation process is complete, the student is guided through an exercise emulating a drill stem test and then is prompted to decide on perforation intervals. The application provides a graphical framework by which the student is guided through well site selection, drilling data interpretation, and well completion or dry-hole abandonment, creating a tight feedback loop by which the student gains an over-arching view of drilling logistics and the subsurface data evaluation process.
Implementation of gINT software at the Virginia Department of Transportation.
DOT National Transportation Integrated Search
2008-01-01
A set of software tools was developed to enable staff of the Virginia Department of Transportation (VDOT) and consultants to streamline processing of subsurface exploration data. Built around the gINT program (geotechnical database and graphics packa...
[Search for life in deep biospheres].
Naganuma, Takeshi
2003-12-01
The life in deep biospheres bridges conventional biology and future exobiology. This review focuses the microbiological studies from the selected deep biospheres, i.e., deep-sea hydrothermal vents, sub-hydrothermal vents, terrestrial subsurface and a sub-glacier lake. The dark biospheres facilitate the emergence of organisms and communities dependent on chemolithoautotrophy, which are overwhelmed by photoautotrophy (photosynthesis) in the surface biospheres. The life at deep-sea hydrothermal vents owes much to chemolithoautotrophy based on the oxidation of sulfide emitted from the vents. It is likely that similarly active bodies such as the Jovian satellite Europa may have hydrothermal vents and associated biological communities. Anoxic or anaerobic condition is characteristic of deep subsurface biospheres. Subsurface microorganisms exploit available oxidants, or terminal electron acceptors (TEA), for anaerobic respiration. Sulfate, nitrate, iron (III) and CO2 are the representative TEAs in the deep subsurface. Below the 3000-4000 m-thick glacier on Antarctica, there have been >70 lakes with liquid water located. One of such sub-glacial lakes, Lake Vostok, is about to be drill-penetrated for microbiological studies. These deep biosphere "platforms" provide new knowledge about the diversity and potential of the Earth's life. The expertise obtained from the deep biosphere expeditions will facilitate the capability of exobiologial exploration.
NASA Astrophysics Data System (ADS)
Greeley, A.; Neumann, T.; Markus, T.; Kurtz, N. T.; Cook, W. B.
2015-12-01
Existing visible light laser altimeters such as MABEL (Multiple Altimeter Beam Experimental Lidar) - a single photon counting simulator for ATLAS (Advanced Topographic Laser Altimeter System) on NASA's upcoming ICESat-2 mission - and ATM (Airborne Topographic Mapper) on NASA's Operation IceBridge mission provide scientists a view of Earth's ice sheets, glaciers, and sea ice with unprecedented detail. Precise calibration of these instruments is needed to understand rapidly changing parameters like sea ice freeboard and to measure optical properties of surfaces like snow covered ice sheets using subsurface scattered photons. Photons travelling into snow, ice, or water before scattering back to the altimeter receiving system (subsurface photons) travel farther and longer than photons scattering off the surface only, causing a bias in the measured elevation. We seek to identify subsurface photons in a laboratory setting using a flight-tested laser altimeter (MABEL) and to quantify their effect on surface elevation estimates for laser altimeter systems. We also compare these estimates with previous laboratory measurements of green laser light transmission through snow, as well as Monte Carlo simulations of backscattered photons from snow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szecsody, James E.; Riley, Robert G.; Devary, Brooks J.
2005-06-01
This SERDP-funded project was initiated to investigate the fate of CL-20 in the subsurface environment, with a focus on identification and quantification of geochemical and microbial reactions of CL-20. CL-20 can be released to the surface and subsurface terrestrial environment by: a) manufacturing processes, b) munition storage, and c) use with low order detonation or unexploded ordnance. The risk of far-field subsurface migration was assessed through labora-tory experiments with a variety of sediments and subsurface materials to quantify processes that control CL-20 sorption-limited migration and degradation. Results of this study show that CL-20 will exhibit differing behavior in the subsurfacemore » terrestrial environment: 1. CL-20 on the sediment surface will photodegrade and interact with plants/animals (described in other SERDP projects CU 1254, 1256). CL-20 will exhibit greater sorption in humid sediments to organic matter. Transport will be solubility limited (i.e., low CL-20 aqueous solubility). 2. CL-20 infiltration into soils (<2 m) from spills will be subject to sorption to soil organic matter (if present), and low to high biodegradation rates (weeks to years) depending on the microbial population (greater in humid environment). 3. CL-20 in the vadose zone (>2 m) will be, in most cases, subject to low sorption and low degradation rates, so would persist in the subsurface environment and be at risk for deep migration. Low water content in arid regions will result in a decrease in both sorption and the degradation rate. Measured degradation rates in unsaturated sediments of years would result in significant subsurface migration distances. 4. CL-20 in groundwater will be subject to some sorption but likely very slow degradation rates. CL-20 sorption will be greater than RDX. Most CL-20 degradation will be abiotic (ferrous iron and other transition metals), because most deep subsurface systems have extremely low natural microbial populations. Degradation rates will range from weeks (iron reducing systems) to years. Although CL-20 will move rapidly through most sediments in the terrestrial environment, subsurface remediation can be utilized for cleanup. Transformation of CL-20 to intermediates can be rapidly accomplished under: a) reducing conditions (CL-20 4.1 min. half-life, RDX 18 min. half-life), b) alkaline (pH >10) conditions, and c) bioremediation with added nutrients. CL-20 degradation to intermediates may be insufficient to mitigate environmental impact, as the toxicity of many of these compounds is unknown. Biostimulation in oxic to reducing systems by carbon and nutrient addition can mineralize CL-20, with the most rapid rates occurring under reducing conditions.« less
Mud Volcanoes - A New Class of Sites for Geological and Astrobiological Exploration of Mars
NASA Technical Reports Server (NTRS)
Allen, C.C.; Oehler, D.Z.; Baker, D.M.
2009-01-01
Mud volcanoes provide a unique low-temperature window into the Earth s subsurface - including the deep biosphere - and may prove to be significant sources of atmospheric methane. The identification of analogous features on Mars would provide an important new class of sites for geological and astrobiological exploration. We report new work suggesting that features in Acidalia Planitia are most consistent with their being mud volcanoes.
High-Power Radar Sounders for the Investigation of Jupiter Icy Moons
NASA Technical Reports Server (NTRS)
Safaeinili, A.; Ostro, S.; Rodriquez, E.; Blankenship, D.; Kurth, W.; Kirchner, D.
2005-01-01
The high power and high data rate capability made available by a Prometheus class spacecraft could significantly enhance our ability to probe the subsurface of the planets/moons and asteroid/comets. The main technology development driver for our radar is the proposed Jupiter Icy Moon Orbiter (or JIMO) mission due to its harsh radiation environment. We plan to develop a dual-band radar at 5 and 50 MHz in response to the two major science requirements identified by the JIMO Science Definition Team: studying the near subsurface (less than 2 km) at high resolution and detection of the ice/ocean interface for Europa (depth up to 30 km). The 50-MHz band is necessary to provide high spatial resolution (footprint and depth) as required by the JIMO mission science requirements as currently defined. Our preliminary assessment indicates that the 50-MHz system is not required to be as high-power as the 5-MHz system since it will be more limited by the surface clutter than the Jupiter or galactic background noise. The low frequency band (e.g. 5 MHz), which is the focus of this effort, would be necessary to mitigate the performance risks posed by the unknown subsurface structure both in terms of unknown attenuation due to volumetric scattering and also the detection of the interface through the attenuative transition region at the ice/ocean interface. Additionally, the 5-MHz band is less affected by the surface roughness that can cause loss of coherence and clutter noise. However, since the Signal-to-Noise-Ratio (SNR) of the 5-MHz radar band is reduced due to Jupiter noise when operating in the Jupiter side of the moon, it is necessary to increase the radiated power. Our challenge is to design a high-power HF radar that can hnction in Jupiter's high radiation environment, yet be able to fit into spacecraft resource constraints such as mass and thermal limits. Our effort to develop the JIMO radar sounder will rely on our team's experience with planetary radar sounder design gained during our participation in the MARSIS radar sounder implementation.
Exploring Microbial Life in Oxic Sediments Underlying Oligotrophic Ocean Gyres
NASA Astrophysics Data System (ADS)
Ziebis, W.; Orcutt, B.; Wankel, S. D.; D'Hondt, S.; Szubin, R.; Kim, J. N.; Zengler, K.
2015-12-01
Oxygen, carbon and nutrient availability are defining parameters for microbial life. In contrast to organic-rich sediments of the continental margins, where high respiration rates lead to a depletion of O2 within a thin layer at the sediment surface, it was discovered that O2 penetrates several tens of meters into organic-poor sediments underlying oligotrophic ocean gyres. In addition, nitrate, another important oxidant, which usually disappears rapidly with depth in anoxic sediments, tends to accumulate above seawater concentrations in the oxic subsurface, reflecting the importance of nitrogen cycling processes, including both nitrification and denitrification. Two IODP drilling expeditions were vital for exploring the nature of the deep subsurface beneath oligotrophic ocean gyres, expedition 329 to the South Pacific Gyre (SPG) and expedition 336 to North Pond, located on the western flank of the Mid-Atlantic ridge beneath the North Atlantic Gyre. Within the ultra-oligotrophic SPG O2 penetrates the entire sediment column from the sediment-water interface to the underlying basement to depths of > 75 m. At North Pond, a topographic depression filled with sediment and surrounded by steep basaltic outcrops, O2 penetrates deeply into the sediment (~ 30 m) until it eventually becomes depleted. O2 also diffuses upward into the sediment from seawater circulating within the young crust underlying the sediment, resulting in a deep oxic layer several meters above the basalt. Despite low organic carbon contents microbial cells persist throughout the entire sediment column within the SPG (> 75 m) and at North Pond, albeit at low abundances. We explored the nature of the subsurface microbial communities by extracting intact cells from large volumes of sediment obtained from drill cores of the two expeditions. By using CARD-FiSH, amplicon (16s rRNA) and metagenome sequencing we shed light on the phylogenetic and functional diversity of the elusive communities residing in the deep oxic sediments of these two different areas. Given the global extent of this oxic subsurface studies of the diversity and metabolic potential of its biome, together with the analyses of porewater geochemical and isotopic composition, are beginning to reveal its role in global biogeochemical cycles.
Unprecedented Zipangu Underworld of the Moon Exploration (UZUME)
NASA Astrophysics Data System (ADS)
Haruyama, J.; Kawano, I.; Kubota, T.; Otsuki, M.; Kato, H.; Nishibori, T.; Iwata, T.; Yamamoto, Y.; Nagamatsu, A.; Shimada, K.; Ishihara, Y.; Hasenaka, T.; Morota, T.; Nishino, M. N.; Hashizume, K.; Saiki, K.; Shirao, M.; Komatsu, G.; Hasebe, N.; Shimizu, H.; Miyamoto, H.; Kobayashi, K.; Yokobori, S.; Michikami, T.; Yamamoto, S.; Yokota, Y.; Arisumi, H.; Ishigami, G.; Furutani, K.; Michikawa, Y.
2014-04-01
On the Moon, three huge vertical holes (several tens to a hundred meters in diameter and depth) were discovered in SELENE (nicknamed Kaguya) Terrain Camera data of 10 m pixel resolution. These holes are probably skylights of underground large caverns such as lava tubes, or magma chambers. The huge holes and their associated subsurface caverns are among the most important future exploration targets from the viewpoint of constructing lunar bases and many scientific aspects. We are now planning to explore the caverns through the skylight holes. We name the project as UZUME (Unprecedented Zipangu (Japan) Underworld of the Moon Exploration).
2016-08-09
In our quest to explore other planets, we only have our own planet as an analogue to the environments we may find life. By exploring extreme environments on Earth, we can model conditions that may be present on other celestial bodies and select locations to explore for signatures of life. Dr. Penelope Boston, the new director of the NASA Astrobiology Institute at Ames, will describe her work in some of Earth’s most diverse caves and how they inform future exploration of Mars and the search for life in our solar system.
Abnormal pressures as hydrodynamic phenomena
Neuzil, C.E.
1995-01-01
So-called abnormal pressures, subsurface fluid pressures significantly higher or lower than hydrostatic, have excited speculation about their origin since subsurface exploration first encountered them. Two distinct conceptual models for abnormal pressures have gained currency among earth scientists. The static model sees abnormal pressures generally as relict features preserved by a virtual absence of fluid flow over geologic time. The hydrodynamic model instead envisions abnormal pressures as phenomena in which flow usually plays an important role. This paper develops the theoretical framework for abnormal pressures as hydrodynamic phenomena, shows that it explains the manifold occurrences of abnormal pressures, and examines the implications of this approach. -from Author
Design and Evaluation of a Fiber Optic Probe as a means of Subsurface Planetary Exploration
NASA Astrophysics Data System (ADS)
Pilgrim, Robert Paul
The Optical Probe for Regolith Analysis (OPRA) is an instrumentation concept designed to provide spectroscopic analysis of the near subsurface of unconsolidated regolith on bodies such as moons, asteroids and planets. Below a chemically altered surface may lay the geological history in the form of stratigraphy that is shielded from degradation due to harsh external environments. Most of what we know about our solar system comes from remote platforms, such as satellites that are deployed into orbit around the target body. In the case of Mars, we have had several successful landers and rovers however, with the exception of the Mars Science Laboratory that just drilled its first hole, the complexity of subsurface excavation has limited the extent of subsurface exploration to simple scoops deployed on the ends of robotic arms which, by their very nature, will erase any stratigraphy that it may be digging into. The OPRA instrumentation concept allows for an integrated, lightweight and simple apparatus for subsurface exploration via a small, spike like structure which contains integrated optical fibers coupled to small windows running down the length of the probe. Each window is connected to a spectrometer housed onboard the deploying spacecraft. Each window is separately interrogated via the spectrometer over the wavelength range 1-2.5 nm to produce a spectroscopic profile as a function of depth. This project takes the Technology Readiness Level (TRL) of the OPRA instrumentation concept to level 3, which is defined by NASA to be the demonstration either analytically or experimentally of the proof of concept for critical functions of the proposed instrument. Firstly, to demonstrate that optical fibers are feasible for this type of application, we report on the techniques used by NASA to space qualify optical fibers. We investigate the optical performance of several fiber optic bundle configurations, both experimentally and numerically, to help optimize bundle performance. Optical bundles were then spectrally validated via a series of spectral comparisons between standardized reflectance spectroscopy targets and spectra obtained with the bundles. We also report on the integration of fiber optical bundles into other research and experimental results from several other groups within our research teams to obtain spectra under a more "space like" environment. Finally, the probe housing structural performance was investigated via finite element analysis, using probe penetration forces derived from data analysis of experimentation conducted by the Apollo lunar missions, and investigations into a mechanical analogue for the Martian regolith.
Zeng, Xian-lei; Liu, Xing-guo; Wu, Zong-fan; Shi, Xu; Lu, Shi-min
2016-02-15
Anaerobic ammonium oxidation (ANAMMOX) is one of the important functions in waste water treatment by subsurface flow constructed wetland (SSFCW), however, there are few studies on ANAMMOX in SSFCW environment at present. The community characteristics of ANAMMOX in the SSFCW of processing aquaculture waste water were explored in this study. In order to analyze the structure, diversity and abundance of ANAMMOX bacteria, several 16S rRNA clone libraries were constructed and real-time PCR targeting specific 16S rRNA genes together with diversity analysis was adopted. The obtained results showed that the SSFCW identified a total of three unknown clusters and two known clusters including Candidatus brocadia and Candidatus kuenenia. The dominant cluster was Candidatus brocadia. The highest diversity levels of ANAMMOX bacteria occurred in autumn (H', 1.21), while the lowest in spring (H', 0.64). The abundance of ANAMMOX bacteria in SSFCW environment ranged from 8.0 x 10(4) to 9.4 x 10(6) copies x g(-1) of fresh weight and the copy number of total bacterial 16S rRNA genes ranged from 7.3 x 10(9) to 9.1 x 10(10) copies x g(-1) of fresh weight during culture cycle. There were significant differences in the ANAMMOX bacteria abundances of different stratum and seasons in SSFCW environment, but the differences in total bacterial abundances were not obvious. In addition, the differences in ANAMMOX bacteria abundances in different stratum and seasons in SSFCW environment were irregular in different culture cycle. According to the distribution characteristics of ANAMMOX bacteria in the wetland, the denitrification effect of SSFCW could be improved by changing the supplying manners of aquaculture wastewater and adjusting the structure of wetland. The research results will provide reference for further optimizing the SSFCW and improving the efficiency of purification.
NASA Astrophysics Data System (ADS)
Mikucki, J.; Tulaczyk, S. M.; Purcell, A. M.; Dachwald, B.; Lyons, W. B.; Welch, K. A.; Auken, E.; Dugan, H. A.; Walter, J. I.; Pettit, E. C.; Doran, P. T.; Virginia, R. A.; Schamper, C.; Foley, N.; Feldmann, M.; Espe, C.; Ghosh, D.; Francke, G.
2015-12-01
Subglacial waters tend to accumulate solutes from extensive rock-water interactions, which, when released to the surface, can provide nutrients to surface ecosystems providing a 'hot spot' for microbial communities. Blood Falls, an iron-rich, saline feature at the terminus of Taylor Glacier in the McMurdo Dry Valleys, Antarctica is a well-studied subglacial discharge. Here we present an overview of geophysical surveys, thermomechanical drilling exploration and geomicrobiological analyses of the Blood Falls system. A helicopter-borne transient electromagnetic system (SkyTEM) flown over the Taylor Glacier revealed a surprisingly extensive subglacial aquifer and indicates that Blood Falls may be the only surface manifestation of this extensive briny groundwater. Ground-based temperature sensing and GPR data combined with the helicopter-borne TEM data enabled targeted drilling into the englacial conduit that delivers brine to the surface. During the 2014-15 austral summer field season, we used a novel ice-melting drill (the IceMole) to collect englacial brine for geomicrobiological analyses. Results from previously collected outflow and more recent samples indicate that the brine harbors a metabolically active microbial community that persists, despite cold, dark isolation. Isotope geochemistry and molecular analysis of functional genes from BF suggested that a catalytic or 'cryptic' sulfur cycle was linked to iron reduction. Recent metagenomic analysis confirms the presence of numerous genes involved in oxidative and reductive sulfur transformations. Metagenomic and metabolic activity data also indicate that subglacial dark CO2 fixation occurs via various pathways. Genes encoding key steps in CO2 fixation pathways including the Calvin Benson Basham and Wood Ljungdahl pathway were present and brine samples showed measureable uptake of 14C-labeled bicarbonate. These results support the notion that, like the deep subsurface, subglacial environments are chemosynthetic, deriving energy in part by cycling iron and sulfur compounds. Collectively our interdisciplinary dataset indicates that subsurface brines are widespread in the Taylor Valley polar desert and this previously unknown groundwater network likely supports unique microbial life.
NASA Technical Reports Server (NTRS)
Cooper, B. L.; Hoffman, J. H.; Allen, Carlton C.; McKay, David S.
1998-01-01
There are two important reasons to explore the Moon. First, we would like to know more about the Moon itself: its history, its geology, its chemistry, and its diversity. Second, we would like to apply this knowledge to a useful purpose. namely finding and using lunar resources. As a result of the recent Clementine and Lunar Prospector missions, we now have global data on the regional surface mineralogy of the Moon, and we have good reason to believe that water exists in the lunar polar regions. However, there is still very little information about the subsurface. If we wish to go to the lunar polar regions to extract water, or if we wish to go anywhere else on the Moon and extract (or learn) anything at all, we need information in three dimensions an understanding of what lies below the surface, both shallow and deep. The terrestrial mining industry provides an example of the logical steps that lead to an understanding of where resources are located and their economic significance. Surface maps are examined to determine likely locations for detailed study. Geochemical soil sample surveys, using broad or narrow grid patterns, are then used to gather additional data. Next, a detailed surface map is developed for a selected area, along with an interpretation of the subsurface structure that would give rise to the observed features. After that, further sampling and geophysical exploration are used to validate and refine the original interpretation, as well as to make further exploration/ mining decisions. Integrating remotely sensed, geophysical, and sample datasets gives the maximum likelihood of a correct interpretation of the subsurface geology and surface morphology. Apollo-era geophysical and automated sampling experiments sought to look beyond the upper few microns of the lunar surface. These experiments, including ground-penetrating radar and spectrometry, proved the usefulness of these methods for determining the best sites for lunar bases and lunar mining operations.
Multilayer apparent magnetization mapping approach and its application in mineral exploration
NASA Astrophysics Data System (ADS)
Guo, L.; Meng, X.; Chen, Z.
2016-12-01
Apparent magnetization mapping is a technique to estimate magnetization distribution in the subsurface from the observed magnetic data. It has been applied for geologic mapping and mineral exploration for decades. Apparent magnetization mapping usually models the magnetic layer as a collection of vertical, juxtaposed prisms in both horizontal directions, whose top and bottom surfaces are assumed to be horizontal or variable-depth, and then inverts or deconvolves the magnetic anomalies in the space or frequency domain to determine the magnetization of each prism. The conventional mapping approaches usually assume that magnetic sources contain no remanent magnetization. However, such assumptions are not always valid in mineral exploration of metallic ores. In this case, the negligence of the remanence will result in large geologic deviation or the occurrence of negative magnetization. One alternate strategy is to transform the observed magnetic anomalies into some quantities that are insensitive or weakly sensitive to the remanence and then subsequently to perform inversion on these quantities, without needing any a priori information about remanent magnetization. Such kinds of quantities include the amplitude of the magnetic total field anomaly (AMA), and the normalized magnetic source strength (NSS). Here, we present a space-domain inversion approach for multilayer magnetization mapping based on the AMA for reducing effects of remanence. In the real world, magnetization usually varies vertically in the subsurface. If we use only one-layer model for mapping, the result is simply vertical superposition of different magnetization distributions. Hence, a multi-layer model for mapping would be a more realistic approach. We test the approach on the real data from a metallic deposit area in North China. The results demonstrated that our approach is feasible and produces considerable magnetization distribution from top layer to bottom layer in the subsurface.
NASA Astrophysics Data System (ADS)
Fernández-Remolar, David C.; Gómez, Felipe; Prieto-Ballesteros, Olga; Schelble, Rachel T.; Rodríguez, Nuria; Amiols, Ricardo
2008-02-01
Chemolithotrophic communities that colonize subsurface habitats have great relevance for the astrobiological exploration of our Solar System. We hypothesize that the chemical and thermal stabilization of an environment through microbial activity could make a given planetary region habitable. The MARTE project ground-truth drilling campaigns that sampled cryptic subsurface microbial communities in the basement of the Ro Tinto headwaters have shown that acidic surficial habitats are the result of the microbial oxidation of pyritic ores. The oxidation process is exothermic and releases heat under both aerobic and anaerobic conditions. These microbial communities can maintain the subsurface habitat temperature through storage heat if the subsurface temperature does not exceed their maximum growth temperature. In the acidic solutions of the Ro Tinto, ferric iron acts as an effective buffer for controlling water pH. Under anaerobic conditions, ferric iron is the oxidant used by microbes to decompose pyrite through the production of sulfate, ferrous iron, and protons. The integration between the physical and chemical processes mediated by microorganisms with those driven by the local geology and hydrology have led us to hypothesize that thermal and chemical regulation mechanisms exist in this environment and that these homeostatic mechanisms could play an essential role in creating habitable areas for other types of microorganisms. Therefore, searching for the physicochemical expression of extinct and extant homeostatic mechanisms through physical and chemical anomalies in the Mars crust (i.e., local thermal gradient or high concentration of unusual products such as ferric sulfates precipitated out from acidic solutions produced by hypothetical microbial communities) could be a first step in the search for biological traces of a putative extant or extinct Mars biosphere.
Mirus, Benjamin B.; Becker, Rachel E.; Baum, Rex L.; Smith, Joel B.
2018-01-01
Early warning for rainfall-induced shallow landsliding can help reduce fatalities and economic losses. Although these commonly occurring landslides are typically triggered by subsurface hydrological processes, most early warning criteria rely exclusively on empirical rainfall thresholds and other indirect proxies for subsurface wetness. We explore the utility of explicitly accounting for antecedent wetness by integrating real-time subsurface hydrologic measurements into landslide early warning criteria. Our efforts build on previous progress with rainfall thresholds, monitoring, and numerical modeling along the landslide-prone railway corridor between Everett and Seattle, Washington, USA. We propose a modification to a previously established recent versus antecedent (RA) cumulative rainfall thresholds by replacing the antecedent 15-day rainfall component with an average saturation observed over the same timeframe. We calculate this antecedent saturation with real-time telemetered measurements from five volumetric water content probes installed in the shallow subsurface within a steep vegetated hillslope. Our hybrid rainfall versus saturation (RS) threshold still relies on the same recent 3-day rainfall component as the existing RA thresholds, to facilitate ready integration with quantitative precipitation forecasts. During the 2015–2017 monitoring period, this RS hybrid approach has an increase of true positives and a decrease of false positives and false negatives relative to the previous RA rainfall-only thresholds. We also demonstrate that alternative hybrid threshold formats could be even more accurate, which suggests that further development and testing during future landslide seasons is needed. The positive results confirm that accounting for antecedent wetness conditions with direct subsurface hydrologic measurements can improve thresholds for alert systems and early warning of rainfall-induced shallow landsliding.
Fernández-Remolar, David C; Gómez, Felipe; Prieto-Ballesteros, Olga; Schelble, Rachel T; Rodríguez, Nuria; Amils, Ricardo
2008-02-01
Chemolithotrophic communities that colonize subsurface habitats have great relevance for the astrobiological exploration of our Solar System. We hypothesize that the chemical and thermal stabilization of an environment through microbial activity could make a given planetary region habitable. The MARTE project ground-truth drilling campaigns that sampled cryptic subsurface microbial communities in the basement of the Río Tinto headwaters have shown that acidic surficial habitats are the result of the microbial oxidation of pyritic ores. The oxidation process is exothermic and releases heat under both aerobic and anaerobic conditions. These microbial communities can maintain the subsurface habitat temperature through storage heat if the subsurface temperature does not exceed their maximum growth temperature. In the acidic solutions of the Río Tinto, ferric iron acts as an effective buffer for controlling water pH. Under anaerobic conditions, ferric iron is the oxidant used by microbes to decompose pyrite through the production of sulfate, ferrous iron, and protons. The integration between the physical and chemical processes mediated by microorganisms with those driven by the local geology and hydrology have led us to hypothesize that thermal and chemical regulation mechanisms exist in this environment and that these homeostatic mechanisms could play an essential role in creating habitable areas for other types of microorganisms. Therefore, searching for the physicochemical expression of extinct and extant homeostatic mechanisms through physical and chemical anomalies in the Mars crust (i.e., local thermal gradient or high concentration of unusual products such as ferric sulfates precipitated out from acidic solutions produced by hypothetical microbial communities) could be a first step in the search for biological traces of a putative extant or extinct Mars biosphere.
NASA Astrophysics Data System (ADS)
Riebe, C. S.; Callahan, R. P.; Goulden, M.; Pasquet, S.; Flinchum, B. A.; Taylor, N. J.; Holbrook, W. S.
2017-12-01
The availability of water and nutrients in soil and weathered rock influences the distribution of Earth's terrestrial life and regulates ecosystem vulnerability to land use and climate change. We explored these relationships by combining geochemical and geophysical measurements at three mid-elevation sites in the Sierra Nevada, California. Forest cover correlates strongly with bedrock composition across the sites, implying strong lithologic control on the ecosystem. We evaluated two hypotheses about bedrock-ecosystem connections: 1) that bedrock composition influences vegetation by moderating plant-essential nutrient supply; and 2) that bedrock composition influences the degree of subsurface weathering, which influences vegetation by controlling subsurface water-storage capacity. To quantify subsurface water-holding capacity, we used seismic refraction surveys to infer gradients in P and S-wave velocity structure, which reveal variations in porosity when coupled together in a Hertz-Mindlin rock-physics model. We combined the geophysical data on porosity with bedrock bulk geochemistry measured in previous work to evaluate the influence of water-holding capacity and nutrient supply on ecosystem productivity, which we quantified using remote sensing. Our results show that more than 80% of the variance in ecosystem productivity can be explained by differences in bedrock phosphorus concentration and subsurface porosity, with phosphorus content being the dominant explanatory variable. This suggests that bedrock composition exerts a strong bottom-up control on ecosystem productivity through its influence on nutrient supply and weathering susceptibility, which in turn influences porosity. We show that vegetation vulnerability to drought stress and mortality can be explained in part by variations in subsurface water-holding capacity and rock-derived nutrient supply.
Development of stream-subsurface flow module in sub-daily simulation of Escherichia coli using SWAT
NASA Astrophysics Data System (ADS)
Kim, Minjeong; Boithias, Laurie; Cho, Kyung Hwa; Silvera, Norbert; Thammahacksa, Chanthamousone; Latsachack, Keooudone; Rochelle-Newall, Emma; Sengtaheuanghoung, Oloth; Pierret, Alain; Pachepsky, Yakov A.; Ribolzi, Olivier
2017-04-01
Water contaminated with pathogenic bacteria poses a large threat to public health, especially in the rural areas in the tropics where sanitation and drinking water facilities are often lacking. Several studies have used the Soil and Water Assessment Tool (SWAT) to predict the export of in-stream bacteria at a watershed-scale. However, SWAT is limited to in-stream processes, such as die-off, resuspension and, deposition; and it is usually implemented on a daily time step using the SCS Curve Number method, making it difficult to explore the dynamic fate and transport of bacteria during short but intense events such as flash floods in tropical humid montane headwaters. To address these issues, this study implemented SWAT on an hourly time step using the Green-Ampt infiltration method, and tested the effects of subsurface flow (LATQ+GWQ in SWAT) on bacterial dynamics. We applied the modified SWAT model to the 60-ha Houay Pano catchment in Northern Laos, using sub-daily rainfall and discharge measurements, electric conductivity-derived fractions of overland and subsurface flows, suspended sediments concentrations, and the number of fecal indicator organism Escherichia coli monitored at the catchment outlet from 2011 to 2013. We also took into account land use change by delineating the watershed with the 3-year composite land use map. The results show that low subsurface flow of less than 1 mm recovered the underestimation of E. coli numbers during the dry season, while high subsurface flow caused an overestimation during the wet season. We also found that it is more reasonable to apply the stream-subsurface flow interaction to simulate low in-stream bacteria counts. Using fecal bacteria to identify and understand the possible interactions between overland and subsurface flows may well also provide some insight into the fate of other bacteria, such as those involved in biogeochemical fluxes both in-stream and in the adjacent soils and hyporheic zones.
Prieto-Ballesteros, Olga; Martínez-Frías, Jesús; Schutt, John; Sutter, Brad; Heldmann, Jennifer L; Bell, Mary Sue; Battler, Melissa; Cannon, Howard; Gómez-Elvira, Javier; Stoker, Carol R
2008-10-01
The 2005 Mars Astrobiology Research and Technology Experiment (MARTE) project conducted a simulated 1-month Mars drilling mission in the Río Tinto district, Spain. Dry robotic drilling, core sampling, and biological and geological analytical technologies were collectively tested for the first time for potential use on Mars. Drilling and subsurface sampling and analytical technologies are being explored for Mars because the subsurface is the most likely place to find life on Mars. The objectives of this work are to describe drilling, sampling, and analytical procedures; present the geological analysis of core and borehole material; and examine lessons learned from the drilling simulation. Drilling occurred at an undisclosed location, causing the science team to rely only on mission data for geological and biological interpretations. Core and borehole imaging was used for micromorphological analysis of rock, targeting rock for biological analysis, and making decisions regarding the next day's drilling operations. Drilling reached 606 cm depth into poorly consolidated gossan that allowed only 35% of core recovery and contributed to borehole wall failure during drilling. Core material containing any indication of biology was sampled and analyzed in more detail for its confirmation. Despite the poorly consolidated nature of the subsurface gossan, dry drilling was able to retrieve useful core material for geological and biological analysis. Lessons learned from this drilling simulation can guide the development of dry drilling and subsurface geological and biological analytical technologies for future Mars drilling missions.
NASA Astrophysics Data System (ADS)
Prieto-Ballesteros, Olga; Martínez-Frías, Jesús; Schutt, John; Sutter, Brad; Heldmann, Jennifer L.; Bell Johnson, Mary Sue; Battler, Melissa; Cannon, Howard; Gómez-Elvira, Javier; Stoker, Carol R.
2008-10-01
The 2005 Mars Astrobiology Research and Technology Experiment (MARTE) project conducted a simulated 1-month Mars drilling mission in the Río Tinto district, Spain. Dry robotic drilling, core sampling, and biological and geological analytical technologies were collectively tested for the first time for potential use on Mars. Drilling and subsurface sampling and analytical technologies are being explored for Mars because the subsurface is the most likely place to find life on Mars. The objectives of this work are to describe drilling, sampling, and analytical procedures; present the geological analysis of core and borehole material; and examine lessons learned from the drilling simulation. Drilling occurred at an undis closed location, causing the science team to rely only on mission data for geological and biological interpretations. Core and borehole imaging was used for micromorphological analysis of rock, targeting rock for biological analysis, and making decisions regarding the next day's drilling operations. Drilling reached 606 cm depth into poorly consolidated gossan that allowed only 35% of core recovery and contributed to borehole wall failure during drilling. Core material containing any indication of biology was sampled and analyzed in more detail for its confirmation. Despite the poorly consolidated nature of the subsurface gossan, dry drilling was able to retrieve useful core material for geological and biological analysis. Lessons learned from this drilling simulation can guide the development of dry drilling and subsurface geological and biological analytical technologies for future Mars drilling missions.
Hydrologic connectivity of geographically isolated wetlands to surface water systems
NASA Astrophysics Data System (ADS)
Creed, I. F.; Ameli, A.
2016-12-01
Hydrologic connectivity of wetlands is poorly characterized and understood. Our inability to quantify this connectivity compromises our understanding of the potential impacts of land use (e.g., wetland drainage) and climate changes on watershed structure, function and water supplies. We develop a computationally efficient physically-based subsurface-surface hydrological model to map both the subsurface and surface hydrologic connectivity of geographically isolated wetlands (i.e., wetlands without surface outlets) and explore the time and length variations in these connections to a river within the Prairie Pothole Region of North America. Despite a high density of geographically isolated wetlands, modeled connections show that these wetlands are not hydrologically isolated. Hydrologic subsurface connectivity differs significantly from surface connectivity in terms of timing and length of connections. Slow subsurface connections between wetlands and the downstream river originate from wetlands throughout the watershed, whereas fast surface connections were limited to large events and originate from wetlands located near the river. Results also suggest that prioritization of protection of wetlands that relies on shortest distance of wetland to the river or surface connections alone can lead to unintended consequences in terms of loss of attending wetland ecosystem functions, services and their benefits to society. This modeling approach provides first ever insight on the nature of geographically isolated wetland subsurface and surface hydrological connections to rivers, and can provide guidance on the development of watershed management and conservation plans (e.g., wetlands drainage/restoration) under different climate and land management scenarios.
The Limits of Life in the Deep Subsurface - Implications for the Origin of Life
NASA Astrophysics Data System (ADS)
Baross, John
2013-06-01
There are very few environments on Earth where life is absent. Microbial life has proliferated into habitats that span nearly every imaginable physico-chemical variable. Only the availability of liquid water and temperature are known to prevent the growth of organisms. The other extreme physical and chemical variables, such as pH, pressure, high concentrations of solutes, damaging radiation, and toxic metals, are life-prohibiting factors for most organisms but not for all. The deep subsurface environments span all of the extreme conditions encountered by life including habitat conditions not yet explored, such as those that combine high temperature, high and low pH and extreme pressures. Some of the ``extremophile'' microorganisms inhabiting the deep subsurface environments have been shown to be among the most ``ancient'' of extant life. Their genomes and physiologies have led to a broader understanding of the geological settings of early life, the most ancient energy pathways, and the importance of water/rock interactions and tectonics in the origin and early evolution of life. The case can now be made that deep subsurface environments contributed to life's origin and provided the habitat(s) for the earliest microbial communities. However, there is much more to be done to further our understanding on the role of moderate to high pressures and temperatures on the chemical and biochemical ``steps'' leading to life, and on the evolution and physiology of both ancient and present-day subsurface microbial communities.
Doroodgar, Barzin; Liu, Yugang; Nejat, Goldie
2014-12-01
Semi-autonomous control schemes can address the limitations of both teleoperation and fully autonomous robotic control of rescue robots in disaster environments by allowing a human operator to cooperate and share such tasks with a rescue robot as navigation, exploration, and victim identification. In this paper, we present a unique hierarchical reinforcement learning-based semi-autonomous control architecture for rescue robots operating in cluttered and unknown urban search and rescue (USAR) environments. The aim of the controller is to enable a rescue robot to continuously learn from its own experiences in an environment in order to improve its overall performance in exploration of unknown disaster scenes. A direction-based exploration technique is integrated in the controller to expand the search area of the robot via the classification of regions and the rubble piles within these regions. Both simulations and physical experiments in USAR-like environments verify the robustness of the proposed HRL-based semi-autonomous controller to unknown cluttered scenes with different sizes and varying types of configurations.
DOT National Transportation Integrated Search
1976-04-01
The objectives of the Urban Mass Transportation Administration (UMTA) Tunneling Program are to lower subway construction costs and reduce construction hazards and damage to the environment. Some measure of each of these objectives for bored tunnels a...
DOT National Transportation Integrated Search
2009-01-01
The objective of this project was to develop an improved correlation between Texas Cone Penetrometer (TCP) : blow count and undrained shear strength for soft, clay soils in the upper approximately 30 feet of the ground. Subsurface : explorations were...
A Search for Freshwater in the Saline Aquifers of Coastal Bangladesh
NASA Astrophysics Data System (ADS)
Peters, C.; Hornberger, G. M.
2017-12-01
Can we locate pockets of freshwater amidst brackish groundwater in remote villages in Bangladesh? This study explores what we can infer about local groundwater-surface water (GW-SW) interactions in the polders of coastal Bangladesh. In this underdeveloped region, the shallow groundwater is primarily brackish with unpredictable apportioning of freshwater pockets. We use transects of piezometers, cores, electromagnetic induction, and water chemistry surveys to explore two sources of potential fresh groundwater: (1) tidal channel-aquifer exchange and (2) meteoric recharge. Freshwater is difficult to find due to disparate subsurface lithology, asymmetrical tidal dynamics, extreme seasonal fluctuations in rainfall, and limited field data. Observations suggest substantial lateral variability in shallow subsurface conductivity profiles as well as tidal pressure signals in piezometers. Nevertheless, active exchange of freshwater may be limited due to low permeability of banks and surface sediments limits. Small scale heterogeneity in delta formation likely caused much of the groundwater salinity variation. Without adequate ground truthing of groundwater quality, the ability to deduce the exact location of freshwater pockets may be restricted.
Subsurface metabolic potential on the Costa Rican Margin
NASA Astrophysics Data System (ADS)
Biddle, J.; Leon, Z. R.; Martino, A. J.; Bousses, K.; House, C. H.
2017-12-01
The distribution of archaea and bacteria and their associated metabolic abilities in the deep subseafloor are poorly understood. In order to explore this, we focused on samples from the Costa Rica margin IODP Expedition 334. The microbial community was analyzed via metagenomics in two different sites at multiple depths. At Site 1378, samples are from 2 meters below the sea floor (mbsf), 33 mbsf and 93 mbsf, and at Site 1379 from 22 mbsf to 45 mbsf. Whole community analysis of conserved gene markers in the metagenome show that the microbial community varies with depth, and drastically differs between the two geographically close sites. Thirty-two genomes were recovered from the metagenomic data with more than 30% completion. Archaea make 49% of all genomes recovered and over 90% of these recovered genomes belong to recently discovered and poorly characterized groups of Archaea. This study explored the relative dynamics of microbial communities in the deep biosphere and presents the metabolic potential of distinct subsurface biosphere archaeal groups.
A High-Sensitivity Broad-Band Seismic Sensor for Shallow Seismic Sounding of the Lunar Regolith
NASA Technical Reports Server (NTRS)
Pike, W. Thomas; Standley, Ian M.; Banerdt, W. Bruce
2005-01-01
The recently undertaken Space Exploration Initiative has prompted a renewed interest in techniques for characterizing the surface and shallow subsurface (0-10s of meters depth) of the Moon. There are several reasons for this: First, there is an intrinsic scientific interest in the subsurface structure. For example the stratigraphy, depth to bedrock, density/porosity, and block size distribution all have implications for the formation of, and geological processes affecting the surface, such as sequential crater ejecta deposition, impact gardening, and seismic settling. In some permanently shadowed craters there may be ice deposits just below the surface. Second, the geotechnical properties of the lunar surface layers are of keen interest to future mission planners. Regolith thickness, strength, density, grain size and compaction will affect construction of exploration infrastructure in terms of foundation strength and stability, ease of excavation, radiation shielding effectiveness, as well as raw material handling and processing techniques for resource extraction.
Combining meteorites and missions to explore Mars.
McCoy, Timothy J; Corrigan, Catherine M; Herd, Christopher D K
2011-11-29
Laboratory studies of meteorites and robotic exploration of Mars reveal scant atmosphere, no evidence of plate tectonics, past evidence for abundant water, and a protracted igneous evolution. Despite indirect hints, direct evidence of a martian origin came with the discovery of trapped atmospheric gases in one meteorite. Since then, the study of martian meteorites and findings from missions have been linked. Although the meteorite source locations are unknown, impact ejection modeling and spectral mapping of Mars suggest derivation from small craters in terrains of Amazonian to Hesperian age. Whereas most martian meteorites are young (< 1.3 Ga), the spread of whole rock isotopic compositions results from crystallization of a magma ocean > 4.5 Ga and formation of enriched and depleted reservoirs. However, the history inferred from martian meteorites conflicts with results from recent Mars missions, calling into doubt whether the igneous histor y inferred from the meteorites is applicable to Mars as a whole. Allan Hills 84001 dates to 4.09 Ga and contains fluid-deposited carbonates. Accompanying debate about the mechanism and temperature of origin of the carbonates came several features suggestive of past microbial life in the carbonates. Although highly disputed, the suggestion spurred interest in habitable extreme environments on Earth and throughout the Solar System. A flotilla of subsequent spacecraft has redefined Mars from a volcanic planet to a hydrologically active planet that may have harbored life. Understanding the history and habitability of Mars depends on understanding the coupling of the atmosphere, surface, and subsurface. Sample return that brings back direct evidence from these diverse reservoirs is essential.
Combining meteorites and missions to explore Mars
McCoy, Timothy J.; Corrigan, Catherine M.; Herd, Christopher D. K.
2011-01-01
Laboratory studies of meteorites and robotic exploration of Mars reveal scant atmosphere, no evidence of plate tectonics, past evidence for abundant water, and a protracted igneous evolution. Despite indirect hints, direct evidence of a martian origin came with the discovery of trapped atmospheric gases in one meteorite. Since then, the study of martian meteorites and findings from missions have been linked. Although the meteorite source locations are unknown, impact ejection modeling and spectral mapping of Mars suggest derivation from small craters in terrains of Amazonian to Hesperian age. Whereas most martian meteorites are young (< 1.3 Ga), the spread of whole rock isotopic compositions results from crystallization of a magma ocean > 4.5 Ga and formation of enriched and depleted reservoirs. However, the history inferred from martian meteorites conflicts with results from recent Mars missions, calling into doubt whether the igneous histor y inferred from the meteorites is applicable to Mars as a whole. Allan Hills 84001 dates to 4.09 Ga and contains fluid-deposited carbonates. Accompanying debate about the mechanism and temperature of origin of the carbonates came several features suggestive of past microbial life in the carbonates. Although highly disputed, the suggestion spurred interest in habitable extreme environments on Earth and throughout the Solar System. A flotilla of subsequent spacecraft has redefined Mars from a volcanic planet to a hydrologically active planet that may have harbored life. Understanding the history and habitability of Mars depends on understanding the coupling of the atmosphere, surface, and subsurface. Sample return that brings back direct evidence from these diverse reservoirs is essential. PMID:21969535
NASA Astrophysics Data System (ADS)
Shepard, A.; Reese, B. K.; Mills, H. J.; IODP Expedition 320 Shipboard Science Party
2011-12-01
The marine subsurface environment contains abundant and active microorganisms. These microbial populations are considered integral players in the marine subsurface biogeochemical system with significance in global geochemical cycles and reservoirs. However, variations in microbial community structure, activity and function associated with the wide-ranging sedimentary and geochemical environments found globally have not been fully resolved. Integrated Ocean Drilling Program Expedition 320 recovered sediments from site U1332. Two sampling depths were selected for analysis that spanned differing lithological units in the sediment core. Sediments were composed of mostly clay with zeolite minerals at 8 meters below sea floor (mbsf). At 27 mbsf, sediments were composed of alternating clayey radiolarian ooze and nannofossil ooze. The concentration of SO42- had little variability throughout the core and the concentration of Fe2+ remained close to, or below, detection limits (0.4 μM). Total organic carbon content ranged from a low of 0.03 wt% to a high of 0.07 wt% between 6 and 30 mbsf providing an opportunity to evaluate marine subsurface microbial communities under extreme electron donor limiting conditions. The metabolically active fraction of the bacterial population was isolated by the extraction and amplification of 16S ribosomal RNA. Pyrosequencing of 16S rRNA transcripts and subsequent bioinformatic analyses provided a robust data set (15,931 total classified sequences) to characterize the community at a high resolution. As observed in other subsurface environments, the overall diversity of active bacterial populations decreased with depth. The population shifted from a diverse but evenly distributed community at approximately 8 mbsf to a Firmicutes dominated population at 27 mbsf (80% of sequences). A total of 95% of the sequences at 27 mbsf were grouped into three genera: Lactobacillus (phylum Firmicutes) at 80% of the total sequences, Marinobacter (phylum Proteobacteria) at 8%, and Formosa (phylum Bacteroidetes) at 7%. These lineages support a paradigm suggesting the importance of fermentation in the subsurface. However, this study extends the predicted range for fermentation below the shallow subsurface and into organic carbon limited marine sediments. Other previously characterized subsurface active populations from environments with higher organic carbon concentrations do not show similar levels of reduced diversity or predominance of fermentative populations. This study further emphasizes the spatial variability of microbial populations in the deep subsurface and highlights the need for continued exploration.
Astrobiology Exploration Strategies for the Mars Polar Regions Using Balloon Platforms
NASA Technical Reports Server (NTRS)
Mahaffy, P. R.; Atreya, S. A.; Fairbrother, D. A.; Farrell, W. M.; Gorevan, S.; Jones, J.; Mitrofanov, I.; Scott, J.
2003-01-01
Montgolfiere balloons can provide a unique near-surface platform for an extended traverse over the polar regions of Mars. During the polar summer, such solar powered balloons would remain in the constant sun of the polar summer and could remain airborne for many weeks or even months as the atmospheric circulation would drive the balloons around the polar region many times before the balloon would cross the terminator. Such a platform for scientific measurements could provide in situ sampling of the atmosphere for trace disequilibrium species that might be indicators of present geological or biological activity in this region. It could furthermore provide high resolution imaging, deep electromagnetic (EM) sounding for subsurface stratigraphy and liquid water, and high spatial resolution neutron measurements of subsurface ice. Technologies for robust balloon deployment on entry and controlled encounters with the surface and near subsurface for sample acquisition in otherwise inaccessible regions are presently being studied and developed with support from NASA.
Astrobiology Exploration Strategies for the Mars Polar Regions Using Balloon Platforms
NASA Technical Reports Server (NTRS)
Mahaffy, P. R.; Atreya, S. A.; Fairbrother, D. A.; Farrell, W. M.; Gorevan, S.; Jones, J.; Mitrofanov, I.; Scott, J.
2003-01-01
Montgolfiere balloons can provide a unique near-surface platform for an extended traverse over the polar regions of Mars. During the polar summer, such solar powered balloons would remain in the constant sun of the polar summer and could remain airborne for many weeks or even months as the atmospheric circulation would drive the balloons around the polar region many times before the balloon would cross the terminator. Such a platform for scientific measurements could provide in situ sampling of the atmosphere for trace disequilibrium species that might be indicators of present geological or biological activity in this regon. It could furthermore provide high resolution imaging, deep electromagnetic (EM) sounding for subsurface stratigraphy and liquid water, and high spatial resolution neutron measurements of subsurface ice. Technologies for robust balloon deployment on entry and controlled encounters with the surface and near subsurface for sample acquisition in otherwise inaccessible regions are presently being studied and developed with support from NASA.
NASA Technical Reports Server (NTRS)
Stoker, C. R.; Clarke, J. D. A.; Direito, S.; Foing, B.
2011-01-01
The DOMEX program is a NASA-MMAMA funded project featuring simulations of human crews on Mars focused on science activities that involve collecting samples from the subsurface using both manual and robotic equipment methods and analyzing them in the field and post mission. A crew simulating a human mission to Mars performed activities focused on subsurface science for 2 weeks in November 2009 at Mars Desert Research Station near Hanksville, Utah --an important chemical and morphological Mars analog site. Activities performed included 1) survey of the area to identify geologic provinces, 2) obtaining soil and rock samples from each province and characterizing their mineralogy, chemistry, and biology; 3) site selection and reconnaissance for a future drilling mission; 4) deployment and testing of Mars Underground Mole, a percussive robotic soil sampling device; and 5) recording and analyzing how crew time was used to accomplish these tasks. This paper summarizes results from analysis of soil cores
NASA Technical Reports Server (NTRS)
Mcgill, J. W.; Glass, C. E.; Sternberg, B. K.
1990-01-01
The ultimate goal is to create an extraterrestrial unmanned system for subsurface mapping and exploration. Neural networks are to be used to recognize anomalies in the profiles that correspond to potentially exploitable subsurface features. The ground penetrating radar (GPR) techniques are likewise identical. Hence, the preliminary research focus on GPR systems will be directly applicable to seismic systems once such systems can be designed for continuous operation. The original GPR profile may be very complex due to electrical behavior of the background, targets, and antennas, much as the seismic record is made complex by multiple reflections, ghosting, and ringing. Because the format of the GPR data is similar to the format of seismic data, seismic processing software may be applied to GPR data to help enhance the data. A neural network may then be trained to more accurately identify anomalies from the processed record than from the original record.
NASA Astrophysics Data System (ADS)
Delefortrie, Samuël; Saey, Timothy; Van De Vijver, Ellen; De Smedt, Philippe; Missiaen, Tine; Demerre, Ine; Van Meirvenne, Marc
2014-01-01
Subsurface investigation in the Belgian intertidal zone is severely complicated due to high heterogeneity and tides. Near-surface geophysical techniques can offer assistance since they allow fast surveying and collection of high spatial density data and frequency domain electromagnetic induction (EMI) was chosen for archaeological prospection on the Belgian shore. However, in the intertidal zone the effects of extreme salinity compromise validity of low-induction-number (LIN) approximated EMI data. In this paper, the effects of incursion of seawater on multi-receiver EMI data are investigated by means of survey results, field observations, cone penetration tests and in-situ electrical conductivity measurements. The consequences of LIN approximation breakdown were researched. Reduced depth of investigation of the quadrature-phase (Qu) response and a complex interpretation of the in-phase response were confirmed. Nonetheless, a high signal-to-noise ratio of the Qu response and viable data with regard to shallow subsurface investigation were also evidenced, allowing subsurface investigation in the intertidal zone.
Bromine speciation in hydrous haplogranitic melts up to 7 GPa
NASA Astrophysics Data System (ADS)
Cochain, B.; de Grouchy, C.; Crepisson, C.; Kantor, I.; Irifune, T.; Sanloup, C.
2013-12-01
Halogens are minor volatiles in the Earth's mantle and crust, but they have significant and specific influences on magmatic and degassing processes. They also provide insights about subsurface magma movement and eruption likelihood in subduction-related volcanism. Their speciation in silicate melts affects volatile exsolution, rheology, and the thermodynamic properties of the melts but still remains relatively unknown. A few studies have explored halogen speciation at room conditions, i.e. in glasses but no firm conclusion has yet been reached. Furthermore, halogen speciation remains unexplored at high pressures and temperatures. In this work we investigate the speciation of Br in subduction-related melt (hydrous haplogranite melt) up to 1200°C and 7 GPa using X-ray absorption spectroscopy (XANES and EXAFS) at the Br K-edge. High P-T conditions were generated by the Paris-Edinburgh press. The use of nanocrystalline diamond capsules enabled us to avoid glitches in the EXAFS spectra. The results provide valuable information on Br speciation and its evolution with pressure. It gives insights into solubility mechanisms for halogens in magmas at depth and on their degassing from the melt. In addition, we were able to identify quench effects on the atomic environment of Br by comparison of high P-T in-situ spectra and ex-situ spectra recorded on quenched samples.
Egge, Elianne S; Eikrem, Wenche; Edvardsen, Bente
2015-01-01
Microalgae in the division Haptophyta may be difficult to identify to species by microscopy because they are small and fragile. Here, we used high-throughput sequencing to explore the diversity of haptophytes in outer Oslofjorden, Skagerrak, and supplemented this with electron microscopy. Nano- and picoplanktonic subsurface samples were collected monthly for 2 yr, and the haptophytes were targeted by amplification of RNA/cDNA with Haptophyta-specific 18S ribosomal DNA V4 primers. Pyrosequencing revealed higher species richness of haptophytes than previously observed in the Skagerrak by microscopy. From ca. 400,000 reads we obtained 156 haptophyte operational taxonomic units (OTUs) after rigorous filtering and 99.5% clustering. The majority (84%) of the OTUs matched environmental sequences not linked to a morphological species, most of which were affiliated with the order Prymnesiales. Phylogenetic analyses including Oslofjorden OTUs and available cultured and environmental haptophyte sequences showed that several of the OTUs matched sequences forming deep-branching lineages, potentially representing novel haptophyte classes. Pyrosequencing also retrieved cultured species not previously reported by microscopy in the Skagerrak. Electron microscopy revealed species not yet genetically characterised and some potentially novel taxa. This study contributes to linking genotype to phenotype within this ubiquitous and ecologically important protist group, and reveals great, unknown diversity. PMID:25099994
NASA Astrophysics Data System (ADS)
Lee, J. H.; Yoon, H.; Kitanidis, P. K.; Werth, C. J.; Valocchi, A. J.
2015-12-01
Characterizing subsurface properties, particularly hydraulic conductivity, is crucial for reliable and cost-effective groundwater supply management, contaminant remediation, and emerging deep subsurface activities such as geologic carbon storage and unconventional resources recovery. With recent advances in sensor technology, a large volume of hydro-geophysical and chemical data can be obtained to achieve high-resolution images of subsurface properties, which can be used for accurate subsurface flow and reactive transport predictions. However, subsurface characterization with a plethora of information requires high, often prohibitive, computational costs associated with "big data" processing and large-scale numerical simulations. As a result, traditional inversion techniques are not well-suited for problems that require coupled multi-physics simulation models with massive data. In this work, we apply a scalable inversion method called Principal Component Geostatistical Approach (PCGA) for characterizing heterogeneous hydraulic conductivity (K) distribution in a 3-D sand box. The PCGA is a Jacobian-free geostatistical inversion approach that uses the leading principal components of the prior information to reduce computational costs, sometimes dramatically, and can be easily linked with any simulation software. Sequential images of transient tracer concentrations in the sand box were obtained using magnetic resonance imaging (MRI) technique, resulting in 6 million tracer-concentration data [Yoon et. al., 2008]. Since each individual tracer observation has little information on the K distribution, the dimension of the data was reduced using temporal moments and discrete cosine transform (DCT). Consequently, 100,000 unknown K values consistent with the scale of MRI data (at a scale of 0.25^3 cm^3) were estimated by matching temporal moments and DCT coefficients of the original tracer data. Estimated K fields are close to the true K field, and even small-scale variability of the sand box was captured to highlight high K connectivity and contrasts between low and high K zones. Total number of 1,000 MODFLOW and MT3DMS simulations were required to obtain final estimates and corresponding estimation uncertainty, showing the efficiency and effectiveness of our method.
Formation of recent Pb-Ag-Au mineralization by potential sub-surface microbial activity
NASA Astrophysics Data System (ADS)
Tornos, Fernando; Velasco, Francisco; Menor-Salván, César; Delgado, Antonio; Slack, John F.; Escobar, Juan Manuel
2014-08-01
Las Cruces is a base-metal deposit in the Iberian Pyrite Belt, one of the world’s best-known ore provinces. Here we report the occurrence of major Pb-Ag-Au mineralization resulting from recent sub-surface replacement of supergene oxyhydroxides by carbonate and sulphide minerals. This is probably the largest documented occurrence of recent microbial activity producing an ore assemblage previously unknown in supergene mineralizing environments. The presence of microbial features in the sulphides suggests that these may be the first-described natural bacteriomorphs of galena. The low δ13C values of the carbonate minerals indicate formation by deep anaerobic microbial processes. Sulphur isotope values of sulphides are interpreted here as reflecting microbial reduction in a system impoverished in sulphate. We suggest that biogenic activity has produced around 3.1 × 109 moles of reduced sulphur and 1010 moles of CO2, promoting the formation of ca. 1.19 Mt of carbonates, 114,000 t of galena, 638 t of silver sulphides and 6.5 t of gold.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gould, Benjamin; Greco, Aaron; Stadler, Kenred
2017-03-01
Crack surrounded by local areas of microstructural alteration deemed "White etching cracks" (WECs) lead to unpredictable and premature failures within a multitude of applications including wind turbine gearbox bearings. While the exact cause of these failures remains unknown, a large number of hypotheses exist as to how and why these cracks form. The aim of the current work is to elucidate some of these hypotheses by mapping WEC networks within failed wind turbine bearings using high energy X-ray tomography, in an attempt to determine the location of WEC initiation, and the role of defects within the steel, such as inclusionsmore » or carbide clusters. Four completely subsurface WECs were found throughout the presented analysis, thereby confirming subsurface initiation as method of WEC formation. Additionally, a multitude of small butterfly like cracks were found around inclusions in the steel, however further analysis is needed to verify if these inclusions are initiation sites for WECs. (C) 2017 Elsevier Ltd. All rights reserved.« less
NASA Astrophysics Data System (ADS)
Brazelton, W. J.; Lang, S. Q.; Morrill, P. L.; Twing, K. I.; Crespo-Medina, M.; Morgan-Smith, D.; Früh-Green, G. L.; Schrenk, M. O.
2013-12-01
Ultramafic rocks formed in the Earth's mantle and uplifted into the crust represent an immense but poorly described reservoir of carbon. The biological availability of this rock-hosted carbon reservoir is unknown, but the set of geochemical reactions known as serpentinization can mobilize carbon from the subsurface and trigger the growth of dense microbial communities. Serpentinite-hosted ecosystems such as the chimney biofilms of the Lost City hydrothermal field can support dense populations of bacteria and archaea fueled by the copious quantities of H2 and methane (CH4) released by serpentinization (1-5). The metabolic pathways involved, however, remain unknown, and conventional interpretations of genomic and experimental data are complicated by the unusual carbon speciation in these environments. Carbon dioxide is scarce due to the highly reducing, high pH conditions. Instead, the predominant forms of carbon are CH4 and formate (5). Despite its natural abundance, however, direct evidence for CH4-derived biomass is lacking (1,4,5), and the role of formate is potentially significant but largely unexplored (1,5). To gain a more generalized perspective of carbon cycling in serpentinite-hosted ecosystems, we have recently investigated fluids and rocks collected from serpentinizing ophiolites in California, Canada, and Italy. Our results point to potentially H2-utilizing, autotrophic Betaproteobacteria thriving in shallow, oxic-anoxic transition zones and anaerobic Clostridia inhabiting anoxic, subsurface zones (1,6). The carbon sources utilized by the Clostridia are unknown, but preliminary metagenomic evidence is consistent with a fermentation-style metabolic strategy that may be conducive to an oxidant-limited, subsurface environment. Curiously, despite the abundance of H2 and CH4 in these continental springs, none of the geochemical, genomic, or experimental results obtained thus far contain any evidence for biological methanogenesis (1,6). This is in stark contrast to the dense populations of methanogen-like archaea in Lost City chimneys. Clearly, the role of methanogens must be constrained in order to gain a firm understanding of the carbon flux from serpentinite ecosystems, and future potential investigations of these systems will be discussed. References 1. Schrenk MO, Brazelton WJ, Lang SQ. 2013. Rev. Mineral. Geochem. 75:575-606. 2. Schrenk MO, Kelley DS, Bolton SA, Baross JA. 2004. Environ. Microbiol. 6:1086-1095. 3. Brazelton WJ, Schrenk MO, Kelley DS, Baross JA. 2006. Appl. Environ. Microbiol. 72:6257-6270. 4. Brazelton WJ, Mehta MP, Kelley DS, Baross JA. 2011. mBio2:4. doi:10.1128/mBio.00127-11. 5. Lang SQ, Früh-Green GL, Bernasconi SM, Lilley MD, Proskurowski G, Méhay S, Butterfield D a. 2012. Geochim. Cosmochim. Acta. 92:82-99. 6. Brazelton WJ, Morrill PL, Szponar N, Schrenk MO. 2013. Appl. Environ. Microbiol. 79:3906.
Muons and seismic: a dynamic duo for the shallow subsurface?
Mellors, Robert; Chapline, George; Bonneville, Alain; ...
2016-12-01
This paper explores, at a preliminary level, the possibility of merging seismic data, both active and passive, with density constraints inferred from muon measurements. We focus on a theoretical analysis but note that muon experiments are ongoing to test model predictions with experimental data.
Sensitivity of El Niño intensity and timing to preceding subsurface heat magnitude
Ballester, Joan; Petrova, Desislava; Bordoni, Simona; Ben Cash; García-Díez, Markel; Rodó, Xavier
2016-01-01
Despite extensive ongoing efforts on improving the long-term prediction of El Niño-Southern Oscillation, the predictability in state-of-the-art operational schemes remains limited by factors such as the spring barrier and the influence of atmospheric winds. Recent research suggests that the 2014/15 El Niño (EN) event was stalled as a result of an unusually strong basin-wide easterly wind burst in June, which led to the discharge of a large fraction of the subsurface ocean heat. Here we use observational records and numerical experiments to explore the sensitivity of EN to the magnitude of the heat buildup occurring in the ocean subsurface 21 months in advance. Our simulations suggest that a large increase in heat content during this phase can lead to basin-wide uniform warm conditions in the equatorial Pacific the winter before the occurrence of a very strong EN event. In our model configuration, the system compensates any initial decrease in heat content and naturally evolves towards a new recharge, resulting in a delay of up to one year in the occurrence of an EN event. Both scenarios substantiate the non-linear dependency between the intensity of the subsurface heat buildup and the magnitude and timing of subsequent EN episodes. PMID:27808279
Sensitivity of El Niño intensity and timing to preceding subsurface heat magnitude.
Ballester, Joan; Petrova, Desislava; Bordoni, Simona; Ben Cash; García-Díez, Markel; Rodó, Xavier
2016-11-03
Despite extensive ongoing efforts on improving the long-term prediction of El Niño-Southern Oscillation, the predictability in state-of-the-art operational schemes remains limited by factors such as the spring barrier and the influence of atmospheric winds. Recent research suggests that the 2014/15 El Niño (EN) event was stalled as a result of an unusually strong basin-wide easterly wind burst in June, which led to the discharge of a large fraction of the subsurface ocean heat. Here we use observational records and numerical experiments to explore the sensitivity of EN to the magnitude of the heat buildup occurring in the ocean subsurface 21 months in advance. Our simulations suggest that a large increase in heat content during this phase can lead to basin-wide uniform warm conditions in the equatorial Pacific the winter before the occurrence of a very strong EN event. In our model configuration, the system compensates any initial decrease in heat content and naturally evolves towards a new recharge, resulting in a delay of up to one year in the occurrence of an EN event. Both scenarios substantiate the non-linear dependency between the intensity of the subsurface heat buildup and the magnitude and timing of subsequent EN episodes.
Vigneron, Adrien; Cruaud, Perrine; Roussel, Erwan G.; Pignet, Patricia; Caprais, Jean-Claude; Callac, Nolwenn; Ciobanu, Maria-Cristina; Godfroy, Anne; Cragg, Barry A.; Parkes, John R.; Van Nostrand, Joy D.; He, Zhili; Zhou, Jizhong; Toffin, Laurent
2014-01-01
Subsurface sediments of the Sonora Margin (Guaymas Basin), located in proximity of active cold seep sites were explored. The taxonomic and functional diversity of bacterial and archaeal communities were investigated from 1 to 10 meters below the seafloor. Microbial community structure and abundance and distribution of dominant populations were assessed using complementary molecular approaches (Ribosomal Intergenic Spacer Analysis, 16S rRNA libraries and quantitative PCR with an extensive primers set) and correlated to comprehensive geochemical data. Moreover the metabolic potentials and functional traits of the microbial community were also identified using the GeoChip functional gene microarray and metabolic rates. The active microbial community structure in the Sonora Margin sediments was related to deep subsurface ecosystems (Marine Benthic Groups B and D, Miscellaneous Crenarchaeotal Group, Chloroflexi and Candidate divisions) and remained relatively similar throughout the sediment section, despite defined biogeochemical gradients. However, relative abundances of bacterial and archaeal dominant lineages were significantly correlated with organic carbon quantity and origin. Consistently, metabolic pathways for the degradation and assimilation of this organic carbon as well as genetic potentials for the transformation of detrital organic matters, hydrocarbons and recalcitrant substrates were detected, suggesting that chemoorganotrophic microorganisms may dominate the microbial community of the Sonora Margin subsurface sediments. PMID:25099369
NASA Astrophysics Data System (ADS)
Beckmann, Aike; Hense, Inga
2007-12-01
This study considers an important biome in aquatic environments, the subsurface ecosystem that evolves under low mixing conditions, from a theoretical point of view. Employing a conceptual model that involves phytoplankton, a limiting nutrient and sinking detritus, we use a set of key characteristics (thickness, depth, biomass amplitude/productivity) to qualitatively and quantitatively describe subsurface biomass maximum layers (SBMLs) of phytoplankton. These SBMLs are defined by the existence of two community compensation depths in the water column, which confine the layer of net community production; their depth coincides with the upper nutricline. Analysing the results of a large ensemble of simulations with a one-dimensional numerical model, we explore the parameter dependencies to obtain fundamental steady-state relationships that connect primary production, mortality and grazing, remineralization, vertical diffusion and detrital sinking. As a main result, we find that we can distinguish between factors that determine the vertically integrated primary production and others that affect only depth and shape (thickness and biomass amplitude) of this subsurface production layer. A simple relationship is derived analytically, which can be used to estimate the steady-state primary productivity in the subsurface oligotrophic ocean. The fundamental nature of the results provides further insight into the dynamics of these “hidden” ecosystems and their role in marine nutrient cycling.
Novel approaches for an enhanced geothermal development of residential sites
NASA Astrophysics Data System (ADS)
Schelenz, Sophie; Firmbach, Linda; Shao, Haibing; Dietrich, Peter; Vienken, Thomas
2015-04-01
An ongoing technological enhancement drives an increasing use of shallow geothermal systems for heating and cooling applications. However, even in areas with intensive shallow geothermal use, planning of geothermal systems is in many cases solely based on geological maps, drilling databases, and literature references. Thus, relevant heat transport parameters are rather approximated than measured for the specific site. To increase the planning safety and promote the use of renewable energies in the domestic sector, this study investigates a novel concept for an enhanced geothermal development of residential neighbourhoods. This concept is based on a site-specific characterization of subsurface conditions and the implementation of demand-oriented geothermal usage options. Therefore, an investigation approach has been tested that combines non-invasive with minimum-invasive exploration methods. While electrical resistivity tomography has been applied to characterize the geological subsurface structure, Direct Push soundings enable a detailed, vertical high-resolution characterization of the subsurface surrounding the borehole heat exchangers. The benefit of this site-specific subsurface investigation is highlighted for 1) a more precise design of shallow geothermal systems and 2) a reliable prediction of induced long-term changes in groundwater temperatures. To guarantee the financial feasibility and practicability of the novel geothermal development, three different options for its implementation in residential neighbourhoods were consequently deduced.
Athapattu, B C L; Thalgaspitiya, T W L R; Yasaratne, U L S; Vithanage, Meththika
2017-12-01
The objectives were to investigate the potential remedial measures for reverse osmosis (RO) rejected water through constructed wetlands (CWs) with low-cost materials in the media established in chronic kidney disease of unknown etiology (CKDu) prevalent area in Sri Lanka. A pilot-scale surface and subsurface water CWs were established at the Medawachchiya community-based RO water supply unit. Locally available soil, calicut tile and biochar were used in proportions of 81, 16.5 and 2.5% (w/w), respectively, as filter materials in the subsurface. Vetiver grass and Scirpus grossus were selected for subsurface wetland while water lettuce and water hyacinth were chosen for free water surface CWs. Results showed that the CKDu sensitive parameters; total dissolved solids, hardness, total alkalinity and fluoride were reduced considerably (20-85%) and most met desirable levels of stipulated ambient standards. Biochar seemed to play a major role in removing fluoride from the system which may be due to the existing and adsorbed K + , Ca +2 , Mg +2 , etc. on the biochar surface via chemisorption. The least reduction was observed for alkalinity. This study indicated potential purification of aforesaid ions in water which are considerably present in RO rejection. Therefore, the invented bio-geo constructed wetland can be considered as a sustainable, economical and effective option for reducing high concentrations of CKDu sensitive parameters in RO rejected water before discharging into the inland waters.
NASA Astrophysics Data System (ADS)
Zha, Yuanyuan; Yeh, Tian-Chyi J.; Illman, Walter A.; Zeng, Wenzhi; Zhang, Yonggen; Sun, Fangqiang; Shi, Liangsheng
2018-03-01
Hydraulic tomography (HT) is a recently developed technology for characterizing high-resolution, site-specific heterogeneity using hydraulic data (nd) from a series of cross-hole pumping tests. To properly account for the subsurface heterogeneity and to flexibly incorporate additional information, geostatistical inverse models, which permit a large number of spatially correlated unknowns (ny), are frequently used to interpret the collected data. However, the memory storage requirements for the covariance of the unknowns (ny × ny) in these models are prodigious for large-scale 3-D problems. Moreover, the sensitivity evaluation is often computationally intensive using traditional difference method (ny forward runs). Although employment of the adjoint method can reduce the cost to nd forward runs, the adjoint model requires intrusive coding effort. In order to resolve these issues, this paper presents a Reduced-Order Successive Linear Estimator (ROSLE) for analyzing HT data. This new estimator approximates the covariance of the unknowns using Karhunen-Loeve Expansion (KLE) truncated to nkl order, and it calculates the directional sensitivities (in the directions of nkl eigenvectors) to form the covariance and cross-covariance used in the Successive Linear Estimator (SLE). In addition, the covariance of unknowns is updated every iteration by updating the eigenvalues and eigenfunctions. The computational advantages of the proposed algorithm are demonstrated through numerical experiments and a 3-D transient HT analysis of data from a highly heterogeneous field site.
NASA Astrophysics Data System (ADS)
Pompili, Sara; Silvio Marzano, Frank; Di Carlofelice, Alessandro; Montopoli, Mario; Talone, Marco; Crapolicchio, Raffaele; L'Abbate, Michelangelo; Varchetta, Silvio; Tognolatti, Piero
2013-04-01
The "Lunar Interferometric Radiometer by Aperture Synthesis" (LIRAS) mission is promoted by the Italian Space Agency and is currently in feasibility phase. LIRAS' satellite will orbit around the Moon at a height of 100 km, with a revisiting time period lower than 1 lunar month and will be equipped with: a synthetic aperture radiometer for subsurface sounding purposes, working at 1 and 3 GHz, and a real aperture radiometer for near-surface probing, working at 12 and 24 GHz. The L-band payload, representing a novel concept for lunar exploration, is designed as a Y-shaped thinned array with three arms less than 2.5 m long. The main LIRAS objectives are high-resolution mapping and vertical sounding of the Moon subsurface by applying the advantages of the antenna aperture synthesis technique to a multi-frequency microwave passive payload. The mission is specifically designed to achieve spatial resolutions less than 10 km at surface and to retrieve thermo-morphological properties of the Moon subsurface within 5 m of depth. Among LIRAS products are: lunar near-surface brightness temperature, subsurface brightness temperature gross profile, subsurface regolith thickness, density and average thermal conductivity, detection index of possible subsurface discontinuities (e.g. ice presence). The following study involves the preliminary design of the LIRAS payload and the electromagnetic and thermal characterization of the lunar subsoil through the implementation of a simulator for reproducing the LIRAS measurements in response to observations of the Moon surface and subsurface layers. Lunar physical data, collected after the Apollo missions, and LIRAS instrument parameters are taken as input for the abovementioned simulator, called "LIRAS End-to-end Performance Simulator" (LEPS) and obtained by adapting the SMOS End-to-end Performance Simulator to the different instrumental, orbital, and geophysical LIRAS characteristics. LEPS completely simulates the behavior of the satellite when it becomes operational providing the extrapolation of lunar brightness temperature maps in both Antenna frame (the cosine domain) and on the Moon surface and allowing an accurate analysis of the instrument performance. The Moon stratigraphy is reproduced in LEPS environment through three scenarios: a macro-layer of regolith; two subsequent macro-layers of regolith and rock; three subsequent macro-layers of regolith, ice and rock, respectively. These scenarios are studied using an incoherent approach, taking into account the interaction between the upwelling and downwelling radiation contributions from each layer to model the resulting brightness temperature at the surface level. It has been considered that the radiative behavior of the Moon varies over time, depending on solar illumination conditions, and it is also function of the material properties, layer thickness and specific position on the lunar crust; moreover it has been examined its variation with frequency, observation angle, and polarization. Using the proposed emission model it has been possible to derive a digital thermal model in the microwave frequency of the Moon, allowing in-depth analysis of the lunar soil consistency; this collected information could be related with a lunar digital elevation model in order to achieve global coverage information on topological aspects. The main results of the study will be presented at the conference.
43 CFR 3150.0-5 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... for subsurface geologic information or drilling for oil and gas; these activities shall be authorized only by the issuance of an oil and gas lease and the approval of an Application for a Permit to Drill..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) ONSHORE OIL AND GAS GEOPHYSICAL EXPLORATION Onshore Oil...
The U.S. EPA and the USDA Forest Service are conducting a joint investigation to better understand the interactions between geomorphology, hydrology, and vegetation associated with riparian meadow ecosystems in upland watersheds in central Nevada. Stream incision is a major threa...
NASA Astrophysics Data System (ADS)
Sibille, L.; Mueller, R. P.; Niles, P. B.; Glotch, T.; Archer, P. D.; Bell, M. S.
2015-10-01
Aram Chaos is a 280-km-wide near-circular structure near the outflow channel Ares Vallis and Aureum Chaos. It is a compelling landing site for human explorers featuring multiple science ROIs with a compelling resource ROI with polyhydrated sulfates.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-14
... subsurface oil and natural gas on these federal lands. Private parties, such as oil and gas companies, typically acquire oil and gas leases on federal lands at regional auctions conducted by the BLM. Defendants GEC and SGI are oil and gas companies engaged in the exploration and development of natural gas...
de Diego-Castilla, Graciela; Moreno-Paz, Mercedes; Blanco, Yolanda; Cruz-Gil, Patricia; Rodríguez-Manfredi, José A.; Fernández-Remolar, David; Gómez, Felipe; Gómez, Manuel J.; Rivas, Luis A.; Demergasso, Cecilia; Echeverría, Alex; Urtuvia, Viviana N.; Ruiz-Bermejo, Marta; García-Villadangos, Miriam; Postigo, Marina; Sánchez-Román, Mónica; Chong-Díaz, Guillermo; Gómez-Elvira, Javier
2011-01-01
Abstract The Atacama Desert has long been considered a good Mars analogue for testing instrumentation for planetary exploration, but very few data (if any) have been reported about the geomicrobiology of its salt-rich subsurface. We performed a Mars analogue drilling campaign next to the Salar Grande (Atacama, Chile) in July 2009, and several cores and powder samples from up to 5 m deep were analyzed in situ with LDChip300 (a Life Detector Chip containing 300 antibodies). Here, we show the discovery of a hypersaline subsurface microbial habitat associated with halite-, nitrate-, and perchlorate-containing salts at 2 m deep. LDChip300 detected bacteria, archaea, and other biological material (DNA, exopolysaccharides, some peptides) from the analysis of less than 0.5 g of ground core sample. The results were supported by oligonucleotide microarray hybridization in the field and finally confirmed by molecular phylogenetic analysis and direct visualization of microbial cells bound to halite crystals in the laboratory. Geochemical analyses revealed a habitat with abundant hygroscopic salts like halite (up to 260 g kg−1) and perchlorate (41.13 μg g−1 maximum), which allow deliquescence events at low relative humidity. Thin liquid water films would permit microbes to proliferate by using detected organic acids like acetate (19.14 μg g−1) or formate (76.06 μg g−1) as electron donors, and sulfate (15875 μg g−1), nitrate (13490 μg g−1), or perchlorate as acceptors. Our results correlate with the discovery of similar hygroscopic salts and possible deliquescence processes on Mars, and open new search strategies for subsurface martian biota. The performance demonstrated by our LDChip300 validates this technology for planetary exploration, particularly for the search for life on Mars. Key Words: Atacama Desert—Life detection—Biosensor—Biopolymers—In situ measurement. Astrobiology 11, 969–996. PMID:22149750
Parro, Victor; de Diego-Castilla, Graciela; Moreno-Paz, Mercedes; Blanco, Yolanda; Cruz-Gil, Patricia; Rodríguez-Manfredi, José A; Fernández-Remolar, David; Gómez, Felipe; Gómez, Manuel J; Rivas, Luis A; Demergasso, Cecilia; Echeverría, Alex; Urtuvia, Viviana N; Ruiz-Bermejo, Marta; García-Villadangos, Miriam; Postigo, Marina; Sánchez-Román, Mónica; Chong-Díaz, Guillermo; Gómez-Elvira, Javier
2011-12-01
The Atacama Desert has long been considered a good Mars analogue for testing instrumentation for planetary exploration, but very few data (if any) have been reported about the geomicrobiology of its salt-rich subsurface. We performed a Mars analogue drilling campaign next to the Salar Grande (Atacama, Chile) in July 2009, and several cores and powder samples from up to 5 m deep were analyzed in situ with LDChip300 (a Life Detector Chip containing 300 antibodies). Here, we show the discovery of a hypersaline subsurface microbial habitat associated with halite-, nitrate-, and perchlorate-containing salts at 2 m deep. LDChip300 detected bacteria, archaea, and other biological material (DNA, exopolysaccharides, some peptides) from the analysis of less than 0.5 g of ground core sample. The results were supported by oligonucleotide microarray hybridization in the field and finally confirmed by molecular phylogenetic analysis and direct visualization of microbial cells bound to halite crystals in the laboratory. Geochemical analyses revealed a habitat with abundant hygroscopic salts like halite (up to 260 g kg(-1)) and perchlorate (41.13 μg g(-1) maximum), which allow deliquescence events at low relative humidity. Thin liquid water films would permit microbes to proliferate by using detected organic acids like acetate (19.14 μg g(-1)) or formate (76.06 μg g(-1)) as electron donors, and sulfate (15875 μg g(-1)), nitrate (13490 μg g(-1)), or perchlorate as acceptors. Our results correlate with the discovery of similar hygroscopic salts and possible deliquescence processes on Mars, and open new search strategies for subsurface martian biota. The performance demonstrated by our LDChip300 validates this technology for planetary exploration, particularly for the search for life on Mars.
Visualization of planetary subsurface radar sounder data in three dimensions using stereoscopy
NASA Astrophysics Data System (ADS)
Frigeri, A.; Federico, C.; Pauselli, C.; Ercoli, M.; Coradini, A.; Orosei, R.
2010-12-01
Planetary subsurface sounding radar data extend the knowledge of planetary surfaces to a third dimension: the depth. The interpretation of delays of radar echoes converted into depth often requires the comparative analysis with other data, mainly topography, and radar data from different orbits can be used to investigate the spatial continuity of signals from subsurface geologic features. This scenario requires taking into account spatially referred information in three dimensions. Three dimensional objects are generally easier to understand if represented into a three dimensional space, and this representation can be improved by stereoscopic vision. Since its invention in the first half of 19th century, stereoscopy has been used in a broad range of application, including scientific visualization. The quick improvement of computer graphics and the spread of graphic rendering hardware allow to apply the basic principles of stereoscopy in the digital domain, allowing the stereoscopic projection of complex models. Specialized system for stereoscopic view of scientific data have been available in the industry, and proprietary solutions were affordable only to large research institutions. In the last decade, thanks to the GeoWall Consortium, the basics of stereoscopy have been applied for setting up stereoscopic viewers based on off-the shelf hardware products. Geowalls have been spread and are now used by several geo-science research institutes and universities. We are exploring techniques for visualizing planetary subsurface sounding radar data in three dimensions and we are developing a hardware system for rendering it in a stereoscopic vision system. Several Free Open Source Software tools and libraries are being used, as their level of interoperability is typically high and their licensing system offers the opportunity to implement quickly new functionalities to solve specific needs during the progress of the project. Visualization of planetary radar data in three dimensions represents a challenging task, and the exploration of different strategies will bring to the selection of the most appropriate ones for a meaningful extraction of information from the products of these innovative instruments.
Optimal experimental design for placement of boreholes
NASA Astrophysics Data System (ADS)
Padalkina, Kateryna; Bücker, H. Martin; Seidler, Ralf; Rath, Volker; Marquart, Gabriele; Niederau, Jan; Herty, Michael
2014-05-01
Drilling for deep resources is an expensive endeavor. Among the many problems finding the optimal drilling location for boreholes is one of the challenging questions. We contribute to this discussion by using a simulation based assessment of possible future borehole locations. We study the problem of finding a new borehole location in a given geothermal reservoir in terms of a numerical optimization problem. In a geothermal reservoir the temporal and spatial distribution of temperature and hydraulic pressure may be simulated using the coupled differential equations for heat transport and mass and momentum conservation for Darcy flow. Within this model the permeability and thermal conductivity are dependent on the geological layers present in the subsurface model of the reservoir. In general, those values involve some uncertainty making it difficult to predict actual heat source in the ground. Within optimal experimental the question is which location and to which depth to drill the borehole in order to estimate conductivity and permeability with minimal uncertainty. We introduce a measure for computing the uncertainty based on simulations of the coupled differential equations. The measure is based on the Fisher information matrix of temperature data obtained through the simulations. We assume that the temperature data is available within the full borehole. A minimization of the measure representing the uncertainty in the unknown permeability and conductivity parameters is performed to determine the optimal borehole location. We present the theoretical framework as well as numerical results for several 2d subsurface models including up to six geological layers. Also, the effect of unknown layers on the introduced measure is studied. Finally, to obtain a more realistic estimate of optimal borehole locations, we couple the optimization to a cost model for deep drilling problems.
A three-dimensional gravity inversion applied to São Miguel Island (Azores)
NASA Astrophysics Data System (ADS)
Camacho, A. G.; Montesinos, F. G.; Vieira, R.
1997-04-01
Gravimetric studies are becoming more and more widely acknowledged as a useful tool for studying and modeling the distributions of subsurface masses that are associated with volcanic activity. In this paper, new gravimetric data for the volcanic island of São Miguel (Azores) were analyzed and interpreted by a stabilized linear inversion methodology. An inversion model of higher resolution was calculated for the Caldera of Furnas, which has a larger density of data. In order to filter out the noncorrelatable anomalies, least squares prediction was used, resulting in a correlated gravimetric signal model with an accuracy of the order of 0.9 mGal. The gravimetric inversion technique is based on the adjustment of a three-dimensional (3-D) model of cubes of unknown density that represents the island's subsurface. The problem of non-uniqueness is solved by minimization with appropriate covariance matrices of the data (resulting from the least squares prediction) and of the unknowns. We also propose a criterion for choosing a balance between the data fit (which in this case corresponds to residues with rms of the order of 0.6 mGal) and the smoothness of the solution. The global model of the island includes a low-density zone in a WNW-ESE direction and a depth of the order of 20 km, associated with the Terceira rift spreading center. The minimums located at a depth of 4 km may be associated with shallow magmatic chambers beneath the main volcanoes of the island. The main high-density area is related to the Nordeste basaltic shield. With regard to the Caldera Furnas, in addition to the minimum that can be associated with a magmatic chamber, there are other shallow minimums that correspond to eruptive processes.
ERIC Educational Resources Information Center
Pallant, Amy; Pryputniewicz, Sarah; Lee, Hee-Sun
2012-01-01
Scientists, and science in general, move from the unknown to increasing levels of certainty. Teaching students about science means encouraging them to embrace and investigate the unknown, make reliable scientific claims, justify those claims with evidence, and evaluate the quality of the evidence. In all areas of science--and especially in…
NASA Astrophysics Data System (ADS)
Liebscher, A.; Scheck-Wenderoth, M.; GeoEn Research Group
2012-04-01
Axel Liebscher1, Magdalena Scheck-Wenderoth1 and the GeoEn Research Group1, 2,3 1 Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Potsdam, Germany 2 University Potsdam, Germany 3 BTU Cottbus, Germany One of the pressing challenges for the 21st century is a secure, sustainable and economical energy supply at simultaneous mitigation of its climate impact. Besides a switch to renewable energy resources, the exploration and exploitation of new, unconventional energy resources will play a major role as will the further use of fossil fuels. With the switch to renewable energies the question of geological energy storage will become an important topic whereas further use of fossil fuels requires strategies like CCS to reduce its negative climate impacts. These different aspects of geo-energy make complementary or competitive demands on the subsurface and its use. It is therefore essential to treat the subsurface as a geo-resource of its own right. So far, geo-resource related research has often focused on specific resource systems, e.g. ore forming systems, hydrocarbon systems or geothermal systems, providing results largely applicable only to the restricted range of physicochemical properties of the respective geo-resource systems. However, with the increasing use of the subsurface as important geo-resource, the different geo-resource systems tend to overlap and interact and also become much more complex due to the additional use or presence of artificial and technical matter, as is the case in geological CO2 storage. On the other hand, the combined use of the subsurface for different purposes may also create synergetic effects. GeoEn is a joint research project explicitly addressing the fundamental questions related to the sustainable and holistic use of the geo-resource subsurface with a special focus on geo-energy. Project partners are the German Research Centre for Geosciences (GFZ), the University of Potsdam (UP) and the Brandenburg University of Technology (BTU). GeoEn research addresses CO2 capture, transport and utilization, CO2 storage, the unconventional energy resource shale gas and geothermal technologies. These four core topics are studied in an integrated approach using the synergy of cross-cutting themes. The latter encompass new exploration and reservoir technologies as well as innovative monitoring methods, both complemented by numerical simulations of the relevant processes including flow dynamics or heat transfer in the subsurface and along the technological process chains. Accordingly, synergies derived from the cross-cutting topics improve both methodological development applicable in equal measure to the utilization of geothermal energy and of shale gas as well as to the use and monitoring of CO2 storage. Complementary, new modelling approaches are developed that allow the simulation of involved processes to predict the occurrence and physical properties of potential reservoirs and the changes that may be induced by their utilization. We present first results with respect to exploration strategies, monitoring technologies and modeling approaches for the pilot storage site for CO2 in Ketzin and the geothermal research platform Groß-Schönebeck, where the respective technologies are tested and monitored.
An Autonomous Cryobot Synthetic Aperture Radar for Subsurface Exploration of Europa
NASA Astrophysics Data System (ADS)
Pradhan, O.; Gasiewski, A. J.
2015-12-01
We present the design and field testing of a forward-looking end-fire synthetic aperture radar (SAR) for the 'Very deep Autonomous Laser-powered Kilowatt-class Yo-yoing Robotic Ice Explorer' (VALKYRIE) ice-penetrating cryobot. This design demonstrates critical technologies that will support an eventual landing and ice penetrating mission to Jupiter's icy moon, Europa. Results proving the feasibility of an end-fire SAR system for vehicle guidance and obstacle avoidance in a sub-surface ice environment will be presented. Data collected by the SAR will also be used for constructing sub-surface images of the glacier which can be used for: (i) mapping of englacial features such as crevasses, moulins, and embedded liquid water and (ii) ice-depth and glacier bed analysis to construct digital elevation models (DEM) that can help in the selection of crybot trajectories and future drill sites for extracting long-term climate records. The project consists of three parts, (i) design of an array of four conformal cavity-backed log-periodic folded slot dipole array (LPFSA) antennas that form agile radiating elements, (ii) design of a radar system that includes RF signal generation, 4x4 transmit-receive antenna switching and isolation and digital SAR data processing and (iii) field testing of the SAR in melt holes. The antennas have been designed, fabricated, and lab tested at the Center for Environmental Technology (CET) at CU-Boulder. The radar system was also designed and integrated at CET utilizing rugged RF components and FPGA based digital processing. Field testing was performed in conjunction with VALKYRIE tests by Stone Aerospace in June, 2015 on Matanuska Glacier, Alaska. The antennas are designed to operate inside ice while being immersed in a thin layer of surrounding low-conductivity melt water. Small holes in the corners of the cavities allow flooding of these cavities with the same melt-water thus allowing for quarter-wavelength cavity-backed reflection. Testing of the antenna array was first carried out by characterizing their operation inside a large ice block at the Stone Aerospace facility in Austin, TX. The complete radar system was then tested on the Matanuska glacier in Alaska, which is an effective Earth analog to Europan sub-surface exploration.
Application of Carbonate Reservoir using waveform inversion and reverse-time migration methods
NASA Astrophysics Data System (ADS)
Kim, W.; Kim, H.; Min, D.; Keehm, Y.
2011-12-01
Recent exploration targets of oil and gas resources are deeper and more complicated subsurface structures, and carbonate reservoirs have become one of the attractive and challenging targets in seismic exploration. To increase the rate of success in oil and gas exploration, it is required to delineate detailed subsurface structures. Accordingly, migration method is more important factor in seismic data processing for the delineation. Seismic migration method has a long history, and there have been developed lots of migration techniques. Among them, reverse-time migration is promising, because it can provide reliable images for the complicated model even in the case of significant velocity contrasts in the model. The reliability of seismic migration images is dependent on the subsurface velocity models, which can be extracted in several ways. These days, geophysicists try to obtain velocity models through seismic full waveform inversion. Since Lailly (1983) and Tarantola (1984) proposed that the adjoint state of wave equations can be used in waveform inversion, the back-propagation techniques used in reverse-time migration have been used in waveform inversion, which accelerated the development of waveform inversion. In this study, we applied acoustic waveform inversion and reverse-time migration methods to carbonate reservoir models with various reservoir thicknesses to examine the feasibility of the methods in delineating carbonate reservoir models. We first extracted subsurface material properties from acoustic waveform inversion, and then applied reverse-time migration using the inverted velocities as a background model. The waveform inversion in this study used back-propagation technique, and conjugate gradient method was used in optimization. The inversion was performed using the frequency-selection strategy. Finally waveform inversion results showed that carbonate reservoir models are clearly inverted by waveform inversion and migration images based on the inversion results are quite reliable. Different thicknesses of reservoir models were also described and the results revealed that the lower boundary of the reservoir was not delineated because of energy loss. From these results, it was noted that carbonate reservoirs can be properly imaged and interpreted by waveform inversion and reverse-time migration methods. This work was supported by the Energy Resources R&D program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No. 2009201030001A, No. 2010T100200133) and the Brain Korea 21 project of Energy System Engineering.
NASA Astrophysics Data System (ADS)
Kabuth, Alina; Dahmke, Andreas; Hagrey, Said Attia al; Berta, Márton; Dörr, Cordula; Koproch, Nicolas; Köber, Ralf; Köhn, Daniel; Nolde, Michael; Tilmann Pfeiffer, Wolf; Popp, Steffi; Schwanebeck, Malte; Bauer, Sebastian
2016-04-01
Within the framework of the transition to renewable energy sources ("Energiewende"), the German government defined the target of producing 60 % of the final energy consumption from renewable energy sources by the year 2050. However, renewable energies are subject to natural fluctuations. Energy storage can help to buffer the resulting time shifts between production and demand. Subsurface geological structures provide large potential capacities for energy stored in the form of heat or gas on daily to seasonal time scales. In order to explore this potential sustainably, the possible induced effects of energy storage operations have to be quantified for both specified normal operation and events of failure. The ANGUS+ project therefore integrates experimental laboratory studies with numerical approaches to assess subsurface energy storage scenarios and monitoring methods. Subsurface storage options for gas, i.e. hydrogen, synthetic methane and compressed air in salt caverns or porous structures, as well as subsurface heat storage are investigated with respect to site prerequisites, storage dimensions, induced effects, monitoring methods and integration into spatial planning schemes. The conceptual interdisciplinary approach of the ANGUS+ project towards the integration of subsurface energy storage into a sustainable subsurface planning scheme is presented here, and this approach is then demonstrated using the examples of two selected energy storage options: Firstly, the option of seasonal heat storage in a shallow aquifer is presented. Coupled thermal and hydraulic processes induced by periodic heat injection and extraction were simulated in the open-source numerical modelling package OpenGeoSys. Situations of specified normal operation as well as cases of failure in operational storage with leaking heat transfer fluid are considered. Bench-scale experiments provided parameterisations of temperature dependent changes in shallow groundwater hydrogeochemistry. As a second example, the option of seasonal hydrogen storage in a deep saline aquifer is considered. The induced thermal and hydraulic multiphase flow processes were simulated. Also, an integrative approach towards geophysical monitoring of gas presence was evaluated by synthetically applying these monitoring methods to the synthetic, however realistically defined numerical storage scenarios. Laboratory experiments provided parameterisations of geochemical effects caused by storage gas leakage into shallow aquifers in cases of sealing failure. Ultimately, the analysis of realistically defined scenarios of subsurface energy storage within the ANGUS+ project allows a quantification of the subsurface space claimed by a storage operation and its induced effects. Acknowledgments: This work is part of the ANGUS+ project (www.angusplus.de) and funded by the German Federal Ministry of Education and Research (BMBF) as part of the energy storage initiative "Energiespeicher".
Radio Sounding Techniques for the Galilean Icy Moons and their Jovian Magnetospheric Environment
NASA Technical Reports Server (NTRS)
Green, James L.; Markus, Thursten; Fung, Shing F.; Benson, Robert F.; Reinich, Bodo W.; Song, Paul; Gogineni, S. Prasad; Cooper, John F.; Taylor, William W. L.; Garcia, Leonard
2004-01-01
Radio sounding of the Earth's topside ionosphere and magnetosphere is a proven technique from geospace missions such as the International Satellites for Ionospheric Studies (ISIS) and the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE). Application of this technique to Jupiter's icy moons and the surrounding Jovian magnetosphere will provide unique remote sensing observations of the plasma and magnetic field environments and the subsurface conductivities, of Europa, Ganymede, and Callisto. Spatial structures of ionospheric plasma above the surfaces of the moons vary in response to magnetic-field perturbations from (1) magnetospheric plasma flows, (2) ionospheric currents from ionization of sputtered surface material, and (3) induced electric currents in salty subsurface oceans and from the plasma flows and ionospheric currents themselves. Radio sounding from 3 kHz to 10 MHz can provide the global electron densities necessary for the extraction of the oceanic current signals and supplements in-situ plasma and magnetic field measurements. While radio sounding requires high transmitter power for subsurface sounding, little power is needed to probe the electron density and magnetic field intensity near the spacecraft. For subsurface sounding, reflections occur at changes in the dielectric index, e.g., at the interfaces between two different phases of water or between water and soil. Variations in sub-surface conductivity of the icy moons can be investigated by radio sounding in the frequency range from 10 MHz to 50 MHz, allowing the determination of the presence of density and solid-liquid phase boundaries associated with oceans and related structures in overlying ice crusts. The detection of subsurface oceans underneath the icy crusts of the Jovian moons is one of the primary objectives of the Jupiter Icy Moons Orbiter (JIMO) mission. Preliminary modeling results show that return signals are clearly distinguishable be&een an ice crust with a thickness of 7 km on 1) an ocean and 2) a layer of bedrock. Knowledge of the ionospheric contributions to the time delay of the low-frequency subsurface radar is shown to be important in obtaining accurate depth information.
Characterizing the deformation of reservoirs using interferometry, gravity, and seismic analyses
NASA Astrophysics Data System (ADS)
Schiek, Cara Gina
In this dissertation, I characterize how reservoirs deform using surface and subsurface techniques. The surface technique I employ is radar interferometry, also known as InSAR (Interferometric Synthetic Aperture Radar). The subsurface analyses I explore include gravity modeling and seismic techniques consisting of determining earthquake locations from a small-temporary seismic network of six seismometers. These techniques were used in two different projects to determine how reservoirs deform in the subsurface and how this deformation relates to its remotely sensed surface deformation. The first project uses InSAR to determine land subsidence in the Mimbres basin near Deming, NM. The land subsidence measurements are visually compared to gravity models in order to determine the influence of near surface faults on the subsidence and the physical properties of the aquifers in these basins. Elastic storage coefficients were calculated for the Mimbres basin to aid in determining the stress regime of the aquifers. In the Mimbres basin, I determine that it is experiencing elastic deformation at differing compaction rates. The west side of the Mimbres basin is deforming faster, 17 mm/yr, while the east side of the basin is compacting at a rate of 11 mm/yr. The second project focuses on San Miguel volcano, El Salvador. Here, I integrate InSAR with earthquake locations using surface deformation forward modeling to investigate the explosive volcanism in this region. This investigation determined the areas around the volcano that are undergoing deformation, and that could lead to volcanic hazards such as slope failure from a fractured volcano interior. I use the earthquake epicenters with field data to define the subsurface geometry of the deformation source, which I forward model to produce synthetic interferograms. Residuals between the synthetic and observed interferograms demonstrate that the observed deformation is a direct result of the seismic activity along the San Miguel Fracture Zone. Based on the large number of earthquakes concentrated in this region and the fracturing suggested by the earthquake location results, I conclude that the southwestern slope of San Miguel is the most susceptible to volcanic hazards such as landsliding and flank lava flows. Together these projects explore the dynamics of reservoir systems, both hydrologic and magmatic. They show the utility of geodetic remote sensing to constrain the relative importance of various, complex, subsurface processes, including faulting, fluid migration, and compaction.
NASA Astrophysics Data System (ADS)
Kereszturi, Akos
2012-11-01
Subsurface sampling will be important in the robotic exploration of Mars in the future, and this activity requires a somewhat different approach in landing site selection than earlier, surface analysis focused missions. In this work theoretical argumentation for the selection of ideal sites is summarized, including various parameters that were defined as examples for the earlier four candidate landing sites of Mars Science Laboratory. The aim here was to compare interesting sites; the decision on the final site does not affect this work. Analyzing the theoretical background, to identify ideal locations for subsurface analysis, several factors could be identified by remote sensing, including the dust and dune coverage, the cap layer distribution as well as the location of probable important outcrops. Beyond the fact that image based information on the rock hardness on Mars is lacking, more work would be also useful to put the interesting sites into global context and to understand the role of secondary cratering in age estimation. More laboratory work would be also necessary to improve our knowledge on the extraction and preservation of organic materials under different conditions. Beyond the theoretical argumentation mentioned above, the size and accessibility of possible important shallow subsurface materials were analyzed at the four earlier candidate landing sites of Mars Science Laboratory. At the sample terrains, interesting but inaccessible, interesting and sideward accessible, and interesting and from above accessible outcrops were identified. Surveying these outcrop types at the sample terrains, the currently available datasets showed only 3-9% of exposed strata over the entire analyzed area is present at Eberswalde and Holden crater, and individual outcrops have an average diameter between 100 and 400 m there. For Gale crater and Mawrth Valles region, these parameters were 46-35% of exposed strata, with an average outcrop diameter of ˜300 m. In the case of the first two sites smaller and elongated outcrops were present in larger number, while in the second group average sizes of outcrops were around 3000 m in diameter. The analysis suggests that for future missions aimed at subsurface sampling, different exploration strategies would be ideal at different terrains, and the target terrain's characteristics should be taken into account during the planning phase of the mission.
Solving subsurface structural problems using a computer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witte, D.M.
1987-02-01
Until recently, the solution of subsurface structural problems has required a combination of graphical construction, trigonometry, time, and patience. Recent advances in software available for both mainframe and microcomputers now reduce the time and potential error of these calculations by an order of magnitude. Software for analysis of deviated wells, three point problems, apparent dip, apparent thickness, and the intersection of two planes, as well as the plotting and interpretation of these data can be used to allow timely and accurate exploration or operational decisions. The available computer software provides a set of utilities, or tools, rather than a comprehensive,more » intelligent system. The burden for selection of appropriate techniques, computation methods, and interpretations still lies with the explorationist user.« less
NASA Astrophysics Data System (ADS)
Stoker, C. R.; Stevens, T.; Amils, R.; Fernandez, D.
2005-12-01
Biological systems on Earth require three key ingredients-- liquid water, an energy source, and a carbon source, that are found in very few extraterrestrial environments. Previous examples of independent subsurface ecosystems have been found only in basalt aquifers. Such lithotrophic microbial ecosystems (LME) have been proposed as models for steps in the early evolution of Earth's biosphere and for potential biospheres on other planets where the surface is uninhabitable, such as Mars and Europa.. The Mars Analog Rio Tinto Experiment (MARTE) has searched in a volcanic massive sulfide deposit in Rio Tinto Spain for a subsurface biosphere capable of living without sunlight or oxygen and found a subsurface ecosystem driven by the weathering of the massive sulfide deposit (VMS) in which the rock matrix provides sufficient resources to support microbial metabolism, including the vigorous production of H2 by water-rock interactions. Microbial production of methane and sulfate occurred in the sulfide orebody and microbial production of methane and hydrogen sulfide continued in an anoxic plume downgradient from the sulfide ore. Organic carbon concentrations in the parent rock were too low to support microbes. The Rio Tinto system thus represents a new type of subsurface ecosystem with strong relevance for exobiological studies. Commercial drilling was used to reach the aquifer system at 100 m depth and conventional laboratory techniques were used to identify and characterize the biosphere. Then, the life search strategy that led to successful identification of this biosphere was applied to the development of a robotic drilling, core handling, inspection, subsampling, and life detection system built on a prototype planetary lander that was deployed in Rio Tinto Spain in September 2005 to test the capability of a robotic drilling system to search for subsurface life. A remote science team directed the simulation and analyzed the data from the MARTE robotic drill. The results of this experiment have important implications for the strategy for searching for life on Mars.
Sumner, Andrew J; Plata, Desiree L
2018-02-21
Hydraulic fracturing coupled with horizontal drilling (HDHF) involves the deep-well injection of a fracturing fluid composed of diverse and numerous chemical additives designed to facilitate the release and collection of natural gas from shale plays. Analyses of flowback wastewaters have revealed organic contamination from both geogenic and anthropogenic sources. The additional detections of undisclosed halogenated chemicals suggest unintended in situ transformation of reactive additives, but the formation pathways for these are unclear in subsurface brines. To develop an efficient experimental framework for investigating the complex shale-well parameter space, we have reviewed and synthesized geospatial well data detailing temperature, pressure, pH, and halide ion values as well as industrial chemical disclosure and concentration data. Our findings showed subsurface conditions can reach pressures up to 4500 psi (310 bars) and temperatures up to 95 °C, while at least 588 unique chemicals have been disclosed by industry, including reactive oxidants and acids. Given the extreme conditions necessary to simulate the subsurface, we briefly highlighted existing geochemical reactor systems rated to the necessary pressures and temperatures, identifying throughput as a key limitation. In response, we designed and developed a custom reactor system capable of achieving 5000 psi (345 bars) and 90 °C at low cost with 15 individual reactors that are readily turned over. To demonstrate the system's throughput, we simultaneously tested 12 disclosed HDHF chemicals against a radical initiator compound in simulated subsurface conditions, ruling out a dozen potential transformation pathways in a single experiment. This review outlines the dynamic and diverse parameter range experienced by HDHF chemical additives and provides an optimized framework and novel reactor system for the methodical study of subsurface transformation pathways. Ultimately, enabling such studies will provide urgently needed clarity for water treatment downstream or releases to the environment.
GROUND WATER ISSUE: NATURAL ATTENUATION OF HEXA- VALENT CHROMIUM IN GROUND WATER AND SOILS
In this paper, what is known about the transformation of chromium in the subsurface is explored. This is an attempt to identify conditions where it is most likely to occur, and describe soil tests that can assist in determining the likelihood of natural attenuation of Cr(VI) in s...
30 CFR 206.101 - What definitions apply to this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... subsurface oil and gas reservoirs and encompassing at least the outermost boundaries of all oil and gas accumulations known within those reservoirs, vertically projected to the land surface. State oil and gas... authorizes exploration for, development or extraction of, or removal of oil or gas—or the land area covered...
30 CFR 1206.101 - What definitions apply to this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... subsurface oil and gas reservoirs and encompassing at least the outermost boundaries of all oil and gas accumulations known within those reservoirs, vertically projected to the land surface. State oil and gas... authorizes exploration for, development or extraction of, or removal of oil or gas—or the land area covered...
Development of a Carbon Sequestration Visualization Tool using Google Earth Pro
NASA Astrophysics Data System (ADS)
Keating, G. N.; Greene, M. K.
2008-12-01
The Big Sky Carbon Sequestration Partnership seeks to prepare organizations throughout the western United States for a possible carbon-constrained economy. Through the development of CO2 capture and subsurface sequestration technology, the Partnership is working to enable the region to cleanly utilize its abundant fossil energy resources. The intent of the Los Alamos National Laboratory Big Sky Visualization tool is to allow geochemists, geologists, geophysicists, project managers, and other project members to view, identify, and query the data collected from CO2 injection tests using a single data source platform, a mission to which Google Earth Pro is uniquely and ideally suited . The visualization framework enables fusion of data from disparate sources and allows investigators to fully explore spatial and temporal trends in CO2 fate and transport within a reservoir. 3-D subsurface wells are projected above ground in Google Earth as the KML anchor points for the presentation of various surface subsurface data. This solution is the most integrative and cost-effective possible for the variety of users in the Big Sky community.
Improving Vintage Seismic Data Quality through Implementation of Advance Processing Techniques
NASA Astrophysics Data System (ADS)
Latiff, A. H. Abdul; Boon Hong, P. G.; Jamaludin, S. N. F.
2017-10-01
It is essential in petroleum exploration to have high resolution subsurface images, both vertically and horizontally, in uncovering new geological and geophysical aspects of our subsurface. The lack of success may have been from the poor imaging quality which led to inaccurate analysis and interpretation. In this work, we re-processed the existing seismic dataset with an emphasis on two objectives. Firstly, to produce a better 3D seismic data quality with full retention of relative amplitudes and significantly reduce seismic and structural uncertainty. Secondly, to facilitate further prospect delineation through enhanced data resolution, fault definitions and events continuity, particularly in syn-rift section and basement cover contacts and in turn, better understand the geology of the subsurface especially in regard to the distribution of the fluvial and channel sands. By adding recent, state-of-the-art broadband processing techniques such as source and receiver de-ghosting, high density velocity analysis and shallow water de-multiple, the final results produced a better overall reflection detail and frequency in specific target zones, particularly in the deeper section.
Mapping the Upper Subsurface of MARS Using Radar Polarimetry
NASA Technical Reports Server (NTRS)
Carter, L. M.; Rincon, R.; Berkoski, L.
2012-01-01
Future human exploration of Mars will require detailed knowledge of the surface and upper several meters of the subsurface in potential landing sites. Likewise, many of the Planetary Science Decadal Survey science goals, such as understanding the history of Mars climate change, determining how the surface was altered through processes like volcanism and fluvial activity, and locating regions that may have been hospitable to life in the past, would be significantly advanced through mapping of the upper meters of the surface. Synthetic aperture radar (SAR) is the only remote sensing technique capable of penetrating through meters of material and imaging buried surfaces at high (meters to tens-of-meters) spatial resolution. SAR is capable of mapping the boundaries of buried units and radar polarimetry can provide quantitative information about the roughness of surface and subsurface units, depth of burial of stratigraphic units, and density of materials. Orbital SAR systems can obtain broad coverage at a spatial scale relevant to human and robotic surface operations. A polarimetric SAR system would greatly increase the safety and utility of future landed systems including sample caching.
Deconstructing the shallow internal structure of the Moon using GRAIL gravity and LOLA topography
NASA Astrophysics Data System (ADS)
Zuber, M. T.
2015-12-01
Globally-distributed, high-resolution gravity and topography observations of the Moon from the Gravity Recovery and Interior Laboratory (GRAIL) mission and Lunar Orbiter Laser Altimeter (LOLA) instrument aboard the Lunar Reconnaissance Orbiter (LRO) spacecraft afford the unprecedented opportunity to explore the shallow internal structure of the Moon. Gravity and topography can be combined to produce Bouguer gravity that reveals the distribution of mass in the subsurface, with high degrees in the spherical harmonic expansion of the Bouguer anomalies sensitive to shallowest structure. For isolated regions of the lunar highlands and several basins we have deconstructed the gravity field and mapped the subsurface distribution of density anomalies. While specified spherical harmonic degree ranges can be used to estimate contributions at different depths, such analyses require considerable caution in interpretation. A comparison of filtered Bouguer gravity with forward models of disk masses with plausible densities illustrates the interdependencies of the gravitational power of density anomalies with depth and spatial scale. The results have implications regarding the limits of interpretation of lunar subsurface structure.
Liquid Water in the Extremely Shallow Martian Subsurface
NASA Technical Reports Server (NTRS)
Pavlov, A.; Shivak, J. N.
2012-01-01
Availability of liquid water is one of the major constraints for the potential Martian biosphere. Although liquid water is unstable on the surface of Mars due to low atmospheric pressures, it has been suggested that liquid films of water could be present in the Martian soil. Here we explored a possibility of the liquid water formation in the extremely shallow (1-3 cm) subsurface layer under low atmospheric pressures (0.1-10 mbar) and low ("Martian") surface temperatures (approx.-50 C-0 C). We used a new Goddard Martian simulation chamber to demonstrate that even in the clean frozen soil with temperatures as low as -25C the amount of mobile water can reach several percents. We also showed that during brief periods of simulated daylight warming the shallow subsurface ice sublimates, the water vapor diffuses through porous surface layer of soil temporarily producing supersaturated conditions in the soil, which leads to the formation of additional liquid water. Our results suggest that despite cold temperatures and low atmospheric pressures, Martian soil just several cm below the surface can be habitable.
SHUTTLE IMAGING RADAR PROVIDES FRAMEWORK FOR SUBSURFACE GEOLOGIC EXPLORATION IN EGYPT AND SUDAN.
Breed, Carol S.; McCauley, John F.; Schaber, Gerald G.
1984-01-01
Shuttle Imaging Radar provides a pictorial framework to guide exploration for mineral resources (potential placers), groundwater sources, and prehistoric archaeological sites in the Western Desert of Egypt and Sudan. Documented penetration by the SIR-A signal of dry surficial sediment to depths of a meter or more revealed bedrock geologic features and networks of former stream valleys otherwise concealed beneath windblown sand, alluvium, and colluvial deposits. 'Radar units' mapped on SIR-A images according to relative brightness and degree of mottling correspond to subsurface geologic and topographic features identified in more than 50 test pits. Petrologic examination of pit samples confirms that a variety of depositional environments existed in this now hyper-arid region before it was mantled by windblown sand sheets and dunes. Wet sand was discovered in two buried valleys shown on the radar images and located in the field with the aid of co-registered maps and Landsat images, and a satellite navigation device. Buried valleys whose streams once traversed mineralized zones are potential sites of placers (gold, tin).
Subsurface geomicrobiology of the Iberian Pyritic Belt, a terrestrial analogue of Mars
NASA Astrophysics Data System (ADS)
Amils, Ricardo
Terrestrial subsurface geomicrobiology is a matter of growing interest on many levels. From a fundamental point of view, it seeks to determine whether life can be sustained in the absence of radiation. From an astrobiological point of view, it is an interesting model for early life on Earth, as well as a representation of life as it could occur in other planetary bodies, e.g., Mars. Ŕ Tinto is an unusual extreme acidic environment due to its size, constant acidic pH, high ıo concentration of heavy metals and high level of microbial diversity. Ŕ Tinto rises in the core of ıo the Iberian Pyritic Belt (IPB), one of the biggest sulfidic ore deposits in the world. Today it is clear that the extreme characteristics of Ŕ Tinto are not due to acid mine drainage resulting ıo from mining activity. To explore the hypothesis that a continuous underground reactor of chemolithotrophic microorganisms thriving in the rich sulfidic minerals of the IPB is responsible for the extreme conditions found in the river, a drilling project has been developed to detect evidence of subsurface microbial activity and potential resources to support these microbial communities in situ from retrieved cores (MARTE project). Preliminary results clearly show that there is an active subsurface geomicrobiology in the Iberian Pyritic Belt associated to places were ground waters intersects the sulfidic ore body.
NASA Astrophysics Data System (ADS)
Vázquez-Suñé, Enric; Ángel Marazuela, Miguel; Velasco, Violeta; Diviu, Marc; Pérez-Estaún, Andrés; Álvarez-Marrón, Joaquina
2016-09-01
The overdevelopment of cities since the industrial revolution has shown the need to incorporate a sound geological knowledge in the management of required subsurface infrastructures and in the assessment of increasingly needed groundwater resources. Additionally, the scarcity of outcrops and the technical difficulty to conduct underground exploration in urban areas highlights the importance of implementing efficient management plans that deal with the legacy of heterogeneous subsurface information. To deal with these difficulties, a methodology has been proposed to integrate all the available spatio-temporal data into a comprehensive spatial database and a set of tools that facilitates the analysis and processing of the existing and newly added data for the city of Barcelona (NE Spain). Here we present the resulting actual subsurface 3-D geological model that incorporates and articulates all the information stored in the database. The methodology applied to Barcelona benefited from a good collaboration between administrative bodies and researchers that enabled the realization of a comprehensive geological database despite logistic difficulties. Currently, the public administration and also private sectors both benefit from the geological understanding acquired in the city of Barcelona, for example, when preparing the hydrogeological models used in groundwater assessment plans. The methodology further facilitates the continuous incorporation of new data in the implementation and sustainable management of urban groundwater, and also contributes to significantly reducing the costs of new infrastructures.
Stress management skills in the subsurface: H2 stress on thermophilic heterotrophs and methanogens
NASA Astrophysics Data System (ADS)
Topcuoglu, B. D.; Holden, J. F.
2017-12-01
Marine hyperthermophilic heterotrophs and methanogens belonging to the Thermococcales and Methanococcales are often found in subsurface environments such as coal and shale beds, marine sediments, and oil reservoirs where they encounter H2 stress conditions. It is important to study the H2 stress survival strategies of these organisms and their cooperation with one another for survival to better understand their biogeochemical impact in hot subsurface environments. In this study, we have shown that H2 inhibition changed the growth kinetics and the transcriptome of Thermococcus paralvinellae. We observed a significant decrease in batch phase growth rates and cell concentrations with high H2 background. Produced metabolite production measurements, RNA-seq analyses of differentially expressed genes and in silico experiments we performed with the T. paralvinellae metabolic model showed that T. paralvinellae produces formate by a formate hydrogenlyase to survive H2 inhibition. We have also shown that H2 limitation caused a significant decrease in batch phase growth rates and methane production rates of the methanogen, Methanocaldococcus jannaschii. H2 stress of both organisms can be ameliorated by syntrophic growth. H2 syntrophy was demonstrated in microcosm incubations for a natural assemblage of Thermococcus and hyperthermophilic methanogens present in hydrothermal fluid samples. This project aims to describe how a hyperthermophilic heterotroph and a hyperthermophilic methanogen eliminate H2 stress and explore cooperation among thermophiles in the hot subsurface.
An estimation of the electrical characteristics of planetary shallow subsurfaces with TAPIR antennas
NASA Astrophysics Data System (ADS)
Le Gall, A.; Reineix, A.; Ciarletti, V.; Berthelier, J. J.; Ney, R.; Dolon, F.; Corbel, C.
2006-06-01
In the frame of the NETLANDER program, we have developed the Terrestrial And Planetary Investigation by Radar (TAPIR) imaging ground-penetrating radar to explore the Martian subsurface at kilometric depths and search for potential water reservoirs. This instrument which is to operate from a fixed lander is based on a new concept which allows one to image the various underground reflectors by determining the direction of propagation of the reflected waves. The electrical parameters of the shallow subsurface (permittivity and conductivity) need to be known to correctly determine the propagation vector. In addition, these electrical parameters can bring valuable information on the nature of the materials close to the surface. The electric antennas of the radar are 35 m long resistively loaded monopoles that are laid on the ground. Their impedance, measured during a dedicated mode of operation of the radar, depends on the electrical parameters of soil and is used to infer the permittivity and conductivity of the upper layer of the subsurface. This paper presents an experimental and theoretical study of the antenna impedance and shows that the frequency profile of the antenna complex impedance can be used to retrieve the geoelectrical characteristics of the soil. Comparisons between a numerical modeling and in situ measurements have been successfully carried over various soils, showing a very good agreement.
Biogeochemical Cycle of Methanol in Anoxic Deep-Sea Sediments
Yanagawa, Katsunori; Tani, Atsushi; Yamamoto, Naoya; Hachikubo, Akihiro; Kano, Akihiro; Matsumoto, Ryo; Suzuki, Yohey
2016-01-01
The biological flux and lifetime of methanol in anoxic marine sediments are largely unknown. We herein reported, for the first time, quantitative methanol removal rates in subsurface sediments. Anaerobic incubation experiments with radiotracers showed high rates of microbial methanol consumption. Notably, methanol oxidation to CO2 surpassed methanol assimilation and methanogenesis from CO2/H2 and methanol. Nevertheless, a significant decrease in methanol was not observed after the incubation, and this was attributed to the microbial production of methanol in parallel with its consumption. These results suggest that microbial reactions play an important role in the sources and sinks of methanol in subseafloor sediments. PMID:27301420
Horton, J. Wright; Chapman, Martin C.; Green, Russell A.
2015-01-01
The earthquake and aftershocks occurred in crystalline rocks within Paleozoic thrust sheets of the Chopawamsic terrane. The main shock and majority of aftershocks delineated the newly named Quail fault zone in the subsurface, and shallow aftershocks defined outlying faults. The earthquake induced minor liquefaction sand boils, but notably there was no evidence of a surface fault rupture. Recurrence intervals, and evidence for larger earthquakes in the Quaternary in this area, remain important unknowns. This event, along with similar events during historical time, is a reminder that earthquakes of similar or larger magnitude pose a real hazard in eastern North America.
NASA Technical Reports Server (NTRS)
Abell, P. A.; Rivkin, A. S.
2015-01-01
Introduction: Robotic reconnaissance missions to small bodies will directly address aspects of NASA's Asteroid Initiative and will contribute to future human exploration. The NASA Asteroid Initiative is comprised of two major components: the Grand Challenge and the Asteroid Mission. The first component, the Grand Challenge, focuses on protecting Earth's population from asteroid impacts by detecting potentially hazardous objects with enough warning time to either prevent them from impacting the planet, or to implement civil defense procedures. The Asteroid Mission involves sending astronauts to study and sample a near- Earth asteroid (NEA) prior to conducting exploration missions of the Martian system, which includes Phobos and Deimos. The science and technical data obtained from robotic precursor missions that investigate the surface and interior physical characteristics of an object will help identify the pertinent physical properties that will maximize operational efficiency and reduce mission risk for both robotic assets and crew operating in close proximity to, or at the surface of, a small body. These data will help fill crucial strategic knowledge gaps (SKGs) concerning asteroid physical characteristics that are relevant for human exploration considerations at similar small body destinations. Small Body Strategic Knowledge Gaps: For the past several years NASA has been interested in identifying the key SKGs related to future human destinations. These SKGs highlight the various unknowns and/or data gaps of targets that the science and engineering communities would like to have filled in prior to committing crews to explore the Solar System. An action team from the Small Bodies Assessment Group (SBAG) was formed specifically to identify the small body SKGs under the direction of the Human Exploration and Operations Missions Directorate (HEOMD), given NASA's recent interest in NEAs and the Martian moons as potential human destinations [1]. The action team organized the SKGs into four broad themes: 1) Identify human mission targets; 2) Understand how to work on and interact with the small body surface; 3) Understand the small body environment and its potential risk/benefit to crew, systems, and operational assets; and 4) Understand the small body resource potential. Each of these themes were then further subdivided into categories to address specific SKG issues. Robotic Precursor Contributions to SKGs: Robotic reconnaissance missions should be able to address specific aspects related to SKG themes 1 through 4. Theme 1 deals with the identification of human mission targets within the NEA population. The current guideline indicates that human missions to fastspinning, tumbling, or binary asteroids may be too risky to conduct successfully from an operational perspective. However, no spacecraft mission has been to any of these types of NEAs before. Theme 2 addresses the concerns about interacting on the small body surface under microgravity conditions, and how the surface and/or sub-surface properties affect or restrict the interaction for human exploration. The combination of remote sensing instruments and in situ payloads will provide good insight into the asteroid's surface and subsurface properties. SKG theme 3 deals with the environment in and around the small body that may present a nuisance or hazard to any assets operating in close proximity. Impact and surface experiments will help address issues related to particle size, particle longevity, internal structure, and the near-surface mechanical stability of the asteroid. Understanding or constraining these physical characteristics are important for mission planning. Theme 4 addresses the resource potential of the small body. This is a particularly important aspect of human exploration since the identification and utilization of resources is a key aspect for deep space mission architectures to the Martian system (i.e., Phobos and Deimos). Conclusions: Robotic reconnaissance of small bodies can provide a wealth of information relevant to the science and planetary defense of NEAs. However, such missions to investigate NEAs can also provide key insights into small body strategic knowledge gaps and contribute to the overall success for human exploration missions to asteroids.
Robotic and Human-Tended Collaborative Drilling Automation for Subsurface Exploration
NASA Technical Reports Server (NTRS)
Glass, Brian; Cannon, Howard; Stoker, Carol; Davis, Kiel
2005-01-01
Future in-situ lunar/martian resource utilization and characterization, as well as the scientific search for life on Mars, will require access to the subsurface and hence drilling. Drilling on Earth is hard - an art form more than an engineering discipline. Human operators listen and feel drill string vibrations coming from kilometers underground. Abundant mass and energy make it possible for terrestrial drilling to employ brute-force approaches to failure recovery and system performance issues. Space drilling will require intelligent and autonomous systems for robotic exploration and to support human exploration. Eventual in-situ resource utilization will require deep drilling with probable human-tended operation of large-bore drills, but initial lunar subsurface exploration and near-term ISRU will be accomplished with lightweight, rover-deployable or standalone drills capable of penetrating a few tens of meters in depth. These lightweight exploration drills have a direct counterpart in terrestrial prospecting and ore-body location, and will be designed to operate either human-tended or automated. NASA and industry now are acquiring experience in developing and building low-mass automated planetary prototype drills to design and build a pre-flight lunar prototype targeted for 2011-12 flight opportunities. A successful system will include development of drilling hardware, and automated control software to operate it safely and effectively. This includes control of the drilling hardware, state estimation of both the hardware and the lithography being drilled and state of the hole, and potentially planning and scheduling software suitable for uncertain situations such as drilling. Given that Humans on the Moon or Mars are unlikely to be able to spend protracted EVA periods at a drill site, both human-tended and robotic access to planetary subsurfaces will require some degree of standalone, autonomous drilling capability. Human-robotic coordination will be important, either between a robotic drill and humans on Earth, or a human-tended drill and its visiting crew. The Mars Analog Rio Tinto Experiment (MARTE) is a current project that studies and simulates the remote science operations between an automated drill in Spain and a distant, distributed human science team. The Drilling Automation for Mars Exploration (DAME) project, by contrast: is developing and testing standalone automation at a lunar/martian impact crater analog site in Arctic Canada. The drill hardware in both projects is a hardened, evolved version of the Advanced Deep Drill (ADD) developed by Honeybee Robotics for the Mars Subsurface Program. The current ADD is capable of 20m, and the DAME project is developing diagnostic and executive software for hands-off surface operations of the evolved version of this drill. The current drill automation architecture being developed by NASA and tested in 2004-06 at analog sites in the Arctic and Spain will add downhole diagnosis of different strata, bit wear detection, and dynamic replanning capabilities when unexpected failures or drilling conditions are discovered in conjunction with simulated mission operations and remote science planning. The most important determinant of future 1unar and martian drilling automation and staffing requirements will be the actual performance of automated prototype drilling hardware systems in field trials in simulated mission operations. It is difficult to accurately predict the level of automation and human interaction that will be needed for a lunar-deployed drill without first having extensive experience with the robotic control of prototype drill systems under realistic analog field conditions. Drill-specific failure modes and software design flaws will become most apparent at this stage. DAME will develop and test drill automation software and hardware under stressful operating conditions during several planned field campaigns. Initial results from summer 2004 tests show seven identifi distinct failure modes of the drill: cuttings-removal issues with low-power drilling into permafrost, and successful steps at executive control and initial automation.
Quantitative methods to direct exploration based on hydrogeologic information
Graettinger, A.J.; Lee, J.; Reeves, H.W.; Dethan, D.
2006-01-01
Quantitatively Directed Exploration (QDE) approaches based on information such as model sensitivity, input data covariance and model output covariance are presented. Seven approaches for directing exploration are developed, applied, and evaluated on a synthetic hydrogeologic site. The QDE approaches evaluate input information uncertainty, subsurface model sensitivity and, most importantly, output covariance to identify the next location to sample. Spatial input parameter values and covariances are calculated with the multivariate conditional probability calculation from a limited number of samples. A variogram structure is used during data extrapolation to describe the spatial continuity, or correlation, of subsurface information. Model sensitivity can be determined by perturbing input data and evaluating output response or, as in this work, sensitivities can be programmed directly into an analysis model. Output covariance is calculated by the First-Order Second Moment (FOSM) method, which combines the covariance of input information with model sensitivity. A groundwater flow example, modeled in MODFLOW-2000, is chosen to demonstrate the seven QDE approaches. MODFLOW-2000 is used to obtain the piezometric head and the model sensitivity simultaneously. The seven QDE approaches are evaluated based on the accuracy of the modeled piezometric head after information from a QDE sample is added. For the synthetic site used in this study, the QDE approach that identifies the location of hydraulic conductivity that contributes the most to the overall piezometric head variance proved to be the best method to quantitatively direct exploration. ?? IWA Publishing 2006.
Titan Mare Explorer (TiME): A Discovery Mission to Titan’s Hydrocarbon Lakes
NASA Astrophysics Data System (ADS)
Lorenz, R. D.; Stofan, E. R.; Lunine, J. I.; Kirk, R. L.; Mahaffy, P. R.; Bierhaus, B.; Aharonson, O.; Clark, B. C.; Kantsiper, B.; Ravine, M. A.; Waite, J. H.; Harri, A.; Griffith, C. A.; Trainer, M. G.
2009-12-01
The discovery of lakes in Titan’s high latitudes confirmed the expectation that liquid hydrocarbons exist on the surface of the haze-shrouded moon. The lakes fill through drainage of subsurface runoff and/or intersection with the subsurface alkanofer, providing the first evidence for an active condensable-liquid hydrological cycle on another planetary body. The unique nature of Titan’s methane cycle, along with the prebiotic chemistry and implications for habitability of Titan’s lakes, make the lakes of the highest scientific priority for in situ investigation. The Titan Mare Explorer mission is an ASRG (Advanced Stirling Radioisotope Generator)-powered mission to a lake on Titan. The mission would be the first exploration of a planetary sea beyond Earth, would demonstrate the ASRG both in deep space and a non-terrestrial atmosphere environment, and pioneer low-cost outer planet missions. The scientific objectives of the mission are to: determine the chemistry of a Titan lake to constrain Titan’s methane cycle; determine the depth of a Titan lake; characterize physical properties of liquids; determine how the local meteorology over the lakes ties to the global cycling of methane; and analyze the morphology of lake surfaces, and if possible, shorelines, in order to constrain the kinetics of liquids and better understand the origin and evolution of Titan lakes. The focused scientific goals, combined with the new ASRG technology and the unique mission design, allows for a new class of mission at much lower cost than previous outer planet exploration has required.
NASA Astrophysics Data System (ADS)
Rao, A.; Onderdonk, N.
2016-12-01
The Davis-Schrimpf Seep Field (DSSF) is a group of approximately 50 geothermal mud seeps (gryphons) in the Salton Trough of southeastern California. Its location puts it in line with the mapped San Andreas Fault, if extended further south, as well as within the poorly-understood Brawley Seismic Zone. Much of the geomorphology, geochemistry, and other characteristics of the DSSF have been analyzed, but its subsurface structure remains unknown. Here we present data and interpretations from five new temperature timeseries from four separate gryphons at the DSSF, and compare them both amongst themselves, and within the context of all previously collected data to identify possible patterns constraining the subsurface dynamics. Simultaneously collected time-series from different seeps were cross-correlated to quantify similarity. All years' time-series were checked against the record of local seismicity to identify any seismic influence on temperature excursions. Time-series captured from the same feature in different years were statistically summarized and the results plotted to examine their evolution over time. We found that adjacent vents often alternate in temperature, suggesting a switching of flow path of the erupted mud at the scale of a few meters or less. Noticeable warming over time was observed in most of the features with time-series covering multiple years. No synchronicity was observed between DSSF features' temperature excursions, and seismic events within a 24 kilometer radius covering most of the width of the surrounding Salton Trough.
NASA Astrophysics Data System (ADS)
Lee, Jonghyun; Yoon, Hongkyu; Kitanidis, Peter K.; Werth, Charles J.; Valocchi, Albert J.
2016-07-01
Characterizing subsurface properties is crucial for reliable and cost-effective groundwater supply management and contaminant remediation. With recent advances in sensor technology, large volumes of hydrogeophysical and geochemical data can be obtained to achieve high-resolution images of subsurface properties. However, characterization with such a large amount of information requires prohibitive computational costs associated with "big data" processing and numerous large-scale numerical simulations. To tackle such difficulties, the principal component geostatistical approach (PCGA) has been proposed as a "Jacobian-free" inversion method that requires much smaller forward simulation runs for each iteration than the number of unknown parameters and measurements needed in the traditional inversion methods. PCGA can be conveniently linked to any multiphysics simulation software with independent parallel executions. In this paper, we extend PCGA to handle a large number of measurements (e.g., 106 or more) by constructing a fast preconditioner whose computational cost scales linearly with the data size. For illustration, we characterize the heterogeneous hydraulic conductivity (K) distribution in a laboratory-scale 3-D sand box using about 6 million transient tracer concentration measurements obtained using magnetic resonance imaging. Since each individual observation has little information on the K distribution, the data were compressed by the zeroth temporal moment of breakthrough curves, which is equivalent to the mean travel time under the experimental setting. Only about 2000 forward simulations in total were required to obtain the best estimate with corresponding estimation uncertainty, and the estimated K field captured key patterns of the original packing design, showing the efficiency and effectiveness of the proposed method.
Rybakov, M.; Shapira, A.; Al-Zoubi, A.; ten Brink, Uri S.; Hofstetter, R.; Kraeva, N.; Feldman, L.
2006-01-01
The spatial distribution of the earthquakes in the Arava Valley, a 150-km section of the Dead Sea Transform, is compared for the first time with the local subsurface geological features derived from geophysical and geological data. Gravity data suggested that the Gharandal, Timna, and Elat basins were filled by low-density young sediments. These features were confirmed by seismic reflection profiles and high-resolution aeromagnetic (HRAM) survey. The HRAM survey delineated the trace of the Dead Sea Transform (DST), which separates magnetic anomalies in the eastern and western parts of the valley, and revealed the occurrence of the unknown deep magmatics. Overall, the earthquake activity appears to be strongly related to the Dead Sea Transform. However, on a local scale, there is no apparent correlation between the seismicity and the mapped fault segments comprising the DST fault system. Absence of the correlation may be a result of insufficient accuracy of the earthquake localization and/or the inclined fault plane. However, in spite of such inaccuracy, it is clearly observed that the large clusters of the low-magnitude earthquakes coincide well with the sedimentary basins. Two pronounced clusters appear to coincide with the subsurface magmatics. We assume that the subsurface geology predetermines areas of stress accumulation and earthquakes. These areas can be the end of faults, or fault jogs, which sometimes create basins. Magmatism can also be affected by the stress field and predetermine the stress and earthquakes' allocation. ?? 2007 Science From Israel/LPPLtd.
Induction signals from Callisto's ionosphere and their implications on a possible subsurface ocean
NASA Astrophysics Data System (ADS)
Hartkorn, Oliver; Saur, Joachim
2017-11-01
We investigate whether induction within Callisto's electrically conductive ionosphere can explain observed magnetic fields which have previously been interpreted as evidence of induction in a saline, electrically conductive subsurface ocean. Callisto's ionosphere is subject to the flow of time-periodic magnetized plasma of Jupiter's magnetosphere, which induces electric fields and electric currents in Callisto's electrically conductive ionosphere. We develop a simple analytic model for a first quantitative understanding of the effects of induction in Callisto's ionosphere caused by the interaction with a time-variable magnetic field environment. With this model, we also investigate how the associated ionospheric currents close in the ambient magnetospheric plasma. Based on our model, we find that the anisotropic nature of Callisto's ionospheric conductivity generates an enhancement effect on ionospheric loop currents which are driven by the time-variable magnetic field. This effect is similar to the Cowling channel effect known from Earth's ionosphere. Subsequently, we numerically calculate the expected induced magnetic fields due to Jupiter's time-variable magnetic field in an anisotropic conductive ionosphere and compare our results with the Galileo C-3 and C-9 flybys. We find that induction within Callisto's ionosphere is responsible for a significant part of the observed magnetic fields. Ionospheric induction creates induced magnetic fields to some extent similar as expected from a subsurface water ocean. Depending on currently unknown properties such as Callisto's nightside ionosphere, the existence of layers of "dirty ice" and the details of the plasma interaction, a water ocean might be located much deeper than previously thought or might not exist at all.
NASA Astrophysics Data System (ADS)
Vienken, Thomas; Dietrich, Peter
2013-04-01
The increasing use of shallow geothermal energy, especially the rising numbers of geothermal ground source heat pumps that are installed to nowadays heat entire residential neighborhoods and the increasing use of ground water to cool residential buildings, as well as industrial facilities have led to an increasing need to assess possible effects of the use of shallow geothermal energy and to model subsurface heat transport. Potential effects include depletion of groundwater quality with resulting reduction of ground water ecosystem services. Heat and mass transport by groundwater dispersion and convection may lead to a carryover of effects into groundwater dependent ecosystems. These effects are often not directly accessible. Therefore, conflicting interests between geothermal energy use and groundwater protection as well as conflicting use between geothermal energy users are expected to arise especially in densely populated urban areas where the highest demand for the use of shallow geothermal energy is located but exploitation of shallow geothermal energy is limited and, at the same time, groundwater vulnerability is at its highest. Until now, only limited information about the potential effects of the intensive use of ground source heat pumps are available. Analyses conducted in the course of regulatory permission procedures consider only single applications and often rely on models that are solely parameterized based on standard literature values (e.g. thermal conductivity, porosity, and hydraulic conductivity). In addition, heat transport by groundwater dynamics is not considered. Due to the costs of conventionally applied geothermal in-situ tests (e.g. Geothermal Response Test - GRT) these can often only be applied at larger project scale. In this regard, our study will showcase the necessity for the development of novel geothermal monitoring and exploration concepts and tools based on a case story of a thermal intensively used residential neighborhood. We will show that the development of new monitoring and exploration techniques is the prerequisite for the sustainable thermal use of the shallow subsurface in the framework of a geothermal resource management.
Ramani, Subha; Könings, Karen; Mann, Karen V; van der Vleuten, Cees
2017-10-01
Self-assessment and reflection are essential for meaningful feedback. We aimed to explore whether the well-known Johari window model of self-awareness could guide feedback conversations between faculty and residents and enhance the institutional feedback culture. We had previously explored perceptions of residents and faculty regarding sociocultural factors impacting feedback. We re-analyzed data targeting themes related to self-assessment, reflection, feedback seeking and acceptance, aiming to generate individual and institutional feedback strategies applicable to each quadrant of the window. We identified the following themes for each quadrant: (1) Behaviors known to self and others - Validating the known; (2) Behaviors unknown to self but known to others - Accepting the blind; (3) Behaviors known to self and unknown to others - Disclosure of hidden; and (4) Behaviors unknown to self and others - Uncovering the unknown. Normalizing self-disclosure of limitations, encouraging feedback seeking, training in nonjudgmental feedback and providing opportunities for longitudinal relationships could promote self-awareness, ultimately expanding the "open" quadrant of the Johari window. The Johari window, a model of self-awareness in interpersonal communications, could provide a robust framework for individuals to improve their feedback conversations and institutions to design feedback initiatives that enhance its quality and impact.
Integration of geological remote-sensing techniques in subsurface analysis
Taranik, James V.; Trautwein, Charles M.
1976-01-01
Geological remote sensing is defined as the study of the Earth utilizing electromagnetic radiation which is either reflected or emitted from its surface in wavelengths ranging from 0.3 micrometre to 3 metres. The natural surface of the Earth is composed of a diversified combination of surface cover types, and geologists must understand the characteristics of surface cover types to successfully evaluate remotely-sensed data. In some areas landscape surface cover changes throughout the year, and analysis of imagery acquired at different times of year can yield additional geological information. Integration of different scales of analysis allows landscape features to be effectively interpreted. Interpretation of the static elements displayed on imagery is referred to as an image interpretation. Image interpretation is dependent upon: (1) the geologist's understanding of the fundamental aspects of image formation, and (2.) his ability to detect, delineate, and classify image radiometric data; recognize radiometric patterns; and identify landscape surface characteristics as expressed on imagery. A geologic interpretation integrates surface characteristics of the landscape with subsurface geologic relationships. Development of a geologic interpretation from imagery is dependent upon: (1) the geologist's ability to interpret geomorphic processes from their static surface expression as landscape characteristics on imagery, (2) his ability to conceptualize the dynamic processes responsible for the evolution 6f interpreted geologic relationships (his ability to develop geologic models). The integration of geologic remote-sensing techniques in subsurface analysis is illustrated by development of an exploration model for ground water in the Tucson area of Arizona, and by the development of an exploration model for mineralization in southwest Idaho.
NASA Astrophysics Data System (ADS)
Carter, M.; Reusch, D. B.; Karmosky, C. C.
2015-12-01
The discovery of pervasive year-round englacial meltwater in southeastern Greenland by Forster et. al (2012) in the form of a Perennial Firn Aquifer (PFA) with an estimated 140+/120 GT of water (pre-2011 melt season) has significantly changed the understanding of meltwater retention, energy balance models and Greenland hydrology. Prior to this, englacial meltwater was not considered a significant portion of the water budget in Greenland. The cryosphere and hydrology communities are currently observing and studying PFAs through data obtained from the NASA ICEBridge Program. Due to environmental and time constraints, data is limited to a few months each year beginning in 2010. This leaves a significant need to explore new methods of monitoring PFAs both throughout the year and across time in order to improve the understanding of PFA formation and hydrologic consequences. Both passive microwave and infrared radiation have been used to monitor surface melt via satellite remote sensing, are recorded regularly over Greenland, and are available from 1979. While infrared data are confined to the surface, microwaves have been noted to penetrate past the ice sheet surface and return a subsurface melt signal. A combination of microwave and infrared reflectance signals has the potential to identify subsurface meltwater distinct from surface melt throughout the year. This method of identifying englacial meltwater will be compared to recognized data sets, and correlated to meteorological requirements to determine accuracy. If this method proves effective, it could significantly extend the record of PFA location and physical and temporal extent so that hydrologic and climatic results can be better analyzed.
Quaternary extensional growth folding beneath Reno, Nevada, imaged by urban seismic profiling
Stephenson, William J.; Frary, Roxy N.; Louie, John; Odum, Jackson K.
2013-01-01
We characterize shallow subsurface faulting and basin structure along a transect through heavily urbanized Reno, Nevada, with high‐resolution seismic reflection imaging. The 6.8 km of P‐wave data image the subsurface to approximately 800 m depth and delineate two subbasins and basin uplift that are consistent with structure previously inferred from gravity modeling in this region of the northern Walker Lane. We interpret two primary faults that bound the uplift and deform Quaternary deposits. The dip of Quaternary and Tertiary strata in the western subbasin increases with greater depth to the east, suggesting recurrent fault motion across the westernmost of these faults. Deformation in the Quaternary section of the western subbasin is likely evidence of extensional growth folding at the edge of the Truckee River through Reno. This deformation is north of, and on trend with, previously mapped Quaternary fault strands of the Mt. Rose fault zone. In addition to corroborating the existence of previously inferred intrabasin structure, these data provide evidence for an active extensional Quaternary fault at a previously unknown location within the Truckee Meadows basin that furthers our understanding of both the seismotectonic framework and earthquake hazards in this urbanized region.
ERIC Educational Resources Information Center
Singha, Kamini; Loheide, Steven P., II
2011-01-01
Visualising subsurface processes in hydrogeology and building intuition for how these processes are controlled by changes in forcing is hard for many undergraduate students. While numerical modelling is one way to help undergraduate students explore outcomes of multiple scenarios, many codes are not user-friendly with respect to defining domains,…
Ultrasonic/Sonic Mechanisms for Drilling and Coring
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph; Sherrit, Stewart; Dolgin, Benjamin; Askin, Steve; Peterson, Thomas M.; Bell, Bill; Kroh, Jason; Pal, Dharmendra; Krahe, Ron; Du, Shu
2003-01-01
Two apparatuses now under development are intended to perform a variety of deep-drilling, coring, and sensing functions for subsurface exploration of rock and soil. These are modified versions of the apparatuses described in Ultrasonic/Sonic Drill/Corers With Integrated Sensors (NPO-20856), NASA Tech Briefs, Vol. 25, No. 1 (January 2001), page 38. In comparison with the drilling equipment traditionally used in such exploration, these apparatuses weigh less and consume less power. Moreover, unlike traditional drills and corers, these apparatuses function without need for large externally applied axial forces.
Next Generation P-Band Planetary Synthetic Aperture Radar
NASA Technical Reports Server (NTRS)
Rincon, Rafael; Carter, Lynn; Lu, Dee Pong Daniel
2016-01-01
The Space Exploration Synthetic Aperture Radar (SESAR) is an advanced P-band beamforming radar instrument concept to enable a new class of observations suitable to meet Decadal Survey science goals for planetary exploration. The radar operates at full polarimetry and fine (meter scale) resolution, and achieves beam agility through programmable waveform generation and digital beamforming. The radar architecture employs a novel low power, lightweight design approach to meet stringent planetary instrument requirements. This instrument concept has the potential to provide unprecedented surface and near- subsurface measurements applicable to multiple DecadalSurvey Science Goals.
Next Generation P-Band Planetary Synthetic Aperture Radar
NASA Technical Reports Server (NTRS)
Rincon, Rafael; Carter, Lynn; Lu, Dee Pong Daniel
2017-01-01
The Space Exploration Synthetic Aperture Radar (SESAR) is an advanced P-band beamforming radar instrument concept to enable a new class of observations suitable to meet Decadal Survey science goals for planetary exploration. The radar operates at full polarimetry and fine (meter scale) resolution, and achieves beam agility through programmable waveform generation and digital beamforming. The radar architecture employs a novel low power, lightweight design approach to meet stringent planetary instrument requirements. This instrument concept has the potential to provide unprecedented surface and near- subsurface measurements applicable to multiple Decadal Survey Science Goals.
The Mars Express - NASA Project at JPL
NASA Technical Reports Server (NTRS)
Thompson, Thomas W.; Horttor, Richard L.; Acton, C. H., Jr.; Zamani, P.; Johnson, W. T. K.; Plaut, J. J.; Holmes, D. P.; No, S.; Asmar, S. W.; Goltz, G.
2006-01-01
This viewgraph presentation gives a general overview of the Mars Express NASA Project at JPL. The contents include: 1) Mars Express/NASA Project Overview; 2) Experiment-Investigator Matrix; 3) Mars Express Support of NASA's Mars Exploration Objectives; 4) U.S./NASA Support of Mars Express; 5) Mars Express Schedule (2003-2007); 6) Mars Express Data Rates; 7) MARSIS Overview Results; 8) MARSIS with Antennas Deployed; 9) MARSIS Science Objectives; 10) Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) Experiment Overview; 11) Mars Express Orbit Evolution; 12) MARSIS Science - Subsurface Sounding; 13) MARSIS-North Polar Ice Cap; 14) MARSIS Data-Buried Basin; 15) MARSIS over a Crater Basin; 16) MARSIS-Buried Basin; 17) Ionogram - Orbit 2032 (example from Science paper); 18) Ionogram-Orbit 2018 (example from Science paper); and 19) Recent MARSIS Results ESA Press Releases.
NASA Astrophysics Data System (ADS)
Tsang, Stephanie Doris
The motion of the mantle beneath the tectonic plates is still unknown. Mantle shears associated with flow generate anisotropy. In order to investigate the anisotropic properties within the Earth to a range of depths within the crust and upper mantle (and perhaps beyond), long-period Rayleigh waves (periods of 51:282 ≤
Play-fairway analysis for geothermal exploration: Examples from the Great Basin, western USA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siler, Drew L; Faulds, James E
2013-10-27
Elevated permeability within fault systems provides pathways for circulation of geothermal fluids. Future geothermal development depends on precise and accurate location of such fluid flow pathways in order to both accurately assess geothermal resource potential and increase drilling success rates. The collocation of geologic characteristics that promote permeability in a given geothermal system define the geothermal ‘fairway’, the location(s) where upflow zones are probable and where exploration efforts including drilling should be focused. We define the geothermal fairway as the collocation of 1) fault zones that are ideally oriented for slip or dilation under ambient stress conditions, 2) areas withmore » a high spatial density of fault intersections, and 3) lithologies capable of supporting dense interconnected fracture networks. Areas in which these characteristics are concomitant with both elevated temperature and fluids are probable upflow zones where economic-scale, sustainable temperatures and flow rates are most likely to occur. Employing a variety of surface and subsurface data sets, we test this ‘play-fairway’ exploration methodology on two Great Basin geothermal systems, the actively producing Brady’s geothermal system and a ‘greenfield’ geothermal prospect at Astor Pass, NV. These analyses, based on 3D structural and stratigraphic framework models, reveal subsurface characteristics about each system, well beyond the scope of standard exploration methods. At Brady’s, the geothermal fairways we define correlate well with successful production wells and pinpoint several drilling targets for maintaining or expanding production in the field. In addition, hot-dry wells within the Brady’s geothermal field lie outside our defined geothermal fairways. At Astor Pass, our play-fairway analysis provides for a data-based conceptual model of fluid flow within the geothermal system and indicates several targets for exploration drilling.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wieberg, Scott
Ground gravity is a common and useful tool for geothermal exploration. Gravity surveys map density changes in the subsurface that may be caused by tectonic deformation such as faulting, fracturing, plutonism, volcanism, hydrothermal alteration, etc. Full Tensor Gravity Gradient (FTG) data has been used for over a decade in both petroleum and mining exploration to map changes in density associated with geologic structure. Measuring the gravity gradient, rather than the gravity field, provides significantly higher resolution data. Modeling studies have shown FTG data to be a viable tool for geothermal exploration, but no FTG data had been acquired for geothermalmore » applications to date. Electromagnetic methods have been used for geothermal exploration for some time. The Z-Axis Tipper Electromagnetic (ZTEM) was a newer technology that had found success in mapping deep conductivity changes for mining applications. ZTEM had also been used in limited tests for geothermal exploration. This newer technology provided the ability to cost effectively map large areas whilst detailing the electrical properties of the geological structures at depths. The ZTEM is passive and it uses naturally occurring audio frequency magnetic (AFMAG) signals as the electromagnetic triggering source. These geophysical methods were to be tested over a known geothermal site to determine whether or not the data provided the information required for accurately interpreting the subsurface geologic structure associated with a geothermal deposit. After successful acquisition and analysis of the known source area, an additional survey of a “greenfield” area was to be completed. The final step was to develop a combined interpretation model and determine if the combination produced a higher confident geophysical model compared to models developed using each of the technologies individually.« less
Chassefière, E; Bertaux, J-L; Berthelier, J-J; Cabane, M; Ciarletti, V; Durry, G; Forget, F; Hamelin, M; Leblanc, F; Menvielle, M; Gerasimov, M; Korablev, O; Linkin, S; Managadze, G; Jambon, A; Manhès, G; Lognonné, Ph; Agrinier, P; Cartigny, P; Giardini, D; Pike, T; Kofman, W; Herique, A; Coll, P; Person, A; Costard, F; Sarda, Ph; Paillou, Ph; Chaussidon, M; Marty, B; Robert, F; Maurice, S; Blanc, M; d'Uston, C; Sabroux, J-Ch; Pineau, J-F; Rochette, P
2004-01-01
In view to prepare Mars human exploration, it is necessary to promote and lead, at the international level, a highly interdisciplinary program, involving specialists of geochemistry, geophysics, atmospheric science, space weather, and biology. The goal of this program will be to elaborate concepts of individual instruments, then of integrated instrumental packages, able to collect exhaustive data sets of environmental parameters from future landers and rovers of Mars, and to favour the conditions of their implementation. Such a program is one of the most urgent need for preparing human exploration, in order to develop mitigation strategies aimed at ensuring the safety of human explorers, and minimizing risk for surface operations. A few main areas of investigation may be listed: particle and radiation environment, chemical composition of atmosphere, meteorology, chemical composition of dust, surface and subsurface material, water in the subsurface, physical properties of the soil, search for an hypothesized microbial activity, characterization of radio-electric properties of the Martian ionosphere. Scientists at the origin of the present paper, already involved at a high degree of responsibility in several Mars missions, and actively preparing in situ instrumentation for future landed platforms (Netlander--now cancelled, MSL-09), express their readiness to participate in both ESA/AURORA and NASA programs of Mars human exploration. They think that the formation of a Mars Environment working group at ESA, in the course of the AURORA definition phase, could act positively in favour of the program, by increasing its scientific cross-section and making it still more focused on human exploration. c2004 Published by Elsevier Ltd on behalf of COSPAR.
Exploration geothermal gradient drilling, Platanares, Honduras, Central America
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goff, S.J.; Laughlin, A.W.; Ruefenacht, H.D.
1988-01-01
This paper is a review and summary of the core drilling operations component of the Honduras Geothermal Resource Development Project at the Platanares geothermal prospect in Honduras, Central America. Three intermediate depth (428 to 679 m) coreholes are the first continuously cored geothermal exploration boreholes in Honduras. These coring operations are part of the Central America Energy Resource Project (CAERP) effort funded by the Agency for International Development (AID) and implemented by the Los Alamos National Laboratory (Los Alamos) in cooperation with the Empresa Nacional de Energia Electrica (ENEE) and the United States Geological Survey (USGS). This report emphasizes coringmore » operations with reference to the stratigraphy, thermal gradient, and flow test data of the boreholes. The primary objectives of this coring effort were (1) to obtain quantitative information on the temperature distribution as a function of depth, (2) to recover fluids associated with the geothermal reservoir, (3) to recover 75% or better core from the subsurface rock units, and (4) to drill into the subsurface rock as deeply as possible in order to get information on potential reservoir rocks, fracture density, permeabilities, and alteration histories of the rock units beneath the site. The three exploration coreholes drilled to depths of 650, 428 and 679 m, respectively, encountered several hot water entries. Coring operations and associated testing began in mid-October 1986 and were completed at the end of June 1987.« less
Passive Super-Low Frequency electromagnetic prospecting technique
NASA Astrophysics Data System (ADS)
Wang, Nan; Zhao, Shanshan; Hui, Jian; Qin, Qiming
2017-03-01
The Super-Low Frequency (SLF) electromagnetic prospecting technique, adopted as a non-imaging remote sensing tool for depth sounding, is systematically proposed for subsurface geological survey. In this paper, we propose and theoretically illustrate natural source magnetic amplitudes as SLF responses for the first step. In order to directly calculate multi-dimensional theoretical SLF responses, modeling algorithms were developed and evaluated using the finite difference method. The theoretical results of three-dimensional (3-D) models show that the average normalized SLF magnetic amplitude responses were numerically stable and appropriate for practical interpretation. To explore the depth resolution, three-layer models were configured. The modeling results prove that the SLF technique is more sensitive to conductive objective layers than high resistive ones, with the SLF responses of conductive objective layers obviously showing uprising amplitudes in the low frequency range. Afterwards, we proposed an improved Frequency-Depth transformation based on Bostick inversion to realize the depth sounding by empirically adjusting two parameters. The SLF technique has already been successfully applied in geothermal exploration and coalbed methane (CBM) reservoir interpretation, which demonstrates that the proposed methodology is effective in revealing low resistive distributions. Furthermore, it siginificantly contributes to reservoir identification with electromagnetic radiation anomaly extraction. Meanwhile, the SLF interpretation results are in accordance with dynamic production status of CBM reservoirs, which means it could provide an economical, convenient and promising method for exploring and monitoring subsurface geo-objects.
Technologies Enabling Scientific Exploration of Asteroids and Moons
NASA Astrophysics Data System (ADS)
Shaw, A.; Fulford, P.; Chappell, L.
2016-12-01
Scientific exploration of moons and asteroids is enabled by several key technologies that yield topographic information, allow excavation of subsurface materials, and allow delivery of higher-mass scientific payloads to moons and asteroids. These key technologies include lidar systems, robotics, and solar-electric propulsion spacecraft buses. Many of these technologies have applications for a variety of planetary targets. Lidar systems yield high-resolution shape models of asteroids and moons. These shape models can then be combined with radio science information to yield insight into density and internal structure. Further, lidar systems allow investigation of topographic surface features, large and small, which yields information on regolith properties. Robotic arms can be used for a variety of purposes, especially to support excavation, revealing subsurface material and acquiring material from depth for either in situ analysis or sample return. Robotic arms with built-in force sensors can also be used to gauge the strength of materials as a function of depth, yielding insight into regolith physical properties. Mobility systems allow scientific exploration of multiple sites, and also yield insight into regolith physical properties due to the interaction of wheels with regolith. High-power solar electric propulsion (SEP) spacecraft bus systems allow more science instruments to be included on missions given their ability to support greater payload mass. In addition, leveraging a cost-effective commercially-built SEP spacecraft bus can significantly reduce mission cost.
ESTIMATION OF NEAR SUBSURFACE COAL FIRE GAS EMISSIONS BASED ON GEOPHYSICAL INVESTIGATIONS
NASA Astrophysics Data System (ADS)
Chen-Brauchler, D.; Meyer, U.; Schlömer, S.; Kus, J.; Gundelach, V.; Wuttke, M.; Fischer, C.; Rueter, H.
2009-12-01
Spontaneous and industrially caused subsurface coal fires are worldwide disasters that destroy coal resources, cause air pollution and emit a large amount of green house gases. Especially in developing countries, such as China, India and Malaysia, this problem has intensified over the last 15 years. In China alone, 10 to 20 million tons of coal are believed to be lost in uncontrolled coal fires. The cooperation of developing countries and industrialized countries is needed to enforce internationally concerted approaches and political attention towards the problem. The Clean Development Mechanism (CDM) under the framework of the Kyoto Protocol may provide an international stage for financial investment needed to fight the disastrous situation. A Sino-German research project for coal fire exploration, monitoring and extinction applied several geophysical approaches in order to estimate the annual baseline especially of CO2 emissions from near subsurface coal fires. As a result of this project, we present verifiable methodologies that may be used in the CDM framework to estimate the amount of CO2 emissions from near subsurface coal fires. We developed three possibilities to approach the estimation based on (1) thermal energy release, (2) geological and geometrical determinations as well as (3) direct gas measurement. The studies involve the investigation of the physical property changes of the coal seam and bedrock during different burning stages of a underground coal fire. Various geophysical monitoring methods were applied from near surface to determine the coal volume, fire propagation, temperature anomalies, etc.
NASA Astrophysics Data System (ADS)
Vasconcelos, Ivan; Ozmen, Neslihan; van der Neut, Joost; Cui, Tianci
2017-04-01
Travelling wide-bandwidth seismic waves have long been used as a primary tool in exploration seismology because they can probe the subsurface over large distances, while retaining relatively high spatial resolution. The well-known Born resolution limit often seems to be the lower bound on spatial imaging resolution in real life examples. In practice, data acquisition cost, time constraints and other factors can worsen the resolution achieved by wavefield imaging. Could we obtain images whose resolution beats the Born limits? Would it be practical to achieve it, and what are we missing today to achieve this? In this talk, we will cover aspects of linear and nonlinear seismic imaging to understand elements that play a role in obtaining "super-resolved" seismic images. New redatuming techniques, such as the Marchenko method, enable the retrieval of subsurface fields that include multiple scattering interactions, while requiring relatively little knowledge of model parameters. Together with new concepts in imaging, such as Target-Enclosing Extended Images, these new redatuming methods enable new targeted imaging frameworks. We will make a case as to why target-oriented approaches to reconstructing subsurface-domain wavefields from surface data may help in increasing the resolving power of seismic imaging, and in pushing the limits on parameter estimation. We will illustrate this using a field data example. Finally, we will draw connections between seismic and other imaging modalities, and discuss how this framework could be put to use in other applications
NASA Astrophysics Data System (ADS)
Dhraief, Wissem; Dhahri, Ferid; Chalwati, Imen; Boukadi, Noureddine
2017-04-01
The objective and the main contribution of this issue are dedicated to using subsurface data to delineate a basin beneath the Gulf of Tunis and its neighbouring areas, and to investigate the potential of this area in terms of hydrocarbon resources. Available well data provided information about the subsurface geology beneath the Gulf of Tunis. 2D seismic data allowed delineation of the basin shape, strata geometries, and some potential promising subsurface structures in terms of hydrocarbon accumulation. Together with lithostratigraphic data obtained from drilled wells, seismic data permitted the construction of isochron and isobath maps of Upper Cretaceous-Neogene strata. Structural and lithostratigraphic interpretations indicate that the area is tectonically complex, and they highlight the tectonic control of strata deposition during the Cretaceous and Neogene. Tectonic activity related to the geodynamic evolution of the northern African margin appears to have been responsible for several thickness and facies variations, and to have played a significant role in the establishment and evolution of petroleum systems in northeastern Tunisia. As for petroleum systems in the basin, the Cretaceous series of the Bahloul, Mouelha and Fahdene formations are acknowledged to be the main source rocks. In addition, potential reservoirs (Fractured Abiod and Bou Dabbous carbonated formations) sealed by shaly and marly formations (Haria and Souar formations respectively) show favourable geometries of trap structures (anticlines, tilted blocks, unconformities, etc.) which make this area adequate for hydrocarbon accumulations.
NASA Astrophysics Data System (ADS)
Zehe, Erwin; Jackisch, Conrad; Rodriguez, Nicolas; Klaus, Julian
2017-04-01
Only a minute amount of global fresh water is stored in the unsaturated zone. Yet this tiny compartment controls soil microbial activity and associated trace gas emissions, transport and transformations of contaminants, plant productivity, runoff generation and groundwater recharge. To date, the processes controlling renewal and age of different fractions of the soil water stock are far from being understood. Current theories and process concepts were largely inferred either from over-simplified laboratory experiments, or non-exhaustive point observations and tracer data in the field. Tracer data provide key but yet integrated information about the distribution of travel times of the tracer molecules to a certain depth or on their travel depth distribution within a given time. We hence are able to observe the "effect" of soil structure i.e. partitioning of infiltrating water between fast preferential and slow flow paths and imperfect subsequent mixing between these flow paths in the subsurface and the related plant water uptake. However, we are not able to study the "cause" - because technologies for in-situ observations of flow, flow path topology and exchange processes at relevant interfaces have up to now not been at hand. In the present study we will make use of a Lagrangian model for subsurface water dynamics to explore how subsurface heterogeneity and mixing among different storage fractions affects residence time distribution in the unsaturated zone in a forward approach. Soil water is represented by particles of constant mass, which travel according to the Itô form of the Fokker Planck equation. The model concept builds on established soil physics by estimating the drift velocity and the diffusion term based on the soil water characteristics. The model has been shown to simulate capillary driven soil moisture dynamics in good accordance with a) the Richards equation and b) observed soil moisture data in different soil. The particle model may furthermore account for preferential non equilibrium infiltration in a straightforward manner by treating event water as different type of particle, which travel initially in a macropore/ coarse pore fraction and experience a slow diffusive mixing with the pre-event water particles within a characteristic mixing time. In the present study we will particularly use the last approach in combination with artificial tracer data and stable isotopes to explore how different assumptions on mixing between different flow paths affect the travel time and residence time distributions of water particles in different fractions of the pore space.
Miller, R.D.; Steeples, D.W.; Lambrecht, J.L.; Croxton, N.
2006-01-01
Time-lapse seismic reflection imaging improved our understanding of the consistent, gradual surface subsidence ongoing at two sinkholes in the Gorham Oilfield discovered beneath a stretch of Interstate Highway 70 through Russell and Ellis Counties in Kansas in 1966. With subsidence occurring at a rate of around 10 cm per year since discovery, monitoring has been beneficial to ensure public safety and optimize maintenance. A miniSOSIE reflection survey conducted in 1980 delineated the affected subsurface and successfully predicted development of a third sinkhole at this site. In 2004 and 2005 a high-resolution vibroseis survey was completed to ascertain current conditions of the subsurface, rate and pattern of growth since 1980, and potential for continued growth. With time and improved understanding of the salt dissolution affected subsurface in this area it appears that these features represent little risk to the public from catastrophic failure. However, from an operational perspective the Kansas Department of Transportation should expect continued subsidence, with future increases in surface area likely at a slightly reduced vertical rate. Seismic characteristics appear empirically consistent with gradual earth material compaction/settling. ?? 2005 Society of Exploration Geophysicists.
Calibration method helps in seismic velocity interpretation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guzman, C.E.; Davenport, H.A.; Wilhelm, R.
1997-11-03
Acoustic velocities derived from seismic reflection data, when properly calibrated to subsurface measurements, help interpreters make pure velocity predictions. A method of calibrating seismic to measured velocities has improved interpretation of subsurface features in the Gulf of Mexico. In this method, the interpreter in essence creates a kind of gauge. Properly calibrated, the gauge enables the interpreter to match predicted velocities to velocities measured at wells. Slow-velocity zones are of special interest because they sometimes appear near hydrocarbon accumulations. Changes in velocity vary in strength with location; the structural picture is hidden unless the variations are accounted for by mappingmore » in depth instead of time. Preliminary observations suggest that the presence of hydrocarbons alters the lithology in the neighborhood of the trap; this hydrocarbon effect may be reflected in the rock velocity. The effect indicates a direct use of seismic velocity in exploration. This article uses the terms seismic velocity and seismic stacking velocity interchangeably. It uses ground velocity, checkshot average velocity, and well velocity interchangeably. Interval velocities are derived from seismic stacking velocities or well average velocities; they refer to velocities of subsurface intervals or zones. Interval travel time (ITT) is the reciprocal of interval velocity in microseconds per foot.« less
NASA Astrophysics Data System (ADS)
Xue, X. H.; Chang, S.; Yuan, L. Y.
2017-08-01
Riverbanks are important boundaries for the nutrient cycling between lands and freshwaters. This research aimed to explore effects of different land management methods on the soil nutrient concentration and distribution at riverbanks. Soils from the reed-covered riverbanks of middle Yangtze River were studied, including the soils respectively undergoing systematic agriculture (gathering young tender shoots, reaping reed straws, and burning residual straws), fires and no disturbances. Results showed that the agricultural activities sharply decreased the contents of soil organic matter (SOM), N, P and K in subsurface soils but less decreased the surface SOM, N and K contents, whereas phosphorus were evidently decreased at both surface and subsurface layers. In contrast, the single application of fires caused a marked increase of SOM, N, P and K contents in both surface and subsurface soils but had little impacts on soil nutrient distributions. Soils under all the three conditions showed a relative increase of soil nutrients at riverbank foot. This comparative study indicated that the different or even contrary effects of riverbank management practices on soil nutrient statuses should be carefully taken into account when assessing the ecological effects of management practices.
Factors Influencing the Sahelian Paradox at the Local Watershed Scale: Causal Inference Insights
NASA Astrophysics Data System (ADS)
Van Gordon, M.; Groenke, A.; Larsen, L.
2017-12-01
While the existence of paradoxical rainfall-runoff and rainfall-groundwater correlations are well established in the West African Sahel, the hydrologic mechanisms involved are poorly understood. In pursuit of mechanistic explanations, we perform a causal inference analysis on hydrologic variables in three watersheds in Benin and Niger. Using an ensemble of techniques, we compute the strength of relationships between observational soil moisture, runoff, precipitation, and temperature data at seasonal and event timescales. Performing analysis over a range of time lags allows dominant time scales to emerge from the relationships between variables. By determining the time scales of hydrologic connectivity over vertical and lateral space, we show differences in the importance of overland and subsurface flow over the course of the rainy season and between watersheds. While previous work on the paradoxical hydrologic behavior in the Sahel focuses on surface processes and infiltration, our results point toward the importance of subsurface flow to rainfall-runoff relationships in these watersheds. The hypotheses generated from our ensemble approach suggest that subsequent explorations of mechanistic hydrologic processes in the region include subsurface flow. Further, this work highlights how an ensemble approach to causal analysis can reveal nuanced relationships between variables even in poorly understood hydrologic systems.
Kukreti, B M; Pandey, Pradeep; Singh, R V
2012-08-01
Non-coring based exploratory drilling was under taken in the sedimentary environment of Rangsohkham block, East Khasi Hills district to examine the eastern extension of existing uranium resources located at Domiasiat and Wakhyn in the Mahadek basin of Meghalaya (India). Although radiometric survey and radiometric analysis of surface grab/channel samples in the block indicate high uranium content but the gamma ray logging results of exploratory boreholes in the block, did not obtain the expected results. To understand this abrupt discontinuity between the two sets of data (surface and subsurface) multivariate statistical analysis of primordial radioactive elements (K(40), U(238) and Th(232)) was performed using the concept of representative subsurface samples, drawn from the randomly selected 11 boreholes of this block. The study was performed to a high confidence level (99%), and results are discussed for assessing the U and Th behavior in the block. Results not only confirm the continuation of three distinct geological formations in the area but also the uranium bearing potential in the Mahadek sandstone of the eastern part of Mahadek Basin. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tozburun, Serhat; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.
2012-02-01
Successful identification and preservation of the cavernous nerves (CN), which are responsible for sexual function, during prostate cancer surgery, will require subsurface detection of the CN beneath a thin fascia layer. This study explores optical nerve stimulation (ONS) in the rat with a fascia layer placed over the CN. Two near-IR diode lasers (1455 nm and 1550 nm lasers) were used to stimulate the CN in CW mode with a 1-mm-diameter spot in 8 rats. The 1455 nm wavelength provides an optical penetration depth (OPD) of ~350 μm, while 1550 nm provides an OPD of ~1000 μm (~3 times deeper than 1455 nm and 1870 nm wavelengths previously tested). Fascia layers with thicknesses of 85 - 600 μm were placed over the CN. Successful ONS was confirmed by an intracavernous pressure (ICP) response in the rat penis at 1455 nm through fascia 110 μm thick and at 1550 nm through fascia 450 μm thick. Higher incident laser power was necessary and weaker and slower ICP responses were observed as fascia thickness was increased. Subsurface ONS of the rat CN at a depth of 450 μm using a 1550 nm laser is feasible.
Deformation band clusters on Mars and implications for subsurface fluid flow
Okubo, C.H.; Schultz, R.A.; Chan, M.A.; Komatsu, G.
2009-01-01
High-resolution imagery reveals unprecedented lines of evidence for the presence of deformation band clusters in layered sedimentary deposits in the equatorial region of Mars. Deformation bands are a class of geologic structural discontinuity that is a precursor to faults in clastic rocks and soils. Clusters of deformation bands, consisting of many hundreds of individual subparallel bands, can act as important structural controls on subsurface fluid flow in terrestrial reservoirs, and evidence of diagenetic processes is often preserved along them. Deformation band clusters are identified on Mars based on characteristic meter-scale architectures and geologic context as observed in data from the High-Resolution Imaging Science Experiment (HiRISE) camera. The identification of deformation band clusters on Mars is a key to investigating the migration of fluids between surface and subsurface reservoirs in the planet's vast sedimentary deposits. Similar to terrestrial examples, evidence of diagenesis in the form of light- and dark-toned discoloration and wall-rock induration is recorded along many of the deformation band clusters on Mars. Therefore, these structures are important sites for future exploration and investigations into the geologic history of water and water-related processes on Mars. ?? 2008 Geological Society of America.
Autonomous exploration and mapping of unknown environments
NASA Astrophysics Data System (ADS)
Owens, Jason; Osteen, Phil; Fields, MaryAnne
2012-06-01
Autonomous exploration and mapping is a vital capability for future robotic systems expected to function in arbitrary complex environments. In this paper, we describe an end-to-end robotic solution for remotely mapping buildings. For a typical mapping system, an unmanned system is directed to enter an unknown building at a distance, sense the internal structure, and, barring additional tasks, while in situ, create a 2-D map of the building. This map provides a useful and intuitive representation of the environment for the remote operator. We have integrated a robust mapping and exploration system utilizing laser range scanners and RGB-D cameras, and we demonstrate an exploration and metacognition algorithm on a robotic platform. The algorithm allows the robot to safely navigate the building, explore the interior, report significant features to the operator, and generate a consistent map - all while maintaining localization.
Distributed subterranean exploration and mapping with teams of UAVs
NASA Astrophysics Data System (ADS)
Rogers, John G.; Sherrill, Ryan E.; Schang, Arthur; Meadows, Shava L.; Cox, Eric P.; Byrne, Brendan; Baran, David G.; Curtis, J. Willard; Brink, Kevin M.
2017-05-01
Teams of small autonomous UAVs can be used to map and explore unknown environments which are inaccessible to teams of human operators in humanitarian assistance and disaster relief efforts (HA/DR). In addition to HA/DR applications, teams of small autonomous UAVs can enhance Warfighter capabilities and provide operational stand-off for military operations such as cordon and search, counter-WMD, and other intelligence, surveillance, and reconnaissance (ISR) operations. This paper will present a hardware platform and software architecture to enable distributed teams of heterogeneous UAVs to navigate, explore, and coordinate their activities to accomplish a search task in a previously unknown environment.
Play-fairway analysis for geothermal resources and exploration risk in the Modoc Plateau region
Siler, Drew; Zhang, Yingqi; Spycher, Nicolas F.; Dobson, Patrick; McClain, James S.; Gasperikova, Erika; Zierenberg, Robert A.; Schiffman, Peter; Ferguson, Colin; Fowler, Andrew; Cantwell, Carolyn
2017-01-01
The region surrounding the Modoc Plateau, encompassing parts of northeastern California, southern Oregon, and northwestern Nevada, lies at an intersection between two tectonic provinces; the Basin and Range province and the Cascade volcanic arc. Both of these provinces have substantial geothermal resource base and resource potential. Geothermal systems with evidence of magmatic heat, associated with Cascade arc magmatism, typify the western side of the region. Systems on the eastern side of the region appear to be fault controlled with heat derived from high crustal heat flow, both of which are typical of the Basin and Range. As it has the potential to host Cascade arc-type geothermal resources, Basin and Range-type geothermal resources, and/or resources with characteristics of both provinces, and because there is relatively little current development, the Modoc Plateau region represents an intriguing potential for undiscovered geothermal resources. It remains unclear however, what specific set(s) of characteristics are diagnostic of Modoc-type geothermal systems and how or if those characteristics are distinct from Basin and Range-type or Cascade arc-type geothermal systems. In order to evaluate the potential for undiscovered geothermal resources in the Modoc area, we integrate a wide variety of existing data in order to evaluate geothermal resource potential and exploration risk utilizing ‘play-fairway’ analysis. We consider that the requisite parameters for hydrothermal circulation are: 1) heat that is sufficient to drive circulation, and 2) permeability that is sufficient to allow for fluid circulation in the subsurface. We synthesize data that indicate the extent and distribution of these parameters throughout the Modoc region. ‘Fuzzy logic’ is used to incorporate expert opinion into the utility of each dataset as an indicator of either heat or permeability, and thus geothermal favorability. The results identify several geothermal prospects, areas that are highly favorable for the occurrence of both heat and permeability. These are also areas where there is sufficient data coverage, quality, and consistency that the exploration risk is relatively low. These unknown, undeveloped, and under-developed prospects are well-suited for continued exploration efforts. The results also indicate to what degree the two ‘play-types,’ i.e. Cascade arc-type or Basin and Range-type, apply to each of the geothermal prospects, a useful guide in exploration efforts.
Tyler sands play entices operators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stremel, K.
Encouraging seismic data and recent discoveries are causing a renewed interest in an intensive exploration effort in central Montana's Tyler play. With new subsurface information obtained from recent seismic surveys, geologists are reviewing the elusive Tyler sands from a different perspective. Several operators are competing for lease positions through farmouts and joint ventures and increased drilling activity is expected to begin within the next year.
Microbial physiology-based model of ethanol metabolism in subsurface sediments
NASA Astrophysics Data System (ADS)
Jin, Qusheng; Roden, Eric E.
2011-07-01
A biogeochemical reaction model was developed based on microbial physiology to simulate ethanol metabolism and its influence on the chemistry of anoxic subsurface environments. The model accounts for potential microbial metabolisms that degrade ethanol, including those that oxidize ethanol directly or syntrophically by reducing different electron acceptors. Out of the potential metabolisms, those that are active in the environment can be inferred by fitting the model to experimental observations. This approach was applied to a batch sediment slurry experiment that examined ethanol metabolism in uranium-contaminated aquifer sediments from Area 2 at the U.S. Department of Energy Field Research Center in Oak Ridge, TN. According to the simulation results, complete ethanol oxidation by denitrification, incomplete ethanol oxidation by ferric iron reduction, ethanol fermentation to acetate and H 2, hydrogenotrophic sulfate reduction, and acetoclastic methanogenesis: all contributed significantly to the degradation of ethanol in the aquifer sediments. The assemblage of the active metabolisms provides a frame work to explore how ethanol amendment impacts the chemistry of the environment, including the occurrence and levels of uranium. The results can also be applied to explore how diverse microbial metabolisms impact the progress and efficacy of bioremediation strategies.
A drilling tool design and in situ identification of planetary regolith mechanical parameters
NASA Astrophysics Data System (ADS)
Zhang, Weiwei; Jiang, Shengyuan; Ji, Jie; Tang, Dewei
2018-05-01
The physical and mechanical properties as well as the heat flux of regolith are critical evidence in the study of planetary origin and evolution. Moreover, the mechanical properties of planetary regolith have great value for guiding future human planetary activities. For planetary subsurface exploration, an inchworm boring robot (IBR) has been proposed to penetrate the regolith, and the mechanical properties of the regolith are expected to be simultaneously investigated during the penetration process using the drilling tool on the IBR. This paper provides a preliminary study of an in situ method for measuring planetary regolith mechanical parameters using a drilling tool on a test bed. A conical-screw drilling tool was designed, and its drilling load characteristics were experimentally analyzed. Based on the drilling tool-regolith interaction model, two identification methods for determining the planetary regolith bearing and shearing parameters are proposed. The bearing and shearing parameters of lunar regolith simulant were successfully determined according to the pressure-sinkage tests and shear tests conducted on the test bed. The effects of the operating parameters on the identification results were also analyzed. The results indicate a feasible scheme for future planetary subsurface exploration.
NASA Astrophysics Data System (ADS)
Díaz-Michelena, M.; de Frutos, J.; Ordóñez, A. A.; Rivero, M. A.; Mesa, J. L.; González, L.; Lavín, C.; Aroca, C.; Sanz, M.; Maicas, M.; Prieto, J. L.; Cobos, P.; Pérez, M.; Kilian, R.; Baeza, O.; Langlais, B.; Thébault, E.; Grösser, J.; Pappusch, M.
2017-09-01
In space instrumentation, there is currently no instrument dedicated to susceptibly or complete magnetization measurements of rocks. Magnetic field instrument suites are generally vector (or scalar) magnetometers, which locally measure the magnetic field. When mounted on board rovers, the electromagnetic perturbations associated with motors and other elements make it difficult to reap the benefits from the inclusion of such instruments. However, magnetic characterization is essential to understand key aspects of the present and past history of planetary objects. The work presented here overcomes the limitations currently existing in space instrumentation by developing a new portable and compact multi-sensor instrument for ground breaking high-resolution magnetic characterization of planetary surfaces and sub-surfaces. This new technology introduces for the first time magnetic susceptometry (real and imaginary parts) as a complement to existing compact vector magnetometers for planetary exploration. This work aims to solve the limitations currently existing in space instrumentation by means of providing a new portable and compact multi-sensor instrument for use in space, science and planetary exploration to solve some of the open questions on the crustal and more generally planetary evolution within the Solar System.
Kwon, Man Jae; O’Loughlin, Edward J.; Boyanov, Maxim I.; ...
2016-01-22
Although iron- and sulfate-reducing bacteria in subsurface environments have crucial roles in biogeochemical cycling of C, Fe, and S, how specific electron donors impact the compositional structure and activity of native iron- and/or sulfate-reducing communities is largely unknown. To understand this better, we created bicarbonate-buffered batch systems in duplicate with three different electron donors (acetate, lactate, or glucose) paired with ferrihydrite and sulfate as the electron acceptors and inoculated them with subsurface sediment as the microbial inoculum. Sulfate and ferrihydrite reduction occurred simultaneously and were faster with lactate than with acetate. 16S rRNA-based sequence analysis of the communities over timemore » revealed that Desulfotomaculum was the major driver for sulfate reduction coupled with propionate oxidation in lactate-amended incubations. The reduction of sulfate resulted in sulfide production and subsequent abiotic reduction of ferrihydrite. In contrast, glucose promoted faster reduction of ferrihydrite, but without reduction of sulfate. Interestingly, the glucose-amended incubations led to two different biogeochemical trajectories among replicate bottles that resulted in distinct coloration (white and brown). The two outcomes in geochemical evolution might be due to the stochastic evolution of the microbial communities or subtle differences in the initial composition of the fermenting microbial community and its development via the use of different glucose fermentation pathways available within the community. Synchrotron-based x-ray analysis indicated that siderite and amorphous Fe(II) were formed in the replicate bottles with glucose, while ferrous sulfide and vivianite were formed with lactate or acetate. As a result, these data sets reveal that use of different C utilization pathways projects significant changes in microbial community composition over time that uniquely impact both the geochemistry and mineralogy of subsurface environments.« less
NASA Astrophysics Data System (ADS)
Jackisch, Conrad; Allroggen, Niklas
2017-04-01
The missing vision into the subsurface appears to be a major limiting factor for our hydrological process understanding and theory development. Today, hydrology-related sciences have collected tremendous evidence for soils acting as drainage network and retention stores simultaneously in structured and self-organising domains. However, our present observation technology relies mainly on point-scale sensors, which integrate over a volume of unknown structures and is blind for their distribution. Although heterogeneity is acknowledged at all scales, it is rarely seen as inherent system property. At small scales (soil moisture probe) and at large scales (neutron probe) our measurements leave quite some ambiguity. Consequently, spatially and temporally continuous measurement of soil water states is essential for advancing our understanding and development of subsurface process theories. We present results from several irrigation experiments accompanied by 2D and 3D time-lapse GPR for the development of a novel technique to visualise and quantify water dynamics in the subsurface. Through the comparison of TDR, tracer and gravimetric measurement of soil moisture it becomes apparent that all sensor-based techniques are capable to record temporal dynamics, but are challenged to precisely quantify the measurements and to extrapolate them in space. At the same time excavative methods are very limited in temporal and spatial resolution. The application of non-invasive 4D GPR measurements complements the existing techniques and reveals structural and temporal dynamics simultaneously. By consequently increasing the density of the GPR data recordings in time and space, we find means to process the data also in the time-dimension. This opens ways to quantitatively analyse soil water dynamics in complex settings.
Gihring, Thomas M.; Zhang, Gengxin; Brandt, Craig C.; Brooks, Scott C.; Campbell, James H.; Carroll, Susan; Criddle, Craig S.; Green, Stefan J.; Jardine, Phil; Kostka, Joel E.; Lowe, Kenneth; Mehlhorn, Tonia L.; Overholt, Will; Watson, David B.; Yang, Zamin; Wu, Wei-Min; Schadt, Christopher W.
2011-01-01
Subsurface amendments of slow-release substrates (e.g., emulsified vegetable oil [EVO]) are thought to be a pragmatic alternative to using short-lived, labile substrates for sustained uranium bioimmobilization within contaminated groundwater systems. Spatial and temporal dynamics of subsurface microbial communities during EVO amendment are unknown and likely differ significantly from those of populations stimulated by soluble substrates, such as ethanol and acetate. In this study, a one-time EVO injection resulted in decreased groundwater U concentrations that remained below initial levels for approximately 4 months. Pyrosequencing and quantitative PCR of 16S rRNA from monitoring well samples revealed a rapid decline in groundwater bacterial community richness and diversity after EVO injection, concurrent with increased 16S rRNA copy levels, indicating the selection of a narrow group of taxa rather than a broad community stimulation. Members of the Firmicutes family Veillonellaceae dominated after injection and most likely catalyzed the initial oil decomposition. Sulfate-reducing bacteria from the genus Desulforegula, known for long-chain fatty acid oxidation to acetate, also dominated after EVO amendment. Acetate and H2 production during EVO degradation appeared to stimulate NO3−, Fe(III), U(VI), and SO42− reduction by members of the Comamonadaceae, Geobacteriaceae, and Desulfobacterales. Methanogenic archaea flourished late to comprise over 25% of the total microbial community. Bacterial diversity rebounded after 9 months, although community compositions remained distinct from the preamendment conditions. These results demonstrated that a one-time EVO amendment served as an effective electron donor source for in situ U(VI) bioreduction and that subsurface EVO degradation and metal reduction were likely mediated by successive identifiable guilds of organisms. PMID:21764967
Gihring, Thomas M; Zhang, Gengxin; Brandt, Craig C; Brooks, Scott C; Campbell, James H; Carroll, Susan; Criddle, Craig S; Green, Stefan J; Jardine, Phil; Kostka, Joel E; Lowe, Kenneth; Mehlhorn, Tonia L; Overholt, Will; Watson, David B; Yang, Zamin; Wu, Wei-Min; Schadt, Christopher W
2011-09-01
Subsurface amendments of slow-release substrates (e.g., emulsified vegetable oil [EVO]) are thought to be a pragmatic alternative to using short-lived, labile substrates for sustained uranium bioimmobilization within contaminated groundwater systems. Spatial and temporal dynamics of subsurface microbial communities during EVO amendment are unknown and likely differ significantly from those of populations stimulated by soluble substrates, such as ethanol and acetate. In this study, a one-time EVO injection resulted in decreased groundwater U concentrations that remained below initial levels for approximately 4 months. Pyrosequencing and quantitative PCR of 16S rRNA from monitoring well samples revealed a rapid decline in groundwater bacterial community richness and diversity after EVO injection, concurrent with increased 16S rRNA copy levels, indicating the selection of a narrow group of taxa rather than a broad community stimulation. Members of the Firmicutes family Veillonellaceae dominated after injection and most likely catalyzed the initial oil decomposition. Sulfate-reducing bacteria from the genus Desulforegula, known for long-chain fatty acid oxidation to acetate, also dominated after EVO amendment. Acetate and H(2) production during EVO degradation appeared to stimulate NO(3)(-), Fe(III), U(VI), and SO(4)(2-) reduction by members of the Comamonadaceae, Geobacteriaceae, and Desulfobacterales. Methanogenic archaea flourished late to comprise over 25% of the total microbial community. Bacterial diversity rebounded after 9 months, although community compositions remained distinct from the preamendment conditions. These results demonstrated that a one-time EVO amendment served as an effective electron donor source for in situ U(VI) bioreduction and that subsurface EVO degradation and metal reduction were likely mediated by successive identifiable guilds of organisms.
Lee, Jonghyun; Yoon, Hongkyu; Kitanidis, Peter K.; ...
2016-06-09
When characterizing subsurface properties is crucial for reliable and cost-effective groundwater supply management and contaminant remediation. With recent advances in sensor technology, large volumes of hydro-geophysical and geochemical data can be obtained to achieve high-resolution images of subsurface properties. However, characterization with such a large amount of information requires prohibitive computational costs associated with “big data” processing and numerous large-scale numerical simulations. To tackle such difficulties, the Principal Component Geostatistical Approach (PCGA) has been proposed as a “Jacobian-free” inversion method that requires much smaller forward simulation runs for each iteration than the number of unknown parameters and measurements needed inmore » the traditional inversion methods. PCGA can be conveniently linked to any multi-physics simulation software with independent parallel executions. In our paper, we extend PCGA to handle a large number of measurements (e.g. 106 or more) by constructing a fast preconditioner whose computational cost scales linearly with the data size. For illustration, we characterize the heterogeneous hydraulic conductivity (K) distribution in a laboratory-scale 3-D sand box using about 6 million transient tracer concentration measurements obtained using magnetic resonance imaging. Since each individual observation has little information on the K distribution, the data was compressed by the zero-th temporal moment of breakthrough curves, which is equivalent to the mean travel time under the experimental setting. Moreover, only about 2,000 forward simulations in total were required to obtain the best estimate with corresponding estimation uncertainty, and the estimated K field captured key patterns of the original packing design, showing the efficiency and effectiveness of the proposed method. This article is protected by copyright. All rights reserved.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, Man Jae; O’Loughlin, Edward J.; Boyanov, Maxim I.
Although iron- and sulfate-reducing bacteria in subsurface environments have crucial roles in biogeochemical cycling of C, Fe, and S, how specific electron donors impact the compositional structure and activity of native iron- and/or sulfate-reducing communities is largely unknown. To understand this better, we created bicarbonate-buffered batch systems in duplicate with three different electron donors (acetate, lactate, or glucose) paired with ferrihydrite and sulfate as the electron acceptors and inoculated them with subsurface sediment as the microbial inoculum. Sulfate and ferrihydrite reduction occurred simultaneously and were faster with lactate than with acetate. 16S rRNA-based sequence analysis of the communities over timemore » revealed that Desulfotomaculum was the major driver for sulfate reduction coupled with propionate oxidation in lactate-amended incubations. The reduction of sulfate resulted in sulfide production and subsequent abiotic reduction of ferrihydrite. In contrast, glucose promoted faster reduction of ferrihydrite, but without reduction of sulfate. Interestingly, the glucose-amended incubations led to two different biogeochemical trajectories among replicate bottles that resulted in distinct coloration (white and brown). The two outcomes in geochemical evolution might be due to the stochastic evolution of the microbial communities or subtle differences in the initial composition of the fermenting microbial community and its development via the use of different glucose fermentation pathways available within the community. Synchrotron-based x-ray analysis indicated that siderite and amorphous Fe(II) were formed in the replicate bottles with glucose, while ferrous sulfide and vivianite were formed with lactate or acetate. As a result, these data sets reveal that use of different C utilization pathways projects significant changes in microbial community composition over time that uniquely impact both the geochemistry and mineralogy of subsurface environments.« less
Kwon, Man Jae; O'Loughlin, Edward J; Boyanov, Maxim I; Brulc, Jennifer M; Johnston, Eric R; Kemner, Kenneth M; Antonopoulos, Dionysios A
2016-01-01
Although iron- and sulfate-reducing bacteria in subsurface environments have crucial roles in biogeochemical cycling of C, Fe, and S, how specific electron donors impact the compositional structure and activity of native iron- and/or sulfate-reducing communities is largely unknown. To understand this better, we created bicarbonate-buffered batch systems in duplicate with three different electron donors (acetate, lactate, or glucose) paired with ferrihydrite and sulfate as the electron acceptors and inoculated them with subsurface sediment as the microbial inoculum. Sulfate and ferrihydrite reduction occurred simultaneously and were faster with lactate than with acetate. 16S rRNA-based sequence analysis of the communities over time revealed that Desulfotomaculum was the major driver for sulfate reduction coupled with propionate oxidation in lactate-amended incubations. The reduction of sulfate resulted in sulfide production and subsequent abiotic reduction of ferrihydrite. In contrast, glucose promoted faster reduction of ferrihydrite, but without reduction of sulfate. Interestingly, the glucose-amended incubations led to two different biogeochemical trajectories among replicate bottles that resulted in distinct coloration (white and brown). The two outcomes in geochemical evolution might be due to the stochastic evolution of the microbial communities or subtle differences in the initial composition of the fermenting microbial community and its development via the use of different glucose fermentation pathways available within the community. Synchrotron-based x-ray analysis indicated that siderite and amorphous Fe(II) were formed in the replicate bottles with glucose, while ferrous sulfide and vivianite were formed with lactate or acetate. These data sets reveal that use of different C utilization pathways projects significant changes in microbial community composition over time that uniquely impact both the geochemistry and mineralogy of subsurface environments.
NASA Astrophysics Data System (ADS)
Miller, C. R.; Routh, P. S.; Donaldson, P. R.
2004-05-01
Controlled Source Audio-Frequency Magnetotellurics (CSAMT) is a frequency domain electromagnetic (EM) sounding technique. CSAMT typically uses a grounded horizontal electric dipole approximately one to two kilometers in length as a source. Measurements of electric and magnetic field components are made at stations located ideally at least four skin depths away from the transmitter to approximate plane wave characteristics of the source. Data are acquired in a broad band frequency range that is sampled logarithmically from 0.1 Hz to 10 kHz. The usefulness of CSAMT soundings is to detect and map resistivity contrasts in the top two to three km of the Earth's surface. Some practical applications that CSAMT soundings have been used for include mapping ground water resources; mineral/precious metals exploration; geothermal reservoir mapping and monitoring; petroleum exploration; and geotechnical investigations. Higher frequency data can be used to image shallow features and lower frequency data are sensitive to deeper structures. We have a 3D CSAMT data set consisting of phase and amplitude measurements of the Ex and Hy components of the electric and magnetic fields respectively. The survey area is approximately 3 X 5 km. Receiver stations are situated 50 meters apart along a total of 13 lines with 8 lines bearing approximately N60E and the remainder of the lines oriented orthogonal to these 8 lines. We use an unconstrained Gauss-Newton method with positivity to invert the data. Inversion results will consist of conductivity versus depth profiles beneath each receiver station. These 1D profiles will be combined into a 3D subsurface conductivity image. We will include our interpretation of the subsurface conductivity structure and quantify the uncertainties associated with this interpretation.
NASA Astrophysics Data System (ADS)
Turchyn, A. V.; Walker, K.; Sun, X.
2016-12-01
The majority of modern deep marine sediments are bathed in water that is undersaturated with respect to calcium carbonate. However, within marine sediments changing chemical conditions, driven largely by the microbial oxidation of organic carbon in the absence of oxygen, lead to supersaturated conditions and drive calcium carbonate precipitation. This sedimentary calcium carbonate is often called `authigenic carbonate', and is found in the form of cements and disseminated crystals within the marine sedimentary pile. As this precipitation of this calcium carbonate is microbially mediated, identifying authigenic carbonate within the geological record and understanding what information its geochemical and/or isotopic signature may hold is key for understanding its importance and what information it may contain past life. However, the modern controls on authigenic carbonate precipitation remain enigmatic because the myriad of microbially mediated reactions occurring within sediments both directly and indirectly impact the proton balance. In this submission we present data from 25 ocean sediment cores spanning the globe where we explore the deviation from the stoichiometrically predicted relationships among alkalinity, calcium and sulfate concentrations. In theory for every mol of organic carbon reduced by sulfate, two mol of alkalinity is produced, and to precipitate subsurface calcium carbonate one mol of calcium is used to consume two mol of alkalinity. We use this data with a model to explore changes in carbonate saturation state with depth below the seafloor. Alkalinity changes in the subsurface are poorly correlated with changes in calcium concentrations, however calcium concentrations are directly and tightly coupled to changes in sulfate concentrations in all studied sites. This suggests a direct role for sulfate reducing bacteria in the precipitation of subsurface carbonate cements.
Sulfate deposition in subsurface regolith in Gusev crater, Mars
Wang, A.; Haskin, L.A.; Squyres, S. W.; Jolliff, B.L.; Crumpler, L.; Gellert, Ralf; Schroder, C.; Herkenhoff, K.; Hurowitz, J.; Tosca, N.J.; Farrand, W. H.; Anderson, R.; Knudson, A.T.
2006-01-01
Excavating into the shallow Martian subsurface has the potential to expose stratigraphic layers and mature regolith, which may hold a record of more ancient aqueous interactions than those expected under current Martian surface conditions. During the Spirit rover's exploration of Gusev crater, rover wheels were used to dig three trenches into the subsurface regolith down to 6-11 cm depth: Road Cut, the Big Hole, and The Boroughs. A high oxidation state of Fe and high concentrations of Mg, S, Cl, and Br were found in the subsurface regolith within the two trenches on the plains, between the Bonneville crater and the foot of Columbia Hills. Data analyses on the basis of geochemistry and mineralogy observations suggest the deposition of sulfate minerals within the subsurface regolith, mainly Mg-sulfates accompanied by minor Ca-sulfates and perhaps Fe-sulfates. An increase of Fe2O3, an excess of SiO2, and a minor decrease in the olivine proportion relative to surface materials are also inferred. Three hypotheses are proposed to explain the geochemical trends observed in trenches: (1) multiple episodes of acidic fluid infiltration, accompanied by in situ interaction with igneous minerals and salt deposition; (2) an open hydrologic system characterized by ion transportation in the fluid, subsequent evaporation of the fluid, and salt deposition; and (3) emplacement and mixing of impact ejecta of variable composition. While all three may have plausibly contributed to the current state of the subsurface regolith, the geochemical data are most consistent with ion transportation by fluids and salt deposition as a result of open-system hydrologic behavior. Although sulfates make up >20 wt.% of the regolith in the wall of The Boroughs trench, a higher hydrated sulfate than kieserite within The Boroughs or a greater abundance of sulfates elsewhere than is seen in The Boroughs wall regolith would be needed to hold the structural water indicated by the water-equivalent hydrogen concentration observed by the Gamma-Ray Spectrometer on Odyssey in the Gusev region. Copyright 2006 by the American Geophysical Union.
Learning Science as Explorers: Historical Resonances, Inventive Instruments, Evolving Community
ERIC Educational Resources Information Center
Cavicchi, Elizabeth
2014-01-01
Doing science as explorers, students observe, wonder and question the unknown, stretching their experience. To engage students as explorers depends on their safety in expressing uncertainty and taking risks. I create these conditions in my university seminar by employing critical exploration in the classroom, a pedagogy developed by Eleanor…
Modeling the GPR response of leaking, buried pipes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powers, M.H.; Olhoeft, G.R.
1996-11-01
Using a 2.5D, dispersive, full waveform GPR modeling program that generates complete GPR response profiles in minutes on a Pentium PC, the effects of leaking versus non-leaking buried pipes are examined. The program accounts for the dispersive, lossy nature of subsurface materials to GPR wave propagation, and accepts complex functions of dielectric permittivity and magnetic permeability versus frequency through Cole-Cole parameters fit to laboratory data. Steel and plastic pipes containing a DNAPL chlorinated solvent, an LNAPL hydrocarbon, and natural gas are modeled in a surrounding medium of wet, moist, and dry sand. Leaking fluids are found to be more detectablemore » when the sand around the pipes is fully water saturated. The short runtimes of the modeling program and its execution on a PC make it a useful tool for exploring various subsurface models.« less
Preston, Louisa J; Johnson, Diane; Cockell, Charles S; Grady, Monica M
2015-09-01
Cryptoendolithic lichen communities of the Dry Valleys, Antarctica, survive in an extremely inhospitable environment, finding refuge in microscopic niches where conditions suitable for life exist. Such "within-rock" communities may have evolved on Mars when conditions for life on the surface deteriorated to such an extent that they could no longer survive. Fourier transform infrared spectroscopy of unprepared whole-rock Antarctic Beacon sandstones was used to vertically profile molecular vibrations of fatty acids, proteins, and carboxylic acids created by endolithic communities. Spectral biosignatures were found localized to lichen-rich areas and were absent in crustal regions and the bulk rock substrate. These cryptoendolithic profiles will aid similar spectroscopic investigations of organic biosignatures during future Martian subsurface studies and will help in the identification of similar communities in other localities across the Earth.
Investigation of Planets and Small Bodies Using Decameter Wavelength Radar Sounders
NASA Astrophysics Data System (ADS)
Safaeinili, A.
2003-12-01
Decameter wavelength radar sounders provide a unique capability for the exploration of subsurface of planets and internal structure of small bodies. Recently, a number of experimental radar sounding instruments have been proposed and/or are planned to become operational in the near future. The first of these radar sounders is MARSIS (Picardi et al.) that is about to arrive at Mars on ESA's Mars Express for a two-year mission. The second radar sounder, termed SHARAD (Seu et. al), will fly on NASA's Mars Reconnaissance orbiter in 2005. MARSIS and SHARAD have complementary science objectives in that MARSIS (0.1-5.5 MHz) is designed to explore the deep subsurface with a depth resolution of ˜100 m while SHARAD (15-25 MHz) focuses its investigation to near-surface (< 1000 m) with a higher depth resolution of ˜ 10-15 m. In addition to its subsurface exploration goals, MARSIS, that has a frequency range between 0.1 to 5.5 MHz, will study the ionosphere of Mars and providing a wealth of new information on Martian ionosphere. Both MARSIS and SHARAD have the potential of providing answers to a number of questions such as depth of ice-layers in the polar region and recently discovered ice-rich regions in both northern and southern hemispheres of Mars. The next generation of radar sounders will benefit from high power and high data rate capability that is made available through the use of Nuclear Electric generators. An example of such high-capability mission is the Jovian Icy Moons Orbiter (JIMO) where, for example, the radar sounder can be used to explore beneath the icy surfaces of Europa in search of the ice/ocean interface. The decameter wave radar sounder is probably the only instrument that has the potential of providing an accurate estimate for the ocean depth. Another exciting and rewarding area of application for planetary radar sounding is the investigation of the deep interior of small bodies (asteroids and comets). The small size of asteroids and comets provides the opportunity to collect data in a manner that enables Radio Reflection Tomographic (RRT) reconstruction of the body in the same manner that a medical ultrasound probe can image the interior of our body. This paper provides an overview of current technical capabilities and challenges and the potential of radio sounders in the investigation of planets and small bodies.
Geological and Geochemical Controls on Subsurface Microbial Life in the Samail Ophiolite, Oman.
Rempfert, Kaitlin R; Miller, Hannah M; Bompard, Nicolas; Nothaft, Daniel; Matter, Juerg M; Kelemen, Peter; Fierer, Noah; Templeton, Alexis S
2017-01-01
Microbial abundance and diversity in deep subsurface environments is dependent upon the availability of energy and carbon. However, supplies of oxidants and reductants capable of sustaining life within mafic and ultramafic continental aquifers undergoing low-temperature water-rock reaction are relatively unknown. We conducted an extensive analysis of the geochemistry and microbial communities recovered from fluids sampled from boreholes hosted in peridotite and gabbro in the Tayin block of the Samail Ophiolite in the Sultanate of Oman. The geochemical compositions of subsurface fluids in the ophiolite are highly variable, reflecting differences in host rock composition and the extent of fluid-rock interaction. Principal component analysis of fluid geochemistry and geologic context indicate the presence of at least four fluid types in the Samail Ophiolite ("gabbro," "alkaline peridotite," "hyperalkaline peridotite," and "gabbro/peridotite contact") that vary strongly in pH and the concentrations of H 2 , CH 4 , Ca 2+ , Mg 2+ , [Formula: see text], [Formula: see text], trace metals, and DIC. Geochemistry of fluids is strongly correlated with microbial community composition; similar microbial assemblages group according to fluid type. Hyperalkaline fluids exhibit low diversity and are dominated by taxa related to the Deinococcus-Thermus genus Meiothermus , candidate phyla OP1, and the family Thermodesulfovibrionaceae. Gabbro- and alkaline peridotite- aquifers harbor more diverse communities and contain abundant microbial taxa affiliated with Nitrospira , Nitrosospharaceae, OP3, Parvarcheota, and OP1 order Acetothermales. Wells that sit at the contact between gabbro and peridotite host microbial communities distinct from all other fluid types, with an enrichment in betaproteobacterial taxa. Together the taxonomic information and geochemical data suggest that several metabolisms may be operative in subsurface fluids, including methanogenesis, acetogenesis, and fermentation, as well as the oxidation of methane, hydrogen and small molecular weight organic acids utilizing nitrate and sulfate as electron acceptors. Dynamic nitrogen cycling may be especially prevalent in gabbro and alkaline peridotite fluids. These data suggest water-rock reaction, as controlled by lithology and hydrogeology, constrains the distribution of life in terrestrial ophiolites.
Geological and geochemical controls on subsurface microbial life in the Samail Ophiolite, Oman
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rempfert, Kaitlin R.; Miller, Hannah M.; Bompard, Nicolas
Microbial abundance and diversity in deep subsurface environments is dependent upon the availability of energy and carbon. However, supplies of oxidants and reductants capable of sustaining life within mafic and ultramafic continental aquifers undergoing low-temperature water-rock reaction are relatively unknown. We conducted an extensive analysis of the geochemistry and microbial communities recovered from fluids sampled from boreholes hosted in peridotite and gabbro in the Tayin block of the Samail Ophiolite in the Sultanate of Oman. The geochemical compositions of subsurface fluids in the ophiolite are highly variable, reflecting differences in host rock composition and the extent of fluid-rock interaction. Principal component analysis of fluid geochemistry and geologic context indicate the presence of at least four fluid types in the Samail Ophiolite (“gabbro,” “alkaline peridotite,” “hyperalkaline peridotite,” and “gabbro/peridotite contact”) that vary strongly in pH and the concentrations of H 2, CH 4, Ca 2+, Mg 2+, NO 3 more » $-$, SO$$2-\\atop{4}$$, trace metals, and DIC. Geochemistry of fluids is strongly correlated with microbial community composition; similar microbial assemblages group according to fluid type. Hyperalkaline fluids exhibit low diversity and are dominated by taxa related to the Deinococcus-Thermus genus Meiothermus, candidate phyla OP1, and the family Thermodesulfovibrionaceae. Gabbro- and alkaline peridotite- aquifers harbor more diverse communities and contain abundant microbial taxa affiliated with Nitrospira, Nitrosospharaceae, OP3, Parvarcheota, and OP1 order Acetothermales. Wells that sit at the contact between gabbro and peridotite host microbial communities distinct from all other fluid types, with an enrichment in betaproteobacterial taxa. Together the taxonomic information and geochemical data suggest that several metabolisms may be operative in subsurface fluids, including methanogenesis, acetogenesis, and fermentation, as well as the oxidation of methane, hydrogen and small molecular weight organic acids utilizing nitrate and sulfate as electron acceptors. Dynamic nitrogen cycling may be especially prevalent in gabbro and alkaline peridotite fluids. As a result, these data suggest water-rock reaction, as controlled by lithology and hydrogeology, constrains the distribution of life in terrestrial ophiolites.« less
Geological and Geochemical Controls on Subsurface Microbial Life in the Samail Ophiolite, Oman
Rempfert, Kaitlin R.; Miller, Hannah M.; Bompard, Nicolas; Nothaft, Daniel; Matter, Juerg M.; Kelemen, Peter; Fierer, Noah; Templeton, Alexis S.
2017-01-01
Microbial abundance and diversity in deep subsurface environments is dependent upon the availability of energy and carbon. However, supplies of oxidants and reductants capable of sustaining life within mafic and ultramafic continental aquifers undergoing low-temperature water-rock reaction are relatively unknown. We conducted an extensive analysis of the geochemistry and microbial communities recovered from fluids sampled from boreholes hosted in peridotite and gabbro in the Tayin block of the Samail Ophiolite in the Sultanate of Oman. The geochemical compositions of subsurface fluids in the ophiolite are highly variable, reflecting differences in host rock composition and the extent of fluid-rock interaction. Principal component analysis of fluid geochemistry and geologic context indicate the presence of at least four fluid types in the Samail Ophiolite (“gabbro,” “alkaline peridotite,” “hyperalkaline peridotite,” and “gabbro/peridotite contact”) that vary strongly in pH and the concentrations of H2, CH4, Ca2+, Mg2+, NO3-, SO42-, trace metals, and DIC. Geochemistry of fluids is strongly correlated with microbial community composition; similar microbial assemblages group according to fluid type. Hyperalkaline fluids exhibit low diversity and are dominated by taxa related to the Deinococcus-Thermus genus Meiothermus, candidate phyla OP1, and the family Thermodesulfovibrionaceae. Gabbro- and alkaline peridotite- aquifers harbor more diverse communities and contain abundant microbial taxa affiliated with Nitrospira, Nitrosospharaceae, OP3, Parvarcheota, and OP1 order Acetothermales. Wells that sit at the contact between gabbro and peridotite host microbial communities distinct from all other fluid types, with an enrichment in betaproteobacterial taxa. Together the taxonomic information and geochemical data suggest that several metabolisms may be operative in subsurface fluids, including methanogenesis, acetogenesis, and fermentation, as well as the oxidation of methane, hydrogen and small molecular weight organic acids utilizing nitrate and sulfate as electron acceptors. Dynamic nitrogen cycling may be especially prevalent in gabbro and alkaline peridotite fluids. These data suggest water-rock reaction, as controlled by lithology and hydrogeology, constrains the distribution of life in terrestrial ophiolites. PMID:28223966
Geological and geochemical controls on subsurface microbial life in the Samail Ophiolite, Oman
Rempfert, Kaitlin R.; Miller, Hannah M.; Bompard, Nicolas; ...
2017-02-07
Microbial abundance and diversity in deep subsurface environments is dependent upon the availability of energy and carbon. However, supplies of oxidants and reductants capable of sustaining life within mafic and ultramafic continental aquifers undergoing low-temperature water-rock reaction are relatively unknown. We conducted an extensive analysis of the geochemistry and microbial communities recovered from fluids sampled from boreholes hosted in peridotite and gabbro in the Tayin block of the Samail Ophiolite in the Sultanate of Oman. The geochemical compositions of subsurface fluids in the ophiolite are highly variable, reflecting differences in host rock composition and the extent of fluid-rock interaction. Principal component analysis of fluid geochemistry and geologic context indicate the presence of at least four fluid types in the Samail Ophiolite (“gabbro,” “alkaline peridotite,” “hyperalkaline peridotite,” and “gabbro/peridotite contact”) that vary strongly in pH and the concentrations of H 2, CH 4, Ca 2+, Mg 2+, NO 3 more » $-$, SO$$2-\\atop{4}$$, trace metals, and DIC. Geochemistry of fluids is strongly correlated with microbial community composition; similar microbial assemblages group according to fluid type. Hyperalkaline fluids exhibit low diversity and are dominated by taxa related to the Deinococcus-Thermus genus Meiothermus, candidate phyla OP1, and the family Thermodesulfovibrionaceae. Gabbro- and alkaline peridotite- aquifers harbor more diverse communities and contain abundant microbial taxa affiliated with Nitrospira, Nitrosospharaceae, OP3, Parvarcheota, and OP1 order Acetothermales. Wells that sit at the contact between gabbro and peridotite host microbial communities distinct from all other fluid types, with an enrichment in betaproteobacterial taxa. Together the taxonomic information and geochemical data suggest that several metabolisms may be operative in subsurface fluids, including methanogenesis, acetogenesis, and fermentation, as well as the oxidation of methane, hydrogen and small molecular weight organic acids utilizing nitrate and sulfate as electron acceptors. Dynamic nitrogen cycling may be especially prevalent in gabbro and alkaline peridotite fluids. As a result, these data suggest water-rock reaction, as controlled by lithology and hydrogeology, constrains the distribution of life in terrestrial ophiolites.« less
Inverse and forward modeling under uncertainty using MRE-based Bayesian approach
NASA Astrophysics Data System (ADS)
Hou, Z.; Rubin, Y.
2004-12-01
A stochastic inverse approach for subsurface characterization is proposed and applied to shallow vadose zone at a winery field site in north California and to a gas reservoir at the Ormen Lange field site in the North Sea. The approach is formulated in a Bayesian-stochastic framework, whereby the unknown parameters are identified in terms of their statistical moments or their probabilities. Instead of the traditional single-valued estimation /prediction provided by deterministic methods, the approach gives a probability distribution for an unknown parameter. This allows calculating the mean, the mode, and the confidence interval, which is useful for a rational treatment of uncertainty and its consequences. The approach also allows incorporating data of various types and different error levels, including measurements of state variables as well as information such as bounds on or statistical moments of the unknown parameters, which may represent prior information. To obtain minimally subjective prior probabilities required for the Bayesian approach, the principle of Minimum Relative Entropy (MRE) is employed. The approach is tested in field sites for flow parameters identification and soil moisture estimation in the vadose zone and for gas saturation estimation at great depth below the ocean floor. Results indicate the potential of coupling various types of field data within a MRE-based Bayesian formalism for improving the estimation of the parameters of interest.
Resistivity and Induced Polarization Imaging at a Hydrocarbon Contaminated Site in Brazil
NASA Astrophysics Data System (ADS)
Ustra, A.; Elis, V.; Hiodo, F.; Bondioli, A.; Miura, G.
2012-12-01
An area contaminated by accidental BTEX spills was investigated with resistivity and induced polarization methods. The main objective in this study was to relate the geophysical signature of the area with zones that were possibly undergoing microbial degradation of the contaminants. The spills took place over a decade ago; however, the exact location of these spills is unknown, as well as the amount of contaminant that was released into the subsurface. DC-resistivity identified a high contrast between the background (rho up to 2000 ohm.m) and a relatively conductive zone (rho < 100 ohm.m), where high chargeabilities were also measured (m > 30 mV/V). Normalized chargeability is enhanced in this anomaly zone (mn > 0.1). Soil samples collected in the area were submitted to direct bacterial count, clay content estimation, X-ray diffraction and SEM analysis. The electrical properties of each samples was also measured. The samples collected from the "background" (high resistivity zone) presented total bacterial amounts much smaller (dozens of colony forming units) than the samples from the conductive zone (millions of colony forming units). This observation could lead us to interpret that the zone of higher bacteria amount is undergoing biodegradation that would explain the increased conductivity at that portion of the subsurface. However, the geophysical properties observed at this zone could also be related to the clay content distribution throughout the surveyed area (concentrations up to 30%). Moreover, despite the fact that more microbes were found in the area, SEM images did not find any biodegradation typical feature of the grains, which are for example, mineral corrosion and dissolution or even biomineralization. This study is still undergoing and we are searching for more evidence of biodegradation in the samples. This study shows the limitation of the use of geophysical methods to access contaminant presence and/or biodegradation zones when the exact location of the contamination is unknown.
NASA Astrophysics Data System (ADS)
Boddice, Daniel; Metje, Nicole; Tuckwell, George
2017-11-01
Geophysical surveying is widely used for the location of subsurface features. Current technology is limited in terms of its resolution (thus size of features it can detect) and penetration depth and a suitable technique is needed to bridge the gap between shallow near surface investigation using techniques such as EM conductivity mapping and GPR commonly used to map the upper 5 m below ground surface, and large features at greater depths detectable using conventional microgravity (> 5 m below ground surface). This will minimise the risks from unknown features buried in and conditions of the ground during civil engineering work. Quantum technology (QT) gravity sensors potentially offer a step-change in technology for locating features which lie outside of the currently detectable range in terms of size and depth, but that potential is currently unknown as field instruments have not been developed. To overcome this, a novel computer simulation was developed for a large range of different targets of interest. The simulation included realistic noise modelling of instrumental, environmental and location sources of noise which limit the accuracy of current microgravity measurements, in order to assess the potential capability of the new QT instruments in realistic situations and determine some of the likely limitations on their implementation. The results of the simulations for near surface features showed that the new technology is best employed in a gradiometer configuration as opposed to the traditional single sensor gravimeter used by current instruments due to the ability to suppress vibrational environmental noise effects due to common mode rejection between the sensors. A significant improvement in detection capability of 1.5-2 times was observed, putting targets such as mineshafts into the detectability zone which would be a major advantage for subsurface surveying. Thus this research, for the first time, has demonstrated clearly the benefits of QT gravity gradiometer sensors thereby increasing industry's confidence in this new technology.
Nunoura, Takuro; Hirayama, Hisako; Takami, Hideto; Oida, Hanako; Nishi, Shinro; Shimamura, Shigeru; Suzuki, Yohey; Inagaki, Fumio; Takai, Ken; Nealson, Kenneth H; Horikoshi, Koki
2005-12-01
Within a phylum Crenarchaeota, only some members of the hyperthermophilic class Thermoprotei, have been cultivated and characterized. In this study, we have constructed a metagenomic library from a microbial mat formation in a subsurface hot water stream of the Hishikari gold mine, Japan, and sequenced genome fragments of two different phylogroups of uncultivated thermophilic Crenarchaeota: (i) hot water crenarchaeotic group (HWCG) I (41.2 kb), and (ii) HWCG III (49.3 kb). The genome fragment of HWCG I contained a 16S rRNA gene, two tRNA genes and 35 genes encoding proteins but no 23S rRNA gene. Among the genes encoding proteins, several genes for putative aerobic-type carbon monoxide dehydrogenase represented a potential clue with regard to the yet unknown metabolism of HWCG I Archaea. The genome fragment of HWCG III contained a 16S/23S rRNA operon and 44 genes encoding proteins. In the 23S rRNA gene, we detected a homing-endonuclease encoding a group I intron similar to those detected in hyperthermophilic Crenarchaeota and Bacteria, as well as eukaryotic organelles. The reconstructed phylogenetic tree based on the 23S rRNA gene sequence reinforced the intermediate phylogenetic affiliation of HWCG III bridging the hyperthermophilic and non-thermophilic uncultivated Crenarchaeota.
Hug, Laura A.; Thomas, Brian C.; Sharon, Itai; ...
2015-07-22
Nitrogen, sulfur and carbon fluxes in the terrestrial subsurface are determined by the intersecting activities of microbial community members, yet the organisms responsible are largely unknown. Metagenomic methods can identify organisms and functions, but genome recovery is often precluded by data complexity. To address this limitation, we developed subsampling assembly methods to re-construct high-quality draft genomes from complex samples. Here, we applied these methods to evaluate the interlinked roles of the most abundant organisms in biogeochemical cycling in the aquifer sediment. Community proteomics confirmed these activities. The eight most abundant organisms belong to novel lineages, and two represent phyla withmore » no previously sequenced genome. Four organisms are predicted to fix carbon via the Calvin Benson Bassham, Wood Ljungdahl or 3-hydroxyproprionate/4-hydroxybutarate pathways. The profiled organisms are involved in the network of denitrification, dissimilatory nitrate reduction to ammonia, ammonia oxidation and sulfate reduction/oxidation, and require substrates supplied by other community members. An ammonium-oxidizing Thaumarchaeote is the most abundant community member, despite low ammonium concentrations in the groundwater. Finally, this organism likely benefits from two other relatively abundant organisms capable of producing ammonium from nitrate, which is abundant in the groundwater. Overall, dominant members of the microbial community are interconnected through exchange of geochemical resources.« less
GROUNDWATER RECHARGE AND CHEMICAL ...
The existing knowledge base regarding the presence and significance of chemicals foreign to the subsurface environment is large and growing -the papers in this volume serving as recent testament. But complex questions with few answers surround the unknowns regarding the potential for environmental or human health effects from trace levels of xenobiotics in groundwater, especially groundwater augmented with treated wastewater. Public acceptance for direct or indirect groundwater recharge using treated municipal wastewater ( especially sewage) spans the spectrum from unquestioned embrace to outright rejection. In this article, I detour around the issues most commonly discussed for groundwater recharge and instead focus on some of the less-recognized issues- those that emanate from the mysteries created at the many literal and virtual interfaces involved with the subsurface world. My major objective is to catalyze discussion that advances our understanding of the barriers to public acceptance of wastewater reuse -with its ultimate culmination in direct reuse for drinking. I pose what could be a key question as to whether much of the public's frustration or ambivalence in its decision making process for accepting or rejecting water reuse (for various purposes including personal use) emanates from fundamental inaccuracies, misrepresentation, or oversimplification of what water 'is' and how it functions in the environment -just what exactly is the 'water cyc
UBIQUITOUS SOLAR ERUPTIONS DRIVEN BY MAGNETIZED VORTEX TUBES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kitiashvili, I. N.; Kosovichev, A. G.; Lele, S. K.
2013-06-10
The solar surface is covered by high-speed jets transporting mass and energy into the solar corona and feeding the solar wind. The most prominent of these jets have been known as spicules. However, the mechanism initiating these eruption events is still unknown. Using realistic numerical simulations we find that small-scale eruptions are produced by ubiquitous magnetized vortex tubes generated by the Sun's turbulent convection in subsurface layers. The swirling vortex tubes (resembling tornadoes) penetrate into the solar atmosphere, capture and stretch background magnetic field, and push the surrounding material up, generating shocks. Our simulations reveal complicated high-speed flow patterns andmore » thermodynamic and magnetic structure in the erupting vortex tubes. The main new results are: (1) the eruptions are initiated in the subsurface layers and are driven by high-pressure gradients in the subphotosphere and photosphere and by the Lorentz force in the higher atmosphere layers; (2) the fluctuations in the vortex tubes penetrating into the chromosphere are quasi-periodic with a characteristic period of 2-5 minutes; and (3) the eruptions are highly non-uniform: the flows are predominantly downward in the vortex tube cores and upward in their surroundings; the plasma density and temperature vary significantly across the eruptions.« less
Robador, Alberto; Jungbluth, Sean P.; LaRowe, Douglas E.; Bowers, Robert M.; Rappé, Michael S.; Amend, Jan P.; Cowen, James P.
2015-01-01
The basaltic ocean crust is the largest aquifer system on Earth, yet the rates of biological activity in this environment are unknown. Low-temperature (<100°C) fluid samples were investigated from two borehole observatories in the Juan de Fuca Ridge (JFR) flank, representing a range of upper oceanic basement thermal and geochemical properties. Microbial sulfate reduction rates (SRR) were measured in laboratory incubations with 35S-sulfate over a range of temperatures and the identity of the corresponding sulfate-reducing microorganisms (SRM) was studied by analyzing the sequence diversity of the functional marker dissimilatory (bi)sulfite reductase (dsrAB) gene. We found that microbial sulfate reduction was limited by the decreasing availability of organic electron donors in higher temperature, more altered fluids. Thermodynamic calculations indicate energetic constraints for metabolism, which together with relatively higher cell-specific SRR reveal increased maintenance requirements, consistent with novel species-level dsrAB phylotypes of thermophilic SRM. Our estimates suggest that microbially-mediated sulfate reduction may account for the removal of organic matter in fluids within the upper oceanic crust and underscore the potential quantitative impact of microbial processes in deep subsurface marine crustal fluids on marine and global biogeochemical carbon cycling. PMID:25642212
Workshop on Monitoring and Failure Detection in Earthen Embankments
2010-06-15
funded by your agreement who graduated during this period and will receive scholarships or fellowships for further studies in science, mathematics...that are widely used to image and characterize subsurface geology . Many of these technologies can be adapted to the interrogation and...the active seismic techniques, have a long history in shallow exploration (tens to hundreds of meters) for geology , environmental, and civil
The Use of Ground Penetrating Radar to Exploring Sedimentary Ore In North-Central Saudi Arabia
NASA Astrophysics Data System (ADS)
Almutairi, Yasir; Almutair, Muteb
2015-04-01
Ground Penetrating Radar (GPR) is a non-destructive geophysical method that provides a continuous subsurface profile, without drilling. This geophysical technique has great potential in delineating the extension of bauxites ore in north-central Saudi Arabia. Bauxite is from types sedimentary ores. This study aim to evaluate the effectiveness of Ground Penetrating Radar (GPR) to illustrate the subsurface feature of the Bauxite deposits at some selected mining areas north-central Saudi Arabia. Bauxite is a heterogeneous material that consists of complex metals such as alumina and aluminum. An efficient and cost-effect exploration method for bauxite mine in Saudi Arabia is required. Ground penetrating radar (GPR) measurements have been carrying out along outcrop in order to assess the potential of GPR data for imaging and characterising different lithological facies. To do so, we have tested different antenna frequencies to acquire the electromagnetic signals along a 90 m profile using the IDS system. This system equipped with a 25 MHz antenna that allows investigating the Bauxite layer at shallow depths where the clay layers may existed. Therefore, the 25 MHz frequency antenna has been used in this study insure better resolution of the subsurface and to get more penetration to image the Bauxite layer. After the GPR data acquisition, this data must be processed in order to be more easily visualized and interpreted. Data processing was done using Reflex 6.0 software. A series of tests were carried out in frequency filtering on a sample of radar sections, which was considered to better represent the entire set of data. Our results indicated that the GPR profiling has a very good agreement for mapping the bauxite layer depth at range of 7 m to 11 m. This study has emphasized that the high-resolution GPR method is the robust and cost-effect technique to map the Bauxite layer. The exploration of Bauxite resource using the GPR technique could reduce the number of holes to be strategically placed in the most promising zones.
Simulation and Characterization of Methane Hydrate Formation
NASA Astrophysics Data System (ADS)
Dhakal, S.; Gupta, I.
2017-12-01
The ever rising global energy demand dictates human endeavor to explore and exploit new and innovative energy sources. As conventional oil and gas reserves deplete, we are constantly looking for newer sources for sustainable energy. Gas hydrates have long been discussed as the next big energy resource to the earth. Its global occurrence and vast quantity of natural gas stored is one of the main reasons for such interest in its study and exploration. Gas hydrates are solid crystalline substances with trapped molecules of gas inside cage-like crystals of water molecules. Gases such as methane, ethane, propane and carbon dioxide can form hydrates but in natural state, methane hydrates are the most common. Subsurface geological conditions with high pressure and low temperature favor the formation and stability of gas hydrates. While the occurrence and potential of gas hydrates as energy source has long been studied, there are still gaps in knowledge, especially in the quantitative research of gas hydrate formation and reservoir characterization. This study is focused on exploring and understanding the geological setting in which gas hydrates are formed and the subsequent changes in rock characteristics as they are deposited. It involves the numerical simulation of methane gas flow through fault to form hydrates. The models are representative of the subsurface geologic setting of Gulf of Mexico with a fault through layers of shale and sandstone. Hydrate formation simulated is of thermogenic origin. The simulations are conducted using TOUGH+HYDRATE, a numerical code developed at the Lawrence Berkley National Laboratory for modeling multiphase flow through porous medium. Simulation results predict that as the gas hydrates form in the pores of the model, the porosity, permeability and other rock properties are altered. Preliminary simulation results have shown that hydrates begin to form in the fault zone and gradually in the sandstone layers. The increase in hydrate saturation is followed by decrease in the porosity and permeability of the reservoir rock. Sensitivities on flow rates of gas and water are simulated, using different reservoir properties, fault angles and grid sizes to study the properties of hydrate formation and accumulation in the subsurface.
Daae, F L; Økland, I; Dahle, H; Jørgensen, S L; Thorseth, I H; Pedersen, R B
2013-07-01
Water-rock interactions in ultramafic lithosphere generate reduced chemical species such as hydrogen that can fuel subsurface microbial communities. Sampling of this environment is expensive and technically demanding. However, highly accessible, uplifted oceanic lithospheres emplaced onto continental margins (ophiolites) are potential model systems for studies of the subsurface biosphere in ultramafic rocks. Here, we describe a microbiological investigation of partially serpentinized dunite from the Leka ophiolite (Norway). We analysed samples of mineral coatings on subsurface fracture surfaces from different depths (10-160 cm) and groundwater from a 50-m-deep borehole that penetrates several major fracture zones in the rock. The samples are suggested to represent subsurface habitats ranging from highly anaerobic to aerobic conditions. Water from a surface pond was analysed for comparison. To explore the microbial diversity and to make assessments about potential metabolisms, the samples were analysed by microscopy, construction of small subunit ribosomal RNA gene clone libraries, culturing and quantitative-PCR. Different microbial communities were observed in the groundwater, the fracture-coating material and the surface water, indicating that distinct microbial ecosystems exist in the rock. Close relatives of hydrogen-oxidizing Hydrogenophaga dominated (30% of the bacterial clones) in the oxic groundwater, indicating that microbial communities in ultramafic rocks at Leka could partially be driven by H2 produced by low-temperature water-rock reactions. Heterotrophic organisms, including close relatives of hydrocarbon degraders possibly feeding on products from Fischer-Tropsch-type reactions, dominated in the fracture-coating material. Putative hydrogen-, ammonia-, manganese- and iron-oxidizers were also detected in fracture coatings and the groundwater. The microbial communities reflect the existence of different subsurface redox conditions generated by differences in fracture size and distribution, and mixing of fluids. The particularly dense microbial communities in the shallow fracture coatings seem to be fuelled by both photosynthesis and oxidation of reduced chemical species produced by water-rock reactions. © 2013 John Wiley & Sons Ltd.
Design of a hydrophone for an Ocean World lander
NASA Astrophysics Data System (ADS)
Smith, Heather D.; Duncan, Andrew G.
2017-10-01
For this presentation we describe the science return, and design of a microphone on- board a Europa lander mission. In addition to the E/PO benefit of a hydrophone to listen to the Europa Ocean, a microphone also provides scientific data on the properties of the subsurface ocean.A hydrophone is a small light-weight instrument that could be used to achieve two of the three Europa Lander mission anticipated science goals of: 1) Asses the habitability (particularly through quantitative compositional measurements of Europa via in situ techniques uniquely available to a landed mission. And 2) Characterize surface properties at the scale of the lander to support future exploration, including the local geologic context.Acoustic properties of the ocean would lead to a better understanding of the water density, currents, seafloor topography and other physical properties of the ocean as well as lead to an understanding of the salinity of the ocean. Sound from water movement (tidal movement, currents, subsurface out-gassing, ocean homogeneity (clines), sub-surface morphology, and biological sounds.The engineering design of the hydrophone instrument will be designed to fit within a portion of the resource allocation of the current best estimates of the Europa lander payload (26.6 Kg, 24,900 cm3, 2,500 W-hrs and 2700 Mbits). The hydrophone package will be designed to ensure planetary protection is maintained and will function under the cur- rent Europa lander mission operations scenario of a two-year cruise phase, and 30-day surface operational phase on Europa.Although the microphone could be used on the surface, it is designed to be lowered into the subsurface ocean. As such, planetary protection (forward contamination) is a primary challenge for a subsurface microphone/ camera. The preliminary design is based on the Navy COTS optical microphone.Reference: Pappalardo, R. T., et al. "Science potential from a Europa lander." Astrobiology 13.8 (2013): 740-773.
Assessment of DInSAR Potential in Simulating Geological Subsurface Structure
NASA Astrophysics Data System (ADS)
Fouladi Moghaddam, N.; Rudiger, C.; Samsonov, S. V.; Hall, M.; Walker, J. P.; Camporese, M.
2013-12-01
High resolution geophysical surveys, including seismic, gravity, magnetic, etc., provide valuable information about subsurface structuring but they are very costly and time consuming with non-unique and sometimes conflicting interpretations. Several recent studies have examined the application of DInSAR to estimate surface deformation, monitor possible fault reactivation and constrain reservoir dynamic behaviour in geothermal and groundwater fields. The main focus of these studies was to generate an elevation map, which represents the reservoir extraction induced deformation. This research study, however, will focus on developing methods to simulate subsurface structuring and identify hidden faults/hydraulic barriers using DInSAR surface observations, as an innovative and cost-effective reconnaissance exploration tool for planning of seismic acquisition surveys in geothermal and Carbon Capture and Sequestration regions. By direct integration of various DInSAR datasets with overlapping temporal and spatial coverage we produce multi-temporal ground deformation maps with high resolution and precision to evaluate the potential of a new multidimensional MSBAS technique (Samsonov & d'Oreye, 2012). The technique is based on the Small Baseline Subset Algorithm (SBAS) that is modified to account for variation in sensor parameters. It allows integration of data from sensors with different wave-band, azimuth and incidence angles, different spatial and temporal sampling and resolutions. These deformation maps then will be used as an input for inverse modelling to simulate strain history and shallow depth structure. To achieve the main objective of our research, i.e. developing a method for coupled InSAR and geophysical observations and better understanding of subsurface structuring, comparing DInSAR inverse modelling results with previously provided static structural model will result in iteratively modified DInSAR structural model for adequate match with in situ observations. The newly developed and modified algorithm will then be applied in another part of the region where subsurface information is limited.
Recent experimental data may point to a greater role for osmotic pressures in the subsurface
Neuzil, C.E.; Provost, A.M.
2009-01-01
Uncertainty about the origin of anomalous fluid pressures in certain geologic settings has caused researchers to take a second look at osmosis, or flow driven by chemical potential differences, as a pressure‐generating process in the subsurface. Interest in geological osmosis has also increased because of an in situ experiment by Neuzil (2000) suggesting that Pierre Shale could generate large osmotic pressures when highly compacted. In the last few years, additional laboratory and in situ experiments have greatly increased the number of data on osmotic properties of argillaceous formations, but they have not been systematically examined. In this paper we compile these data and explore their implications for osmotic pressure generation in subsurface systems. Rather than base our analysis on osmotic efficiencies, which depend strongly on concentration, we calculated values of a quantity we term osmotic specific surface area (Aso) that, in principle, is a property of the porous medium only. The Aso values are consistent with a surprisingly broad spectrum of osmotic behavior in argillaceous formations, and all the formations tested exhibited at least a modest ability to generate osmotic pressure. It appears possible that under appropriate conditions some formations can be highly effective osmotic membranes able to generate osmotic pressures exceeding 30 MPa (3 km of head) at porosities as high as ∼0.1 and pressures exceeding 10 MPa at porosities as high as ∼0.2. These findings are difficult to reconcile with the lack of compelling field evidence for osmotic pressures, and we propose three explanations for the disparity: (1) Our analysis is flawed and argillaceous formations are less effective osmotic membranes than it suggests; (2) the necessary subsurface conditions, significant salinity differences within intact argillaceous formations, are rare; or (3) osmotic pressures are unlikely to be detected and are not recognized when encountered. The last possibility, that osmotic pressures routinely escape detection or are attributed to other mechanisms, has important implications for understanding subsurface flow regimes.
[Microbes on the edge of global biosphere].
Naganuma, T
2000-12-01
The search for life on the edge of global biosphere is a frontier to bridge conventional bio/ecology and exo/astrobiology. This communication reviews the foci of microbiological studies on the inhabitants of the selected "edges", i.e., deep-sea, deep subsurface and Antarctic habitats. The deep-sea is characterized as the no-light (non-photosynthetic) habitat, and the primary production is mostly due to the chemosynthetic autotrophy at the hydrothermal vents and methane-rich seeps. Formation of the chemosynthesis-dependent animal communities in the deep leads to the idea that such communities may be found in "ocean" of the Jovian satellite, Europa. The oxygen minimal layer (OML) in mid-water provides another field of deep-sea research. Modern OML is a relatively thin layer, found between the water depth of 200 and 1000 m, but was much thicker during the periods of oceanic anoxia events (OAEs) in the past. The history of oceanic biosphere is regarded as the cycle of OAE and non-OAE periods, and the remnants of the past OAEs may be seen in the modem OML. Anoxic (no-O2) condition is also characteristic of deep subsurface biosphere. Microorganisms in deep subsurface biosphere exploit every available oxidant, or terminal electron acceptor (TEA), for anaerobic respiration. Sulfate, nitrate, iron (III) and CO2 are the representative TEAs in the deep subsurface. Subsurface of hydrothermal vents, or sub-vent biosphere, may house brine (high salt) habitats and halophilic microorganisms. Some sub-vent halophiles were phylogenetically closely similar to the ones found in the Antarctic habitats which are extremely dry by the liophilizing climate. Below the 3000-4000 m-thick glacier on Antarctica, there have been >70 lakes with liquid water located. One of such sub-glacial lakes, Lake Vostok, has been a target of "life in extreme environments" and is about to be drill-penetrated for microbiological studies. These 'microbiological platforms' will provide new knowledge about the diversity and potential of the Earth's life and facilitate the capability of astrobiologial exploration.
Tetracycline Resistance in the Subsurface of a Poultry Farm: Influence of Poultry Wastes
NASA Astrophysics Data System (ADS)
You, Y.; Ball, W. P.; Ward, M. J.; Hilpert, M.
2007-12-01
Concentrated animal feeding operations (CAFOs) are considered to be important man-made reservoir of antibiotic resistant bacteria. Using the electromagnetic induction (EMI) method of geophysical characterization, we measured the apparent subsurface electrical conductivity (ECa) at a CAFO site in order to assess the movement of pollutants associated with animal waste. The map of ECa and other available data suggest that (1) soil surrounding a poultry litter storage shed is contaminated by poultry waste, (2) a contamination plume in the subsurface emanates from that shed, and (3) the development of that plume is due to groundwater flow. We focused on understanding the spread of tetracycline resistance (Tc\\tiny R), because tetracycline is one of the most frequently used antibiotics in food animal production and therefore probably used at our field site. Microbiological experiments show the presence of Tc\\tiny R bacteria in the subsurface and indicate higher concentrations in the top soil than in the aquifer. Environmental DNA was extracted to identify CAFO- associated Tc\\tiny R genes and to explore a link between the presence of Tc\\tiny R and CAFO practices. A "shot-gun" cloning approach is under development to target the most prevalent Tc\\tiny R gene. This gene will be monitored in future experiments, in which we will study the transmission of Tc\\tiny R to naive E.~coli under selective pressure of Tc. Experimental results will be used to develop a mathematical/numerical model in order to describe the transmission process and to subsequently make estimates regarding the large-scale spread of antibiotic resistance.
Lau, Maggie C. Y.; Cameron, Connor; Magnabosco, Cara; Brown, C. Titus; Schilkey, Faye; Grim, Sharon; Hendrickson, Sarah; Pullin, Michael; Sherwood Lollar, Barbara; van Heerden, Esta; Kieft, Thomas L.; Onstott, Tullis C.
2014-01-01
Comparative studies on community phylogenetics and phylogeography of microorganisms living in extreme environments are rare. Terrestrial subsurface habitats are valuable for studying microbial biogeographical patterns due to their isolation and the restricted dispersal mechanisms. Since the taxonomic identity of a microorganism does not always correspond well with its functional role in a particular community, the use of taxonomic assignments or patterns may give limited inference on how microbial functions are affected by historical, geographical and environmental factors. With seven metagenomic libraries generated from fracture water samples collected from five South African mines, this study was carried out to (1) screen for ubiquitous functions or pathways of biogeochemical cycling of CH4, S, and N; (2) to characterize the biodiversity represented by the common functional genes; (3) to investigate the subsurface biogeography as revealed by this subset of genes; and (4) to explore the possibility of using metagenomic data for evolutionary study. The ubiquitous functional genes are NarV, NPD, PAPS reductase, NifH, NifD, NifK, NifE, and NifN genes. Although these eight common functional genes were taxonomically and phylogenetically diverse and distinct from each other, the dissimilarity between samples did not correlate strongly with geographical or environmental parameters or residence time of the water. Por genes homologous to those of Thermodesulfovibrio yellowstonii detected in all metagenomes were deep lineages of Nitrospirae, suggesting that subsurface habitats have preserved ancestral genetic signatures that inform the study of the origin and evolution of prokaryotes. PMID:25400621
Kirk, C.T.; Jenkins, H.D.; Leatherock, Otto; Dillard, W.R.; Kennedy, L.E.; Bass, N.W.
1939-01-01
This report on the subsurface geology of Osage County, Okla., describes the structural features, the character of the oil- and gas-producing beds, and the localities where additional oil and gas may be found. It embodies a part of the results of a subsurface geologic investigation of the Osage Indian Reservation, which coincides in area with Osage County. The investigation was conducted by a field party of the Geological Survey of the United States Department of the Interior from 1934 to 1937 and involved the study of the records of about 17,000 wells that have been drilled in Osage County. Funds for the investigation were allotted to the Geological Survey by the Public Works Administration. The primary purpose of the examination was to obtain geologic data for use in the administration of the Indian lands. The results of the inquiry have shown that many localities in Osage County outside the present producing oil fields are worthy of prospecting for oil and gas and that additional oil and gas can be found also by exploring deeply buried beds in old producing fields.All townships in Osage County that contain many wells are described; the information furnished by such townships is ample for drawing detailed subsurface structure-contour maps. The descriptions of several contiguous townships are combined in separate reports, which are issued as parts of a single bulletin. No edition of the consolidated volume will be published, but the several parts can be bound together if desired.
NASA Astrophysics Data System (ADS)
Pino, Cristian; Herrera, Paulo; Therrien, René
2017-04-01
In many arid regions around the world groundwater recharge occurs during flash floods. This transient spatially and temporally concentrated flood-recharge process takes place through the variably saturated zone between surface and usually the deep groundwater table. These flood events are characterized by rapid and extreme changes in surface flow depth and velocity and soil moisture conditions. Infiltration rates change over time controlled by the hydraulic gradients and the unsaturated hydraulic conductivity at the surface-subsurface interface. Today is a challenge to assess the spatial and temporal distribution of groundwater recharge from flash flood events under real field conditions at different scales in arid areas. We apply an integrated surface-subsurface variably saturated physically-based flow model at the watershed scale to assess the recharge process during and after a flash flood event registered in an arid fluvial valley in Northern Chile. We are able to reproduce reasonably well observed groundwater levels and surface flow discharges during and after the flood with a calibrated model. We also investigate the magnitude and spatio-temporal distribution of recharge and the response of the system to variations of different surface and subsurface parameters, initial soil moisture content and groundwater table depths and surface flow conditions. We demonstrate how an integrated physically based model allows the exploration of different spatial and temporal system states, and that the analysis of the results of the simulations help us to improve our understanding of the recharge processes in similar type of systems that are common to many arid areas around the world.
Technical geothermal potential of urban subsurface influenced by land surface effects
NASA Astrophysics Data System (ADS)
Rivera, Jaime A.; Blum, Philipp; Bayer, Peter
2016-04-01
Changes in land use are probably one of the most notorious anthropogenic perturbations in urban environments. They significantly change the coupled thermal regime at the ground surface leading in most cases to increased ground surface temperatures (GST). The associated elevated vertical heat fluxes act at different scales and can influence the thermal conditions in several tens of meters in the subsurface. Urban subsurface thus often stores a higher amount of heat than less affected rural surroundings. The stored heat is regarded as a potential source of low-enthalpy geothermal energy to supply the heating energy demands in urban areas. In this work, we explore the technical geothermal potential of urban subsurface via ground coupled heat pumps with borehole heat exchangers (BHE). This is tackled by semi-analytical line-source equations. The commonly used response factors or g-functions are modified to include transient land surface effects. By including this additional source of heat, the new formulation allows to analyse the effect of pre-existing urban warming as well as different exploitation schemes fulfilling standard renewable and sustainable criteria. In our generalized reference scenario, it is demonstrated that energy gains for a single BHE may be up to 40 % when compared to non-urbanized conditions. For a scenario including the interaction of multiple BHEs, results indicate that it would be possible to supply between 6 % and 27 % of the heating demands in Central European urban settlements in a renewable way. The methodology is also applied to a study case of the city of Zurich, Switzerland, where the detailed evolution of land use is available.
Wamsley, Paula R.; Weimer, Carl S.; Nelson, Loren D.; O'Brien, Martin J.
2003-01-01
An oil and gas exploration system and method for land and airborne operations, the system and method used for locating subsurface hydrocarbon deposits based upon a remote detection of trace amounts of gases in the atmosphere. The detection of one or more target gases in the atmosphere is used to indicate a possible subsurface oil and gas deposit. By mapping a plurality of gas targets over a selected survey area, the survey area can be analyzed for measurable concentration anomalies. The anomalies are interpreted along with other exploration data to evaluate the value of an underground deposit. The system includes a differential absorption lidar (DIAL) system with a spectroscopic grade laser light and a light detector. The laser light is continuously tunable in a mid-infrared range, 2 to 5 micrometers, for choosing appropriate wavelengths to measure different gases and avoid absorption bands of interference gases. The laser light has sufficient optical energy to measure atmospheric concentrations of a gas over a path as long as a mile and greater. The detection of the gas is based on optical absorption measurements at specific wavelengths in the open atmosphere. Light that is detected using the light detector contains an absorption signature acquired as the light travels through the atmosphere from the laser source and back to the light detector. The absorption signature of each gas is processed and then analyzed to determine if a potential anomaly exists.
NASA Astrophysics Data System (ADS)
Reed, David W.; Lilley, Stewart; Sirman, Melinda; Bolton, Paul; Elliott, Susan; Hamilton, Doug; Nickelson, James; Shelton, Artemus
1992-12-01
With the downturn of the world economy, the priority of unmanned exploration of the solar system has been lowered. Instead of foregoing all missions to our neighbors in the solar system, a new philosophy of exploration mission design has evolved to insure the continued exploration of the solar system. The 'Discovery-class' design philosophy uses a low cost, limited mission, available technology spacecraft instead of the previous 'Voyager-class' design philosophy that uses a 'do-everything at any cost' spacecraft. The Percival Mission to Mars was proposed by Ares Industries as one of the new 'Discovery-class' of exploration missions. The spacecraft will be christened Percival in honor of American astronomer Percival Lowell who proposed the existence of life on Mars in the early twentieth century. The main purpose of the Percival mission to Mars is to collect and relay scientific data to Earth suitable for designing future manned and unmanned missions to Mars. The measurements and observations made by Percival will help future mission designers to choose among landing sites based on the feasibility and scientific interest of the sites. The primary measurements conducted by the Percival mission include gravity field determination, surface and atmospheric composition, sub-surface soil composition, sub-surface seismic activity, surface weather patterns, and surface imaging. These measurements will be taken from the orbiting Percival spacecraft and from surface penetrators deployed from Mars orbit. The design work for the Percival Mission to Mars was divided among four technical areas: Orbits and Propulsion System, Surface Penetrators, Gravity and Science Instruments, and Spacecraft Structure and Systems. The results for each of the technical areas is summarized and followed by a design cost analysis and recommendations for future analyses.
NASA Technical Reports Server (NTRS)
Reed, David W.; Lilley, Stewart; Sirman, Melinda; Bolton, Paul; Elliott, Susan; Hamilton, Doug; Nickelson, James; Shelton, Artemus
1992-01-01
With the downturn of the world economy, the priority of unmanned exploration of the solar system has been lowered. Instead of foregoing all missions to our neighbors in the solar system, a new philosophy of exploration mission design has evolved to insure the continued exploration of the solar system. The 'Discovery-class' design philosophy uses a low cost, limited mission, available technology spacecraft instead of the previous 'Voyager-class' design philosophy that uses a 'do-everything at any cost' spacecraft. The Percival Mission to Mars was proposed by Ares Industries as one of the new 'Discovery-class' of exploration missions. The spacecraft will be christened Percival in honor of American astronomer Percival Lowell who proposed the existence of life on Mars in the early twentieth century. The main purpose of the Percival mission to Mars is to collect and relay scientific data to Earth suitable for designing future manned and unmanned missions to Mars. The measurements and observations made by Percival will help future mission designers to choose among landing sites based on the feasibility and scientific interest of the sites. The primary measurements conducted by the Percival mission include gravity field determination, surface and atmospheric composition, sub-surface soil composition, sub-surface seismic activity, surface weather patterns, and surface imaging. These measurements will be taken from the orbiting Percival spacecraft and from surface penetrators deployed from Mars orbit. The design work for the Percival Mission to Mars was divided among four technical areas: Orbits and Propulsion System, Surface Penetrators, Gravity and Science Instruments, and Spacecraft Structure and Systems. The results for each of the technical areas is summarized and followed by a design cost analysis and recommendations for future analyses.
Durbin, Alan M.; Teske, Andreas
2012-01-01
Examining the patterns of archaeal diversity in little-explored organic-lean marine subsurface sediments presents an opportunity to study the association of phylogenetic affiliation and habitat preference in uncultured marine Archaea. Here we have compiled and re-analyzed published archaeal 16S rRNA clone library datasets across a spectrum of sediment trophic states characterized by a wide range of terminal electron-accepting processes. Our results show that organic-lean marine sediments in deep marine basins and oligotrophic open ocean locations are inhabited by distinct lineages of archaea that are not found in the more frequently studied, organic-rich continental margin sediments. We hypothesize that different combinations of electron donor and acceptor concentrations along the organic-rich/organic-lean spectrum result in distinct archaeal communities, and propose an integrated classification of habitat characteristics and archaeal community structure. PMID:22666218
Fournier, Eric D; Keller, Arturo A; Geyer, Roland; Frew, James
2016-02-16
This project investigates the energy-water usage efficiency of large scale civil infrastructure projects involving the artificial recharge of subsurface groundwater aquifers via the reuse of treated municipal wastewater. A modeling framework is introduced which explores the various ways in which spatially heterogeneous variables such as topography, landuse, and subsurface infiltration capacity combine to determine the physical layout of proposed reuse system components and their associated process energy-water demands. This framework is applied to the planning and evaluation of the energy-water usage efficiency of hypothetical reuse systems in five case study regions within the State of California. Findings from these case study analyses suggest that, in certain geographic contexts, the water requirements attributable to the process energy consumption of a reuse system can exceed the volume of water that it is able to recover by as much as an order of magnitude.
Survey of TES high albedo events in Mars' northern polar craters
Armstrong, J.C.; Nielson, S.K.; Titus, T.N.
2007-01-01
Following the work exploring Korolev Crater (Armstrong et al., 2005) for evidence of crater interior ice deposits, we have conducted a survey of Thermal Emission Spectroscopy (TES) temperature and albedo measurements for Mars' northern polar craters larger than 10 km. Specifically, we identify a class of craters that exhibits brightening in their interiors during a solar longitude, Ls, of 60 to 120 degrees, roughly depending on latitude. These craters vary in size, latitude, and morphology, but appear to have a specific regional association on the surface that correlates with the distribution of subsurface hydrogen (interpreted as water ice) previously observed on Mars. We suggest that these craters, like Korolev, exhibit seasonal high albedo frost events that indicate subsurface water ice within the craters. A detailed study of these craters may provide insight in the geographical distribution of the ice and context for future polar missions. Copyright 2007 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Martellato, E.; Foing, B. H.; Benkhoff, J.
2013-09-01
Skylights are openings on subsurface voids as lava tubes and caves. Recently deep hole structures, possibly skylights, were discovered on lunar photo images by the JAXA SELenological and ENgineering Explorer (SELENE)-Kaguya mission, and successively confirmed by the NASA Lunar Reconnaissance Orbiter (LRO) mission. Vertical hole structures and possibly underlying subsurface voids have high potential as resources for scientific study, and future unmanned and manned activities on the Moon. One mechanism proposed for their formation is impact cratering. The collapse of craters is due to the back spallation phenomena on the rear surface of the lava tube roofs. Previous analysis in this topic was based on small-scales laboratory experiments. These have pointed out that (i) the target thickness-to-crater diameter ratio is 0.7, and (ii) the projectile diameter-to-target thickness ratio is 0.16, at the ballistic limit once extrapolated to planetary conditions.
Jung, Lena; Hauer, Benedikt; Li, Peining; Bornhöfft, Manuel; Mayer, Joachim; Taubner, Thomas
2016-03-07
We present a study on subsurface imaging with an infrared scattering-type scanning near-field optical microscope (s-SNOM). The depth-limitation for the visibility of gold nanoparticles with a diameter of 50 nm under Si 3 N 4 is determined to about 50 nm. We first investigate spot size and signal strength concerning their particle-size dependence for a dielectric cover layer with positive permittivity. The experimental results are confirmed by model calculations and a comparison to TEM images. In the next step, we investigate spectroscopically also the regime of negative permittivity of the capping layer and its influence on lateral resolution and signal strength in experiment and simulations. The explanation of this observation combines subsurface imaging and superlensing, and shows up limitations of the latter regarding small structure sizes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hertig, S.P.; Tye, R.S.; Coffield, D.Q.
1991-08-01
Paleozoic to Lower Mesozoic strata of the southeastern Algerian Tassili are traditionally subdivided by regionally extensive unconformities such as the Pan African, Taconic, Caledonian, and Hercynian. Using outcrop data from southeastern Algeria, this classic approach is modified by reinterpreting the genesis of these unconformities and rock sequences. Five prominent sequences, defined within the Paleozoic and lower Mesozoic section, usually consist of a succession of lowstand, transgressive, and highstand system tracts separated by sequence boundaries or transgressive surfaces. The Pan-African, Taconic, Caledonian, and Hercynian unconformities are sequence boundaries. Important sequence boundaries also occur within the Ordovician and Silurian sections. These sequencesmore » correlate with subsurface data in the Illizi basin and provide a framework for renewed exploration in the subsurface of the Algerian Sahara, where more than 30 billion bbl of recoverable oil and oil equivalent have been generated and trapped.« less
NASA Astrophysics Data System (ADS)
McNamara, David; Milicich, Sarah; Massiot, Cécile
2017-04-01
Borehole imaging has been used worldwide since the 1950's to capture vital geological information on the lithology, structure, and stress conditions of the Earth's subsurface. In New Zealand both acoustic and resistivity based borehole image logs are utilised to explore the geological nature of the basement and volcanic rocks that contain the country's unique geothermal reservoirs. Borehole image logs in wells from three geothermal fields in the Taupo Volcanic Zone (TVZ) provide the first, direct, subsurface, structural orientation measurements in New Zealand geothermal reservoir lithologies. While showing an overall structural pattern aligned to the regional tectonic trend, heterogeneities are observed that provide insight into the complexity of the structurally controlled, geothermal, fluid flow pathways. Analysis of imaged stress induced features informs us that the stress field orientation in the TVZ is also not homogenous, but is variable at a local scale.
Using Laser Ultrasound to Detect Subsurface Defects in Metal Laser Powder Bed Fusion Components
NASA Astrophysics Data System (ADS)
Everton, Sarah; Dickens, Phill; Tuck, Chris; Dutton, Ben
2018-03-01
Laser powder bed fusion offers many advantages over conventional manufacturing methods, such as the integration of multiple parts that can result in significant weight-savings. The increased design freedom that layer-wise manufacture allows has also been seen to enhance component performance at little or no added cost. For such benefits to be realized, however, the material quality must first be assured. Laser ultrasonic testing is a noncontact inspection technique that has been proposed as suitable for in situ monitoring of metal additive manufacturing processes. This article explores the current capability of this technique to detect manufactured, subsurface defects in Ti-6Al-4V samples, ex situ. The results are compared with x-ray computed tomography reconstructions and focus variation microscopy. Although laser ultrasound has been used to identify material discontinuities, further work is required before this technique could be implemented in situ.
Evidence for methane in Martian meteorites
Blamey, Nigel J. F.; Parnell, John; McMahon, Sean; Mark, Darren F.; Tomkinson, Tim; Lee, Martin; Shivak, Jared; Izawa, Matthew R. M.; Banerjee, Neil R.; Flemming, Roberta L.
2015-01-01
The putative occurrence of methane in the Martian atmosphere has had a major influence on the exploration of Mars, especially by the implication of active biology. The occurrence has not been borne out by measurements of atmosphere by the MSL rover Curiosity but, as on Earth, methane on Mars is most likely in the subsurface of the crust. Serpentinization of olivine-bearing rocks, to yield hydrogen that may further react with carbon-bearing species, has been widely invoked as a source of methane on Mars, but this possibility has not hitherto been tested. Here we show that some Martian meteorites, representing basic igneous rocks, liberate a methane-rich volatile component on crushing. The occurrence of methane in Martian rock samples adds strong weight to models whereby any life on Mars is/was likely to be resident in a subsurface habitat, where methane could be a source of energy and carbon for microbial activity. PMID:26079798
NASA Technical Reports Server (NTRS)
Mogensen, Claus T.; Carsey, Frank D.; Behar, Alberto; Engelhardt, Hermann; Lane, Arthur L.
2002-01-01
The Mars Polar Caps are highly interesting features of Mars and have received much recent attention with new and exciting data on morphology, basal units, and layered outcroppings. We have examined the climatological, glaciological, and geological issues associated with a subsurface exploration of the Mars North Polar Cap and have determined that a finescale optical examination of ice in a borehole, to examine the stratigraphy, geochemistry and geochronology of the ice, is feasible. This information will enable reconstruction of the development of the cap as well as predication of the properties of its ice. We present visible imagery taken of dust inclusions in archived Greenland ice cores as well as in-situ images of accreted lithologic inclusions in West Antarctica, and we argue for use of this kind of data in Mars climate reconstruction as has been successful with Greenland and Antarctic ice core anlaysis.
NASA Technical Reports Server (NTRS)
Carsey, Frank; Mogensen, Claus T.; Behar, Alberto; Engelhardt, Hermann; Lane, Arthur L.
2002-01-01
The Mars Polar Caps are highly interesting features of Mars and have received much recent attention with new and exciting data on morphology, basal units, and layered outcroppings. We have examined the climatological, glaciological, and geological issues associated with a subsurface exploration of the Mars North Polar Cap and have determined that a finescale optical examination of ice in a borehole, to examine the stratigraphy, geochemistry and geochronology of the ice, is feasible. This information will enable reconstruction of the development of the cap as well as prediction of the properties of its ice. We present visible imagery taken of dust inclusions in archived Greenland ice cores as well as in-situ images of accreted lithologic inclusions in West Antarctica, and we argue for use of this kind of data in Mars climate reconstruction as has been successful with Greenland and Antarctic ice core analysis. .
The Marskhod Egyptian Drill Project
NASA Astrophysics Data System (ADS)
Shaltout, M. A. M.
We describe a possible participation of Egypt in a future Mars rover Mission. It was suggested that Egypt participate through involvement in the design, building and testing of a drill to obtain sub-surface samples. The Space Research Institute of the Russian Academy of Sciences (IKI), formally invited the Egyptian Ministry of Scientific Research to study the concept for potential use on the Russian Mars 2001 Mission. As one of the objectives of the Marskhod mission was the analysis of sub-surface samples, a drilling mechanism in the payload would be essential. The Egyptian expertise in drill development is associated with the archaeological exploration of the Pyramids. A sophisticated drilling system perforated limestone to a depth of 2 m without the use of lubricants or cooling fluids that might have contaminated the Pit's environment. This experience could have been applied to a drill development Mars 2001 mission, which was unfortunately canceled due to economic problems.
NASA Astrophysics Data System (ADS)
Akip Tan, S. N. Mohd; Dan, M. F. Md; Edy Tonnizam, M.; Saad, R.; Madun, A.; Hazreek, Z. A. M.
2018-04-01
2-D resistivity technique and pole-dipole array with spacing of 2 m electrode and total spacing of 80 m were adopted to map and characterize the shallow subsurface in a sedimentary area at Nusajaya, Johor. Geological field mapping and laboratory testing were conducted to determine weathering grades. Res2Dinv software was used to generate the inversion model resistivity. The result shows sandstone contains iron mineral (30-1000ohm-m) and weathered sandstone (500-1000 ohm-m). The lowest layer represents sandstone and siltstone with the highest range from 1500 through 5000 ohm-m. The weathering grade IV and V of sandstone in the actual profile indicates the range from 30 to 1000 ohm-m, whereas grade II and III in ground mass matched the higest range. Overall, the increase of weathering grade influenced both the physical properties and strength of rocks.
Regional geothermal exploration in Egypt
NASA Technical Reports Server (NTRS)
Morgan, P.; Boulos, F. K.; Swanberg, C. A.
1983-01-01
A study is presented of the evaluation of the potential geothermal resources of Egypt using a thermal gradient/heat flow technique and a groundwater temperature/chemistry technique. Existing oil well bottom-hole temperature data, as well as subsurface temperature measurements in existing boreholes, were employed for the thermal gradient/heat flow investigation before special thermal gradient holes were drilled. The geographic range of the direct subsurface thermal measurements was extended by employing groundwater temperature and chemistry data. Results show the presence of a regional thermal high along the eastern margin of Egypt with a local thermal anomaly in this zone. It is suggested that the sandstones of the Nubian Formation may be a suitable reservoir for geothermal fluids. These findings indicate that temperatures of 150 C or higher may be found in this reservoir in the Gulf of Suez and Red Sea coastal zones where it lies at a depth of 4 km and deeper.
Evidence for methane in Martian meteorites.
Blamey, Nigel J F; Parnell, John; McMahon, Sean; Mark, Darren F; Tomkinson, Tim; Lee, Martin; Shivak, Jared; Izawa, Matthew R M; Banerjee, Neil R; Flemming, Roberta L
2015-06-16
The putative occurrence of methane in the Martian atmosphere has had a major influence on the exploration of Mars, especially by the implication of active biology. The occurrence has not been borne out by measurements of atmosphere by the MSL rover Curiosity but, as on Earth, methane on Mars is most likely in the subsurface of the crust. Serpentinization of olivine-bearing rocks, to yield hydrogen that may further react with carbon-bearing species, has been widely invoked as a source of methane on Mars, but this possibility has not hitherto been tested. Here we show that some Martian meteorites, representing basic igneous rocks, liberate a methane-rich volatile component on crushing. The occurrence of methane in Martian rock samples adds strong weight to models whereby any life on Mars is/was likely to be resident in a subsurface habitat, where methane could be a source of energy and carbon for microbial activity.
Naranjo, Ramon C.
2017-01-01
Groundwater-flow models are often calibrated using a limited number of observations relative to the unknown inputs required for the model. This is especially true for models that simulate groundwater surface-water interactions. In this case, subsurface temperature sensors can be an efficient means for collecting long-term data that capture the transient nature of physical processes such as seepage losses. Continuous and spatially dense network of diverse observation data can be used to improve knowledge of important physical drivers, conceptualize and calibrate variably saturated groundwater flow models. An example is presented for which the results of such analysis were used to help guide irrigation districts and water management decisions on costly upgrades to conveyance systems to improve water usage, farm productivity and restoration efforts to improve downstream water quality and ecosystems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mudford, B.S.
1996-12-31
The determination of an appropriate thermal history in an exploration area is of fundamental importance when attempting to understand the evolution of the petroleum system. In this talk we present the results of a single-well modelling study in which bottom hole temperature data, vitrinite reflectance data and three different biomarker ratio datasets were available to constrain the modelling. Previous modelling studies using biomarker ratios have been hampered by the wide variety of published kinetic parameters for biomarker evolution. Generally, these parameters have been determined either from measurements in the laboratory and extrapolation to the geological setting, or from downhole measurementsmore » where the heat flow history is assumed to be known. In the first case serious errors can arise because the heating rate is being extrapolated over many orders of magnitude, while in the second case errors can arise if the assumed heat flow history is incorrect. To circumvent these problems we carried out a parameter optimization in which the heat flow history was treated as an unknown in addition to the biomarker ratio kinetic parameters. This method enabled the heat flow history for the area to be determined together with appropriate kinetic parameters for the three measured biomarker ratios. Within the resolution of the data, the heat flow since the early Miocene has been relatively constant at levels required to yield good agreement between predicted and measured subsurface temperatures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mudford, B.S.
1996-01-01
The determination of an appropriate thermal history in an exploration area is of fundamental importance when attempting to understand the evolution of the petroleum system. In this talk we present the results of a single-well modelling study in which bottom hole temperature data, vitrinite reflectance data and three different biomarker ratio datasets were available to constrain the modelling. Previous modelling studies using biomarker ratios have been hampered by the wide variety of published kinetic parameters for biomarker evolution. Generally, these parameters have been determined either from measurements in the laboratory and extrapolation to the geological setting, or from downhole measurementsmore » where the heat flow history is assumed to be known. In the first case serious errors can arise because the heating rate is being extrapolated over many orders of magnitude, while in the second case errors can arise if the assumed heat flow history is incorrect. To circumvent these problems we carried out a parameter optimization in which the heat flow history was treated as an unknown in addition to the biomarker ratio kinetic parameters. This method enabled the heat flow history for the area to be determined together with appropriate kinetic parameters for the three measured biomarker ratios. Within the resolution of the data, the heat flow since the early Miocene has been relatively constant at levels required to yield good agreement between predicted and measured subsurface temperatures.« less
A Reversal of Decadal Trends in the Equatorial and North Indian Ocean
NASA Astrophysics Data System (ADS)
Thompson, P. R.; Merrifield, M. A.; McCreary, J. P., Jr.; Firing, E.; Piecuch, C. G.
2016-02-01
Sea level and upper ocean temperature trends in the Equatorial and North Indian Ocean (ENIO) reversed sign shortly after the turn of the century. The trend reversal is spatially coherent and characterized by subsurface cooling during 1993-2002 followed by subsurface warming during 2003-2012. Here we explore the dynamics and forcing of the decadal trend reversal, with a particular emphasis on the role of the Indian Ocean cross-equatorial cell (CEC) and anomalies transmitted from the Pacific basin to the ENIO via the Indonesian Throughflow (ITF). An examination of reanalysis wind-stress fields suggest that forcing of the CEC is enhanced during the cooling phase of the decadal fluctuation, which may account for the cooling trend below 100m in the ENIO during the first decade. In contrast, the subsurface warming during the second decade occurs at thermocline levels, which suggests a deepening of the thermocline during this period. Enhanced Pacific tradewinds since the early 1990s result in a deepening thermocline in the western tropical Pacific (WTP), which may be transmitted to the Indian Ocean basin via the ITF. We present results from simple model experiments that assess the potential for thermocline anomalies originating in the WTP to account for the deepening thermocline in the ENIO during the warming phase of the decadal fluctuation.
NASA Astrophysics Data System (ADS)
Tozburun, Serhat; Stahl, Charlotte S. D.; Hutchens, Thomas C.; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.
2013-03-01
Successful identification of the cavernous nerves (CN's) during radical prostatectomy requires detection of the CN's through a thin layer of overlying fascia. This study explores the 1490 nm infrared (IR) diode laser wavelength for rapid and deep subsurface CN stimulation in a rat model, in vivo. A 150-mW, 1490-nm diode laser providing an optical penetration depth of 520 μm was used to stimulate the CN's in 8 rats through a single mode fiber optic probe with 1-mm-diameter spot and 15 s irradiation time. Successful ONS was judged by an intracavernous pressure response (ICP) in the rat penis. Subsurface ONS at 1490 nm was also compared with previous studies using 1455 and 1550 nm IR diode laser wavelengths. ONS was observed through fascia layers up to 380 μm thick using an incident laser power of 50 mW. ICP response times as short as 4.6 +/- 0.2 s were recorded using higher laser powers bust still below the nerve damage threshold. The 1490-nm diode laser represents a compact, low cost, high power, and high quality infrared light source for use in ONS. This wavelength provides deeper optical penetration than 1455 nm and more rapid and efficient nerve stimulation than 1550 nm.
In-Tank Processing (ITP) Geotechnical Summary Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cumbest, R.J.
A geotechnical investigation has been completed for the In Tank Processing Facility (ITP) which consists of buildings 241-96H and 241-32H; and Tanks 241-948H, 241-949H, 241-950H, and 241-951H. The investigation consisted of a literature search for relevant technical data, field explorations, field and laboratory testing, and analyses. This document presents a summary of the scope and results to date of the investigations and engineering analyses for these facilities. A final geotechnical report, which will include a more detailed discussion and all associated boring logs, laboratory test results, and analyses will be issued in October 1994.The purpose of the investigation is tomore » obtain geotechnical information to evaluate the seismic performance of the foundation materials and embankme nts under and around the ITP. The geotechnical engineering objectives of the investigation are to: 1) define the subsurface stratigraphy, 2) obtain representative engineering properties of the subsurface materials, 3) assess the competence of the subsurface materials under static and dynamic loads, 4) derive properties for seismic soil-structure interaction analysis, 5) evaluate the areal and vertical extent of horizons that might cause dynamic settlement or instability, and 6) determine settlement at the foundation level of the tanks.« less
NASA Astrophysics Data System (ADS)
Metwaly, Mohamed; El-Qady, Gad; Massoud, Usama; El-Kenawy, Abeer; Matsushima, Jun; Al-Arifi, Nasser
2010-09-01
Siliyin spring is one of the many natural fresh water springs in the Western Desert of Egypt. It is located at the central part of El-Fayoum Delta, which is a potential place for urban developments and touristic activities. Integrated geoelectrical survey was conducted to facilitate mapping the groundwater resources and the shallow subsurface structures in the area. Twenty-eight transient electromagnetic (TEM) soundings, three vertical electrical soundings (VES) and three electrical resistivity tomography (ERT) profiles were carried out around the Siliyin spring location. The dense cultivation, the rugged topography and the existence of infra structure in the area hindered acquiring more data. The TEM data were inverted jointly with the VES and ERT, and constrained by available geological information. Based on the inversion results, a set of geoelectrical cross-sections have been constructed. The shallow sand to sandy clay layer that forms the shallow aquifer has been completely mapped underneath and around the spring area. Flowing of water from the Siliyin spring is interconnected with the lateral lithological changes from clay to sand soil. Exploration of the extension of Siliyin spring zone is recommended. The interpretation emphasizes the importance of integrating the geoelectrical survey with the available geological information to obtain useful, cheap and fast lithological and structural subsurface information.
NASA Astrophysics Data System (ADS)
Roningen, J. M.; Eylander, J. B.
2014-12-01
Groundwater use and management is subject to economic, legal, technical, and informational constraints and incentives at a variety of spatial and temporal scales. Planned and de facto management practices influenced by tax structures, legal frameworks, and agricultural and trade policies that vary at the country scale may have medium- and long-term effects on the ability of a region to support current and projected agricultural and industrial development. USACE is working to explore and develop global-scale, physically-based frameworks to serve as a baseline for hydrologic policy comparisons and consequence assessment, and such frameworks must include a reasonable representation of groundwater systems. To this end, we demonstrate the effects of different subsurface parameterizations, scaling, and meteorological forcings on surface and subsurface components of the Catchment Land Surface Model Fortuna v2.5 (Koster et al. 2000). We use the Land Information System 7 (Kumar et al. 2006) to process model runs using meteorological components of the Air Force Weather Agency's AGRMET forcing data from 2006 through 2011. Seasonal patterns and trends are examined in areas of the Upper Nile basin, northern China, and the Mississippi Valley. We also discuss the relevance of the model's representation of the catchment deficit with respect to local hydrogeologic structures.
Mount Hood exploration, Oregon: a case history
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowen, R.G.
1981-05-01
An assessment program of Mount Hood is giving information useful for geothermal development in the area and is expected to characterize and aid in exploration of other Cascade volcanoes. These studies have shown the presence of thermal waters coming to the surface around the south flank of the mountain and subsurface flow in other areas. Geothermal gradient drilling shows the average heat flow in the area to be about two times normal increasing toward the summit. Two commercial exploration programs resulting in drilling are underway; Northwest Natural Gas is exploring the west side for direct utilization in the Portland area,more » and Wy'East is exploring near Timberline Lodge on the south flank. On the west side adequate temperatures have been found but the wells have not found enough permeability to be useful. At Timberline Lodge a 4000' well appears to have sufficient temperature, but it has not yet been tested. Further exploration and testing will continue this summer.« less
Uncertainty evaluation with increasing borehole drilling in subsurface hydrogeological explorations
NASA Astrophysics Data System (ADS)
Amano, K.; Ohyama, T.; Kumamoto, S.; Shimo, M.
2016-12-01
Quantities of drilling boreholes have been a difficult subject for field investigators in such as subsurface hydrogeological explorations. This problem becomes a bigger in heterogeneous formations or rock masses so we need to develop quantitative criteria for evaluating uncertainties during borehole investigations.To test an uncertainty reduction with increasing boreholes, we prepared a simple hydrogeological model and virtual hydraulic tests were carried out by using this model. The model consists of 125,000 elements of which hydraulic conductivities are generated randomly from the log-normal distribution in a 2-kilometer cube. Uncertainties were calculated by the difference of head distributions between the original model and the inchoate models made by virtual hydraulic test one by one.The results show the level and the variance of uncertainty are strongly correlated to the average and variance of the hydraulic conductivities. This kind of trends also could be seen in the actual field data obtained from the deep borehole investigations in Horonobe Town, northern Hokkaido, Japan. Here, a new approach using fractional bias (FB) and normalized mean square error (NMSE) for evaluating uncertainty characteristics will be introduced and the possibility of use as an indicator for decision making (i.e. to stop borehole drilling or to continue borehole drilling) in field investigations will be discussed.
NASA Astrophysics Data System (ADS)
Pratama Wahyu Hidayat, Putra; Hary Murti, Antonius; Sudarmaji; Shirly, Agung; Tiofan, Bani; Damayanti, Shinta
2018-03-01
Geometry is an important parameter for the field of hydrocarbon exploration and exploitation, it has significant effect to the amount of resources or reserves, rock spreading, and risk analysis. The existence of geological structure or fault becomes one factor affecting geometry. This study is conducted as an effort to enhance seismic image quality in faults dominated area namely offshore Madura Strait. For the past 10 years, Oligo-Miocene carbonate rock has been slightly explored on Madura Strait area, the main reason because migration and trap geometry still became risks to be concern. This study tries to determine the boundary of each fault zone as subsurface image generated by converting seismic data into variance attribute. Variance attribute is a multitrace seismic attribute as the derivative result from amplitude seismic data. The result of this study shows variance section of Madura Strait area having zero (0) value for seismic continuity and one (1) value for discontinuity of seismic data. Variance section shows the boundary of RMKS fault zone with Kendeng zone distinctly. Geological structure and subsurface geometry for Oligo-Miocene carbonate rock could be identified perfectly using this method. Generally structure interpretation to identify the boundary of fault zones could be good determined by variance attribute.
Schulze-Makuch, Dirk; Dohm, James M; Fairén, Alberto G; Baker, Victor R; Fink, Wolfgang; Strom, Robert G
2005-12-01
Venus and Mars likely had liquid water bodies on their surface early in the Solar System history. The surfaces of Venus and Mars are presently not a suitable habitat for life, but reservoirs of liquid water remain in the atmosphere of Venus and the subsurface of Mars, and with it also the possibility of microbial life. Microbial organisms may have adapted to live in these ecological niches by the evolutionary force of directional selection. Missions to our neighboring planets should therefore be planned to explore these potentially life-containing refuges and return samples for analysis. Sample return missions should also include ice samples from Mercury and the Moon, which may contain information about the biogenic material that catalyzed the early evolution of life on Earth (or elsewhere). To obtain such information, science-driven exploration is necessary through varying degrees of mission operation autonomy. A hierarchical mission design is envisioned that includes spaceborne (orbital), atmosphere (airborne), surface (mobile such as rover and stationary such as lander or sensor), and subsurface (e.g., ground-penetrating radar, drilling, etc.) agents working in concert to allow for sufficient mission safety and redundancy, to perform extensive and challenging reconnaissance, and to lead to a thorough search for evidence of life and habitability.
An Estimation Of The Geoelectric Features Of Planetary Shallow Subsurfaces With TAPIR Antennae
NASA Astrophysics Data System (ADS)
Le Gall, A.; Reineix, A.; Ciarletti, V.; Jean-Jacques, B.; Ney, R.; Dolon, F.; Corbel, C.
2005-12-01
Exploring the interior of Mars and searching for water reservoirs, either in the form of ice or of liquid water, was one of the main scientific objectives of the NETLANDER project. In that frame, the CETP (Centre d'Etude des Environnements Terrestre et Planetaires) has developed an imaging ground penetrating radar (GPR), called TAPIR (Terrestrial And Planetary Investigation by Radar). Operating from a fixed position and at low frequencies (from 2 to 4MHz), this instrument allows to retrieve not only the distance but also the inclination of deep subsurface reflectors by measuring the two horizontal electrical components and the three magnetic components of the reflected waves. In 2004, ground tests have been successfully carried out on the Antarctic Continent; the bedrock, lying under a thick layer of ice (until 1200m), was detected and part of its relief was revealed. Yet, knowing the electric parameters of the close subsurface is required to correctly process the measured electric and magnetic components of the echoes and deduce their propagation vector. In addition, these electric parameters can bring a very interesting piece of information on the nature of the material in the shallow underground. We have therefore looked for a possible method (appropriate for a planetary mission) to evaluate them using a special mode of operation of the radar. This method relies on the fact that the electrical characteristics of the transmitting electric antennas (current along the antenna, driving-point impedance.) depend on the nature of the ground on which the radar is lying. If this dependency is significant enough, geological parameters of the subsurface can be deduced from the analysis of specific measurements. We have thus performed a detailed experimental and theoretical study of the TAPIR resistively loaded electrical dipoles to get a precise understanding of the radar transmission and assess the role of the electric parameters of the underground. In this poster, we will analytically prove the sensitivity of TAPIR antennae to subsurface nature. Besides, a numerical code, based on the FDTD method, has been built to simulate with accuracy radar operation and its coupling with the environment. Results from simulations will be then compared to in-situ measurements collected in three different sites. Eventually, we will see that the inferred geoelectrical values characterize only a thin layer of the subsurface.
NASA Astrophysics Data System (ADS)
Dorizon, Sophie; Ciarletti, Valérie
2013-04-01
The Water Ice Sub-surface Deposits Observation on Mars (WISDOM) (500MHz - 3GHz) GPR is one of the instruments that have been selected as part of the Pasteur payload of ESA's 2018 ExoMars Rover mission. One of the main scientific objectives of the mission is to characterize the nature of the shallow sub-surface on Mars and WISDOM has been designed to explore the first 3 meters of the sub-surface with a vertical resolution of a few centimetres. Laboratory and field tests using the prototype developed for the ExoMars mission by LATMOS (Laboratoire Atmosphère, Milieux, Observations Spatiales) in collaboration with the AOB (Bordeaux) and the university of Dresden (Germany) are regularly performed to assess and improve the radar performances. In order to quantitatively interpret the experimental data obtained, we developed a simulation tool based on ray-tracing. This code proves to be a fast practical way even if simplified to help radargrams interpretation. The WISDOM GPR, unlike most traditional GPRs, is operated approximately 30 centimetres above the surface. This configuration implies that the propagation between the antenna and the surface cannot be neglected especially because the instrument's aim is to characterise the very shallow subsurface. As a consequence, while we can draw advantage of this specific configuration by using the surface echo's amplitude to retrieve information about the top layer's roughness and permittivity value, precise location of buried reflector becomes more complicated. Indeed, the signature distinctive of individual reflectors buried in the sub-surface is not more an exact mathematical hyperbola. When the individual reflector is buried deep enough in the subsurface, the adjustment by an hyperbolic function still allows the retrieval of the reflector's location and the permittivity value of the surrounding medium. But in case of a reflector closer to the surface, the approximation is no longer valid. We propose a robust model adjustment that can be used for any reflector's depth. The physical assumptions taken into account are presented. Finally, results for different configurations and the validation of the limit conditions for which this adjustment method is reliable are shown. Preliminary analyzes on real data show the good performance of the method developed. Other modelling techniques will be considered to complete a full data interpretation taking the best from the instrument capacities
NASA Astrophysics Data System (ADS)
Amils, R.; Fernández-Remolar, D. C.; Parro, V.; Manfredi, J. A.; Timmis, K.; Oggerin, M.; Sánchez-Román, M.; López, F. J.; Fernández, J. P.; Omoregie, E.; Gómez-Ortiz, D.; Briones, C.; Gómez, F.; García, M.; Rodríguez, N.; Sanz, J. L.
2012-09-01
Iberian Pyrite Belt Subsurface Life (IPBSL) is a drilling project specifically designed to characterize the subsurface ecosystems operating in the Iberian Pyrite Belt (IPB), in the area of Peña de Hierro, and responsible of the extreme acidic conditions existing in the Rio Tinto basin [1]. Rio Tinto is considered a good geochemical terrestrial analogue of Mars [2, 3]. A dedicated geophysical characterization of the area selected two drilling sites (4) due to the possible existence of water with high ionic content (low resistivity). Two wells have been drilled in the selected area, BH11 and BH10, of depths of 340 and 620 meters respectively, with recovery of cores and generation of samples in anaerobic and sterile conditions. Preliminary results showed an important alteration of mineral structures associated with the presence of water, with production of expected products from the bacterial oxidation of pyrite (sulfates and ferric iron). Ion chromatography of water soluble compounds from uncontaminated samples showed the existence of putative electron donors (ferrous iron, nitrite in addition of the metal sulfides), electron acceptors (sulfate, nitrate, ferric iron) as well as variable concentration of metabolic organic acids (mainly acetate, formate, propionate and oxalate), which are strong signals of the presence of active subsurface ecosystem associated to the high sulfidic mineral content of the IPB. The system is driven by oxidants that appear to be provided by the rock matrix, only groundwater is needed to launch microbial metabolism. The geological, geomicrobiological and molecular biology analysis which are under way, should allow the characterization of this ecosystem of paramount interest in the design of an astrobiological underground Mars exploration mission in the near future.
Xu, Xiang-ru; Luo, Kun; Zhou, Bao-ku; Wang, Jing-kuan; Zhang, Wen-ju; Xu, Ming-gang
2015-07-01
The characteristics and changes of soil organic carbon (SOC) and total nitrogen (TN) in different size particles of soil under different agricultural practices are the basis for better understanding soil carbon sequestration of mollisols. Based on a 31-year long-term field experiment located at the Heilongjiang Academy of Agricultural Sciences (Harbin) , soil samples under six treatments were separated by size-fractionation method to explore changes and distribution of SOC and TN in coarse sand, fine sand, silt and clay from the top layer (0-20 cm) and subsurface layer (20-40 cm). Results showed that long-term application of manure (M) increased the percentages of SOC and TN in coarse sand and clay size fractions. In the top layer, application of nitrogen, phosphorus and potassium fertilizers combined with manure (NPKM) increased the percentages of SOC and TN in coarse sand by 191.3% and 179.3% compared with the control (CK), whereas M application increased the percentages of SOC and TN in clay by 45% and 47% respectively. For subsurface layers, the increase rates of SOC and TN in corresponding parts were lower than that in top layer. In the surface and subsurface layers, the percentages of SOC storage in silt size fraction accounted for 42%-63% and 48%-54%, TN storage accounted for 34%-59% and 41%-47%, respectively. The enrichment factors of SOC and TN in coarse sand and clay fractions of surface layers increased significantly under the treatments with manure. The SOC and TN enrichment factors were highest in the NPKM, being 2.30 and 1.88, respectively, while that in the clay fraction changed little in the subsurface layer.
NASA Technical Reports Server (NTRS)
Barlow, Nadine G.
1991-01-01
Many martian impact craters ejecta morphologies suggestive of fluidization during ejecta emplacement. Impact into subsurface volatile reserviors (i.e., water, ice, CO2, etc.) is the mechanism favored by many scientists, although acceptance of this mechanism is not unanimous. In recent years, a number of studies were undertaken to better understand possible relationships between ejecta morphology and latitude, longitude, crater diameter, and terrain. These results suggest that subsurface volatiles do influence the formation of specific ejecta morphologies and may provide clues to the vertical and horizontal distribution of volatiles in more localized regions of Mars. The location of these volatile reservoirs will be important to humans exploring and settling Mars in the future. Qualitative descriptions of ejecta morphology and quantitative analyses of ejecta sinuosity and ejecta lobe areal extent from the basis of the studies. Ejecta morphology studies indicate that morphology is correlated with crater diameter and latitude, and, using depth-diameter relationships, these correlations strongly suggest that changes in morphology are related to transition among subsurface layers with varying amounts of volatiles. Ejecta sinuosity studies reveal correlations between degree of sinuosity (lobateness) and crater morphology, diameter, latitude, and terrain. Lobateness, together with variations in areal extent of the lobate ejecta blanket with morphology and latitude, probably depends most directly on the ejecta emplacement process. The physical parameters measured here can be compared with those predicted by existing ejecta emplacement models. Some of these parameters are best reproduced by models requiring incorporation of volatiles within the ejecta. However, inconsistencies between other parameters and the models indicate that more detailed modeling is necessary before the location of volatile reservoirs can be confidently predicted based on ejecta morphology studies alone.
Klavarioti, Maria; Kostarelos, Konstantinos; Pourjabbar, Anahita; Ghandehari, Masoud
2014-05-01
There is an imperative need for a chemical sensor capable of remote, in situ, long-term monitoring of chemical species at sites containing toxic chemical spills, specifically at chemical waste dumps, landfills, and locations with underground storage tanks. In the current research, a series of experiments were conducted measuring the near-infrared optical absorption of alkanes, aromatics, and chlorinated hydrocarbons. A spectral library was then developed to characterize the optical spectra of liquid hydrocarbons. Near-infrared analysis was chosen due to compatibility with optical fibers. The goal was to differentiate between classes of hydrocarbons and to also discriminate between compounds within a class of similar molecular structures. It was observed that unique absorption spectra can be obtained for each hydrocarbon, and this uniqueness can be used to discriminate between hydrocarbons from different families. Statistical analyses, namely, principal component analysis (PCA) and correlation coefficient (Spearman and Pearson methods), were attempted to match absorption spectra from an unknown hydrocarbon with the database with limited success. An algorithm was subsequently written to identify the characteristic peaks of each hydrocarbon that could be used to match data from an unknown chemical species with the database.
NASA Astrophysics Data System (ADS)
Smith, T. D.; Jacob, R. W.
2013-12-01
Authors Tracey Smith^1, Rob Jacob^1, Jeffrey Trop^1, Keith Williams^2 and Craig Kochel^1 Bucknell University, Geology and Environmental Geoscience Department, Lewisburg, PA UNAVCO, 6350 Nautilus Dr., Boulder, CO 80301 Icy debris fans have recently been described as deglaciation features on Earth and similar features have been observed on Mars, however, the subsurface characteristics remain unknown. We used ground penetrating radar (GPR) to non-invasively investigate the subsurface characteristics of icy debris fans near McCarthy, Alaska, USA. The three fans investigated in Alaska are the East, West, and Middle fans which are between the Nabesna ice cap and the McCarthy Glacier. Icy debris fans in general are a largely unexplored suite of paraglacial landforms and processes in alpine regions. Recent field studies focused on direct observations and depositional processes. The results showed that each fan's composition is primarily influenced by the type and frequency of mass wasting processes that supply the fan. Photographic studies show that the East fan receives far more ice and snow avalanches whereas the Middle and West fan receive fewer mass wasting events but more clastic debris is deposited on the Middle and West fan from rock falls and icy debris flows. GPR profiles and WARR surveys consisting of both, common mid-point (CMP), and common shot-point (CSP) surveys investigated the subsurface geometry of the fans and the McCarthy Glacier.All GPR surveys were collected in 2013 with 100MHz bi-static antennas. Four axial profiles and three cross-fan profiles were done on the West and Middle fans as well as the McCarthy Glacier in order to investigate the relationship between the three features. Terrestrial laser surveying of the surface and real-time kinematic GPS provided the surface elevation used to correct the GPR data for topographic changes. GPR profiles yielded reflectors that were continuous for 10+ m and hyperbolic reflections in the subsurface. The WARR surveys provided the GPR signal velocity through the subsurface material and allowed transformation of two-way traveltimes (TWTT) in GPR profiles to be converted to depth. In addition, the eight WARR surveys spaced on the fans and on the glacier provide information on variability of subsurface velocities. The profiles of the Middle and West fan have more energy returning to the surface and therefore many more reflections than profiles done on the McCarthy Glacier. Based on the WARR surveys, we interpret the lower energy return in the glacier to be caused by two reasons. 1) The increased attenuation due to wet ice versus drier ice and on the fan with GPR velocities >0.15m/ns. 2) Lack of interfaces in the glacier compared to those in the fans which are produced by the events depositing material to an ablated icy debris fan surface. The GPR profiles on the West and Middle fans show multiple point scatters at TWTT of less than 200ns. The Middle fan is distinguished from the West fan by its multiple point scatters at TWTT greater than 200ns, clearly showing the Middle fan with a greater thickness. The observations from the GPR profiles correlate with the photographic evidence for types of processes and the composition of their deposits on each fan respectively.
Lihua Cui; Ying Ouyang; Wenjie Gu; Weozhi Yang; Qiaoling Xu
2013-01-01
In this study, the enzyme activities and their relationships to domestic wastewater purification are investigated in four different types of subsurface-flow constructed wetlands (CWs), namely the traditional horizontal subsurface-flow, horizontal baffled subsurface-flow, vertical baffled subsurface-flow, and composite baffled subsurface-flow CWs. Results showed that...
Using Digital Cameras to Detect Warning Signs of Volcanic Eruptions
NASA Astrophysics Data System (ADS)
Girona, T.; Huber, C.; Trinh, K. T.; Protti, M.; Pacheco, J. F.
2017-12-01
Monitoring volcanic outgassing is fundamental to improve the forecasting of volcanic eruptions. Recent efforts have led to the advent of new methods to measure the concentration and flux of volcanic gases with unprecedented temporal resolution, thus allowing us to obtain reliable high-frequency (up to 1 Hz) time series of outgassing activity. These high-frequency methods have shown that volcanic outgassing can be periodic sometimes (with periodicities ranging from 101 s to 103 s), although it remains unknown whether the spectral features of outgassing reflect the processes that ultimately trigger volcanic unrest and eruptions. In this study, we explore the evolution of the spectral content of the outgassing activity of Turrialba volcano (Costa Rica) using digital images (with digital brightness as a proxy for the emissions of water vapor [Girona et al., 2015]). Images were taken at 1 km distance with 1 Hz sampling rate, and the time period analyzed (from April 2016 to April 2017) is characterized by episodes of quiescent outgassing, ash explosions, and sporadic eruptions of ballistics. Our preliminary results show that: 1) quiescent states of Turrialba volcano are characterized by outgassing frequency spectra with fractal distribution; 2) superimposed onto the fractal frequency spectra, well-defined pulses with period around 100 s emerge hours to days before some of the eruptions of ballistics. An important conclusion of this study is that digital cameras can be potentially used in real-time volcano monitoring to detect warning signs of eruptions, as well as to better understand subsurface processes and track the changing conditions below volcanic craters. Our ongoing study also explores the correlation between the evolution of the spectral content of outgassing, infrasound data, and shallow seismicity. Girona, T., F. Costa, B. Taisne, B. Aggangan, and S. Ildefonso (2015), Fractal degassing from Erebus and Mayon volcanoes revealed by a new method to monitor H2O emission cycles, J. Geophys. Res. 120, 2988-3002, doi:10.1002/2014JB011797.
Europa's small impactor flux and seismic detection predictions
NASA Astrophysics Data System (ADS)
Tsuji, Daisuke; Teanby, Nicholas A.
2016-10-01
Europa is an attractive target for future lander missions due to its dynamic surface and potentially habitable sub-surface environment. Seismology has the potential to provide powerful new constraints on the internal structure using natural sources such as faults or meteorite impacts. Here we predict how many meteorite impacts are likely to be detected using a single seismic station on Europa to inform future mission planning efforts. To this end, we derive: (1) the current small impactor flux on Europa from Jupiter impact rate observations and models; (2) a crater diameter versus impactor energy scaling relation for icy moons by merging previous experiments and simulations; and (3) scaling relations for seismic signal amplitudes as a function of distance from the impact site for a given crater size, based on analogue explosive data obtained on Earth's ice sheets. Finally, seismic amplitudes are compared to predicted noise levels and seismometer performance to determine detection rates. We predict detection of 0.002-20 small local impacts per year based on P-waves travelling directly through the ice crust. Larger regional and global-scale impact events, detected through mantle-refracted waves, are predicted to be extremely rare (10-8-1 detections per year), so are unlikely to be detected by a short duration mission. Estimated ranges include uncertainties from internal seismic attenuation, impactor flux, and seismic amplitude scaling. Internal attenuation is the most significant unknown and produces extreme uncertainties in the mantle-refracted P-wave amplitudes. Our nominal best-guess attenuation model predicts 0.002-5 local direct P detections and 6 × 10-6-0.2 mantle-refracted detections per year. Given that a plausible Europa landed mission will only last around 30 days, we conclude that impacts should not be relied upon for a seismic exploration of Europa. For future seismic exploration, faulting due to stresses in the rigid outer ice shell is likely to be a much more viable mechanism for probing Europa's interior.
High pressure-elevated temperature x-ray micro-computed tomography for subsurface applications.
Iglauer, Stefan; Lebedev, Maxim
2018-06-01
Physical, chemical and mechanical pore-scale (i.e. micrometer-scale) mechanisms in rock are of key importance in many, if not all, subsurface processes. These processes are highly relevant in various applications, e.g. hydrocarbon recovery, CO 2 geo-sequestration, geophysical exploration, water production, geothermal energy production, or the prediction of the location of valuable hydrothermal deposits. Typical examples are multi-phase flow (e.g. oil and water) displacements driven by buoyancy, viscous or capillary forces, mineral-fluid interactions (e.g. mineral dissolution and/or precipitation over geological times), geo-mechanical rock behaviour (e.g. rock compaction during diagenesis) or fines migration during water production, which can dramatically reduce reservoir permeability (and thus reservoir performance). All above examples are 3D processes, and 2D experiments (as traditionally done for micro-scale investigations) will thus only provide qualitative information; for instance the percolation threshold is much lower in 3D than in 2D. However, with the advent of x-ray micro-computed tomography (μCT) - which is now routinely used - this limitation has been overcome, and such pore-scale processes can be observed in 3D at micrometer-scale. A serious complication is, however, the fact that in the subsurface high pressures and elevated temperatures (HPET) prevail, due to the hydrostatic and geothermal gradients imposed upon it. Such HPET-reservoir conditions significantly change the above mentioned physical and chemical processes, e.g. gas density is much higher at high pressure, which strongly affects buoyancy and wettability and thus gas distributions in the subsurface; or chemical reactions are significantly accelerated at increased temperature, strongly affecting fluid-rock interactions and thus diagenesis and deposition of valuable minerals. It is thus necessary to apply HPET conditions to the aforementioned μCT experiments, to be able to mimic subsurface conditions in a realistic way, and thus to obtain reliable results, which are vital input parameters required for building accurate larger-scale reservoir models which can predict the overall reservoir-scale (hectometer-scale) processes (e.g. oil production or diagenesis of a formation). We thus describe here the basic workflow of such HPET-μCT experiments, equipment requirements and apparatus design; and review the literature where such HPET-μCT experiments were used and which phenomena were investigated (these include: CO 2 geo-sequestration, oil recovery, gas hydrate formation, hydrothermal deposition/reactive flow). One aim of this paper is to give a guideline to users how to set-up a HPET-μCT experiment, and to provide a quick overview in terms of what is possible and what not, at least up to date. As a conclusion, HPET-μCT is a valuable tool when it comes to the investigation of subsurface micrometer-scaled processes, and we expect a rapidly expanding usage of HPET-μCT in subsurface engineering and the subsurface sciences. Copyright © 2018 Elsevier B.V. All rights reserved.
Composition and Formation of the "Paso Robles" Class Soils at Gusev Crater
NASA Technical Reports Server (NTRS)
Yen, A. S.; Morris, Richard V.; Gellert, R.; Clark, B. C.; Ming, Douglas W.; Klingelhoefer, G.; McCoy, T. J.; Schmidt, M. E.
2007-01-01
Light-toned, subsurface soil deposits have been excavated by the Mars Exploration Rover (MER) Spirit in six distinct locations along its traverse across the Columbia Hills of Gusev Crater. Samples at two of these sites have been analyzed in detail by the M ssbauer (MB) and Alpha Particle X-ray Spectrometers (APXS), providing information on iron mineralogy and elemental chemistry, respectively. These soils are referred to as "Paso Robles" class deposits.
Modeling the hydrogeophysical response of lake talik evolution
Minsley, Burke J.; Wellman, Tristan; Walvoord, Michelle Ann; Revil, Andre
2014-01-01
Geophysical methods provide valuable information about subsurface permafrost and its relation to dynamic hydrologic systems. Airborne electromagnetic data from interior Alaska are used to map the distribution of permafrost, geological features, surface water, and groundwater. To validate and gain further insight into these field datasets, we also explore the geophysical response to hydrologic simulations of permafrost evolution by implementing a physical property relationship that connects geology, temperature, and ice saturation to changes in electrical properties.
NASA Astrophysics Data System (ADS)
Hopp, L.; Ivanov, V. Y.
2010-12-01
There is still a debate in rainfall-runoff modeling over the advantage of using three-dimensional models based on partial differential equations describing variably saturated flow vs. models with simpler infiltration and flow routing algorithms. Fully explicit 3D models are computationally demanding but allow the representation of spatially complex domains, heterogeneous soils, conditions of ponded infiltration, and solute transport, among others. Models with simpler infiltration and flow routing algorithms provide faster run times and are likely to be more versatile in the treatment of extreme conditions such as soil drying but suffer from underlying assumptions and ad-hoc parameterizations. In this numerical study, we explore the question of whether these two model strategies are competing approaches or if they complement each other. As a 3D physics-based model we use HYDRUS-3D, a finite element model that numerically solves the Richards equation for variably-saturated water flow. As an example of a simpler model, we use tRIBS+VEGGIE that solves the 1D Richards equation for vertical flow and applies Dupuit-Forchheimer approximation for saturated lateral exchange and gravity-driven flow for unsaturated lateral exchange. The flow can be routed using either the D-8 (steepest descent) or D-infinity flow routing algorithms. We study lateral subsurface stormflow and moisture dynamics at the hillslope-scale, using a zero-order basin topography, as a function of storm size, antecedent moisture conditions and slope angle. The domain and soil characteristics are representative of a forested hillslope with conductive soils in a humid environment, where the major runoff generating process is lateral subsurface stormflow. We compare spatially integrated lateral subsurface flow at the downslope boundary as well as spatial patterns of soil moisture. We illustrate situations where both model approaches perform equally well and identify conditions under which the application of a fully-explicit 3D model may be required for a realistic description of the hydrologic response.
NASA Astrophysics Data System (ADS)
Biswas, A.
2016-12-01
A Very Fast Simulated Annealing (VFSA) global optimization code is produced for elucidation of magnetic data over various idealized bodies for mineral investigation. The way of uncertainty in the interpretation is additionally analyzed in the present study. This strategy fits the watched information exceptionally well by some straightforward geometrically body in the confined class of Sphere, horizontal cylinder, thin dyke and sheet type models. The consequences of VFSA improvement uncover that different parameters demonstrate various identical arrangements when state of the objective body is not known and shape factor "q" is additionally advanced together with other model parameters. The study uncovers that amplitude coefficient k is firmly subject to shape factor. This demonstrates there is multi-model sort vulnerability between these two model parameters. Be that as it may, the assessed estimations of shape factor from different VFSA runs without a doubt show whether the subsurface structure is sphere, horizontal cylinder, and dyke or sheet type structure. Thus, the precise shape element (2.5 for sphere, 2.0 for horizontal cylinder and 1.0 for dyke and sheet) is settled and improvement procedure is rehashed. Next, altering the shape factor and investigation of uncertainty as well as scatter-plots demonstrates a very much characterized uni-model characteristics. The mean model figured in the wake of settling the shape factor gives the highest dependable results. Inversion of noise-free and noisy synthetic data information and additionally field information shows the adequacy of the methodology. The procedure has been carefully and practically connected to five genuine field cases with the nearness of mineralized bodies covered at various profundities in the subsurface and complex geological settings. The method can be to a great degree appropriate for mineral investigation, where the attractive information is seen because of mineral body established in the shallow/deeper subsurface and the calculation time for the entire procedure are short. Keywords: Magnetic anomaly, idealized body, uncertainty, VFSA, multiple structure, ore exploration.
Hydrothermal and Diagenetic Mineralization on Mars
NASA Astrophysics Data System (ADS)
Ehlmann, B. L.; Quinn, D. P.
2015-12-01
Predicted by geophysical modeling, the mineraolgic record of early Mars groundwater has only recently been discovered. First, rover exploration in sedimentary basins reveals diagenesis. At Meridiani, sandstone porosity is occluded by precipitation of secondary sulfates, hematite, and silica. Multiple alteration episodes are indicated by crystal vugs, disruption of preexisting textures by hematite concretions, and grain coatings (e.g. McLennan et al., 2005). At Gale crater, raised ridges in mudstones, interpreted to be early diagenetic features, are crossed by later-emplaced hydrated calcium sulfate veins (e.g. Grotzinger et al., 2014). Waters in Gale were likely circumneutral while jarosite mineralogy at Meridiani implies acidic waters. Second, systems of raised ridges at 100-m scale are observed from orbit in multiple Martian sedimentary rock units. An outstanding example is sulfate-bearing sediments exhumed at the northern margin of the Syrtis Major lavas (e.g. Quinn & Ehlmann, 2015). Polygonal and with no clearly preferred orientation, the ridges rise 5-30 m above the surrounding terrain. Parallel light-toned grooves with dark interiors (indicative of isopachous fills) and jarosite in ridge mineralogy point to mineralization by acidic waters. Third, some mineral assemblages observed from orbit represent the products of subsurface aqueous alteration at elevated temperatures (Ehlmann et al., 2011). These are globally distributed, exposed in scarps and by impact cratering. Mineral assemblages variously include (a) serpentine and carbonate; (b) prehnite and chlorite, and (c) zeolites. Collectively, these datasets indicate that groundwaters were spatially widespread on ancient Mars, contributing to the sustenance of lakes and to the alteration of bedrock to >1 km depths. While the Martian surface may have always been relatively inhospitable, a warmer, wetter subsurface provided a long-term potentially habitable environment. Key outstanding questions remaining include groundwater sources, their composition and compositional variability, and subsurface transport distances. Continued exploration of Mars, combined with studies of analogous bedrock mineralization on Earth, will advance understanding of environments with liquid water during Mars' first billion years.
Integrated study of Mississippian Lodgepole Waulsortian Mounds, Williston Basin, USA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kupecz, J.A.; Arestad, J.F.; Blott, J. E.
1996-06-01
Waulsortian-type carbonate buildups in the Mississippian Lodgepole Formation, Williston Basin, constitute prolific oil reservoirs. Since the initial discovery in 1993, five fields have been discovered: Dickinson Field (Lodgepole pool); Eland Field; Duck Creek Field, Versippi Field; and Hiline Field. Cumulative production (October, 1995) is 2.32 million barrels of oil and 1.34 BCF gas, with only 69,000 barrels of water. Oil gravity ranges from 41.4 to 45.3 API. Both subsurface cores from these fields as well as outcrop (Bridget Range, Big Snowy and Little Belt Mountains, Montana) are composed of facies representing deposition in mound, reworked mound, distal reworked mound, proximalmore » flank, distal flank, and intermound settings. Porosity values within the mound and reworked mound facies are up to 15%; permeability values (in places fracture-enhanced) are up to tens of Darcies. Geometries of the mounds are variable. Mound thicknesses in the subsurface range from approximately 130-325 feet (40-100 meters); in outcrop thicknesses range from less than 30 ft (9 m) to over 250 ft (76 m). Subsurface areal dimensions range from approximately 0.5 x 1.0 mi (0.8 x 1.6 km) to 3.5 x 5.5 mi (5.6 x 8.8 km). Integration of seismic data with core and well-log models sheds light on the exploration for Lodgepole mounds. Seismic modeling of productive mounds in the Dickinson and Eland fields identifies characteristics useful for exploration, such as local thickening of the Lodgepole to Three Forks interval. These observations are confirmed in reprocessed seismic data across Eland field and on regional seismic data. Importantly, amplitude versus offset modeling identifies problems with directly detecting and identifying porosity within these features with amplitude analyses. In contrast, multicomponent seismic data has great potential for imaging these features and quantifying porous zones within them.« less
Magnetically-driven oceans on Jovian satellites
NASA Astrophysics Data System (ADS)
Gissinger, C.; Petitdemange, L.
2017-12-01
During the last decade, data from Galileo space missions have added strong support for the existence of subsurface liquid oceans on several moons of Jupiter. For instance, it is now commonly accepted that an electrically conducting fluid beneath the icy crust of Europa's surface may explain the variations of the induced field measured near the satellite. These observations have raised many questions regarding the size and the salinity of such subsurface ocean, or how and why the water remains liquid. In addition, the hydrodynamics of such oceans is mostly unknown. These questions are of primary importance since Europa is often considered as a good candidate for the presence of life beyond the Earth. Here, we present the first numerical modeling of the rapidly-rotating magnetohydrodynamic (MHD) flow generated in Europa's interior: due to Jupiter's rotation with respect to Europa, we show that the Lorentz force induced by the time-varying Jovian magnetic field is able to generate an oceanic flow of a few km/h. Our results are understood in the framework of a simple theoretical model and we obtain a scaling law for the prediction of the mean oceanic velocity and the total heating generated inside the ocean of Europa. Finally, by comparing our simulations to Galileo observations, we make predictions on both the thickness and the electrical conductivity of the ocean of different Jovian's satellites.
Colangelo-Lillis, J; Eicken, H; Carpenter, S D; Deming, J W
2016-05-01
Cryopegs are sub-surface hypersaline brines at sub-zero temperatures within permafrost; their global extent and distribution are unknown. The permafrost barrier to surface and groundwater advection maintains these brines as semi-isolated systems over geological time. A cryopeg 7 m below ground near Barrow, Alaska, was sampled for geochemical and microbiological analysis. Sub-surface brines (in situtemperature of -6 °C, salinity of 115 ppt), and an associated sediment-infused ice wedge (melt salinity of 0.04 ppt) were sampled using sterile technique. Major ionic concentrations in the brine corresponded more closely to other (Siberian) cryopegs than to Standard seawater or the ice wedge. Ionic ratios and stable isotope analysis of water conformed to a marine or brackish origin with subsequent Rayleigh fractionation. The brine contained ∼1000× more bacteria than surrounding ice, relatively high viral numbers suggestive of infection and reproduction, and an unusually high ratio of particulate to dissolved extracellular polysaccharide substances. A viral metagenome indicated a high frequency of temperate viruses and limited viral diversity compared to surface environments, with closest similarity to low water activity environments. Interpretations of the results underscore the isolation of these underexplored microbial ecosystems from past and present oceans. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Groundwater mixing at fracture intersections triggers massive iron-rich microbial mats
NASA Astrophysics Data System (ADS)
Bochet, O.; Le Borgne, T.; Bethencourt, L.; Aquilina, L.; Dufresne, A.; Pédrot, M.; Farasin, J.; Abbott, B. W.; Labasque, T.; Chatton, E.; Lavenant, N.; Petton, C.
2017-12-01
While most freshwater on Earth resides and flows in groundwater systems, these deep subsurface environments are often assumed to have little biogeochemical activity compared to surface environments. Here we report a massive microbial mat of iron-oxidizing bacteria, flourishing 60 meters below the surface, far below the mixing zone where most microbial activity is believed to occur. The abundance of microtubular structures in the mat hinted at the prevalence of of Leptothrix ochracea, but metagenomic analysis revealed a diverse consortium of iron-oxidizing bacteria dominated by unknown members of the Gallionellaceae family. This deep biogeochemical hot spot formed at the intersection of bedrock fractures, which maintain redox gradients by mixing water with different residence times and chemical compositions. Using measured fracture properties and hydrological conditions we developed a quantitative model to simulate the reactive zone where such deep hot spots could occur. While seasonal fluctuations are generally thought to decrease with depth, we found that meter-scale changes in water table level moved the depth of the reactive zone hundreds of meters because the microaerophilic threshold for ironoxidizers is highly sensitive to changes in mixing rates at fracture intersections. These results demonstrate that dynamic microbial communities can be sustained deep below the surface in bedrock fractures. Given the ubiquity of fractures at multiple scales in Earth's subsurface, such deep hot spots may strongly influence global biogeochemical cycles.
Arai, Yuji; Moran, P B; Honeyman, B D; Davis, J A
2007-06-01
Np(V) surface speciation on hematite surfaces at pH 7-9 under pC2 = 10(-3.45) atm was investigated using X-ray absorption spectroscopy (XAS). In situ XAS analyses suggest that bis-carbonato inner-sphere and tris-carbonato outer-sphere ternary surface species coexist at the hematite-water interface at pH 7-8.8, and the fraction of outer-sphere species gradually increases from 27 to 54% with increasing pH from 7 to 8.8. The results suggest that the heretofore unknown Np(V)-carbonato ternary surface species may be important in predicting the fate and transport of Np(V) in the subsurface environment down gradient of high-level nuclear waste respositories.
Efficient Learning Algorithms with Limited Information
ERIC Educational Resources Information Center
De, Anindya
2013-01-01
The thesis explores efficient learning algorithms in settings which are more restrictive than the PAC model of learning (Valiant) in one of the following two senses: (i) The learning algorithm has a very weak access to the unknown function, as in, it does not get labeled samples for the unknown function (ii) The error guarantee required from the…
Geochemical Influence on Microbial Communities at CO2-Leakage Analog Sites.
Ham, Baknoon; Choi, Byoung-Young; Chae, Gi-Tak; Kirk, Matthew F; Kwon, Man Jae
2017-01-01
Microorganisms influence the chemical and physical properties of subsurface environments and thus represent an important control on the fate and environmental impact of CO 2 that leaks into aquifers from deep storage reservoirs. How leakage will influence microbial populations over long time scales is largely unknown. This study uses natural analog sites to investigate the long-term impact of CO 2 leakage from underground storage sites on subsurface biogeochemistry. We considered two sites with elevated CO 2 levels (sample groups I and II) and one control site with low CO 2 content (group III). Samples from sites with elevated CO 2 had pH ranging from 6.2 to 4.5 and samples from the low-CO 2 control group had pH ranging from 7.3 to 6.2. Solute concentrations were relatively low for samples from the control group and group I but high for samples from group II, reflecting varying degrees of water-rock interaction. Microbial communities were analyzed through clone library and MiSeq sequencing. Each 16S rRNA analysis identified various bacteria, methane-producing archaea, and ammonia-oxidizing archaea. Both bacterial and archaeal diversities were low in groundwater with high CO 2 content and community compositions between the groups were also clearly different. In group II samples, sequences classified in groups capable of methanogenesis, metal reduction, and nitrate reduction had higher relative abundance in samples with relative high methane, iron, and manganese concentrations and low nitrate levels. Sequences close to Comamonadaceae were abundant in group I, while the taxa related to methanogens, Nitrospirae , and Anaerolineaceae were predominant in group II. Our findings provide insight into subsurface biogeochemical reactions that influence the carbon budget of the system including carbon fixation, carbon trapping, and CO 2 conversion to methane. The results also suggest that monitoring groundwater microbial community can be a potential tool for tracking CO 2 leakage from geologic storage sites.
NASA Astrophysics Data System (ADS)
Meng, Zhaohai; Li, Fengting; Xu, Xuechun; Huang, Danian; Zhang, Dailei
2017-02-01
The subsurface three-dimensional (3D) model of density distribution is obtained by solving an under-determined linear equation that is established by gravity data. Here, we describe a new fast gravity inversion method to recover a 3D density model from gravity data. The subsurface will be divided into a large number of rectangular blocks, each with an unknown constant density. The gravity inversion method introduces a stabiliser model norm with a depth weighting function to produce smooth models. The depth weighting function is combined with the model norm to counteract the skin effect of the gravity potential field. As the numbers of density model parameters is NZ (the number of layers in the vertical subsurface domain) times greater than the observed gravity data parameters, the inverse density parameter is larger than the observed gravity data parameters. Solving the full set of gravity inversion equations is very time-consuming, and applying a new algorithm to estimate gravity inversion can significantly reduce the number of iterations and the computational time. In this paper, a new symmetric successive over-relaxation (SSOR) iterative conjugate gradient (CG) method is shown to be an appropriate algorithm to solve this Tikhonov cost function (gravity inversion equation). The new, faster method is applied on Gaussian noise-contaminated synthetic data to demonstrate its suitability for 3D gravity inversion. To demonstrate the performance of the new algorithm on actual gravity data, we provide a case study that includes ground-based measurement of residual Bouguer gravity anomalies over the Humble salt dome near Houston, Gulf Coast Basin, off the shore of Louisiana. A 3D distribution of salt rock concentration is used to evaluate the inversion results recovered by the new SSOR iterative method. In the test model, the density values in the constructed model coincide with the known location and depth of the salt dome.
Geochemical Influence on Microbial Communities at CO2-Leakage Analog Sites
Ham, Baknoon; Choi, Byoung-Young; Chae, Gi-Tak; Kirk, Matthew F.; Kwon, Man Jae
2017-01-01
Microorganisms influence the chemical and physical properties of subsurface environments and thus represent an important control on the fate and environmental impact of CO2 that leaks into aquifers from deep storage reservoirs. How leakage will influence microbial populations over long time scales is largely unknown. This study uses natural analog sites to investigate the long-term impact of CO2 leakage from underground storage sites on subsurface biogeochemistry. We considered two sites with elevated CO2 levels (sample groups I and II) and one control site with low CO2 content (group III). Samples from sites with elevated CO2 had pH ranging from 6.2 to 4.5 and samples from the low-CO2 control group had pH ranging from 7.3 to 6.2. Solute concentrations were relatively low for samples from the control group and group I but high for samples from group II, reflecting varying degrees of water-rock interaction. Microbial communities were analyzed through clone library and MiSeq sequencing. Each 16S rRNA analysis identified various bacteria, methane-producing archaea, and ammonia-oxidizing archaea. Both bacterial and archaeal diversities were low in groundwater with high CO2 content and community compositions between the groups were also clearly different. In group II samples, sequences classified in groups capable of methanogenesis, metal reduction, and nitrate reduction had higher relative abundance in samples with relative high methane, iron, and manganese concentrations and low nitrate levels. Sequences close to Comamonadaceae were abundant in group I, while the taxa related to methanogens, Nitrospirae, and Anaerolineaceae were predominant in group II. Our findings provide insight into subsurface biogeochemical reactions that influence the carbon budget of the system including carbon fixation, carbon trapping, and CO2 conversion to methane. The results also suggest that monitoring groundwater microbial community can be a potential tool for tracking CO2 leakage from geologic storage sites. PMID:29170659
Delving into the Deep Biosphere
NASA Astrophysics Data System (ADS)
Grim, S. L.; Sogin, M. L.; Boetius, A.; Briggs, B. R.; Brazelton, W. J.; D'Hondt, S. L.; Edwards, K. J.; Fisk, M. R.; Gaidos, E.; Gralnick, J.; Hinrichs, K.; Lazar, C.; Lavalleur, H.; Lever, M. A.; Marteinsson, V.; Moser, D. P.; Orcutt, B.; Pedersen, K.; Popa, R.; Ramette, A.; Schrenk, M. O.; Sylvan, J. B.; Smith, A. R.; Teske, A.; Walsh, E. A.; Colwell, F. S.
2013-12-01
The Census of Deep Life organized an international survey of microbial community diversity in terrestrial and marine deep subsurface environments. Habitats included subsurface continental fractured rock aquifers, volcanic and metamorphic subseafloor sedimentary units from the open ocean, subsurface oxic and anoxic sediments and underlying basaltic oceanic crust, and their overlying water columns. Our survey employed high-throughput pyrosequencing of the hypervariable V4-V6 16S rRNA gene of bacteria and archaea. We detected 1292 bacterial genera representing 40 phyla, and 99 archaeal genera from 30 phyla. Of these, a core group of thirteen bacterial genera occurred in every environment. A genus of the South African Goldmine Group (Euryarchaeota) was always present whenever archaea were detected. Members of the rare biosphere in one system often represented highly abundant taxa in other environments. Dispersal could account for this observation but mechanisms of transport remain elusive. Ralstonia (Betaproteobacteria) represented highly abundant taxa in marine communities and terrestrial rock, but generally low abundance organisms in groundwater. Some of these taxa could represent sample contamination, and their extensive distribution in several systems requires further assessment. An unknown Sphingobacteriales (Bacteroidetes) genus, Stenotrophomonas (Gammaproteobacteria), Acidovorax and Aquabacterium (both Betaproteobacteria), a Chlorobiales genus, and a TM7 genus were in the core group as well but more prevalent in terrestrial environments. Similarly, Bacillus (Firmicutes), a new cyanobacterial genus, Bradyrhizobium and Sphingomonas (both Alphaproteobacteria), a novel Acidobacteriaceae genus, and Variovorax (Betaproteobacteria) frequently occurred in marine systems but represented low abundance taxa in other environments. Communities tended to cluster by biome and material, and many genera were unique to systems. For example, certain Rhizobiales (Alphaproteobacteria) only occurred in groundwater, and select Firmicutes and actinobacterial taxa were specific to rock environments. We continue to investigate the ecological and physiological context of these organisms. By combining deep sequencing of microbial communities and geochemical and physical evaluations of their environments, we bring to light the diversity and scope of the deep biosphere and insight into the factors that determine the nature of these communities.
Reactivation of Deep Subsurface Microbial Community in Response to Methane or Methanol Amendment
Rajala, Pauliina; Bomberg, Malin
2017-01-01
Microbial communities in deep subsurface environments comprise a large portion of Earth’s biomass, but the microbial activity in these habitats is largely unknown. Here, we studied how microorganisms from two isolated groundwater fractures at 180 and 500 m depths of the Outokumpu Deep Drillhole (Finland) responded to methane or methanol amendment, in the presence or absence of sulfate as an additional electron acceptor. Methane is a plausible intermediate in the deep subsurface carbon cycle, and electron acceptors such as sulfate are critical components for oxidation processes. In fact, the majority of the available carbon in the Outokumpu deep biosphere is present as methane. Methanol is an intermediate of methane oxidation, but may also be produced through degradation of organic matter. The fracture fluid samples were incubated in vitro with methane or methanol in the presence or absence of sulfate as electron acceptor. The metabolic response of microbial communities was measured by staining the microbial cells with fluorescent redox sensitive dye combined with flow cytometry, and DNA or cDNA-derived amplicon sequencing. The microbial community of the fracture zone at the 180 m depth was originally considerably more respiratory active and 10-fold more numerous (105 cells ml-1 at 180 m depth and 104 cells ml-1 at 500 m depth) than the community of the fracture zone at the 500 m. However, the dormant microbial community at the 500 m depth rapidly reactivated their transcription and respiration systems in the presence of methane or methanol, whereas in the shallower fracture zone only a small sub-population was able to utilize the newly available carbon source. In addition, the composition of substrate activated microbial communities differed at both depths from original microbial communities. The results demonstrate that OTUs representing minor groups of the total microbial communities play an important role when microbial communities face changes in environmental conditions. PMID:28367144
NASA Astrophysics Data System (ADS)
Jones, M. E.; Janot, N.; Bargar, J.; Fendorf, S. E.
2013-12-01
Previous studies have illustrated the importance of Naturally Reduced Zones (NRZs) within saturated sediments for the cycling of metals and redox sensitive contaminants. NRZs can provide a source of reducing equivalents such as reduced organic compounds or hydrogen to stimulate subsurface microbial communities. These NRZ's are typically characterized by low permeability and elevated concentrations of organic carbon and trace metals. However, both the formation of NRZs and their importance to the overall aquifer carbon remineralization is not fully understood. Within NRZs the hydrolysis of particulate organic carbon (POC) and subsequent fermentation of dissolved organic carbon (DOC) to form low molecular weight dissolved organic carbon (LMW-DOC) provides electron donors necessary for the respiration of Fe, S, and in the case of the Rifle aquifer, U. Rates of POC hydrolysis and subsequent fermentation have been poorly constrained and rates in excess and deficit to the rates of subsurface anaerobic respiratory processes have been suggested. In this study, we simulate the development of NRZ sediments in diffusion-limited aggregates to investigate the physical and chemical conditions required for NRZ formation. Effects of sediment porosity and POC loading on Fe, S, and U cycling on molecular and nanoscale are investigated with synchrotron-based Near Edge X-ray Absorption Fine Structure Spectroscopy (NEXAFS). Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) and Fourier Transform Infrared spectroscopy (FTIR) are used to characterize the transformations in POC and DOC. Sediment aggregates are inoculated with the natural microbial biota from the Rifle aquifer and population dynamics are monitored by 16S RNA analysis. Overall, establishment of low permeability NRZs within the aquifer stimulate microbial respiration beyond the diffusion-limited zones and can limit the transport of U through a contaminated aquifer. However, the long-term stability of NRZs and the co-located U is unknown and requires further study.
NASA Astrophysics Data System (ADS)
Woodward, Simon J. R.; Wöhling, Thomas; Stenger, Roland
2016-03-01
Understanding the hydrological and hydrogeochemical responses of hillslopes and other small scale groundwater systems requires mapping the velocity and direction of groundwater flow relative to the controlling subsurface material features. Since point observations of subsurface materials and groundwater head are often the basis for modelling these complex, dynamic, three-dimensional systems, considerable uncertainties are inevitable, but are rarely assessed. This study explored whether piezometric head data measured at high spatial and temporal resolution over six years at a hillslope research site provided sufficient information to determine the flow paths that transfer nitrate leached from the soil zone through the shallow saturated zone into a nearby wetland and stream. Transient groundwater flow paths were modelled using MODFLOW and MODPATH, with spatial patterns of hydraulic conductivity in the three material layers at the site being estimated by regularised pilot point calibration using PEST, constrained by slug test estimates of saturated hydraulic conductivity at several locations. Subsequent Null Space Monte Carlo uncertainty analysis showed that this data was not sufficient to definitively determine the spatial pattern of hydraulic conductivity at the site, although modelled water table dynamics matched the measured heads with acceptable accuracy in space and time. Particle tracking analysis predicted that the saturated flow direction was similar throughout the year as the water table rose and fell, but was not aligned with either the ground surface or subsurface material contours; indeed the subsurface material layers, having relatively similar hydraulic properties, appeared to have little effect on saturated water flow at the site. Flow path uncertainty analysis showed that, while accurate flow path direction or velocity could not be determined on the basis of the available head and slug test data alone, the origin of well water samples relative to the material layers and site contour could still be broadly deduced. This study highlights both the challenge of collecting suitably informative field data with which to characterise subsurface hydrology, and the power of modern calibration and uncertainty modelling techniques to assess flow path uncertainty in hillslopes and other small scale systems.
Characterizing variable biogeochemical changes during the treatment of produced oilfield waste.
Hildenbrand, Zacariah L; Santos, Inês C; Liden, Tiffany; Carlton, Doug D; Varona-Torres, Emmanuel; Martin, Misty S; Reyes, Michelle L; Mulla, Safwan R; Schug, Kevin A
2018-09-01
At the forefront of the discussions about climate change and energy independence has been the process of hydraulic fracturing, which utilizes large amounts of water, proppants, and chemical additives to stimulate sequestered hydrocarbons from impermeable subsurface strata. This process also produces large amounts of heterogeneous flowback and formation waters, the subsurface disposal of which has most recently been linked to the induction of anthropogenic earthquakes. As such, the management of these waste streams has provided a newfound impetus to explore recycling alternatives to reduce the reliance on subsurface disposal and fresh water resources. However, the biogeochemical characteristics of produced oilfield waste render its recycling and reutilization for production well stimulation a substantial challenge. Here we present a comprehensive analysis of produced waste from the Eagle Ford shale region before, during, and after treatment through adjustable separation, flocculation, and disinfection technologies. The collection of bulk measurements revealed significant reductions in suspended and dissolved constituents that could otherwise preclude untreated produced water from being utilized for production well stimulation. Additionally, a significant step-wise reduction in pertinent scaling and well-fouling elements was observed, in conjunction with notable fluctuations in the microbiomes of highly variable produced waters. Collectively, these data provide insight into the efficacies of available water treatment modalities within the shale energy sector, which is currently challenged with improving the environmental stewardship of produced water management. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Catchings, R.
2017-12-01
P- and S-wave propagation differ in varying materials in the Earth's crust. As a result, combined measurements of P- and S-wave data can be used to infer properties of the shallow crust, including bulk composition, fluid saturation, faulting and fracturing, seismic velocities, reflectivity, and general structures. Ratios of P- to S-wave velocities and Poisson's ratio, which can be derived from the P- and S-wave data, can be particularly diagnostic of subsurface materials and their physical state. In field studies, S-wave data can be obtained directly with S-wave sources or from surface waves associated with P-wave sources. P- and S-wave data can be processed using reflection, refraction, and surface-wave-analysis methods. With the combined data, unconsolidated sediments, consolidated sediments, and rocks can be differentiated on the basis of seismic velocities and their ratios, as can saturated versus unsaturated sediments. We summarize studies where we have used combined P- and S-wave measurements to reliably map the top of ground water, prospect for minerals, locate subsurface faults, locate basement interfaces, determine basin shapes, and measure shear-wave velocities (with calculated Vs30), and other features of the crust that are important for hazards, engineering, and exploration purposes. When compared directly, we find that body waves provide more accurate measures than surface waves.
NASA Astrophysics Data System (ADS)
Patterson, Gerald Wesley; Blankenship, Don; Moussessian, Alina; Plaut, Jeffrey; Gim, Yonggyu; Schroeder, Dustin; Soderlund, Krista; Grima, Cyril; Chapin, Elaine
2015-11-01
The science goal of the Europa multiple flyby mission is to “explore Europa to investigate its habitability”. One of the primary instruments selected for the scientific payload is a multi-frequency, multi-channel ice penetrating radar system. This “Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON)” would revolutionize our understanding of Europa’s ice shell by providing the first direct measurements of its surface character and subsurface structure. REASON will address key questions regarding Europa’s habitability, including the existence of any liquid water, through the innovative use of radar sounding, altimetry, reflectometry, and plasma/particles analyses. These investigations require a dual-frequency radar (HF and VHF frequencies) instrument with simultaneous shallow and deep sounding that is designed for performance robustness in the challenging environment of Europa. The flyby-centric mission configuration is an opportunity to collect and transmit minimally processed data back to Earth and exploit advanced processing approaches developed for terrestrial airborne data sets. The observation and characterization of subsurface features beneath Europa’s chaotic surface requires discriminating abundant surface clutter from a relatively weak subsurface signal. Finally, the mission plan also includes using REASON as a nadir altimeter capable of measuring tides to test ice shell and ocean hypotheses as well as characterizing roughness across the surface statistically to identify potential follow-on landing sites. We will present a variety of measurement concepts for addressing these challenges.
NASA Astrophysics Data System (ADS)
Moussessian, A.; Blankenship, D. D.; Plaut, J. J.; Patterson, G. W.; Gim, Y.; Schroeder, D. M.; Soderlund, K. M.; Grima, C.; Young, D. A.; Chapin, E.
2015-12-01
The science goal of the Europa multiple flyby mission is to "explore Europa to investigate its habitability". One of the primary instruments selected for the scientific payload is a multi-frequency, multi-channel ice penetrating radar system. This "Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON)" would revolutionize our understanding of Europa's ice shell by providing the first direct measurements of its surface character and subsurface structure. REASON addresses key questions regarding Europa's habitability, including the existence of any liquid water, through the innovative use of radar sounding, altimetry, reflectometry, and plasma/particles analyses. These investigations require a dual-frequency radar (HF and VHF frequencies) instrument with concurrent shallow and deep sounding that is designed for performance robustness in the challenging environment of Europa. The flyby-centric mission configuration is an opportunity to collect and transmit minimally processed data back to Earth and exploit advanced processing approaches developed for terrestrial airborne data sets. The observation and characterization of subsurface features beneath Europa's chaotic surface require discriminating abundant surface clutter from a relatively weak subsurface signal. Finally, the mission plan also includes using REASON as a nadir altimeter capable of measuring tides to test ice shell and ocean hypotheses as well as characterizing roughness across the surface statistically to identify potential follow-on landing sites. We will present a variety of measurement concepts for addressing these challenges.
NASA Astrophysics Data System (ADS)
Arakawa, M.; Wada, K.; Saiki, T.; Kadono, T.; Takagi, Y.; Shirai, K.; Okamoto, C.; Yano, H.; Hayakawa, M.; Nakazawa, S.; Hirata, N.; Kobayashi, M.; Michel, P.; Jutzi, M.; Imamura, H.; Ogawa, K.; Sakatani, N.; Iijima, Y.; Honda, R.; Ishibashi, K.; Hayakawa, H.; Sawada, H.
2017-07-01
The Small Carry-on Impactor (SCI) equipped on Hayabusa2 was developed to produce an artificial impact crater on the primitive Near-Earth Asteroid (NEA) 162173 Ryugu (Ryugu) in order to explore the asteroid subsurface material unaffected by space weathering and thermal alteration by solar radiation. An exposed fresh surface by the impactor and/or the ejecta deposit excavated from the crater will be observed by remote sensing instruments, and a subsurface fresh sample of the asteroid will be collected there. The SCI impact experiment will be observed by a Deployable CAMera 3-D (DCAM3-D) at a distance of ˜1 km from the impact point, and the time evolution of the ejecta curtain will be observed by this camera to confirm the impact point on the asteroid surface. As a result of the observation of the ejecta curtain by DCAM3-D and the crater morphology by onboard cameras, the subsurface structure and the physical properties of the constituting materials will be derived from crater scaling laws. Moreover, the SCI experiment on Ryugu gives us a precious opportunity to clarify effects of microgravity on the cratering process and to validate numerical simulations and models of the cratering process.
The Development of A Chip-Scale Spectrometer for In Situ Characterization of Solar System Surfaces
NASA Astrophysics Data System (ADS)
Chanover, Nancy J.; Voelz, David; Cho, Sang-Yeon; Pelzman, Charles
2017-10-01
We discuss the development of a plasmonic spectrometer for in situ characterization of solar system surface and subsurface environments. The two goals of this project are to (1) quantitatively demonstrate that a plasmonic spectrometer can be used to rapidly acquire high signal-to-noise spectra between 0.5 - 1.0 microns at a spectral resolution suitable for unambiguous detection of spectral features indicative of volatiles and characteristic surface mineralogies, and (2) demonstrate that this class of spectrometer can be used in conjunction with optical fibers to access subsurface materials and vertically map the geochemistry and mineralogy of subsurface layers, thereby demonstrating that a plasmonic spectrometer is feasible in a low-mass, low-power, compact configuration. Our prototype spectrometer is comprised of a broadband lamp/source, a fiber optic system to illuminate the sample surface and collect the reflected light, a mosaic filter element based on plasmon resonance, and a focal plane array (FPA) detector. Our work thus far has been divided into two primary areas: (i) the development of the plasmon filter element and (ii) the construction of a testbed to explore the source, fiber system and focal plane array components of the system. We discuss our preliminary design studies of the plasmonic nanostructure prototypes to optimize the full-width half-maximum of the filter, and our fiber illumination and signal collection system.
The global distribution of Martian permafrost
NASA Technical Reports Server (NTRS)
Paige, David A.
1991-01-01
Accurately determining the present global distribution of Martian ground ice will be an important step towards understanding the evolution of the Martian surface and atmosphere, and could greatly facilitate human and robotic exploration of the planet. The quantitative Mars permafrost studies demonstrated the potential importance of a number of factors determining the past and present distribution of subsurface ice on Mars, but have not considered the issue of regional variability. To consider the distribution of Mars permafrost in greater detail a new thermal model was developed that can calculate Martian surface and subsurface temperatures as a function of time-of-day and season. The results indicate that the distribution of Martian permafrost is highly sensitive to the bulk thermal properties of the overlying soil. Viking IRTM observations of diurnal surface temperature variations show that the bulk thermal properties of midlatitude surface materials exhibit a high degree of regional inhomogeneity. In general, the results show that the global distribution of permafrost is at least as sensitive to the thermal properties of the overlying surface material as it is to variations in surface isolation due to large scale variations in Mars' orbital and axial elements. In particular, they imply that subsurface ice may exist just a few centimeters below the surface in regions of low thermal inertia and high albedo, which are widespread at latitudes ranging from the equator to +60 degrees latitude.
Conference Report: Biosignature Preservation and Detection in Mars Analog Environments.
Hays, Lindsay; Beaty, David
2017-01-01
The Conference on Biosignature Preservation and Detection in Mars Analog Environments held in May 2016 brought together scientists to discuss microbial biosignatures in Mars analog habitable environments. Five analog environments were discussed: (1) hydrothermal spring systems, (2) subaqueous environments, (3) subaerial environments, (4) subsurface environments, and (5) iron-rich systems. This paper details the major messages that resulted from the discussions and will be followed by a review paper that adds significant detail from the published literature and interpretations from the writing committee of the workshop for future research and application to astrobiological exploration missions. Key Words: Biosignature preservation-Biosignature detection-Mars analog environments-Conference report-Astrobiological exploration. Astrobiology 17, 1-2.
Resource Prospector: An Update on the Lunar Volatiles Prospecting and ISRU Demonstration Mission
NASA Technical Reports Server (NTRS)
Colaprete, A.; Elphic, R.; Andrews, D.; Trimble, J.; Bluethmann, B.; Quinn, J.; Chavers, G.
2016-01-01
Over the last two decades a wealth of new observations of the moon have demonstrated a lunar water system dramatically more complex and rich than was deduced following the Apollo era. Lunar water, and other volatiles, have the potential to be a valuable or enabling resource for future exploration. The NASA Human Exploration and Operations Mission Directorate (HEOMD) have selected a lunar volatiles prospecting mission for a concept study and potential flight in CY2021. The mission includes a rover-borne payload that (1) can locate surface and near-subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith, and (3) demonstrate the form, extractability and usefulness of the materials.
Resource Prospector: An Update on the Lunar Volatiles Prospecting and ISRU Demonstration Mission
NASA Technical Reports Server (NTRS)
Colaprete, A.; Elphic, R.; Andrews, D.; Trimble, J.; Bluethmann, B.; Quinn, J.; Chavers, G.
2017-01-01
Over the last two decades a wealth of new observations of the moon have demonstrated a lunar water system dramatically more complex and rich than was deduced following the Apollo era. Lunar water, and other volatiles, have the potential to be a valuable or enabling resource for future exploration. The NASA Human Exploration and Operations Mission Directorate (HEOMD) have selected a lunar volatiles prospecting mission for a concept study and potential flight in CY2021. The mission includes a rover-borne payload that (1) can locate surface and near-subsurface volatiles, (2) excavate and analyze samples of the volatile- bearing regolith, and (3) demonstrate the form, extractability and usefulness of the materials.
Chaotic Traversal (CHAT): Very Large Graphs Traversal Using Chaotic Dynamics
NASA Astrophysics Data System (ADS)
Changaival, Boonyarit; Rosalie, Martin; Danoy, Grégoire; Lavangnananda, Kittichai; Bouvry, Pascal
2017-12-01
Graph Traversal algorithms can find their applications in various fields such as routing problems, natural language processing or even database querying. The exploration can be considered as a first stepping stone into knowledge extraction from the graph which is now a popular topic. Classical solutions such as Breadth First Search (BFS) and Depth First Search (DFS) require huge amounts of memory for exploring very large graphs. In this research, we present a novel memoryless graph traversal algorithm, Chaotic Traversal (CHAT) which integrates chaotic dynamics to traverse large unknown graphs via the Lozi map and the Rössler system. To compare various dynamics effects on our algorithm, we present an original way to perform the exploration of a parameter space using a bifurcation diagram with respect to the topological structure of attractors. The resulting algorithm is an efficient and nonresource demanding algorithm, and is therefore very suitable for partial traversal of very large and/or unknown environment graphs. CHAT performance using Lozi map is proven superior than the, commonly known, Random Walk, in terms of number of nodes visited (coverage percentage) and computation time where the environment is unknown and memory usage is restricted.
Zhdanov,; Michael, S [Salt Lake City, UT
2008-01-29
Mineral exploration needs a reliable method to distinguish between uneconomic mineral deposits and economic mineralization. A method and system includes a geophysical technique for subsurface material characterization, mineral exploration and mineral discrimination. The technique introduced in this invention detects induced polarization effects in electromagnetic data and uses remote geophysical observations to determine the parameters of an effective conductivity relaxation model using a composite analytical multi-phase model of the rock formations. The conductivity relaxation model and analytical model can be used to determine parameters related by analytical expressions to the physical characteristics of the microstructure of the rocks and minerals. These parameters are ultimately used for the discrimination of different components in underground formations, and in this way provide an ability to distinguish between uneconomic mineral deposits and zones of economic mineralization using geophysical remote sensing technology.
Need for new sensors to map lithologic units
Rowan, Lawrence C.; Barringer, Anthony R.
1980-01-01
One of the most important contributions that remote sensing can make to mineral energy explorations to provide data from satellites to augment regional geological mapping. Geologic maps, which show information on the subsurface, are the main basis for formulating models of resource genesis that guide exploration. However, conventional compilation procedures are time-consuming and therefore often slow the pace of exploration, especially in large, inaccessible areas. Landsat Multispectral Scanner (MSS) images have been applied to a wide variety of specific geological problems, including discrimination of lithologic and delineation of previously unrecognized tectonic features. However, these lithologic distinctions are based on brightness, spectral reflectance, and, less commonly, the morphology of the unit, which in the wavelength region of MSS images are only rarely diagnostic of specific mineralogical content. Limonite is the only lithological material that can be identified be analyzing MSS spectral radiance.
Exploration for fractured petroleum reservoirs using radar/Landsat merge combinations
NASA Technical Reports Server (NTRS)
Macdonald, H.; Waite, W.; Borengasser, M.; Tolman, D.; Elachi, C.
1981-01-01
Since fractures are commonly propagated upward and reflected at the earth's surface as subtle linears, detection of these surface features is extremely important in many phases of petroleum exploration and development. To document the usefulness of microwave analysis for petroleum exploration, the Arkansas part of the Arkoma basin is selected as a prime test site. The research plan involves comparing the aircraft microwave imagery and Landsat imagery in an area where significant subsurface borehole geophysical data are available. In the northern Arkoma basin, a positive correlation between the number of linears in a given area and production from cherty carbonate strata is found. In the southern part of the basin, little relationship is discernible between surface structure and gas production, and no correlation is found between gas productivity and linear proximity or linear density as determined from remote sensor data.
Recent faulting in western Nevada revealed by multi-scale seismic reflection
Frary, R.N.; Louie, J.N.; Stephenson, W.J.; Odum, J.K.; Kell, A.; Eisses, A.; Kent, G.M.; Driscoll, N.W.; Karlin, R.; Baskin, R.L.; Pullammanappallil, S.; Liberty, L.M.
2011-01-01
The main goal of this study is to compare different reflection methods used to image subsurface structure within different physical environments in western Nevada. With all the methods employed, the primary goal is fault imaging for structural information toward geothermal exploration and seismic hazard estimation. We use seismic CHIRP a swept-frequency marine acquisition system, weight drop an accelerated hammer source, and two different vibroseis systems to characterize fault structure. We focused our efforts in the Reno metropolitan area and the area within and surrounding Pyramid Lake in northern Nevada. These different methods have provided valuable constraints on the fault geometry and activity, as well as associated fluid movement. These are critical in evaluating the potential for large earthquakes in these areas, and geothermal exploration possibilities near these structures. ?? 2011 Society of Exploration Geophysicists.
Susan L. Brantley; William H. McDowell; William E. Dietrich; Timothy S. White; Praveen Kumar; Suzanne P. Anderson; Jon Chorover; Kathleen Ann Lohse; Roger C. Bales; Daniel D. Richter; Gordon Grant; Jérôme Gaillardet
2017-01-01
The critical zone (CZ), the dynamic living skin of the Earth, extends from the top of the vegetative canopy through the soil and down to fresh bedrock and the bottom of the groundwater. All humans live in and depend on the CZ. This zone has three co-evolving surfaces: the top of the vegetative canopy, the ground surface, and a deep subsurface below which Earthâs...
1976-02-01
Pull f.31 -- - fissile bedded, Slakes 7 78.6’ t, 8.6’ -- 0 readily upon eposure to air. Ron 5.0’ R-C 5.0’ - 80 ~-- LAB CLASSIFICATION I S - ELEV...small ’A of i I glauconite and phosphite grains occasional seam & lense of stiff fat clay- P • fossil molds . 18.0 - 23.0 high of silty sand mixed in J
New Proposed Drilling at Surtsey Volcano, Iceland
NASA Astrophysics Data System (ADS)
Jackson, Marie D.
2014-12-01
Surtsey, an isolated oceanic island and a World Heritage Site of the United Nations Educational, Scientific and Cultural Organization, is a uniquely well-documented natural laboratory for investigating processes of rift zone volcanism, hydrothermal alteration of basaltic tephra, and biological colonization and succession in surface and subsurface pyroclastic deposits. Deposits from Surtsey's eruptions from 1963 to 1967 were first explored via a 181-meter hole drilled in 1979 by the U.S. Geological Survey and Icelandic Museum of Natural History.
Continued evolution of Europa subsurface exploration technologies
NASA Technical Reports Server (NTRS)
Carsey, F. D.; Hecht, M. H.; Lane, A. L.; Mogensen, C.; Zimmerman, W.
2002-01-01
The Galileo results convincingly indicate that Europa has a deep salty ocean covered by a shell of water ice a few tens of kilometers thick; this physical description gives rise to a host of thoughtful speculation as to the nature of the ocean, its seafloor, and the likelihood of microbial life within it. We argue that this situation points to the high desirability of a series of in-situ missions to examine the ice and, ultimately, the ocean.
A Study on the Surface and Subsurface Water Interaction Based on the Groundwater Recession Curve
NASA Astrophysics Data System (ADS)
Wang, S. T.; Chen, Y. W.; Chang, L. C.; Chiang, C. J.; Wang, Y. S.
2017-12-01
The interaction of surface to subsurface water is an important issue for groundwater resources assessment and management. The influences of surface water to groundwater are mainly through the rainfall recharge, river recharge and discharge and other boundary sources. During a drought period, the interaction of river and groundwater may be one of the main sources of groundwater level recession. Therefore, this study explores the interaction of surface water to groundwater via the groundwater recession. During drought periods, the pumping and river interaction together are the main mechanisms causing the recession of groundwater level. In principle, larger gradient of the recession curve indicates more groundwater discharge and it is an important characteristic of the groundwater system. In this study, to avoid time-consuming manual analysis, the Python programming language is used to develop a statistical analysis model for exploring the groundwater recession information. First, the slopes of the groundwater level hydrograph at every time step were computed for each well. Then, for each well, the represented slope to each groundwater level was defined as the slope with 90% exceedance probability. The relationship between the recession slope and the groundwater level can then be obtained. The developed model is applied to Choushui River Alluvial Fan. In most wells, the results show strong positive correlations between the groundwater levels and the absolute values of the recession slopes.
NASA Technical Reports Server (NTRS)
Doran, P. T.; Bar-Cohen, Y.; Fritsen, C.; Kenig, F.; McKay, C. P.; Murray, A.; Sherrit, S.
2003-01-01
Evidence for the presence of ice and fluids near the surface of Mars in both the distant and recent past is growing with each new mission to the Planet. One explanation for fluids forming springlike features on Mars is the discharge of subsurface brines. Brines offer potential refugia for extant Martian life, and near surface ice could preserve a record of past life on the planet. Proven techniques to get underground to sample these environments, and get below the disruptive influence of the surface oxidant and radiation regime, will be critical for future astrobiology missions to Mars. Our Astrobiology for Science and Technology for Exploring Planets (ASTEP) project has the goal to develop and test a novel ultrasonic corer in a Mars analog environment, the McMurdo Dry valleys, Antarctica, and to detect and describe life in a previously unstudied extreme ecosystem; Lake Vida (Fig. 1), an ice-sealed lake.
Prediction of hydrocarbon surface seepage potential using infiltrometer data
NASA Astrophysics Data System (ADS)
Connors, J. J.; Jackson, J. L.; Engle, R. A.; Connors, J. L.
2017-12-01
Environmental regulations addressing above-ground storage tank (AST) spill control activities typically require owners/operators to demonstrate that local soil permeability values are low enough to adequately contain released liquids while emergency-response procedures are conducted. Frequently, geotechnical borings and soil samples/analyses, and/or monitoring well slug-test analyses, are used to provide hydraulic conductivity data for the required calculations. While these techniques are useful in assessing hydrological characteristics of the subsurface, they do not always assess the uppermost surface soil layer, where the bulk of the containment can occur. This layer may have been subject to long-term permeability-reduction by activities such as compaction by vehicular and foot traffic, micro-coatings by hydrophobic pollutants, etc. This presentation explores the usefulness of dual-ring infiltrometers, both in field and bench-scale tests, to rapidly acquire actual hydraulic conductivity values of surficial soil layers, which can be much lower than subsurface values determined using more traditional downhole geotechnical and hydrogeological approaches.
Prospect of life on cold planets with low atmospheric pressures
NASA Astrophysics Data System (ADS)
Pavlov, A. A.; Vdovina, M.
2009-12-01
Stable liquid water on the surface of a planet has been viewed as the major requirement for a habitable planet. Such approach would exclude planets with low atmospheric pressures and cold mean surface temperatures (like present Mars) as potential candidates for extraterrestrial life search. Here we explore a possibility of the liquid water formation in the extremely shallow (1-3 cm) subsurface layer under low atmospheric pressures (0.1-10 mbar) and low average surface temperatures (~-30 C). During brief periods of simulated daylight warming the shallow subsurface ice sublimates, the water vapor can diffuse through the porous surface layer of soil temporarily producing supersaturated conditions in the soil, which lead to the formation of liquid films. We show that non-extremophile terrestrial microorganisms (Vibrio sp.) can grow and reproduce under such conditions. The necessary conditions for metabolism and reproduction are the sublimation of ground ice through a thin layer of soil and short episodes of warm temperatures at the planetary surface.
ELF-VLF communications through the Earth Project report for calendar year 1984, revision 1
NASA Astrophysics Data System (ADS)
Buettner, H. M.; Burker, G. J.; Didwall, E. M.; Holladay, G.; Lytle, R. J.
1985-08-01
We use computer models and experiments to explore the feasibility of communication between points underground and on the Earth's surface. Emphasis is placed on ELF-VLF electromagnetic propagation through the Earth; nominally, we investigated propagation in the 200 Hz-30 kHz frequency range. The computer modeling included calculations of the fields of a point electric or magnetic source in a homogeneous half space or a stratified earth. Initial results for an insulated antenna of finite length are also considered. The experiments involved through-the-Earth transmissions at two locations in Pennsylvania, both of which had large formations of limestone. Initial results indicate that information rates as high as kbits/s may be possible for subsurface depths of 300 m or less. Accuracy of these estimates depends on the electromagnetic propagation constant of the rock, the noise characteristics, and the modulation scheme. Although a nuisance for evaluating through-the-Earth propagation, the existence of subsurface metal conductors can improve the transmission character of the site.
ELF-VLF communications through-the-Earth
NASA Astrophysics Data System (ADS)
Buettner, H. M.; Burke, G. J.; Didwall, E. M.; Holladay, G.; Lytle, R. J.
1985-06-01
We use computer models and experiments to explore the feasibility of communication between points underground and on the Earth's surface. Emphasis is placed on ELF-VLF electromagnetic propagation through the Earth; nominally, we investigated propagation in the 200 Hz-30 kHz frequency range. The computer modeling included calculations of the fields of a point electric or magnetic source in a homogeneous half space or a stratified Earth. Initial results for an insulated antenna of finite length are also considered. The experiments involved through-the-Earth transmissions at two locations in Pennsylvania, both of which had large formations of limestone. Initial results indicate that information rates as high as kbits/s may be possible for subsurface depths of 300 m or less. Accuracy of these estimates depends on the electromagnetic propagation constants of the rock, the noise characteristics, and modulation scheme. Although a nuisance for evaluating through-the-Earth propagation, the existence of subsurface metal conductors can improve the transmission character of the site.
Detection and Characterization of Martian Volatile-Rich Reservoirs: The Netlander Approach
NASA Technical Reports Server (NTRS)
Banerdt, B.; Costard, F.; Berthelier, J. J.; Musmann, G.; Menvielle, M.; Lognonne, P.; Giardini, D.; Harri, A.-M.; Forget, F.
2000-01-01
Geological and theoretical modeling do indicate that, most probably, a significant part of the volatiles present in the past is presently stocked within the Martian subsurface as ground ice, and as clay minerals (water constitution). The detection of liquid water is of prime interest and should have deep implications in the understanding of the Martian hydrological cycle and also in exobiology. In the frame of the 2005 joint CNES-NASA mission to Mars, a set of 4 NETLANDERs developed by an European consortium is expected to be launched between 2005 and 2007. The geophysical package of each lander will include a geo-radar (GPR experiment), a magnetometer (MAGNET experiment), a seismometer (SEIS experiment) and a meteorological package (ATMIS experiment). The NETLANDER mission offers a unique opportunity to explore simultaneously the subsurface as well as deeper layers of the planetary interior on 4 different landing sites. The complementary contributions of all these geophysical soundings onboard the NETLANDER stations are presented.
Planetary Penetrators - The Vanguard for the Future Exploration of the Solar System
NASA Astrophysics Data System (ADS)
Collinson, G.; UK Penetrator Consortium
The UK Penetrator Consortium is aiming to develop spacecraft weighing <15 kg, rugged enough to survive impacts with planetary surfaces at speeds of up to 300 m/s and bury themselves a few meters into the surface. A full-scale trial is currently under preparation, leading towards a proposed Lunar mission, called “MoonLITE”, early next decade. Detectors for volatiles aboard MoonLITE will search for the presence of lunar water, whilst seismometers will measure the strength and frequency of moonquakes over the mission's nominal one-year period and probe the internal structure of the moon using simultaneous measurements of seismic waves that travel through the lunar interior. The consortium also has long term plans for more ambitious missions to Jupiter's moon of Europa, and Saturn's Moons of Titan and Enceladus as part of ESA's Cosmic Visions Programme. Key goals include the search for sub-surface oceans, the study of sub-surface geochemistry and seismic activity and the search for organic molecules of exobiological importance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ridgley, Jennie; Taylor, David J.; Huffman, Jr., A. Curtis
2000-06-08
Multichannel surface seismic reflection data recording is a standard industry tool used to examine various aspects of geology, especially the stratigraphic characteristics and structural style of sedimentary formations in the subsurface. With the help of the Jicarilla Apache Tribe and the Bureau of Indian Affairs we were able to locate over 800 kilometers (500 miles) of multichannel seismic reflection data located on the Jicarilla Apache Indian reservation. Most of the data was received in hardcopy form, but there were data sets where either the demultiplexed digital field data or the processed data accompanied the hardcopy sections. The seismic data wasmore » acquired from the mid 1960's to the early 1990's. The most extensive seismic coverage is in the southern part of the reservation, although there are two good surveys located on the northeastern and northwestern parts of the reservation. Most of the data show that subsurface formations are generally flat-lying in the southern and western portion of the reservation. There is, however, a significant amount of structure imaged on seismic data located over the San Juan Basin margin along the east-central and northern part of the reservation. Several west to east trending lines in these areas show a highly faulted monoclinal structure from the deep basin in the west up onto the basin margin to the east. Hydrocarbon exploration in flat lying formations is mostly stratigraphic in nature. Where there is structure in the subsurface and indications are that rocks have been folded, faulted, and fractured, exploration has concentrated on structural traps and porosity/permeability "sweet spots" caused by fracturing. Therefore, an understanding of the tectonics influencing the entire section is critical in understanding mechanisms for generating faults and fractures in the Cretaceous. It is apparent that much of the hydrocarbon production on the reservation is from fracture porosity in either source or reservoir sequences. Therefore it is important to understand the mechanism that controls the location and intensity of the fractures. A possible mechanism may be deep seated basement faulting that has been active through time. Examining the basement fault patterns in this part of the basin and their relation to fracture production may provide a model for new plays on the Jicarilla Indian Reservation. There are still parts of the reservation where the subsurface has not been imaged geophysically with either conventional two-dimensional or three-dimensional reflection seismic techniques. These methods, especially 3-D seismic, would provide the best data for mapping deep basement faulting. The authors would recommend that 3-D seismic be acquired along the Basin margin located along the eastern edge of the reservation and the results be used to construct detailed fault maps which may help to locate areas with the potential to contain highly fractured zones in the subsurface.« less
Probing Metabolic Activity of Deep Subseafloor Life with NanoSIMS
NASA Astrophysics Data System (ADS)
Morono, Y.; Terada, T.; Itoh, M.; Inagaki, F.
2014-12-01
There are very few natural environments where life is absent in the Earth's surface biosphere. However, uninhabitable region is expected to be exist in the deep subsurface biosphere, of which extent and constraining factor(s) have still remained largly unknown. Scientific ocean drilling have revealed that microbial communities in sediments are generally phylogenetically distinct from known spieces isolated from the Earth's surface biosphere, and hence metabolic functions of the deep subseafloor life remain unknown. In addition, activity of subseafloor microbial cells are thought to be extraordinally slow, as indicated by limited supply of neutrient and energy substrates. To understand the limits of the Earth's subseafloor biosphere and metabolic functions of microbial populations, detection and quantification of the deeply buried microbial cells in geological habitats are fundamentary important. Using newly developed cell separation techniques as well as an discriminative cell detection system, the current quantification limit of sedimentary microbial cells approaches to 102 cells/cm3. These techniques allow not only to assess very small microbial population close to the subsurface biotic fringe, but also to separate and sort the target cells using flow cytometric cell sorter. Once the deep subseafloor microbial cells are detached from mineral grains and sorted, it opens new windows to subsequent molecular ecological and element/isotopic analyses. With a combined use of nano-scale secondary ion masspectrometry (NanoSIMS) and stable isotope-probing techniques, it is possible to detect and measure activity of substrate incorporation into biomass, even for extremely slow metabolic processes such as uncharacteriszed deep subseafloor life. For example, it was evidenced by NanoSIMS that at least over 80% of microbial cells at ~200 meters-deep, 460,000-year-old sedimentary habitat are indeed live, which substrate incooporation was found to be low (10-15 gC/cell/day) even under the lab incubation condition. Also microbial activity in ultraoligotrophic biosphere samples such as the South Pacific Gyre (i.e., IODP Expeditions 329) will be shown. Our results demonstrates metabolic potential of microbes that have been survived for geological timescale in extremely starved condition.
Developmental Features of Exploration.
ERIC Educational Resources Information Center
Vandenberg, Brian
1984-01-01
Analyzes the exploratory patterns of 112 children ages 4 to 12, using visual and auditory stimuli and toy preference and toy exploration tasks. Finds that a preference for complexity and for unknown toys increases with age and notes age differences in exploratory patterns and question-asking behavior. (Author/CB)
ERIC Educational Resources Information Center
Ramful, Ajay
2012-01-01
In line with continuing efforts to explain the demanding nature of multiplicative reasoning among middle-school students, this study explores the fine-grained knowledge elements that two pairs of 7th and 8th graders deployed in their attempt to coordinate the known and unknown quantities in the gear-wheel problem. Failure to conceptualize the…
Europa Geophysical Explorer Mission Concept Studies
NASA Astrophysics Data System (ADS)
Green, J. R.; Abelson, R. D.; Smythe, W.; Spilker, T. R.; Shirley, J. H.
2005-12-01
The Strategic Road Map for Solar System Exploration recommended in May 2005 that NASA implement the Europa Geophysical Explorer (EGE) as a Flagship mission early in the next decade. This supported the recommendations of the National Research Council's Solar System Decadal Survey and the priorities of the Outer Planets Assessment Group (OPAG). The Europa Geophysical Explorer would: (1) Characterize tidal deformations of the surface of Europa and surface geology, to confirm the presence of a subsurface ocean; (2) Measure the three-dimensional structure and distribution of subsurface water; and (3) Determine surface composition from orbit, and potentially, prebiotic chemistry, in situ. As the next step in Europa exploration, EGE would build on previous Europa Orbiter concepts, for example, the original Europa Orbiter and the Jupiter Icy Moons Orbiter (JIMO). As well, a new set of draft Level One Requirements, provided by NASA sponsors, guided the concept development. These requirements included: (1) Earliest Launch: 2012; (2) Launch Vehicle: Delta IV Heavy or Atlas V; (3) Primary Propulsion: Chemical; (4) Power: Radioisotope Power System (RPS); (4) Orbital Mission: 30 days minimum to meet orbital science objectives; and (5) Earth Gravity Assists: Allowed. The previous studies and the new requirements contributed to the development of several scientifically capable and relatively mass-rich mission options. In particular, Earth-gravity assists (EGA) were allowed, resulting in an increased delivered mass. As well, there have been advances in radiation-hardened components and subsystems, due to the investments from the X-2000 technology program and JIMO. Finally, developments in radioisotope power systems (RPS) have added to the capability and reliability of the mission. Several potential mission options were explored using a variety of trade study methods, ranging from the work of the JPL EGE Team of scientists and engineers in partnership with the OPAG Europa Sub-Group Advisory Team, JPL's Team X, and parametric modeling and simulation tools. We explored the system impacts of selecting different science payloads, power systems, mission durations, Deep Space Network (DSN) architectures, trajectory types, and launch vehicles. The comparisons show that there are feasible mission options that provide potentially available mass for enhanced spacecraft margins and science return, in addition to a 150-kg orbiter science instrument payload mass. This presentation describes high-priority science objectives for an EGE mission, results of the recent studies, and implementation options.
NASA Astrophysics Data System (ADS)
Singha, K.; Navarre-Sitchler, A.; Bandler, A.; Pommer, R. E.; Novitsky, C. G.; Holbrook, S.; Moore, J.
2017-12-01
Quantifying coupled geochemical and hydrological properties and processes that operate in the critical zone is key to predicting rock weathering and subsequent transmission and storage of water in the shallow subsurface. Geophysical data have the potential to elucidate geochemical and hydrologic processes across landscapes over large spatial scales that are difficult to achieve with point measurements alone. Here, we explore the connections between weathering and fracturing, as measured from integrated geochemical and geophysical borehole data and seismic velocities on north- and south-facing aspects within one watershed in the Boulder Creek Critical Zone Observatory. We drilled eight boreholes up to 13 m deep on north- and south-facing aspects within Upper Gordon Gulch, and surface seismic refraction data were collected near these wells to explore depths of regolith and bedrock, as well as anisotropic characteristics of the subsurface material due to fracturing. Optical televiewer data were collected in these wells to infer the dominant direction of fracturing and fracture density in the near surface to corroborate with the seismic data. Geochemical samples were collected from four of these wells and a series of shallow soil pits for bulk chemistry, clay fraction, and exchangeable cation concentrations to identify depths of chemically altered saprolite. Seismic data show that depth to unweathered bedrock, as defined by p-wave seismic velocity, is slightly thicker on the north-facing slopes. Geochemical data suggest that the depth to the base of saprolite ranges from 3-5 m, consistent with a p-wave velocity value of 1200 m/s. Based on magnitude and anisotropy of p-wave velocities together with optical televiewer data, regolith on north-facing slopes is thought to be more fractured than south-facing slopes, while geochemical data indicate that position on the landscape is another important characteristic in determining depths of weathering. We explore the importance of fracture opening in controlling both saprolite and regolith thickness within this watershed.
NASA Astrophysics Data System (ADS)
Grimm, R. E.
2002-09-01
Detection of subsurface, liquid water is an overarching objective of the Mars Exploration Program (MEP) because of its impacts on life, climate, geology, and preparation for human exploration. Although planned orbital radars seek to map subsurface water, methods with more robust depth-penetration, discrimination, and characterization capabilities are necessary to "ground truth" any results from such radars. Low-frequency electromagnetic (EM) methods exploit induction rather than wave propagation and are sensitive to electrical conductivity rather than dielectric constant. Saline martian groundwater will be a near-ideal EM target, especially as the overburden is likely very dry. The Naiades Mars Scout - named for the Greek mythological nymphs of springs, rivers, lakes, and fountains - comprise twin Landers directed to a high-priority region for groundwater investigation. Broadband measurements of natural EM fields will be used to perform passive soundings. If natural sources are weak, active soundings will be performed using a small transmitter. The two Landers are positioned within several tens of kilometers of each other so that coherence techniques can improve data quality; useful data can, however, be acquired by a single Lander. Additional mission objectives include detection of ground ice, characterization of natural EM fields, measurement of electrical properties, constraints on planetary heat flow, measurement of crustal magnetism, characterization of seismicity, seismic imaging of the interior, and assessment of landing-site geomorphology. A short-period seismometer and a wide-angle camera complete the payload to achieve these objectives. The Naiades mission strongly resonates with the main "Follow the Water" theme of the MEP, but in ways that are not currently within the its scope or that of international partners. The combination of established terrestrial methods for groundwater exploration, robust flight systems, and cost effectiveness proposed for the Naiades is a relatively low-risk approach to answering key questions about water on Mars within the Scout framework
Numerical comparisons of ground motion predictions with kinematic rupture modeling
NASA Astrophysics Data System (ADS)
Yuan, Y. O.; Zurek, B.; Liu, F.; deMartin, B.; Lacasse, M. D.
2017-12-01
Recent advances in large-scale wave simulators allow for the computation of seismograms at unprecedented levels of detail and for areas sufficiently large to be relevant to small regional studies. In some instances, detailed information of the mechanical properties of the subsurface has been obtained from seismic exploration surveys, well data, and core analysis. Using kinematic rupture modeling, this information can be used with a wave propagation simulator to predict the ground motion that would result from an assumed fault rupture. The purpose of this work is to explore the limits of wave propagation simulators for modeling ground motion in different settings, and in particular, to explore the numerical accuracy of different methods in the presence of features that are challenging to simulate such as topography, low-velocity surface layers, and shallow sources. In the main part of this work, we use a variety of synthetic three-dimensional models and compare the relative costs and benefits of different numerical discretization methods in computing the seismograms of realistic-size models. The finite-difference method, the discontinuous-Galerkin method, and the spectral-element method are compared for a range of synthetic models having different levels of complexity such as topography, large subsurface features, low-velocity surface layers, and the location and characteristics of fault ruptures represented as an array of seismic sources. While some previous studies have already demonstrated that unstructured-mesh methods can sometimes tackle complex problems (Moczo et al.), we investigate the trade-off between unstructured-mesh methods and regular-grid methods for a broad range of models and source configurations. Finally, for comparison, our direct simulation results are briefly contrasted with those predicted by a few phenomenological ground-motion prediction equations, and a workflow for accurately predicting ground motion is proposed.
Elastic Reverse Time Migration (RTM) From Surface Topography
NASA Astrophysics Data System (ADS)
Akram, Naveed; Chen, Xiaofei
2017-04-01
Seismic Migration is a promising data processing technique to construct subsurface images by projecting the recorded seismic data at surface back to their origins. There are numerous Migration methods. Among them, Reverse Time Migration (RTM) is considered a robust and standard imaging technology in present day exploration industry as well as in academic research field because of its superior performance compared to traditional migration methods. Although RTM is extensive computing and time consuming but it can efficiently handle the complex geology, highly dipping reflectors and strong lateral velocity variation all together. RTM takes data recorded at the surface as a boundary condition and propagates the data backwards in time until the imaging condition is met. It can use the same modeling algorithm that we use for forward modeling. The classical seismic exploration theory assumes flat surface which is almost impossible in practice for land data. So irregular surface topography has to be considered in simulation of seismic wave propagation, which is not always a straightforward undertaking. In this study, Curved grid finite difference method (CG-FDM) is adapted to model elastic seismic wave propagation to investigate the effect of surface topography on RTM results and explore its advantages and limitations with synthetic data experiments by using Foothill model with topography as the true model. We focus on elastic wave propagation rather than acoustic wave because earth actually behaves as an elastic body. Our results strongly emphasize on the fact that irregular surface topography must be considered for modeling of seismic wave propagation to get better subsurface images specially in mountainous scenario and suggest practitioners to properly handled the geometry of data acquired on irregular topographic surface in their imaging algorithms.
Elastic Reverse Time Migration (RTM) From Surface Topography
NASA Astrophysics Data System (ADS)
Naveed, A.; Chen, X.
2016-12-01
Seismic Migration is a promising data processing technique to construct subsurface images by projecting the recorded seismic data at surface back to their origins. There are numerous Migration methods. Among them, Reverse Time Migration (RTM) is considered a robust and standard imaging technology in present day exploration industry as well as in academic research field because of its superior performance compared to traditional migration methods. Although RTM is extensive computing and time consuming but it can efficiently handle the complex geology, highly dipping reflectors and strong lateral velocity variation all together. RTM takes data recorded at the surface as a boundary condition and propagates the data backwards in time until the imaging condition is met. It can use the same modeling algorithm that we use for forward modeling. The classical seismic exploration theory assumes flat surface which is almost impossible in practice for land data. So irregular surface topography has to be considered in simulation of seismic wave propagation, which is not always a straightforward undertaking. In this study, Curved grid finite difference method (CG-FDM) is adapted to model elastic seismic wave propagation to investigate the effect of surface topography on RTM results and explore its advantages and limitations with synthetic data experiments by using Foothill model with topography as the true model. We focus on elastic wave propagation rather than acoustic wave because earth actually behaves as an elastic body. Our results strongly emphasize on the fact that irregular surface topography must be considered for modeling of seismic wave propagation to get better subsurface images specially in mountainous scenario and suggest practitioners to properly handled the geometry of data acquired on irregular topographic surface in their imaging algorithms.
NASA Astrophysics Data System (ADS)
Lau, Graham Elliot
Sulfur is one of the most ubiquitous elements in the universe and one of those that is crucial for life, as we know it. This graduate dissertation presents the culmination of work conducted to better understand biological and geochemical processes related to sulfur cycling at a sulfur-dominated field site in the Canadian High Arctic. This site, situated in a valley called Borup Fiord Pass, provides a unique environment where sulfide-rich fluids emerge from a glacier and form large deposits of ice that become covered in elemental sulfur. The role of biology is compelling and yet challenging to define in each step of sulfur cycling at Borup Fiord pass, whether one considers the origin of the sulfide (presumed biological sulfate reduction in the subsurface) or one focuses on the processes driving sulfur oxidation and stabilization at the glacier's surface. This dissertation presents results from a field expedition in 2014 as well as detailed mineralogical and spectroscopic analyses of sulfur-rich materials returned from the field. The importance of sulfur and carbonate minerals at this site is considered. Also, analyses of materials within pyrite alteration features in the valley are explored. These features appear to represent emplaced subsurface sulfide ores, which have been subsequently leached near the surface, forming gossanous structures. The geochemistry and mineralogy of these features is explored, as well as is their potential to serve as analogs for the exploration of Mars. The dissertation then concludes with some consideration of potential future work to be considered as well as a recapitulation of the current state of knowledge of processes at Borup Fiord Pass.
In Pursuit of Analogs for Europa's Dynamics & Potential Habitats
NASA Astrophysics Data System (ADS)
Schmidt, Britney E.; Blankenship, D. D.; Greenbaum, J. S.; Young, D. A.
2010-10-01
Future Europa exploration will seek to characterize the distribution of shallow subsurface water as well as to understand the formation of surface features through dynamic ice-shell processes. Radar sounding will be a critical tool for imaging these features, and should be of primary interest to the astrobiology community for understanding how and where life might arise on Europa. To develop successful instrumentation and data interpretation techniques for exploring Europa, we must leverage analogous terrestrial environments and processes. Airborne ice penetrating radar is now a mature tool in terrestrial studies of Earth's ice sheets, and orbital examples have been successfully deployed at Earth's Moon and Mars. It is a distinct possibility that water within or just below the ice on Europa has played a role in forming some of its dynamic terrain. Observations of rotated blocks and dark floor materials may suggest that brines existed in the near subsurface and enabled the formation of such features. The University of Texas High Capability Airborne Radar Sounder (HiCARS) developed to study Antarctic ice sheet dynamics has been configured to test observation scenarios for Europa. We discuss recent results from the 60 MHz HiCARS system over brine infiltrated Antarctic marine ice as an analog for processes affecting the formation of pits and chaos. Basal melt occurring below terrestrial marine ice is directly analogous to processes that may operate on Europa if the shell is "thin,” and will be similar to processes occurring instead within the ice sheet in the case of a thicker, multi-layer ice sheet where enriched brines may remain liquid within the shell. A key site for further investigation of conductive and "convective” ices is found in the polythermal glaciers in the Arctic, and the case for this exploration will be illuminated.
NASA Astrophysics Data System (ADS)
Carpena, Emmanuel; Jiménez, Luis O.; Arzuaga, Emmanuel; Fonseca, Sujeily; Reyes, Ernesto; Figueroa, Juan
2017-05-01
Improved benthic habitat mapping is needed to monitor coral reefs around the world and to assist coastal zones management programs. A fundamental challenge to remotely sensed mapping of coastal shallow waters is due to the significant disparity in the optical properties of the water column caused by the interaction between the coast and the sea. The objects to be classified have weak signals that interact with turbid waters that include sediments. In real scenarios, the absorption and backscattering coefficients are unknown with different sources of variability (river discharges and coastal interactions). Under normal circumstances, another unknown variable is the depth of shallow waters. This paper presents the development of algorithms for retrieving information and its application to the classification and mapping of objects under coastal shallow waters with different unknown concentrations of sediments. A mathematical model that simplifies the radiative transfer equation was used to quantify the interaction between the object of interest, the medium and the sensor. The retrieval of information requires the development of mathematical models and processing tools in the area of inversion, image reconstruction and classification of hyperspectral data. The algorithms developed were applied to one set of real hyperspectral imagery taken in a tank filled with water and TiO2 that emulates turbid coastal shallow waters. Tikhonov method of regularization was used in the inversion process to estimate the bottom albedo of the water tank using a priori information in the form of stored spectral signatures, previously measured, of objects of interest.
The Development of 3d Sub-Surface Mapping Scheme and its Application to Martian Lobate Debris Aprons
NASA Astrophysics Data System (ADS)
Baik, H.; Kim, J.
2017-07-01
The Shallow Subsurface Radar (SHARAD), a sounding radar equipped on the Mars Reconnaissance Orbiter (MRO), has produced highly valuable information about the Martian subsurface. In particular, the complicated substructures of Mars such as polar deposit, pedestal crater and the other geomorphic features involving possible subsurface ice body has been successfully investigated by SHARAD. In this study, we established a 3D subsurface mapping strategy employing the multiple SHARAD profiles. A number of interpretation components of SHARAD signals were integrated into a subsurface mapping scheme using radargram information and topographic data, then applied over a few mid latitude Lobate Debris Aprons (LDAs). From the identified subsurface layers of LDA, and the GIS data base incorporating the other interpretation outcomes, we are expecting to trace the origin of LDAs. Also, the subsurface mapping scheme developed in this study will be further applied to other interesting Martian geological features such as inter crater structures, aeolian deposits and fluvial sediments. To achieve higher precision sub-surface mapping, the clutter simulation employing the high resolution topographic data and the upgraded clustering algorithms assuming multiple sub-surface layers will be also developed.
NASA Astrophysics Data System (ADS)
Dafflon, B.; Hubbard, S. S.; Ulrich, C.; Peterson, J. E.; Wu, Y.; Wainwright, H. M.; Gangodagamage, C.; Kholodov, A. L.; Kneafsey, T. J.
2013-12-01
Improvement in parameterizing Arctic process-rich terrestrial models to simulate feedbacks to a changing climate requires advances in estimating the spatiotemporal variations in active layer and permafrost properties - in sufficiently high resolution yet over modeling-relevant scales. As part of the DOE Next-Generation Ecosystem Experiments (NGEE-Arctic), we are developing advanced strategies for imaging the subsurface and for investigating land and subsurface co-variability and dynamics. Our studies include acquisition and integration of various measurements, including point-based, surface-based geophysical, and remote sensing datasets These data have been collected during a series of campaigns at the NGEE Barrow, AK site along transects that traverse a range of hydrological and geomorphological conditions, including low- to high- centered polygons and drained thaw lake basins. In this study, we describe the use of galvanic-coupled electrical resistance tomography (ERT), capacitively-coupled resistivity (CCR) , permafrost cores, above-ground orthophotography, and digital elevation model (DEM) to (1) explore complementary nature and trade-offs between characterization resolution, spatial extent and accuracy of different datasets; (2) develop inversion approaches to quantify permafrost characteristics (such as ice content, ice wedge frequency, and presence of unfrozen deep layer) and (3) identify correspondences between permafrost and land surface properties (such as water inundation, topography, and vegetation). In terms of methods, we developed a 1D-based direct search approach to estimate electrical conductivity distribution while allowing exploration of multiple solutions and prior information in a flexible way. Application of the method to the Barrow datasets reveals the relative information content of each dataset for characterizing permafrost properties, which shows features variability from below one meter length scales to large trends over more than a kilometer. Further, we used Pole- and Kite-based low-altitude aerial photography with inferred DEM, as well as DEM from LiDAR dataset, to quantify land-surface properties and their co-variability with the subsurface properties. Comparison of the above- and below-ground characterization information indicate that while some permafrost characteristics correspond with changes in hydrogeomorphological expressions, others features show more complex linkages with landscape properties. Overall, our results indicate that remote sensing data, point-scale measurements and surface geophysical measurements enable the identification of regional zones having similar relations between subsurface and land surface properties. Identification of such zonation and associated permafrost-land surface properties can be used to guide investigations of carbon cycling processes and for model parameterization.
Characterization of deep geothermal energy resources using Electro-Magnetic methods, Belgium
NASA Astrophysics Data System (ADS)
Loveless, Sian; Harcout-Menou, Virginie; De Ridder, Fjo; Claessens, Bert; Laenen, Ben
2014-05-01
Sedimentary basins in Northwest Europe have significant potential for low to medium enthalpy, deep geothermal energy resources. These resources are currently assessed using standard exploration techniques (seismic investigations followed by drilling of a borehole). This has enabled identification of geothermal resources but such techniques are extremely costly. The high cost of exploration remains one of the main barriers to geothermal project development due to the lack of capital in the geothermal industry. We will test the possibility of using the Electro-Magnetic (EM) methods to aid identification of geothermal resources in conjunction with more traditional exploration methods. An EM campaign could cost a third of a seismic campaign and is also often a passive technology, resulting in smaller environmental impacts than seismic surveys or drilling. EM methods image changes in the resistivity of the earth's sub-surface using natural or induced frequency dependant variations of electric and magnetic fields. Changes in resistivity can be interpreted as representing different subsurface properties including changes in rock type, chemistry, temperature and/or hydraulic transmissivity. While EM techniques have proven to be useful in geothermal exploration in high enthalpy areas in the last 2-3 years only a handful of studies assess their applicability in low enthalpy sedimentary basins. Challenges include identifying which sub-surface features cause changes in electrical resistivity as low enthalpy reservoirs are unlikely to exhibit the hydrothermally altered clay layer above the geothermal aquifer that is typical for high enthalpy reservoirs. Yet a principal challenge is likely to be the high levels of industrialisation in the areas of interest. Infrastructure such as train tracks and power cables can create a high level of background noise that can obfuscate the relevant signal. We present our plans for an EM campaign in the Flemish region of Belgium. Field techniques will be developed to increase the signal-noise ratio and identify background noise. Firstly, surface noise will be filtered off by non-parametric approaches such as proper orthogonal decomposition. Secondly, the EM signal and newly acquired seismic data will be combined to obtain a multi-dimensional earth model via an inversion process. Typically, these identification procedures are non-unique, resulting in multiple possible scenarios that cannot be distinguished based on the information at hand. To this end standard approaches) use a regularisation term including an apriori model. Here, Bayesian approaches will also be used, in which expert knowledge is used to guide the outcome to reasonable solutions. We will assess the reduction in uncertainty and therefore risks that EM methods can provide when used in combination with seismic surveys for geothermal exploration prior to drilling. It may also be possible to use this technique for monitoring the evolution of geothermal systems. Such techniques may prove to be extremely valuable for the future development of geothermal energy resources.
Application of Electrical Resistivity Method (ERM) in Groundwater Exploration
NASA Astrophysics Data System (ADS)
Izzaty Riwayat, Akhtar; Nazri, Mohd Ariff Ahmad; Hazreek Zainal Abidin, Mohd
2018-04-01
The geophysical method which dominant by geophysicists become one of most popular method applied by engineers in civil engineering fields. Electrical Resistivity Method (ERM) is one of geophysical tool that offer very attractive technique for subsurface profile characterization in larger area. Applicable alternative technique in groundwater exploration such as ERM which complement with existing conventional method may produce comprehensive and convincing output thus effective in terms of cost, time, data coverage and sustainable. ERM has been applied by various application in groundwater exploration. Over the years, conventional method such as excavation and test boring are the tools used to obtain information of earth layer especially during site investigation. There are several problems regarding the application of conventional technique as it only provides information at actual drilling point only. This review paper was carried out to expose the application of ERM in groundwater exploration. Results from ERM could be additional information to respective expert for their problem solving such as the information on groundwater pollution, leachate, underground and source of water supply.
"A Marriage on the Rocks": An Unknown Letter by William H. Kilpatrick about His Project Method
ERIC Educational Resources Information Center
Knoll, Michael
2010-01-01
William H. Kilpatrick is worldwide known as "Mr. Project Method." But the origin of his celebrated paper of 1918 has never been explored. The discovery of a hitherto unknown letter reveals that Kilpatrick was an educational entrepreneur who, without regard for language and tradition, adopted the term "project" and used it in a provocative new way…
Ringleberg, D.B.; Townsend, G.T.; DeWeerd, K.A.; Suflita, J.M.; White, D.C.
1994-01-01
Desulfomonile tiedjei is a Gram-negative sulfate-reducing bacterium capable of catalyzing aryl reductive dehalogenation reactions. Since many toxic and persistent contaminants in the subsurface are halogenated aromatic compounds, the detection and enumeration of dehalogenating microorganisms in the environment may be a useful tool for planning and evaluating bioremediation efforts. In this study, we show that D. tiedjei contains unique lipopolysaccharide branched 3-hydroxy fatty acids, unknown as yet in other bacteria, and that it is possible to detect the bacterium in inoculated aquifer sediments based on these signature lipid biomarkers. The detection of D. tiedjeiand other dehalogenating microorganisms possessing similar cellular properties in environmental matrices may be possible by this technique. Additionally, the effect of such inoculation on dehalogenation activity is examined.
Science and Reconnaissance from the Europa Clipper Mission Concept: Exploring Europa's Habitability
NASA Astrophysics Data System (ADS)
Senske, D.; Pappalardo, R. T.; Prockter, L. M.; Paczkowski, B.; Vance, S.; Goldstein, B.; Magner, T. J.; Cooke, B.
2014-12-01
Europa is a prime candidate to search for a present-day habitable environment in our solar system. As such, NASA has engaged a Science Definition Team (SDT) to define a strategy to advance our scientific understanding of this icy world with the goal: Explore Europa to investigate its habitability. A mission architecture is defined where a spacecraft in Jupiter orbit would make many close flybys of Europa, concentrating on remote sensing to explore the moon. The spacecraft trajectory would permit ~45 flybys at a variety of latitudes and longitudes, enabling globally distributed regional coverage of Europa's surface. This concept is known as the Europa Clipper. The SDT recommended three science objectives for the Europa Clipper: Ice Shell and Ocean--Characterize the ice shell and any subsurface water, including their heterogeneity, ocean properties, and the nature of surface-ice-ocean exchange; Composition--Understand the habitability of Europa's ocean through composition and chemistry; Geology--Understand the formation of surface features, including sites of recent or current activity, and characterize high science interest localities. The SDT also considered implications of the recent HST detection of plumes at Europa. To feed forward to potential future exploration that could be enabled by a lander, it was deemed that the Clipper should provide the capability to perform reconnaissance. In consultation with NASA Headquarters, the SDT developed a reconnaissance goal: Characterize Scientifically Compelling Sites, and Hazards, for a Potential Future Landed Mission to Europa. This leads to two objectives: Site Safety--Assess the distribution of surface hazards, the load-bearing capacity of the surface, the structure of the subsurface, and the regolith thickness; Science Value--Assess the composition of surface materials, the geologic context of the surface, the potential for geological activity, the proximity of near surface water, and the potential for active upwelling of ocean material. The Clipper concept provides an efficient means to explore Europa and investigate its habitability. Development of the mission concept is ongoing with current studies focusing on spacecraft design trades and refinements, launch vehicle options (EELV and SLS), and power source (MMRTG and solar), to name a few.
JUICE: A European Mission to Jupiter and its Icy Moons
NASA Astrophysics Data System (ADS)
Grasset, Olivier; Witasse, Olivier; Barabash, Stas; Brandt, Pontus; Bruzzone, Lorenzo; Bunce, Emma; Cecconi, Baptiste; Cavalié, Thibault; Cimo, Giuseppe; Coustenis, Athena; Cremonese, Gabriele; Dougherty, Michele; Fletcher, Leigh N.; Gladstone, Randy; Gurvits, Leonid; Hartogh, Paul; Hoffmann, Holger; Hussmann, Hauke; Iess, Luciano; Jaumann, Ralf; Kasaba, Yasumasa; Kaspi, Yohai; Krupp, Norbert; Langevin, Yves; Mueller-Wodarg, Ingo; Palumbo, Pasquale; Piccioni, Giuseppe; Plaut, Jeffrey; Poulet, Francois; Roatsch, Thomas; Retherford, Kurt D.; Rothkaehl, Hanna; Stevenson, David J.; Tosi, Federico; Van Hoolst, Tim; Wahlund, Jan-Erik; Wurz, Peter; Altobelli, Nicolas; Accomazzo, A.; Boutonnet, Arnaud; Erd, Christian; Vallat, Claire
2016-10-01
JUICE - JUpiter ICy moons Explorer - is the first large mission in the ESA Cosmic Vision programme [1]. The implementation phase started in July 2015. JUICE will arrive at Jupiter in October 2029, and will spend 3 years characterizing the Jovian system, the planet itself, its giant magnetosphere, and the giant icy moons: Ganymede, Callisto and Europa. JUICE will then orbit Ganymede.The first goal of JUICE is to explore the habitable zone around Jupiter [2]. Ganymede is a high-priority target because it provides a unique laboratory for analyzing the nature, evolution and habitability of icy worlds, including the characteristics of subsurface oceans, and because it possesses unique magnetic fields and plasma interactions with the environment. On Europa, the focus will be on recently active zones, where the composition, surface and subsurface features (including putative water reservoirs) will be characterized. Callisto will be explored as a witness of the early Solar System.JUICE will also explore the Jupiter system as an archetype of gas giants. The circulation, meteorology, chemistry and structure of the Jovian atmosphere will be studied from the cloud tops to the thermosphere and ionosphere. JUICE will investigate the 3D properties of the magnetodisc, and study the coupling processes within the magnetosphere, ionosphere and thermosphere. The mission also focuses on characterizing the processes that influence surface and space environments of the moons.The payload consists of 10 instruments plus a ground-based experiment (PRIDE) to better constrain the S/C position. A remote sensing package includes imaging (JANUS) and spectral-imaging capabilities from UV to sub-mm wavelengths (UVS, MAJIS, SWI). A geophysical package consists of a laser altimeter (GALA) and a radar sounder (RIME) for exploring the moons, and a radio science experiment (3GM) to probe the atmospheres and to determine the gravity fields. The in situ package comprises a suite to study plasma and neutral gas environments (PEP) with remote sensing capabilities via energetic neutrals, a magnetometer (J-MAG) and a radio and plasma wave instrument (RPWI). [1] JUICE Definition Study Report, ESA/SRE(2014)1. [2] Grasset et al., Plan. Space Sci., 78, 2013
Exploring the Self-Ownership Effect: Separating Stimulus and Response Biases
ERIC Educational Resources Information Center
Golubickis, Marius; Falben, Johanna K.; Cunningham, William A.; Macrae, C. Neil
2018-01-01
Although ownership is acknowledged to exert a potent influence on various aspects of information processing, the origin of these effects remains largely unknown. Based on the demonstration that self-relevance facilitates perceptual judgments (i.e., the self-prioritization effect), here we explored the possibility that ownership enhances object…
Interpreting Repeated Temperature-Depth Profiles for Groundwater Flow
NASA Astrophysics Data System (ADS)
Bense, Victor F.; Kurylyk, Barret L.; van Daal, Jonathan; van der Ploeg, Martine J.; Carey, Sean K.
2017-10-01
Temperature can be used to trace groundwater flows due to thermal disturbances of subsurface advection. Prior hydrogeological studies that have used temperature-depth profiles to estimate vertical groundwater fluxes have either ignored the influence of climate change by employing steady-state analytical solutions or applied transient techniques to study temperature-depth profiles recorded at only a single point in time. Transient analyses of a single profile are predicated on the accurate determination of an unknown profile at some time in the past to form the initial condition. In this study, we use both analytical solutions and a numerical model to demonstrate that boreholes with temperature-depth profiles recorded at multiple times can be analyzed to either overcome the uncertainty associated with estimating unknown initial conditions or to form an additional check for the profile fitting. We further illustrate that the common approach of assuming a linear initial temperature-depth profile can result in significant errors for groundwater flux estimates. Profiles obtained from a borehole in the Veluwe area, Netherlands in both 1978 and 2016 are analyzed for an illustrative example. Since many temperature-depth profiles were collected in the late 1970s and 1980s, these previously profiled boreholes represent a significant and underexploited opportunity to obtain repeat measurements that can be used for similar analyses at other sites around the world.
Method for Implementing Subsurface Solid Derived Concentration Guideline Levels (DCGL) - 12331
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lively, J.W.
2012-07-01
The U.S. Nuclear Regulatory Commission (NRC) and other federal agencies currently approve the Multi-Agency Radiation Site Survey and Investigation Manual (MARSSIM) as guidance for licensees who are conducting final radiological status surveys in support of decommissioning. MARSSIM provides a method to demonstrate compliance with the applicable regulation by comparing residual radioactivity in surface soils with derived concentration guideline levels (DCGLs), but specifically discounts its applicability to subsurface soils. Many sites and facilities undergoing decommissioning contain subsurface soils that are potentially impacted by radiological constituents. In the absence of specific guidance designed to address the derivation of subsurface soil DCGLs andmore » compliance demonstration, decommissioning facilities have attempted to apply DCGLs and final status survey techniques designed specifically for surface soils to subsurface soils. The decision to apply surface soil limits and surface soil compliance metrics to subsurface soils typically results in significant over-excavation with associated cost escalation. MACTEC, Inc. has developed the overarching concepts and principles found in recent NRC decommissioning guidance in NUREG 1757 to establish a functional method to derive dose-based subsurface soil DCGLs. The subsurface soil method developed by MACTEC also establishes a rigorous set of criterion-based data evaluation metrics (with analogs to the MARSSIM methodology) that can be used to demonstrate compliance with the developed subsurface soil DCGLs. The method establishes a continuum of volume factors that relate the size and depth of a volume of subsurface soil having elevated concentrations of residual radioactivity with its ability to produce dose. The method integrates the subsurface soil sampling regime with the derivation of the subsurface soil DCGL such that a self-regulating optimization is naturally sought by both the responsible party and regulator. This paper describes the concepts and basis used by MACTEC to develop the dose-based subsurface soil DCGL method. The paper will show how MACTEC's method can be used to demonstrate that higher concentrations of residual radioactivity in subsurface soils (as compared with surface soils) can meet the NRC's dose-based regulations. MACTEC's method has been used successfully to obtain the NRC's radiological release at a site with known radiological impacts to subsurface soils exceeding the surface soil DCGL, saving both time and cost. Having considered the current NRC guidance for consideration of residual radioactivity in subsurface soils during decommissioning, MACTEC has developed a technically based approach to the derivation of and demonstration of compliance with subsurface soil DCGLs for radionuclides. In fact, the process uses the already accepted concepts and metrics approved for surface soils as the foundation for deriving scaling factors used to calculate subsurface soil DCGLs that are at least equally protective of the decommissioning annual dose standard. Each of the elements identified for consideration in the current NRC guidance is addressed in this proposed method. Additionally, there is considerable conservatism built into the assumptions and techniques used to arrive at subsurface soil scaling factors and DCGLs. The degree of conservatism embodied in the approach used is such that risk managers and decision makers approving and using subsurface soil DCGLs derived in accordance with this method can be confident that the future exposures will be well below permissible and safe levels. The technical basis for the method can be applied to a broad variety of sites with residual radioactivity in subsurface soils. Given the costly nature of soil surveys, excavation, and disposal of soils as low-level radioactive waste, MACTEC's method for deriving and demonstrating compliance with subsurface soil DCGLs offers the possibility of significant cost savings over the traditional approach of applying surface soil DCGLs to subsurface soils. Furthermore, while yet untested, MACTEC believes that the concepts and methods embodied in this approach could readily be applied to other types of contamination found in subsurface soils. (author)« less
Merriam, D.F.
2004-01-01
Temperature anomalies associated with oil-producing structures in the US Midcontinent and similar cratonic areas probably can be used reliably as a passkey for petroleum exploration in mature areas, and thus the concept of hot anticlines could be a key to discovery. Analysis of accumulated data during the past several decades allows a definition of the problem of hot anticlines. A possible solution for migration and entrapment of petroleum can be explained by the Roberts temperature differential model and the Walters fluid-flow paradigm. In fact, if the Roberts model is valid, higher shallow temperatures, temperature gradients, or heat flow could indicate the entrapment of hydrocarbons at depth. The recognition and promotion of shallow "hotspots" as an exploration key is not new and was proposed years ago by Haas and Hoffmann, Kappelmeyer, and as recently as 1986 by Blackwell.
Exploration criteria for low permeability geothermal resources. Final report. [Coso KGRA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norton, D.
1977-10-01
Low permeability geothermal systems related to high temperature plutons in the upper crust were analyzed in order to ascertain those characteristics of these systems which could be detected by surface and shallow subsurface exploration methods. Analyses were designed to integrate data and concepts from the literature, which relate to the transport processes, together with computer simulation of idealized systems. The systems were analyzed by systematically varying input parameters in order to understand their effect on the variables which might be measured in an exploration-assessment program. The methods were applied to a prospective system in its early stages of evaluation. Datamore » from the Coso system were used. The study represents a first-order approximation to transport processes in geothermal systems, which consist of high temperature intrusions, host rock, and fluids. Included in an appendix are operations procedures for interactive graphics programs developed during the study. (MHR)« less
75 FR 1276 - Requirements for Subsurface Safety Valve Equipment
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-11
...-0066] RIN 1010-AD45 Requirements for Subsurface Safety Valve Equipment AGENCY: Minerals Management... Edition of the American Petroleum Institute's Specification for Subsurface Safety Valve Equipment (API... 14A, Specification for Subsurface Safety Valve Equipment, Eleventh Edition, October 2005, Effective...
DOE Office of Scientific and Technical Information (OSTI.GOV)
MYERS DA
This report documents the results of preliminary surface geophysical exploration activities performed between October and December 2006 at the B, BX, and BY tank farms (B Complex). The B Complex is located in the 200 East Area of the U. S. Department of Energy's Hanford Site in Washington State. The objective of the preliminary investigation was to collect background characterization information with magnetic gradiometry and electromagnetic induction to understand the spatial distribution of metallic objects that could potentially interfere with the results from high resolution resistivity survey. Results of the background characterization show there are several areas located around themore » site with large metallic subsurface debris or metallic infrastructure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
REGUERA, GEMMA
2014-01-16
One promising strategy for the in situ bioremediation of radioactive groundwater contaminants that has been identified by the SBR Program is to stimulate the activity of dissimilatory metal-reducing microorganisms to reductively precipitate uranium and other soluble toxic metals. The reduction of U(VI) and other soluble contaminants by Geobacteraceae is directly dependent on the reduction of Fe(III) oxides, their natural electron acceptor, a process that requires the expression of Geobacter’s conductive pili (pilus nanowires). Expression of conductive pili by Geobacter cells leads to biofilm development on surfaces and to the formation of suspended biogranules, which may be physiological closer to biofilmsmore » than to planktonic cells. Biofilm development is often assumed in the subsurface, particularly at the matrix-well screen interface, but evidence of biofilms in the bulk aquifer matrix is scarce. Our preliminary results suggest, however, that biofilms develop in the subsurface and contribute to uranium transformations via sorption and reductive mechanisms. In this project we elucidated the mechanism(s) for uranium immobilization mediated by Geobacter biofilms and identified molecular markers to investigate if biofilm development is happening in the contaminated subsurface. The results provided novel insights needed in order to understand the metabolic potential and physiology of microorganisms with a known role in contaminant transformation in situ, thus having a significant positive impact in the SBR Program and providing novel concept to monitor, model, and predict biological behavior during in situ treatments.« less
Nonlinearities in the Evolutional Distinctions Between El Niño and La Niña Types
NASA Astrophysics Data System (ADS)
Ashok, K.; Shamal, M.; Sahai, A. K.; Swapna, P.
2017-12-01
Using the HadISST, SODA reanalysis, and various other observed and reanalyzed data sets for the period 1950-2010, we explore nonlinearities in the subsurface evolutional distinctions between El Niño types and La Niña types from a few seasons before the onset. Cluster analysis carried out over both summer and winter suggests that while the warm-phased events of both types are distinguishable, several cold phased events are clustered together. Further, we apply a joint Self-Organizing Map (SOM) analysis using the monthly sea surface temperature anomaly (SSTA) and thermocline-depth anomalies in tropical Pacific (TP). Results reveal that the evolutionary paths of El Niño Modoki (EM) and El Niño (EL) are, broadly, different. Subsurface temperature composites of EL and EM show different onset characteristics. During an EL, warm anomaly in the west spreads eastward along the thermocline and reaches the surface in the east in March-May of year(0). During an EM, warm anomaly already exists in the central tropical Pacific and then reaches the surface in the east in September-November of year(0). Composited SSTAs during La Niña (LN) and La Niña Modoki (LM) are distinguishable only at 80% confidence level, but the composited subsurface temperature anomalies show differences in the location of the coldest anomaly as well as evolution at 90% confidence level. Thus, the El Niño flavor distinction is potentially predictable at longer leads.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Sheng; Li, Hongyi; Huang, Maoyi
2014-07-21
Subsurface stormflow is an important component of the rainfall–runoff response, especially in steep terrain. Its contribution to total runoff is, however, poorly represented in the current generation of land surface models. The lack of physical basis of these common parameterizations precludes a priori estimation of the stormflow (i.e. without calibration), which is a major drawback for prediction in ungauged basins, or for use in global land surface models. This paper is aimed at deriving regionalized parameterizations of the storage–discharge relationship relating to subsurface stormflow from a top–down empirical data analysis of streamflow recession curves extracted from 50 eastern United Statesmore » catchments. Detailed regression analyses were performed between parameters of the empirical storage–discharge relationships and the controlling climate, soil and topographic characteristics. The regression analyses performed on empirical recession curves at catchment scale indicated that the coefficient of the power-law form storage–discharge relationship is closely related to the catchment hydrologic characteristics, which is consistent with the hydraulic theory derived mainly at the hillslope scale. As for the exponent, besides the role of field scale soil hydraulic properties as suggested by hydraulic theory, it is found to be more strongly affected by climate (aridity) at the catchment scale. At a fundamental level these results point to the need for more detailed exploration of the co-dependence of soil, vegetation and topography with climate.« less
NASA Astrophysics Data System (ADS)
Chang, Chun-Hung; Wilson, Christopher R.; Fried, Nathaniel M.
2015-07-01
Lasers have been used in combination with applied cooling methods to preserve superficial skin layers (100's μm's) during cosmetic surgery. Preservation of a thicker tissue surface layer (millimeters) may also allow development of other noninvasive laser procedures. We are exploring noninvasive therapeutic laser applications in urology (e.g. laser vasectomy and laser treatment of female stress urinary incontinence), which require surface tissue preservation on the millimeter scale. In this preliminary study, four lasers were compared for noninvasive creation of deep subsurface thermal lesions. Laser energy from three diode lasers (650, 808, and 980 nm) and a Ytterbium fiber laser (1075 nm) was delivered through a custom built, side-firing, laser probe with integrated cooling. An alcohol-based solution at -5 °C was circulated through a flow cell, cooling a sapphire window, which in turn cooled the tissue surface. The probe was placed in contact with porcine liver tissue, ex vivo, kept hydrated in saline and maintained at ~ 35 °C. Incident laser power was 4.2 W, spot diameter was 5.3 mm, and treatment time was 60 s. The optimal laser wavelength tested for creation of deep subsurface thermal lesions during contact cooling of tissues was 1075 nm, which preserved a surface layer of ~ 2 mm. The Ytterbium fiber laser provides a compact, low maintenance, and high power alternative laser source to the Neodymium:YAG laser for noninvasive thermal therapy.
NASA Astrophysics Data System (ADS)
Li, Jia; Fang, Qihong; Liu, Youwen; Zhang, Liangchi
2014-06-01
This paper investigates the mechanisms of subsurface damage and material removal of monocrystalline copper when it is under a nanoscale high speed grinding of a diamond tip. The analysis was carried out with the aid of three-dimensional molecular dynamics simulations. The key factors that would influence the deformation of the material were carefully explored by analyzing the chip, dislocation movement, and workpiece deformation, which include grinding speed, depth of cut, grid tip radius, crystal orientation and machining angle of copper. An analytical model was also established to predict the emission of partial dislocations during the nanoscale high speed grinding. The investigation showed that a higher grinding velocity, a larger tip radius or a larger depth of cut would result in a larger chipping volume and a greater temperature rise in the copper workpiece. A lower grinding velocity would produce more intrinsic stacking faults. It was also found that the transition of deformation mechanisms depends on the competition between the dislocations and deformation twinning. There is a critical machining angle, at which a higher velocity, a smaller tip radius, or a smaller depth of cut will reduce the subsurface damage and improve the smoothness of a ground surface. The established analytical model showed that the Shockley dislocation emission is most likely to occur with the crystal orientations of (0 0 1)[1 0 0] at 45° angle.
NASA Technical Reports Server (NTRS)
Youk, G. U.; Whittaker, W. (Red); Volpe, R.
2000-01-01
Perhaps the most promising site for extant life on Mars today is where subsurface water has been maintained. Therefore, searching for underground water will provide a good chance to find evidence of life on Mars. The following are scientific/engineering questions that we want to answer using our approach: (1) Is there subsurface water/ice? How deep is it? How much is there? Is it frozen? (2) What kinds of underground layers exist in the Martian crust? (3) What is the density of Martian soil or regolith? Can we dig into it? Should we drill into it? (4) Can a sudden release of underground water occur if a big asteroid hits Mars? Our approach provides essential information to answer these questions. Moreover, dependence on the water content and depth in soil, not only resultant scientific conclusions but also proper digging/drilling methods, are suggested. 'How much water is in the Martian soil?' There can be several possibilities: (1) high water content that is enough to form permafrost; (2) low water content that is not enough to form permafrost; or (3) different layers with different moisture contents. 'How deep should a rover dig into soil to find water/ice?' The exact size-frequency distribution has not been measured for the soil particles. On-board sensors can provide not only the water content but also the density (or porosity) of Martian soil as a function of depth.
History and anatomy of subsurface ice on Mars
NASA Astrophysics Data System (ADS)
Schorghofer, Norbert; Forget, Francois
2012-08-01
Ice buried beneath a thin layer of soil has been revealed by neutron spectroscopy and explored by the Phoenix Mars Lander. It has also been exposed by recent impacts. This subsurface ice is thought to lose and gain volume in response to orbital variations (Milankovitch cycles). We use a powerful numerical model to follow the growth and retreat of near-surface ice as a result of regolith-atmosphere exchange continuously over millions of years. If a thick layer of almost pure ice has been deposited recently, it has not yet reached equilibrium with the atmospheric water vapor and may still remain as far equatorward as 43°N, where ice has been revealed by recent impacts. A potentially observable consequence is present-day humidity output from the still retreating ice. We also demonstrate that in a sublimation environment, subsurface pore ice can accumulate in two ways. The first mode, widely known, is the progressive filling of pores by ice over a range of depths. The second mode occurs on top of an already impermeable ice layer; subsequent ice accumulates in the form of pasted on horizontal layers such that beneath the ice table, the pores are completely full with ice. Most or all of the pore ice on Mars today may be of the second type. At the Phoenix landing site, where such a layer is also expected to exist above an underlying ice sheet, it may be extremely thin, due to exceptionally small variations in ice stability over time.
Subsurface stratigraphy and oil fields in the Salem Limestone and associated rocks in Indiana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, S.J.; Becker, L.E.
An area of 11 counties in southwestern Indiana was studied because (1) the subsurface geology of the Salem Limestone and associated rocks in the area contained numerous correlation discrepancies; (2) it was the locus of recent oil exploration and oil discoveries in these rocks; (3) the last subsurface study of this rock section was made in 1957; and (4) since that time, subsurface data from newly drilled petroleum-test wells have increased a hundredfold. Because of their abundance, geophysical logs were used extensively for correlation. Drill cuttings, where available, were also used in studying the rock units. The upper boundary ofmore » the Salem was based on geophysical-log correlations as supported by available drill cuttings. The lower boundary of the Salem was based on drill cuttings. Commercial oil is produced from porous calcarenite zones in the St. Louis and Salem Limestones and from coarsely crystalline limestone in the Harrodsburg Limestone. The lower part of the St. Louis Limestone yields oil from a porous carbonate rock that resembles Salem calcarenite and that we have formally named the Sission Member in the St. Louis. The Salem calcarenite facies ranges in thickness from a low of 10 percent of the total Salem in the southern part of the study area to a high of 80 percent in the northern part. Oil is produced from porous zones in the calcarenite. Oil production from the St. Louis, Salem, and Harrodsburg Limestones in Indiana amounted to 8,880,078 barrels as of December 31, 1978. Production in 1977 was 1,534,320 barrels, and production in 1978 was 1,157,450 barrels. About 80 percent of the 1977 and 1978 production came from Union-Bowman Consolidated and Sisson Fields in Gibson, Knox, and Pike counties and the Owensville North Consolidated and Mt. Carmel Consolidated Fields in Gibson County. 15 figures, 3 tables.« less
The Correlation between Radon Emission Concentration and Subsurface Geological Condition
NASA Astrophysics Data System (ADS)
Kuntoro, Yudi; Setiawan, Herru L.; Wijayanti, Teni; Haerudin, Nandi
2018-03-01
Exploration activities with standard methods have already encountered many obstacles in the field. Geological survey is often difficult to find outcrop because they are covered by vegetation, alluvial layer or as a result of urban development and housing. Seismic method requires a large expense and licensing in the use of dynamite is complicated. Method of gravity requires the operator to go back (looping) to the starting point. Given some of these constraints, therefore it needs a solution in the form of new method that can work more efficiently with less cost. Several studies in various countries have shown a correlation between the presence of hydrocarbons and Radon gas concentration in the earth surface. By utilizing the properties of Radon that can migrate to the surface, the value of Radon concentration in the surface is suggested to provide information about the subsurface structure condition. Radon is the only radioactive substance that gas-phased at atmospheric temperature. It is very abundant in the earth mantle. The vast differences of temperatures and pressures between the mantle and the earth crust cause the convection flow toward earth surface. Radon in gas phase will be carried by convection flow to the surface. The quantity of convection currents depend on the porosity and permeability of rocks where Radon travels within, so that Radon concentration in the earth surface delineates the porosity and permeability of subsurface rock layers. Some measurements were carried out at several locations with various subsurface geological conditions, including proven oil fields, proven geothermal field, and frontier area as a comparison. These measurements show that the average and the background concentration threshold in the proven oil field (11,200 Bq/m3) and proven geothermal field (7,820 Bq/m3) is much higher than the quantity in frontier area (329 and 1,620 Bq/m3). Radon concentration in the earth surface is correlated with the presence of geological faults. Peak concentrations of Radon takes place along the fault.
Microseismic Event Grouping Based on PageRank Linkage at the Newberry Volcano Geothermal Site
NASA Astrophysics Data System (ADS)
Aguiar, A. C.; Myers, S. C.
2016-12-01
The Newberry Volcano DOE FORGE site in Central Oregon has been stimulated two times using high-pressure fluid injection to study the Enhanced Geothermal Systems (EGS) technology. Several hundred microseismic events were generated during the first stimulation in the fall of 2012. Initial locations of this microseismicity do not show well defined subsurface structure in part because event location uncertainties are large (Foulger and Julian, 2013). We focus on this stimulation to explore the spatial and temporal development of microseismicity, which is key to understanding how subsurface stimulation modifies stress, fractures rock, and increases permeability. We use PageRank, Google's initial search algorithm, to determine connectivity within the events (Aguiar and Beroza, 2014) and assess signal-correlation topology for the micro-earthquakes. We then use this information to create signal families and compare these to the spatial and temporal proximity of associated earthquakes. We relocate events within families (identified by PageRank linkage) using the Bayesloc approach (Myers et al., 2007). Preliminary relocations show tight spatial clustering of event families as well as evidence of events relocating to a different cluster than originally reported. We also find that signal similarity (linkage) at several stations, not just one or two, is needed in order to determine that events are in close proximity to one another. We show that indirect linkage of signals using PageRank is a reliable way to increase the number of events that are confidently determined to be similar to one another, which may lead to efficient and effective grouping of earthquakes with similar physical characteristics, such as focal mechanisms and stress drop. Our ultimate goal is to determine whether changes in the state of stress and/or changes in the generation of subsurface fracture networks can be detected using PageRank topology as well as aid in the event relocation to obtain more accurate subsurface structure. Prepared by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-699142.
NASA Astrophysics Data System (ADS)
Callahan, R. P.; Taylor, N. J.; Pasquet, S.; Dueker, K. G.; Riebe, C. S.; Holbrook, W. S.
2016-12-01
Geophysical imaging is rapidly becoming popular for quantifying subsurface critical zone (CZ) architecture. However, a diverse array of measurements and measurement techniques are available, raising the question of which are appropriate for specific study goals. Here we compare two techniques for measuring S-wave velocities (Vs) in the near surface. The first approach quantifies Vs in three dimensions using a passive source and an iterative residual least-squares tomographic inversion. The second approach uses a more traditional active-source seismic survey to quantify Vs in two dimensions via a Monte Carlo surface-wave dispersion inversion. Our analysis focuses on three 0.01 km2 study plots on weathered granitic bedrock in the Southern Sierra Critical Zone Observatory. Preliminary results indicate that depth-averaged velocities from the two methods agree over the scales of resolution of the techniques. While the passive- and active-source techniques both quantify Vs, each method has distinct advantages and disadvantages during data acquisition and analysis. The passive-source method has the advantage of generating a three dimensional distribution of subsurface Vs structure across a broad area. Because this method relies on the ambient seismic field as a source, which varies unpredictably across space and time, data quality and depth of investigation are outside the control of the user. Meanwhile, traditional active-source surveys can be designed around a desired depth of investigation. However, they only generate a two dimensional image of Vs structure. Whereas traditional active-source surveys can be inverted quickly on a personal computer in the field, passive source surveys require significantly more computations, and are best conducted in a high-performance computing environment. We use data from our study sites to compare these methods across different scales and to explore how these methods can be used to better understand subsurface CZ architecture.
Zhang, Ming Zhi; Niu, Wen Quan; Xu, Jian; Li, Yuan
2016-06-01
In order to explore the influences of micro-irrigation and subsoiling before planting on enzyme activity in soil rhizosphere and summer maize yield, an orthogonal experiment was carried out with three factors of micro-irrigation method, irrigation depth, and subsoiling depth. The factor of irrigation method included surface drip irrigation, subsurface drip irrigation, and moistube-irrigation; three levels of irrigation depth were obtained by controlling the lower limit of soil water content to 50%, 65%, and 80% of field holding capacity, respectively; and three depths of deep subsoiling were 20, 40, and 60 cm. The results showed that the activities of catalase and urease increased first and then decreased, while the activity of phosphatase followed an opposite trend in the growth season of summer maize. Compared with surface drip irrigation and moistube-irrigation, subsurface drip irrigation increased the average soil moisture of 0-80 cm layer by 6.3% and 1.8% in the growth season, respectively. Subsurface drip irrigation could significantly increase soil urease activity, roots volume, and yield of summer maize. With the increase of irrigation level, soil phosphatase activity decreased first and then increased, while urease activity and yield increased first and then decreased. The average soil moisture and root volume all increased in the growth season of summer maize. The increments of yield and root volume from subsoiling of 40 to 20 cm were greater than those from 60 to 40 cm. The highest enzyme activity was obtained with the treatment of subsoiling of 40 cm. In terms of improving water resource use efficiency, nitrogen use efficiency, and crop yield, the best management strategy of summer maize was the combination of subsurface drip irrigation, controlling the lower limit of soil water content to 65% of field holding capacity, and 40 cm subsoiling before planting.
NASA Technical Reports Server (NTRS)
Richter, L.; Sims, M.; Economou, T.; Stoker, C.; Wright, I.; Tokano, T.
2004-01-01
Previous in-situ measurements of soil-like materials on the surface of Mars, in particular during the on-going Mars Exploration Rover missions, have shown complex relationships between composition, exposure to the surface environment, texture, and local rocks. In particular, a diversity in both compositional and physical properties could be established that is interpreted to be diagnostic of the complex geologic history of the martian surface layer. Physical and chemical properties vary laterally and vertically, providing insight into the composition of rocks from which soils derive, and environmental conditions that led to soil formation. They are central to understanding whether habitable environments existed on Mars in the distant past. An instrument the Mole for Soil Compositional Studies and Sampling (MOCSS) - is proposed to allow repeated access to subsurface regolith on Mars to depths of up to 1.5 meters for in-situ measurements of elemental composition and of physical and thermophysical properties, as well as for subsurface sample acquisition. MOCSS is based on the compact PLUTO (PLanetary Underground TOol) Mole system developed for the Beagle 2 lander and incorporates a small X-ray fluorescence spectrometer within the Mole which is a new development. Overall MOCSS mass is approximately 1.4 kilograms. Taken together, the MOCSS science data support to decipher the geologic history at the landing site as compositional and textural stratigraphy if they exist - can be detected at a number of places if the MOCSS were accommodated on a rover such as MSL. Based on uncovered stratigraphy, the regional sequence of depositional and erosional styles can be constrained which has an impact on understanding the ancient history of the Martian near-surface layer, considering estimates of Mars soil production rates of 0.5... 1.0 meters per billion years on the one hand and Mole subsurface access capability of approximately 1.5 meters. An overview of the MOCSS, XRS instrument accomodation and the impact that these instruments have on Mars science is discussed.
NASA Astrophysics Data System (ADS)
Marteinsson, V.; Klonowski, A.; Reynisson, E.; Vannier, P.; Sigurdsson, B. D.; Ólafsson, M.
2015-02-01
Colonization of life on Surtsey has been observed systematically since the formation of the island 50 years ago. Although the first colonisers were prokaryotes, such as bacteria and blue-green algae, most studies have been focused on the settlement of plants and animals but less on microbial succession. To explore microbial colonization in diverse soils and the influence of associated vegetation and birds on numbers of environmental bacteria, we collected 45 samples from different soil types on the surface of the island. Total viable bacterial counts were performed with the plate count method at 22, 30 and 37 °C for all soil samples, and the amount of organic matter and nitrogen (N) was measured. Selected samples were also tested for coliforms, faecal coliforms and aerobic and anaerobic bacteria. The subsurface biosphere was investigated by collecting liquid subsurface samples from a 181 m borehole with a special sampler. Diversity analysis of uncultivated biota in samples was performed by 16S rRNA gene sequences analysis and cultivation. Correlation was observed between nutrient deficits and the number of microorganisms in surface soil samples. The lowest number of bacteria (1 × 104-1 × 105 cells g-1) was detected in almost pure pumice but the count was significantly higher (1 × 106-1 × 109 cells g-1) in vegetated soil or pumice with bird droppings. The number of faecal bacteria correlated also to the total number of bacteria and type of soil. Bacteria belonging to Enterobacteriaceae were only detected in vegetated samples and samples containing bird droppings. The human pathogens Salmonella, Campylobacter and Listeria were not in any sample. Both thermophilic bacteria and archaea 16S rDNA sequences were found in the subsurface samples collected at 145 and 172 m depth at 80 and 54 °C, respectively, but no growth was observed in enrichments. The microbiota sequences generally showed low affiliation to any known 16S rRNA gene sequences.
NASA Astrophysics Data System (ADS)
Marteinsson, V.; Klonowski, A.; Reynisson, E.; Vannier, P.; Sigurdsson, B. D.; Ólafsson, M.
2014-09-01
Colonisation of life on Surtsey has been observed systematically since the formation of the island 50 years ago. Although the first colonisers were prokaryotes, such as bacteria and blue-green algae, most studies have been focusing on settlement of plants and animals but less on microbial succession. To explore microbial colonization in diverse soils and the influence of associate vegetation and birds on numbers of environmental bacteria, we collected 45 samples from different soils types on the surface of the island. Total viable bacterial counts were performed with plate count at 22, 30 and 37 °C for all soils samples and the amount of organic matter and nitrogen (N) was measured. Selected samples were also tested for coliforms, faecal coliforms aerobic and anaerobic bacteria. The deep subsurface biosphere was investigated by collecting liquid subsurface samples from a 182 m borehole with a special sampler. Diversity analysis of uncultivated biota in samples was performed by 16S rRNA gene sequences analysis and cultivation. Correlation was observed between N deficits and the number of microorganisms in surface soils samples. The lowest number of bacteria (1 × 104-1 × 105 g-1) was detected in almost pure pumice but the count was significant higher (1 × 106-1 × 109 g-1) in vegetated soil or pumice with bird droppings. The number of faecal bacteria correlated also to the total number of bacteria and type of soil. Bacteria belonging to Enterobacteriaceae were only detected in vegetated and samples containing bird droppings. The human pathogens Salmonella, Campylobacter and Listeria were not in any sample. Both thermophilic bacteria and archaea 16S rDNA sequences were found in the subsurface samples collected at 145 m and 172 m depth at 80 °C and 54 °C, respectively, but no growth was observed in enrichments. The microbiota sequences generally showed low affiliation to any known 16S rRNA gene sequences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, K.H.; Pellerin, L.; Becker, A.
1998-06-01
'Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small due, and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high resolution imaging, accurate measurements are necessary so the field datamore » can be mapped into the space of the subsurface parameters. The authors are developing a non-invasive method for accurately imaging the electrical conductivity and dielectric permittivity of the shallow subsurface using the plane wave impedance approach, known as the magnetotelluric (MT) method at low frequencies. Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques. The summary of the work to date is divided into three sections: equipment procurement, instrumentation, and theoretical developments. For most earth materials, the frequency range from 1 to 100 MHz encompasses a very difficult transition zone between the wave propagation of displacement currents and the diffusive behavior of conduction currents. Test equipment, such as signal generators and amplifiers, does not cover the entire range except at great expense. Hence the authors have divided the range of investigation into three sub-ranges: 1--10 MHz, 10--30 MHz, and 30--100 MHz. Results to date are in the lowest frequency range of 1--10 MHz. Even though conduction currents dominate in this range, as in traditional electromagnetic exploration methods, little work has been done by the geophysical community above 500 kHz.'« less
Jung, Bahngmi; O'Carroll, Denis; Sleep, Brent
2014-10-15
The introduction of nanoscale zero valent iron (nZVI) into the subsurface has recently received significant attention as a potentially effective method for remediation of source zones of chlorinated solvents present as dense nonaqueous phase liquids (DNAPL). One of the challenges in the deployment of nZVI is to achieve good subsurface nZVI mobility to permit delivery of the nZVI to the target treatment zone. Stabilization of nZVI with various polymers has shown promise for enhancing nZVI subsurface mobility, but the impact of subsurface conditions on nZVI mobility has not been fully explored. In this study, the effect of humic acid and kaolinite on the transport of polymer-stabilized nZVI (carboxylmethyl cellulose-surface modified nZVI, CMC90K-RNIP) in sand was investigated using column experiments. In addition, effects of electrolytes on the stability of CMC90K-RNIP in the presence of humic acid, and the stability of humic acid-coated reactive nanoscale iron particles (HA-RNIP) at various humic acid concentrations were investigated. Humic acid enhanced the mobility of bare RNIP, whereas the transport of CMC90K-RNIP was not significantly affected by humic acid injected as a background solution, except at the highest concentration of 500mg/L. At lower pore water velocity, the effect of humic acid on the transport of CMC90K-RNIP was greater than that at high water velocity. Adding kaolinite up to 2% by weight to the sand column reduced the retention of CMC90K-RNIP, but further increases in kaolinite content (to 5%) did not significantly affect nZVI retention. The impact of kaolinite on nZVI retention was more pronounced at lower pore water velocities. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Ignatiev, A.
2000-01-01
Contents include following: Developing Technologies for Space Resource Utilization - Concept for a Planetary Engineering Research Institute. Results of a Conceptual Systems Analysis of Systems for 200 m Deep Sampling of the Martian Subsurface. The Role of Near-Earth Asteroids in Long-Term Platinum Supply. Core Drilling for Extra-Terrestrial Mining. Recommendations by the "LSP and Manufacturing" Group to the NSF-NASA Workshop on Autonomous Construction and Manufacturing for Space Electrical Power Systems. Plasma Processing of Lunar and Planetary Materials. Percussive Force Magnitude in Permafrost. Summary of the Issues Regarding the Martian Subsurface Explorer. A Costing Strategy for Manufacturing in Orbit Using Extraterrestrial Resources. Mine Planning for Asteroid Orebodies. Organic-based Dissolution of Silicates: A New Approach to Element Extraction from LunarRegohth. Historic Frontier Processes Active in Future Space-based Mineral Extraction. The Near-Earth Space Surveillance (NIESS) Mission: Discovery, Tracking, and Characterization of Asteroids, Comets, and Artificial Satellites with a microsatellite. Privatized Space Resource Property Ownership. The Fabrication of Silicon Solar Cells on the Moon Using In-Situ Resources. A New Strategy for Exploration Technology Development: The Human Exploration and Development of Space (HEDS) Exploratiori/Commercialization Technology Initiative. Space Resources for Space Tourism. Recovery of Volatiles from the Moon and Associated Issues. Preliminary Analysis of a Small Robot for Martian Regolith Excavation. The Registration of Space-based Property. Continuous Processing with Mars Gases. Drilling and Logging in Space; An Oil-Well Perspective. LORPEX for Power Surges: Drilling, Rock Crushing. An End-To-End Near-Earth Asteroid Resource Exploitation Plan. An Engineering and Cost Model for Human Space Settlement Architectures: Focus on Space Hotels and Moon/Mars Exploration. The Development and Realization of a Silicon-60-based Economy in CisLunar Space. Our Lunar Destiny: Creating a Lunar Economy. Cost-Effective Approaches to Lunar Passenger Transportation. Lunar Mineral Resources: Extraction and Application. Space Resources Development - The Link Between Human Exploration and the Long-term Commercialization of Space. Toward a More Comprehensive Evaluation of Space Information. Development of Metal Casting Molds by Sol-Gel Technology Using Planetary Resources. A New Concept in Planetary Exploration: ISRU with Power Bursts. Bold Space Ventures Require Fervent Public Support. Hot-pressed Iron from Lunar Soil. The Lunar Dust Problem: A Possible Remedy. Considerations on Use of Lunar Regolith in Lunar Constructions. Experimental Study on Water Production by Hydrogen Reduction of Lunar Soil Simulant in a Fixed Bed Reactor.
Modeling subsurface stormflow initiation in low-relief landscapes
NASA Astrophysics Data System (ADS)
Hopp, Luisa; Vaché, Kellie B.; Rhett Jackson, C.; McDonnell, Jeffrey J.
2015-04-01
Shallow lateral subsurface flow as a runoff generating mechanism at the hillslope scale has mostly been studied in steeper terrain with typical hillside angles of 10 - 45 degrees. These studies have shown that subsurface stormflow is often initiated at the interface between a permeable upper soil layer and a lower conductivity impeding layer, e.g. a B horizon or bedrock. Many studies have identified thresholds of event size and soil moisture states that need to be exceeded before subsurface stormflow is initiated. However, subsurface stormflow generation on low-relief hillslopes has been much less studied. Here we present a modeling study that investigates the initiation of subsurface stormflow on low-relief hillslopes in the Upper Coastal Plain of South Carolina, USA. Hillslopes in this region typically have slope angles of 2-5 degrees. Topsoils are sandy, underlain by a low-conductivity sandy clay loam Bt horizon. Subsurface stormflow has only been intercepted occasionally in a 120 m long trench, and often subsurface flow was not well correlated with stream signals, suggesting a disconnect between subsurface flow on the hillslopes and stream flow. We therefore used a hydrologic model to better understand which conditions promote the initiation of subsurface flow in this landscape, addressing following questions: Is there a threshold event size and soil moisture state for producing lateral subsurface flow? What role does the spatial pattern of depth to the impeding clay layer play for subsurface stormflow dynamics? We reproduced a section of a hillslope, for which high-resolution topographic data and depth to clay measurements were available, in the hydrologic model HYDRUS-3D. Soil hydraulic parameters were based on experimentally-derived data. The threshold analysis was first performed using hourly climate data records for 2009-2010 from the study site to drive the simulation. For this period also trench measurements of subsurface flow were available. In addition, we also ran a longer-term simulation, using daily climate data for a nine year period to include more variable climate conditions in the threshold analysis. The model captured the observed subsurface flow instances very well. The threshold analysis indicated that the occurrence of subsurface stormflow uncommon, with a large proportion of the water perching above the clay layer percolating vertically into the clay layer. Event sizes of approximately 70-80 mm were required for initiating subsurface stormflow. The hourly data from 2009-2010 was subsequently used to test if the actual spatial distribution of depth to clay is a major control for the occurrence and magnitude of lateral subsurface flow. Results suggest that in this low-relief landscape also a spatially uniform mean depth to clay reproduces well the hydrologic behavior.
Crystal structure of laser-induced subsurface modifications in Si
NASA Astrophysics Data System (ADS)
Verburg, P. C.; Smillie, L. A.; Römer, G. R. B. E.; Haberl, B.; Bradby, J. E.; Williams, J. S.; Huis in't Veld, A. J.
2015-08-01
Laser-induced subsurface modification of dielectric materials is a well-known technology. Applications include the production of optical components and selective etching. In addition to dielectric materials, the subsurface modification technology can be applied to silicon, by employing near to mid-infrared radiation. An application of subsurface modifications in silicon is laser-induced subsurface separation, which is a method to separate wafers into individual dies. Other applications for which proofs of concept exist are the formation of waveguides and resistivity tuning. However, limited knowledge is available about the crystal structure of subsurface modifications in silicon. In this work, we investigate the geometry and crystal structure of laser-induced subsurface modifications in monocrystalline silicon wafers. In addition to the generation of lattice defects, we found that transformations to amorphous silicon and Si -iii/Si -xii occur as a result of the laser irradiation.
Wilkening, Jennifer L; Ray, Chris; Varner, Johanna
2015-01-01
The American pika (Ochotona princeps) is considered a sentinel species for detecting ecological effects of climate change. Pikas are declining within a large portion of their range, and ongoing research suggests loss of sub-surface ice as a mechanism. However, no studies have demonstrated physiological responses of pikas to sub-surface ice features. Here we present the first analysis of physiological stress in pikas living in and adjacent to habitats underlain by ice. Fresh fecal samples were collected non-invasively from two adjacent sites in the Rocky Mountains (one with sub-surface ice and one without) and analyzed for glucocorticoid metabolites (GCM). We also measured sub-surface microclimates in each habitat. Results indicate lower GCM concentration in sites with sub-surface ice, suggesting that pikas are less stressed in favorable microclimates resulting from sub-surface ice features. GCM response was well predicted by habitat characteristics associated with sub-surface ice features, such as lower mean summer temperatures. These results suggest that pikas inhabiting areas without sub-surface ice features are experiencing higher levels of physiological stress and may be more susceptible to changing climates. Although post-deposition environmental effects can confound analyses based on fecal GCM, we found no evidence for such effects in this study. Sub-surface ice features are key to water cycling and storage and will likely represent an increasingly important component of water resources in a warming climate. Fecal samples collected from additional watersheds as part of current pika monitoring programs could be used to further characterize relationships between pika stress and sub-surface ice features.
NASA Astrophysics Data System (ADS)
Yao, C.; Mantegazzi, D.; Deschamps, F.; Sanchez-Valle, C.
2013-12-01
Methanol, CH3OH, has been recently observed in several comets and at the surface of Saturn's icy moon Enceladus, [Hodyss et al., 2009]. Its plausible presence in the subsurface ocean could significantly affect the thermal and structural evolution of the satellite [Deschamps et al., 2010]. Methanol lowers the melting temperature of water ice [Vuillard & Sanchez, 1961; Miller & Carpenter, 1964], hence decreasing the efficiency of convective heat transfer through the outer ice Ih shell, and affects the subsurface ocean density and thermo-chemical evolution. However, the phase diagram and the fluid density of the H2O - CH3OH system remains largely unknown at the high pressures and low temperature conditions relevant for the icy moon interiors. In this study, we determined experimentally the liquidus temperature of Ice Ih and Ice VI and the fluid density in the binary water-methanol system (5, 10 and 20 w% CH3OH) from sound velocity measurments by Brillouin scattering spectroscopy over the P-T range 230 - 300 K and 10-4 - 1.2 GPa. The experiments were conducted using a membrane-type diamond anvil cell (mDAC) and an in-house designed Peltier cooling system to achieve the low temperatures of interest. Melting and crystallization in the system was visually monitored and confirmed from changes in the Brillouin spectra and in the pressure dependence of the measured sound velocities. The density of fluids ρ(P, T,x) in the binary system weas determined from the inversion of sound velocities measured in the fluids as a function of pressure along isotherms from 230 to 300 K. The results are used to propose a thermodynamic model for the CH3OH-H2O system over the investigated P-T range and further used to examine the effect of the methanol on the crystallization and thermo-chemical evolution of the subsurface ocean. The implications of these results for the thermal and structural evolution of icy moons, with particular applications to Titan, will be further discussed. References : Deschamps, F., Mousis, O., Sanchez-Valle, C., and Lunine, J.I., Astrophys. J., 2010. Hodyss, R., Parkinson, C.D. Johnson, V.D., Stern, J.V., Goguen, J.D, Yung, Y.L., and Kanik, I., Geophys. Res. Lett., 1992. Miller, G.A., and Carpenter, D.A., J. Chem. Eng. Data, 1964. Vuillard, G., and Sanchez, M., Bull. Soc. Chim. France, 1961.
Spatial and temporal patterns of pesticide losses in a small Swedish agricultural catchment
NASA Astrophysics Data System (ADS)
Sandin, Maria; Piikki, Kristin; Jarvis, Nicholas; Larsbo, Mats; Bishop, Kevin; Kreuger, Jenny
2017-04-01
Research at catchment and regional scales shows that losses of pesticides to surface water often originate from a relatively small fraction of the agricultural landscape. These 'hydrologic source areas' represent areas of land that are highly susceptible to fast transport processes, primarily surface runoff or rapid subsurface flows through soil macropores, either to subsurface field drainage systems or as shallow interflow on more strongly sloping land. A good understanding of the nature of transport pathways for pesticides to surface water in agricultural landscapes is essential for cost-effective identification and implementation of mitigation measures. However, the relative importance of surface and subsurface flows for transport of pesticides to surface waters in Sweden remains largely unknown, since very few studies have been performed under Swedish agro-environmental conditions. We conducted a monitoring study in a small sub-surface drained agricultural catchment in one of the main crop production regions in Sweden. Three small sub-catchments were selected for water sampling based on a high-resolution soil map developed from proximal sensing data; one sub-catchment was dominated by clay soils, another by coarse sandy soils while the third comprised a mix of soil types. Samples were collected from the stream, from field drains discharging into the stream and from within-field surface runoff during spring and early summer in three consecutive years. LC-MS/MS analyses of more than 100 compounds, covering the majority of the polar and semi-polar pesticides most frequently used in Swedish agriculture, were performed on all samples using accredited methods. Information on pesticide applications (products, doses and timing) was obtained from annual interviews with the farmers. There were clear and consistent differences in pesticide losses between the three sub-catchments, with the largest losses occurring in the area with clay soils, and negligible losses from the sandy sub-catchment. This suggests that transport of pesticides to the stream is almost entirely occurring along fast flow paths such as macropore flow to drains or surface runoff. Only a very small proportion of fields are directly connected to the stream by overland pathways, which suggests that macropore flow to drains was the dominant loss pathway in the studied area. Data on pesticide use patterns revealed that compounds were detected in drainage and stream water samples that had not been applied for several years. This suggests that despite the predominant role of fast flow paths in determining losses to the stream, long-term storage along the transport pathways also occurs, presumably in subsoil where degradation is slow.
NASA Astrophysics Data System (ADS)
de Bruijn, Renée; Dabekaussen, Willem; Hijma, Marc; Wiersma, Ane; Abspoel-Bukman, Linda; Boeije, Remco; Courage, Wim; van der Geest, Johan; Hamburg, Marc; Harmsma, Edwin; Helmholt, Kristian; van den Heuvel, Frank; Kruse, Henk; Langius, Erik; Lazovik, Elena
2017-04-01
Due to heterogeneity of the subsurface in the delta environment of the Netherlands, differential subsidence over short distances results in tension and subsequent wear of subsurface infrastructure, such as water and gas pipelines. Due to uncertainties in the build-up of the subsurface, however, it is unknown where this problem is the most prominent. This is a problem for asset managers deciding when a pipeline needs replacement: damaged pipelines endanger security of supply and pose a significant threat to safety, yet premature replacement raises needless expenses. In both cases, costs - financial or other - are high. Therefore, an interdisciplinary research team of geotechnicians, geologists and Big Data engineers from research institutes TNO, Deltares and SkyGeo developed a stochastic model to predict differential subsidence and the probability of consequent pipeline failure on a (sub-)street level. In this project pipeline data from company databases is combined with a stochastic geological model and information on (historical) groundwater levels and overburden material. Probability of pipeline failure is modelled by a coupling with a subsidence model and two separate models on pipeline behaviour under stress, using a probabilistic approach. The total length of pipelines (approx. 200.000 km operational in the Netherlands) and the complexity of the model chain that is needed to calculate a chance of failure, results in large computational challenges, as it requires massive evaluation of possible scenarios to reach the required level of confidence. To cope with this, a scalable computational infrastructure has been developed, composing a model workflow in which components have a heterogeneous technological basis. Three pilot areas covering an urban, a rural and a mixed environment, characterised by different groundwater-management strategies and different overburden histories, are used to evaluate the differences in subsidence and uncertainties that come with different types of land use. Furthermore, the model provides results with a measure of reliability, and determines what is the limiting input factor causing most uncertainty. The model results can be validated and further improved using inSAR data for these pilot areas, by iteratively revising model parameters. The design of the model is such, that it can be applied to the whole of the Netherlands. By assessing differential subsidence and its effect on pipelines over time, the model helps to establish when and where maintenance is due, by indicating what areas are particularly vulnerable, thereby increasing safety and lowering maintenance costs.
Publications - GMC 222 | Alaska Division of Geological & Geophysical
and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a BP Exploration (Alaska) Inc. Malguk #1 well Authors: Unknown Publication Date: 1994 Publisher: Alaska reflectance data from cuttings (440-11,375') of the BP Exploration (Alaska) Inc. Malguk #1 well: Alaska
2018-02-12
Exploration is a tradition at NASA. We reach for new heights and reveal the unknown for the benefit of humankind. On February, 12, 2018, Acting Administrator Robert Lightfoot gave a State of NASA address to roll out the Fiscal Year 2019 Budget proposal. This video highlights the future-facing vision of those plans. #StateofNASA
The Dimensionality of Cognitive Structure: A MIRT Approach and the Use of Subscores
ERIC Educational Resources Information Center
Cheng, Yi-Ling
2016-01-01
The present study explored the dimensionality of cognitive structure from two approaches. The first approach used a famous relation between Visual Spatial Working Memory (VSWM) and calculation to demonstrate the multidimensional item response analyses when true dimensions are unknown. The second approach explored the detectability of dimensions by…
NASA Astrophysics Data System (ADS)
Maryanto, Sukir
2017-11-01
Arjuno Welirang Volcano Geothermal (AWVG) is located around Arjuno-Welirang Volcano in Malang, East Java, about 100 km southwest of Surabaya, the capital city of East Java province, and is still an undeveloped area of the geothermal field. The occurrence of solfatara and fumaroles with magmatic gasses indicated the existence of a volcanic geothermal system in the subsurface. A few hot springs are found in the Arjuno-Welirang volcanic complex, such as Padusan hot spring, Songgoriti hot spring, Kasinan hot spring, and Cangar hot spring. Multi geophysical observations in AWVG complex was carried out in order to explore the subsurface structure in supporting the plan of Geo Techno Park at the location. Gravity, Magnetic, Microearthquake, and Electrical Resistivity Tomography (ERT) methods were used to investigate the major and minor active faulting zones whether hot springs circulation occurs in these zones. The gravity methods allowed us to locate the subsurface structure and to evaluate their geometrical relationship base on density anomaly. Magnetic methods allow us to discriminate conductive areas which could correspond to an increase in thermal fluid circulation in the investigated sites. Micro-earthquakes using particle motion analysis to locate the focal depth related with hydrothermal activity and electrical resistivity tomography survey offers methods to locate more detail subsurface structure and geothermal fluids near the surface by identifying areas affected by the geothermal fluid. The magnetic and gravity anomaly indicates the subsurface structure of AWVG is composed of basalt rock, sulfide minerals, sandstone, and volcanic rock with high minor active fault structure as a medium for fluid circulation. While using micro-earthquake data in AWVG shown shallow focal depth range approximate 60 meters which indicates shallow hydrothermal circulation in AWVG. The geothermal fluid circulation zones along the fault structure resulted in some hot springs in a central and north-western part of AWVG detected by the Electrical Resistivity Tomography, appear to be well correlated with corresponding features derived from the gravity, magnetic, and micro-earthquake survey. We just ongoing process to develop Arjuno Welirang Volcano & Geothermal Research Center (AWVGRC) located at Universitas Brawijaya Agro Techno Park, Cangar in the flank of Arjuno Welirang volcano complex. Due to our initial observations, AWVG has a great potential for a pilot project of an educational geo technopark development area.
Analysis of Fully Polarimetric Laboratory Measurements Performed with the WISDOM Radar
NASA Astrophysics Data System (ADS)
Plettemeier, D.; Ciarletti, V.; Cais, P.; Benedix, W.-S.; Zhang, H.; Hamran, S.-E.; Clifford, S.
2012-04-01
The Ground Penetrating Radar WISDOM (Water Ice Subsurface Deposit Observation on Mars) is one of the instruments selected to be part of the Pasteur payload of ESA's ExoMars Rover mission. The main scientific objectives of the Pasteur payload are to search for evidence of past and present life on Mars and to characterize the nature of the shallow subsurface. WISDOM is capable to obtain subsurface information along the rover path and to explore the first 3 meters of the soil with a vertical resolution of a few centimeters. WISDOM will help identify the location of sedimentary layers, where organic molecules are most likely to be found. By investigating geometry, location and properties of buried reflectors, WISDOM will contribute to the understanding of the 3D geological structure, electromagnetic nature, and, possibly, the state of water and ice in the shallow subsurface. WISDOM measurements will be performed 1) by conducting periodic soundings along the Rover traverse, which will provide a coarse, non-uniform, but positionally well-determined investigation of the landing site and 2) by selected high-resolution surveys of areas of strong scientific interest, which are identified for potential investigation and sampling by the Rover's drill. Such surveys will generally be conducted by acquiring a number of closely spaced parallel profiles. Supported by specific hardware features, like the arrangement of the fully polarimetric antenna system, an interpolated 3-D subsurface map of the local stratigraphy can be constructed from these radar measurements. Laboratory measurements are performed on a planar scanner in the anechoic chamber to simulate the closely spaced parallel profiles of selected high-resolution surveys. To characterize the performance of the radar and to be able to analyze the influence of radiation coupling effects between the rover and the antennas, the fully polarimetric WISDOM antenna system was mounted on a simple rover-like mockup. Calibration algorithms were applied to reduce the interference from radiation coupling and cross-talk between transmitting and receiving antenna. The analysis of the laboratory measurement will show features of the fully polarimetric radar system and quantify most of the important performance parameters. Synthetic aperture processing is implemented to increase the azimuth resolution of radar. The three dimensional reconstruction of the positioning of an arrangement of discrete objects will be shown.
NASA Astrophysics Data System (ADS)
Dong, Y.; Cann, I.; Mackie, R.; Price, N.; Flynn, T. M.; Sanford, R.; Miller, P.; Chia, N.; Kumar, C. G.; Kim, P.; Sivaguru, M.; Fouke, B. W.
2010-12-01
Knowledge of the composition, structure and activity of microbial communities that live in deeply buried sedimentary rocks is fundamental to the future of subsurface biosphere stewardship as it relates to hydrocarbon exploration and extraction, carbon sequestration, gas storage and groundwater management. However, the study of indigenous subsurface microorganisms has been limited by the technical challenges of collecting deep formation water samples that have not been heavily contaminated by the mud used to drill the wells. To address this issue, a “clean-sampling method” deploying the newly developed Schlumberger Quicksilver MDT probe was used to collect a subsurface sample at a depth of 1.79 km (5872 ft) from an exploratory well within Cambrian-age sandstones in the Illinois Basin. This yielded a formation water sample that was determined to have less than 4% drilling mud contamination based on tracking changes in the aqueous geochemistry of the formation water during ~3 hours of pumping at depth prior to sample collection. A suite of microscopy and culture-independent molecular analyses were completed using the DNA extracted from microbial cells in the formation water, which included 454 amplicon pyrosequencing that targeted the V1-V3 hypervariable region of bacterial 16S rRNA gene sequences. Results demonstrated an extremely low diversity microbial community living in formation water at 1.79 km-depth. More than 95 % of the total V1-V3 pyrosequencing reads (n=11574) obtained from the formation water were affiliated with a halophilic γ-proteobacterium and most closely related to the genus Halomonas. In contrast, about 3 % of the V1-V3 sequences in the drilling mud library (n=13044) were classified as genus Halomonas but were distinctly different and distantly related to the formation water Halomonas detected at 1.79 km-depth. These results were consistent with those obtained using a suite of other molecular screens (e.g., Terminal-Restriction Fragment Length Polymorphism (T-RFLP) and the initial full length 16S rRNA amplicon libraries) and bioinformatic analyses (e.g., 16S rRNA and Open Reading Frame (ORF) calls established from the 454 metagenomic community analyses). Functional pathway modeling is underway to evaluate the adaptation of this indigenous microbial community to the hydrologic and geologic history of the deep subsurface environment of the Illinois Basin.
NASA Astrophysics Data System (ADS)
Brouet, Y.; Jacob, K.; Murk, A.; Cerubini, R.; Pommerol, A.; Thomas, N.
2017-12-01
Passive microwave radiometers are instruments which can sense thermal radiation coming from the subsurface (millimeters to centimeters) of an observed area. The penetration depth depends on the dielectric properties of the material, as they constrain the radiative transfer occurring below the surface. In order to interpret the data in terms of physical properties, the dielectric properties of material analogs as a function of several parameters (i.e., frequency, temperature, composition, porosity) have to be taken into account. Interpretations of radiometers data are limited by the few laboratory measurements developed in the millimeter domain, regarding measurements performed with rocky materials, planetary regolith simulants or volcanic ashes (Campbell and Ulrichs, 1969; Bertrand, 2004; Brouet et al., 2015). Furthermore, in preparation to the exploration of the Jupiter's icy moons with the JUICE mission and the Europa mission, Pettinelli et al. (2015) pointed out the lack of laboratory measurements in the microwave domain relevant for icy planetary subsurface observations. Firstly, we will review the existing data obtained with laboratory experiments operating in the millimeter-submillimeter domain relevant for radiometers aiming to determine subsurface properties of Solar System objects. Secondly, we will present an experimental set-up dedicated to the measurements of the dielectric properties of icy and dry samples in the millimeter-submillimeter domain, the sample preparation procedures and the first results. The measurements are based on a free-space reflection method and can be performed with sample temperatures below 200 K, as well as under dry air environment. First measurements have been performed in the 150 - 210 GHz range on a pure water ice sample and a pure hydrated sulfate (epsomite) sample, as well as on water ice/epsomite mixtures, which represent unique data in the mm-smm domain. Finally, we will discuss about the implications for the Submillimeter Wave Instrument planned to be part of the JUICE mission, aiming to sense the subsurface of the Jupiter's icy moons. Bertrand, 2004. PhD manuscript. P. & M. Curie Univ. France. Brouet et al., 2015. A&A, 583, A39. Campbell and Ulrichs, 1969. JGR, 74, 5867-5881. Pettinelli et al., 2015. Rev. Geophys., 53, 593-641.
NASA Astrophysics Data System (ADS)
Bolós, Xavier; Barde-Cabusson, Stéphanie; Pedrazzi, Dario; Martí, Joan; Casas, Albert; Lovera, Raúl; Nadal-Sala, Daniel
2014-11-01
We applied self-potential (SP) and electrical resistivity tomography (ERT) to the exploration of the uppermost part of the substrate geology and shallow structure of La Garrotxa monogenetic volcanic field, part of the European Neogene-Quaternary volcanic province. The aim of the study was to improve knowledge of the shallowest part of the feeding system of these monogenetic volcanoes and of its relationship with the subsurface geology. This study complements previous geophysical studies carried out at a less detailed scale and aimed at identifying deeper structures, and together will constitute the basis to establish volcanic susceptibility in La Garrotxa. SP study complemented previous smaller-scale studies and targeted key areas where ERT could be conducted. The main new results include the generation of resistivity models identifying dykes and faults associated with several monogenetic cones. The combined results confirm that shallow tectonics controlling the distribution of the foci of eruptive activity in this volcanic zone mainly correspond to NNW-SSE and accessorily by NNE-SSW Neogene extensional fissures and faults and concretely show the associated magmatic intrusions. These structures coincide with the deeper ones identified in previous studies, and show that previous Alpine tectonic structures played no apparent role in controlling the loci of this volcanism. Moreover, the results obtained show that the changes in eruption dynamics occurring at different vents located at relatively short distances in this volcanic area are controlled by shallow stratigraphical, structural and hydrogeological differences underneath these monogenetic volcanoes.
Elemental sulfur in Eddy County, New Mexico
Hinds, Jim S.; Cunningham, Richard R.
1970-01-01
Sulfur has been reported in Eddy County, N. Mex., in rocks ranging from Silurian to Holocene in age at depths of 0-15,020 feet. Targets of present exploration are Permian formations in the Delaware Basin and northwest shelf areas at depths of less than 4,000 feet. Most of the reported sulfur occurrences in the shelf area are in the 'Abo' (as used by some subsurface geologists), Yeso, and San Andres Formations and the Artesia Group. Sulfur deposition in the dense dolomites of the 'Abo,' Yeso, and San Andres Formations is attributed to the reduction of ionic sulfate by hydrogen sulfide in formation waters in zones of preexisting porosity and permeability. A similar origin accounts for most of the sulfur deposits in the formations of the Artesia Group, but some of the sulfur in these formations may have originated in place through the alteration of anhydrite to carbonate and sulfur by the metabolic processes of bacteria in the presence of hydrocarbons. Exploration in the Delaware Basin area is directed primarily toward the Castile Formation. Sulfur deposits in the Castile Formation are found in irregular masses of cavernous brecciated secondary carbonate rock enveloped by impermeable anhydrite. The carbonate masses, or 'castiles,' probably originated as collapse features resulting from subsurface solution and upward stopping. Formation of carbonate rock and sulfur in the castiles is attributed to the reduction of brecciated anhydrite by bacteria and hydrocarbons in the same process ascribed to the formation of carbonate and sulfur in the caprocks of salt domes.
NASA Astrophysics Data System (ADS)
Jernsletten, J. A.
2004-12-01
This report describes the outcome of a Fast-Turnoff Transient Electro-Magnetic (TEM) geophysical survey carried out in the Peña de Hierro ("Berg of Iron") field area of the Mars Analog Research and Technology Experiment (MARTE), during May and June of 2003. The MARTE Peña de Hierro field area is located between the towns of Rio Tinto and Nerva in the Andalucia region of Spain. It is about one hour drive West of the city of Sevilla, and also about one hour drive North of Huelva. The high concentration of dissolved iron (and smaller amounts of other metals) in the very acidic water in the Rio Tinto area gives the water its characteristic wine red color, and also means that the water is highly conductive, and such an acidic and conductive fluid is highly suited for exploration by electromagnetic methods. This naturally acidic environment is maintained by bacteria in the groundwater and it is these bacteria that are the main focus of the MARTE project overall, and of this supporting geophysical work. It is the goal of this study to be able to map the subsurface extent of the high conductivity (low resistivity) levels, and thus by proxy the subsurface extent of the acidic groundwater and the bacteria populations. In so doing, the viability of using electromagnetic methods for mapping these subsurface metal-rich water bodies is also examined and demonstrated, and the geophysical data will serve to support drilling efforts. The purpose of this field survey was an initial effort to map certain conductive features in the field area, in support of the drilling operations that are central to the MARTE project. These conductive features include the primary target of exploration for MARTE, the very conductive acidic groundwater in the area (which is extremely rich in metals). Other conductive features include the pyretic ore bodies in the area, as well as extensive mine tailings piles.
Lithosphere temperature model and resource assessment for deep geothermal exploration in Hungary
NASA Astrophysics Data System (ADS)
Bekesi, Eszter; van Wees, Jan-Diederik; Vrijlandt, Mark; Lenkey, Laszlo; Horvath, Ferenc
2017-04-01
The demand for deep geothermal energy has increased considerably over the past years. To reveal potential areas for geothermal exploration, it is crucial to have an insight into the subsurface temperature distribution. Hungary is one of the most suitable countries in Europe for geothermal development, as a result of Early and Middle Miocene extension and subsequent thinning of the lithosphere. Hereby we present the results of a new thermal model of Hungary extending from the surface down to the lithosphere-astenosphere boundary (LAB). Subsurface temperatures were calculated through a regular 3D grid with a horizontal resolution of 2.5 km, a vertical resolution of 200 m for the uppermost 7 km, and 3 km down to the depth of the LAB The model solves the heat equation in steady-state, assuming conduction as the main heat transfer mechanism. At the base, it adopts a constant basal temperature or heat flow condition. For the calibration of the model, more than 5000 temperature measurements were collected from the Geothermal Database of Hungary. The model is built up by five sedimentary layers, upper crust, lower crust, and lithospheric mantle, where each layer has its own thermal properties. The prior thermal properties and basal condition of the model is updated through the ensemble smoother with multiple data assimilation technique. The conductive model shows misfits with the observed temperatures, which cannot be explained by neglected transient effects related to lithosphere extension. These anomalies are explained mostly by groundwater flow in Mesozoic carbonates and other porous sedimentary rocks. To account for the effect of heat convection, we use a pseudo-conductive approach by adjusting the thermal conductivity of the layers where fluid flow may occur. After constructing the subsurface temperature model of Hungary, the resource base for EGS (Enhanced Geothermal Systems) is quantified. To this end, we applied a cash-flow model to translate the geological potential into economical potential for different scenarios in Hungary. The calculations were made for each grid cell of the model. Results of the temperature modeling together with the economical resource assessment provide an indication on the potential sites for future EGS in Hungary.
NASA Astrophysics Data System (ADS)
Jousset, Philippe; Reinsch, Thomas; Henninges, Jan; Blanck, Hanna; Ryberg, Trond
2016-04-01
The fibre optic distributed acoustic sensing technology (DAS) is a "new" sensing system for exploring earth crustal elastic properties and monitoring both strain and seismic waves with unprecedented acquisition characteristics. The DAS technology principle lies in sending successive and coherent pulses of light in an optical fibre and measuring the back-scattered light issued from elastic scattering at random defaults within the fibre. The read-out unit includes an interferometer, which measures light interference patterns continuously. The changes are related to the distance between such defaults and therefore the strain within the fibre can be detected. Along an optical fibre, DAS can be used to acquire acoustic signals with a high spatial (every meter over kilometres) and high temporal resolution (thousand of Hz). Fibre optic technologies were, up to now, mainly applied in perimeter surveillance applications and pipeline monitoring and in boreholes. Previous experiments in boreholes have shown that the DAS technology is well suited for probing subsurface elastic properties, showing new ways for cheaper VSP investigations of the Earth crust. Here, we demonstrate that a cable deployed at ground surface can also help in exploring subsurface properties at crustal scale and monitor earthquake activity in a volcanic environment. Within the framework of the EC funded project IMAGE, we observed a >15 km-long fibre optic cable at the surface connected to a DAS read-out unit. Acoustic data was acquired continuously for 9 days. Hammer shots were performed along the surface cable in order to locate individual acoustic traces and calibrate the spatial distribution of the acoustic information. During the monitoring period both signals from on- and offshore explosive sources and natural seismic events could be recorded. We compare the fibre optic data to conventional seismic records from a dense seismic network deployed on Reykjanes. We show that we can probe and monitor earth crust subsurface with dense acquisition of the ground motion, both in space and in time and over a broad band frequency range.
Using geothermal energy to heat a portion of a formation for an in situ heat treatment process
Pieterson, Roelof; Boyles, Joseph Michael; Diebold, Peter Ulrich
2010-06-08
Methods of using geothermal energy to treat subsurface formations are described herein. Methods for using geothermal energy to treat a subsurface treatment area containing or proximate to hydrocarbons may include producing geothermally heated fluid from at least one subsurface region. Heat from at least a portion of the geothermally heated fluid may be transferred to the subsurface treatment area to heat the subsurface treatment area. At least some hydrocarbon fluids may be produced from the formation.
Characterization of seismic properties across scales: from the laboratory- to the field scale
NASA Astrophysics Data System (ADS)
Grab, Melchior; Quintal, Beatriz; Caspari, Eva; Maurer, Hansruedi; Greenhalgh, Stewart
2016-04-01
When exploring geothermal systems, the main interest is on factors controlling the efficiency of the heat exchanger. This includes the energy state of the pore fluids and the presence of permeable structures building part of the fluid transport system. Seismic methods are amongst the most common exploration techniques to image the deep subsurface in order to evaluate such a geothermal heat exchanger. They make use of the fact that a seismic wave caries information on the properties of the rocks in the subsurface through which it passes. This enables the derivation of the stiffness and the density of the host rock from the seismic velocities. Moreover, it is well-known that the seismic waveforms are modulated while propagating trough the subsurface by visco-elastic effects due to wave induced fluid flow, hence, delivering information about the fluids in the rock's pore space. To constrain the interpretation of seismic data, that is, to link seismic properties with the fluid state and host rock permeability, it is common practice to measure the rock properties of small rock specimens in the laboratory under in-situ conditions. However, in magmatic geothermal systems or in systems situated in the crystalline basement, the host rock is often highly impermeable and fluid transport predominately takes place in fracture networks, consisting of fractures larger than the rock samples investigated in the laboratory. Therefore, laboratory experiments only provide the properties of relatively intact rock and an up-scaling procedure is required to characterize the seismic properties of large rock volumes containing fractures and fracture networks and to study the effects of fluids in such fractured rock. We present a technique to parameterize fractured rock volumes as typically encountered in Icelandic magmatic geothermal systems, by combining laboratory experiments with effective medium calculations. The resulting models can be used to calculate the frequency-dependent bulk modulus K(ω) and shear modulus G(ω), from which the P- and S-wave velocities V P(ω) and V S(ω) and the quality factors QP(ω) and QS(ω) of fluid saturated fractured rock volumes can be estimated. These volumes are much larger and contain more complex structures than the rock samples investigated in the laboratory. Thus, the derived quantities describe the elastic and anelastic (energy loss due to wave induced fluid flow) short-term deformation induced by seismic waves at scales that are relevant for field-scale seismic exploration projects.
Estimation of subsurface thermal structure using sea surface height and sea surface temperature
NASA Technical Reports Server (NTRS)
Kang, Yong Q. (Inventor); Jo, Young-Heon (Inventor); Yan, Xiao-Hai (Inventor)
2012-01-01
A method of determining a subsurface temperature in a body of water is disclosed. The method includes obtaining surface temperature anomaly data and surface height anomaly data of the body of water for a region of interest, and also obtaining subsurface temperature anomaly data for the region of interest at a plurality of depths. The method further includes regressing the obtained surface temperature anomaly data and surface height anomaly data for the region of interest with the obtained subsurface temperature anomaly data for the plurality of depths to generate regression coefficients, estimating a subsurface temperature at one or more other depths for the region of interest based on the generated regression coefficients and outputting the estimated subsurface temperature at the one or more other depths. Using the estimated subsurface temperature, signal propagation times and trajectories of marine life in the body of water are determined.
Defining the Post-Machined Sub-surface in Austenitic Stainless Steels
NASA Astrophysics Data System (ADS)
Srinivasan, N.; Sunil Kumar, B.; Kain, V.; Birbilis, N.; Joshi, S. S.; Sivaprasad, P. V.; Chai, G.; Durgaprasad, A.; Bhattacharya, S.; Samajdar, I.
2018-04-01
Austenitic stainless steels grades, with differences in chemistry, stacking fault energy, and thermal conductivity, were subjected to vertical milling. Anodic potentiodynamic polarization was able to differentiate (with machining speed/strain rate) between different post-machined sub-surfaces in SS 316L and Alloy A (a Cu containing austenitic stainless steel: Sanicroe 28™), but not in SS 304L. However, such differences (in the post-machined sub-surfaces) were revealed in surface roughness, sub-surface residual stresses and misorientations, and in the relative presence of sub-surface Cr2O3 films. It was shown, quantitatively, that higher machining speed reduced surface roughness and also reduced the effective depths of the affected sub-surface layers. A qualitative explanation on the sub-surface microstructural developments was provided based on the temperature-dependent thermal conductivity values. The results herein represent a mechanistic understanding to rationalize the corrosion performance of widely adopted engineering alloys.
NASA Astrophysics Data System (ADS)
Xiong, S.; Muller, J.-P.; Carretero, R. C.
2017-09-01
Subsurface layers are preserved in the polar regions on Mars, representing a record of past climate changes on Mars. Orbital radar instruments, such as the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) onboard ESA Mars Express (MEX) and the SHAllow RADar (SHARAD) onboard the Mars Reconnaissance Orbiter (MRO), transmit radar signals to Mars and receive a set of return signals from these subsurface regions. Layering is a prominent subsurface feature, which has been revealed by both MARSIS and SHARAD radargrams over both polar regions on Mars. Automatic extraction of these subsurface layering is becoming increasingly important as there is now over ten years' of data archived. In this study, we investigate two different methods for extracting these subsurface layers from SHARAD data and compare the results against delineated layers derived manually to validate which methods is better for extracting these layers automatically.
Defining the Post-Machined Sub-surface in Austenitic Stainless Steels
NASA Astrophysics Data System (ADS)
Srinivasan, N.; Sunil Kumar, B.; Kain, V.; Birbilis, N.; Joshi, S. S.; Sivaprasad, P. V.; Chai, G.; Durgaprasad, A.; Bhattacharya, S.; Samajdar, I.
2018-06-01
Austenitic stainless steels grades, with differences in chemistry, stacking fault energy, and thermal conductivity, were subjected to vertical milling. Anodic potentiodynamic polarization was able to differentiate (with machining speed/strain rate) between different post-machined sub-surfaces in SS 316L and Alloy A (a Cu containing austenitic stainless steel: Sanicroe 28™), but not in SS 304L. However, such differences (in the post-machined sub-surfaces) were revealed in surface roughness, sub-surface residual stresses and misorientations, and in the relative presence of sub-surface Cr2O3 films. It was shown, quantitatively, that higher machining speed reduced surface roughness and also reduced the effective depths of the affected sub-surface layers. A qualitative explanation on the sub-surface microstructural developments was provided based on the temperature-dependent thermal conductivity values. The results herein represent a mechanistic understanding to rationalize the corrosion performance of widely adopted engineering alloys.
Total Internal Reflection Microscopy (TIRM) as a nondestructive surface damage assessment tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, Z.M.; Cohen, S.J.; Taylor, J.R.
1994-10-01
An easy to use, nondestructive, method for evaluating subsurface damage in polished substrates has been established at LLNL. Subsurface damage has been related to laser damage in coated optical components used in high power, high repetition rate laser systems. Total Internal Reflection Microscopy (TIRM) has been shown to be a viable nondestructive technique in analyzing subsurface damage in optical components. A successful TIRM system has been established for evaluating subsurface damage on fused silica components. Laser light scattering from subsurface damage sites is collected through a Nomarski microscope. These images are then captured by a CCD camera for analysis onmore » a computer. A variety of optics, including components with intentional subsurface damage due to grinding and polishing, have been analyzed and their TIRM images compared to an existing destructive etching method. Methods for quantitative measurement of subsurface damage are also discussed.« less