Sample records for explosive blast overpressure

  1. On the Interaction and Coalescence if Spherical Blast Waves

    NASA Technical Reports Server (NTRS)

    Kandula, Max; Freeman, Robert J.

    2005-01-01

    The scaling and similarity laws concerning the propagation of isolated spherical blast waves are briefly reviewed. Both point source explosions and high pressure gas explosions are considered. Test data on blast overpressure from the interaction and coalescence of spherical blast waves emanating from explosives in the form of shaped charges of different strength placed in the vicinity of a solid propellant stack are presented. These data are discussed with regard to the scaling laws concerning the decay of blast overpressure. The results point out the possibility of detecting source explosions from far-field pressure measurements.

  2. Blast overpressure after tire explosion: a fatal case.

    PubMed

    Pomara, Cristoforo; D'Errico, Stefano; Riezzo, Irene; Perilli, Gabriela; Volpe, Umberto; Fineschi, Vittorio

    2013-12-01

    Fatal blast injuries are generally reported in literature as a consequence of the detonation of explosives in war settings. The pattern of lesion depends on the position of the victim in relation to the explosion, on whether the blast tracks through air or water, and whether it happens in the open air or within an enclosed space and the distance from the explosion. Tire explosion-related injuries are rarely reported in literature. This study presents a fatal case of blast overpressure due to the accidental explosion of a truck tire occurring in a tire repair shop. A multidisciplinary approach to the fatality involving forensic pathologists and engineers revealed that the accidental explosion, which caused a series of primary and tertiary blast wave injuries, was due to tire deterioration.

  3. Improved Overpressure Recording and Modeling for Near-Surface Explosion Forensics

    NASA Astrophysics Data System (ADS)

    Kim, K.; Schnurr, J.; Garces, M. A.; Rodgers, A. J.

    2017-12-01

    The accurate recording and analysis of air-blast acoustic waveforms is a key component of the forensic analysis of explosive events. Smartphone apps can enhance traditional technologies by providing scalable, cost-effective ubiquitous sensor solutions for monitoring blasts, undeclared activities, and inaccessible facilities. During a series of near-surface chemical high explosive tests, iPhone 6's running the RedVox infrasound recorder app were co-located with high-fidelity Hyperion overpressure sensors, allowing for direct comparison of the resolution and frequency content of the devices. Data from the traditional sensors is used to characterize blast signatures and to determine relative iPhone microphone amplitude and phase responses. A Wiener filter based source deconvolution method is applied, using a parameterized source function estimated from traditional overpressure sensor data, to estimate system responses. In addition, progress on a new parameterized air-blast model is presented. The model is based on the analysis of a large set of overpressure waveforms from several surface explosion test series. An appropriate functional form with parameters determined empirically from modern air-blast and acoustic data will allow for better parameterization of signals and the improved characterization of explosive sources.

  4. Numerical investigation of particle-blast interaction during explosive dispersal of liquids and granular materials

    NASA Astrophysics Data System (ADS)

    Pontalier, Q.; Lhoumeau, M.; Milne, A. M.; Longbottom, A. W.; Frost, D. L.

    2018-05-01

    Experiments show that when a high-explosive charge with embedded particles or a charge surrounded by a layer of liquid or granular material is detonated, the flow generated is perturbed by the motion of the particles and the blast wave profile differs from that of an ideal Friedlander form. Initially, the blast wave overpressure is reduced due to the energy dissipation resulting from compaction, fragmentation, and heating of the particle bed, and acceleration of the material. However, as the blast wave propagates, particle-flow interactions collectively serve to reduce the rate of decay of the peak blast wave overpressure. Computations carried out with a multiphase hydrocode reproduce the general trends observed experimentally and highlight the transition between the particle acceleration/deceleration phases, which is not accessible experimentally, since the particles are obscured by the detonation products. The dependence of the particle-blast interaction and the blast mitigation effectiveness on the mitigant to explosive mass ratio, the particle size, and the initial solid volume fraction is investigated systematically. The reduction in peak blast overpressure is, as in experiments, primarily dependent on the mass ratio of material to explosive, with the particle size, density, and initial porosity of the particle bed playing secondary roles. In the near field, the blast overpressure decreases sharply with distance as the particles are accelerated by the flow. When the particles decelerate due to drag, energy is returned to the flow and the peak blast overpressure recovers and reaches values similar to that of a bare explosive charge for low mass ratios. Time-distance trajectory plots of the particle and blast wave motion with the pressure field superimposed, illustrate the weak pressure waves generated by the motion of the particle layer which travel upstream and perturb the blast wave motion. Computation of the particle and gas momentum flux in the multiphase flow generated during explosive particle dispersal indicates that the particle momentum flux is the dominant term in the near field. Both the gas and particle loading must be taken into account when determining the damage to nearby structures following the detonation of a high-explosive charge surrounded by a material layer.

  5. Numerical investigation of particle-blast interaction during explosive dispersal of liquids and granular materials

    NASA Astrophysics Data System (ADS)

    Pontalier, Q.; Lhoumeau, M.; Milne, A. M.; Longbottom, A. W.; Frost, D. L.

    2018-04-01

    Experiments show that when a high-explosive charge with embedded particles or a charge surrounded by a layer of liquid or granular material is detonated, the flow generated is perturbed by the motion of the particles and the blast wave profile differs from that of an ideal Friedlander form. Initially, the blast wave overpressure is reduced due to the energy dissipation resulting from compaction, fragmentation, and heating of the particle bed, and acceleration of the material. However, as the blast wave propagates, particle-flow interactions collectively serve to reduce the rate of decay of the peak blast wave overpressure. Computations carried out with a multiphase hydrocode reproduce the general trends observed experimentally and highlight the transition between the particle acceleration/deceleration phases, which is not accessible experimentally, since the particles are obscured by the detonation products. The dependence of the particle-blast interaction and the blast mitigation effectiveness on the mitigant to explosive mass ratio, the particle size, and the initial solid volume fraction is investigated systematically. The reduction in peak blast overpressure is, as in experiments, primarily dependent on the mass ratio of material to explosive, with the particle size, density, and initial porosity of the particle bed playing secondary roles. In the near field, the blast overpressure decreases sharply with distance as the particles are accelerated by the flow. When the particles decelerate due to drag, energy is returned to the flow and the peak blast overpressure recovers and reaches values similar to that of a bare explosive charge for low mass ratios. Time-distance trajectory plots of the particle and blast wave motion with the pressure field superimposed, illustrate the weak pressure waves generated by the motion of the particle layer which travel upstream and perturb the blast wave motion. Computation of the particle and gas momentum flux in the multiphase flow generated during explosive particle dispersal indicates that the particle momentum flux is the dominant term in the near field. Both the gas and particle loading must be taken into account when determining the damage to nearby structures following the detonation of a high-explosive charge surrounded by a material layer.

  6. Analysis of MINIE2013 Explosion Air-Blast Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schnurr, Julie M.; Rodgers, Arthur J.; Kim, Keehoon

    We report analysis of air-blast overpressure measurements from the MINIE2013 explosive experiments. The MINIE2013 experiment involved a series of nearly 70 near-surface (height-ofburst, HOB, ranging from -1 to +4 m) low-yield (W=2-20 kg TNT equivalent) chemical highexplosives tests that were recorded at local distances (230 m – 28.5 km). Many of the W and HOB combinations were repeated, allowing for quantification of the variability in air-blast features and corresponding yield estimates. We measured canonical signal features (peak overpressure, impulse per unit area, and positive pulse duration) from the air-blast data and compared these to existing air-blast models. Peak overpressure measurementsmore » showed good agreement with the models at close ranges but tended to attenuate more rapidly at longer range (~ 1 km), which is likely caused by upward refraction of acoustic waves due to a negative vertical gradient of sound speed. We estimated yields of the MINIE2013 explosions using the Integrated Yield Determination Tool (IYDT). Errors of the estimated yields were on average within 30% of the reported yields, and there were no significant differences in the accuracy of the IYDT predictions grouped by yield. IYDT estimates tend to be lower than ground truth yields, possibly because of reduced overpressure amplitudes by upward refraction. Finally, we report preliminary results on a development of a new parameterized air-blast waveform.« less

  7. 14 CFR 417.229 - Far-field overpressure blast effects analysis.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Far-field overpressure blast effects analysis. 417.229 Section 417.229 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... explosions resulting from debris impacts, including the potential for mixing of liquid propellants; (4...

  8. 14 CFR 417.229 - Far-field overpressure blast effects analysis.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Far-field overpressure blast effects analysis. 417.229 Section 417.229 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... explosions resulting from debris impacts, including the potential for mixing of liquid propellants; (4...

  9. 14 CFR 417.229 - Far-field overpressure blast effects analysis.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Far-field overpressure blast effects analysis. 417.229 Section 417.229 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... explosions resulting from debris impacts, including the potential for mixing of liquid propellants; (4...

  10. 14 CFR 417.229 - Far-field overpressure blast effects analysis.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Far-field overpressure blast effects analysis. 417.229 Section 417.229 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... explosions resulting from debris impacts, including the potential for mixing of liquid propellants; (4...

  11. Numerical study of blast characteristics from detonation of homogeneous explosives

    NASA Astrophysics Data System (ADS)

    Balakrishnan, Kaushik; Genin, Franklin; Nance, Doug V.; Menon, Suresh

    2010-04-01

    A new robust numerical methodology is used to investigate the propagation of blast waves from homogeneous explosives. The gas-phase governing equations are solved using a hybrid solver that combines a higher-order shock capturing scheme with a low-dissipation central scheme. Explosives of interest include Nitromethane, Trinitrotoluene, and High-Melting Explosive. The shock overpressure and total impulse are estimated at different radial locations and compared for the different explosives. An empirical scaling correlation is presented for the shock overpressure, incident positive phase pressure impulse, and total impulse. The role of hydrodynamic instabilities to the blast effects of explosives is also investigated in three dimensions, and significant mixing between the detonation products and air is observed. This mixing results in afterburn, which is found to augment the impulse characteristics of explosives. Furthermore, the impulse characteristics are also observed to be three-dimensional in the region of the mixing layer. This paper highlights that while some blast features can be successfully predicted from simple one-dimensional studies, the growth of hydrodynamic instabilities and the impulsive loading of homogeneous explosives require robust three-dimensional investigation.

  12. Characteristic overpressure-impulse-distance curves for vapour cloud explosions using the TNO Multi-Energy model.

    PubMed

    Díaz Alonso, Fernando; González Ferradás, Enrique; Sánchez Pérez, Juan Francisco; Miñana Aznar, Agustín; Ruiz Gimeno, José; Martínez Alonso, Jesús

    2006-09-21

    A number of models have been proposed to calculate overpressure and impulse from accidental industrial explosions. When the blast is produced by ignition of a vapour cloud, the TNO Multi-Energy model is widely used. From the curves given by this model, data are fitted to obtain equations showing the relationship between overpressure, impulse and distance. These equations, referred herein as characteristic curves, can be fitted by means of power equations, which depend on explosion energy and charge strength. Characteristic curves allow the determination of overpressure and impulse at each distance.

  13. Rodent model of direct cranial blast injury.

    PubMed

    Kuehn, Reed; Simard, Philippe F; Driscoll, Ian; Keledjian, Kaspar; Ivanova, Svetlana; Tosun, Cigdem; Williams, Alicia; Bochicchio, Grant; Gerzanich, Volodymyr; Simard, J Marc

    2011-10-01

    Traumatic brain injury resulting from an explosive blast is one of the most serious wounds suffered by warfighters, yet the effects of explosive blast overpressure directly impacting the head are poorly understood. We developed a rodent model of direct cranial blast injury (dcBI), in which a blast overpressure could be delivered exclusively to the head, precluding indirect brain injury via thoracic transmission of the blast wave. We constructed and validated a Cranium Only Blast Injury Apparatus (COBIA) to deliver blast overpressures generated by detonating .22 caliber cartridges of smokeless powder. Blast waveforms generated by COBIA replicated those recorded within armored vehicles penetrated by munitions. Lethal dcBI (LD(50) ∼ 515 kPa) was associated with: (1) apparent brainstem failure, characterized by immediate opisthotonus and apnea leading to cardiac arrest that could not be overcome by cardiopulmonary resuscitation; (2) widespread subarachnoid hemorrhages without cortical contusions or intracerebral or intraventricular hemorrhages; and (3) no pulmonary abnormalities. Sub-lethal dcBI was associated with: (1) apnea lasting up to 15 sec, with transient abnormalities in oxygen saturation; (2) very few delayed deaths; (3) subarachnoid hemorrhages, especially in the path of the blast wave; (4) abnormal immunolabeling for IgG, cleaved caspase-3, and β-amyloid precursor protein (β-APP), and staining for Fluoro-Jade C, all in deep brain regions away from the subarachnoid hemorrhages, but in the path of the blast wave; and (5) abnormalities on the accelerating Rotarod that persisted for the 1 week period of observation. We conclude that exposure of the head alone to severe explosive blast predisposes to significant neurological dysfunction.

  14. On the Propagation and Interaction of Spherical Blast Waves

    NASA Technical Reports Server (NTRS)

    Kandula, Max; Freeman, Robert

    2007-01-01

    The characteristics and the scaling laws of isolated spherical blast waves have been briefly reviewed. Both self-similar solutions and numerical solutions of isolated blast waves are discussed. Blast profiles in the near-field (strong shock region) and the far-field (weak shock region) are examined. Particular attention is directed at the blast overpressure and shock propagating speed. Consideration is also given to the interaction of spherical blast waves. Test data for the propagation and interaction of spherical blast waves emanating from explosives placed in the vicinity of a solid propellant stack are presented. These data are discussed with regard to the scaling laws concerning the decay of blast overpressure.

  15. A Multi-Mode Shock Tube for Investigation of Blast-Induced Traumatic Brain Injury

    PubMed Central

    Reneer, Dexter V.; Hisel, Richard D.; Hoffman, Joshua M.; Kryscio, Richard J.; Lusk, Braden T.

    2011-01-01

    Abstract Blast-induced mild traumatic brain injury (bTBI) has become increasingly common in recent military conflicts. The mechanisms by which non-impact blast exposure results in bTBI are incompletely understood. Current small animal bTBI models predominantly utilize compressed air-driven membrane rupture as their blast wave source, while large animal models use chemical explosives. The pressure-time signature of each blast mode is unique, making it difficult to evaluate the contributions of the different components of the blast wave to bTBI when using a single blast source. We utilized a multi-mode shock tube, the McMillan blast device, capable of utilizing compressed air- and compressed helium-driven membrane rupture, and the explosives oxyhydrogen and cyclotrimethylenetrinitramine (RDX, the primary component of C-4 plastic explosives) as the driving source. At similar maximal blast overpressures, the positive pressure phase of compressed air-driven blasts was longer, and the positive impulse was greater, than those observed for shockwaves produced by other driving sources. Helium-driven shockwaves more closely resembled RDX blasts, but by displacing air created a hypoxic environment within the shock tube. Pressure-time traces from oxyhydrogen-driven shockwaves were very similar those produced by RDX, although they resulted in elevated carbon monoxide levels due to combustion of the polyethylene bag used to contain the gases within the shock tube prior to detonation. Rats exposed to compressed air-driven blasts had more pronounced vascular damage than those exposed to oxyhydrogen-driven blasts of the same peak overpressure, indicating that differences in blast wave characteristics other than peak overpressure may influence the extent of bTBI. Use of this multi-mode shock tube in small animal models will enable comparison of the extent of brain injury with the pressure-time signature produced using each blast mode, facilitating evaluation of the blast wave components contributing to bTBI. PMID:21083431

  16. A multi-mode shock tube for investigation of blast-induced traumatic brain injury.

    PubMed

    Reneer, Dexter V; Hisel, Richard D; Hoffman, Joshua M; Kryscio, Richard J; Lusk, Braden T; Geddes, James W

    2011-01-01

    Blast-induced mild traumatic brain injury (bTBI) has become increasingly common in recent military conflicts. The mechanisms by which non-impact blast exposure results in bTBI are incompletely understood. Current small animal bTBI models predominantly utilize compressed air-driven membrane rupture as their blast wave source, while large animal models use chemical explosives. The pressure-time signature of each blast mode is unique, making it difficult to evaluate the contributions of the different components of the blast wave to bTBI when using a single blast source. We utilized a multi-mode shock tube, the McMillan blast device, capable of utilizing compressed air- and compressed helium-driven membrane rupture, and the explosives oxyhydrogen and cyclotrimethylenetrinitramine (RDX, the primary component of C-4 plastic explosives) as the driving source. At similar maximal blast overpressures, the positive pressure phase of compressed air-driven blasts was longer, and the positive impulse was greater, than those observed for shockwaves produced by other driving sources. Helium-driven shockwaves more closely resembled RDX blasts, but by displacing air created a hypoxic environment within the shock tube. Pressure-time traces from oxyhydrogen-driven shockwaves were very similar those produced by RDX, although they resulted in elevated carbon monoxide levels due to combustion of the polyethylene bag used to contain the gases within the shock tube prior to detonation. Rats exposed to compressed air-driven blasts had more pronounced vascular damage than those exposed to oxyhydrogen-driven blasts of the same peak overpressure, indicating that differences in blast wave characteristics other than peak overpressure may influence the extent of bTBI. Use of this multi-mode shock tube in small animal models will enable comparison of the extent of brain injury with the pressure-time signature produced using each blast mode, facilitating evaluation of the blast wave components contributing to bTBI.

  17. Experimental Study of the Effect of Water Mist Location On Blast Overpressure Attenuation in A Shock Tube

    NASA Astrophysics Data System (ADS)

    Mataradze, Edgar; Chikhradze, Nikoloz; Bochorishvili, Nika; Akhvlediani, Irakli; Tatishvili, Dimitri

    2017-12-01

    Explosion protection technologies are based on the formation of a shock wave mitigation barrier between the protection site and the explosion site. Contemporary protective systems use water mist as an extinguishing barrier. To achieve high effectiveness of the protective system, proper selection of water mist characteristics is important. The main factors defining shock wave attenuation in water mist include droplet size distribution, water concentration in the mist, droplet velocity and geometric properties of mist. This paper examines the process of attenuation of shock waves in mist with droplets ranging from 25 to 400 microns under different conditions of water mist location. Experiments were conducted at the Mining Institute with the use of a shock tube to study the processes of explosion suppression by a water mist barrier. The shock tube consists of a blast chamber, a tube, a system for the dosed supply of water, sensors, data recording equipment, and a process control module. Shock wave overpressure reduction coefficient was studied in the shock tube under two different locations of water mist: a) when water mist is created in direct contact with blast chamber and b) the blast chamber and the mist are separated by air space. It is established that in conditions when the air space distance between the blast chamber and the mist is 1 meter, overpressure reduction coefficient is 1.5-1.6 times higher than in conditions when water mist is created in direct contact with blast chamber.

  18. Experimental investigation of blast mitigation and particle-blast interaction during the explosive dispersal of particles and liquids

    NASA Astrophysics Data System (ADS)

    Pontalier, Q.; Loiseau, J.; Goroshin, S.; Frost, D. L.

    2018-04-01

    The attenuation of a blast wave from a high-explosive charge surrounded by a layer of inert material is investigated experimentally in a spherical geometry for a wide range of materials. The blast wave pressure is inferred from extracting the blast wave velocity with high-speed video as well as direct measurements with pressure transducers. The mitigant consists of either a packed bed of particles, a particle bed saturated with water, or a homogeneous liquid. The reduction in peak blast wave overpressure is primarily dependent on the mitigant to explosive mass ratio, M/C, with the mitigant material properties playing a secondary role. Relative peak pressure mitigation reduces with distance and for low values of M/C (< 10) can return to unmitigated pressure levels in the mid-to-far field. Solid particles are more effective at mitigating the blast overpressure than liquids, particularly in the near field and at low values of M/C, suggesting that the energy dissipation during compaction, deformation, and fracture of the powders plays an important role. The difference in scaled arrival time of the blast and material fronts increases with M/C and scaled distance, with solid particles giving the largest separation between the blast wave and cloud of particles. Surrounding a high-explosive charge with a layer of particles reduces the positive-phase blast impulse, whereas a liquid layer has no influence on the impulse in the far field. Taking the total impulse due to the blast wave and material impact into account implies that the damage to a nearby structure may actually be augmented for a range of distances. These results should be taken into consideration in the design of explosive mitigant systems.

  19. Experimental investigation of blast mitigation and particle-blast interaction during the explosive dispersal of particles and liquids

    NASA Astrophysics Data System (ADS)

    Pontalier, Q.; Loiseau, J.; Goroshin, S.; Frost, D. L.

    2018-05-01

    The attenuation of a blast wave from a high-explosive charge surrounded by a layer of inert material is investigated experimentally in a spherical geometry for a wide range of materials. The blast wave pressure is inferred from extracting the blast wave velocity with high-speed video as well as direct measurements with pressure transducers. The mitigant consists of either a packed bed of particles, a particle bed saturated with water, or a homogeneous liquid. The reduction in peak blast wave overpressure is primarily dependent on the mitigant to explosive mass ratio, M/ C, with the mitigant material properties playing a secondary role. Relative peak pressure mitigation reduces with distance and for low values of M/ C (< 10) can return to unmitigated pressure levels in the mid-to-far field. Solid particles are more effective at mitigating the blast overpressure than liquids, particularly in the near field and at low values of M/ C, suggesting that the energy dissipation during compaction, deformation, and fracture of the powders plays an important role. The difference in scaled arrival time of the blast and material fronts increases with M/ C and scaled distance, with solid particles giving the largest separation between the blast wave and cloud of particles. Surrounding a high-explosive charge with a layer of particles reduces the positive-phase blast impulse, whereas a liquid layer has no influence on the impulse in the far field. Taking the total impulse due to the blast wave and material impact into account implies that the damage to a nearby structure may actually be augmented for a range of distances. These results should be taken into consideration in the design of explosive mitigant systems.

  20. EFFECTS OF OVERPRESSURES IN GROUP SHELTERS ON ANIMALS AND DUMMIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, J.E.; White, C.S.; Chiffelle, T.L.

    1953-09-01

    S>Relative biological hazards of blast were studied in two types of communal air-raid shelters during Shots 1 and 8. Dogs, restrained within the shelters during detonation, were studied pathologically and clinically for blast injuries. Two anthropometric dummies were test objects for displacement studies utilizing high-speed photography. Physical data included pressure vs time and air-drag determinations. During Shot 1, animals sustained marked blast damages (hemorrhages in lungs and abdominal organs), three dogs were ataxic. and the dummies were rather violently displaced. In Shot 8, however, no significant injuries were found in the animals, and the dummies were minimally displaced. Analysis ofmore » the physical data indicated that blast injuries and violent displacements may occur at much lower static overpressures than previously assumed from conventional explosion data. Furthermore, biological damage appeared to be related to the rate of rise of the overpressure and air drag, as well as the maximum overpressure values. (auth)« less

  1. Attenuation of blast pressure behind ballistic protective vests.

    PubMed

    Wood, Garrett W; Panzer, Matthew B; Shridharani, Jay K; Matthews, Kyle A; Capehart, Bruce P; Myers, Barry S; Bass, Cameron R

    2013-02-01

    Clinical studies increasingly report brain injury and not pulmonary injury following blast exposures, despite the increased frequency of exposure to explosive devices. The goal of this study was to determine the effect of personal body armour use on the potential for primary blast injury and to determine the risk of brain and pulmonary injury following a blast and its impact on the clinical care of patients with a history of blast exposure. A shock tube was used to generate blast overpressures on soft ballistic protective vests (NIJ Level-2) and hard protective vests (NIJ Level-4) while overpressure was recorded behind the vest. Both types of vest were found to significantly decrease pulmonary injury risk following a blast for a wide range of conditions. At the highest tested blast overpressure, the soft vest decreased the behind armour overpressure by a factor of 14.2, and the hard vest decreased behind armour overpressure by a factor of 56.8. Addition of body armour increased the 50th percentile pulmonary death tolerance of both vests to higher levels than the 50th percentile for brain injury. These results suggest that ballistic protective body armour vests, especially hard body armour plates, provide substantial chest protection in primary blasts and explain the increased frequency of head injuries, without the presence of pulmonary injuries, in protected subjects reporting a history of blast exposure. These results suggest increased clinical suspicion for mild to severe brain injury is warranted in persons wearing body armour exposed to a blast with or without pulmonary injury.

  2. Design of a Simple Blast Pressure Gauge Based on a Heterodyne Velocimetry Measuring Technique

    DTIC Science & Technology

    2016-08-01

    deployed in an experiment during which the blast pressure was measured from detonation of 114 g of Primasheet 1000 high explosive. The gauge reported... detonation of high explosive where accelerated projectiles and debris may occur. Many times, overpressures generated by such events can be a nuisance to...as that generated by release of energy from a high-explosive detonation or deflagration, materials such as metals or ceramics may be needed. A

  3. Approximating a free-field blast environment in the test section of an explosively driven conical shock tube

    NASA Astrophysics Data System (ADS)

    Stewart, J. B.

    2018-02-01

    This paper presents experimental data on incident overpressures and the corresponding impulses obtained in the test section of an explosively driven 10° (full angle) conical shock tube. Due to the shock tube's steel walls approximating the boundary conditions seen by a spherical sector cut out of a detonating sphere of energetic material, a 5.3-g pentolite shock tube driver charge produces peak overpressures corresponding to a free-field detonation from an 816-g sphere of pentolite. The four test section geometries investigated in this paper (open air, cylindrical, 10° inscribed square frustum, and 10° circumscribed square frustum) provide a variety of different time histories for the incident overpressures and impulses, with a circumscribed square frustum yielding the best approximation of the estimated blast environment that would have been produced by a free-field detonation.

  4. Wireless device for activation of an underground shock wave absorber

    NASA Astrophysics Data System (ADS)

    Chikhradze, M.; Akhvlediani, I.; Bochorishvili, N.; Mataradze, E.

    2011-10-01

    The paper describes the mechanism and design of the wireless device for activation of energy absorber for localization of blast energy in underground openings. The statistics shows that the greatest share of accidents with fatal results associate with explosions in coal mines due to aero-methane and/or air-coal media explosion. The other significant problem is terrorist or accidental explosions in underground structures. At present there are different protective systems to reduce the blast energy. One of the main parts of protective Systems is blast Identification and Registration Module. The works conducted at G. Tsulukidze Mining Institute of Georgia enabled to construct the wireless system of explosion detection and mitigation of shock waves. The system is based on the constant control on overpressure. The experimental research continues to fulfill the system based on both threats, on the constant control on overpressure and flame parameters, especially in underground structures and coal mines. Reaching the threshold value of any of those parameters, the system immediately starts the activation. The absorber contains a pyrotechnic device ensuring the discharge of dispersed water. The operational parameters of wireless device and activation mechanisms of pyrotechnic element of shock wave absorber are discussed in the paper.

  5. Quantification of non-ideal explosion violence with a shock tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Scott I; Hill, Larry G

    There is significant interest in quantifying the blast violence associated with various nonideal explosions. Such data is essential to evaluate the damage potential of both explosive cookoff and terrorist explosive scenarios. We present a technique designed to measure the source energy associated with a non-ideal, asymmetrical, and three-dimensional explosion. A tube is used to confine and focus energy from a blast event into a one-dimensional, quasi-planar shock front. During propagation along the length of the tube, the wave is allowed to shocksteepen into a more ideal form. Pressure transducers then measure the shock overpressure as a function of the distancemore » from the source. One-dimensional blast scaling theory allows calculation of the source energy from this data. This small-scale test method addresses cost and noise concerns as well as boosting and symmetry issues associated with large-scale, three-dimensional, blast arena tests. Results from both ideal explosives and non-ideal explosives are discussed.« less

  6. Sources and Radiation Patterns of Volcano-Acoustic Signals Investigated with Field-Scale Chemical Explosions

    NASA Astrophysics Data System (ADS)

    Bowman, D. C.; Lees, J. M.; Taddeucci, J.; Graettinger, A. H.; Sonder, I.; Valentine, G.

    2014-12-01

    We investigate the processes that give rise to complex acoustic signals during volcanic blasts by monitoring buried chemical explosions with infrasound and audio range microphones, strong motion sensors, and high speed imagery. Acoustic waveforms vary with scaled depth of burial (SDOB, units in meters per cube root of joules), ranging from high amplitude, impulsive, gas expansion dominated signals at low SDOB to low amplitude, longer duration, ground motion dominated signals at high SDOB. Typically, the sudden upward acceleration of the substrate above the blast produces the first acoustic arrival, followed by a second pulse due to the eruption of pressurized gas at the surface. Occasionally, a third overpressure occurs when displaced material decelerates upon impact with the ground. The transition between ground motion dominated and gas release dominated acoustics ranges between 0.0038-0.0018 SDOB, respectively. For example, one explosion registering an SDOB=0.0031 produced two overpressure pulses of approximately equal amplitude, one due to ground motion, the other to gas release. Recorded volcano infrasound has also identified distinct ground motion and gas release components during explosions at Sakurajima, Santiaguito, and Karymsky volcanoes. Our results indicate that infrasound records may provide a proxy for the depth and energy of these explosions. Furthermore, while magma fragmentation models indicate the possibility of several explosions during a single vulcanian eruption (Alidibirov, Bull Volc., 1994), our results suggest that a single explosion can also produce complex acoustic signals. Thus acoustic records alone cannot be used to distinguish between single explosions and multiple closely-spaced blasts at volcanoes. Results from a series of lateral blasts during the 2014 field experiment further indicates whether vent geometry can produce directional acoustic radiation patterns like those observed at Tungarahua volcano (Kim et al., GJI, 2012). Beside infrasonic radiation, our multiparametric dataset also allowed us to investigate other acoustic processes relevant for explosive eruptions, including shock-wave generation and audible sound radiation, and to link them to the starting conditions and evolution of the blasts.

  7. Wireless system for explosion detection in underground structures

    NASA Astrophysics Data System (ADS)

    Chikhradze, M.; Bochorishvili, N.; Akhvlediani, I.; Kukhalashvili, D.; Kalichava, I.; Mataradze, E.

    2009-06-01

    Considering the growing threat of terrorist or accidental explosions in underground stations, underground highway and railway sections improvement of system for protecting people from explosions appears urgent. Current automatic protective devices with blast identification module and blast damping absorbers of various designs as their basic elements cannot be considered effective. Analysis revealed that low reliability of blast detection and delayed generation of start signal for the activation of an absorber are the major disadvantages of protective devices. Besides the transmission of trigger signal to an energy absorber through cable communication reduces the reliability of the operation of protective device due to a possible damage of electric wiring under blast or mechanical attack. This paper presents the outcomes of the studies conducted to select accurate criteria for blast identification and to design wireless system of activation of defensive device. The results of testing of blast detection methods (seismic, EMP, optical, on overpressure) showed that the proposed method, which implies constant monitoring of overpressure in terms of its reliability and response speed, best meets the requirements. Proposed wireless system for explosions identification and activation of protective device consists of transmitter and receiver modules. Transmitter module contains sensor and microprocessor equipped with blast identification software. Receiver module produces activation signal for operation of absorber. Tests were performed in the underground experimental base of Mining Institute. The time between the moment of receiving signal by the sensor and activation of absorber - 640 microsecond; distance between transmitter and receiver in direct tunnel - at least 150m; in tunnel with 900 bending - 50m. This research is sponsored by NATO's Public Diplomacy Division in the framework of "Science for Peace".

  8. Simulation Assisted Risk Assessment: Blast Overpressure Modeling

    NASA Technical Reports Server (NTRS)

    Lawrence, Scott L.; Gee, Ken; Mathias, Donovan; Olsen, Michael

    2006-01-01

    A probabilistic risk assessment (PRA) approach has been developed and applied to the risk analysis of capsule abort during ascent. The PRA is used to assist in the identification of modeling and simulation applications that can significantly impact the understanding of crew risk during this potentially dangerous maneuver. The PRA approach is also being used to identify the appropriate level of fidelity for the modeling of those critical failure modes. The Apollo launch escape system (LES) was chosen as a test problem for application of this approach. Failure modes that have been modeled and/or simulated to date include explosive overpressure-based failure, explosive fragment-based failure, land landing failures (range limits exceeded either near launch or Mode III trajectories ending on the African continent), capsule-booster re-contact during separation, and failure due to plume-induced instability. These failure modes have been investigated using analysis tools in a variety of technical disciplines at various levels of fidelity. The current paper focuses on the development and application of a blast overpressure model for the prediction of structural failure due to overpressure, including the application of high-fidelity analysis to predict near-field and headwinds effects.

  9. An introductory characterization of a combat-casualty-care relevant swine model of closed head injury resulting from exposure to explosive blast.

    PubMed

    Bauman, Richard A; Ling, Geoffrey; Tong, Lawrence; Januszkiewicz, Adolph; Agoston, Dennis; Delanerolle, Nihal; Kim, Young; Ritzel, Dave; Bell, Randy; Ecklund, James; Armonda, Rocco; Bandak, Faris; Parks, Steven

    2009-06-01

    Explosive blast has been extensively used as a tactical weapon in Operation Iraqi Freedom (OIF) and more recently in Operation Enduring Freedom(OEF). The polytraumatic nature of blast injuries is evidence of their effectiveness,and brain injury is a frequent and debilitating form of this trauma. In-theater clinical observations of brain-injured casualties have shown that edema, intracranial hemorrhage, and vasospasm are the most salient pathophysiological characteristics of blast injury to the brain. Unfortunately, little is known about exactly how an explosion produces these sequelae as well as others that are less well documented. Consequently, the principal objective of the current report is to present a swine model of explosive blast injury to the brain. This model was developed during Phase I of the DARPA (Defense Advanced Research Projects Agency) PREVENT (Preventing Violent Explosive Neurotrauma) blast research program. A second objective is to present data that illustrate the capabilities of this model to study the proximal biomechanical causes and the resulting pathophysiological, biochemical,neuropathological, and neurological consequences of explosive blast injury to the swine brain. In the concluding section of this article, the advantages and limitations of the model are considered, explosive and air-overpressure models are compared, and the physical properties of an explosion are identified that potentially contributed to the in-theater closed head injuries resulting from explosions of improvised explosive devices (IEDs).

  10. No neurochemical evidence of brain injury after blast overpressure by repeated explosions or firing heavy weapons.

    PubMed

    Blennow, K; Jonsson, M; Andreasen, N; Rosengren, L; Wallin, A; Hellström, P A; Zetterberg, H

    2011-04-01

    Psychiatric and neurological symptoms are common among soldiers exposed to blast without suffering a direct head injury. It is not known whether such symptoms are direct consequences of blast overpressure. To examine if repeated detonating explosions or firing if of heavy weapons is associated with neurochemical evidence of brain damage. Three controlled experimental studies. In the first, army officers were exposed to repeated firing of a FH77B howitzer or a bazooka. Cerebrospinal fluid (CSF) was taken post-exposure to measure biomarkers for brain damage. In the second, officers were exposed for up to 150 blasts by firing a bazooka, and in the third to 100 charges of detonating explosives of 180 dB. Serial serum samples were taken after exposure. Results were compared with a control group consisting of 19 unexposed age-matched healthy volunteers. The CSF biomarkers for neuronal/axonal damage (tau and neurofilament protein), glial cell injury (GFAP and S-100b), blood-brain barrier damage (CSF/serum albumin ratio) and hemorrhages (hemoglobin and bilirubin) and the serum GFAP and S-100b showed normal and stable levels in all exposed officers. Repeated exposure to high-impact blast does not result in any neurochemical evidence of brain damage. These findings are of importance for soldiers regularly exposed to high-impact blast when firing artillery shells or other types of heavy weapons. © 2010 John Wiley & Sons A/S.

  11. Hydrodynamic Modeling of Air Blast Propagation from the Humble Redwood Chemical High Explosive Detonations Using GEODYN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chipman, V D

    Two-dimensional axisymmetric hydrodynamic models were developed using GEODYN to simulate the propagation of air blasts resulting from a series of high explosive detonations conducted at Kirtland Air Force Base in August and September of 2007. Dubbed Humble Redwood I (HR-1), these near-surface chemical high explosive detonations consisted of seven shots of varying height or depth of burst. Each shot was simulated numerically using GEODYN. An adaptive mesh refinement scheme based on air pressure gradients was employed such that the mesh refinement tracked the advancing shock front where sharp discontinuities existed in the state variables, but allowed the mesh to sufficientlymore » relax behind the shock front for runtime efficiency. Comparisons of overpressure, sound speed, and positive phase impulse from the GEODYN simulations were made to the recorded data taken from each HR-1 shot. Where the detonations occurred above ground or were shallowly buried (no deeper than 1 m), the GEODYN model was able to simulate the sound speeds, peak overpressures, and positive phase impulses to within approximately 1%, 23%, and 6%, respectively, of the actual recorded data, supporting the use of numerical simulation of the air blast as a forensic tool in determining the yield of an otherwise unknown explosion.« less

  12. Two-dimensional explosion experiments examining the interaction between a blast wave and a sand hill

    NASA Astrophysics Data System (ADS)

    Sugiyama, Y.; Izumo, M.; Ando, H.; Matsuo, A.

    2018-05-01

    Two-dimensional explosion experiments were conducted to discuss the interaction between a blast wave and sand and show the mitigation effect of the sand on the blast wave. The explosive used was a detonating cord 1.0 m in length, which was initiated in a sand hill shaped like a triangular prism and whose cross section was an isosceles triangle with base angles of 30°. Sand-hill heights of 30 and 60 mm were used as parameters to discuss the effect of sand mass upon blast-wave strength. The interaction of the blast wave with the sand/air interface causes multiple peaks in the blast wave, which are induced by successive transmissions at the interface. The increase in the sand mass further mitigates the blast parameters of peak overpressure and positive impulse. The results of this experiment can be utilized to validate the numerical method of solving the problem of interaction between a compressible fluid and a particle layer.

  13. Two-dimensional explosion experiments examining the interaction between a blast wave and a sand hill

    NASA Astrophysics Data System (ADS)

    Sugiyama, Y.; Izumo, M.; Ando, H.; Matsuo, A.

    2018-02-01

    Two-dimensional explosion experiments were conducted to discuss the interaction between a blast wave and sand and show the mitigation effect of the sand on the blast wave. The explosive used was a detonating cord 1.0 m in length, which was initiated in a sand hill shaped like a triangular prism and whose cross section was an isosceles triangle with base angles of 30°. Sand-hill heights of 30 and 60 mm were used as parameters to discuss the effect of sand mass upon blast-wave strength. The interaction of the blast wave with the sand/air interface causes multiple peaks in the blast wave, which are induced by successive transmissions at the interface. The increase in the sand mass further mitigates the blast parameters of peak overpressure and positive impulse. The results of this experiment can be utilized to validate the numerical method of solving the problem of interaction between a compressible fluid and a particle layer.

  14. BLAST BIOLOGY. Technical Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, C.S.; Richmond, D.R.

    1959-09-18

    Experimental data regarding the biologic consequences of exposure to several environmental variations associated with actual and simulated explosive detonations were reviewed. Blast biology is discussed relative to primary, secondary, tentiary, and miscellaneous blast effects as those attributable, respectively, to variations in environmental pressure, trauma from blast-produced missiles (both penetrating and nonpenetrating), the consequences of physical displacement of biological targets by blast-produced winds, and hazards due to ground shock, dust, and thermal phenomena not caused by thermal radiation per se. Primary blast effects were considered, noting physical-biophysical factors contributing to the observed pathophysiology. A simple hydrostatic model was utilized diagrammatically inmore » pointing out possible etiologic mechanisms. The gross biologic response to single. "fast"-rising overpressures were described as was the tolerance of mice, rats, guinea pigs. and rabbits to "long"-duration pressure pulses rising "rapidly" in single and double steps. Data regarding biological response to "slowly" rising over-pressures of "long" duration are discussed. Attention was called to the similarities under certain circumstances between thoracic trauma from nonpenetrating missiles and that noted from air blast. The association between air emboli, increase in lung weight (hemorrhage and edema), and mortality was discussed. Data relevant to the clinical symptoms and therapy of blast injury are presented. The relation of blast hazards to nuclear explosions was assessed and one approach to predicting the maximal potential casualties from blast phenomena is presented making use of arbitrary and tentative criteria. (auth)« less

  15. [An experimental study of blast injury].

    PubMed

    Wang, Z G

    1989-01-01

    This paper presents some aspects of the authors' experimental research on blast injury in the past two years. The main results are as follows: (1) A new designed 39 meter-long shock tube for biological test has been built in the laboratory. Its maximal overpressure values are 215 kPa (in open condition) and 505 kPa (in closed condition). It may meet the need for inflicting blast injuries with various degree of severity. (2) A study of the effect of simulating gun muzzle blast wave on sheep indicated that in the single explosion, the threshold overpressure values inflicting the injury of internal organs were: Lung-37.27 kPa, G-I tract-41.0 kPa; the upper respiratory tract-negative until 73 kPa, while in the multiple (20 times) explosions, they were 23.7, 23.7 and 41.4 kPa, respectively. (3) Using TEM, SEM and some other special techniques, such as morphometry, freeze-fracture technique, labelled lanthanum nitrate technique, etc, it was demonstrated that in the lung with blast injury there were significant pathological changes in pulmonary capillary endothelium, alveolar epithelium and their intercellular junctions with apparent increase of permeability. (4) It has been shown that parallel superficial stripelike hemorrhage typical for lung blast injury is "Intercostal marking" instead of "Rib marking". (5) A new type of material (foamy nickel) for protection against blast wave is presented. It was proved that the material can effectively weaken or eliminate the effect of blast wave on human body.

  16. Explosion hazards of LPG-air mixtures in vented enclosure with obstacles.

    PubMed

    Zhang, Qi; Wang, Yaxing; Lian, Zhen

    2017-07-15

    Numerical simulations were performed to study explosion characteristics of liquefied petroleum gas (LPG) explosion in enclosure with a vent. Unlike explosion overpressure and dynamic pressure, explosion temperature of the LPG-air mixture at a given concentration in a vented enclosure has very little variation with obstacle numbers for a given blockage ratio. For an enclosure without obstacle, explosion overpressures for the stoichiometric mixtures and the fuel-lean mixtures reach their maximum within the vent and that for fuel-rich mixture reaches its maximum beyond and near the vent. Dynamic pressures produced by an indoor LPG explosion reach their maximum always beyond the vent no matter obstacles are present or not in the enclosure. A LPG explosion in a vented enclosure with built-in obstacles is strong enough to make the brick and mortar wall with a thickness of 370mm damaged. If there is no obstacle in the enclosure, the lower explosion pressure of several kPa can not break the brick and mortar wall with a thickness of 370mm. For a LPG explosion produced in an enclosure with a vent, main hazards, within the vent, are overpressure and high temperature. However main hazards are dynamic pressure, blast wind, and high temperature beyond the vent. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Relationship between changes in the cochlear blood flow and disorder of hearing function induced by blast injury in guinea pigs.

    PubMed

    Chen, Wei; Wang, Jianmin; Chen, Jing; Chen, Jichuan; Chen, Zhiqiang

    2013-01-01

    The auditory system is the most susceptible to damages from blast waves. Blast injuries always lead to varying degrees of hearing impairment. Although a disorder of the cochlear blood flow (CoBF) has been considered to be related to many pathological processes of the auditory system and to contribute to various types of hearing loss, changes in the CoBF induced by blast waves and the relationship between such changes and hearing impairment are undefined. To observe the changes in the cochlear microcirculation after exposure to an explosion blast, investigate the relationship between changes in the CoBF and hearing impairment and subsequently explore the mechanism responsible for the changes in the CoBF, we detected the perfusion of the cochlear microcirculation and hearing threshold shift after exposure to an explosion blast. Then, an N-nitro-L-arginine-methyl ester (L-NAME, NO synthase inhibitor) solution and artificial perilymph were applied to the round window (RW) of the cochlea before the blast exposure, followed by an evaluation of the CoBF and hearing function. The results indicated that the changes in the CoBF were correlated to the strength of the blast wave. The cochlear blood flow significantly increased when the peak value of the blast overpressure was greater than approximately 45 kPa, and there was no significant change in the cochlear blood flow when the peak value of the blast overpressure was less than approximately 35 kPa. Following local administration of the NO synthase inhibitor L-NAME, the increase in the CoBF induced by the blast was inhibited, and this reduction was significantly associated with the hearing threshold.

  18. Blast wave mitigation by dry aqueous foams

    NASA Astrophysics Data System (ADS)

    Del Prete, E.; Chinnayya, A.; Domergue, L.; Hadjadj, A.; Haas, J.-F.

    2013-02-01

    This paper presents results of experiments and numerical modeling on the mitigation of blast waves using dry aqueous foams. The multiphase formalism is used to model the dry aqueous foam as a dense non-equilibrium two-phase medium as well as its interaction with the high explosion detonation products. New experiments have been performed to study the mass scaling effects. The experimental as well as the numerical results, which are in good agreement, show that more than an order of magnitude reduction in the peak overpressure ratio can be achieved. The positive impulse reduction is less marked than the overpressures. The Hopkinson scaling is also found to hold particularly at larger scales for these two blast parameters. Furthermore, momentum and heat transfers, which have the main dominant role in the mitigation process, are shown to modify significantly the classical blast wave profile and thereafter to disperse the energy from the peak overpressure due to the induced relaxation zone. In addition, the velocity of the fireball, which acts as a piston on its environment, is smaller than in air. Moreover, the greater inertia of the liquid phase tends to project the aqueous foam far from the fireball. The created gap tempers the amplitude of the transmitted shock wave to the aqueous foam. As a consequence, this results in a lowering of blast wave parameters of the two-phase spherical decaying shock wave.

  19. Air Blasts from Cased and Uncased Explosives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glenn, L. A.

    2016-04-12

    The problem of a spherical blast in air is solved using the STUN code. For bare charges, the calculations are shown to be in excellent agreement with previous published results. It is demonstrated that, for an unconfined (uncased) chemical explosive, both range and time to effect scale inversely as the cube root of the yield and directly as the cube root of the ambient air density. It is shown that the peak overpressure decays to roughly 1/10 of ambient pressure in a scaled range of roughly 10 m/kg 1/3 at sea level. At a height of 30 km, where themore » ambient density is a factor of 64 less, the range to the same decay increases to 40 m/kg 1/3 . As a direct result of the scaling a single calculation suffices for all charge sizes and altitudes. Although the close-in results are sensitive to the nature of the explosive source and the equation of state of the air, this sensitivity is shown to virtually disappear at scaled ranges > 0.5 m/kg 1/3 . For cased explosives the case thickness introduces an additional scale factor. Moreover, when the blast wave arrives at the inner case radius the case begins to expand. Fracture occurs when a critical value of the resulting hoop strain is reached, causing the case to shatter into fragments. A model is proposed to describe the size distribution of the fragments and their subsequent motion via drag interaction with the explosion products and ambient air. It is shown that a significant fraction of the charge energy is initially transmitted to the case fragments in the form of kinetic energy; for example, a 1 kg spherical charge with a 5 mm thick steel case has almost 29% of the total charge energy as initial kinetic energy of case fragments. This percentage increases with increasing case thickness and decreases with increasing charge size. The peak overpressure at a given range is 70-85% for cased explosives as compared with uncased and the peak impulse per unit area is 90-95%. The peak overpressure and impulse also decrease rapidly with altitude. The effect of the fragments is to increase lethality. Whereas at a scaled range of 10 m/kg 1/3 , the peak overpressure is an order of magnitude less than the ambient pressure, the number of fragments per unit area is close to 1 m -2 /kg 1/3 , independent of case thickness or altitude. For sufficient ratio of case-to- explosive mass, the number of fragments scales with the cube root of the yield and is independent of case thickness.« less

  20. An Empirical Non-TNT Approach to Launch Vehicle Explosion Modeling

    NASA Technical Reports Server (NTRS)

    Blackwood, James M.; Skinner, Troy; Richardson, Erin H.; Bangham, Michal E.

    2015-01-01

    In an effort to increase crew survivability from catastrophic explosions of Launch Vehicles (LV), a study was conducted to determine the best method for predicting LV explosion environments in the near field. After reviewing such methods as TNT equivalence, Vapor Cloud Explosion (VCE) theory, and Computational Fluid Dynamics (CFD), it was determined that the best approach for this study was to assemble all available empirical data from full scale launch vehicle explosion tests and accidents. Approximately 25 accidents or full-scale tests were found that had some amount of measured blast wave, thermal, or fragment explosion environment characteristics. Blast wave overpressure was found to be much lower in the near field than predicted by most TNT equivalence methods. Additionally, fragments tended to be larger, fewer, and slower than expected if the driving force was from a high explosive type event. In light of these discoveries, a simple model for cryogenic rocket explosions is presented. Predictions from this model encompass all known applicable full scale launch vehicle explosion data. Finally, a brief description of on-going analysis and testing to further refine the launch vehicle explosion environment is discussed.

  1. The spatial distribution patterns of condensed phase post-blast explosive residues formed during detonation.

    PubMed

    Abdul-Karim, Nadia; Blackman, Christopher S; Gill, Philip P; Karu, Kersti

    2016-10-05

    The continued usage of explosive devices, as well as the ever growing threat of 'dirty' bombs necessitates a comprehensive understanding of particle dispersal during detonation events in order to develop effectual methods for targeting explosive and/or additive remediation efforts. Herein, the distribution of explosive analytes from controlled detonations of aluminised ammonium nitrate and an RDX-based explosive composition were established by systematically sampling sites positioned around each firing. This is the first experimental study to produce evidence that the post-blast residue mass can distribute according to an approximate inverse-square law model, while also demonstrating for the first time that distribution trends can vary depending on individual analytes. Furthermore, by incorporating blast-wave overpressure measurements, high-speed imaging for fireball volume recordings, and monitoring of environmental conditions, it was determined that the principle factor affecting all analyte dispersals was the wind direction, with other factors affecting specific analytes to varying degrees. The dispersal mechanism for explosive residue is primarily the smoke cloud, a finding which in itself has wider impacts on the environment and fundamental detonation theory. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Low-cost blast wave generator for studies of hearing loss and brain injury: blast wave effects in closed spaces.

    PubMed

    Newman, Andrew J; Hayes, Sarah H; Rao, Abhiram S; Allman, Brian L; Manohar, Senthilvelan; Ding, Dalian; Stolzberg, Daniel; Lobarinas, Edward; Mollendorf, Joseph C; Salvi, Richard

    2015-03-15

    Military personnel and civilians living in areas of armed conflict have increased risk of exposure to blast overpressures that can cause significant hearing loss and/or brain injury. The equipment used to simulate comparable blast overpressures in animal models within laboratory settings is typically very large and prohibitively expensive. To overcome the fiscal and space limitations introduced by previously reported blast wave generators, we developed a compact, low-cost blast wave generator to investigate the effects of blast exposures on the auditory system and brain. The blast wave generator was constructed largely from off the shelf components, and reliably produced blasts with peak sound pressures of up to 198dB SPL (159.3kPa) that were qualitatively similar to those produced from muzzle blasts or explosions. Exposure of adult rats to 3 blasts of 188dB peak SPL (50.4kPa) resulted in significant loss of cochlear hair cells, reduced outer hair cell function and a decrease in neurogenesis in the hippocampus. Existing blast wave generators are typically large, expensive, and are not commercially available. The blast wave generator reported here provides a low-cost method of generating blast waves in a typical laboratory setting. This compact blast wave generator provides scientists with a low cost device for investigating the biological mechanisms involved in blast wave injury to the rodent cochlea and brain that may model many of the damaging effects sustained by military personnel and civilians exposed to intense blasts. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Low-Cost Blast Wave Generator for Studies of Hearing Loss and Brain Injury: Blast Wave Effects in Closed Spaces

    PubMed Central

    Newman, Andrew J.; Hayes, Sarah H.; Rao, Abhiram S.; Allman, Brian L.; Manohar, Senthilvelan; Ding, Dalian; Stolzberg, Daniel; Lobarinas, Edward; Mollendorf, Joseph C.; Salvi, Richard

    2015-01-01

    Background Military personnel and civilians living in areas of armed conflict have increased risk of exposure to blast overpressures that can cause significant hearing loss and/or brain injury. The equipment used to simulate comparable blast overpressures in animal models within laboratory settings is typically very large and prohibitively expensive. New Method To overcome the fiscal and space limitations introduced by previously reported blast wave generators, we developed a compact, low-cost blast wave generator to investigate the effects of blast exposures on the auditory system and brain. Results The blast wave generator was constructed largely from off the shelf components, and reliably produced blasts with peak sound pressures of up to 198 dB SPL (159.3 kPa) that were qualitatively similar to those produced from muzzle blasts or explosions. Exposure of adult rats to 3 blasts of 188 dB peak SPL (50.4 kPa) resulted in significant loss of cochlear hair cells, reduced outer hair cell function and a decrease in neurogenesis in the hippocampus. Comparison to existing methods Existing blast wave generators are typically large, expensive, and are not commercially available. The blast wave generator reported here provides a low-cost method of generating blast waves in a typical laboratory setting. Conclusions This compact blast wave generator provides scientists with a low cost device for investigating the biological mechanisms involved in blast wave injury to the rodent cochlea and brain that may model many of the damaging effects sustained by military personnel and civilians exposed to intense blasts. PMID:25597910

  4. Ultrastructural brain abnormalities and associated behavioral changes in mice after low-intensity blast exposure.

    PubMed

    Song, Hailong; Konan, Landry M; Cui, Jiankun; Johnson, Catherine E; Langenderfer, Martin; Grant, DeAna; Ndam, Tina; Simonyi, Agnes; White, Tommi; Demirci, Utkan; Mott, David R; Schwer, Doug; Hubler, Graham K; Cernak, Ibolja; DePalma, Ralph G; Gu, Zezong

    2018-07-16

    Explosive blast-induced mild traumatic brain injury (mTBI), a "signature wound" of recent military conflicts, commonly affects service members. While past blast injury studies have provided insights into TBI with moderate- to high-intensity explosions, the impact of primary low-intensity blast (LIB)-mediated pathobiology on neurological deficits requires further investigation. Our prior considerations of blast physics predicted ultrastructural injuries at nanoscale levels. Here, we provide quantitative data using a primary LIB injury murine model exposed to open field detonation of 350 g of high-energy explosive C4. We quantified ultrastructural and behavioral changes up to 30 days post blast injury (DPI). The use of an open-field experimental blast generated a primary blast wave with a peak overpressure of 6.76 PSI (46.6 kPa) at a 3-m distance from the center of the explosion, a positive phase duration of approximate 3.0 milliseconds (ms), a maximal impulse of 8.7 PSI × ms and a sharp rising time of 9 × 10 -3  ms, with no apparent impact/acceleration in exposed animals. Neuropathologically, myelinated axonal damage was observed in blast-exposed groups at 7 DPI. Using transmission electron microscopy, we observed and quantified myelin sheath defects and mitochondrial abnormalities at 7 and 30 DPI. Inverse correlations between blast intensities and neurobehavioral outcomes including motor activities, anxiety levels, nesting behavior, spatial learning and memory occurred. These observations uncover unique ultrastructural brain abnormalities and associated behavioral changes due to primary blast injury and provide key insights into its pathogenesis and potential treatment. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Repeated Low-Level Blast Exposure: A Descriptive Human Subjects Study.

    PubMed

    Carr, Walter; Stone, James R; Walilko, Tim; Young, Lee Ann; Snook, Tianlu Li; Paggi, Michelle E; Tsao, Jack W; Jankosky, Christopher J; Parish, Robert V; Ahlers, Stephen T

    2016-05-01

    The relationship between repeated exposure to blast overpressure and neurological function was examined in the context of breacher training at the U.S. Marine Corps Weapons Training Battalion Dynamic Entry School. During this training, Students are taught to apply explosive charges to achieve rapid ingress into secured buildings. For this study, both Students and Instructors participated in neurobehavioral testing, blood toxin screening, vestibular/auditory testing, and neuroimaging. Volunteers wore instrumentation during training to allow correlation of human response measurements and blast overpressure exposure. The key findings of this study were from high-memory demand tasks and were limited to the Instructors. Specific tests showing blast-related mean differences were California Verbal Learning Test II, Automated Neuropsychological Assessment Metrics subtests (Match-to-Sample, Code Substitution Delayed), and Delayed Matching-to-Sample 10-second delay condition. Importantly, apparent deficits were paralleled with functional magnetic resonance imaging using the n-back task. The findings of this study are suggestive, but not conclusive, owing to small sample size and effect. The observed changes yield descriptive evidence for potential neurological alterations in the subset of individuals with occupational history of repetitive blast exposure. This is the first study to integrate subject instrumentation for measurement of individual blast pressure exposure, neurocognitive testing, and neuroimaging. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.

  6. Brain Vulnerability to Repeated Blast Overpressure and Polytrauma

    DTIC Science & Technology

    2015-10-01

    characterization of the mouse model of repeated blast also found no cumula- tive effect of repeated blast on cortical levels of reactive oxygen species [39]. C...overpressure in rats to investigate the cumulative effects of multiple blast exposures on neurologic status, neurobehavioral function, and brain...preclinical model of blast overpressure in rats to investigate the cumulative effects of multiple blast exposures using neurological, neurochemical

  7. Armored garment for protecting

    DOEpatents

    Purvis, James W [Albuquerque, NM; Jones, II, Jack F.; Whinery, Larry D [Albuquerque, NM; Brazfield, Richard [Albuquerque, NM; Lawrie, Catherine [Tijeras, NM; Lawrie, David [Tijeras, NM; Preece, Dale S [Watkins, CO

    2009-08-11

    A lightweight, armored protective garment for protecting an arm or leg from blast superheated gases, blast overpressure shock, shrapnel, and spall from a explosive device, such as a Rocket Propelled Grenade (RPG) or a roadside Improvised Explosive Device (IED). The garment has a ballistic sleeve made of a ballistic fabric, such as an aramid fiber (e.g., KEVLAR.RTM.) cloth, that prevents thermal burns from the blast superheated gases, while providing some protection from fragments. Additionally, the garment has two or more rigid armor inserts that cover the upper and lower arm and protect against high-velocity projectiles, shrapnel and spall. The rigid inserts can be made of multiple plies of a carbon/epoxy composite laminate. The combination of 6 layers of KEVLAR.RTM. fabric and 28 plies of carbon/epoxy laminate inserts (with the inserts being sandwiched in-between the KEVLAR.RTM. layers), can meet the level IIIA fragmentation minimum V.sub.50 requirements for the US Interceptor Outer Tactical Vest.

  8. Time variation in the reaction-zone structure of two-phase spray detonations.

    NASA Technical Reports Server (NTRS)

    Pierce, T. H.; Nicholls, J. A.

    1973-01-01

    A detailed theoretical analysis of the time-varying detonation structure in a monodisperse spray is presented. The theory identifies experimentally observed reaction-zone overpressures as deriving from blast waves formed therein by the explosive ignition of the spray droplets, and follows in time the motion, change in strength, and interactions of these blast waves with one another, and with the leading shock. The results are compared with experimental data by modeling the motion of a finite-size circular pressure transducer through the theoretical data field in an x-t space.

  9. Gangliosides and Ceramides Change in a Mouse Model of Blast Induced Traumatic Brain Injury

    PubMed Central

    2013-01-01

    Explosive detonations generate atmospheric pressure changes that produce nonpenetrating blast induced “mild” traumatic brain injury (bTBI). The structural basis for mild bTBI has been extremely controversial. The present study applies matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging to track the distribution of gangliosides in mouse brain tissue that were exposed to very low level of explosive detonations (2.5–5.5 psi peak overpressure). We observed major increases of the ganglioside GM2 in the hippocampus, thalamus, and hypothalamus after a single blast exposure. Moreover, these changes were accompanied by depletion of ceramides. No neurological or brain structural signs of injury could be inferred using standard light microscopic techniques. The first source of variability is generated by the Latency between blast and tissue sampling (peak intensity of the blast wave). These findings suggest that subtle molecular changes in intracellular membranes and plasmalemma compartments may be biomarkers for biological responses to mild bTBI. This is also the first report of a GM2 increase in the brains of mature mice from a nongenetic etiology. PMID:23590251

  10. Simulating the blast wave from detonation of a charge using a balloon of compressed air

    NASA Astrophysics Data System (ADS)

    Blanc, L.; Santana Herrera, S.; Hanus, J. L.

    2018-07-01

    This paper investigates a simple numerical method, based on the release of a pressurized spherical air volume, to predict or reproduce the main characteristics of the blast environment from the detonation of solid or gaseous charges. This approach aims to give an alternative to the use of a steady-state detonation model and a Jones-Wilkins-Lee equation of state to describe the expansion of the detonation products, especially when the explosive parameters are unknown and a TNT equivalent is used. The validity of the proposed approach is assessed through the comparison of predicted overpressure and impulse at different distances from the explosion with that of TNT and stoichiometric propane-oxygen explosions. It is also shown that, for gaseous detonations, a better agreement is obtained with the rationally optimized compressed balloon than with the use of a Jones-Wilkins-Lee model and a TNT equivalent mass.

  11. Simulating the blast wave from detonation of a charge using a balloon of compressed air

    NASA Astrophysics Data System (ADS)

    Blanc, L.; Santana Herrera, S.; Hanus, J. L.

    2017-11-01

    This paper investigates a simple numerical method, based on the release of a pressurized spherical air volume, to predict or reproduce the main characteristics of the blast environment from the detonation of solid or gaseous charges. This approach aims to give an alternative to the use of a steady-state detonation model and a Jones-Wilkins-Lee equation of state to describe the expansion of the detonation products, especially when the explosive parameters are unknown and a TNT equivalent is used. The validity of the proposed approach is assessed through the comparison of predicted overpressure and impulse at different distances from the explosion with that of TNT and stoichiometric propane-oxygen explosions. It is also shown that, for gaseous detonations, a better agreement is obtained with the rationally optimized compressed balloon than with the use of a Jones-Wilkins-Lee model and a TNT equivalent mass.

  12. Development of a rat model for studying blast-induced traumatic brain injury.

    PubMed

    Cheng, Jingmin; Gu, Jianwen; Ma, Yuan; Yang, Tao; Kuang, Yongqin; Li, Bingcang; Kang, Jianyi

    2010-07-15

    Blast-induced traumatic brain injury (TBI) has been the predominant cause of neurotrauma in current military conflicts, and it is also emerging as a potential threat in civilian terrorism. The etiology of TBI, however, is poorly understood. Further study on the mechanisms and treatment of blast injury is urgently needed. We developed a unique rat model to simulate blast effects that commonly occur on the battlefield. An electric detonator with the equivalent of 400 mg TNT was developed as the explosive source. The detonator's peak overpressure and impulse of explosion shock determined the explosion intensity in a distance-dependent manner. Ninety-six male adult Sprague-Dawley rats were randomly divided into four groups: 5-cm, 7.5-cm, 10-cm, and control groups. The rat was fixed in a specially designed cabin with an adjustable aperture showing the frontal, parietal, and occipital parts of the head exposed to explosion; the eyes, ears, mouth, and nose were protected by the cabin. After each explosion, we assessed the physiologic, neuropathologic, and neurobehavioral consequences of blast injury. Changes of brain tissue water content and neuron-specific enolase (NSE) expression were detected. The results in the 7.5-cm group show that 87% rats developed apnea, limb seizure, poor appetite, and limpness. Diffuse subarachnoid hemorrhage and edema could be seen within the brain parenchyma, which showed a loss of integrity. Capillary damage and enlarged intercellular and vascular space in the cortex, along with a tattered nerve fiber were observed. These findings demonstrate that we have provided a reliable and reproducible blast-induced TBI model in rats. Copyright 2010 Elsevier B.V. All rights reserved.

  13. Assessing Neuro-Systemic & Behavioral Components in the Pathophysiology of Blast-Related Brain Injury

    PubMed Central

    Kobeissy, Firas; Mondello, Stefania; Tümer, Nihal; Toklu, Hale Z.; Whidden, Melissa A.; Kirichenko, Nataliya; Zhang, Zhiqun; Prima, Victor; Yassin, Walid; Anagli, John; Chandra, Namas; Svetlov, Stan; Wang, Kevin K. W.

    2013-01-01

    Among the U.S. military personnel, blast injury is among the leading causes of brain injury. During the past decade, it has become apparent that even blast injury as a form of mild traumatic brain injury (mTBI) may lead to multiple different adverse outcomes, such as neuropsychiatric symptoms and long-term cognitive disability. Blast injury is characterized by blast overpressure, blast duration, and blast impulse. While the blast injuries of a victim close to the explosion will be severe, majority of victims are usually at a distance leading to milder form described as mild blast TBI (mbTBI). A major feature of mbTBI is its complex manifestation occurring in concert at different organ levels involving systemic, cerebral, neuronal, and neuropsychiatric responses; some of which are shared with other forms of brain trauma such as acute brain injury and other neuropsychiatric disorders such as post-traumatic stress disorder. The pathophysiology of blast injury exposure involves complex cascades of chronic psychological stress, autonomic dysfunction, and neuro/systemic inflammation. These factors render blast injury as an arduous challenge in terms of diagnosis and treatment as well as identification of sensitive and specific biomarkers distinguishing mTBI from other non-TBI pathologies and from neuropsychiatric disorders with similar symptoms. This is due to the “distinct” but shared and partially identified biochemical pathways and neuro-histopathological changes that might be linked to behavioral deficits observed. Taken together, this article aims to provide an overview of the current status of the cellular and pathological mechanisms involved in blast overpressure injury and argues for the urgent need to identify potential biomarkers that can hint at the different mechanisms involved. PMID:24312074

  14. Assessing neuro-systemic & behavioral components in the pathophysiology of blast-related brain injury.

    PubMed

    Kobeissy, Firas; Mondello, Stefania; Tümer, Nihal; Toklu, Hale Z; Whidden, Melissa A; Kirichenko, Nataliya; Zhang, Zhiqun; Prima, Victor; Yassin, Walid; Anagli, John; Chandra, Namas; Svetlov, Stan; Wang, Kevin K W

    2013-11-21

    Among the U.S. military personnel, blast injury is among the leading causes of brain injury. During the past decade, it has become apparent that even blast injury as a form of mild traumatic brain injury (mTBI) may lead to multiple different adverse outcomes, such as neuropsychiatric symptoms and long-term cognitive disability. Blast injury is characterized by blast overpressure, blast duration, and blast impulse. While the blast injuries of a victim close to the explosion will be severe, majority of victims are usually at a distance leading to milder form described as mild blast TBI (mbTBI). A major feature of mbTBI is its complex manifestation occurring in concert at different organ levels involving systemic, cerebral, neuronal, and neuropsychiatric responses; some of which are shared with other forms of brain trauma such as acute brain injury and other neuropsychiatric disorders such as post-traumatic stress disorder. The pathophysiology of blast injury exposure involves complex cascades of chronic psychological stress, autonomic dysfunction, and neuro/systemic inflammation. These factors render blast injury as an arduous challenge in terms of diagnosis and treatment as well as identification of sensitive and specific biomarkers distinguishing mTBI from other non-TBI pathologies and from neuropsychiatric disorders with similar symptoms. This is due to the "distinct" but shared and partially identified biochemical pathways and neuro-histopathological changes that might be linked to behavioral deficits observed. Taken together, this article aims to provide an overview of the current status of the cellular and pathological mechanisms involved in blast overpressure injury and argues for the urgent need to identify potential biomarkers that can hint at the different mechanisms involved.

  15. An Experimental Study of Unconfined Hydrogen/Oxygen and Hydrogen/Air Explosions

    NASA Technical Reports Server (NTRS)

    Richardson, Erin; Skinner, Troy; Blackwood, James; Hays, Michael; Bangham, Mike; Jackson, Austin

    2014-01-01

    Development tests are being conducted to characterize unconfined Hydrogen/air and Hydrogen/Oxygen blast characteristics. Most of the existing experiments for these types of explosions address contained explosions, like shock tubes. Therefore, the Hydrogen Unconfined Combustion Test Apparatus (HUCTA) has been developed as a gaseous combustion test device for determining the relationship between overpressure, impulse, and flame speed at various mixture ratios for unconfined reactions of hydrogen/oxygen and hydrogen/air. The system consists of a central platform plumbed to inject and mix component gasses into an attached translucent bag or balloon while monitoring hydrogen concentration. All tests are ignited with a spark with plans to introduce higher energy ignition sources in the future. Surrounding the platform are 9 blast pressure "Pencil" probes. Two high-speed cameras are used to observe flame speed within the combustion zone. The entire system is raised approx. 6 feet off the ground to remove any ground reflection from the measurements. As of this writing greater than 175 tests have been performed and include Design of Experiments test sets. Many of these early tests have used bags or balloons between approx. 340L and approx. 1850L to quantify the effect of gaseous mixture ratio on the properties of interest. All data acquisition is synchronized between the high-speed cameras, the probes, and the ignition system to observe flame and shock propagation. Successful attempts have been made to couple the pressure profile with the progress of the flame front within the combustion zone by placing a probe within the bag. Overpressure and impulse data obtained from these tests are used to anchor engineering analysis tools, CFD models and in the development of blast and fragment acceleration models.

  16. Stochastic Lanchester Air-To-Air Campaign Model: Methods Used to Generate Model Outputs and a User’s Guide: 2007

    DTIC Science & Technology

    2007-05-01

    only the non-dimensional parameter Kill Rate Ra- tio = KRR = κ = kb/kr: . [Eq. 2-6] 1(0)Pexcept0(0)P Mmb,κPmP Nnr, nPP ;NnrandMmb ,nPκPm)Pnκ(mP NM,nm...varies with explosive yield E. Dy- namic overpressure p is proportional to the square of the air velocity v immedi- ately behind the blast wave ...ρ and the time t required for the blast wave to reach the locations of interest. According to the principles of dimensional analysis, v can be

  17. Planar blast scaling with condensed-phase explosives in a shock tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Scott L

    2011-01-25

    Blast waves are strong shock waves that result from large power density deposition into a fluid. The rapid energy release of high-explosive (HE) detonation provides sufficiently high power density for blast wave generation. Often it is desirable to quantify the energy released by such an event and to determine that energy relative to other reference explosives to derive an explosive-equivalence value. In this study, we use condensed-phase explosives to drive a blast wave in a shock tube. The explosive material and quantity were varied to produce blast waves of differing strengths. Pressure transducers at varying lengths measured the post-shock pressure,more » shock-wave arrival time and sidewall impulse associated with each test. Blast-scaling concepts in a one-dimensional geometry were then used to both determine the energy release associated with each test and to verify the scaling of the shock position versus time, overpressure versus distance, and impulse. Most blast scaling measurements to-date have been performed in a three-dimensional geometry such as a blast arena. Testing in a three-dimensional geometry can be challenging, however, as spherical shock-wave symmetry is required for good measurements. Additionally, the spherical wave strength decays rapidly with distance and it can be necessary to utilize larger (several kg) quantities of explosive to prevent significant decay from occurring before an idealized blast wave has formed. Such a mode of testing can be expensive, require large quantities of explosive, and be limited by both atmospheric conditions (such as rain) and by noise complaints from the population density near the test arena. Testing is possible in more compact geometries, however. Non-planar blast waves can be formed into a quasi-planar shape by confining the shock diffraction with the walls of a shock tube. Regardless of the initial form, the wave shape will begin to approximate a planar front after successive wave reflections from the tube walls. Such a technique has previously been used to obtain blast scaling measurements in the planar geometry with gaseous explosives and the condensed-phase explosive nitroguanidine. Recently, there has been much interest in the blast characterization of various non-ideal high explosive (NIHE) materials. With non-ideals, the detonation reaction zone is significantly larger (up to several cm for ANFO) than more ideal explosives. Wave curvature, induced by charge-geometry, can significantly affect the energy release associated with NIHEs. To measure maximum NIHE energy release accurately, it is desirable to minimize any such curvature and, if possible, to overdrive the detonation shock to ensure completion of chemical reactions ahead of the sonic locus associated with the reaction zone. This is achieved in the current study through use of a powerful booster HE and a charge geometry consisting of short cylindrical lengths of NIHE initiated along the charge centerline.« less

  18. A Parametric Approach to Shape Field-Relevant Blast Wave Profiles in Compressed-Gas-Driven Shock Tube

    PubMed Central

    Sundaramurthy, Aravind; Chandra, Namas

    2014-01-01

    Detonation of a high-explosive produces shock-blast wave, shrapnel, and gaseous products. While direct exposure to blast is a concern near the epicenter, shock-blast can affect subjects, even at farther distances. When a pure shock-blast wave encounters the subject, in the absence of shrapnels, fall, or gaseous products the loading is termed as primary blast loading and is the subject of this paper. The wave profile is characterized by blast overpressure, positive time duration, and impulse and called herein as shock-blast wave parameters (SWPs). These parameters in turn are uniquely determined by the strength of high explosive and the distance of the human subjects from the epicenter. The shape and magnitude of the profile determine the severity of injury to the subjects. As shown in some of our recent works (1–3), the profile not only determines the survival of the subjects (e.g., animals) but also the acute and chronic biomechanical injuries along with the following bio-chemical sequelae. It is extremely important to carefully design and operate the shock tube to produce field-relevant SWPs. Furthermore, it is vital to identify and eliminate the artifacts that are inadvertently introduced in the shock-blast profile that may affect the results. In this work, we examine the relationship between shock tube adjustable parameters (SAPs) and SWPs that can be used to control the blast profile; the results can be easily applied to many of the laboratory shock tubes. Further, replication of shock profile (magnitude and shape) can be related to field explosions and can be a standard in comparing results across different laboratories. Forty experiments are carried out by judiciously varying SAPs such as membrane thickness, breech length (66.68–1209.68 mm), measurement location, and type of driver gas (nitrogen, helium). The effects SAPs have on the resulting shock-blast profiles are shown. Also, the shock-blast profiles of a TNT explosion from ConWep software is compared with the profiles obtained from the shock tube. To conclude, our experimental results demonstrate that a compressed-gas shock tube when designed and operated carefully can replicate the blast time profiles of field explosions accurately. Such a faithful replication is an essential first step when studying the effects of blast induced neurotrauma using animal models. PMID:25520701

  19. Simplified modeling of blast waves from metalized heterogeneous explosives

    NASA Astrophysics Data System (ADS)

    Zarei, Z.; Frost, D. L.

    2011-09-01

    The detonation of a metalized explosive generates a complex multiphase flow field. Modeling the subsequent propagation of the blast front requires a detailed knowledge of the metal particle dynamics and reaction rate. Given the uncertainties in modeling these phenomena, a much simpler, 1D compressible flow model is used to illustrate the general effects of secondary energy release due to particle reaction on the blast front properties. If the total energy release is held constant, the blast pressure and impulse are primarily dependent on the following parameters: the proportion of secondary energy released due to afterburning, the rate of energy release, the location the secondary energy release begins, and the range over which it occurs. Releasing the total energy over a longer time period in general reduces the peak blast overpressure at a given distance. However, secondary energy release reduces the rate of decay of the shock pressure, increases the local gas temperature and hence increases the velocity of the secondary shock front. As a result, for certain values of the above parameters, the peak blast impulse may be increased by a factor of about two in a region near the charge. The largest augmentation to the near-field peak impulse results when the secondary energy is released immediately behind the shock front rather than uniformly within the combustion products.

  20. Threshold Studies on TNT, Composition B, and C-4 Explosives Using the Steven Impact Test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vandersall, K S; Switzer, L L; Garcia, F

    2005-09-26

    Steven Impact Tests were performed at low velocity on the explosives TNT, Comp B, and C-4 in attempts to obtain a threshold for reaction. A 76 mm helium driven gas gun was used to accelerate the Steven Test projectiles up to approximately 200 m/s in attempts to react (ignite) the explosive samples. Blast overpressure gauges, acoustic microphones, standard video and high-speed photography were used to characterize the level of any high explosive reaction violence. No bulk reactions were observed in the TNT, Composition B, or C-4 explosive samples impacted up to velocities in the range of 190-200 m/s. This workmore » will outline the experimental details and discuss the lack of reaction when compared to the reaction thresholds of other common explosives.« less

  1. Reactivity and Fragmentation of Aluminum-based Structural Energetic Materials under Explosive Loading

    NASA Astrophysics Data System (ADS)

    Glumac, Nick; Clemenson, Michael; Guadarrama, Jose; Krier, Herman

    2015-06-01

    Aluminum-cased warheads have been observed to generate enhanced blast and target damage due to reactivity of the aluminum fragments with ambient air. This effect can more than double the output of a conventional warhead. The mechanism by which the aluminum reacts under these conditions remains poorly understood. We undertake a highly controlled experimental study to investigate the phenomenon of aluminum reaction under explosive loading. Experiments are conducted with Al 6061 casings and PBX-N9 explosive with a fixed charge to case mass ratio of 1:2. Results are compared to inert casings (steel), as well as to tests performed in nitrogen environments to isolate aerobic and anaerobic effects. Padded walls are used in some tests to isolate the effects of impact-induced reactions, which are found to be non-negligible. Finally, blast wave measurements and quasi-static pressure measurements are used to isolate the fraction of case reaction that is fast enough to drive the primary blast wave from the later time reaction that generates temperature and overpressure only in the late-time fireball. Fragment size distributions, including those in the micron-scale range, are collected and quantified.

  2. Bioeffects on an In Vitro Model by Small-Scale Explosives and Shock Wave Overpressure Impacts

    DTIC Science & Technology

    2017-11-01

    still poorly understood, and proper diagnosis and treatment.17 Many TBIs—in particular, mild TBIs (mTBI)—seldom have neuroanatomical abnormalities ...performed for 24 h using 16 processors for time integrated out to 2 ms with 2.8 × 105 cell calculation. All blast simulations were conducted on the US...1. Williamson V, Mulhall E. Invisible wounds: psychological and neurological injuries confront a new generation of veterans. Iraq and Afghanistan

  3. LX-04 VIOLENCE MEASUREMENTS- STEVEN TESTS IMPACTED BY PROJECTILES SHOT FROM A HOWITZER GUN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chidester, S K; Vandersall, K S; Switzer, L L

    Characterization of the reaction violence of LX-04 explosive (85% HMX and 15% Viton A by weight) was obtained from Steven Impact Tests performed above the reaction initiation threshold. A 155 mm Howitzer propellant driven gas gun was used to accelerate the Steven Test projectiles in the range of approximately 170-300 m/s to react (ignite) the LX-04 explosive. Blast overpressure gauges, acoustic microphones, and high-speed photography characterized the level of high explosive reaction violence. A detonation in this velocity range was not observed and when comparing these results (and the Susan test results) with that of other HMX based explosives, LX-04more » has a more gradual reaction violence slope as the impact velocity increases. The high binder content (15%) of the LX-04 explosive is believed to be the key factor to the lower level of violence.« less

  4. Environmental Impacts of Metal Cladding Operations and Remedial Measures: A Case Study

    NASA Astrophysics Data System (ADS)

    Roy, P. P.; Sawmliana, C.; Singh, R. K.

    2014-04-01

    In metal cladding operations, a mixture of 11 % TNT flakes, 44 % ammonium nitrate (non-explosive) and 45 % dehydrated salt (non-explosive) are mixed uniformly to produce an explosive mixture with velocity of detonation 1,800-2,000 m/s. To study the environmental impacts of such operations which led to serious complaints from neighbouring villagers and even closure of some units, a study was carried out to investigate the levels of ground vibration, air overpressure and noise generated by blasting operations of different explosive charge quantities during the metal cladding operations and their impacts on the surrounding villages. Following the safety norms of Central Pollution Control Board (CPCB, Model Rules of the Factories Act on Noise Pollution Control) [1] and Directorate General of Mines Safety (DGMS, Damage to the structures due to blast induced ground vibration in the mining areas) [2] of India, generalised guidelines for such safe operations were framed. This paper describes the operational aspects of metal cladding, experimental results and scientific analyses of data to propose certain guidelines for safe metal cladding operations.

  5. Blast Exposure Causes Early and Persistent Aberrant Phospho- and Cleaved-Tau Expression in a Murine Model of Mild Blast-Induced Traumatic Brain Injury

    PubMed Central

    Huber, Bertrand R.; Meabon, James S.; Martin, Tobin J.; Mourad, Pierre D.; Bennett, Raymond; Kraemer, Brian C.; Cernak, Ibolja; Petrie, Eric C.; Emery, Michael J.; Swenson, Erik R.; Mayer, Cynthia; Mehic, Edin; Peskind, Elaine R.; Cook, David G.

    2014-01-01

    Mild traumatic brain injury (mTBI) is considered the ‘signature injury’ of combat veterans that have served during the wars in Iraq and Afghanistan. This prevalence of mTBI is due in part to the common exposure to high explosive blasts in combat zones. In addition to the threats of blunt impact trauma caused by flying objects and the head itself being propelled against objects, the primary blast overpressure (BOP) generated by high explosives is capable of injuring the brain. Compared to other means of causing TBI, the pathophysiology of mild-to-moderate BOP is less well understood. To study the consequences of BOP exposure in mice, we employed a well-established approach using a compressed gas-driven shock tube that recapitulates battlefield-relevant open-field BOP. We found that 24 hours post-blast a single mild BOP provoked elevation of multiple phosphor- and cleaved-tau species in neurons, as well as elevating manganese superoxide-dismutase (MnSOD or SOD2) levels, a cellular response to oxidative stress. In hippocampus, aberrant tau species persisted for at least 30 days post-exposure, while SOD2 levels returned to sham control levels. These findings suggest that elevated phospho- and cleaved-tau species may be among the initiating pathologic processes induced by mild blast exposure. These findings may have important implications for efforts to prevent blast-induced insults to the brain from progressing into long-term neurodegenerative disease processes. PMID:23948882

  6. Solid Rocket Launch Vehicle Explosion Environments

    NASA Technical Reports Server (NTRS)

    Richardson, E. H.; Blackwood, J. M.; Hays, M. J.; Skinner, T.

    2014-01-01

    Empirical explosion data from full scale solid rocket launch vehicle accidents and tests were collected from all available literature from the 1950s to the present. In general data included peak blast overpressure, blast impulse, fragment size, fragment speed, and fragment dispersion. Most propellants were 1.1 explosives but a few were 1.3. Oftentimes the data from a single accident was disjointed and/or missing key aspects. Despite this fact, once the data as a whole was digitized, categorized, and plotted clear trends appeared. Particular emphasis was placed on tests or accidents that would be applicable to scenarios from which a crew might need to escape. Therefore, such tests where a large quantity of high explosive was used to initiate the solid rocket explosion were differentiated. Also, high speed ground impacts or tests used to simulate such were also culled. It was found that the explosions from all accidents and applicable tests could be described using only the pressurized gas energy stored in the chamber at the time of failure. Additionally, fragmentation trends were produced. Only one accident mentioned the elusive "small" propellant fragments, but upon further analysis it was found that these were most likely produced as secondary fragments when larger primary fragments impacted the ground. Finally, a brief discussion of how this data is used in a new launch vehicle explosion model for improving crew/payload survival is presented.

  7. Final Programmatic Environmental Impact Statement for Defense Threat Reduction Agency (DTRA) Activities on White Sands Missile Range, New Mexico

    DTIC Science & Technology

    2007-05-01

    taggants south of Mockingbird Gap and the limited number of simulants met the Agency requirements. It was recognized at that time if either situation...from attack. * A new test bed for HTD testing is proposed at Mockingbird South. Alternative one, the preferred alternative, would allow DTRA to expand...HTD tests, and explosive tests have the potential to directly injure or kill native fauna from flying debris and blast overpressure. Craters

  8. Reduction of 5in./54 Gun Blast Overpressure by Means of an Aqueous Foam- Filled Muzzle Device

    DTIC Science & Technology

    1981-08-01

    aqueous foams have a certain drainage rate that causes the expansion ratio and bubble size to increase progressively. The Rockwood Aquafoam AFFF yields the...NSWC TR 81-128 REDUCTION OF 5"/54 GUN BLAST OVERPRESSURE BY MEANS OF AN AQUEOUS FOAM -FILLED MUZZLE DEVICE by G. STEVENS MILLER RICHARD E. MILLER, JR...128 4. TITLE (ad Subtitle) S. TYPE O r REPORT & PERIOD COVERED REDUCTION OF 5!V54 GUN BLAST OVERPRESSURE Final BY MEANS OF AN AQUEOUS FOAM -FILLED a

  9. A Multiscale Approach to Blast Neurotrauma Modeling: Part I – Development of Novel Test Devices for in vivo and in vitro Blast Injury Models

    PubMed Central

    Panzer, Matthew B.; Matthews, Kyle A.; Yu, Allen W.; Morrison, Barclay; Meaney, David F.; Bass, Cameron R.

    2012-01-01

    The loading conditions used in some current in vivo and in vitro blast-induced neurotrauma models may not be representative of real-world blast conditions. To address these limitations, we developed a compressed-gas driven shock tube with different driven lengths that can generate Friedlander-type blasts. The shock tube can generate overpressures up to 650 kPa with durations between 0.3 and 1.1 ms using compressed helium driver gas, and peak overpressures up to 450 kPa with durations between 0.6 and 3 ms using compressed nitrogen. This device is used for short-duration blast overpressure loading for small animal in vivo injury models, and contrasts the more frequently used long duration/high impulse blast overpressures in the literature. We also developed a new apparatus that is used with the shock tube to recreate the in vivo intracranial overpressure response for loading in vitro culture preparations. The receiver device surrounds the culture with materials of similar impedance to facilitate the propagation of a single overpressure pulse through the tissue. This method prevents pressure waves reflecting off the tissue that can cause unrealistic deformation and injury. The receiver performance was characterized using the longest helium-driven shock tube, and produced in-fluid overpressures up to 1500 kPa at the location where a culture would be placed. This response was well correlated with the overpressure conditions from the shock tube (R2 = 0.97). Finite element models of the shock tube and receiver were developed and validated to better elucidate the mechanics of this methodology. A demonstration exposing a culture to the loading conditions created by this system suggest tissue strains less than 5% for all pressure levels simulated, which was well below functional deficit thresholds for strain rates less than 50 s−1. This novel system is not limited to a specific type of culture model and can be modified to reproduce more complex pressure pulses. PMID:22470367

  10. Effects of Filtering on Experimental Blast Overpressure Measurements.

    PubMed

    Alphonse, Vanessa D; Kemper, Andrew R; Duma, Stefan M

    2015-01-01

    When access to live-fire test facilities is limited, experimental studies of blast-related injuries necessitate the use of a shock tube or Advanced Blast Simulator (ABS) to mimic free-field blast overpressure. However, modeling blast overpressure in a laboratory setting potentially introduces experimental artifacts in measured responses. Due to the high sampling rates required to capture a blast overpressure event, proximity to alternating current (AC-powered electronics) and poorly strain-relieved or unshielded wires can result in artifacts in the recorded overpressure trace. Data in this study were collected for tests conducted on an empty ABS (“Empty Tube”) using high frequency pressure sensors specifically designed for blast loading rates (n=5). Additionally, intraocular overpressure data (“IOP”) were collected for porcine eyes potted inside synthetic orbits located inside the ABS using an unshielded miniature pressure sensor (n=3). All tests were conducted at a 30 psi static overpressure level. A 4th order phaseless low pass Butterworth software filter was applied to the data. Various cutoff frequencies were examined to determine if the raw shock wave parameters values could be preserved while eliminating noise and artifacts. A Fast Fourier Transform (FFT) was applied to each test to examine the frequency spectra of the raw and filtered signals. Shock wave parameters (time of arrival, peak overpressure, positive duration, and positive impulse) were quantified using a custom MATLAB® script. Lower cutoff frequencies attenuated the raw signal, effectively decreasing the peak overpressure and increasing the positive duration. Rise time was not preserved the filtered data. A CFC 6000 filter preserved the remaining shock wave parameters within ±2.5% of the average raw values for the Empty Tube test data. A CFC 7000 filter removed experimental high-frequency artifacts and preserved the remaining shock wave parameters within ±2.5% of the average raw values for test IOP test data. Though the region of interest of the signals examined in the current study did not contain extremely high frequency content, it is possible that live-fire testing may produce shock waves with higher frequency content. While post-processing filtering can remove experimental artifacts, special care should be taken to minimize or eliminate the possibility of recording these artifacts in the first place.

  11. Effects of Blast Overpressure on Neurons and Glial Cells in Rat Organotypic Hippocampal Slice Cultures

    PubMed Central

    Miller, Anna P.; Shah, Alok S.; Aperi, Brandy V.; Budde, Matthew D.; Pintar, Frank A.; Tarima, Sergey; Kurpad, Shekar N.; Stemper, Brian D.; Glavaski-Joksimovic, Aleksandra

    2015-01-01

    Due to recent involvement in military conflicts, and an increase in the use of explosives, there has been an escalation in the incidence of blast-induced traumatic brain injury (bTBI) among US military personnel. Having a better understanding of the cellular and molecular cascade of events in bTBI is prerequisite for the development of an effective therapy that currently is unavailable. The present study utilized organotypic hippocampal slice cultures (OHCs) exposed to blast overpressures of 150 kPa (low) and 280 kPa (high) as an in vitro bTBI model. Using this model, we further characterized the cellular effects of the blast injury. Blast-evoked cell death was visualized by a propidium iodide (PI) uptake assay as early as 2 h post-injury. Quantification of PI staining in the cornu Ammonis 1 and 3 (CA1 and CA3) and the dentate gyrus regions of the hippocampus at 2, 24, 48, and 72 h following blast exposure revealed significant time dependent effects. OHCs exposed to 150 kPa demonstrated a slow increase in cell death plateauing between 24 and 48 h, while OHCs from the high-blast group exhibited a rapid increase in cell death already at 2 h, peaking at ~24 h post-injury. Measurements of lactate dehydrogenase release into the culture medium also revealed a significant increase in cell lysis in both low- and high-blast groups compared to sham controls. OHCs were fixed at 72 h post-injury and immunostained for markers against neurons, astrocytes, and microglia. Labeling OHCs with PI, neuronal, and glial markers revealed that the blast-evoked extensive neuronal death and to a lesser extent loss of glial cells. Furthermore, our data demonstrated activation of astrocytes and microglial cells in low- and high-blasted OHCs, which reached a statistically significant difference in the high-blast group. These data confirmed that our in vitro bTBI model is a useful tool for studying cellular and molecular changes after blast exposure. PMID:25729377

  12. AFWL (Air Force Weapons Laboratory) HULL (Hydrodynamics Unlimited) calculations of air blast over a dam slope. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fry, M.A.; Needham, C.E.; Stucker, M.

    1976-10-01

    This laboratory performed Hydrodynamics Unlimited (HULL) calculations of the air blast over a dam for two yields and two pressure regions. A 5th calculation included a rigid blockhouse at the foot of the dam. Although the shielding effect of the dam reduced the incident blast wave overpressure, reflection of the shock from the valley floor raised the peak overpressure up to at least 40% of the free air value. In almost every case, the overpressure impulses near the foot of the dam were greater than or equal to free air values. The rigid blockhouse experienced the most severe overpressure environments.more » The assumption of a 50-psi hard blockhouse is reasonable. During collapse of the blockhouse, it appears to be rigid to the air flow, since it responds slowly to the rapid air blast. Although there may be other reasons to detonate the weapon on the surface of the reservoir, the best way to destroy the blockhouse and any related structures with air blast, probably would be to detonate the device downstream of the blockhouse.« less

  13. Assessment of the Effectiveness of Combat Eyewear Protection Against Blast Overpressure.

    PubMed

    Sundaramurthy, A; Skotak, M; Alay, E; Unnikrishnan, G; Mao, H; Duan, X; Williams, S T; Harding, T H; Chandra, N; Reifman, J

    2018-07-01

    It is unclear whether combat eyewear used by U. S. Service members is protective against blast overpressures (BOPs) caused by explosive devices. Here, we investigated the mechanisms by which BOP bypasses eyewear and increases eye surface pressure. We performed experiments and developed three-dimensional (3D) finite element (FE) models of a head form (HF) equipped with an advanced combat helmet (ACH) and with no eyewear, spectacles, or goggles in a shock tube at three BOPs and five head orientations relative to the blast wave. Overall, we observed good agreement between experimental and computational results, with average discrepancies in impulse and peak-pressure values of less than 15% over 90 comparisons. In the absence of eyewear and depending on the head orientation, we identified three mechanisms that contributed to pressure loading on the eyes. Eyewear was most effective at 0 deg orientation, with pressure attenuation ranging from 50 (spectacles) to 80% (goggles) of the peak pressures observed in the no-eyewear configuration. Spectacles and goggles were considerably less effective when we rotated the HF in the counter-clockwise direction around the superior-inferior axis of the head. Surprisingly, at certain orientations, spectacles yielded higher maximum pressures (80%) and goggles yielded larger impulses (150%) than those observed without eyewear. The findings from this study will aid in the design of eyewear that provides better protection against BOP.

  14. Neuronal Injury and Glial Changes Are Hallmarks of Open Field Blast Exposure in Swine Frontal Lobe

    PubMed Central

    Kallakuri, Srinivasu; Desai, Alok; Feng, Ke; Tummala, Sharvani; Saif, Tal; Chen, Chaoyang; Zhang, Liying; Cavanaugh, John M.; King, Albert I.

    2017-01-01

    With the rapid increase in the number of blast induced traumatic brain injuries and associated neuropsychological consequences in veterans returning from the operations in Iraq and Afghanistan, the need to better understand the neuropathological sequelae following exposure to an open field blast exposure is still critical. Although a large body of experimental studies have attempted to address these pathological changes using shock tube models of blast injury, studies directed at understanding changes in a gyrencephalic brain exposed to a true open field blast are limited and thus forms the focus of this study. Anesthetized, male Yucatan swine were subjected to forward facing medium blast overpressure (peak side on overpressure 224–332 kPa; n = 7) or high blast overpressure (peak side on overpressure 350–403 kPa; n = 5) by detonating 3.6 kg of composition-4 charge. Sham animals (n = 5) were subjected to all the conditions without blast exposure. After a 3-day survival period, the brain was harvested and sections from the frontal lobes were processed for histological assessment of neuronal injury and glial reactivity changes. Significant neuronal injury in the form of beta amyloid precursor protein immunoreactive zones in the gray and white matter was observed in the frontal lobe sections from both the blast exposure groups. A significant increase in the number of astrocytes and microglia was also observed in the blast exposed sections compared to sham sections. We postulate that the observed acute injury changes may progress to chronic periods after blast and may contribute to short and long-term neuronal degeneration and glial mediated inflammation. PMID:28107370

  15. NASTRAN Analysis Comparison to Shock Tube Tests Used to Simulate Nuclear Overpressures

    NASA Technical Reports Server (NTRS)

    Wheless, T. K.

    1985-01-01

    This report presents a study of the effectiveness of the NASTRAN computer code for predicting structural response to nuclear blast overpressures. NASTRAN's effectiveness is determined by comparing results against shock tube tests used to simulate nuclear overpressures. Seven panels of various configurations are compared in this study. Panel deflections are the criteria used to measure NASTRAN's effectiveness. This study is a result of needed improvements in the survivability/vulnerability analyses subjected to nuclear blast.

  16. Apparatus for reducing shock and overpressure

    DOEpatents

    Walter, C.E.

    1975-01-28

    An apparatus for reducing shock and overpressure is particularly useful in connection with the sequential detonation of a series of nuclear explosives under ground. A coupling and decoupling arrangement between adjacent nuclear explosives in the tubing string utilized to emplace the explosives is able to support lower elements on the string but yields in a manner which absorbs energy when subjected to the shock wave produced upon detonation of one of the explosives. Overpressure is accomodated by an arrangement in the string which provides an additional space into which the pressurized material can expand at a predetermined overpressure. (10 claims)

  17. Apparatus for reducing shock and overpressure

    DOEpatents

    Walter, C.E.

    1975-10-21

    The design is given of an apparatus for reducing shock and overpressure particularly useful in connection with the sequential detonation of a series of nuclear explosives underground. A coupling and decoupling arrangement between adjacent nuclear explosives in the tubing string utilized to emplace the explosives is able to support lower elements on the string but yields in a manner which absorbs energy when subjected to the shock wave produced upon detonation of one of the explosives. Overpressure is accommodated by an arrangement in the string which provides an additional space into which the pressurized material can expand at a predetermined overpressure.

  18. Sub-lethal Ocular Trauma (SLOT): Establishing a Standardized Blast Threshold to Facilitate Diagnostic, Early Treatment, and Recovery Studies for Blast Injuries to the Eye and Optic Nerve

    DTIC Science & Technology

    2014-09-01

    the less, we observed 64 a broad array of ocular injuries. Petras et al. (1997) observed a similar trend in rats exposed to overpressures of...2013. PMID: 22185582. Petras , J.M., Bauman, R.A., and Elsayed, N.M., 1997, Visual system degeneration induced by blast overpressure: Toxicology...2012, Primary blast injury to the eye and orbit: Finite element modeling: Investigative Ophthalmology: v. 53, pp. 8057–8066. Sanchez, R., Martin , R

  19. Simulation and Measurements of Small Arms Blast Wave Overpressure in the Process of Designing a Silencer

    NASA Astrophysics Data System (ADS)

    Hristov, Nebojša; Kari, Aleksandar; Jerković, Damir; Savić, Slobodan; Sirovatka, Radoslav

    2015-02-01

    Simulation and measurements of muzzle blast overpressure and its physical manifestations are studied in this paper. The use of a silencer can have a great influence on the overpressure intensity. A silencer is regarded as an acoustic transducer and a waveguide. Wave equations for an acoustic dotted source of directed effect are used for physical interpretation of overpressure as an acoustic phenomenon. Decomposition approach has proven to be suitable to describe the formation of the output wave of the wave transducer. Electroacoustic analogies are used for simulations. A measurement chain was used to compare the simulation results with the experimental ones.

  20. Controlled Low-Pressure Blast-Wave Exposure Causes Distinct Behavioral and Morphological Responses Modelling Mild Traumatic Brain Injury, Post-Traumatic Stress Disorder, and Comorbid Mild Traumatic Brain Injury-Post-Traumatic Stress Disorder.

    PubMed

    Zuckerman, Amitai; Ram, Omri; Ifergane, Gal; Matar, Michael A; Sagi, Ram; Ostfeld, Ishay; Hoffman, Jay R; Kaplan, Zeev; Sadot, Oren; Cohen, Hagit

    2017-01-01

    The intense focus in the clinical literature on the mental and neurocognitive sequelae of explosive blast-wave exposure, especially when comorbid with post-traumatic stress-related disorders (PTSD) is justified, and warrants the design of translationally valid animal studies to provide valid complementary basic data. We employed a controlled experimental blast-wave paradigm in which unanesthetized animals were exposed to visual, auditory, olfactory, and tactile effects of an explosive blast-wave produced by exploding a thin copper wire. By combining cognitive-behavioral paradigms and ex vivo brain MRI to assess mild traumatic brain injury (mTBI) phenotype with a validated behavioral model for PTSD, complemented by morphological assessments, this study sought to examine our ability to evaluate the biobehavioral effects of low-intensity blast overpressure on rats, in a translationally valid manner. There were no significant differences between blast- and sham-exposed rats on motor coordination and strength, or sensory function. Whereas most male rats exposed to the blast-wave displayed normal behavioral and cognitive responses, 23.6% of the rats displayed a significant retardation of spatial learning acquisition, fulfilling criteria for mTBI-like responses. In addition, 5.4% of the blast-exposed animals displayed an extreme response in the behavioral tasks used to define PTSD-like criteria, whereas 10.9% of the rats developed both long-lasting and progressively worsening behavioral and cognitive "symptoms," suggesting comorbid PTSD-mTBI-like behavioral and cognitive response patterns. Neither group displayed changes on MRI. Exposure to experimental blast-wave elicited distinct behavioral and morphological responses modelling mTBI-like, PTSD-like, and comorbid mTBI-PTSD-like responses. This experimental animal model can be a useful tool for elucidating neurobiological mechanisms underlying the effects of blast-wave-induced mTBI and PTSD and comorbid mTBI-PTSD.

  1. Intracranial pressure increases during exposure to a shock wave.

    PubMed

    Leonardi, Alessandra Dal Cengio; Bir, Cynthia A; Ritzel, Dave V; VandeVord, Pamela J

    2011-01-01

    Traumatic brain injuries (TBI) caused by improvised explosive devices (IEDs) affect a significant percentage of surviving soldiers wounded in Iraq and Afghanistan. The extent of a blast TBI, especially initially, is difficult to diagnose, as internal injuries are frequently unrecognized and therefore underestimated, yet problems develop over time. Therefore it is paramount to resolve the physical mechanisms by which critical stresses are inflicted on brain tissue from blast wave encounters with the head. This study recorded direct pressure within the brains of male Sprague-Dawley rats during exposure to blast. The goal was to understand pressure wave dynamics through the brain. In addition, we optimized in vivo methods to ensure accurate measurement of intracranial pressure (ICP). Our results demonstrate that proper sealing techniques lead to a significant increase in ICP values, compared to the outside overpressure generated by the blast. Further, the values seem to have a direct relation to a rat's size and age: heavier, older rats had the highest ICP readings. These findings suggest that a global flexure of the skull by the transient shockwave is an important mechanism of pressure transmission inside the brain.

  2. Ubiquitin Carboxy-Terminal Hydrolase-L1 as a Serum Neurotrauma Biomarker for Exposure to Occupational Low-Level Blast

    PubMed Central

    Carr, Walter; Yarnell, Angela M.; Ong, Ricardo; Walilko, Timothy; Kamimori, Gary H.; da Silva, Uade; McCarron, Richard M.; LoPresti, Matthew L.

    2015-01-01

    Repeated exposure to low-level blast is a characteristic of a few select occupations and there is concern that such occupational exposures present risk for traumatic brain injury. These occupations include specialized military and law enforcement units that employ controlled detonation of explosive charges for the purpose of tactical entry into secured structures. The concern for negative effects from blast exposure is based on rates of operator self-reported headache, sleep disturbance, working memory impairment, and other concussion-like symptoms. A challenge in research on this topic has been the need for improved assessment tools to empirically evaluate the risk associated with repeated exposure to blast overpressure levels commonly considered to be too low in magnitude to cause acute injury. Evaluation of serum-based neurotrauma biomarkers provides an objective measure that is logistically feasible for use in field training environments. Among candidate biomarkers, ubiquitin carboxy-terminal hydrolase-L1 (UCH-L1) has some empirical support and was evaluated in this study. We used daily blood draws to examine acute change in UCH-L1 among 108 healthy military personnel who were exposed to repeated low-level blast across a 2-week period. These research volunteers also wore pressure sensors to record blast exposures, wrist actigraphs to monitor sleep patterns, and completed daily behavioral assessments of symptomology, postural stability, and neurocognitive function. UCH-L1 levels were elevated as a function of participating in the 2-week training with explosives, but the correlation of UCH-L1 elevation and blast magnitude was weak and inconsistent. Also, UCH-L1 elevations did not correlate with deficits in behavioral measures. These results provide some support for including UCH-L1 as a measure of central nervous system effects from exposure to low-level blast. However, the weak relation observed suggests that additional indicators of blast effect are needed. PMID:25852633

  3. Computational Model of the Eye for Primary and Secondary Blast Trauma

    DTIC Science & Technology

    2015-10-01

    inflicted closed eye injuries with features similar to those seen in patients with ocular blast trauma. Alphonse et al. [16] studied the effect of low...Kemper, V. Alphonse , C. McNally, I. Herring, P. Brown, J. Stitzel, and S. Duma. Response of Porcine Eyes to Blast Overpressure: Effects of Overpressure...that induces closed globe anterior and posterior pole damage. Experimental eye research, 99:63–70, 2012. [16] V. D. Alphonse , A. R. Kemper, B. T. Strom

  4. Distinguishing Realistic Military Blasts from Firecrackers in Mitigation Studies of Blast Induced Traumatic Brain Injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moss, W C; King, M J; Blackman, E G

    In their Contributed Article, Nyein et al. (1,2) present numerical simulations of blast waves interacting with a helmeted head and conclude that a face shield may significantly mitigate blast induced traumatic brain injury (TBI). A face shield may indeed be important for future military helmets, but the authors derive their conclusions from a much smaller explosion than typically experienced on the battlefield. The blast from the 3.16 gm TNT charge of (1) has the following approximate peak overpressures, positive phase durations, and incident impulses (3): 10 atm, 0.25 ms, and 3.9 psi-ms at the front of the head (14 cmmore » from charge), and 1.4 atm, 0.32 ms, and 1.7 psi-ms at the back of a typical 20 cm head (34 cm from charge). The peak pressure of the wave decreases by a factor of 7 as it traverses the head. The blast conditions are at the threshold for injury at the front of the head, but well below threshold at the back of the head (4). The blast traverses the head in 0.3 ms, roughly equal to the positive phase duration of the blast. Therefore, when the blast reaches the back of the head, near ambient conditions exist at the front. Because the headform is so close to the charge, it experiences a wave with significant curvature. By contrast, a realistic blast from a 2.2 kg TNT charge ({approx} an uncased 105 mm artillery round) is fatal at an overpressure of 10 atm (4). For an injury level (4) similar to (1), a 2.2 kg charge has the following approximate peak overpressures, positive phase durations, and incident impulses (3): 2.1 atm, 2.3 ms, and 18 psi-ms at the front of the head (250 cm from charge), and 1.8 atm, 2.5 ms, and 16.8 psi-ms at the back of the head (270 cm from charge). The peak pressure decreases by only a factor of 1.2 as it traverses the head. Because the 0.36 ms traversal time is much smaller than the positive phase duration, pressures on the head become relatively uniform when the blast reaches the back of the head. The larger standoff implies that the headform locally experiences a nearly planar blast wave. Also, the positive phase durations and blast impulses are much larger than those of (1). Consequently, the blast model used in (1) is spatially and temporally very different from a military blast. It would be useful to repeat the calculations using military blast parameters. Finally, (1) overlooks a significant part of (5). On page 1 and on page 3, (1) states that (5) did not consider helmet pads. But pages pages 3 and 4 of (5) present simulations of blast wave propagation across an ACH helmeted head form with and without pads. (5) states that when the pads are present, the 'underwash' of air under the helmet is blocked when compared to the case without. (1) reaches this same conclusion, but reports it as a new result rather than a confirmation of that already found in (5).« less

  5. Xenon Protects against Blast-Induced Traumatic Brain Injury in an In Vitro Model.

    PubMed

    Campos-Pires, Rita; Koziakova, Mariia; Yonis, Amina; Pau, Ashni; Macdonald, Warren; Harris, Katie; Edge, Christopher J; Franks, Nicholas P; Mahoney, Peter F; Dickinson, Robert

    2018-04-15

    The aim of this study was to evaluate the neuroprotective efficacy of the inert gas xenon as a treatment for patients with blast-induced traumatic brain injury in an in vitro laboratory model. We developed a novel blast traumatic brain injury model using C57BL/6N mouse organotypic hippocampal brain-slice cultures exposed to a single shockwave, with the resulting injury quantified using propidium iodide fluorescence. A shock tube blast generator was used to simulate open field explosive blast shockwaves, modeled by the Friedlander waveform. Exposure to blast shockwave resulted in significant (p < 0.01) injury that increased with peak-overpressure and impulse of the shockwave, and which exhibited a secondary injury development up to 72 h after trauma. Blast-induced propidium iodide fluorescence overlapped with cleaved caspase-3 immunofluorescence, indicating that shock-wave-induced cell death involves apoptosis. Xenon (50% atm) applied 1 h after blast exposure reduced injury 24 h (p < 0.01), 48 h (p < 0.05), and 72 h (p < 0.001) later, compared with untreated control injury. Xenon-treated injured slices were not significantly different from uninjured sham slices at 24 h and 72 h. We demonstrate for the first time that xenon treatment after blast traumatic brain injury reduces initial injury and prevents subsequent injury development in vitro. Our findings support the idea that xenon may be a potential first-line treatment for those with blast-induced traumatic brain injury.

  6. A Monte Carlo Approach to Modeling the Breakup of the Space Launch System EM-1 Core Stage with an Integrated Blast and Fragment Catalogue

    NASA Technical Reports Server (NTRS)

    Richardson, Erin; Hays, M. J.; Blackwood, J. M.; Skinner, T.

    2014-01-01

    The Liquid Propellant Fragment Overpressure Acceleration Model (L-FOAM) is a tool developed by Bangham Engineering Incorporated (BEi) that produces a representative debris cloud from an exploding liquid-propellant launch vehicle. Here it is applied to the Core Stage (CS) of the National Aeronautics and Space Administration (NASA) Space Launch System (SLS launch vehicle). A combination of Probability Density Functions (PDF) based on empirical data from rocket accidents and applicable tests, as well as SLS specific geometry are combined in a MATLAB script to create unique fragment catalogues each time L-FOAM is run-tailored for a Monte Carlo approach for risk analysis. By accelerating the debris catalogue with the BEi blast model for liquid hydrogen / liquid oxygen explosions, the result is a fully integrated code that models the destruction of the CS at a given point in its trajectory and generates hundreds of individual fragment catalogues with initial imparted velocities. The BEi blast model provides the blast size (radius) and strength (overpressure) as probabilities based on empirical data and anchored with analytical work. The coupling of the L-FOAM catalogue with the BEi blast model is validated with a simulation of the Project PYRO S-IV destruct test. When running a Monte Carlo simulation, L-FOAM can accelerate all catalogues with the same blast (mean blast, 2 s blast, etc.), or vary the blast size and strength based on their respective probabilities. L-FOAM then propagates these fragments until impact with the earth. Results from L-FOAM include a description of each fragment (dimensions, weight, ballistic coefficient, type and initial location on the rocket), imparted velocity from the blast, and impact data depending on user desired application. LFOAM application is for both near-field (fragment impact to escaping crew capsule) and far-field (fragment ground impact footprint) safety considerations. The user is thus able to use statistics from a Monte Carlo set of L-FOAM catalogues to quantify risk for a multitude of potential CS destruct scenarios. Examples include the effect of warning time on the survivability of an escaping crew capsule or the maximum fragment velocities generated by the ignition of leaking propellants in internal cavities.

  7. Impact of blast induced transitory vibration and air-overpressure/noise on human brain--an experimental study.

    PubMed

    Raina, A K; Baheti, M; Haldar, A; Ramulu, M; Chakraborty, A K; Sahu, P B; Bandopadhayay, C

    2004-04-01

    Human response to blast induced ground vibration and air-overpressure/noise is a major concern of current mining activity. This is because the fact that mines are fast transgressing the habitats and people are getting educated. Consequently the response of humans is changing and expectedly will increase in days to come with no viable and economic alternative to blasting--an essential component of mining. The response of humans can be purely physiological or psychological in nature or combination of both depending upon the situation and conditions of mining. Where physiological response is documented in terms of effects on ears and lungs there is a meager amount or no literature available regarding effects of blasting on the brain. Moreover, the studies on transitory phenomenon like the effects of blasting on humans are rare in comparison to the whole body vibration studies. This study was designed to address the issues as a precursor to a major initiative. The preliminary investigations conducted with the monitoring of EEG responses of humans to vibration and air-overpressure/noise due to blasting revealed that there is no major response of the brain to transitory vibrations and noise.

  8. Development of a multimodal blast sensor for measurement of head impact and over-pressurization exposure.

    PubMed

    Chu, Jeffrey J; Beckwith, Jonathan G; Leonard, Daniel S; Paye, Corey M; Greenwald, Richard M

    2012-01-01

    It is estimated that 10-20% of United States soldiers returning from Operation Iraqi Freedom (OIF) and Operation Enduring Freedom (OEF) have suffered at least one instance of blast-induced traumatic brain injury (bTBI) with many reporting persistent symptomology and long-term effects. This variation in blast response may be related to the complexity of blast waves and the many mechanisms of injury, including over-pressurization due to the shock wave and potential for blunt impacts to the head from shrapnel or from other indirect impacts (e.g., building, ground, and vehicle). To help differentiate the effects of primary, secondary, and tertiary effects of blast, a custom sensor was developed to simultaneously measure over-pressurization and blunt impact. Moreover, a custom, complementary filter was designed to differentiate the measurements of blunt (low-frequency bandwidth) from over-pressurization (high-frequency bandwidth). The custom sensor was evaluated in the laboratory using a shock tube to simulate shock waves and a drop fixture to simulate head impacts. Both bare sensors and sensor embedded within an ACH helmet coupon were compared to laboratory reference transducers under multiple loading conditions (n = 5) and trials at each condition (n = 3). For all comparative measures, peak magnitude, peak impulse, and cross-correlation measures, R (2) values, were greater than 0.900 indicating excellent agreement of peak measurements and time-series comparisons with laboratory measures.

  9. Data acquisition from blast overpressure trials

    NASA Astrophysics Data System (ADS)

    Kirk, D. R.

    1993-03-01

    A Macintosh computer has been used to acquire data from blast overpressure trials on various weapons. The computer is connected to a multiple channel FM data recorder via a MacSCS1488 bus controller, allowing the computer to control the recorder and to acquire data from it through an analog to digital converter. Detailed instructions are given for connecting the hardware and operating the software involved.

  10. Passive blast pressure sensor

    DOEpatents

    King, Michael J.; Sanchez, Roberto J.; Moss, William C.

    2013-03-19

    A passive blast pressure sensor for detecting blast overpressures of at least a predetermined minimum threshold pressure. The blast pressure sensor includes a piston-cylinder arrangement with one end of the piston having a detection surface exposed to a blast event monitored medium through one end of the cylinder and the other end of the piston having a striker surface positioned to impact a contact stress sensitive film that is positioned against a strike surface of a rigid body, such as a backing plate. The contact stress sensitive film is of a type which changes color in response to at least a predetermined minimum contact stress which is defined as a product of the predetermined minimum threshold pressure and an amplification factor of the piston. In this manner, a color change in the film arising from impact of the piston accelerated by a blast event provides visual indication that a blast overpressure encountered from the blast event was not less than the predetermined minimum threshold pressure.

  11. Xenon Protects against Blast-Induced Traumatic Brain Injury in an In Vitro Model

    PubMed Central

    Campos-Pires, Rita; Koziakova, Mariia; Yonis, Amina; Pau, Ashni; Macdonald, Warren; Harris, Katie; Edge, Christopher J.; Franks, Nicholas P.; Mahoney, Peter F.

    2018-01-01

    Abstract The aim of this study was to evaluate the neuroprotective efficacy of the inert gas xenon as a treatment for patients with blast-induced traumatic brain injury in an in vitro laboratory model. We developed a novel blast traumatic brain injury model using C57BL/6N mouse organotypic hippocampal brain-slice cultures exposed to a single shockwave, with the resulting injury quantified using propidium iodide fluorescence. A shock tube blast generator was used to simulate open field explosive blast shockwaves, modeled by the Friedlander waveform. Exposure to blast shockwave resulted in significant (p < 0.01) injury that increased with peak-overpressure and impulse of the shockwave, and which exhibited a secondary injury development up to 72 h after trauma. Blast-induced propidium iodide fluorescence overlapped with cleaved caspase-3 immunofluorescence, indicating that shock-wave–induced cell death involves apoptosis. Xenon (50% atm) applied 1 h after blast exposure reduced injury 24 h (p < 0.01), 48 h (p < 0.05), and 72 h (p < 0.001) later, compared with untreated control injury. Xenon-treated injured slices were not significantly different from uninjured sham slices at 24 h and 72 h. We demonstrate for the first time that xenon treatment after blast traumatic brain injury reduces initial injury and prevents subsequent injury development in vitro. Our findings support the idea that xenon may be a potential first-line treatment for those with blast-induced traumatic brain injury. PMID:29285980

  12. 14 CFR 417.229 - Far-field overpressure blast effects analysis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... characteristics; (2) The potential for broken windows due to peak incident overpressures below 1.0 psi and related... the potentially affected windows, including their size, location, orientation, glazing material, and...

  13. Pathophysiology of blast-induced ocular trauma in rats after repeated exposure to low-level blast overpressure.

    PubMed

    Choi, Jae Hyek; Greene, Whitney A; Johnson, Anthony J; Chavko, Mikulas; Cleland, Jeffery M; McCarron, Richard M; Wang, Heuy-Ching

    2015-04-01

    The incidence of blast-induced ocular injury has dramatically increased due to advances in weaponry and military tactics. A single exposure to blast overpressure (BOP) has been shown to cause damage to the eye in animal models; however, on the battlefield, military personnel are exposed to BOP multiple times. The effects of repeated exposures to BOP on ocular tissues have not been investigated. The purpose of this study is to characterize the effects of single or repeated exposure on ocular tissues. A compressed air shock tube was used to deliver 70 ± 7 KPa BOP to rats, once (single blast overpressure [SBOP]) or once daily for 5 days (repeated blast overpressure [RBOP]). Immunohistochemistry was performed to characterize the pathophysiology of ocular injuries induced by SBOP and RBOP. Apoptosis was determined by quantification activated caspase 3. Gliosis was examined by detection of glial fibrillary acidic protein (GFAP). Inflammation was examined by detection of CD68. Activated caspase 3 was detected in ocular tissues from all animals subjected to BOP, while those exposed to RBOP had more activated caspase 3 in the optic nerve than those exposed to SBOP. GFAP was detected in the retinas from all animals subjected to BOP. CD68 was detected in optic nerves from all animals exposed to BOP. SBOP and RBOP induced retinal damage. RBOP caused more apoptosis in the optic nerve than SBOP, suggesting that RBOP causes more severe optic neuropathy than SBOP. SBOP and RBOP caused gliosis in the retina and increased inflammation in the optic nerve. © 2014 Royal Australian and New Zealand College of Ophthalmologists.

  14. Influence of the geometry of protective barriers on the propagation of shock waves

    NASA Astrophysics Data System (ADS)

    Sochet, I.; Eveillard, S.; Vinçont, J. Y.; Piserchia, P. F.; Rocourt, X.

    2017-03-01

    The protection of industrial facilities, classified as hazardous, against accidental or intentional explosions represents a major challenge for the prevention of personal injury and property damage, which also involves social and economic issues. We consider here the use of physical barriers against the effects of these explosions, which include the pressure wave, the projection of fragments and the thermal flash. This approach can be recommended for the control of major industrial risks, but no specific instructions are available for its implementation. The influence of a protective barrier against a detonation-type explosion is studied in small-scale experiments. The effects of overpressure are examined over the entire path of the shock wave across the barrier and in the downstream zone to be protected. Two series of barrier structures are studied. The first series (A) of experiments investigates two types of barrier geometry with dimensions based on NATO recommendations. These recommendations stipulate that the barrier should be 2 m higher than the charge height, the thickness at the crest should be more than 0.5 m, while its length should be equal to twice the protected structure length and the bank slope should be equivalent to the angle of repose of the soil. The second series (B) of experiments investigates the influence of geometrical parameters of the barrier (thickness at the crest and inclination angles of the front and rear faces) on its protective effects. This project leads to an advance in our understanding of the physical phenomena involved in the propagation of blast waves resulting from an external explosion, in the area around a protective physical barrier. The study focuses on the dimensioning of protective barriers against overpressure effects arising from detonation and shows the advantage of using a barrier with a vertical front or rear face.

  15. Analysis of the Explosive Internal Impact on the Barriers of Building Structures

    NASA Astrophysics Data System (ADS)

    Siwiński, Jarosław; Stolarski, Adam

    2017-10-01

    Work issues concern the safety of construction in relation to the hazards arising from explosion of the explosive charge located inside the building. The algorithms proposed in the paper for determining the parameters of the overpressure wave resulting from the detonation of clustered explosive charges, determine the basis for numerical simulation analyzes. Determination of the maximum value of peak pressure on the wave forehead of an internal explosion is presented on the basis of reflected wave analysis. Changeability in time of the internal explosion action describes the overpressure phase only. The analysis of the load caused by the internal explosive charge detonation was carried out under conditions of the undisturbed standard atmosphere. A load determination algorithm has been developed, taking into account the geometrical characteristics of the building barriers and the rooms as well as the parameters of environment in which the detonation occurs. The way of taking into account the influence of venting surfaces, i.e. windows, doors, ventilation ducts, on the overpressure wave parameters, was presented. Discloses a method to take into account the effect of the surface relief, i.e. windows, doors, air ducts, pressure wave parameters. Modification of the method for explosive overpressure determination presented by Cormie, Smith, Mays (2009), was proposed in the paper. This modification was developed on the basis of substitute impulse analysis for multiple overpressure pulses. In order to take into account the pressure distribution of explosive gases on the barrier surface, the method of modification the relationship for determination the changeability over time and space of the pressure of explosive gases, was presented. For this purpose, the changeability of the pressure wave angles of incidence to the barrier and the distance of the explosive charge to any point on the surface of the barrier, was taken into account. Based on the developed procedure, the overpressure changeability over time was determined for selected measurement points of the reference room. A comparative analysis of the determined loadings with experimental results and theoretical results of other authors, taken from the original work of Weerhiejm et al. (2012), was carried out.

  16. Experimental Animal Models for Studies on the Mechanisms of Blast-Induced Neurotrauma

    PubMed Central

    Risling, Mårten; Davidsson, Johan

    2012-01-01

    A blast injury is a complex type of physical trauma resulting from the detonation of explosive compounds and has become an important issue due to the use of improvised explosive devices (IED) in current military conflicts. Blast-induced neurotrauma (BINT) is a major concern in contemporary military medicine and includes a variety of injuries that range from mild to lethal. Extreme forces and their complex propagation characterize BINT. Modern body protection and the development of armored military vehicles can be assumed to have changed the outcome of BINT. Primary blast injuries are caused by overpressure waves whereas secondary, tertiary, and quaternary blast injuries can have more varied origins such as the impact of fragments, abnormal movements, or heat. The characteristics of the blast wave can be assumed to be significantly different in open field detonations compared to explosions in a confined space, such an armored vehicle. Important parameters include peak pressure, duration, and shape of the pulse. Reflections from walls and armor can make the prediction of effects in individual cases very complex. Epidemiological data do not contain information of the comparative importance of the different blast mechanisms. It is therefore important to generate data in carefully designed animal models. Such models can be selective reproductions of a primary blast, penetrating injuries from fragments, acceleration movements, or combinations of such mechanisms. It is of crucial importance that the physical parameters of the employed models are well characterized so that the experiments can be reproduced in different laboratory settings. Ideally, pressure recordings should be calibrated by using the same equipment in several laboratories. With carefully designed models and thoroughly evaluated animal data it should be possible to achieve a translation of data between animal and clinical data. Imaging and computer simulation represent a possible link between experiments and studies of human cases. However, in order for mathematical simulations to be completely useful, the predictions will most likely have to be validated by detailed data from animal experiments. Some aspects of BINT can conceivably be studied in vitro. However, factors such as systemic response, brain edema, inflammation, vasospasm, or changes in synaptic transmission and behavior must be evaluated in experimental animals. Against this background, it is necessary that such animal experiments are carefully developed imitations of actual components in the blast injury. This paper describes and discusses examples of different designs of experimental models relevant to BINT. PMID:22485104

  17. Protection of the lung from blast overpressure by stress wave decouplers, buffer plates or sandwich panels.

    PubMed

    Sedman, Andrew; Hepper, A

    2018-03-19

    This paper outlines aspects of UK Ministry of Defence's research and development of blast overpressure protection technologies appropriate for use in body armour, with the aim of both propagating new knowledge and updating existing information. Two simple models are introduced not only to focus the description of the mechanism by which the lungs can be protected, but also to provide a bridge between fields of research that may hold the key to further advances in protection technology and related body armour. Protection can be provided to the lungs by decoupling the stress wave transmission into the thorax by managing the blast energy imparted through the protection system. It is proposed that the utility of the existing 'simple decoupler' blast overpressure protection is reviewed in light of recent developments in the treatment of those sustaining both overpressure and fragment injuries. It is anticipated that further advances in protection technology may be generated by those working in other fields on the analogous technologies of 'buffer plates' and 'sandwich panels'. © Crown copyright (2018), Dstl. This material is licensed under the terms of the Open Government Licence except where otherwise stated. To view this licence, visit http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3 or write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email: psi@nationalarchives.gsi.gov.uk.

  18. THRESHOLD STUDIES ON TNT, COMPOSITION B, C-4, AND ANFO EXPLOSIVES USING THE STEVEN IMPACT TEST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vandersall, K S; Switzer, L L; Garcia, F

    2006-06-20

    Steven Impact Tests were performed at low velocity on the explosives TNT (trinitrotolulene), Composition B (63% RDX, 36% TNT, and 1% wax by weight), C-4 (91% RDX, 5.3% Di (2-ethylhexyl) sebacate, 2.1% Polyisobutylene, and 1.6% motor oil by weight) and ANFO (94% ammonium Nitrate with 6% Fuel Oil) in attempts to obtain a threshold for reaction. A 76 mm helium driven gas gun was used to accelerate the Steven Test projectiles up to approximately 200 m/s in attempts to react (ignite) the explosive samples. Blast overpressure gauges, acoustic microphones, standard video and high-speed photography were used to characterize the levelmore » of any high explosive reaction violence. No bulk reactions were observed in the TNT, Composition B, C-4 or ANFO explosive samples impacted up to velocities in the range of 190-200 m/s. This work will outline the experimental details and discuss the lack of reaction when compared to the reaction thresholds of other common explosives. These results will also be compared to that of the Susan Test and reaction thresholds observed in the common small-scale safety tests such as the drop hammer and friction tests in hopes of drawing a correlation.« less

  19. Development and analysis of a leak-based blast attenuator and scaling laws for primary blast peak overpressure for a large caliber muzzleloaded cannon

    NASA Astrophysics Data System (ADS)

    Carson, Robert Andrew

    One of the primary aspects of the research and development work carried out at Benet Laboratories is the Soldier. Maintenance of their health in the field is the first priority while the second priority is the enhancement of their performance. Therefore, a new concept for a weapon system that targets these two priorities is highly desirable. This is the case with a new concept that can reduce the peak overpressure without the use of a muzzle device for a muzzle loaded cannon system. Such a novel concept was developed in this thesis through the application of propellant leak into the precursor region, i.e., when the projectile is still in the bore. A 3D hydrocode (ALE3D) was employed to predict the blast overpressure for the baseline and propellant leak configurations. However, a 3D hydrocode is computationally very expensive to predict peak overpressure in the far-field and an efficient method to predict peak overpressure in the far-field is of significance. Therefore, scaling laws for primary blast peak overpressure were also developed in this thesis. Initially, two propellant leak concepts were examined. A bulge leak method and a channel leak method, which were compared to the baseline configuration. The initial channel leak configuration (referred to as CLM-1) significantly reduced the exit pressure ratio during projectile ejection, and thereby, resulted in a weaker blast. This in-turn substantially attenuated the peak overpressure to the rear of the muzzle without the aid of a muzzle device while having a marginal loss in the projectile exit velocity. For CLM-1, at one monitored location with the largest peak overpressure, a reduction of about 38% in peak overpressure was observed as compared to the baseline case. In order to compare different leak configurations, a performance metric was defined by comparing the ratio of peak overpressure and projectile exit velocity for a leak configuration to that for the baseline configuration. This metric was referred to as the Figure of Merit (FoM) and defined for any probe location. An average FoM was also defined based on the average of local FoM over different locations/probes. The greater the FoM is above zero, the better the configuration. The average FoM for the CLM-1 configuration was 0.221. In addition to FoM, shock structure and strength were also analyzed for the bulge and channel configurations at both the precursor and blast stages. With the success of the CLM-1 configuration, we then performed a parametric study of the channel leak geometry and examined the effect of different geometric parameters on peak overpressure attenuation. The idea was to further improve the performance of the channel leak method. We divided our parametric study into five groups (i.e., A through E), referred to as CLM-A through CLM-E configurations. The focus in these five groups was on geometric parameters that were expected to be the most influential or relevant. Three relevant geometric parameters were considered in this work. In groups A and B, we focused on channel leak volume. Group C analyzed the effect of channel length while groups D and E investigated the effect of aspect ratio. The five groups were ordered in this way because we anticipated the total leak volume to be the most influential parameter, then the channel length which was followed by the aspect ratio. The total leak volume of 7.5% resulted in a relatively high average FoM. On the other hand, the use of channels with a shorter length was found to be detrimental while a lower value of aspect ratio was beneficial. Three leak configurations of CLM-A1, CLM-E1 and CLM-E2 provided excellent peak overpressure attenuation (i.e., above 45% and up to 63%). Each led to an average FoM above 0.5 while CLM-E configurations resulted in lower local FoM for probes near the muzzle and higher FoM for probes farther from the muzzle, and thus, a higher variation of FoM over the probes. The average FoM based on the far-field probes was about 0.575 and 0.560 for CLM-E1 and CLM-E2, respectively, and 0.520 for CLM-A1. Blast structure and strength were also analyzed for these three configurations. In the last part of this thesis, we focused on the baseline and CLM-A1 configurations in order to develop scaling laws for the primary blast peak overpressure. Two different power-law scaling techniques were considered. In the first power-law, scaling parameters were defined from the muzzle center. The second power-law scaling was defined based on the blast center. The muzzle center based power-law has been used in the past while the blast center based power-law is a newly developed scaling law in this thesis. For the baseline configuration, both scaling laws performed well and for many locations absolute difference was below 10%. For the CLM-A1 configuration, blast center based power-law predictions were better than those from the muzzle center based power-law and showed a better overall correlation with the ALE3D predictions.

  20. 29 CFR 1926.905 - Loading of explosives or blasting agents.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Loading of explosives or blasting agents. 1926.905 Section... Explosives § 1926.905 Loading of explosives or blasting agents. (a) Procedures that permit safe and efficient... have contained explosives or blasting agents. (g) No explosives or blasting agents shall be left...

  1. Prediction of blast-induced air overpressure: a hybrid AI-based predictive model.

    PubMed

    Jahed Armaghani, Danial; Hajihassani, Mohsen; Marto, Aminaton; Shirani Faradonbeh, Roohollah; Mohamad, Edy Tonnizam

    2015-11-01

    Blast operations in the vicinity of residential areas usually produce significant environmental problems which may cause severe damage to the nearby areas. Blast-induced air overpressure (AOp) is one of the most important environmental impacts of blast operations which needs to be predicted to minimize the potential risk of damage. This paper presents an artificial neural network (ANN) optimized by the imperialist competitive algorithm (ICA) for the prediction of AOp induced by quarry blasting. For this purpose, 95 blasting operations were precisely monitored in a granite quarry site in Malaysia and AOp values were recorded in each operation. Furthermore, the most influential parameters on AOp, including the maximum charge per delay and the distance between the blast-face and monitoring point, were measured and used to train the ICA-ANN model. Based on the generalized predictor equation and considering the measured data from the granite quarry site, a new empirical equation was developed to predict AOp. For comparison purposes, conventional ANN models were developed and compared with the ICA-ANN results. The results demonstrated that the proposed ICA-ANN model is able to predict blast-induced AOp more accurately than other presented techniques.

  2. Brain Vulnerability to Repeated Blast Overpressure and Polytrauma

    DTIC Science & Technology

    2012-05-01

    shock tube: distinguishing primary and tertiary blast injury mechanisms in rat TBI - Roles of polyunsaturated fatty acids in traumatic brain injury...vulnerabilities and resilience: evaluation of salutary effects of DHA supplementation using neurolipidomics and functional outcome assessments

  3. Neuronal DNA Methylation Profiling of Blast-Related Traumatic Brain Injury.

    PubMed

    Haghighi, Fatemeh; Ge, Yongchao; Chen, Sean; Xin, Yurong; Umali, Michelle U; De Gasperi, Rita; Gama Sosa, Miguel A; Ahlers, Stephen T; Elder, Gregory A

    2015-08-15

    Long-term molecular changes in the brain resulting from blast exposure may be mediated by epigenetic changes, such as deoxyribonucleic acid (DNA) methylation, that regulate gene expression. Aberrant regulation of gene expression is associated with behavioral abnormalities, where DNA methylation bridges environmental signals to sustained changes in gene expression. We assessed DNA methylation changes in the brains of rats exposed to three 74.5 kPa blast overpressure events, conditions that have been associated with long-term anxiogenic manifestations weeks or months following the initial exposures. Rat frontal cortex eight months post-exposure was used for cell sorting of whole brain tissue into neurons and glia. We interrogated DNA methylation profiles in these cells using Expanded Reduced Representation Bisulfite Sequencing. We obtained data for millions of cytosines, showing distinct methylation profiles for neurons and glia and an increase in global methylation in neuronal versus glial cells (p<10(-7)). We detected DNA methylation perturbations in blast overpressure-exposed animals, compared with sham blast controls, within 458 and 379 genes in neurons and glia, respectively. Differentially methylated neuronal genes showed enrichment in cell death and survival and nervous system development and function, including genes involved in transforming growth factor β and nitric oxide signaling. Functional validation via gene expression analysis of 30 differentially methylated neuronal and glial genes showed a 1.2 fold change in gene expression of the serotonin N-acetyltransferase gene (Aanat) in blast animals (p<0.05). These data provide the first genome-based evidence for changes in DNA methylation induced in response to multiple blast overpressure exposures. In particular, increased methylation and decreased gene expression were observed in the Aanat gene, which is involved in converting serotonin to the circadian hormone melatonin and is implicated in sleep disturbance and depression associated with traumatic brain injury.

  4. Computational modeling of blast exposure associated with recoilless weapons combat training

    NASA Astrophysics Data System (ADS)

    Wiri, S.; Ritter, A. C.; Bailie, J. M.; Needham, C.; Duckworth, J. L.

    2017-11-01

    Military personnel are exposed to blast as part of routine combat training with shoulder-fired recoilless rifles. These weapons fire large-caliber ammunitions capable of disabling structures and uparmored vehicles (e.g., tanks). Scientific, medical, and military leaders are beginning to recognize the blast overpressure from these shoulder-fired weapons may result in acute and even long-term physiological effects to military personnel. However, the back blast generated from the Carl Gustav and Shoulder-launched Multipurpose Assault Weapon (SMAW) shoulder-fired weapons on the weapon operator has not been quantified. By quantifying and modeling the full-body blast exposure from these weapons, better injury correlations can be constructed. Blast exposure data from the Carl Gustav and SMAW were used to calibrate a propellant burn source term for computational simulations of blast exposure on operators of these shoulder-mounted weapon systems. A propellant burn model provided the source term for each weapon to capture blast effects. Blast data from personnel-mounted gauges during weapon firing were used to create initial, high-fidelity 3D computational fluid dynamic simulations using SHAMRC (Second-order Hydrodynamic Automatic Mesh Refinement Code). These models were then improved upon using data collected from static blast sensors positioned around the military personnel while weapons were utilized in actual combat training. The final simulation models for both the Carl Gustav and SMAW were in good agreement with the data collected from the personnel-mounted and static pressure gauges. Using the final simulation results, contour maps were created for peak overpressure and peak overpressure impulse experienced by military personnel firing the weapon as well as those assisting with firing of those weapons. Reconstruction of the full-body blast loading enables a more accurate assessment of the cause of potential mechanisms of injury due to air blast even for subjects not wearing blast gauges themselves. By accurately understanding the blast exposure and its variations across an individual, more meaningful correlations with physiologic response including potential TBI spectrum physiology associated with sub-concussive blast exposure can be established. As blast injury thresholds become better defined, results from these reconstructions can provide important insights into approaches for reducing possible risk of injury to personnel operating shoulder-launched weapons.

  5. A geophysical shock and air blast simulator at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fournier, K. B.; Brown, C. G.; May, M. J.

    2014-09-15

    The energy partitioning energy coupling experiments at the National Ignition Facility (NIF) have been designed to measure simultaneously the coupling of energy from a laser-driven target into both ground shock and air blast overpressure to nearby media. The source target for the experiment is positioned at a known height above the ground-surface simulant and is heated by four beams from the NIF. The resulting target energy density and specific energy are equal to those of a low-yield nuclear device. The ground-shock stress waves and atmospheric overpressure waveforms that result in our test system are hydrodynamically scaled analogs of full-scale seismicmore » and air blast phenomena. This report summarizes the development of the platform, the simulations, and calculations that underpin the physics measurements that are being made, and finally the data that were measured. Agreement between the data and simulation of the order of a factor of two to three is seen for air blast quantities such as peak overpressure. Historical underground test data for seismic phenomena measured sensor displacements; we measure the stresses generated in our ground-surrogate medium. We find factors-of-a-few agreement between our measured peak stresses and predictions with modern geophysical computer codes.« less

  6. A geophysical shock and air blast simulator at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fournier, K. B.; Brown, C. G.; May, M. J.

    2014-09-01

    The energy partitioning energy coupling experiments at the National Ignition Facility (NIF) have been designed to measure simultaneously the coupling of energy from a laser-driven target into both ground shock and air blast overpressure to nearby media. The source target for the experiment is positioned at a known height above the ground-surface simulant and is heated by four beams from the NIF. The resulting target energy density and specific energy are equal to those of a low-yield nuclear device. The ground-shock stress waves and atmospheric overpressure waveforms that result in our test system are hydrodynamically scaled analogs of full-scale seismicmore » and air blast phenomena. This report summarizes the development of the platform, the simulations, and calculations that underpin the physics measurements that are being made, and finally the data that were measured. Agreement between the data and simulation of the order of a factor of two to three is seen for air blast quantities such as peak overpressure. Historical underground test data for seismic phenomena measured sensor displacements; we measure the stresses generated in our ground-surrogate medium. We find factors-of-a-few agreement between our measured peak stresses and predictions with modern geophysical computer codes.« less

  7. Porcine head response to blast.

    PubMed

    Shridharani, Jay K; Wood, Garrett W; Panzer, Matthew B; Capehart, Bruce P; Nyein, Michelle K; Radovitzky, Raul A; Bass, Cameron R 'dale'

    2012-01-01

    Recent studies have shown an increase in the frequency of traumatic brain injuries related to blast exposure. However, the mechanisms that cause blast neurotrauma are unknown. Blast neurotrauma research using computational models has been one method to elucidate that response of the brain in blast, and to identify possible mechanical correlates of injury. However, model validation against experimental data is required to ensure that the model output is representative of in vivo biomechanical response. This study exposes porcine subjects to primary blast overpressures generated using a compressed-gas shock tube. Shock tube blasts were directed to the unprotected head of each animal while the lungs and thorax were protected using ballistic protective vests similar to those employed in theater. The test conditions ranged from 110 to 740 kPa peak incident overpressure with scaled durations from 1.3 to 6.9 ms and correspond approximately with a 50% injury risk for brain bleeding and apnea in a ferret model scaled to porcine exposure. Instrumentation was placed on the porcine head to measure bulk acceleration, pressure at the surface of the head, and pressure inside the cranial cavity. Immediately after the blast, 5 of the 20 animals tested were apneic. Three subjects recovered without intervention within 30 s and the remaining two recovered within 8 min following respiratory assistance and administration of the respiratory stimulant doxapram. Gross examination of the brain revealed no indication of bleeding. Intracranial pressures ranged from 80 to 390 kPa as a result of the blast and were notably lower than the shock tube reflected pressures of 300-2830 kPa, indicating pressure attenuation by the skull up to a factor of 8.4. Peak head accelerations were measured from 385 to 3845 G's and were well correlated with peak incident overpressure (R(2) = 0.90). One SD corridors for the surface pressure, intracranial pressure (ICP), and head acceleration are presented to provide experimental data for computer model validation.

  8. Porcine Head Response to Blast

    PubMed Central

    Shridharani, Jay K.; Wood, Garrett W.; Panzer, Matthew B.; Capehart, Bruce P.; Nyein, Michelle K.; Radovitzky, Raul A.; Bass, Cameron R. ‘Dale’

    2012-01-01

    Recent studies have shown an increase in the frequency of traumatic brain injuries related to blast exposure. However, the mechanisms that cause blast neurotrauma are unknown. Blast neurotrauma research using computational models has been one method to elucidate that response of the brain in blast, and to identify possible mechanical correlates of injury. However, model validation against experimental data is required to ensure that the model output is representative of in vivo biomechanical response. This study exposes porcine subjects to primary blast overpressures generated using a compressed-gas shock tube. Shock tube blasts were directed to the unprotected head of each animal while the lungs and thorax were protected using ballistic protective vests similar to those employed in theater. The test conditions ranged from 110 to 740 kPa peak incident overpressure with scaled durations from 1.3 to 6.9 ms and correspond approximately with a 50% injury risk for brain bleeding and apnea in a ferret model scaled to porcine exposure. Instrumentation was placed on the porcine head to measure bulk acceleration, pressure at the surface of the head, and pressure inside the cranial cavity. Immediately after the blast, 5 of the 20 animals tested were apneic. Three subjects recovered without intervention within 30 s and the remaining two recovered within 8 min following respiratory assistance and administration of the respiratory stimulant doxapram. Gross examination of the brain revealed no indication of bleeding. Intracranial pressures ranged from 80 to 390 kPa as a result of the blast and were notably lower than the shock tube reflected pressures of 300–2830 kPa, indicating pressure attenuation by the skull up to a factor of 8.4. Peak head accelerations were measured from 385 to 3845 G’s and were well correlated with peak incident overpressure (R2 = 0.90). One SD corridors for the surface pressure, intracranial pressure (ICP), and head acceleration are presented to provide experimental data for computer model validation. PMID:22586417

  9. Effect of Human and Sheep Lung Orientation on Primary Blast Injury Induced by Single Blast

    DTIC Science & Technology

    2010-09-01

    may be injured by m ore than one of these mechanisms in any given event. Primary blast in juries ( PBI ) are exclusively caused by the blast...overpressure. A PBI usually affects air-containing organs such as t he lung, ears and gastrointestinal tract. Secon dary blast injuries are caused by...orientation on blast injuries predicted in human and sheep models. From th is study, it is predicted that the greatest reduction in lung PBI may be

  10. Hypervelocity Impact Analysis of International Space Station Whipple and Enhanced Stuffed Whipple Shields

    DTIC Science & Technology

    2004-12-01

    29 Figure 6. Flash Radiography Images of the Debris Cloud and Ejecta...hand, are not predictable. Explosions can occur because of the inadvertent mixing of propellant and oxidizer or the over-pressurization of...residual propellant due to spacecraft heating. Over-pressurized batteries may also cause explosions. Based on statistical analysis of known hypervelocity

  11. 27 CFR 555.220 - Table of separation distances of ammonium nitrate and blasting agents from explosives or blasting...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... distances of ammonium nitrate and blasting agents from explosives or blasting agents. 555.220 Section 555... ammonium nitrate and blasting agents from explosives or blasting agents. Table: Department of Defense... Not over Minimum separation distance of acceptor from donor when barricaded (ft.) Ammonium nitrate...

  12. 27 CFR 555.220 - Table of separation distances of ammonium nitrate and blasting agents from explosives or blasting...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... distances of ammonium nitrate and blasting agents from explosives or blasting agents. 555.220 Section 555... ammonium nitrate and blasting agents from explosives or blasting agents. Table: Department of Defense... Not over Minimum separation distance of acceptor from donor when barricaded (ft.) Ammonium nitrate...

  13. 27 CFR 555.220 - Table of separation distances of ammonium nitrate and blasting agents from explosives or blasting...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... distances of ammonium nitrate and blasting agents from explosives or blasting agents. 555.220 Section 555... ammonium nitrate and blasting agents from explosives or blasting agents. Table: Department of Defense... Not over Minimum separation distance of acceptor from donor when barricaded (ft.) Ammonium nitrate...

  14. 27 CFR 555.220 - Table of separation distances of ammonium nitrate and blasting agents from explosives or blasting...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... distances of ammonium nitrate and blasting agents from explosives or blasting agents. 555.220 Section 555... ammonium nitrate and blasting agents from explosives or blasting agents. Table: Department of Defense... Not over Minimum separation distance of acceptor from donor when barricaded (ft.) Ammonium nitrate...

  15. 27 CFR 555.220 - Table of separation distances of ammonium nitrate and blasting agents from explosives or blasting...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... distances of ammonium nitrate and blasting agents from explosives or blasting agents. 555.220 Section 555... ammonium nitrate and blasting agents from explosives or blasting agents. Table: Department of Defense... Not over Minimum separation distance of acceptor from donor when barricaded (ft.) Ammonium nitrate...

  16. Overpressure resulting from combustion of explosive gas in an unconfined geometry

    NASA Astrophysics Data System (ADS)

    Urtiew, P. A.

    1982-02-01

    In preparation for a series of large scale spill tests of liquefied gaseous fuels, the problem of designing safe storage facilities for the fuels as part of a proposed spill test facility arose. The design had to take into account the potential hazards associated with large quantities of fuel, including the hazard of overpressures which develop during various modes of combustion or explosion. The overpressure question, the results of which are presented, was studied. All the pertinent information on overpressure that is available in the open literature is summarized and is presented in a form that can be readily converted into design criteria for the fuel storage facility. Various modes of combustion are reviewed and categorized according to their capability of producing sizable overpressures, and some comments are made on how deviations from the ideal situations considered in analytical studies will affect the results.

  17. Concussive brain injury from explosive blast

    PubMed Central

    de Lanerolle, Nihal C; Hamid, Hamada; Kulas, Joseph; Pan, Jullie W; Czlapinski, Rebecca; Rinaldi, Anthony; Ling, Geoffrey; Bandak, Faris A; Hetherington, Hoby P

    2014-01-01

    Objective Explosive blast mild traumatic brain injury (mTBI) is associated with a variety of symptoms including memory impairment and posttraumatic stress disorder (PTSD). Explosive shock waves can cause hippocampal injury in a large animal model. We recently reported a method for detecting brain injury in soldiers with explosive blast mTBI using magnetic resonance spectroscopic imaging (MRSI). This method is applied in the study of veterans exposed to blast. Methods The hippocampus of 25 veterans with explosive blast mTBI, 20 controls, and 12 subjects with PTSD but without exposure to explosive blast were studied using MRSI at 7 Tesla. Psychiatric and cognitive assessments were administered to characterize the neuropsychiatric deficits and compare with findings from MRSI. Results Significant reductions in the ratio of N-acetyl aspartate to choline (NAA/Ch) and N-acetyl aspartate to creatine (NAA/Cr) (P < 0.05) were found in the anterior portions of the hippocampus with explosive blast mTBI in comparison to control subjects and were more pronounced in the right hippocampus, which was 15% smaller in volume (P < 0.05). Decreased NAA/Ch and NAA/Cr were not influenced by comorbidities – PTSD, depression, or anxiety. Subjects with PTSD without blast had lesser injury, which tended to be in the posterior hippocampus. Explosive blast mTBI subjects had a reduction in visual memory compared to PTSD without blast. Interpretation The region of the hippocampus injured differentiates explosive blast mTBI from PTSD. MRSI is quite sensitive in detecting and localizing regions of neuronal injury from explosive blast associated with memory impairment. PMID:25493283

  18. Mechanical Damage of Tympanic Membrane in Relation to Impulse Pressure Waveform – A Study in Chinchillas

    PubMed Central

    Gan, Rong Z.; Nakmali, Don; Ji, Xiao D.; Leckness, Kegan; Yokell, Zachary

    2016-01-01

    Mechanical damage to middle ear components in blast exposure directly causes hearing loss, and the rupture of the tympanic membrane (TM) is the most frequent injury of the ear. However, it is unclear how the severity of injury graded by different patterns of TM rupture is related to the overpressure waveforms induced by blast waves. In the present study, the relationship between the TM rupture threshold and the impulse or overpressure waveform has been investigated in chinchillas. Two groups of animals were exposed to blast overpressure simulated in our lab under two conditions: open field and shielded with a stainless steel cup covering the animal head. Auditory brainstem response (ABR) and wideband tympanometry were measured before and after exposure to check the hearing threshold and middle ear function. Results show that waveforms recorded in the shielded case were different from those in the open field and the TM rupture threshold in the shielded case was lower than that in the open field (3.4±0.7 vs. 9.1±1.7 psi or 181±1.6 vs. 190±1.9 dB SPL). The impulse pressure energy spectra analysis of waveforms demonstrates that the shielded waveforms include greater energy at high frequencies than that of the open field waves. Finally, a 3D finite element (FE) model of the chinchilla ear was used to compute the distributions of stress in the TM and the TM displacement with impulse pressure waves. The FE model-derived change of stress in response to pressure loading in the shielded case was substantially faster than that in the open case. This finding provides the biomechanical mechanisms for blast induced TM damage in relation to overpressure waveforms. The TM rupture threshold difference between the open and shielded cases suggests that an acoustic role of helmets may exist, intensifying ear injury during blast exposure. PMID:26807796

  19. 30 CFR 77.1910 - Explosives and blasting; general.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Explosives and blasting; general. 77.1910... COAL MINES Slope and Shaft Sinking § 77.1910 Explosives and blasting; general. (a) Light and power circuits shall be disconnected or removed from the blasting area before charging and blasting. (b) All...

  20. Exploration of the molecular basis of blast injury in a biofidelic model of traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Thielen, P.; Mehoke, T.; Gleason, J.; Iwaskiw, A.; Paulson, J.; Merkle, A.; Wester, B.; Dymond, J.

    2018-01-01

    Biological response to blast overpressure is complex and results in various and potentially non-concomitant acute and long-term deficits to exposed individuals. Clinical links between blast severity and injury outcomes remain elusive and have yet to be fully described, resulting in a critical inability to develop associated protection and mitigation strategies. Further, experimental models frequently fail to reproduce observed physiological phenomena and/or introduce artifacts that confound analysis and reproducibility. New models are required that employ consistent mechanical inputs, scale with biological analogs and known clinical data, and permit high-throughput examination of biological responses for a range of environmental and battlefield- relevant exposures. Here we describe a novel, biofidelic headform capable of integrating complex biological samples for blast exposure studies. We additionally demonstrate its utility in detecting acute transcriptional responses in the model organism Caenorhabditis elegans after exposure to blast overpressure. This approach enables correlation between mechanical exposure and biological outcome, permitting both the enhancement of existing surrogate and computational models and the high-throughput biofidelic testing of current and future protection systems.

  1. Pathophysiology of the inner ear after blast injury caused by laser-induced shock wave

    PubMed Central

    Niwa, Katsuki; Mizutari, Kunio; Matsui, Toshiyasu; Kurioka, Takaomi; Matsunobu, Takeshi; Kawauchi, Satoko; Satoh, Yasushi; Sato, Shunichi; Shiotani, Akihiro; Kobayashi, Yasushi

    2016-01-01

    The ear is the organ that is most sensitive to blast overpressure, and ear damage is most frequently seen after blast exposure. Blast overpressure to the ear results in sensorineural hearing loss, which is untreatable and is often associated with a decline in the quality of life. In this study, we used a rat model to demonstrate the pathophysiological and structural changes in the inner ear that replicate pure sensorineural hearing loss associated with blast injury using laser-induced shock wave (LISW) without any conductive hearing loss. Our results indicate that threshold elevation of the auditory brainstem response (ABR) after blast exposure was primarily caused by outer hair cell dysfunction induced by stereociliary bundle disruption. The bundle disruption pattern was unique; disturbed stereocilia were mostly observed in the outermost row, whereas those in the inner and middle rows stereocilia remained intact. In addition, the ABR examination showed a reduction in wave I amplitude without elevation of the threshold in the lower energy exposure group. This phenomenon was caused by loss of the synaptic ribbon. This type of hearing dysfunction has recently been described as hidden hearing loss caused by cochlear neuropathy, which is associated with tinnitus or hyperacusis. PMID:27531021

  2. Pathophysiology of the inner ear after blast injury caused by laser-induced shock wave.

    PubMed

    Niwa, Katsuki; Mizutari, Kunio; Matsui, Toshiyasu; Kurioka, Takaomi; Matsunobu, Takeshi; Kawauchi, Satoko; Satoh, Yasushi; Sato, Shunichi; Shiotani, Akihiro; Kobayashi, Yasushi

    2016-08-17

    The ear is the organ that is most sensitive to blast overpressure, and ear damage is most frequently seen after blast exposure. Blast overpressure to the ear results in sensorineural hearing loss, which is untreatable and is often associated with a decline in the quality of life. In this study, we used a rat model to demonstrate the pathophysiological and structural changes in the inner ear that replicate pure sensorineural hearing loss associated with blast injury using laser-induced shock wave (LISW) without any conductive hearing loss. Our results indicate that threshold elevation of the auditory brainstem response (ABR) after blast exposure was primarily caused by outer hair cell dysfunction induced by stereociliary bundle disruption. The bundle disruption pattern was unique; disturbed stereocilia were mostly observed in the outermost row, whereas those in the inner and middle rows stereocilia remained intact. In addition, the ABR examination showed a reduction in wave I amplitude without elevation of the threshold in the lower energy exposure group. This phenomenon was caused by loss of the synaptic ribbon. This type of hearing dysfunction has recently been described as hidden hearing loss caused by cochlear neuropathy, which is associated with tinnitus or hyperacusis.

  3. Occupational overpressure exposure of breachers and military personnel

    NASA Astrophysics Data System (ADS)

    Kamimori, G. H.; Reilly, L. A.; LaValle, C. R.; Olaghere Da Silva, U. B.

    2017-11-01

    Military and law enforcement personnel may be routinely and repetitively exposed to low-level blast (LLB) overpressure during training and in operations. This repeated exposure has been associated with symptoms similar to that reported for sports concussion. This study reports LLB exposure for various military and law enforcement sources in operational training environments. Peak overpressure and impulse data are presented from indoor breaching, outdoor breaching, shotgun door breaching, small arms discharge, and mortar and artillery fire missions. Data were collected using the Black Box Biometrics (B3) Blast Gauge sensors. In all cases, sensors were attached to the operators and, where possible, also statically mounted to walls or other fixed structures. Peak overpressures from below 1 psi (7 kPa) to over 12 psi (83 kPa) were recorded; all values reported are uncorrected for incidence angle to the blast exposure source. The results of these studies indicate that the current minimum safe distance calculations are often inaccurate for both indoor and outdoor breaching scenarios as true environmental exposure can consistently exceed the 4 psi (28 kPa) incident safe threshold prescribed by U.S. Army doctrine. While ballistic (shotgun) door breaching and small arms firing only expose the operator to low peak exposure levels, the sheer number of rounds fired during training may result in an excessive cumulative exposure. Mortar and artillery crew members received significantly different overpressure and impulse exposures based on their position (job) relative to the weapon. As both the artillery and mortar crews commonly fire hundreds of rounds during a single training session they are also likely to receive high cumulative exposures. These studies serve to provide the research community with estimates for typical operator exposure across a range of operational scenarios or in the discharge of various weapons systems.

  4. 30 CFR 817.66 - Use of explosives: Blasting signs, warnings, and access control.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Use of explosives: Blasting signs, warnings... STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.66 Use of explosives: Blasting signs, warnings, and access control. (a) Blasting signs. Blasting signs shall meet the specifications of § 817.11. The operator shall...

  5. 30 CFR 816.66 - Use of explosives: Blasting signs, warnings, and access control.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Use of explosives: Blasting signs, warnings... STANDARDS-SURFACE MINING ACTIVITIES § 816.66 Use of explosives: Blasting signs, warnings, and access control. (a) Blasting signs. Blasting signs shall meet the specifications of § 816.11. The operator shall— (1...

  6. 30 CFR 817.66 - Use of explosives: Blasting signs, warnings, and access control.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Use of explosives: Blasting signs, warnings... STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.66 Use of explosives: Blasting signs, warnings, and access control. (a) Blasting signs. Blasting signs shall meet the specifications of § 817.11. The operator shall...

  7. 30 CFR 816.66 - Use of explosives: Blasting signs, warnings, and access control.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Use of explosives: Blasting signs, warnings... STANDARDS-SURFACE MINING ACTIVITIES § 816.66 Use of explosives: Blasting signs, warnings, and access control. (a) Blasting signs. Blasting signs shall meet the specifications of § 816.11. The operator shall— (1...

  8. 30 CFR 816.66 - Use of explosives: Blasting signs, warnings, and access control.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Use of explosives: Blasting signs, warnings... STANDARDS-SURFACE MINING ACTIVITIES § 816.66 Use of explosives: Blasting signs, warnings, and access control. (a) Blasting signs. Blasting signs shall meet the specifications of § 816.11. The operator shall— (1...

  9. 30 CFR 817.66 - Use of explosives: Blasting signs, warnings, and access control.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Use of explosives: Blasting signs, warnings... STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.66 Use of explosives: Blasting signs, warnings, and access control. (a) Blasting signs. Blasting signs shall meet the specifications of § 817.11. The operator shall...

  10. 30 CFR 817.66 - Use of explosives: Blasting signs, warnings, and access control.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Use of explosives: Blasting signs, warnings... STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.66 Use of explosives: Blasting signs, warnings, and access control. (a) Blasting signs. Blasting signs shall meet the specifications of § 817.11. The operator shall...

  11. 30 CFR 817.66 - Use of explosives: Blasting signs, warnings, and access control.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Use of explosives: Blasting signs, warnings... STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.66 Use of explosives: Blasting signs, warnings, and access control. (a) Blasting signs. Blasting signs shall meet the specifications of § 817.11. The operator shall...

  12. 30 CFR 816.66 - Use of explosives: Blasting signs, warnings, and access control.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Use of explosives: Blasting signs, warnings... STANDARDS-SURFACE MINING ACTIVITIES § 816.66 Use of explosives: Blasting signs, warnings, and access control. (a) Blasting signs. Blasting signs shall meet the specifications of § 816.11. The operator shall— (1...

  13. 30 CFR 816.66 - Use of explosives: Blasting signs, warnings, and access control.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Use of explosives: Blasting signs, warnings... STANDARDS-SURFACE MINING ACTIVITIES § 816.66 Use of explosives: Blasting signs, warnings, and access control. (a) Blasting signs. Blasting signs shall meet the specifications of § 816.11. The operator shall— (1...

  14. Using optical techniques to measure aluminum burning in post-detonation explosive fireballs

    NASA Astrophysics Data System (ADS)

    Peuker, Jennifer Mott

    The objectives of the current study are twofold: (1) to further the understanding of aluminum combustion in an explosive fireball, specifically where, when, and with what the aluminum is reacting; and (2) to characterize AlO emission measurements from aluminized explosive fireballs in order to determine when and how AlO emission can be used as an indicator of aluminum combustion. Experiments were completed in six different environments using four distinct aluminized charges of varying aluminum particle size---3 microm, 10 microm and 40 microm---and loading amount---20 and 50 percent by mass---to determine with what the aluminum is reacting. In addition, a charge containing 20 percent aluminum oxide (Al2O3) was used as an inert comparison. The effect of the aluminum particle location with respect to the explosive material was tested by using end-loaded charges, and by placing a layer of grease on the aluminized charge tip. Time-resolved overpressure measurements are used to determine when the aluminum is burning. Experiments employing an air-gap between the explosive charge and aluminum powder aid in determining how and when aluminum is activated and combusted in the initial blast wave and the subsequent fireball containing high pressure and high temperature detonation products. Tests in four environments show that even when AlO emission intensity is lower by 90 percent in N2 or CO2 than it is in air for a charge, it is possible to have significant---60 to 70 percent---aluminum particle oxidation. In addition, substantial AlO emission was measured in the absence of unburned aluminum---almost half of the peak AlO emission measured when unburned aluminum was present. Results show that AlO emission intensity measurements are skewed to higher AlO intensities by high transient temperatures within the first 30 micros when the peak AlO emission is usually measured. The aluminum particle location also affects the amount of AlO emission measured such that when more particles are on the fireball surface, then more AlO emission is measured. However, the end-loaded aluminum does not add to the energy output enhancement as much as the pre-loaded aluminum charges since the peak pressures and initial impulse are similar for different amounts of aluminum. A grease layer on the tip of the charge reduces the amount of AlO emission measured by 90 percent, but has the same energy output in the initial blast wave as the same charge not having a grease layer, indicating that the material at the tip of a charge changes the breakout and subsequent AlO emission production. In addition, the overpressure measurements indicate that four distinct stages of aluminum combustion exist. The first stage is the detonation and the activation of the aluminum. In the second stage the aluminum burns to enhance the blast wave which is indicated by higher peak pressures and initial impulses than a charge not containing aluminum. During the third stage, the aluminum continues to burn to increase the overpressure of the chamber. The fireball cools during the fourth stage and any aluminum oxidation does not add to the energy release. The variations in how much AlO emission is measured indicate that interpreting AlO emission measurements from explosive fireballs is not straightforward with respect to correctly determining the amount of aluminum combusted, how long the aluminum reacted, or the energy released. If aluminum is available to burn and AlO emission is measured, then the aluminum is burning---even taking into account AlO emission from the oxide layer. However, when no AlO emission is measured, it does not necessarily mean that the aluminum is not burning. When AlO emission is measured it indicates that the temperatures are high enough to sustain aluminum combustion which produces AlO, and that oxidizers are present which react to produce the AlO emission. The relative intensities for the same time frame of AlO emission measured could be indicators about the temperature or number of reactions occurring. (Abstract shortened by UMI.)

  15. Explosive Characteristics of Carbonaceous Nanoparticles

    NASA Astrophysics Data System (ADS)

    Turkevich, Leonid; Fernback, Joseph; Dastidar, Ashok

    2013-03-01

    Explosion testing has been performed on 20 codes of carbonaceous particles. These include SWCNTs (single-walled carbon nanotubes), MWCNTs (multi-walled carbon nanotubes), CNFs (carbon nanofibers), graphene, diamond, fullerene, carbon blacks and graphites. Explosion screening was performed in a 20 L explosion chamber (ASTM E1226-10 protocol), at a (dilute) concentration of 500 g/m3, using a 5 kJ ignition source. Time traces of overpressure were recorded. Samples exhibited overpressures of 5-7 bar, and deflagration index KSt = V1/3 (dp/pt)max ~ 10 - 80 bar-m/s, which places these materials in European Dust Explosion Class St-1 (similar to cotton and wood dust). There was minimal variation between these different materials. The explosive characteristics of these carbonaceous powders are uncorrelated with particle size (BET specific surface area). Additional tests were performed on selected materials to identify minimum explosive concentration [MEC]. These materials exhibit MEC ~ 101 -102 g/m3 (lower than the MEC for coals). The concentration scans confirm that the earlier screening was performed under fuel-rich conditions (i.e. the maximum over-pressure and deflagration index exceed the screening values); e.g. the true fullerene KSt ~ 200 bar-m/s, placing it borderline St-1/St-2. Work supported through the NIOSH Nanotechnology Research Center (NTRC)

  16. Directed blasts and blast-generated pyroclastic density currents: a comparison of the Bezymianny 1956, Mount St Helens 1980, and Soufrière Hills, Montserrat 1997 eruptions and deposits

    USGS Publications Warehouse

    Belousov, Alexander; Voight, Barry; Belousova, Marina

    2007-01-01

    We compare eruptive dynamics, effects and deposits of the Bezymianny 1956 (BZ), Mount St Helens 1980 (MSH), and Soufrière Hills volcano, Montserrat 1997 (SHV) eruptions, the key events of which included powerful directed blasts. Each blast subsequently generated a high-energy stratified pyroclastic density current (PDC) with a high speed at onset. The blasts were triggered by rapid unloading of an extruding or intruding shallow magma body (lava dome and/or cryptodome) of andesitic or dacitic composition. The unloading was caused by sector failures of the volcanic edifices, with respective volumes for BZ, MSH, and SHV c. 0.5, 2.5, and 0.05 km3 . The blasts devastated approximately elliptical areas, axial directions of which coincided with the directions of sector failures. We separate the transient directed blast phenomenon into three main parts, the burst phase, the collapse phase, and the PDC phase. In the burst phase the pressurized mixture is driven by initial kinetic energy and expands rapidly into the atmosphere, with much of the expansion having an initially lateral component. The erupted material fails to mix with sufficient air to form a buoyant column, but in the collapse phase, falls beyond the source as an inclined fountain, and thereafter generates a PDC moving parallel to the ground surface. It is possible for the burst phase to comprise an overpressured jet, which requires injection of momentum from an orifice; however some exploding sources may have different geometry and a jet is not necessarily formed. A major unresolved question is whether the preponderance of strong damage observed in the volcanic blasts should be attributed to shock waves within an overpressured jet, or alternatively to dynamic pressures and shocks within the energetic collapse and PDC phases. Internal shock structures related to unsteady flow and compressibility effects can occur in each phase. We withhold judgment about published shock models as a primary explanation for the damage sustained at MSH until modern 3D numerical modeling is accomplished, but argue that much of the damage observed in directed blasts can be reasonably interpreted to have been caused by high dynamic pressures and clast impact loading by an inclined collapsing fountain and stratified PDC. This view is reinforced by recent modeling cited for SHV. In distal and peripheral regions, solids concentration, maximum particle size, current speed, and dynamic pressure are diminished, resulting in lesser damage and enhanced influence by local topography on the PDC. Despite the different scales of the blasts (devastated areas were respectively 500, 600, and >10 km2 for BZ, MSH, and SHV), and some complexity involving retrogressive slide blocks and clusters of explosions, their pyroclastic deposits demonstrate strong similarity. Juvenile material composes >50% of the deposits, implying for the blasts a dominantly magmatic mechanism although hydrothermal explosions also occurred. The character of the magma fragmented by explosions (highly viscous, phenocryst-rich, variable microlite content) determined the bimodal distributions of juvenile clast density and vesicularity. Thickness of the deposits fluctuates in proximal areas but in general decreases with distance from the crater, and laterally from the axial region. The proximal stratigraphy of the blast deposits comprises four layers named A, B, C, D from bottom to top. Layer A is represented by very poorly sorted debris with admixtures of vegetation and soil, with a strongly erosive ground contact; its appearance varies at different sites due to different ground conditions at the time of the blasts. The layer reflects intense turbulent boundary shear between the basal part of the energetic head of the PDC and the substrate. Layer B exhibits relatively well-sorted fines depleted debris with some charred plant fragments; its deposition occurred by rapid suspension sedimentation in rapidly waning, high-concentration conditions. Layer C is mainly a poorly sorted massive layer enriched by fines with its uppermost part laminated, created by rapid sedimentation under moderate-concentration, weakly tractive conditions, with the uppermost laminated part reflecting a dilute depositional regime with grain-by-grain traction deposition. By analogy to laboratory experiments, mixing at the flow head of the PDC created a turbulent dilute wake above the body of a gravity current, with layer B deposited by the flow body and layer C by the wake. The uppermost layer D of fines and accretionary lapilli is an ash fallout deposit of the finest particles from the high-rising buoyant thermal plume derived from the sediment-depleted pyroclastic density current. The strong similarity among these eruptions and their deposits suggests that these cases represent similar source, transport and depositional phenomena.

  17. Kevlar Vest Protection Against Blast Overpressure Brain Injury: Systemic Contributions to Injury Etiology

    DTIC Science & Technology

    2014-11-01

    GF, Moss WC, Cleveland RO, Tanzi RE, Stanton PK, McKee AC. Chronic traumatic encephalopathy in blast-exposed military veterans and a blast... traumatic brain injury (bTBI) is largely undefined. Along with reducing mortality, in preliminary experiments Kevlar vests significantly protected...mitigation strategies. 15. SUBJECT TERMS Traumatic Brain Injury (TBI), Kevlar Vests, Neuroprotection 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  18. The effect of ignition location on explosion venting of hydrogen-air mixtures

    NASA Astrophysics Data System (ADS)

    Cao, Y.; Guo, J.; Hu, K.; Xie, L.; Li, B.

    2017-07-01

    The effect of ignition location and vent burst pressure on the internal pressure-time history and external flame propagation was investigated for vented explosions of hydrogen-air mixtures in a small cylindrical vessel. A high-speed camera was used to record videos of the external flame while pressure transducers were used to record pressure-time histories. It was found that central ignition always leads to the maximum internal peak overpressure, and front ignition resulted in the lowest value of internal peak overpressure. The internal peak overpressures are increased corresponding to the increase in the vent burst pressure in the cases of central and rear ignition. Because of the effect of acoustic oscillations, the phenomenon of oscillations is observed in the internal pressure profile for the case of front ignition. The pressure oscillations for the cases of rear and central ignition are triggered by external explosions. The behavior of flames outside the chamber is significantly associated with the internal pressure of the chamber so that the velocity of the jet flame is closely related to the internal overpressure peak.

  19. Investigation of the Explosive Potential of the Hybrid Propellant Combinations N2O4/PBAN and CTF/PBAN

    DTIC Science & Technology

    1967-03-01

    nitrogen tetroxide (N„0 ) and polybutadyne-aluminum (PBAN), and chlorine trifluoride (CTF) and PBAN. This program consisted of a series of eight...explosive potential of two hybrid propellant combinations; nitrogen tetroxide QLOL) and polybutadyne - aluminum (PBAN) and chlorine triflouride (CTF...or positive-phase impulse yield. FREE AIR OVERPRESSURE: (OR FREE FIELD OVERPRESSURE): The unreflected pressure, in excess of the ambient atmospheric

  20. Propulsion system ignition overpressure for the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Ryan, R. S.; Jones, J. H.; Guest, S. H.; Struck, H. G.; Rheinfurth, M. H.; Verferaime, V. S.

    1981-01-01

    Liquid and solid rocket motor propulsion systems create an overpressure wave during ignition, caused by the accelerating gas particles pushing against or displacing the air contained in the launch pad or launch facility and by the afterburning of the fuel-rich gases. This wave behaves as a blast or shock wave characterized by a positive triangular-shaped first pulse and a negative half-sine wave second pulse. The pulse travels up the space vehicle and has the potential of either overloading individual elements or exciting overall vehicle dynamics. The latter effect results from the phasing difference of the wave from one side of the vehicle to the other. This overpressure phasing, or delta P environment, because of its frequency content as well as amplitude, becomes a design driver for certain panels (e.g., thermal shields) and payloads for the Space Shuttle. The history of overpressure effects on the Space Shuttle, the basic overpressure phenomenon, Space Shuttle overpressure environment, scale model overpressure testing, and techniques for suppressing the overpressure environments are considered.

  1. The quantitative studies on gas explosion suppression by an inert rock dust deposit.

    PubMed

    Song, Yifan; Zhang, Qi

    2018-07-05

    The traditional defence against propagating gas explosions is the application of dry rock dust, but not much quantitative study on explosion suppression of rock dust has been made. Based on the theories of fluid dynamics and combustion, a simulated study on the propagation of premixed gas explosion suppressed by deposited inert rock dust layer is carried out. The characteristics of the explosion field (overpressure, temperature, flame speed and combustion rate) at different deposited rock dust amounts are investigated. The flame in the pipeline cannot be extinguished when the deposited rock dust amount is less than 12 kg/m 3 . The effects of suppressing gas explosion become weak when the deposited rock dust amount is greater than 45 kg/m 3 . The overpressure decreases with the increase of the deposited rock dust amounts in the range of 18-36 kg/m 3 and the flame speed and the flame length show the same trends. When the deposited rock dust amount is 36 kg/m 3 , the overpressure can be reduced by 40%, the peak flame speed by 50%, and the flame length by 42% respectively, compared with those of the gas explosion of stoichiometric mixture. In this model, the effective raised dust concentrations to suppress explosion are 2.5-3.5 kg/m 3 . Copyright © 2018 Elsevier B.V. All rights reserved.

  2. The characterization and evaluation of accidental explosions

    NASA Technical Reports Server (NTRS)

    Strehlow, R. A.; Baker, W. E.

    1975-01-01

    Accidental explosions are discussed from a number of viewpoints. First, all accidental explosions, intentional explosions and natural explosions are characterized by type. Second, the nature of the blast wave produced by an ideal (point source or HE) explosion is discussed to form a basis for describing how other explosion processes yield deviations from ideal blast wave behavior. The current status blast damage mechanism evaluation is also discussed. Third, the current status of our understanding of each different category of accidental explosions is discussed in some detail.

  3. Molecular Signatures and Diagnostic Biomarkers of Cumulative, Blast-Graded Mild TBI

    DTIC Science & Technology

    2013-10-01

    Kirk, Department of Mechanical and Aerospace Engineering, Florida Institute of Technology, Melbourne FL 32901 January 3 rd , 2013 2. Prima V...induced Neurotrauma “Neuro-glial and systemic mechanisms of pathological responses in rat models of primary blast overpressure compared to "composite...inflammation biomarkers such as L-selectin and s-ICAM involved in molecular mechanisms of blast-induced injury. The FIT prototype sensor (version 1) to

  4. Blast shock wave mitigation using the hydraulic energy redirection and release technology.

    PubMed

    Chen, Yun; Huang, Wei; Constantini, Shlomi

    2012-01-01

    A hydraulic energy redirection and release technology has been developed for mitigating the effects of blast shock waves on protected objects. The technology employs a liquid-filled plastic tubing as a blast overpressure transformer to transfer kinetic energy of blast shock waves into hydraulic energy in the plastic tubings. The hydraulic energy is redirected through the plastic tubings to the openings at the lower ends, and then is quickly released with the liquid flowing out through the openings. The samples of the specifically designed body armor in which the liquid-filled plastic tubings were installed vertically as the outer layer of the body armor were tested. The blast test results demonstrated that blast overpressure behind the body armor samples was remarkably reduced by 97% in 0.2 msec after the liquid flowed out of its appropriate volume through the openings. The results also suggested that a volumetric liquid surge might be created when kinetic energy of blast shock wave was transferred into hydraulic energy to cause a rapid physical movement or displacement of the liquid. The volumetric liquid surge has a strong destructive power, and can cause a noncontact, remote injury in humans (such as blast-induced traumatic brain injury and post-traumatic stress disorder) if it is created in cardiovascular system. The hydraulic energy redirection and release technology can successfully mitigate blast shock waves from the outer surface of the body armor. It should be further explored as an innovative approach to effectively protect against blast threats to civilian and military personnel.

  5. Blast Shock Wave Mitigation Using the Hydraulic Energy Redirection and Release Technology

    PubMed Central

    Chen, Yun; Huang, Wei; Constantini, Shlomi

    2012-01-01

    A hydraulic energy redirection and release technology has been developed for mitigating the effects of blast shock waves on protected objects. The technology employs a liquid-filled plastic tubing as a blast overpressure transformer to transfer kinetic energy of blast shock waves into hydraulic energy in the plastic tubings. The hydraulic energy is redirected through the plastic tubings to the openings at the lower ends, and then is quickly released with the liquid flowing out through the openings. The samples of the specifically designed body armor in which the liquid-filled plastic tubings were installed vertically as the outer layer of the body armor were tested. The blast test results demonstrated that blast overpressure behind the body armor samples was remarkably reduced by 97% in 0.2 msec after the liquid flowed out of its appropriate volume through the openings. The results also suggested that a volumetric liquid surge might be created when kinetic energy of blast shock wave was transferred into hydraulic energy to cause a rapid physical movement or displacement of the liquid. The volumetric liquid surge has a strong destructive power, and can cause a noncontact, remote injury in humans (such as blast-induced traumatic brain injury and post-traumatic stress disorder) if it is created in cardiovascular system. The hydraulic energy redirection and release technology can successfully mitigate blast shock waves from the outer surface of the body armor. It should be further explored as an innovative approach to effectively protect against blast threats to civilian and military personnel. PMID:22745740

  6. Environmental Training Modules. Module 3 - Shipyard Incident Response Training

    DTIC Science & Technology

    1999-05-01

    112 1.4 Explosives (no significant blast hazard) Orange 114 1.5 Insensitive Explosives; Blasting Agents Orange 112 2.1 Flammable Gas Red 118 2.2 Non...manufacture, distribution, importation, and use of pesticides . Broadly defined, a pesticide is any agent used to kill or control undesired insects...Orange 112 1.4 Explosives (no significant blast hazard) Orange 114 1.5 Very Insensitive Explosives; Blasting Agents Orange 112 2.1 Flammable Gas Red

  7. Mechanical damage of tympanic membrane in relation to impulse pressure waveform - A study in chinchillas.

    PubMed

    Gan, Rong Z; Nakmali, Don; Ji, Xiao D; Leckness, Kegan; Yokell, Zachary

    2016-10-01

    Mechanical damage to middle ear components in blast exposure directly causes hearing loss, and the rupture of the tympanic membrane (TM) is the most frequent injury of the ear. However, it is unclear how the severity of injury graded by different patterns of TM rupture is related to the overpressure waveforms induced by blast waves. In the present study, the relationship between the TM rupture threshold and the impulse or overpressure waveform has been investigated in chinchillas. Two groups of animals were exposed to blast overpressure simulated in our lab under two conditions: open field and shielded with a stainless steel cup covering the animal head. Auditory brainstem response (ABR) and wideband tympanometry were measured before and after exposure to check the hearing threshold and middle ear function. Results show that waveforms recorded in the shielded case were different from those in the open field and the TM rupture threshold in the shielded case was lower than that in the open field (3.4 ± 0.7 vs. 9.1 ± 1.7 psi or 181 ± 1.6 vs. 190 ± 1.9 dB SPL). The impulse pressure energy spectra analysis of waveforms demonstrates that the shielded waveforms include greater energy at high frequencies than that of the open field waves. Finally, a 3D finite element (FE) model of the chinchilla ear was used to compute the distributions of stress in the TM and the TM displacement with impulse pressure waves. The FE model-derived change of stress in response to pressure loading in the shielded case was substantially faster than that in the open case. This finding provides the biomechanical mechanisms for blast induced TM damage in relation to overpressure waveforms. The TM rupture threshold difference between the open and shielded cases suggests that an acoustic role of helmets may exist, intensifying ear injury during blast exposure. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Report on Transport and Loading of Explosives in the Femtosecond Tank, Room 1711A HEAF 00-010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, D L

    2002-04-25

    The current OSP associated with Room 1711A located in Building 191 (HEAF) sets a limit of 5 grams Net Explosive Weight (NEW) of explosives for the room. A question was raised as to the capability of that room to withstand the overpressure created by a detonation of 5 grams NEW of explosives. Calculations were inconclusive, but indicated the wallboard would not remain intact if there was a detonation of 5 grams NEW at a distance of eight feet from the wall. These calculations did not seem logical. To verify the hypothesis, a series of experiments were conducted in the 1more » Kilogram tank. The experiments consisted of exposing a pre-built double-sided wall with the same stud spacing and drywall thickness found in the walls of Room 1711A to various amounts of explosives to create expected overpressures. The objective of this test was to prove or disprove that the walls in room 1711A could withstand a detonation of 5 grams of high explosives and to determine if larger quantities of explosives could be worked on in the room while still providing the required level of protection for personnel outside the room. Testing has verified that not only can the walls withstand a 5 gram explosion, but a 10.75 gram explosion as well. A second test was conducted using 20 grams of explosive plus a detonator. Although the inner piece of drywall cracked, the outer piece of drywall maintained its integrity, thereby confining the effects of the anticipated overpressure to the room.« less

  9. Correlative analysis of head kinematics and brain's tissue response: a computational approach toward understanding the mechanisms of blast TBI

    NASA Astrophysics Data System (ADS)

    Sarvghad-Moghaddam, H.; Rezaei, A.; Ziejewski, M.; Karami, G.

    2017-11-01

    Upon impingement of blast waves on the head, stress waves generated at the interface of the skull are transferred into the cranium and the brain tissue and may cause mild to severe blast traumatic brain injury. The intensity of the shock front, defined by the blast overpressure (BoP), that is, the blast-induced peak static overpressure, significantly affects head kinematics as well as the tissue responses of the brain. While evaluation of global linear and rotational accelerations may be feasible, an experimental determination of dynamic responses of the brain in terms of intracranial pressure (ICP), maximum shear stress (MSS), and maximum principal strain (MPS) is almost impossible. The main objective of this study is to investigate possible correlations between head accelerations and the brain's ICP, MSS, and MPS. To this end, three different blasts were simulated by modeling the detonation of 70, 200, and 500 g of TNT at a fixed distance from the head, corresponding to peak BoPs of 0.52, 1.2, and 2 MPa, respectively. A nonlinear multi-material finite element algorithm was implemented in the LS-DYNA explicit solver. Fluid-solid interaction between the blast waves and head was modeled using a penalty-based method. Strong correlations were found between the brain's dynamic responses and both global linear and rotational accelerations at different blast intensities (R^{2 }≥98%), implying that global kinematic parameters of the head might be strong predictors of brain tissue biomechanical parameters.

  10. Acoustic Full Waveform Inversion to Characterize Near-surface Chemical Explosions

    NASA Astrophysics Data System (ADS)

    Kim, K.; Rodgers, A. J.

    2015-12-01

    Recent high-quality, atmospheric overpressure data from chemical high-explosive experiments provide a unique opportunity to characterize near-surface explosions, specifically estimating yield and source time function. Typically, yield is estimated from measured signal features, such as peak pressure, impulse, duration and/or arrival time of acoustic signals. However, the application of full waveform inversion to acoustic signals for yield estimation has not been fully explored. In this study, we apply a full waveform inversion method to local overpressure data to extract accurate pressure-time histories of acoustics sources during chemical explosions. A robust and accurate inversion technique for acoustic source is investigated using numerical Green's functions that take into account atmospheric and topographic propagation effects. The inverted pressure-time history represents the pressure fluctuation at the source region associated with the explosion, and thus, provides a valuable information about acoustic source mechanisms and characteristics in greater detail. We compare acoustic source properties (i.e., peak overpressure, duration, and non-isotropic shape) of a series of explosions having different emplacement conditions and investigate the relationship of the acoustic sources to the yields of explosions. The time histories of acoustic sources may refine our knowledge of sound-generation mechanisms of shallow explosions, and thereby allow for accurate yield estimation based on acoustic measurements. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  11. Mechanical and histological characterization of trachea tissue subjected to blast-type pressures

    NASA Astrophysics Data System (ADS)

    Butler, B. J.; Bo, C.; Tucker, A. W.; Jardine, A. P.; Proud, W. G.; Williams, A.; Brown, K. A.

    2014-05-01

    Injuries to the respiratory system can be a component of polytrauma in blast-loading injuries. Tissues located at air-liquid interfaces, including such tissues in the respiratory system, are particularly vulnerable to damage by blast overpressures. There is a lack of information about the mechanical and cellular responses that contribute to the damage of this class of tissues subjected to the high strain rates associated with blast loading. Here, we describe the results of dynamic blast-like pressure loading tests at high strain rates on freshly harvested ex vivo trachea tissue specimens.

  12. Large eddy simulation and experimental study on vented gasoline-air mixture explosions in a semi-confined obstructed pipe.

    PubMed

    Li, Guoqing; Du, Yang; Wang, Shimao; Qi, Sheng; Zhang, Peili; Chen, Wenzhuo

    2017-10-05

    In this work, LES simulation coupled with a TFC sub-grid combustion model has been performed in a semi-confined pipe (L/D=10, V=10L) in the presence of four hollow-square obstacles (BR=49.8%) with circular hollow cross-section, in order to study the premixed gasoline-air mixture explosions. The comparisons between simulated results and experimental results have been conducted. It was found that the simulated results were in good agreement with experimental data in terms of flame structures, flame locations and overpressure time histories. Moreover, the interaction between flame propagation process and obstacles, overpressure dynamics were analyzed. In addition, the effects of initial gasoline vapor concentration (lean (ϕ=1.3%), stoichiometric (ϕ=1.7%) and rich (ϕ=2.1%)), and the number of obstacles (from 1 to 4) were also investigated by experiments. Some of the experimental results have been compared with the literature data. It is found that the explosion parameters of gasoline-air mixtures (e.g. the maximum overpressure peaks, average overpressure growth rates, etc.) are different from some other fuels such as hydrogen, methane and LPG, etc. Copyright © 2017. Published by Elsevier B.V.

  13. What Dominates a Craters Size, the Largest Single Explosion of the Formation Process or the Cumulative Energy of Many? Results of Multiblast Crater Evolution Experiments

    NASA Astrophysics Data System (ADS)

    Sonder, I.; Graettinger, A. H.; Valentine, G. A.

    2015-12-01

    Craters of explosive volcanic eruptions are products of many explosions. Such craters are different than products of single events such as meteorite impacts or those produced by military testing because they typically result from multiple, rather than single, explosions. We analyzed the evolution of experimental craters that were created by several detonations of chemical explosives in layered aggregates. A method to calculate an effective explosion depth for non-flat topography (e.g. for explosions below existing craters) is derived, showing how multi-blast crater sizes differ from the single blast case. It is shown that sizes of natural caters (radii, volumes) are not characteristic of the number of explosions, and therefore not characteristic for the total acting energy, that formed a crater. Also the crater size is not simply related to the largest explosion in a sequence, but depends upon that explosion and the energy of that single blast and on the cumulative energy of all blasts that formed the crater. The two energies can be combined to form an effective number of explosions that is characteristic for the crater evolution. The multi-blast crater size evolution implies that it is not correct to estimate explosion energy of volcanic events from crater size using previously published relationships that were derived for single blast cases.

  14. THE EFFECT OF NUCLEAR EXPLOSIONS ON COMMERCIALLY PACKAGED BEVERAGES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McConnell, E.R.; Sampson, G.O.; Sharf, J.M.

    Representative commerciaily packaged beverages, such as soft drinks and beer, in glass bottles and metal cans were exposed to the radiation from nuclear explosions. Preliminary experimental resulthe were obtained from test layouts exposed to a detonation of approximately nominal yield. Extensive test layouts were subsequently exposed during Operation Cue, of 50% greater than nominal yield, at varying distances from Ground Zero. These commerically packaged soft drinks and beer in giass botties or metal cans survived the blast overpressures even as close as 1270 ft from Ground Zero, and at more remote distances, with most failures being caused by flying missiles,more » crushing by surrounding structures, or dislodgment from shelves. Induced radioactivity, subsequently measured on representative samples, was not great in either soft drinks or beer, even at the forward positions, and these beverages could be used as potable water sources for immediate emergency purposes as soon as the storage area ms safe to enter after a nuclear explosion. Although containers showed some induced radioactivity, none of this activity was transferred to the contents. Some flavor change was found in the beverages by taste panels, more in beer than in soft drinks, but was insufficient to detract from their potential usage as emergency supplies of potable water. (auth)« less

  15. On the Origin of a Maximum Peak Pressure on the Target Outside of the Stagnation Point upon Normal Impact of a Blunt Projectile and with Underwater Explosion

    NASA Astrophysics Data System (ADS)

    Gonor, Alexander; Hooton, Irene

    2006-07-01

    Impact of a rigid projectile (impactor), against a metal target and a condensed explosive surface considered as the important process accompanying the normal entry of a rigid projectile into a target, was overlooked in the preceding studies. Within the framework of accurate shock wave theory, the flow-field, behind the shock wave attached to the perimeter of the adjoined surface, was defined. An important result is the peak pressure rises at points along the target surface away from the stagnation point. The maximum values of the peak pressure are 2.2 to 3.2 times higher for the metallic and soft targets (nitromethane, PBX 9502), than peak pressure values at the stagnation point. This effect changes the commonly held notion that the maximum peak pressure is reached at the projectile stagnation point. In the present study the interaction of a spherical decaying blast wave, caused by an underwater explosion, with a piece-wise plane target, having corner configurations, is investigated. The numerical calculation results in the determination of the vulnerable spots on the target, where the maximum peak overpressure surpassed that for the head-on shock wave reflection by a factor of 4.

  16. Modelling and Testing of Blast Effect On the Structures

    NASA Astrophysics Data System (ADS)

    Figuli, Lucia; Jangl, Štefan; Papán, Daniel

    2016-10-01

    As a blasting agent in the blasting and mining engineering, has been using one of so called new generation of explosives which offer greater flexibility in their range and application, and such explosive is ANFO. It is type of explosive consists of an oxidiser and a fuel (ammonium nitrate and fuel oil). One of such ANFO explosives which are industrially made in Slovakia is POLONIT. The explosive is a mixture of ammonium nitrate, methyl esters of higher fatty acids, vegetable oil and red dye. The paper deals with the analysis of structure subjected to the blast load created by the explosion of POLONIT charge. First part of paper is describing behaviour and characteristic of blast wave generated from the blast (detonation characteristics, physical characteristics, time-history diagram etc.) and the second part presents the behaviour of such loaded structures, because of the analysis of such dynamical loaded structure is required knowing the parameters of blast wave, its effect on structure and the tools for the solution of dynamic analysis. The real field tests of three different weight of charges and two different structures were done. The explosive POLONIT was used together with 25 g of ignition explosive PLNp10. Analytical and numerical model of blast loaded structure is compared with the results obtained from the field tests (is compared with the corresponding experimental accelerations). For the modelling structures were approximated as a one-degree system of freedom (SDOF), where the blast wave was estimated with linear decay and exponential decay using positive and negative phase of blast wave. Numerical solution of the steel beam dynamic response was performed via FEM (Finite Element Method) using standard software Visual FEA.

  17. Shock Initiated Reactions of Reactive Multiphase Blast Explosives

    NASA Astrophysics Data System (ADS)

    Wilson, Dennis; Granier, John; Johnson, Richard; Littrell, Donald

    2015-06-01

    This paper describes a new class of reactive multiphase blast explosives (RMBX) and characterization of their blast characteristics. These RMBXs are non-ideal explosive compositions of perfluoropolyether (PFPE), nano aluminum, and a micron-size high-density reactive metal - Tantalum, Zirconium, or Zinc in mass loadings of 66 to 83 percent. Unlike high explosives, these PFPE-metal compositions release energy via a fast self-oxidized combustion wave (rather than a true self-sustaining detonation) that is shock dependent, and can be overdriven to control energy release rate. The term ``reactive multiphase blast'' refers to the post-dispersion blast behavior: multiphase in that there are a gas phase that imparts pressure and a solid (particulate) phase that imparts momentum; and reactive in that the hot metal particles react with atmospheric oxygen and the explosive gas products to give an extended pressure pulse. The RMBX formulations were tested in two spherical core-shell geometries - an RMBX shell exploded by a high explosive core, and an RMBX core imploded by a high explosive shell. The fireball and blast characteristics were compared to a C-4 baseline charge.

  18. Study of the characteristics of seismic signals generated by natural and cultural phenomena. [such as earthquakes, sonic booms, and nuclear explosions

    NASA Technical Reports Server (NTRS)

    Goforth, T. T.; Rasmussen, R. K.

    1974-01-01

    Seismic data recorded at the Tonto Forest Seismological Observatory in Arizona and the Uinta Basin Seismological Observatory in Utah were used to compare the frequency of occurrence, severity, and spectral content of ground motions resulting from earthquakes, and other natural and man-made sources with the motions generated by sonic booms. A search of data recorded at the two observatories yielded a classification of over 180,000 earthquake phase arrivals on the basis of frequency of occurrence versus maximum ground velocity. The majority of the large ground velocities were produced by seismic surface waves from moderate to large earthquakes in the western United States, and particularly along the Pacific Coast of the United States and northern Mexico. A visual analysis of raw film seismogram data over a 3-year period indicates that local and regional seismic events, including quarry blasts, are frequent in occurrence, but do not produce ground motions at the observatories comparable to either the large western United States earthquakes or to sonic booms. Seismic data from the Nevada Test Site nuclear blasts were used to derive magnitude-distance-sonic boom overpressure relations.

  19. Blast waves and how they interact with structures.

    PubMed

    Cullis, I G

    2001-02-01

    The paper defines and describes blast waves, their interaction with a structure and its subsequent response. Explosions generate blast waves, which need not be due to explosives. A blast wave consists of two parts: a shock wave and a blast wind. The paper explains how shock waves are formed and their basic properties. The physics of blast waves is non-linear and therefore non-intuitive. To understand how an explosion generates a blast wave a numerical modelling computer code, called a hydrocode has to be employed. This is briefly explained and the cAst Eulerian hydrocode is used to illustrate the formation and propagation of the blast wave generated by a 1 kg sphere of TNT explosive detonated 1 m above the ground. The paper concludes with a discussion of the response of a structure to a blast wave and shows that this response is governed by the structures natural frequency of vibration compared to the duration of the blast wave. The basic concepts introduced are illustrated in a second simulation that introduces two structures into the blast field of the TNT charge.

  20. Potential Explosion Hazard of Carbonaceous Nanoparticles: Screening of Allotropes

    PubMed Central

    Turkevich, Leonid A.; Fernback, Joseph; Dastidar, Ashok G.; Osterberg, Paul

    2016-01-01

    There is a concern that engineered carbon nanoparticles, when manufactured on an industrial scale, will pose an explosion hazard. Explosion testing has been performed on 20 codes of carbonaceous powders. These include several different codes of SWCNTs (single-walled carbon nanotubes), MWCNTs (multi-walled carbon nanotubes) and CNFs (carbon nanofibers), graphene, diamond, fullerene, as well as several different control carbon blacks and graphites. Explosion screening was performed in a 20 L explosion chamber (ASTM E1226 protocol), at a concentration of 500 g/m3, using a 5 kJ ignition source. Time traces of overpressure were recorded. Samples typically exhibited overpressures of 5–7 bar, and deflagration index KSt = V1/3 (dP/dt)max ~ 10 – 80 bar-m/s, which places these materials in European Dust Explosion Class St-1. There is minimal variation between these different materials. The explosive characteristics of these carbonaceous powders are uncorrelated with primary particle size (BET specific surface area). PMID:27468178

  1. Peak Overpressures for Internal Blast

    DTIC Science & Technology

    1979-06-01

    fuels that also are oxygen- deficient (trinitrotoluene ( TNT ), for example), the initial detonation is followed by combustion in an afterburn ; it is...and consequently show lesser afterburn effects. Figure 8 shows overpressures for reference internal explo- sions with TNT , an oxygen-deficient...excplosive (oxygen balance of -14% to C02 and -257 to CO) 8 with pronounced afterburn effects that depend on the TNT -air ratio. Shown for compari- soa are

  2. Design Concepts for Hardened Communications Structures

    DTIC Science & Technology

    1990-03-01

    air . Based on this background, a family of structures was designed that can protect whip and directional antennae from the blast and shock effects from...Ground Surface Air Overpressure with Range, 1-MT Weapon, HOB - 0 and 500 ft ........................................... 25 5 Positive Phase Duration...design included the crater size, the e*eca field, airblast, and ground shock for ground surface air overpressure levels ranging from :5,000 to 500 psi. As

  3. Subacute Oxidative Stress and Glial Reactivity in the Amygdala are Associated with Increased Anxiety Following Blast Neurotrauma.

    PubMed

    Sajja, Venkata Siva Sai Sujith; Hubbard, William B; VandeVord, Pamela J

    2015-08-01

    Behavioral symptoms, such as anxiety, are widely reported after blast overpressure (BOP) exposure. Amygdalar vulnerability to increasing magnitudes of BOP has not been investigated, and single exposures to blast have been limited to acute (<72 h) assessment. Rats were exposed to a single low, moderate, or high BOP (10, 14, or 24 psi) with an advanced blast simulator to test the susceptibility of the amygdala. Anxiety-like behavior was observed in the low- and moderate-pressure groups when subjected to the light/dark box assessment 7 days after the blast but not in high-pressure group. Immunohistochemistry was performed to measure apoptosis (cleaved caspase-3), neuronal loss (NeuN), reactive astrocytes (glial fibrillary acidic protein), microglia (Iba-1), and oxidative stress (CuZn superoxide dismutase). Slower progression of injury cascades was associated with a significant increase in anxiety, apoptosis, and astrogliosis in the low pressure group compared with others. A significant increase of CuZn superoxide dismutase in the low pressure group could be associated with neuroprotection from cell death caused by oxidative stress because neuronal loss was significant in the moderate- and high- but not the low-pressure group. Overall, this study demonstrated that overpressure as low as 10 psi can induce subacute anxiety, in addition to neuropathologic changes in the amygdala.

  4. 29 CFR 1926.904 - Storage of explosives and blasting agents.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., electric blasting caps, detonating primers, and primed cartridges shall not be stored in the same magazine... feet of explosives and detonator storage magazine. (d) No explosives or blasting agents shall be... least two modes of exit have been provided. (e) Permanent underground storage magazines shall be at...

  5. 29 CFR 1926.905 - Loading of explosives or blasting agents.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... have contained explosives or blasting agents. (g) No explosives or blasting agents shall be left... no drilling within 50 feet of the hole. (l) When loading a long line of holes with more than one... be left unattended or unprotected. (t) The blaster shall keep an accurate, up-to-date record of...

  6. 29 CFR 1926.905 - Loading of explosives or blasting agents.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... have contained explosives or blasting agents. (g) No explosives or blasting agents shall be left... no drilling within 50 feet of the hole. (l) When loading a long line of holes with more than one... be left unattended or unprotected. (t) The blaster shall keep an accurate, up-to-date record of...

  7. 29 CFR 1926.905 - Loading of explosives or blasting agents.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... have contained explosives or blasting agents. (g) No explosives or blasting agents shall be left... no drilling within 50 feet of the hole. (l) When loading a long line of holes with more than one... be left unattended or unprotected. (t) The blaster shall keep an accurate, up-to-date record of...

  8. 29 CFR 1926.905 - Loading of explosives or blasting agents.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... have contained explosives or blasting agents. (g) No explosives or blasting agents shall be left... no drilling within 50 feet of the hole. (l) When loading a long line of holes with more than one... be left unattended or unprotected. (t) The blaster shall keep an accurate, up-to-date record of...

  9. Scaling multiblast craters: General approach and application to volcanic craters

    NASA Astrophysics Data System (ADS)

    Sonder, I.; Graettinger, A. H.; Valentine, G. A.

    2015-09-01

    Most volcanic explosions leave a crater in the surface around the center of the explosions. Such craters differ from products of single events like meteorite impacts or those produced by military testing because they typically result from multiple, rather than single, explosions. Here we analyze the evolution of experimental craters that were created by several detonations of chemical explosives in layered aggregates. An empirical relationship for the scaled crater radius as a function of scaled explosion depth for single blasts in flat test beds is derived from experimental data, which differs from existing relations and has better applicability for deep blasts. A method to calculate an effective explosion depth for nonflat topography (e.g., for explosions below existing craters) is derived, showing how multiblast crater sizes differ from the single-blast case: Sizes of natural caters (radii and volumes) are not characteristic of the number of explosions, nor therefore of the total acting energy, that formed a crater. Also, the crater size is not simply related to the largest explosion in a sequence but depends upon that explosion and the energy of that single blast and on the cumulative energy of all blasts that formed a crater. The two energies can be combined to form an effective number of explosions that is characteristic for the crater evolution. The multiblast crater size evolution has implications on the estimates of volcanic eruption energies, indicating that it is not correct to estimate explosion energy from crater size using previously published relationships that were derived for single-blast cases.

  10. Mitigation Systems for Confined Blast Loading - Crew Protection in Armored Vehicles

    DTIC Science & Technology

    2009-04-01

    Effects of Tungsten Alloy Property Variations on Penetrator Performance for Spaced Armors.” Advances in Powder Metallurgy and Particulate Materials...Table 8.1. Cylinder properties for confined field test. ............................................... 93 Table 8.2. FEM snapshot of the confined...persons or property . Blast mitigation should reduce the overpressure, impulse, fragments, projectile, thermal and toxic hazards that occur during an

  11. Structural response and gas dynamics of an airship exposed to a nuclear detonation. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilstad, D.A.; Weeber, C.G.; Kviljord, A.

    1960-04-25

    Four Model ZSG-3 airships, U. S. Navy Bureau of Aeronautics Nos. 40, 46, 77, and 92, participated during Operation Plumbbob to determine the response characteristics of the Model ZSG-3 airship when subjected to a nuclear detonation in order to establish criteria for safe escape distances for airship delivery of antisubmarine warfare special weapons. Restrained response data for 0.40-psi overpressure input were obtained during Shot Franklin with the ZSG-3 No. 77 moored tail to the blast. Unrestrained response data for 0.75-psi overpressure input were obtained during Shot Stokes with the ZSG-3 No. 40 free ballooned, tail to the blast, 300 feetmore » aboveground. The first airship exposed to overpressure experienced a structural failure of the nose cone when it was rammed into the mooring mast, together with a tear of the forward ballonet which necessitated deflation of the envelope. The second airship broke in half and crashed following a circumferential failure of the envelope originating at the bottom of the envelope, forward of the car.« less

  12. 30 CFR 77.1302 - Vehicles used to transport explosives.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Vehicles used to transport explosives. 77.1302... COAL MINES Explosives and Blasting § 77.1302 Vehicles used to transport explosives. (a) Vehicles used to transport explosives, other than blasting agents, shall have substantially constructed bodies, no...

  13. 30 CFR 77.1302 - Vehicles used to transport explosives.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Vehicles used to transport explosives. 77.1302... COAL MINES Explosives and Blasting § 77.1302 Vehicles used to transport explosives. (a) Vehicles used to transport explosives, other than blasting agents, shall have substantially constructed bodies, no...

  14. Eigenvalue Detonation of Combined Effects Aluminized Explosives

    NASA Astrophysics Data System (ADS)

    Capellos, Christos; Baker, Ernest; Balas, Wendy; Nicolich, Steven; Stiel, Leonard

    2007-06-01

    This paper reports on the development of theory and performance for recently developed combined effects aluminized explosives. Traditional high energy explosives used for metal pushing incorporate high loading percentages of HMX or RDX, whereas blast explosives incorporate some percentage of aluminum. However, the high blast explosives produce increased blast energies, with reduced metal pushing capability due to late time aluminum reaction. Metal pushing capability refers to the early volume expansion work produced during the first few volume expansions associated with cylinder wall velocities and Gurney energies. Our Recently developed combined effects aluminized explosives (PAX-29C, PAX-30, PAX-42) are capable of achieving excellent metal pushing and high blast energies. Traditional Chapman-Jouguet detonation theory does not explain the observed detonation states achieved by these combined effects explosives. This work demonstrates, with the use of cylinder expansion data and thermochemical code calculations (JAGUAR and CHEETAH), that eigenvalue detonation theory explains the observed behavior.

  15. Can Plume-Forming Asteroid Airbursts Generate Meteotsunami in Deep Water?

    NASA Astrophysics Data System (ADS)

    Boslough, M.

    2015-12-01

    Hydrocode simulations suggest that the 1908 Tunguska explosion was a plume-forming airburst analogous to those caused by Comet Shoemaker-Levy 9 (SL9) collisions with Jupiter in 1994. A noctilucent cloud that appeared over Europe following the Tunguska event is similar to post-impact features on Jupiter, consistent with a collapsed plume containing condensation from the vaporized asteroid. Previous workers treated Tunguska as a point explosion and used seismic records, barograms, and extent of fallen trees to determine explosive yield. Estimates were based on scaling laws derived from nuclear weapons data, neglecting directionality, mass, and momentum of the asteroid. This point-source assumption, with other simplifications, led to a significant overestimate. Tunguska seismic data were consistent with ground motion from a vertical point impulse of 7×1018dyn sec caused by the downward blast wave of a 12.5-megaton nuclear explosion at an altitude of 8.5 km for an effective momentum multiplication factor (β) of ~80. However, simulations of a 3-megaton collisional airburst reveal that the upward-directed momentum contained in a ballistic plume can reach this level within the first minute after the explosion (β≈300). The reaction impulse from such an airburst is therefore similar to a much larger non-plume-forming nuclear explosion. Momentum is coupled through the atmosphere to the surface, generating disproportionately large seismic signatures. This result suggests that coupling from an over-water plume-forming airburst could be a more efficient tsunami source mechanism than a collapsing impact cavity or direct air blast because the characteristic time of the plume is closer to that of a long-period wave in deep water. As the plume accelerates upward, it creates a slowly-rising and sustained overpressure with a ramp wave that propagates outward at the speed of sound, generating a tsunami in deep ocean by the same mechanism that yields slower meteotsunami in shallow basins. This hypothesis is consistent with the observation of prominent internal waves observed propagating radially outward from several SL9 impacts, even though the waves were not in Proudman resonance. Because of slow compression, the SL9 waves grew with a Froude number of ~1.6, the same as that of the sound speed in air over ~4.6-km-deep water.

  16. A Novel Closed-Head Model of Mild Traumatic Brain Injury Caused by Primary Overpressure Blast to the Cranium Produces Sustained Emotional Deficits in Mice

    PubMed Central

    Heldt, Scott A.; Elberger, Andrea J.; Deng, Yunping; Guley, Natalie H.; Del Mar, Nobel; Rogers, Joshua; Choi, Gy Won; Ferrell, Jessica; Rex, Tonia S.; Honig, Marcia G.; Reiner, Anton

    2014-01-01

    Emotional disorders are a common outcome from mild traumatic brain injury (TBI) in humans, but their pathophysiological basis is poorly understood. We have developed a mouse model of closed-head blast injury using an air pressure wave delivered to a small area on one side of the cranium, to create mild TBI. We found that 20-psi blasts in 3-month-old C57BL/6 male mice yielded no obvious behavioral or histological evidence of brain injury, while 25–40 psi blasts produced transient anxiety in an open field arena but little histological evidence of brain damage. By contrast, 50–60 psi blasts resulted in anxiety-like behavior in an open field arena that became more evident with time after blast. In additional behavioral tests conducted 2–8 weeks after blast, 50–60 psi mice also demonstrated increased acoustic startle, perseverance of learned fear, and enhanced contextual fear, as well as depression-like behavior and diminished prepulse inhibition. We found no evident cerebral pathology, but did observe scattered axonal degeneration in brain sections from 50 to 60 psi mice 3–8 weeks after blast. Thus, the TBI caused by single 50–60 psi blasts in mice exhibits the minimal neuronal loss coupled to “diffuse” axonal injury characteristic of human mild TBI. A reduction in the abundance of a subpopulation of excitatory projection neurons in basolateral amygdala enriched in Thy1 was, however, observed. The reported link of this neuronal population to fear suppression suggests their damage by mild TBI may contribute to the heightened anxiety and fearfulness observed after blast in our mice. Our overpressure air blast model of concussion in mice will enable further studies of the mechanisms underlying the diverse emotional deficits seen after mild TBI. PMID:24478749

  17. A Novel Closed-Head Model of Mild Traumatic Brain Injury Using Focal Primary Overpressure Blast to the Cranium in Mice

    PubMed Central

    Guley, Natalie H.; Rogers, Joshua T.; Del Mar, Nobel A.; Deng, Yunping; Islam, Rafiqul M.; D'Surney, Lauren; Ferrell, Jessica; Deng, Bowei; Hines-Beard, Jessica; Bu, Wei; Ren, Huiling; Elberger, Andrea J.; Marchetta, Jeffrey G.; Rex, Tonia S.; Honig, Marcia G.

    2016-01-01

    Abstract Mild traumatic brain injury (TBI) from focal head impact is the most common form of TBI in humans. Animal models, however, typically use direct impact to the exposed dura or skull, or blast to the entire head. We present a detailed characterization of a novel overpressure blast system to create focal closed-head mild TBI in mice. A high-pressure air pulse limited to a 7.5 mm diameter area on the left side of the head overlying the forebrain is delivered to anesthetized mice. The mouse eyes and ears are shielded, and its head and body are cushioned to minimize movement. This approach creates mild TBI by a pressure wave that acts on the brain, with minimal accompanying head acceleration-deceleration. A single 20-psi blast yields no functional deficits or brain injury, while a single 25–40 psi blast yields only slight motor deficits and brain damage. By contrast, a single 50–60 psi blast produces significant visual, motor, and neuropsychiatric impairments and axonal damage and microglial activation in major fiber tracts, but no contusive brain injury. This model thus reproduces the widespread axonal injury and functional impairments characteristic of closed-head mild TBI, without the complications of systemic or ocular blast effects or head acceleration that typically occur in other blast or impact models of closed-skull mild TBI. Accordingly, our model provides a simple way to examine the biomechanics, pathophysiology, and functional deficits that result from TBI and can serve as a reliable platform for testing therapies that reduce brain pathology and deficits. PMID:26414413

  18. Study of Vapour Cloud Explosion Impact from Pressure Changes in the Liquefied Petroleum Gas Sphere Tank Storage Leakage

    NASA Astrophysics Data System (ADS)

    Rashid, Z. A.; Suhaimi Yeong, A. F. Mohd; Alias, A. B.; Ahmad, M. A.; AbdulBari Ali, S.

    2018-05-01

    This research was carried out to determine the risk impact of Liquefied Petroleum Gas (LPG) storage facilities, especially in the event of LPG tank explosion. In order to prevent the LPG tank explosion from occurring, it is important to decide the most suitable operating condition for the LPG tank itself, as the explosion of LPG tank could affect and cause extensive damage to the surrounding. The explosion of LPG tank usually occurs due to the rise of pressure in the tank. Thus, in this research, a method called Planas-Cuchi was applied to determine the Peak Side-On Overpressure (Po) of the LPG tank during the occurrence of explosion. Thermodynamic properties of saturated propane, (C3H8) have been chosen as a reference and basis of calculation to determine the parameters such as Explosion Energy (E), Equivalent Mass of TNT (WTNT), and Scaled Overpressure (PS ). A cylindrical LPG tank in Feyzin Refinery, France was selected as a case study in this research and at the end of this research, the most suitable operating pressure of the LPG tank was determined.

  19. Utilization of Seismic and Infrasound Signals for Characterizing Mining Explosions

    DTIC Science & Technology

    2001-10-01

    different types of mining operations exist, ranging from surface coal cast blasting to hard rock fragmentation blasting in porphyry copper mines. The study...both seismic and infrasound signals. The seismic coupling of large-scale cast blasts in Wyoming, copper fragmentation blasts in Arizona and New Mexico...mining explosions from the copper fragmentation blasts in SE Arizona were observed at Los Alamos. Detected events were among the largest of the blasts

  20. Modeling of the Non-Auditory Response to Blast Overpressure. Calculation of the Internal Mechanical Response of Sheep to Blast Loading

    DTIC Science & Technology

    1990-01-01

    through the esophagus into the left lung lobe and fially to the left rib surface. Spinal Process of Sixth Vertebra Seventh Vertebra Scapula Esophagus...for the calculations are as follows: 2.54 cm 12.7 cm 2.64 cm ’ J End Plate + Transducer Plexiglas (hard) or_ Closed-Cell Neoprene (soft) Figure 4

  1. Nonlinear Analysis of Frame Structures Subjected to Blast Overpressures

    DTIC Science & Technology

    1977-05-01

    columns have the same plastic bending capacity., CIMp . 16 •,, vi In most cases, more economical designs of blast-resistant frames are realized when...3 HH+(w-I)L’] ~~~(-IE r3+H((201A)I-~L COMBINED MECHANISM L+2n 2C ccW CP CIMP R n Number of bay* a ,2,3... w =Uniform ___________L ____ equivalent *For

  2. Explosion impacts during transport of hazardous cargo: GIS-based characterization of overpressure impacts and delineation of flammable zones for ammonia.

    PubMed

    Inanloo, Bahareh; Tansel, Berrin

    2015-06-01

    The aim of this research was to investigate accidental releases of ammonia followed by an en-route incident in an attempt to further predict the consequences of hazardous cargo accidents. The air dispersion model Areal Locations of Hazardous Atmospheres (ALOHA) was employed to track the probable outcomes of a hazardous material release of a tanker truck under different explosion scenarios. The significance of identification of the flammable zones was taken into consideration; in case the flammable vapor causes an explosion. The impacted areas and the severity of the probable destructions were evaluated for an explosion by considering the overpressure waves. ALOHA in conjunction with ArcGIS was used to delineate the flammable and overpressure impact zones for different scenarios. Based on the results, flammable fumes were formed in oval shapes having a chief axis along the wind direction at the time of release. The expansions of the impact areas under the overpressure value which can lead to property damage for 2 and 20 tons releases, under very stable and unstable atmospheric conditions were estimated to be around 1708, 1206; 3742, 3527 feet, respectively, toward the wind direction. A sensitivity analysis was done to assess the significance of wind speed on the impact zones. The insight provided by this study can be utilized by decision makers in transportation of hazardous materials as a guide for possible rerouting, rescheduling, or limiting the quantity of hazardous cargo to reduce the possible impacts after hazardous cargo accidents during transport. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Effect of the oxygen balance on ignition and detonation properties of liquid explosive mixtures

    NASA Astrophysics Data System (ADS)

    Genetier, M.; Osmont, A.; Baudin, G.

    2014-05-01

    The objective is to compare the ignition and detonation properties of various liquid high explosives having negative up to positive oxygen balance (OB): nitromethane (OB < 0), saccharose and hydrogen peroxide based mixture (quasi nil OB), hydrogen peroxide with more than 90% purity (OB > 0). The decomposition kinetic rates and the equations of state (EOS) for the liquid mixtures and detonation products (DP) are the input data for a detonation model. EOS are theoretically determined using the Woolfolk et al. universal liquid polar shock law and thermochemical computations for DP. The decomposition kinetic rate laws are determined to reproduce the shock to detonation transition for the mixtures submitted to planar plate impacts. Such a model is not sufficient to compute open field explosions. The aerial overpressure is well reproduced in the first few microseconds, however, after it becomes worse at large expansion of the fireball and the impulse is underestimated. The problem of the DP EOS alone is that it takes only the detonation into account, the secondary combustion DP - air is not considered. To solve this problem a secondary combustion model has been developed to take the OB effect into account. The detonation model has been validated on planar plate impact experiments. The secondary combustion parameters were deduced from thermochemical computations. The whole model has been used to predict the effects of the oxygen balance on open air blast effects of spherical charges.

  4. Effect of the oxygen balance on ignition and detonation properties of liquid explosive mixtures

    NASA Astrophysics Data System (ADS)

    Genetier, Marc; Osmont, Antoine; Baudin, Gerard

    2013-06-01

    The objective is to compare ignition and detonation properties of various liquid high explosives having negative up to positive oxygen balance (OB): nitromethane (OB < 0), saccharose and hydrogen peroxide based mixture (quasi nil OB), hydrogen peroxide with more than 90% purity (OB > 0). The decomposition kinetic rates and the equations of state (EOS) for the liquid mixtures and detonation products (DP) are the input data for a detonation model. EOS are theoretically determined using the Woolfolk et al universal liquid polar shock law and thermochemical computations for DP. The decomposition kinetic rate laws are determined to reproduce the shock to detonation transition for the mixtures submitted to planar plate impacts. Such a model is not sufficient to compute open field explosions. The aerial overpressure is well reproduced in the first microseconds, however, after it becomes worse at large expansion of the fireball and the impulse is underestimated. The problem of the DP EOS alone is that it takes into account only the detonation, the secondary combustion DP - air being not considered. To solve this problem a secondary combustion model has been developed to take into account the OB effect. The detonation model has been validated on planar plate impact experiments. The secondary combustion parameters were deduced from thermochemical computations. The whole model has been used to predict the effects of the oxygen balance on open air blast effects of spherical charges.

  5. Volcanic Lightning, Pyroclastic Density Currents, Ballistic Fall, Vent Tremor, and One Very Loud Blast: Acoustic Analysis of the 14 July 2013 Vulcanian Eruption at Tungurahua, Ecuador.

    NASA Astrophysics Data System (ADS)

    Anderson, J.; Johnson, J. B.; Steele, A. L.; Anzieta, J. C.; Ortiz, H. D.; Hall, M. L.; Ruiz, M. C.

    2014-12-01

    Acoustic recordings reveal a variety of volcanic activities during an exceptionally loud vulcanian eruption at Tungurahua. A period of several months of mild surface activity came to an abrupt end with the emission of a powerful blast wave heard at least 180 km away. Sensors 2080 m from the vent recorded a stepped rise to its maximum overpressure of 1220 Pa (corresponding to a sound pressure level of 156 dB) and its unusually long dominant period of 5.6 s. We discuss source processes that produced the blast wave, considering that wave propagation could be nonlinear near the vent because of high overpressures. More than an hour of acoustic activity was recorded after the blast wave, including sound from falling ballistics, reflections of the blast wave from nearby mountains, pyroclastic density currents, and acoustic tremor at the vent. Glitches in the acoustic records related to plume lightning were also serendipitously observed, although thunder could not be unambiguously identified. We discuss acoustic signatures of falling ballistics and pyroclastic density currents and how array-style deployments and analytic methods can be used to reveal them. Placement of sensors high on the volcano's slopes facilitated resolving these distinct processes. This study demonstrates that near-vent, array-style acoustic installations can be used to monitor various types of volcanic activity.

  6. [Confined blasting in microexplosion cystolithotripsy].

    PubMed

    Uchida, M

    1989-03-01

    This paper is the 12th report in a series of studies on the application of microexplosion to medicine and biology. Microexplosion lithotripsy is a newly developed technique in our clinic to crush urinary stones with small quantities of explosives. A systematic research project has been performed since the first report of microexplosion lithotripsy in 1977. As a result, microexplosion was successfully applied to the destruction of bladder stones in 130 cases from 1981 to 1988. In blasting to crush rocks in industrial works, two kinds of blasting are available: external charge blasting and confined blasting. The detonation power of the latter is 10 to 50 times larger than that of the former. A detruction test using several kinds of spherical form model calculus and lead azide explosive was performed. The formula to calculate the suitable explosive dose was determined experimentally as shown below. (formula; see text) Thus the theory in general industrial blasting with massive explosives was proved to be effective also in microexplosion with small explosives. An original electric drill system was developed to make a hole in stones for confined blasting. 60 cases, including 2 cases of giant bladder stones over 100 g in weight, were successfully treated by confined blasting using this system without any complication. We consider that any bladder stones, however big or however many, can be treated by microexplosion lithotripsy with confined blasting.

  7. BLAST LOADING AND RESPONSE OF UNDERGROUND CONCRETE-ARCH PROTECTIVE STRUCTURES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flathau, W.J.; Breckenridge, R.A.; Wiehle, C.K.

    1959-06-01

    Four reinforced-concrete arch structures, with the top of arch crown 4 ft below ground surface, were exposed at high overpressure ranges from Priscilla Burst in order to obtain data on their resistance to blast, radiation, and missile hazards. The four structures received actual air overpressures of 56, 124, and 199 psi and suffered only minor damage, all remaining structurally serviceable. The entranceway used for the structures sealed out the air pressure. It was not designed to attenuate radiation and thus did not provide adequate radiation protection for personnel. There were no missile and apparently no dust hazards in any ofmore » the structures. Results of the test indicate that an underground reinforced-concrete arch is an excellent structural shape for resisting the effects of a kiloton-range air burst. (C.H.)« less

  8. Explosion interaction with water in a tube

    NASA Astrophysics Data System (ADS)

    Homae, T.; Sugiyama, Y.; Wakabayashi, K.; Matsumura, T.; Nakayama, Y.

    2017-02-01

    As proposed and legislated in Japan, subsurface magazines have an explosive storage chamber, a horizontal passageway, and a vertical shaft for a vent. The authors found that a small amount of water on the floor of the storage chamber mitigated blast pressure remarkably. The mitigation mechanism has been examined more closely. To examine the effect of water, the present study assesses explosions in a transparent, square cross section, and a straight tube. A high-speed camera used to observe the tube interior. Blast pressure in and around the tube was also measured. Images obtained using the high-speed camera revealed that water inside the tube did not move after the explosion. Differences between cases of tubes without water and with water were unclear. Along with blast pressure measurements, these study results suggest that blast pressure mitigation by water occurs because of interaction between the explosion and the water near the explosion point.

  9. The Shock and Vibration Bulletin. Part 3. Acoustic and Vibration Testing, Impact and Blast

    DTIC Science & Technology

    1976-08-01

    Research Institute, San Antonio, Texas DESIGN OF A BLAST LOAD GENERATOR FOR OVERPRESSURE TESTING .................................. 261I P. Lieberman...Mathews and B. W. Duggin, Sandia Laboratories, Albuquerque, New Mexico ESTIMATION OF SHIP SHOCK PARAMETERS FOR CONSISTENT DESIGN AND TEST SPECIFICATION G. C...Seattle, Washington COMPONENT TESTING OF LIQUID SHOCK ISOLATORS AND ELASTOMERS IN SUPPORT OF RECENT SHOCK ISOLATION SYSTEM DESIGNS AJ.IP. Ashley, Boeing

  10. Prevention of Blast-Related Injuries

    DTIC Science & Technology

    2016-07-01

    mTBI) as the signature wound in returning service members [1,2]. Shell shock and post concussive syndrome had a similar prominence during World Wars I...head only exposed blast overpressure of 241 kPa [43]. Turner et al, using a tabletop shock tube, reported graded astrocytic reactivity in the corpus...in astrocytes with increasing pressure [63]. This is different from Turner et al who reported an increase in the number of corpus callosum

  11. Otologic blast injuries due to the Kenya embassy bombing.

    PubMed

    Helling, Eric Robert

    2004-11-01

    Otologic injuries are frequently associated with large blasts. On August 7, 1998, a large truck bomb exploded next to the U.S. Embassy in Nairobi, Kenya. Initial patient findings and care are reviewed. Five months later, an otologic screening and care mission was then sent to comprehensively screen all remaining blast victims on site in Nairobi and to determine degree of persistent injury. Surgical care appropriate for an outpatient environment was provided. Five of 14 tympanic membranes without intervention failed to heal, while 3 of 3 with previous intervention had. Blast injury severity did not correlate to distance from blast epicenter. This may be due to channeling of the blast through the embassy building and an unpredictable pattern of blast overpressure within the building. It is recommended that comprehensive otologic screening be performed after blast events to identify occult injuries and improve outcomes. Early intervention for tympanic membrane perforation (suctioning, eversion of perforations, and paper patch) is recommended.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiappetta, R.F.

    An explosive`s velocity of detonation (VOD), can be used to indicate a number of important characteristics regarding the product`s performance under specific field and test conditions. A number of new characteristic and transient VOD curves have been identified in the field, which can be used to evaluate explosive performance, control ground vibration amplitudes and frequencies, select the correct amount and type of stemming for use at the collar and in stem decks, eliminate explosive desensitization, evaluate primer performance, design air deck based blasts, evaluate contaminated explosives and to overcome post blast noxious fumes. Tests were conducted over a six yearmore » period in single and multi-hole blasts using laboratory and full scale blast environments. Explosives tested ranged from pure Emulsion to Anfo and various grades of Emulsion/Anfo blends. Field test parameters were; borehole diameter (1 1/2--30 inches), hole depths (10--120 feet), primer size (0.5--6.4 pounds) and the blast environment varied from soft, jelly-like tar sands to some of the hardest iron ore formations. Most tests were instrumented with an array of blast monitoring instrumentation systems consisting of continuous velocity of detonation recorders, high-speed 16 mm cameras, laser-surveying instrumentation and seismographs which were placed in the near and far fields.« less

  13. Blast lung injury.

    PubMed

    Sasser, Scott M; Sattin, Richard W; Hunt, Richard C; Krohmer, Jon

    2006-01-01

    Current trends in global terrorism mandate that emergency medical services, emergency medicine and other acute care clinicians have a basic understanding of the physics of explosions, the types of injuries that can result from an explosion, and current management for patients injured by explosions. High-order explosive detonations result in near instantaneous transformation of the explosive material into a highly pressurized gas, releasing energy at supersonic speeds. This results in the formation of a blast wave that travels out from the epicenter of the blast. Primary blast injuries are characterized by anatomical and physiological changes from the force generated by the blast wave impacting the body's surface, and affect primarily gas-containing structures (lungs, gastrointestinal tract, ears). "Blast lung" is a clinical diagnosis and is characterized as respiratory difficulty and hypoxia without obvious external injury to the chest. It may be complicated by pneumothoraces and air emboli and may be associated with multiple other injuries. Patients may present with a variety of symptoms, including dyspnea, chest pain, cough, and hemoptysis. Physical examination may reveal tachypnea, hypoxia, cyanosis, and decreased breath sounds. Chest radiography, computerized tomography, and arterial blood gases may assist with diagnosis and management; however, they should not delay diagnosis and emergency interventions in the patient exposed to a blast. High flow oxygen, airway management, tube thoracostomy in the setting of pneumothoraces, mechanical ventilation (when required) with permissive hypercapnia, and judicious fluid administration are essential components in the management of blast lung injury.

  14. 29 CFR 1910.109 - Explosives and blasting agents.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... devices. Examples of explosive-actuated power devices are jet tappers and jet perforators. (3) Explosive... more magazines, as a group, must be considered as one magazine, and the total quantity of explosives... located in the same building when one is used only for blasting caps in quantities not in excess of 5,000...

  15. 29 CFR 1910.109 - Explosives and blasting agents.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... devices. Examples of explosive-actuated power devices are jet tappers and jet perforators. (3) Explosive... more magazines, as a group, must be considered as one magazine, and the total quantity of explosives... located in the same building when one is used only for blasting caps in quantities not in excess of 5,000...

  16. 29 CFR 1910.109 - Explosives and blasting agents.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... devices. Examples of explosive-actuated power devices are jet tappers and jet perforators. (3) Explosive... more magazines, as a group, must be considered as one magazine, and the total quantity of explosives... located in the same building when one is used only for blasting caps in quantities not in excess of 5,000...

  17. 30 CFR 57.6000 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... The following definitions apply in this subpart. Blasting agent. Any substance classified as a blasting agent by the Department of Transportation in 49 CFR 173.114a(a). This document is available at any... Metal and Nonmetal Safety and Health district office. Explosive material. Explosives, blasting agents...

  18. 30 CFR 57.6000 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... The following definitions apply in this subpart. Blasting agent. Any substance classified as a blasting agent by the Department of Transportation in 49 CFR 173.114a(a). This document is available at any... Metal and Nonmetal Safety and Health district office. Explosive material. Explosives, blasting agents...

  19. 30 CFR 57.6000 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... The following definitions apply in this subpart. Blasting agent. Any substance classified as a blasting agent by the Department of Transportation in 49 CFR 173.114a(a). This document is available at any... Metal and Nonmetal Safety and Health district office. Explosive material. Explosives, blasting agents...

  20. 30 CFR 57.6000 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... The following definitions apply in this subpart. Blasting agent. Any substance classified as a blasting agent by the Department of Transportation in 49 CFR 173.114a(a). This document is available at any... Metal and Nonmetal Safety and Health district office. Explosive material. Explosives, blasting agents...

  1. 30 CFR 57.6000 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... The following definitions apply in this subpart. Blasting agent. Any substance classified as a blasting agent by the Department of Transportation in 49 CFR 173.114a(a). This document is available at any... Metal and Nonmetal Safety and Health district office. Explosive material. Explosives, blasting agents...

  2. High-speed imaging and small-scale explosive characterization techniques to understand effects of primary blast-induced injury on nerve cell structure and function

    NASA Astrophysics Data System (ADS)

    Piehler, T.; Banton, R.; Zander, N.; Duckworth, J.; Benjamin, R.; Sparks, R.

    2018-01-01

    Traumatic brain injury (TBI) is often associated with blast exposure. Even in the absence of penetrating injury or evidence of tissue injury on imaging, blast TBI may trigger a series of neural/glial cellular and functional changes. Unfortunately, the diagnosis and proper treatment of mild traumatic brain injury (mTBI) caused by explosive blast is challenging, as it is not easy to clinically distinguish blast from non-blast TBI on the basis of patient symptoms. Damage to brain tissue, cell, and subcellular structures continues to occur slowly and in a manner undetectable by conventional imaging techniques. The threshold shock impulse levels required to induce damage and the cumulative effects upon multiple exposures are not well characterized. Understanding how functional and structural damage from realistic blast impact at cellular and tissue levels at variable timescales after mTBI events may be vital for understanding this injury phenomenon and for linking mechanically induced structural changes with measurable effects on the nervous system. Our working hypothesis is that there is some transient physiological dysfunction occurring at cellular and subcellular levels within the central nervous system due to primary blast exposure. We have developed a novel in vitro indoor experimental system that uses real military explosive charges to more accurately represent military blast exposure and to probe the effects of primary explosive blast on dissociated neurons. We believe this system offers a controlled experimental method to analyze and characterize primary explosive blast-induced cellular injury and to understand threshold injury phenomenon. This paper will also focus on the modeling aspect of our work and how it relates to the experimental work.

  3. Brain Response to Primary Blast Wave Using Validated Finite Element Models of Human Head and Advanced Combat Helmet

    PubMed Central

    Zhang, Liying; Makwana, Rahul; Sharma, Sumit

    2013-01-01

    Blast-induced traumatic brain injury has emerged as a “signature injury” in combat casualty care. Present combat helmets are designed primarily to protect against ballistic and blunt impacts, but the current issue with helmets is protection concerning blasts. In order to delineate the blast wave attenuating capability of the Advanced Combat Helmet (ACH), a finite element (FE) study was undertaken to evaluate the head response against blast loadings with and without helmet using a partially validated FE model of the human head and ACH. Four levels of overpressures (0.27–0.66 MPa) from the Bowen’s lung iso-damage threshold curves were used to simulate blast insults. Effectiveness of the helmet with respect to head orientation was also investigated. The resulting biomechanical responses of the brain to blast threats were compared for human head with and without the helmet. For all Bowen’s cases, the peak intracranial pressures (ICP) in the head ranged from 0.68 to 1.8 MPa in the coup cortical region. ACH was found to mitigate ICP in the head by 10–35%. Helmeted head resulted in 30% lower average peak brain strains and product of strain and strain rate. Among three blast loading directions with ACH, highest reduction in peak ICP (44%) was due to backward blasts whereas the lowest reduction in peak ICP and brain strains was due to forward blast (27%). The biomechanical responses of a human head to primary blast insult exhibited directional sensitivity owing to the different geometry contours and coverage of the helmet construction and asymmetric anatomy of the head. Thus, direction-specific tolerances are needed in helmet design in order to offer omni-directional protection for the human head. The blasts of varying peak overpressures and durations that are believed to produce the same level of lung injury produce different levels of mechanical responses in the brain, and hence “iso-damage” curves for brain injury are likely different than the Bowen curves for lung injury. PMID:23935591

  4. Blast TBI Models, Neuropathology, and Implications for Seizure Risk

    PubMed Central

    Kovacs, S. Krisztian; Leonessa, Fabio; Ling, Geoffrey S. F.

    2014-01-01

    Traumatic brain injury (TBI) due to explosive blast exposure is a leading combat casualty. It is also implicated as a key contributor to war related mental health diseases. A clinically important consequence of all types of TBI is a high risk for development of seizures and epilepsy. Seizures have been reported in patients who have suffered blast injuries in the Global War on Terror but the exact prevalence is unknown. The occurrence of seizures supports the contention that explosive blast leads to both cellular and structural brain pathology. Unfortunately, the exact mechanism by which explosions cause brain injury is unclear, which complicates development of meaningful therapies and mitigation strategies. To help improve understanding, detailed neuropathological analysis is needed. For this, histopathological techniques are extremely valuable and indispensable. In the following we will review the pathological results, including those from immunohistochemical and special staining approaches, from recent preclinical explosive blast studies. PMID:24782820

  5. The Detection And Analysis Of Blasting Problems Encountered In A Colliery Using High Speed Photography

    NASA Astrophysics Data System (ADS)

    Rorke, A. J.; Kohler, E. W.

    1987-09-01

    Premature initiation of ANFO (an explosive mixture of Ammonium Nitrate and Fuel Oil) at a large colliery, near Witbank, was first detected from routine high speed films taken of large mid-burden, and overburden blasts. The analysis of these films shows that the rapid migration of very hot gasses through cracks ahead of the blast may have caused the explosive to initiate prematurely. The problem was not seen in the less competent overburden rocks. A less sensitive explosive has been successfully tried. The assessment of these blasts using high speed photography is discussed.

  6. Blast waves from detonated military explosive reduce GluR1 and synaptophysin levels in hippocampal slice cultures✩

    PubMed Central

    Smith, Marquitta; Piehler, Thuvan; Benjamin, Richard; Farizatto, Karen L.; Pait, Morgan C.; Almeida, Michael F.; Ghukasyan, Vladimir V.; Bahr, Ben A.

    2017-01-01

    Explosives create shockwaves that cause blast-induced neurotrauma, one of the most common types of traumatic brain injury (TBI) linked to military service. Blast-induced TBIs are often associated with reduced cognitive and behavioral functions due to a variety of factors. To study the direct effects of military explosive blasts on brain tissue, we removed systemic factors by utilizing rat hippocampal slice cultures. The long-term slice cultures were briefly sealed air-tight in serum-free medium, lowered into a 37 °C water-filled tank, and small 1.7-gram assemblies of cyclotrimethylene trinitramine (RDX) were detonated 15 cm outside the tank, creating a distinct shockwave recorded at the culture plate position. Compared to control mock-treated groups of slices that received equal submerge time, 1–3 blast impacts caused a dose-dependent reduction in the AMPA receptor subunit GluR1. While only a small reduction was found in hippocampal slices exposed to a single RDX blast and harvested 1–2 days later, slices that received two consecutive RDX blasts 4 min apart exhibited a 26–40% reduction in GluR1, and the receptor subunit was further reduced by 64–72% after three consecutive blasts. Such loss correlated with increased levels of HDAC2, a histone deacetylase implicated in stress-induced reduction of glutamatergic transmission. No evidence of synaptic marker recovery was found at 72 h post-blast. The presynaptic marker synaptophysin was found to have similar susceptibility as GluR1 to the multiple explosive detonations. In contrast to the synaptic protein reductions, actin levels were unchanged, spectrin breakdown was not detected, and Fluoro-Jade B staining found no indication of degenerating neurons in slices exposed to three RDX blasts, suggesting that small, sub-lethal explosives are capable of producing selective alterations to synaptic integrity. Together, these results indicate that blast waves from military explosive cause signs of synaptic compromise without producing severe neurodegeneration, perhaps explaining the cognitive and behavioral changes in those blast-induced TBI sufferers that have no detectable neuropathology. PMID:27720798

  7. An experimental study of perforated muzzle brakes

    NASA Astrophysics Data System (ADS)

    Dillon, R. E., Jr.; Nagamatsu, H. T.

    1984-06-01

    A firing test was conducted to examine the recoil efficiency and blast characteristics of perforated muzzle brakes fitted to a 20 mm cannon. Recoil impulse blast overpressures, muzzle velocity, sequential spark shadowgraphs, and photographs of the muzzle flash structure were obtained. Three different nuzzle devices were used with one device equipped with pressure transducers to measure the static pressure in the brake. Experimental results are compared with the earlier predictions of Dillon and Nagamatsu.

  8. A parametric study of perforated muzzle brakes

    NASA Astrophysics Data System (ADS)

    Dillon, Robert E., Jr.; Nagamatsu, H. T.

    1993-07-01

    A firing test was conducted to study the parameters influencing the recoil efficiency and the blast characteristics of perforated muzzle brakes. Several scaled (20 mm) devices were tested as candidates for the 105 mm Armored Gun System (AGS). Recoil impulse, blast overpressures, muzzle velocity, sequential spark shadowgraphs, and photographs of the muzzle flash were obtained. A total of nine different perforated brakes were tested as well as a scaled M 198 double muzzle brake.

  9. A Review of Central Nervous System (CNS)/Cognitive Effects Due to Blast

    DTIC Science & Technology

    2007-02-01

    head trauma: is brain damage overdiagnosed ? Part 1. J Clin Neurosci, 7(5), 400-8. Mayorga, M. A. (1997). The pathology of primary blast overpressure...Office and is available to the general public, including foreign nationals. Copies may be obtained from the Defense Technical Information Center (DTIC...http://www.dtic.mil). AFRL-RH-BR-TR-2007-0072 has been reviewed and is approved for publication in accordance with assigned distribution

  10. Influence of Test Section Geometry on the Blast Environment in an Explosively Driven Conical Shock Tube

    DTIC Science & Technology

    2018-03-30

    ARL-TR-8335•MAR 2018 US Army Research Laboratory Influence of Test Section Geometry on theBlast Environment in an Explosively DrivenConical Shock...ARL-TR-8335•MAR 2018 US Army Research Laboratory Influence of Test Section Geometry on theBlast Environment in an Explosively DrivenConical Shock...Tube by Joel B Stewart Weapons and Materials Research Directorate, ARL Approved for public release; distribution is unlimited. REPORT DOCUMENTATION

  11. Close-in Blast Waves from Spherical Charges*

    NASA Astrophysics Data System (ADS)

    Howard, William; Kuhl, Allen

    2011-06-01

    We study the close-in blast waves created by the detonation of spherical high explosives (HE) charges, via numerical simulations with our Arbitrary-Lagrange-Eulerian (ALE3D) code. We used a finely-resolved, fixed Eulerian 2-D mesh (200 μm per cell) to capture the detonation of the charge, the blast wave propagation in air, and the reflection of the blast wave from an ideal surface. The thermodynamic properties of the detonation products and air were specified by the Cheetah code. A programmed-burn model was used to detonate the charge at a rate based on measured detonation velocities. The results were analyzed to evaluate the: (i) free air pressure-range curves: Δps (R) , (ii) free air impulse curves, (iii) reflected pressure-range curves, and (iv) reflected impulse-range curves. A variety of explosives were studied. Conclusions are: (i) close-in (R < 10 cm /g 1 / 3) , each explosive had its own (unique) blast wave (e.g., Δps (R , HE) ~ a /Rn , where n is different for each explosive); (ii) these close-in blast waves do not scale with the ``Heat of Detonation'' of the explosive (because close-in, there is not enough time to fully couple the chemical energy to the air via piston work); (iii) instead they are related to the detonation conditions inside the charge. Scaling laws will be proposed for such close-in blast waves.

  12. Long-times series of infrasonic records at open-vents volcanoes (Yasur volcano, Vanuatu, 2003-2014): the remarkable temporal stability of magma viscosity

    NASA Astrophysics Data System (ADS)

    Vergniolle, S.; Souty, V.; Zielinski, C.; Bani, P.; LE Pichon, A.; Lardy, M.; Millier, P.; Herry, P.; Todman, S.; Garaebiti, E.

    2017-12-01

    Open-vents volcanoes, often presenting series of Strombolian explosions of various intensity, are responding, although with a delay, to any changes in the degassing pattern, providing a quasi-direct route to processes at depth. Open-vents volcanoes display a persistent volcanic activity, although of variable intensity. Long-times series at open-vents volcanoes could therefore be key measurements to unravel physical processes at the origin of Strombolian explosions and be crucial for monitoring. Continuous infrasonic records can be used to estimate the gas volume expelled at the vent during explosions (bursting of a long slug). The gas volume of each explosion is deduced from a series of two successive integrations of acoustic pressure (monopole). Here we analysed more than 4 years of infrasonic records at Yasur volcano (Vanuatu), spanning between 2003 and 2014 and organised into 8 main quasi-continuous periods. The relationship between the gas volume of each explosion and its associated maximum positive acoustic pressure, a proxy for the inner gas overpressure at bursting, shows a remarkably stable trend over the 8 periods. Two main trends exists, one which covers the full range of acoustic pressures (called « strong explosions ») and the second which represents explosions with a large gas volume and mild acoustic pressure. The class of « strong explosions » clearly follows the model of Del Bello et al. (2012), which shows that the inner gas overpressure at bursting, here empirically measured by the maximum acoustic pressure, is proportional to the gas volume. Constrains on magma viscosity and conduit radius, are deduced from this trend and from the gas volume at the transition passive-active degassing. The remarkable stability of this trend over time suggests that 1) the magma viscosity is stable at the depth where gas overpressure is produced within the slug and 2) any potential changes in magma viscosity occur very close to the top of the magma column.

  13. Explosively driven air blast in a conical shock tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, Joel B., E-mail: joel.b.stewart2.civ@mail.mil; Pecora, Collin, E-mail: collin.r.pecora.civ@mail.mil

    2015-03-15

    Explosively driven shock tubes present challenges in terms of safety concerns and expensive upkeep of test facilities but provide more realistic approximations to the air blast resulting from free-field detonations than those provided by gas-driven shock tubes. Likewise, the geometry of conical shock tubes can naturally approximate a sector cut from a spherically symmetric blast, leading to a better agreement with the blast profiles of free-field detonations when compared to those provided by shock tubes employing constant cross sections. The work presented in this article documents the design, fabrication, and testing of an explosively driven conical shock tube whose goalmore » was to closely replicate the blast profile seen from a larger, free-field detonation. By constraining the blast through a finite area, large blasts (which can add significant damage and safety constraints) can be simulated using smaller explosive charges. The experimental data presented herein show that a close approximation to the free-field air blast profile due to a 1.5 lb charge of C4 at 76 in. can be achieved by using a 0.032 lb charge in a 76-in.-long conical shock tube (which translates to an amplification factor of nearly 50). Modeling and simulation tools were used extensively in designing this shock tube to minimize expensive fabrication costs.« less

  14. 29 CFR 1926.913 - Blasting in excavation work under compressed air.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Blasting in excavation work under compressed air. 1926.913... Use of Explosives § 1926.913 Blasting in excavation work under compressed air. (a) Detonators and... connecting wires are connected up. (b) When detonators or explosives are brought into an air lock, no...

  15. Blasting and Blast Effects in Cold Regions. Part 3. Explosions in Ground Materials

    DTIC Science & Technology

    1989-05-01

    121- York, Ontario: Technical Marketing Services- 123. Explosives, Canadian Industries, 6th edition. Gaffney, E.S. (1984b) Hugoniot of water ice. In...Mines, blasting. U.S. Bureau of Nlines , Report of Insesti- Report of lnsestigations RI 7751. gations 8507. Piekutoiski. A.J. (1974) I.aborator,, scale

  16. 30 CFR 816.68 - Use of explosives: Records of blasting operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... § 816.67(e). (e) Weather conditions, including those which may cause possible adverse blasting effects..., spacing, decks, and delay pattern. (h) Diameter and depth of holes. (i) Types of explosives used. (j... airblast level recorded. (p) Reasons and conditions for each unscheduled blast. [48 FR 9809, Mar. 8, 1983...

  17. 30 CFR 816.68 - Use of explosives: Records of blasting operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... § 816.67(e). (e) Weather conditions, including those which may cause possible adverse blasting effects..., spacing, decks, and delay pattern. (h) Diameter and depth of holes. (i) Types of explosives used. (j... airblast level recorded. (p) Reasons and conditions for each unscheduled blast. [48 FR 9809, Mar. 8, 1983...

  18. 30 CFR 816.68 - Use of explosives: Records of blasting operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... § 816.67(e). (e) Weather conditions, including those which may cause possible adverse blasting effects..., spacing, decks, and delay pattern. (h) Diameter and depth of holes. (i) Types of explosives used. (j... airblast level recorded. (p) Reasons and conditions for each unscheduled blast. [48 FR 9809, Mar. 8, 1983...

  19. 30 CFR 817.68 - Use of explosives: Records of blasting operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... § 817.67 (e). (e) Weather conditions, including those which may cause possible adverse blasting effects..., spacing, decks, and delay pattern. (h) Diameter and depth of holes. (i) Types of explosives used. (j... airblast level recorded. (p) Reasons and conditions for each unscheduled blast. [48 FR 9811, Mar. 8, 1983] ...

  20. 30 CFR 817.68 - Use of explosives: Records of blasting operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... § 817.67 (e). (e) Weather conditions, including those which may cause possible adverse blasting effects..., spacing, decks, and delay pattern. (h) Diameter and depth of holes. (i) Types of explosives used. (j... airblast level recorded. (p) Reasons and conditions for each unscheduled blast. [48 FR 9811, Mar. 8, 1983] ...

  1. 30 CFR 817.68 - Use of explosives: Records of blasting operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... § 817.67 (e). (e) Weather conditions, including those which may cause possible adverse blasting effects..., spacing, decks, and delay pattern. (h) Diameter and depth of holes. (i) Types of explosives used. (j... airblast level recorded. (p) Reasons and conditions for each unscheduled blast. [48 FR 9811, Mar. 8, 1983] ...

  2. 30 CFR 816.68 - Use of explosives: Records of blasting operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (f) Type of material blasted. (g) Sketches of the blast pattern including number of holes, burden, spacing, decks, and delay pattern. (h) Diameter and depth of holes. (i) Types of explosives used. (j...-millisecond period. (l) Initiation system. (m) Type and length of stemming. (n) Mats or other protections used...

  3. 30 CFR 817.68 - Use of explosives: Records of blasting operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (f) Type of material blasted. (g) Sketches of the blast pattern including number of holes, burden, spacing, decks, and delay pattern. (h) Diameter and depth of holes. (i) Types of explosives used. (j...-millisecond period. (l) Initiation system. (m) Type and length of stemming. (n) Mats or other protections used...

  4. 30 CFR 817.68 - Use of explosives: Records of blasting operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... (f) Type of material blasted. (g) Sketches of the blast pattern including number of holes, burden, spacing, decks, and delay pattern. (h) Diameter and depth of holes. (i) Types of explosives used. (j...-millisecond period. (l) Initiation system. (m) Type and length of stemming. (n) Mats or other protections used...

  5. 30 CFR 816.68 - Use of explosives: Records of blasting operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... (f) Type of material blasted. (g) Sketches of the blast pattern including number of holes, burden, spacing, decks, and delay pattern. (h) Diameter and depth of holes. (i) Types of explosives used. (j...-millisecond period. (l) Initiation system. (m) Type and length of stemming. (n) Mats or other protections used...

  6. Quick reproduction of blast-wave flow-field properties of nuclear, TNT, and ANFO explosions

    NASA Astrophysics Data System (ADS)

    Groth, C. P. T.

    1986-04-01

    In many instances, extensive blast-wave flow-field properties are required in gasdynamics research studies of blast-wave loading and structure response, and in evaluating the effects of explosions on their environment. This report provides a very useful computer code, which can be used in conjunction with the DNA Nuclear Blast Standard subroutines and code, to quickly reconstruct complete and fairly accurate blast-wave data for almost any free-air (spherical) and surface-burst (hemispherical) nuclear, trinitrotoluene (TNT), or ammonium nitrate-fuel oil (ANFO) explosion. This code is capable of computing all of the main flow properties as functions of radius and time, as well as providing additional information regarding air viscosity, reflected shock-wave properties, and the initial decay of the flow properties just behind the shock front. Both spatial and temporal distributions of the major blast-wave flow properties are also made readily available. Finally, provisions are also included in the code to provide additional information regarding the peak or shock-front flow properties over a range of radii, for a specific explosion of interest.

  7. Comparison of Explosives Residues from the Blow-in-Place Detonation of 155-mm High-Explosive Projectiles

    DTIC Science & Technology

    2006-06-01

    were M107 high-explosive deep-cavity 155-mm howitzer projectiles with a supplemental charge and an M739 point- detonating fuze mounted in the nose...M107, HE, w/o fuze IOP03E100-011 14 1390010809447 N340 Fuze, point-detonating, M739 MA-84B007-013 14 1375014151232 ML47 Cap, blasting, non-electric 30... M739 N340 0 21 0 ə Cap, blasting, M11 ML47 ə 27 ə ə Cap, blasting, M13 MN03 0 ə 0 ə Cap, blasting, M14 MN06 0 0 0 ə Cord, detonating M456 0

  8. Shock wave-induced brain injury in rat: novel traumatic brain injury animal model.

    PubMed

    Nakagawa, Atsuhiro; Fujimura, Miki; Kato, Kaoruko; Okuyama, Hironobu; Hashimoto, Tokitada; Takayama, Kazuyoshi; Tominaga, Teiji

    2008-01-01

    In blast wave injury and high-energy traumatic brain injury, shock waves (SW) play an important role along with cavitation phenomena. However, due to lack of reliable and reproducible technical approaches, extensive study of this type of injury has not yet been reported. The present study aims to develop reliable SW-induced brain injury model by focusing micro-explosion generated SW in the rat brain. Adult male rats were exposed to single SW focusing created by detonation of microgram order of silver azide crystals with laser irradiation at a focal point of a truncated ellipsoidal cavity of20 mm minor diameter and the major to minor diameter ratio of 1.41 after craniotomy. The pressure profile was recorded using polyvinylidene fluoride needle hydrophone. Animals were divided into three groups according to the given overpressure: Group I: Control, Group II: 12.5 +/- 2.5 MPa (high pressure), and Group III: 1.0 +/- 0.2 MPa (low pressure). Histological changes were evaluated over time by hematoxylin-eosin staining. Group II SW injuries resulted in contusional hemorrhage in reproducible manner. Group III exposure resulted in spindle-shaped changes of neurons and elongation of nucleus without marked neuronal injury. The use of SW loading by micro-explosion is useful to provide a reliable and reproducible SW-induced brain injury model in rats.

  9. Temporal and Spatial Effects of Blast Overpressure on Blood-Brain Barrier Permeability in Traumatic Brain Injury.

    PubMed

    Kuriakose, Matthew; Rama Rao, Kakulavarapu V; Younger, Daniel; Chandra, Namas

    2018-06-06

    Blast-induced traumatic brain injury (bTBI) is a "signature wound" in soldiers during training and in combat and has also become a major cause of morbidity in civilians due to increased insurgency. This work examines the role of blood-brain barrier (BBB) disruption as a result of both primary biomechanical and secondary biochemical injury mechanisms in bTBI. Extravasation of sodium fluorescein (NaF) and Evans blue (EB) tracers were used to demonstrate that compromise of the BBB occurs immediately following shock loading, increases in intensity up to 4 hours and returns back to normal in 24 hours. This BBB compromise occurs in multiple regions of the brain in the anterior-posterior direction of the shock wave, with maximum extravasation seen in the frontal cortex. Compromise of the BBB is confirmed by (a) extravasation of tracers into the brain, (b) quantification of tight-junction proteins (TJPs) in the brain and the blood, and (c) tracking specific blood-borne molecules into the brain and brain-specific proteins into the blood. Taken together, this work demonstrates that the BBB compromise occurs as a part of initial biomechanical loading and is a function of increasing blast overpressures.

  10. Elucidation of Inflammation Processes Exacerbating Neuronal Cell Damage to the Retina and Brain Visual Centers as Quest for Therapeutic Drug Targets in Rat Model of Blast Overpressure Wave Exposure

    DTIC Science & Technology

    tissues, as carried out by immune cells; and thus is a promising target. Scope and timing, however, of this process must be better understood. Our study...uses an adult rat model of eye and brain injuries, as produced by exposure to simulated blast waves in a shock tube. Rats were kept on an omega-3

  11. Plasma Discharge Initiation of Explosives in Rock Blasting Application: A Case Study

    NASA Astrophysics Data System (ADS)

    Jae-Ou, Chae; Young-Jun, Jeong; V, M. Shmelev; A, A. Denicaev; V, M. Poutchkov; V, Ravi

    2006-07-01

    A plasma discharge initiation system for the explosive volumetric combustion charge was designed, investigated and developed for practical application. Laboratory scale experiments were carried out before conducting the large scale field tests. The resultant explosions gave rise to less noise, insignificant seismic vibrations and good specific explosive consumption for rock blasting. Importantly, the technique was found to be safe and environmentally friendly.

  12. Shock initiated reactions of reactive multi-phase blast explosives

    NASA Astrophysics Data System (ADS)

    Wilson, Dennis; Granier, John; Johnson, Richard; Littrell, Donald

    2017-01-01

    This paper describes a new class of non-ideal explosive compositions made of perfluoropolyether (PFPE), nanoaluminum, and a micron-size, high mass density, reactive metal. Unlike high explosives, these compositions release energy via a fast self-oxidized combustion wave rather than a true self-sustaining detonation. Their reaction rates are shock dependent and they can be overdriven to change their energy release rate. These compositions are fuel rich and have an extended aerobic energy release phase. The term "reactive multiphase blast" refers to the post-dispersion blast behavior: multiphase in that there are a gas phase that imparts pressure and a solid (particulate) phase that imparts energy and momentum [1]; and reactive in that the hot metal particles react with atmospheric oxygen and the explosive gas products to give an extended pressure pulse. Tantalum-based RMBX formulations were tested in two spherical core-shell configurations - an RMBX shell exploded by a high explosive core, and an RMBX core imploded by a high explosive shell. The fireball and blast characteristics were compared to a C-4 baseline charge.

  13. Blast-wave density measurements

    NASA Astrophysics Data System (ADS)

    Ritzel, D. V.

    Applications of a densitometer to obtain time-resolved data on the total density in blast-wave flows are described. A beta-source (promethium-147) is separated by a gap from a scintillator and a photomultiplier tube (PMT). Attenuation of the radiation beam by the passing blast wave is due to the total density in the gap volume during the wave passage. Signal conditioning and filtering methods permit the system to output linearized data. Results are provided from use of the system to monitor blast waves emitted by detonation of a 10.7 m diameter fiberglass sphere containing 609 tons of ammonium nitrate/fuel oil at a 50.6 m height. Blast wave density data are provided for peak overpressure levels of 245, 172 and 70 kPa and distances of 183, 201 and 314 m from ground zero. Data resolution was of high enough quality to encourage efforts to discriminate dust and gasdynamic phenomena within passing blast waves.

  14. Blast investigation by fast multispectral radiometric analysis

    NASA Astrophysics Data System (ADS)

    Devir, A. D.; Bushlin, Y.; Mendelewicz, I.; Lessin, A. B.; Engel, M.

    2011-06-01

    Knowledge regarding the processes involved in blasts and detonations is required in various applications, e.g. missile interception, blasts of high-explosive materials, final ballistics and IED identification. Blasts release large amount of energy in short time duration. Some part of this energy is released as intense radiation in the optical spectral bands. This paper proposes to measure the blast radiation by a fast multispectral radiometer. The measurement is made, simultaneously, in appropriately chosen spectral bands. These spectral bands provide extensive information on the physical and chemical processes that govern the blast through the time-dependence of the molecular and aerosol contributions to the detonation products. Multi-spectral blast measurements are performed in the visible, SWIR and MWIR spectral bands. Analysis of the cross-correlation between the measured multi-spectral signals gives the time dependence of the temperature, aerosol and gas composition of the blast. Farther analysis of the development of these quantities in time may indicate on the order of the detonation and amount and type of explosive materials. Examples of analysis of measured explosions are presented to demonstrate the power of the suggested fast multispectral radiometric analysis approach.

  15. Experimental study on the influence of chemical sensitizer on pressure resistance in deep water of emulsion explosives

    NASA Astrophysics Data System (ADS)

    Liu, Lei; zhang, Zhihua; Wang, Ya; Qin, hao

    2018-03-01

    The study on the pressure resistance performance of emulsion explosives in deep water can provide theoretical basis for underwater blasting, deep-hole blasting and emulsion explosives development. The sensitizer is an important component of emulsion explosives. By using reusable experimental devices to simulate the charge environment in deep water, the influence of the content of chemical sensitizer on the deep-water pressure resistance performance of emulsion explosives was studied. The experimental results show that with the increasing of the content of chemical sensitizer, the deep-water pressure resistance performance of emulsion explosives gradually improves, and when the pressure is fairly large, the effect is particularly pronounced; in a certain range, with the increase of the content of chemical sensitizer, that emulsion explosives’ explosion performance also gradually improve, but when the content reaches a certain value, the explosion properties declined instead; under the same emulsion matrix condition, when the content of NANO2 is 0.2%, that the emulsion explosives has good resistance to water pressure and good explosion properties. The correctness of the results above was testified in model blasting.

  16. Modelling Public Security Operations: Analysis of the Effect of Key Social, Cognitive, and Informational Factors with Security System Relationship Configurations for Goal Achievement

    DTIC Science & Technology

    2012-12-01

    of MARSEC 2 13 Causing a fire or explosion, conducting blasting or setting off fireworks , including setting a flare or other signalling device...or explosion, conducting blasting or setting off fireworks , including setting a flare or other signalling device without port approval X X X X X X...explosion, conducting blasting or setting off fireworks , including setting a flare or other signalling device without port approval X X X X X X X Non

  17. Structures to Resist the Effects of Accidental Explosions. Volume 2. Blast, Fragment, and Shock Loads

    DTIC Science & Technology

    1986-12-01

    IS. SUPPLEMENTARY NOTfS This report is Volume II of six volumes which will eventually be published as a tri-service design manual and was sponsored by...CLASSIFICAT ION OF THIS PAGE(When Date Entered) TABLE OF CONTENTS PAGE INTRODUCTION 2-I Purpose 1 2-2 Objective 1 2 3 Background 1 2-4 Scope of Manual ...2 2-5 Format of Manual 3 VOLUME CONTENTS 2-6 General EXPLOSION EFFECTS 2-7 Effects of Explosive Output 4 BLAST LOADS 2-8 Blast Phenomena 5 2-8.1

  18. Blast Overpressure Studies.

    DTIC Science & Technology

    1998-05-01

    Ribera U.S. Army Aeromedical Research Laboratory (205) 255-6913 By signing this form I hereby acknowledge I have fully read and understand the...Army Aeromedical Research Laboratory (334) 255-6821 MAJ John Ribera U.S. Army Aeromedical Research Laboratory (334) 255-6823 By signing this form I

  19. Evaluation of Novel Polyunsaturated Fatty Acid Derived Lipid Mediators of Inflammation to Ameliorate the Deleterious Effects of Blast Overpressure on Eye and Brain Visual Processing Centers in Rats

    DTIC Science & Technology

    2014-10-01

    ferry these drugs across the blood brain barrier after intravenous injection post- blast, such as by packaging them in liposomes or dendrimer based...Kannan RM. (2012). Dendrimer -based targeted intravitreal therapy for sustained attenuation of neuroinflammation in retinal degeneration. Biomaterials...Neuroinflammation. 10: 96-102. Kannan S, Dai H, Navath RS, Balakrishnan B, Jyoti A, Romero R, and Kannan RM. (2012). Dendrimer -based targeted

  20. Noise from aerial bursts of fireworks

    NASA Technical Reports Server (NTRS)

    Maglieri, D. J.; Henderson, H. R.

    1973-01-01

    A study was made recording the pressure time histories of the aerial bursts of mortars of various sizes launched during an actual fireworks display. The peak overpressure and duration of blast noise as well as the energy spectral density are compared with the characteristics of a blasting cap and of an F-104 aircraft at a Mach number of 1.4 and an altitude of 42,000 ft. Noise levels of the fireworks aerial bursts peaked 15 decibels below levels deemed damaging to hearing.

  1. Development and validation of a numerical model of the swine head subjected to open-field blasts

    NASA Astrophysics Data System (ADS)

    Kalra, A.; Zhu, F.; Feng, K.; Saif, T.; Kallakuri, S.; Jin, X.; Yang, K.; King, A.

    2017-11-01

    A finite element model of the head of a 55-kg Yucatan pig was developed to calculate the incident pressure and corresponding intracranial pressure due to the explosion of 8 lb (3.63 kg) of C4 at three different distances. The results from the model were validated by comparing findings with experimentally obtained data from five pigs at three different blast overpressure levels: low (150 kPa), medium (275 kPa), and high (400 kPa). The peak values of intracranial pressures from numerical model at different locations of the brain such as the frontal, central, left temporal, right temporal, parietal, and occipital regions were compared with experimental values. The model was able to predict the peak pressure with reasonable percentage differences. The differences for peak incident and intracranial pressure values between the simulation results and the experimental values were found to be less than 2.2 and 29.3%, respectively, at all locations other than the frontal region. Additionally, a series of parametric studies shows that the intracranial pressure was very sensitive to sensor locations, the presence of air bubbles, and reflections experienced during the experiments. Further efforts will be undertaken to correlate the different biomechanical response parameters, such as the intracranial pressure gradient, stress, and strain results obtained from the validated model with injured brain locations once the histology data become available.

  2. An investigation of a reticulated foam - perforated steel sheet combination as a blast mitigation structure

    NASA Astrophysics Data System (ADS)

    Nguyen, Thuy-Tien N.; Proud, William G.

    2017-01-01

    Explosions are one of the main causes of injuries during battles and conflicts, with improvised explosive devices (IEDs) becoming increasingly common. Blast waves produced from such explosions can inflict very complex injuries on human and serious damage to structures. Here, the interaction between blast waves and sandwich structures of reticulated foam and perforated sheets is studied using a shock tube. The level of mitigation for primary blast injuries of these structures are discussed in terms of pulse shape, pressure magnitude and impulse. Schlieren photography and other high-speed imaging were used to capture the form of the blast wave. The results show up to 95% mitigation in both pressure and impulse with the structures studied. The behaviors of these mitigating sandwich panels under two loadings, Mach 2.0 and Mach 2.6, are also discussed.

  3. 75 FR 23589 - Safety Zones; Blasting Operations and Movement of Explosives, St. Marys River, Sault Sainte Marie...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-04

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket No. USCG-2010-0290] RIN 1625-AA00 Safety Zones; Blasting Operations and Movement of Explosives, St. Marys River, Sault Sainte Marie... Movement of Explosives, St. Marys River, Sault Sainte Marie, MI. (a) Location. The following areas are...

  4. Numerical system for monitoring pressurized equipment

    NASA Astrophysics Data System (ADS)

    Dobra, Remus; Pasculescu, Dragos; Boca, Maria Loredana; Moldovan, Lucian

    2016-12-01

    Electrical devices for operation in potentially explosive atmospheres are designed and built in accordance with European standard EN 50015: 1995 ex. the pressurized enclosure "p". The type of protector p, by using a protective gas in the housing is intended to prevent the formation of an explosive atmosphere within it, while maintaining an overpressure to the surrounding atmosphere and, where appropriate, by the use dilution. Research conducted for pressurized encapsulation aimed at developing new procedures for determining the parameters of pressurization to allow safe use of electrical appliances. Pressurization with compensation for losses allegedly maintaining overpressure inside the enclosure when the outlets are closed, is made by feeding protective gas in an amount sufficient to fully compensate for losses from the housing inevitable pressurized and its associated pipework. The conditions and necessary measures that are required for appliances and equipment with potential ignition of explosive atmospheres are detailed in the SR EN 50016/2000. For pressurized encapsulation protection mode, the electric equipment can be maintained safety by the overpressure created inside them and in the supply pipes with air. The paper presents a modern method to determine the parameters of the electric equipment with pressurization enclosures. For controlling of such equipment, a specific algorithm has been developed and laboratory tested.

  5. Manual for the prediction of blast and fragment loadings on structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-11-01

    The purpose of this manual is to provide Architect-Engineer (AE) firms guidance for the prediction of air blast, ground shock and fragment loadings on structures as a result of accidental explosions in or near these structures. Information in this manual is the result of an extensive literature survey and data gathering effort, supplemented by some original analytical studies on various aspects of blast phenomena. Many prediction equations and graphs are presented, accompanied by numerous example problems illustrating their use. The manual is complementary to existing structural design manuals and is intended to reflect the current state-of-the-art in prediction of blastmore » and fragment loads for accidental explosions of high explosives at the Pantex Plant. In some instances, particularly for explosions within blast-resistant structures of complex geometry, rational estimation of these loads is beyond the current state-of-the-art.« less

  6. Quantitative electroencephalography in a swine model of blast-induced brain injury.

    PubMed

    Chen, Chaoyang; Zhou, Chengpeng; Cavanaugh, John M; Kallakuri, Srinivasu; Desai, Alok; Zhang, Liying; King, Albert I

    2017-01-01

    Electroencephalography (EEG) was used to examine brain activity abnormalities earlier after blast exposure using a swine model to develop a qEEG data analysis protocol. Anaesthetized swine were exposed to 420-450 Kpa blast overpressure and survived for 3 days after blast. EEG recordings were performed at 15 minutes before the blast and 15 minutes, 30 minutes, 2 hours and 1, 2 and 3 days post-blast using surface recording electrodes and a Biopac 4-channel data acquisition system. Off-line quantitative EEG (qEEG) data analysis was performed to determine qEEG changes. Blast induced qEEG changes earlier after blast exposure, including a decrease of mean amplitude (MAMP), an increase of delta band power, a decrease of alpha band root mean square (RMS) and a decrease of 90% spectral edge frequency (SEF90). This study demonstrated that qEEG is sensitive for cerebral injury. The changes of qEEG earlier after the blast indicate the potential of utilization of multiple parameters of qEEG for diagnosis of blast-induced brain injury. Early detection of blast induced brain injury will allow early screening and assessment of brain abnormalities in soldiers to enable timely therapeutic intervention.

  7. Submarine Hydraulic Fluid Explosion Mitigation and Fire Threats to Ordnance

    DTIC Science & Technology

    2005-01-18

    capable of absorbing large amounts of energy from a developing explosion if the mist can be delivered, in sufficient quantity, to the point of origin of...doors (H8, H13 , H14, D10, D11, SI and S2 in Figure 1) during the explosion tests. In addition, the frame bay ducts that connect 3 the torpedo room and...appreciable impact on the overpressure, explosion tests were run with and without the dummy ordnance. Two replicate tests of each configuration were conducted

  8. The quinary pattern of blast injury.

    PubMed

    Kluger, Yoram; Nimrod, Adi; Biderman, Philippe; Mayo, Ami; Sorkin, Patric

    2007-01-01

    Bombing is the primary weapon of global terrorism, and it results in a complicated, multidimensional injury pattern. It induces bodily injuries through the well-documented primary, secondary, tertiary, and quaternary mechanisms of blast. Their effects dictate special medical concern and timely implementation of diagnostic and management strategies. Our objective is to report on clinical observations of patients admitted to the Tel Aviv Medical Center following a terrorist bombing. The explosion injured 27 patients, and three died. Four survivors who had been in close proximity to the explosion, as indicated by their eardrum perforation and additional blast injuries, were exposed to the blast wave. They exhibited a unique and immediate hyperinflammatory state, two upon admission to the intensive care unit and two during surgery. This hyperinflammatory state manifested as hyperpyrexia, sweating, low central venous pressure, and positive fluid balance. This state did not correlate with the complexity of injuries sustained by any of the 67 patients admitted to the intensive care unit after previous bombings. The patients' hyperinflammatory behavior, unrelated to their injury complexity and severity of trauma, indicates a new injury pattern in explosions, termed the "quinary blast injury pattern." Unconventional materials used in the manufacture of the explosive can partly explain the observed early hyperinflammatory state. Medical personnel caring for blast victims should be aware of this new type of bombing injury.

  9. Tremors from earthquakes and blasting in the Powder River basin of Wyoming and Montana

    USGS Publications Warehouse

    Miller, C.H.; Osterwald, F.W.

    1980-01-01

    We are not aware of any damage to people or to property caused by blasting in the coal surface mines even though thousands of tons of explosives are detonated each year in the basin. The maximum weight of an individual explosive charge and the time interval between blasts are regulated so that any nearby structures will not be damaged or the residents disturbed. Blasting, nevertheless, does produce seismic tremors that can be recorded over 200 kilometers away. In addition, at one mine, some very low order aftershocks were recorded relatively close to the source within 2 hours after blasting.  

  10. Airblast Simulator Studies.

    DTIC Science & Technology

    1984-02-01

    RAREFACTION WAVE ELIMINATOR CONSIDERATIONS 110 5.1 FLIP CALCULATIONS 110 5.2 A PASSIVE/ACTIVE RWE 118 6 DISTRIBUTED FUEL AIR EXPLOSIVES 120 REFERENCES 123 TA...conventional and distributed-charge fuel- air explosive charges used in a study of the utility of distributed charge FAE systems for blast simulation. The...limited investigation of distributed charge fuel air explosive configurations for blast simulator applications. During the course of this study

  11. Operation UPSHOT-KNOTHOLE, 1953

    DTIC Science & Technology

    1982-01-11

    nature of a single atomic blast. The explosion yesterday morning could not by itself have performed miracles" (208). Committee members indicated that...assess the degree of ENCORE GRABLE Forest Service Coniferous Tree Stands damage to material and by Atomic Explosions personnel and the amount of cover...military bridging 3.24 Effects of an Airbust To determine the degree ENCORE, GRABLE Naval Radiological Defense Atomic Explosion on of blast damage landing

  12. 33 CFR 165.T09-0290 - Safety Zones; Blasting Operations and Movement of Explosives, St. Marys River, Sault Sainte Marie...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety Zones; Blasting Operations and Movement of Explosives, St. Marys River, Sault Sainte Marie, MI. 165.T09-0290 Section 165.T09-0290... Movement of Explosives, St. Marys River, Sault Sainte Marie, MI. (a) Location. The following areas are...

  13. The Military in Disaster Relief After the Explosion in Halifax, Nova Scotia, December 1917

    DTIC Science & Technology

    2017-06-09

    Scotia. The blast had one- sixth the power of the first atomic bomb and killed or wounded 20 percent of the Halifax population. The enormous ensuing...in Halifax, Nova Scotia. The blast had one-sixth the power of the first atomic bomb and killed or wounded 20 percent of the Halifax population. The...Simpson and Alan Ruffman, “Explosions, Bombs , and Bumps: Scientific Aspects of the Explosion,” in Ground Zero: A Reassessment of the 1917 Explosion in

  14. Influence of Basalt Mesh Induced Increase of Heterogeneity of Cement Composites with Dispersed Fibers on Its Resistance under Near-Field Blast

    NASA Astrophysics Data System (ADS)

    Zíma, J.; Foglar, M.

    2017-09-01

    This paper describes the influence of multiple basalt meshes in the cement composite specimens on the damage induced by near-field blast. Experimental measurements performed in the Boletice military area in 2014 and 2015 are evaluated by numerical simulations. The evaluation of the results is mainly focused on the stress propagation in the cement composite with dispersed fibers, the propagation of the overpressure caused by the blast and velocity of the ejected parts from the specimen. The influence of the presence and position of the basalt meshes in the specimen on its damage induced by delamination is also examined.

  15. Blast Injuries: From Improvised Explosive Device Blasts to the Boston Marathon Bombing.

    PubMed

    Singh, Ajay K; Ditkofsky, Noah G; York, John D; Abujudeh, Hani H; Avery, Laura A; Brunner, John F; Sodickson, Aaron D; Lev, Michael H

    2016-01-01

    Although most trauma centers have experience with the imaging and management of gunshot wounds, in most regions blast wounds such as the ones encountered in terrorist attacks with the use of improvised explosive devices (IEDs) are infrequently encountered outside the battlefield. As global terrorism becomes a greater concern, it is important that radiologists, particularly those working in urban trauma centers, be aware of the mechanisms of injury and the spectrum of primary, secondary, tertiary, and quaternary blast injury patterns. Primary blast injuries are caused by barotrauma from the initial increased pressure of the explosive detonation and the rarefaction of the atmosphere immediately afterward. Secondary blast injuries are caused by debris carried by the blast wind and most often result in penetrating trauma from small shrapnel. Tertiary blast injuries are caused by the physical displacement of the victim and the wide variety of blunt or penetrating trauma sustained as a result of the patient impacting immovable objects such as surrounding cars, walls, or fences. Quaternary blast injuries include all other injuries, such as burns, crush injuries, and inhalational injuries. Radiography is considered the initial imaging modality for assessment of shrapnel and fractures. Computed tomography is the optimal test to assess penetrating chest, abdominal, and head trauma. The mechanism of blast injuries and the imaging experience of the victims of the Boston Marathon bombing are detailed, as well as musculoskeletal, neurologic, gastrointestinal, and pulmonary injury patterns from blast injuries. ©RSNA, 2016.

  16. Acceleration-based methodology to assess the blast mitigation performance of explosive ordnance disposal helmets

    NASA Astrophysics Data System (ADS)

    Dionne, J. P.; Levine, J.; Makris, A.

    2018-01-01

    To design the next generation of blast mitigation helmets that offer increasing levels of protection against explosive devices, manufacturers must be able to rely on appropriate test methodologies and human surrogates that will differentiate the performance level of various helmet solutions and ensure user safety. Ideally, such test methodologies and associated injury thresholds should be based on widely accepted injury criteria relevant within the context of blast. Unfortunately, even though significant research has taken place over the last decade in the area of blast neurotrauma, there currently exists no agreement in terms of injury mechanisms for blast-induced traumatic brain injury. In absence of such widely accepted test methods and injury criteria, the current study presents a specific blast test methodology focusing on explosive ordnance disposal protective equipment, involving the readily available Hybrid III mannequin, initially developed for the automotive industry. The unlikely applicability of the associated brain injury criteria (based on both linear and rotational head acceleration) is discussed in the context of blast. Test results encompassing a large number of blast configurations and personal protective equipment are presented, emphasizing the possibility to develop useful correlations between blast parameters, such as the scaled distance, and mannequin engineering measurements (head acceleration). Suggestions are put forward for a practical standardized blast testing methodology taking into account limitations in the applicability of acceleration-based injury criteria as well as the inherent variability in blast testing results.

  17. Development of an Animal Model for Burn-Blast Combined Injury and Cardiopulmonary System Changes in the Early Shock Stage.

    PubMed

    Hu, Quan; Chai, Jiake; Hu, Sen; Fan, Jun; Wang, Hong-Wei; Ma, Li; Duan, Hong-Jie; Liu, Lingying; Yang, Hongming; Li, Bai-Ling; Wang, Yi-He

    2015-12-01

    The purposes of this study were to establish an animal model for burn-blast combined injury research and elaborate cardiopulmonary system changes in the early shock stage. In this study, royal demolition explosive or RDX (hexagon, ring trimethylene nitramine) was used as an explosive source, and the injury conditions of the canine test subjects at various distances to the explosion (30, 50, and 70 cm) were observed by gross anatomy and pathology to determine a larger animal model of moderate blast injury. The canines were then subjected to a 35 % total body surface area (TBSA) full-thickness flame injury using napalm, which completed the development of a burn-blast combined injury model. Based on this model, the hemodynamic changes and arterial blood gas analysis after the burn-blast combined injury were measured to identify the cardiopulmonary system characteristics. In this research, RDX explosion and flame injury were used to develop a severe burn-blast injury animal model that was stable, close to reality, and easily controllable. The hemodynamic and arterial blood gas changes in the canine subjects after burn-blast injury changed distinctly from the burn and blast injuries. Blood pressure and cardiac output fluctuated, and the preload was significantly reduced, whereas the afterload significantly increased. Meanwhile, the oxygen saturation (SO2) decreased markedly with carbon dioxide partial pressure (PCO2), and lactic acid (Lac) rose, and oxygen partial pressure (PO2) reduced. These changes suggested that immediate clinical treatment is important during burn-blast injury both to stabilize cardiac function and supply blood volume and to reduce the vascular permeability, thereby preventing acute pneumonedema or other complications.

  18. An Evaluation of the Compressive Properties of Helmet Pads Pre- and Post-Shock Wave Overpressure Exposure

    DTIC Science & Technology

    2015-08-14

    by ANSI Std. Z39.18 BLAST DROP TESTS BRAIN DAMAGE VISCOELASTICITY BRAIN CONCUSSION ...Cambridge, UK: Cambridge University Press, 1997. [5] W. C. Moss and M. J. King, "Impact response of US Army and National Football League helmet pad

  19. Elucidation of Inflammation Processes Exacerbating Neuronal Cell Damage to the Retina and Brain Visual Centers as Quest for Therapeutic Drug Targets in Rat Model of Blast Overpressure Wave Exposure

    DTIC Science & Technology

    2016-10-01

    Righting Reflex of rats following double blast exposure. 0 4 8 12 16 20 R ig ht in g Re fle x (m in ut es ) PLACEBO FISH OIL Total Lived Died...experiments. Funding Support: Geneva Foundation contractor – WRAIR Name: Joseph B. Long, Ph.D. Project Role: Co-Investigator – WRAIR Researcher...Funding Support: Clinical Research Management contractor Name: Andrew B. Batuure Project Role: Technician - WRAIR Researcher Identifier (e.g. ORCID

  20. MORTALITY IN SMALL ANIMALS EXPOSED IN A SHOCK TUBE TO "SHARP"-RISING OVERPRESSURES OF 3-4 MSEC DURATION. Technical Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richmond, D.R.; Goldizen, V.C.; Clare, V.R.

    1961-06-15

    A total of 661 animals was exposed to sharp''-rising overpressures of 3 to 4 msec duration using a shock tube of novel design which produced a pressure pulse similar to that obtained with high explosives. The reflected shock overpressures associated with 50% lethality were 29.0, rabbit, respectively. Other observations included the time of death in mortally wounded animals and gross pathological lesions likely to contribute to mortality. Selected data from the literature bearing upon the influence of overpressure and pulse duration on lethality were reviewed. These included pulse durations ranging from less than 1 msec to 8 sec. The criticalmore » pulse duration, that duration shorter than which the overpressures required for mortality increases sharply, was noted to depend upon animal size and to be of the order of many hundreds of microseconds to very few milliseconds for smaller'' animals and a few to many tens of milliseconds for larger'' animals. (auth)« less

  1. Canine human scent identifications with post-blast debris collected from improvised explosive devices.

    PubMed

    Curran, Allison M; Prada, Paola A; Furton, Kenneth G

    2010-06-15

    In this study it is demonstrated that human odor collected from items recovered at a post-blast scene can be evaluated using human scent specific canine teams to locate and identify individuals who have been in contact with the improvised explosive device (IED) components and/or the delivery vehicle. The purpose of the experiments presented here was to document human scent survivability in both peroxide-based explosions as well as simulated roadside IEDs utilizing double-blind field trials. Human odor was collected from post-blast device and vehicle components. Human scent specific canine teams were then deployed at the blast scene and in locations removed from the blast scene to validate that human odor remains in sufficient quantities for reliable canine detection and identification. Human scent specific canines have shown the ability to identify individuals who have been in contact with IEDs using post-blast debris with an average success from site response of 82.2% verifying that this technology has great potential in criminal, investigative, and military applications. (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  2. Design and analysis of a personnel blast shield for different explosives applications

    NASA Astrophysics Data System (ADS)

    Lozano, Eduardo

    The use of explosives brings countless benefits to our everyday lives in areas such as mining, oil and gas exploration, demolition, and avalanche control. However, because of the potential destructive power of explosives, strict safety procedures must be an integral part of any explosives operation. The goal of this work is to provide a solution to protect against the hazards that accompany the general use of explosives, specifically in avalanche control. For this reason, a blast shield was designed and tested to protect the Colorado Department of Transportation personnel against these unpredictable effects. This document will develop a complete analysis to answer the following questions: what are the potential hazards from the detonation of high explosives, what are their effects, and how can we protect ourselves against them. To answer these questions theoretical, analytical, and numerical calculations were performed. Finally, a full blast shield prototype was tested under different simulated operational environments proving its effectiveness as safety device. The Colorado Department of Transportation currently owns more than fifteen shields that are used during every operation involving explosive materials.

  3. Neurodegeneration and Vision Loss after Mild Blunt Trauma in the C57Bl/6 and DBA/2J Mouse

    PubMed Central

    Bricker-Anthony, Courtney; Rex, Tonia S.

    2015-01-01

    Damage to the eye from blast exposure can occur as a result of the overpressure air-wave (primary injury), flying debris (secondary injury), blunt force trauma (tertiary injury), and/or chemical/thermal burns (quaternary injury). In this study, we investigated damage in the contralateral eye after a blast directed at the ipsilateral eye in the C57Bl/6J and DBA/2J mouse. Assessments of ocular health (gross pathology, electroretinogram recordings, optokinetic tracking, optical coherence tomography and histology) were performed at 3, 7, 14 and 28 days post-trauma. Olfactory epithelium and optic nerves were also examined. Anterior pathologies were more common in the DBA/2J than in the C57Bl/6 and could be prevented with non-medicated viscous eye drops. Visual acuity decreased over time in both strains, but was more rapid and severe in the DBA/2J. Retinal cell death was present in approximately 10% of the retina at 7 and 28 days post-blast in both strains. Approximately 60% of the cell death occurred in photoreceptors. Increased oxidative stress and microglial reactivity was detected in both strains, beginning at 3 days post-injury. However, there was no sign of injury to the olfactory epithelium or optic nerve in either strain. Although our model directs an overpressure air-wave at the left eye in a restrained and otherwise protected mouse, retinal damage was detected in the contralateral eye. The lack of damage to the olfactory epithelium and optic nerve, as well as the different timing of cell death as compared to the blast-exposed eye, suggests that the injuries were due to physical contact between the contralateral eye and the housing chamber of the blast device and not propagation of the blast wave through the head. Thus we describe a model of mild blunt eye trauma. PMID:26148200

  4. Analysis of different materials subjected to open-air explosions in search of explosive traces by Raman microscopy.

    PubMed

    Zapata, Félix; García-Ruiz, Carmen

    2017-06-01

    Post-explosion scenes offer such chaos and destruction that evidence recovery and detection of post-blast residues from the explosive in the surrounding materials is highly challenging and difficult. The suitability of materials to retain explosives residues and their subsequent analysis has been scarcely investigated. Particularly, the use of explosive mixtures containing inorganic oxidizing salts to make improvised explosive devices (IEDs) is a current security concern due to their wide availability and lax control. In this work, a wide variety of materials such as glass, steel, plywood, plastic bag, brick, cardboard or cotton subjected to open-air explosions were examined using confocal Raman microscopy, aiming to detect the inorganic oxidizing salts contained in explosives as black powder, chloratite, dynamite, ammonium nitrate fuel oil and ammonal. Post-blast residues were detected through microscopic examination of materials surfaces. In general, the more homogeneous and smoother the surface was, the less difficulties and better results in terms of identification were obtained. However, those highly irregular surfaces were the most unsuitable collectors for the posterior identification of explosive traces by Raman microscopy. The findings, difficulties and some recommendations related to the identification of post-blast particles in the different materials studied are thoroughly discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. MEASUREMENT OF FREE AIR ATOMIC BLAST PRESSURES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haskell, N.A.; Fava, J.A.; Brubaker, R.M.

    1958-02-14

    BS>Peak free-air overpressure versus time measurements in the 10-to-2 psi range were obtained as a function of distance directly over a nuclear burst at a low scaled height. This information was to be used to establish the points in space at which the reflected and direct shock waves merge into a single shock wave and to determine the overpressure as a function of distance for the merged wave, in support of drone-aircraft lethal-volume studies. It was also desired to obtain free air peak overpressure versus distance measurements for an atomic burst at a high altitude. Data are tabulated that weremore » obtained by deploying, from a B-29 aircraft, 10 parachute-borne instrumented canisters on each shot. The second objective was achieved by deploying 15 parachute-borne canisters from the strike aircraft on one shot. (C.H.)« less

  6. Volcano infrasonic signals and magma degassing: First-order experimental insights and application to Stromboli

    NASA Astrophysics Data System (ADS)

    Lane, Stephen J.; James, Mike R.; Corder, Steven B.

    2013-09-01

    We demonstrate the rise and expansion of a gas slug as a fluid dynamic source mechanism for infrasonic signals generated by gas puffing and impulsive explosions at Stromboli. The fluid dynamics behind the rise, expansion and burst of gas slugs in the confines of an experimental tube can be characterised into different regimes. Passive expansion occurs for small gas masses, where negligible dynamic gas over-pressure develops during bubble ascent and, prior to burst, meniscus oscillation forms an important infrasonic source. With increasing gas mass, a transition regime emerges where dynamic gas over-pressure is significant. For larger gas masses, this regime transforms to fully explosive behaviour, where gas over-pressure dominates as an infrasonic source and bubble bursting is not a critical factor. The rate of change of excess pressure in the experimental tube was used to generate synthetic infrasonic waveforms. Qualitatively, the waveforms compare well to infrasonic waveforms measured from a range of eruptions at Stromboli. Assuming pressure continuity during flow through the vent, and applying dimensionless arguments from the first-order experiments, allows estimation of eruption metrics from infrasonic signals measured at Stromboli. Values of bubble length, gas mass and over-pressure calculated from infrasonic signals are in excellent agreement with those derived by independent means for eruptions at Stromboli, therefore providing a method of estimating eruption metrics from infrasonic measurement.

  7. 77 FR 58173 - Proposed Extension of Existing Information Collection; Explosive Materials and Blasting Units...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-19

    ... requested data can be provided in the desired format, reporting burden (time and financial resources) is... mining industry. However, since there are no permissible explosives or blasting units available that have..., or other technological collection techniques or other forms of information technology (e.g...

  8. MCDU-8-A Computer Code for One-Dimensional Blast Wave Problems

    DTIC Science & Technology

    1975-07-01

    medium surrounding the explosion is assuned to be air obeying an ideal gas equation of state with a constant specific heat ratio, y2, of 1.4. The...characteristics Explosive blast Pentolite spheres ■ 20.\\ASSTRACT (Continue on reverie eld* II neceeemry end Identify by block number) he method...INVOLVING THE. SUDDEN RELEASE OF A HIGHLY COMPRESSED AIR SPHERE 11 V. A SAMPLE PROBLEM INVOLVING A BLAST WAVE RESULTING FROM THE DETONATION OF A

  9. Initial decay of flow properties of planar, cylindrical and spherical blast waves

    NASA Astrophysics Data System (ADS)

    Sadek, H. S. I.; Gottlieb, J. J.

    1983-10-01

    Analytical expressions are presented for the initial decay of all major flow properties just behind planar, cylindrical, and spherical shock wave fronts whose trajectories are known as a function of either distance versus time or shock overpressure versus distance. These expressions give the time and/or distance derivatives of the flow properties not only along constant time and distance lines but also along positive and negative characteristic lines and a fluid-particle path. Conventional continuity, momentum and energy equations for the nonstationary motion of an inviscid, non-heat conducting, compressible gas are used in their derivation, along with the equation of state of a perfect gas. All analytical expressions are validated by comparing the results to those obtained indirectly from known self-similar solutions for planar, cylindrical and spherical shock-wave flows generated both by a sudden energy release and by a moving piston. Futhermore, time derivatives of pressure and flow velocity are compared to experimental data from trinitrotoluene (TNT), pentolite, ammonium nitrate-fuel oil (ANFO) and propane-oxygen explosions, and good agreement is obtained.

  10. TNT equivalency of M10 propellant

    NASA Technical Reports Server (NTRS)

    Mcintyre, F. L.; Price, P.

    1978-01-01

    Peak, side-on blast overpressure and scaled, positive impulse have been measured for M10 single-perforated propellant, web size 0.018 inches, using configurations that simulate the handling of bulk material during processing and shipment. Quantities of 11.34, 22.7, 45.4, and 65.8 kg were tested in orthorhombic shipping containers and fiberboard boxes. High explosive equivalency values for each test series were obtained as a function of scaled distance by comparison to known pressure, arrival time and impulse characteristics for hemispherical TNT surface bursts. The equivalencies were found to depend significantly on scaled distance, with higher values of 150-100 percent (pressure) and 350-125 percent (positive impulse) for the extremes within the range from 1.19 to 3.57 m/cube root of kg. Equivalencies as low as 60-140 percent (pressure) and 30-75 percent (positive impulse) were obtained in the range of 7.14 to 15.8 m/cube root of kg. Within experimental error, both peak pressure and positive impulse scaled as a function of charge weight for all quantities tested in the orthorhombic configuration.

  11. Explosive parcel containment and blast mitigation container

    DOEpatents

    Sparks, Michael H.

    2001-06-12

    The present invention relates to a containment structure for containing and mitigating explosions. The containment structure is installed in the wall of the building and has interior and exterior doors for placing suspicious packages into the containment structure and retrieving them from the exterior of the building. The containment structure has a blast deflection chute and a blowout panel to direct over pressure from explosions away from the building, surrounding structures and people.

  12. 78 FR 52998 - Waiver to Space Exploration Technologies Corporation of Acceptable Risk Limit for Launch

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-27

    ... risk. The presence of inversion layers at VAFB is common, and results in the reflection of shock waves... caused without the reflection from the inversion layer. Chances of advantageous weather conditions during... experiences unique weather conditions that exacerbate far field blast overpressure from a launch. An inversion...

  13. Atmospheric emission of NOx from mining explosives: A critical review

    NASA Astrophysics Data System (ADS)

    Oluwoye, Ibukun; Dlugogorski, Bogdan Z.; Gore, Jeff; Oskierski, Hans C.; Altarawneh, Mohammednoor

    2017-10-01

    High-energy materials such as emulsions, slurries and ammonium-nitrate fuel-oil (ANFO) explosives play crucial roles in mining, quarrying, tunnelling and many other infrastructure activities, because of their excellent transport and blasting properties. These explosives engender environmental concerns, due to atmospheric pollution caused by emission of dust and nitrogen oxides (NOx) from blasts, the latter characterised by the average emission factor of 5 kg (t AN explosive)-1. This first-of-its-kind review provides a concise literature account of the formation of NOx during blasting of AN-based explosives, employed in surface operations. We estimate the total NOx emission rate from AN-based explosives as 0.05 Tg (i.e., 5 × 104 t) N per annum, compared to the total global annual anthropogenic NOx emissions of 41.3 × 106 t N y-1. Although minor in the global sense, the large localised plumes from blasting exhibit high NOx concentration (500 ppm) exceeding up to 3000 times the international standards. This emission has profound consequences at mining sites and for adjacent atmospheric environment, necessitating expensive management of exclusion zones. The review describes different types of AN energetic materials for civilian applications, and summarises the essential properties and terminologies pertaining to their use. Furthermore, we recapitulate the mechanisms that lead to the formation of the reactive nitrogen species in blasting of AN-based explosives, review their implications to atmospheric air pollution, and compare the mechanisms with those experienced in other thermal and combustion operations. We also examine the mitigation approaches, including guidelines and operational-control measures. The review discusses the abatement technologies such as the formulation of new explosive mixtures, comprising secondary fuels, spin traps and other additives, in light of their effectiveness and efficiency. We conclude the review with a summary of unresolved problems, identifying possible future developments and their impacts on the environment with emphasis on local and workplace loads.

  14. Optimizing Blasting’s Air Overpressure Prediction Model using Swarm Intelligence

    NASA Astrophysics Data System (ADS)

    Nur Asmawisham Alel, Mohd; Ruben Anak Upom, Mark; Asnida Abdullah, Rini; Hazreek Zainal Abidin, Mohd

    2018-04-01

    Air overpressure (AOp) resulting from blasting can cause damage and nuisance to nearby civilians. Thus, it is important to be able to predict AOp accurately. In this study, 8 different Artificial Neural Network (ANN) were developed for the purpose of prediction of AOp. The ANN models were trained using different variants of Particle Swarm Optimization (PSO) algorithm. AOp predictions were also made using an empirical equation, as suggested by United States Bureau of Mines (USBM), to serve as a benchmark. In order to develop the models, 76 blasting operations in Hulu Langat were investigated. All the ANN models were found to outperform the USBM equation in three performance metrics; root mean square error (RMSE), mean absolute percentage error (MAPE) and coefficient of determination (R2). Using a performance ranking method, MSO-Rand-Mut was determined to be the best prediction model for AOp with a performance metric of RMSE=2.18, MAPE=1.73% and R2=0.97. The result shows that ANN models trained using PSO are capable of predicting AOp with great accuracy.

  15. Validation of a Simulation Process for Assessing the Response of a Vehicle and Its Occupants to an Explosive Threat

    DTIC Science & Technology

    2010-01-01

    gross vehicle response; and the effects of blast mitigation material, restraint system, and seat design to the loads developed on the members of an...occupant. A Blast Event Simulation sysTem (BEST) has been developed for facilitating the easy use of the LS- DYNA solvers for conducting a...et al, 1999] for modeling blast events. In this paper the Eulerian solver of LS- DYNA is employed for simulating the soil – explosive – air

  16. 49 CFR Appendix D to Part 173 - Test Methods for Dynamite (Explosive, Blasting, Type A)

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Test Methods for Dynamite (Explosive, Blasting, Type A) D Appendix D to Part 173 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SHIPPERS-GENERAL REQUIREMENTS FOR...

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preece, D.S.; Knudsen, S.D.

    The spherical element computer code DMC (Distinct Motion Code) used to model rock motion resulting from blasting has been enhanced to allow routine computer simulations of bench blasting. The enhancements required for bench blast simulation include: (1) modifying the gas flow portion of DMC, (2) adding a new explosive gas equation of state capability, (3) modifying the porosity calculation, and (4) accounting for blastwell spacing parallel to the face. A parametric study performed with DMC shows logical variation of the face velocity as burden, spacing, blastwell diameter and explosive type are varied. These additions represent a significant advance in themore » capability of DMC which will not only aid in understanding the physics involved in blasting but will also become a blast design tool. 8 refs., 7 figs., 1 tab.« less

  18. Comment on "chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model".

    PubMed

    Tsao, Jack W

    2012-10-24

    In their recent paper, Goldstein et al. show murine brain tau neuropathology after explosive blast with head rotation but do not present additional evidence that would delineate whether this neuropathology was principally caused by blast exposure alone or by blast exposure plus head rotational injury.

  19. Blast injury research models

    PubMed Central

    Kirkman, E.; Watts, S.; Cooper, G.

    2011-01-01

    Blast injuries are an increasing problem in both military and civilian practice. Primary blast injury to the lungs (blast lung) is found in a clinically significant proportion of casualties from explosions even in an open environment, and in a high proportion of severely injured casualties following explosions in confined spaces. Blast casualties also commonly suffer secondary and tertiary blast injuries resulting in significant blood loss. The presence of hypoxaemia owing to blast lung complicates the process of fluid resuscitation. Consequently, prolonged hypotensive resuscitation was found to be incompatible with survival after combined blast lung and haemorrhage. This article describes studies addressing new forward resuscitation strategies involving a hybrid blood pressure profile (initially hypotensive followed later by normotensive resuscitation) and the use of supplemental oxygen to increase survival and reduce physiological deterioration during prolonged resuscitation. Surprisingly, hypertonic saline dextran was found to be inferior to normal saline after combined blast injury and haemorrhage. New strategies have therefore been developed to address the needs of blast-injured casualties and are likely to be particularly useful under circumstances of enforced delayed evacuation to surgical care. PMID:21149352

  20. Blast from pressurized carbon dioxide released into a vented atmospheric chamber

    NASA Astrophysics Data System (ADS)

    Hansen, P. M.; Gaathaug, A. V.; Bjerketvedt, D.; Vaagsaether, K.

    2018-03-01

    This study describes the blast from pressurized carbon dioxide (CO2) released from a high-pressure reservoir into an openly vented atmospheric chamber. Small-scale experiments with pure vapor and liquid/vapor mixtures were conducted and compared with simulations. A motivation was to investigate the effects of vent size and liquid content on the peak overpressure and impulse response in the atmospheric chamber. The comparison of vapor-phase CO2 test results with simulations showed good agreement. This numerical code described single-phase gas dynamics inside a closed chamber, but did not model any phase transitions. Hence, the simulations described a vapor-only test into an unvented chamber. Nevertheless, the simulations reproduced the incident shock wave, the shock reflections, and the jet release inside the atmospheric chamber. The rapid phase transition did not contribute to the initial shock strength in the current test geometry. The evaporation rate was too low to contribute to the measured peak overpressure that was in the range of 15-20 kPa. The simulation results produced a calculated peak overpressure of 12 kPa. The liquid tests showed a significantly higher impulse compared to tests with pure vapor. Reducing the vent opening from 0.1 to 0.01 m2 resulted in a slightly higher impulse calculated at 100 ms. The influence of the vent area on the calculated impulse was significant in the vapor-phase tests, but not so clear in the liquid/vapor mixture tests.

  1. 29 CFR 1926.912 - Underwater blasting.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Underwater blasting. (a) A blaster shall conduct all blasting operations, and no shot shall be fired without... herein on handling and storing explosives. (h) When more than one charge is placed under water, a float...

  2. 29 CFR 1926.912 - Underwater blasting.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Underwater blasting. (a) A blaster shall conduct all blasting operations, and no shot shall be fired without... herein on handling and storing explosives. (h) When more than one charge is placed under water, a float...

  3. 29 CFR 1926.912 - Underwater blasting.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Underwater blasting. (a) A blaster shall conduct all blasting operations, and no shot shall be fired without... herein on handling and storing explosives. (h) When more than one charge is placed under water, a float...

  4. 29 CFR 1926.912 - Underwater blasting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Underwater blasting. (a) A blaster shall conduct all blasting operations, and no shot shall be fired without... herein on handling and storing explosives. (h) When more than one charge is placed under water, a float...

  5. 29 CFR 1926.912 - Underwater blasting.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Underwater blasting. (a) A blaster shall conduct all blasting operations, and no shot shall be fired without... herein on handling and storing explosives. (h) When more than one charge is placed under water, a float...

  6. Interim Tests of the Effects of Long Duration Blast-Type FLows on Fires in Urban Interiors and Contents of Emergency Operating Centers (EOC)

    DTIC Science & Technology

    1976-01-01

    orifices A,f and A„ respectively) were conducted, all at a (.ornpression chamber overpressure of about 2 psi. During the current testing program, an...actually reflect a pressure decrease with time derived from the modified exponencial relationship given in Eq. 2-14. Blast Flow vs. LDFF Flow Through...indicating the presence of strong eddies and counter currents . »"JCüat^Liöt -r*"- aK.m.ju.J’ aBBtflbsSii ^’ :•.. ’ ä l 1 2 \\ 2 Lzi .3

  7. Minimisation of the explosion shock wave load onto the occupants inside the vehicle during trinitrotoluene charge blast.

    PubMed

    Krzystała, Edyta; Mężyk, Arkadiusz; Kciuk, Sławomir

    2016-01-01

    The aim of this study was to elaborate identification method of crew overload as a result of trinitrotoluene charge explosion under the military wheeled vehicle. During the study, an experimental military ground research was carried out. The aim of this research was to verify the mine blast resistance of the prototype wheeled vehicle according to STANG 4569 as well as the anti-explosive seat. Within the work, the original methodology was elaborated along with a prototype research statement. This article presents some results of the experimental research, thanks to which there is a possibility to estimate the crew's lives being endangered in an explosion through the measurement of acceleration as well as the pressure on the chest, head and internal organs. On the basis of our acceleration results, both effectiveness and infallibility of crew protective elements along with a blast mitigation seat were verified.

  8. Modeling and simulation of explosion effectiveness as a function of blast and crowd characteristics

    NASA Astrophysics Data System (ADS)

    Usmani, Zeeshan-Ul-Hassan

    Suicide bombing has become one of the most lethal and favorite modus operandi of terrorist organizations around the world. On average, there is a suicide bombing attack every six days somewhere in the world. While various attempts have been made to assess the impact of explosions on structures and military personnel, little has been done on modeling the impact of a blast wave on a crowd in civilian settings. The assessment of an explosion's effect on a crowd can lead to better management of disasters, triage of patients, locating blast victims under the debris, development of protective gear, and safe distance recommendations to reduce the casualties. The overall goal of this work is to predict the magnitude of injuries and lethality on humans from a blast-wave with various explosive and crowd characteristics, and to compare, contrast, and analyze the performance of explosive and injury models against the real-life data of suicide bombing incidents. This thesis introduces BlastSim---a physics based stationary multi-agent simulation platform to model and simulate a suicide bombing event. The agents are constrained by the physical characteristics and mechanics of the blast wave. The BlastSim is programmed to test, analyze, and validate the results of different model combinations under various conditions with different sets of parameters, such as the crowd and explosive characteristics, blockage and human shields, fragmentation and the bomber's position, in 2-dimensional and 3-dimensional environments. The suicide bombing event can be re-created for forensic analysis. The proposed model combinations show a significant performance---the Harold Brode explosive model with Catherine Lee injury model using the blockage stands out consistently to be the best with an overall cumulative accuracy of 87.6%. When comparing against actual data, overall, prediction accuracy can be increased by 71% using this model combination. The J. Clutter with Reflection explosive model using Charles Stewart injury model with blockage works best for confined-space incidents with an accuracy of 80%. Blockage in a crowd can increase the accuracy by 17% for all models. Line-of-sight with an attacker, rushing towards an exit, announcing the threat of a suicide bombing, sitting inside a vehicle or building, and standing closer to a wall or a rigid surface were found to be the most lethal choices both during and after an attack. The findings can have implications for emergency response and counter terrorism.

  9. Translation from Russian to English the Book Blast Effects Caused by Explosions Authored by B. Gelfand and M. Silnikov

    DTIC Science & Technology

    2004-04-01

    ingredients were freely b ought in the popular shops of chemicals. The following facts can serve as the evidence of wide use of mine -explosive...workshop rooms etc. The HE charges weight restrictions developed for conducting of blasting operations in open-cast mines and testing areas, are...Russian) 8. Silnikov M.V., Serdtsev N.I., Nelezin P.V. On the prospects of methods of explosion localization for the increase of safety of mine

  10. Experimental Investigation on the Basic Law of the Fracture Spatial Morphology for Water Pressure Blasting in a Drillhole Under True Triaxial Stress

    NASA Astrophysics Data System (ADS)

    Huang, Bingxiang; Li, Pengfeng

    2015-07-01

    The present literature on the morphology of water pressure blasting fractures in drillholes is not sufficient and does not take triaxial confining stress into account. Because the spatial morphology of water pressure blasting fractures in drillholes is not clear, the operations lack an exact basis. Using a large true triaxial water pressure blasting experimental system and an acoustic emission 3-D positioning system, water pressure blasting experiments on cement mortar test blocks (300 mm × 300 mm × 300 mm) were conducted to study the associated basic law of the fracture spatial morphology. The experimental results show that water pressure blasting does not always generate bubble pulsation. After water pressure blasting under true triaxial stress, a crushed compressive zone and a blasting fracture zone are formed from the inside, with the blasting section of the naked drillhole as the center, to the outside. The shape of the outer edges of the two zones is ellipsoidal. The range of the blasting fracture is large in the radial direction of the drillhole, where the surrounding pressure is large, i.e., the range of the blasting fracture in the drillhole radial cross-section is approximately ellipsoidal. The rock near the drillhole wall is affected by a tensile stress wave caused by the test block boundary reflection, resulting in more flake fractures appearing in the fracturing crack surface in the drillhole axial direction and parallel to the boundary surface. The flake fracture is thin, presenting a small-range flake fracture. The spatial morphology of the water pressure blasting fracture in the drillhole along the axial direction is similar to a wide-mouth Chinese bottle: the crack extent is large near the drillhole orifice, gradually narrows inward along the drillhole axial direction, and then increases into an approximate ellipsoid in the internal naked blasting section. Based on the causes of the crack generation, the blasting cracks are divided into three zones: the blasting shock zone, the axial extension zone, and the orifice influence zone. The explosion shock zone is the range that is directly impacted by the explosive shock waves. The axial extension zone is the axial crack area with uniform width, which is formed when the blasting fracture in the edge of the explosion shock zone extends along the drillhole wall. The extension of the orifice influence zone is very large because the explosion stress waves reflect at the free face and generate tensile stress waves. In the water pressure blasting of the drillhole, the sealing section should be lengthened to allow the drillhole blasting cracks to extend sufficiently under the long-time effect of the blasting stress field of quasi-hydrostatic pressure.

  11. 29 CFR 1910.109 - Explosives and blasting agents.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... more magazines, as a group, must be considered as one magazine, and the total quantity of explosives... located in the same building when one is used only for blasting caps in quantities not in excess of 5,000... distance of at least one hundred and fifty (150) feet shall be maintained between class II magazines and...

  12. 49 CFR Appendix D to Part 173 - Test Methods for Dynamite (Explosive, Blasting, Type A)

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., Type A) D Appendix D to Part 173 Transportation Other Regulations Relating to Transportation PIPELINE... REGULATIONS SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Pt. 173, App. D Appendix D to Part 173—Test Methods for Dynamite (Explosive, Blasting, Type A) 1. Test method D-1—Leakage Test A wooden stick...

  13. Lasting retinal injury in a mouse model of blast-induced trauma

    USDA-ARS?s Scientific Manuscript database

    Traumatic brain injury (TBI) due to blast exposure is currently the most prevalent of war injuries. While secondary ocular blast injuries due to flying debris are more common, primary ocular blast exposure has been reported among survivors of explosions, but with limited understanding of the resulti...

  14. 29 CFR 1926.906 - Initiation of explosive charges-electric blasting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... dangerous. Blasting cap leg wires shall be kept short-circuited (shunted) until they are connected into the..., in accordance with the manufacturer's recommendations. (f) Connecting wires and lead wires shall be... manufacturer of the electric blasting caps used. (o) The number of electric blasting caps connected to a...

  15. 24 CFR Appendix II to Subpart C of... - Development of Standards; Calculation Methods

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... radiation being emitted. The radiation can cause severe burn, injuries and even death to exposed persons... even death. Since it is assumed that children and the elderly could not take refuge behind walls or run... suffer any serious injury. Using this as the safety standard for blast overpressure, nomographs have been...

  16. Case Report: Lightning-Induced Pneumomediastinum.

    PubMed

    Blumenthal, Ryan; Saayman, Gert

    2017-06-01

    We present the case of a 41-year-old woman who was fatally injured during a witnessed lightning strike event and in whom autopsy revealed the unusual keraunopathological finding of overt pneumomediastinum. The possible pathophysiological mechanism(s) of causation of this phenomenon are discussed, with specific reference also to the "Macklin" effect and the role of blast overpressures associated with lightning strike. It is suggested that the latter may lead to sudden alveolar rupture, with subsequent rapid tracking of air along bronchovascular sheaths in a centripetal manner toward the hilum of the lung and thus into the mediastinum. A review of the blast literature suggests that this victim would have been exposed to a blast pressure wave of approximately 29-psi (200 kPa) to 72-psi (500 kPa) magnitude.

  17. Evaluation of Blast Resistance of Fiber Reinforced Composite Specimens under Contact Blast Load

    NASA Astrophysics Data System (ADS)

    Janota, O.; Foglar, M.

    2017-09-01

    This paper presents results of experimental programme which took place in 2014, 2015 and 2016. Experiments were focused on the resistance of full scale concrete panels subjected to contact blast loading. Specimens were loaded by contact blast by plastic explosive. All specimens were reinforced concrete slabs made of fiber concrete. Basalt mesh and textile sheets were added to some of the experiments for creating more heterogeneous material to achieve better resistance of the specimens. Evaluation of experiments was mainly focused on the damaged area on the contact side and soffit of the specimens. Dependency of the final damage of concrete panels on the weight of explosive and concrete strength was assessed.

  18. Blast injury from explosive munitions.

    PubMed

    Cernak, I; Savic, J; Ignjatovic, D; Jevtic, M

    1999-07-01

    To evaluate the effect of blast in common war injuries. One thousand three hundred and three patients injured by explosive munitions and demonstrating extremity wounds without other penetrating injuries were admitted to the Military Medical Academy in Belgrade between 1991 and 1994. Of these, 665 patients (51%) had symptoms and physical signs that were compatible with the clinical diagnosis of primary blast injury, whereas the remaining 658 patients did not. Random sampling of 65 patients in the blast group during the early posttraumatic period showed statistically significant elevations in blood thromboxane A2 (TxA2), prostacyclin (PGI2), and sulfidopeptide leukotrienes compared with the random sample of 62 patients in the nonblast group. This difference could not be accounted for by differing injury severity between the groups, because the severity of wounds as measured by both the Injury Severity Score and the Red Cross Wound Classification was similar in both groups. Amongst blast patients, 200 patients (30%) had long-term (1 year) symptoms and signs reflecting central nervous system disorders. These symptoms and signs were only sporadically found in 4% of the nonblast patients. These findings indicate that primary blast injury is more common in war injuries than previously thought and that of those affected by blast, a surprisingly high proportion retain long-term neurologic disability. The elevation in eicosanoids could be used to confirm and monitor blast injury. In relation to the immediate management of patients injured by explosive weapons, it follows that particular attention should be paid to the presence and/or development of blast injury. Our findings indicate that blast is more common in war injuries than previously thought. Eicosanoid changes after blast injury suggest that blast injury causes a major physiologic stress. A variety of effects on the central nervous system suggest that blast injury could be responsible for some aspects of what is now considered to be the posttraumatic stress disorder.

  19. Innovative Composite Structure Design for Blast Protection

    DTIC Science & Technology

    2007-01-01

    2007-01-0483 Innovative Composite Structure Design for Blast Protection Dongying Jiang, Yuanyuan Liu MKP Structural Design Associates, Inc...protect vehicle and occupants against various explosives. The multi-level and multi-scenario blast simulation and design system integrates three major...numerical simulation of a BTR composite under a blast event. The developed blast simulation and design system will enable the prediction, design, and

  20. Shock tubes and blast injury modeling.

    PubMed

    Ning, Ya-Lei; Zhou, Yuan-Guo

    2015-01-01

    Explosive blast injury has become the most prevalent injury in recent military conflicts and terrorist attacks. The magnitude of this kind of polytrauma is complex due to the basic physics of blast and the surrounding environments. Therefore, development of stable, reproducible and controllable animal model using an ideal blast simulation device is the key of blast injury research. The present review addresses the modeling of blast injury and applications of shock tubes.

  1. The role of stress waves in thoracic visceral injury from blast loading: modification of stress transmission by foams and high-density materials.

    PubMed

    Cooper, G J; Townend, D J; Cater, S R; Pearce, B P

    1991-01-01

    Materials have been applied to the thoracic wall of anaesthetised experimental animals exposed to blast overpressure to investigate the coupling of direct stress waves into the thorax and the relative contribution of compressive stress waves and gross thoracic compression to lung injury. The ultimate purpose of the work is to develop effective personal protection from the primary effects of blast overpressure--efficient protection can only be achieved if the injury mechanism is identified and characterized. Foam materials acted as acoustic couplers and resulted in a significant augmentation of the visceral injury; decoupling and elimination of injury were achieved by application of a high acoustic impedance layer on top of the foam. In vitro experiments studying stress wave transmission from air through various layers into an anechoic water chamber showed a significant increase in power transmitted by the foams, principally at high frequencies. Material such as copper or resin bonded Kevlar incorporated as a facing upon the foam achieved substantial decoupling at high frequencies--low frequency transmission was largely unaffected. An acoustic transmission model replicated the coupling of the blast waves into the anechoic water chamber. The studies suggest that direct transmission of stress waves plays a dominant role in lung parenchymal injury from blast loading and that gross thoracic compression is not the primary injury mechanism. Acoustic decoupling principles may therefore be employed to reduce the direct stress coupled into the body and thus reduce the severity of lung injury--the most simple decoupler is a high acoustic impedance material as a facing upon a foam, but decoupling layers may be optimized using acoustic transmission models. Conventional impacts producing high body wall velocities will also lead to stress wave generation and transmission--stress wave effects may dominate the visceral response to the impact with direct compression and shear contributing little to the aetiology of the injury.

  2. Translational Research for Blast-Induced Traumatic Brain Injury: Injury Mechanism to Development of Medical Instruments

    NASA Astrophysics Data System (ADS)

    Nakagawa, A.; Ohtani, K.; Arafune, T.; Washio, T.; Iwasaki, M.; Endo, T.; Ogawa, Y.; Kumabe, T.; Takayama, K.; Tominaga, T.

    1. Investigation of shock wave-induced phenomenon: blast-induced traumatic brain injury Blast wave (BW) is generated by explosion and is comprised of lead shock wave (SE) followed by subsequent supersonic flow.

  3. Compressive strength after blast of sandwich composite materials

    PubMed Central

    Arora, H.; Kelly, M.; Worley, A.; Del Linz, P.; Fergusson, A.; Hooper, P. A.; Dear, J. P.

    2014-01-01

    Composite sandwich materials have yet to be widely adopted in the construction of naval vessels despite their excellent strength-to-weight ratio and low radar return. One barrier to their wider use is our limited understanding of their performance when subjected to air blast. This paper focuses on this problem and specifically the strength remaining after damage caused during an explosion. Carbon-fibre-reinforced polymer (CFRP) composite skins on a styrene–acrylonitrile (SAN) polymer closed-cell foam core are the primary composite system evaluated. Glass-fibre-reinforced polymer (GFRP) composite skins were also included for comparison in a comparable sandwich configuration. Full-scale blast experiments were conducted, where 1.6×1.3 m sized panels were subjected to blast of a Hopkinson–Cranz scaled distance of 3.02 m kg−1/3, 100 kg TNT equivalent at a stand-off distance of 14 m. This explosive blast represents a surface blast threat, where the shockwave propagates in air towards the naval vessel. Hopkinson was the first to investigate the characteristics of this explosive air-blast pulse (Hopkinson 1948 Proc. R. Soc. Lond. A 89, 411–413 (doi:10.1098/rspa.1914.0008)). Further analysis is provided on the performance of the CFRP sandwich panel relative to the GFRP sandwich panel when subjected to blast loading through use of high-speed speckle strain mapping. After the blast events, the residual compressive load-bearing capacity is investigated experimentally, using appropriate loading conditions that an in-service vessel may have to sustain. Residual strength testing is well established for post-impact ballistic assessment, but there has been less research performed on the residual strength of sandwich composites after blast. PMID:24711494

  4. Phreatic and Hydrothermal Explosions: A Laboratory Approach

    NASA Astrophysics Data System (ADS)

    Scheu, B.; Dingwell, D. B.

    2010-12-01

    Phreatic eruptions are amongst the most common eruption types on earth. They might be precursory to another type of volcanic eruption but often they stand on their one. Despite being the most common eruption type, they also are one of the most diverse eruptions, in appearance as well as on eruption mechanism. Yet steam is the common fuel behind all phreatic eruptions. The steam-driven explosions occur when water beneath the ground or on the surface is heated by magma, lava, hot rocks, or fresh volcanic deposits (such as ignimbrites, tephra and pyroclastic-flow deposits) and result in crater, tuff rings and debris avalanches. The intense heat of such material may cause water to boil and flash to steam, thereby generating an explosion of steam, water, ash, blocks, and bombs. Another wide and important field affected by phreatic explosions are hydrothermal areas; here phreatic explosions occur every few months creating explosion craters and resemble a significant hazard to hydrothermal power plants. Despite of their hazard potential, phreatic explosions have so far been overlooked by the field of experimental volcanology. A part of their hazard potential in owned by the fact that phreatic explosions are hardly predictable in occurrence time and size as they have manifold triggers (variances in groundwater and heat systems, earthquakes, material fatigue, water level, etc..) A new set of experiments has been designed to focus on this phreatic type of steam explosion, whereas classical phreatomagmatic experiments use molten fuel-coolant interaction (e.g., Zimanowski, et al., 1991). The violent transition of the superheated water to vapour adds another degree of explosivity to the dry magmatic fragmentation, driven mostly by vesicle bursting due to internal gas overpressure. At low water fractions the fragmentation is strongly enforced by the mixture of these two effects and a large fraction of fine pyroclasts are produced, whereas at high water fraction in the sample the fragmentation is less violent as its dry counterpart. The experimental conditions used it this study (varying degree of water saturation, moderate overpressure, 200- 300°C) applies e.g. to volcanic rocks as well as country rocks at depth of about 100-800 m in a conduit or dome bearing a fraction of ground water and being heated from magma rising beneath (150-400°C). The diversity of phreatic eruptions at a volcanic system (vent) arises from the variety of host rocks, ways to seal the conduit, and to alter this material depending on the composition of volcanic gases. Here, we assess the influence of rapid decompression of the supercritical water phase in the pore space of samples, on the fragmentation behaviour. This will enable us to elucidate the characteristics of the different “fuels” for explosive fragmentation (gas overpressure, steam flashing), as well as their interplay.

  5. Measurement and Simulation of Low Frequency Impulse Noise and Ground Vibration from Airblasts

    NASA Astrophysics Data System (ADS)

    Hole, L. R.; Kaynia, A. M.; Madshus, C.

    1998-07-01

    This paper presents numerical simulations of low frequency ground vibration and dynamic overpressure in air using two different numerical models. Analysis is based on actual recordings during blast tests at Haslemoen test site in Norway in June 1994. It is attempted to use the collected airblast-induced overpressures and ground vibrations in order to asses the applicability of the two models. The first model is a computer code which is based on a global representation of ground and atmospheric layers, a so-called Fast Field Program (FFP). A viscoelastic and a poroelastic version of this model is used. The second model is a two-dimensionalmoving-loadformulation for the propagation of airblast over ground. The poroelastic FFP gives the most complete and realistic reproduction of the processes involved, including decay of peak overpressure amplitude and dominant frequency of signals with range. It turns out that themoving-loadformulation does not provide a complete description of the physics involved when the speed of sound in air is different from the ground wavespeeds.

  6. 29 CFR 1926.906 - Initiation of explosive charges-electric blasting.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...” position at all times, except when firing. It shall be so designed that the firing lines to the cap circuit... blasting machine shall not be in excess of its rated capacity. Furthermore, in primary blasting, a series..., shall use only blasting galvanometers or other instruments that are specifically designed for this...

  7. 29 CFR 1926.906 - Initiation of explosive charges-electric blasting.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...” position at all times, except when firing. It shall be so designed that the firing lines to the cap circuit... blasting machine shall not be in excess of its rated capacity. Furthermore, in primary blasting, a series..., shall use only blasting galvanometers or other instruments that are specifically designed for this...

  8. 29 CFR 1926.906 - Initiation of explosive charges-electric blasting.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...” position at all times, except when firing. It shall be so designed that the firing lines to the cap circuit... blasting machine shall not be in excess of its rated capacity. Furthermore, in primary blasting, a series..., shall use only blasting galvanometers or other instruments that are specifically designed for this...

  9. 29 CFR 1926.906 - Initiation of explosive charges-electric blasting.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...” position at all times, except when firing. It shall be so designed that the firing lines to the cap circuit... blasting machine shall not be in excess of its rated capacity. Furthermore, in primary blasting, a series..., shall use only blasting galvanometers or other instruments that are specifically designed for this...

  10. Numerical Simulations of Near-Field Blast Effects using Kinetic Plates

    NASA Astrophysics Data System (ADS)

    Neuscamman, Stephanie; Manner, Virginia; Brown, Geoffrey; Glascoe, Lee

    2013-06-01

    Numerical simulations using two hydrocodes were compared to near-field measurements of blast impulse associated with ideal and non-ideal explosives to gain insight into testing results and predict untested configurations. The recently developed kinetic plate test was designed to measure blast impulse in the near-field by firing spherical charges in close range from steel plates and probing plate acceleration using laser velocimetry. Plate velocities for ideal, non-ideal and aluminized explosives tests were modeled using a three dimensional hydrocode. The effects of inert additives in the explosive formulation were modeled using a 1-D hydrocode with multiphase flow capability using Lagrangian particles. The relative effect of particle impact on the plate compared to the blast wave impulse is determined and modeling is compared to free field pressure results. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This is abstract LLNL-ABS-622152.

  11. 30 CFR 77.1301 - Explosives; magazines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... than 6 feet high. (h) Ammonium nitrate-fuel oil blasting agents shall be physically separated from... explosion hazard. (d) Box-type magazines used to store explosives or detonators in work areas shall be...

  12. Blasting Damage Predictions by Numerical Modeling in Siahbishe Pumped Storage Powerhouse

    NASA Astrophysics Data System (ADS)

    Eslami, Majid; Goshtasbi, Kamran

    2018-04-01

    One of the popular methods of underground and surface excavations is the use of blasting. Throughout this method of excavation, the loading resulted from blasting can be affected by different geo-mechanical and structural parameters of rock mass. Several factors affect turbulence in underground structures some of which are explosion, vibration, and stress impulses caused by the neighbouring blasting products. In investigating the blasting mechanism one should address the processes which expand with time and cause seismic events. To protect the adjoining structures against any probable deconstruction or damage, it is very important to model the blasting process prior to any actual operation. Efforts have been taken in the present study to demonstrate the potentiality of numerical methods in predicting the specified parameters in order to prevent any probable destruction. For this purpose the blasting process was modeled, according to its natural implementation, in one of the tunnels of Siahbishe dam by the 3DEC and AUTODYN 3D codes. 3DEC was used for modeling the blasting environment as well as the blast holes and AUTODYN 3D for modeling the explosion process in the blast hole. In this process the output of AUTODYN 3D, which is a result of modeling the blast hole and is in the form of stress waves, is entered into 3DEC. For analyzing the amount of destruction made by the blasting operation, the key parameter of Peak Particle Velocity was used. In the end, the numerical modeling results have been compared with the data recorded by the seismographs planted through the tunnel. As the results indicated 3DEC and AUTODYN 3D proved appropriate for analyzing such an issue. Therefore, by means of these two softwares one can analyze explosion processes prior to their implementation and make close estimation of the damage resulting from these processes.

  13. Reconstruction of improvised explosive device blast loading to personnel in the open

    NASA Astrophysics Data System (ADS)

    Wiri, Suthee; Needham, Charles

    2016-05-01

    Significant advances in reconstructing attacks by improvised explosive devices (IEDs) and other blast events are reported. A high-fidelity three-dimensional computational fluid dynamics tool, called Second-order Hydrodynamic Automatic Mesh Refinement Code, was used for the analysis. Computer-aided design models for subjects or vehicles in the scene accurately represent geometries of objects in the blast field. A wide range of scenario types and blast exposure levels were reconstructed including free field blast, enclosed space of vehicle cabin, IED attack on a vehicle, buried charges, recoilless rifle operation, rocket-propelled grenade attack and missile attack with single subject or multiple subject exposure to pressure levels from ˜ 27.6 kPa (˜ 4 psi) to greater than 690 kPa (>100 psi). To create a full 3D pressure time-resolved reconstruction of a blast event for injury and blast exposure analysis, a combination of intelligence data and Blast Gauge data can be used to reconstruct an actual in-theatre blast event. The methodology to reconstruct an event and the "lessons learned" from multiple reconstructions in open space are presented. The analysis uses records of blast pressure at discrete points, and the output is a spatial and temporal blast load distribution for all personnel involved.

  14. 49 CFR 173.2 - Hazardous materials classes and index to hazard class definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Explosives (with no significant blast hazard) 173.50 1 1.5 Very insensitive explosives; blasting agents 173.50 1 1.6 Extremely insensitive detonating substances 173.50 2 2.1 Flammable gas 173.115 2 2.2 Non-flammable compressed gas 173.115 2 2.3 Poisonous gas 173.115 3 Flammable and combustible liquid 173.120 4 4...

  15. AFRL Solid Propellant Laboratory Explosive Siting and Renovation Lessons Learned

    DTIC Science & Technology

    2010-07-01

    Area 1-30A explosive facility and provide consultation/support during the review process for each of the site plans. • Applied Engineering Services...provided consultation/support during the siting review process. • Applied Engineering Services (AES) Inc. performed a detailed structural, blast, thermal... Applied Engineering Services (AES) Inc. structural, blast, thermal and fragment hazard analysis to determine the appropriate siting values based on

  16. Brain Vulnerability to Repeated Blast Overpressure and Polytrauma

    DTIC Science & Technology

    2013-11-01

    phosphatase in the etiology of tauopathy and chronic traumatic encephalopathy . National Capital Region Traumatic Brain Injury Research Symposium... encephalopathy after traumatic brain injury. USUHS Research Day held at Bethesda, MD – May 13, 2013 7 CONCLUSION As the result of substantial...and countermeasures to lessen short-term impairments as well as chronic debilitation (e.g. chronic traumatic encephalopathy ). 8 Fig 1. BOP

  17. 30 CFR 57.6312 - Secondary blasting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Transportation-Surface and Underground § 57.6312 Secondary blasting. Secondary blasts fired at the same time in...

  18. 30 CFR 56.6903 - Burning explosive material.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Burning explosive material. 56.6903 Section 56... Requirements § 56.6903 Burning explosive material. If explosive material is suspected of burning at the blast... after the burning or suspected burning has stopped. ...

  19. 30 CFR 56.6903 - Burning explosive material.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Burning explosive material. 56.6903 Section 56... Requirements § 56.6903 Burning explosive material. If explosive material is suspected of burning at the blast... after the burning or suspected burning has stopped. ...

  20. 30 CFR 56.6903 - Burning explosive material.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Burning explosive material. 56.6903 Section 56... Requirements § 56.6903 Burning explosive material. If explosive material is suspected of burning at the blast... after the burning or suspected burning has stopped. ...

  1. 30 CFR 56.6903 - Burning explosive material.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Burning explosive material. 56.6903 Section 56... Requirements § 56.6903 Burning explosive material. If explosive material is suspected of burning at the blast... after the burning or suspected burning has stopped. ...

  2. 30 CFR 56.6903 - Burning explosive material.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Burning explosive material. 56.6903 Section 56... Requirements § 56.6903 Burning explosive material. If explosive material is suspected of burning at the blast... after the burning or suspected burning has stopped. ...

  3. GT0 Explosion Sources for IMS Infrasound Calibration: Charge Design and Yield Estimation from Near-source Observations

    NASA Astrophysics Data System (ADS)

    Gitterman, Y.; Hofstetter, R.

    2014-03-01

    Three large-scale on-surface explosions were conducted by the Geophysical Institute of Israel (GII) at the Sayarim Military Range, Negev desert, Israel: about 82 tons of strong high explosives in August 2009, and two explosions of about 10 and 100 tons of ANFO explosives in January 2011. It was a collaborative effort between Israel, CTBTO, USA and several European countries, with the main goal to provide fully controlled ground truth (GT0) infrasound sources, monitored by extensive observations, for calibration of International Monitoring System (IMS) infrasound stations in Europe, Middle East and Asia. In all shots, the explosives were assembled like a pyramid/hemisphere on dry desert alluvium, with a complicated explosion design, different from the ideal homogenous hemisphere used in similar experiments in the past. Strong boosters and an upward charge detonation scheme were applied to provide more energy radiated to the atmosphere. Under these conditions the evaluation of the actual explosion yield, an important source parameter, is crucial for the GT0 calibration experiment. Audio-visual, air-shock and acoustic records were utilized for interpretation of observed unique blast effects, and for determination of blast wave parameters suited for yield estimation and the associated relationships. High-pressure gauges were deployed at 100-600 m to record air-blast properties, evaluate the efficiency of the charge design and energy generation, and provide a reliable estimation of the charge yield. The yield estimators, based on empirical scaled relations for well-known basic air-blast parameters—the peak pressure, impulse and positive phase duration, as well as on the crater dimensions and seismic magnitudes, were analyzed. A novel empirical scaled relationship for the little-known secondary shock delay was developed, consistent for broad ranges of ANFO charges and distances, which facilitates using this stable and reliable air-blast parameter as a new potential yield estimator. The delay data of the 2009 shot with IMI explosives, characterized by much higher detonation velocity, are clearly separated from ANFO data, thus indicating a dependence on explosive type. This unique dual Sayarim explosion experiment (August 2009/January 2011), with the strongest GT0 sources since the establishment of the IMS network, clearly demonstrated the most favorable westward/eastward infrasound propagation up to 3,400/6,250 km according to appropriate summer/winter weather pattern and stratospheric wind directions, respectively, and thus verified empirically common models of infrasound propagation in the atmosphere.

  4. 30 CFR 57.22605 - Blasting from the surface (V-A mines).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Standards for Methane in Metal and Nonmetal Mines Explosives § 57.22605 Blasting from the surface (V-A mines). (a) All development and production blasting shall be initiated from the surface after all persons are... methane in the mine is less than 1.0 percent, persons may enter the mine, and all places blasted shall be...

  5. 30 CFR 57.22605 - Blasting from the surface (V-A mines).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Standards for Methane in Metal and Nonmetal Mines Explosives § 57.22605 Blasting from the surface (V-A mines). (a) All development and production blasting shall be initiated from the surface after all persons are... methane in the mine is less than 1.0 percent, persons may enter the mine, and all places blasted shall be...

  6. 30 CFR 57.22605 - Blasting from the surface (V-A mines).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Standards for Methane in Metal and Nonmetal Mines Explosives § 57.22605 Blasting from the surface (V-A mines). (a) All development and production blasting shall be initiated from the surface after all persons are... methane in the mine is less than 1.0 percent, persons may enter the mine, and all places blasted shall be...

  7. 30 CFR 57.22605 - Blasting from the surface (V-A mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Standards for Methane in Metal and Nonmetal Mines Explosives § 57.22605 Blasting from the surface (V-A mines). (a) All development and production blasting shall be initiated from the surface after all persons are... methane in the mine is less than 1.0 percent, persons may enter the mine, and all places blasted shall be...

  8. 30 CFR 57.22605 - Blasting from the surface (V-A mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Standards for Methane in Metal and Nonmetal Mines Explosives § 57.22605 Blasting from the surface (V-A mines). (a) All development and production blasting shall be initiated from the surface after all persons are... methane in the mine is less than 1.0 percent, persons may enter the mine, and all places blasted shall be...

  9. Micro-blast waves using detonation transmission tubing

    NASA Astrophysics Data System (ADS)

    Samuelraj, I. Obed; Jagadeesh, G.; Kontis, K.

    2013-07-01

    Micro-blast waves emerging from the open end of a detonation transmission tube were experimentally visualized in this study. A commercially available detonation transmission tube was used (Nonel tube, M/s Dyno Nobel, Sweden), which is a small diameter tube coated with a thin layer of explosive mixture (HMX + traces of Al) on its inner side. The typical explosive loading for this tube is of the order of 18 mg/m of tube length. The blast wave was visualized using a high speed digital camera (frame rate 1 MHz) to acquire time-resolved schlieren images of the resulting flow field. The visualization studies were complemented by computational fluid dynamic simulations. An analysis of the schlieren images showed that although the blast wave appears to be spherical, it propagates faster along the tube axis than along a direction perpendicular to the tube axis. Additionally, CFD analysis revealed the presence of a barrel shock and Mach disc, showing structures that are typical of an underexpanded jet. A theory in use for centered large-scale explosions of intermediate strength (10 < Δ {p}/{p}_0 ≲ 0.02) gave good agreement with the blast trajectory along the tube axis. The energy of these micro-blast waves was found to be 1.25 ± 0.94 J and the average TNT equivalent was found to be 0.3. The repeatability in generating these micro-blast waves using the Nonel tube was very good (± 2 %) and this opens up the possibility of using this device for studying some of the phenomena associated with muzzle blasts in the near future.

  10. DARPA challenge: developing new technologies for brain and spinal injuries

    NASA Astrophysics Data System (ADS)

    Macedonia, Christian; Zamisch, Monica; Judy, Jack; Ling, Geoffrey

    2012-06-01

    The repair of traumatic injuries to the central nervous system remains among the most challenging and exciting frontiers in medicine. In both traumatic brain injury and spinal cord injuries, the ultimate goals are to minimize damage and foster recovery. Numerous DARPA initiatives are in progress to meet these goals. The PREventing Violent Explosive Neurologic Trauma program focuses on the characterization of non-penetrating brain injuries resulting from explosive blast, devising predictive models and test platforms, and creating strategies for mitigation and treatment. To this end, animal models of blast induced brain injury are being established, including swine and non-human primates. Assessment of brain injury in blast injured humans will provide invaluable information on brain injury associated motor and cognitive dysfunctions. The Blast Gauge effort provided a device to measure warfighter's blast exposures which will contribute to diagnosing the level of brain injury. The program Cavitation as a Damage Mechanism for Traumatic Brain Injury from Explosive Blast developed mathematical models that predict stresses, strains, and cavitation induced from blast exposures, and is devising mitigation technologies to eliminate injuries resulting from cavitation. The Revolutionizing Prosthetics program is developing an avant-garde prosthetic arm that responds to direct neural control and provides sensory feedback through electrical stimulation. The Reliable Neural-Interface Technology effort will devise technologies to optimally extract information from the nervous system to control next generation prosthetic devices with high fidelity. The emerging knowledge and technologies arising from these DARPA programs will significantly improve the treatment of brain and spinal cord injured patients.

  11. Model for small arms fire muzzle blast wave propagation in air

    NASA Astrophysics Data System (ADS)

    Aguilar, Juan R.; Desai, Sachi V.

    2011-11-01

    Accurate modeling of small firearms muzzle blast wave propagation in the far field is critical to predict sound pressure levels, impulse durations and rise times, as functions of propagation distance. Such a task being relevant to a number of military applications including the determination of human response to blast noise, gunfire detection and localization, and gun suppressor design. Herein, a time domain model to predict small arms fire muzzle blast wave propagation is introduced. The model implements a Friedlander wave with finite rise time which diverges spherically from the gun muzzle. Additionally, the effects in blast wave form of thermoviscous and molecular relaxational processes, which are associated with atmospheric absorption of sound were also incorporated in the model. Atmospheric absorption of blast waves is implemented using a time domain recursive formula obtained from numerical integration of corresponding differential equations using a Crank-Nicholson finite difference scheme. Theoretical predictions from our model were compared to previously recorded real world data of muzzle blast wave signatures obtained by shooting a set different sniper weapons of varying calibers. Recordings containing gunfire acoustical signatures were taken at distances between 100 and 600 meters from the gun muzzle. Results shows that predicted blast wave slope and exponential decay agrees well with measured data. Analysis also reveals the persistency of an oscillatory phenomenon after blast overpressure in the recorded wave forms.

  12. 30 CFR 57.6100 - Separation of stored explosive material.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... shall not be stored in the same magazine with other explosive material. (b) When stored in the same magazine, blasting agents shall be separated from explosives, safety fuse, and detonating cord to prevent...

  13. 30 CFR 75.1326 - Examination after blasting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....1326 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1326 Examination... and dust. (b) Immediately after the blasting area has cleared, a qualified person or a person working...

  14. Explosive Infrasonic Events: Sensor Comparison Experiment (SCE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schnurr, J. M.; Garces, M.; Rodgers, A. J.

    SCE (sensor comparison experiment) 1 through 4 consists of a series of four controlled above-ground explosions designed to provide new data for overpressure propagation. Infrasound data were collected by LLNL iPhones and other sensors. Origin times, locations HOB, and yields are not being released at this time and are therefore not included in this report. This preliminary report will be updated as access to additional data changes, or instrument responses are determined.

  15. Apollo 13 Case Study

    NASA Technical Reports Server (NTRS)

    Anderson, Brenda Lindley

    2011-01-01

    The dramatic journey of the crippled Apollo 13 vehicle has been heavily documented and popularized. Many people know there was an explosion in the service module which caused the vehicle to lose its oxygen supply. Less well known is the set of circumstances which led to the explosion. This paper examines the manufacturing, processing and testing history of oxygen tank #2, detailing the additive effects which caused the oxygen to ignite and to overpressure the tank.

  16. Can Asteroid Airbursts Cause Dangerous Tsunami?.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boslough, Mark B.

    I have performed a series of high-resolution hydrocode simulations to generate “source functions” for tsunami simulations as part of a proof-of-principle effort to determine whether or not the downward momentum from an asteroid airburst can couple energy into a dangerous tsunami in deep water. My new CTH simulations show enhanced momentum multiplication relative to a nuclear explosion of the same yield. Extensive sensitivity and convergence analyses demonstrate that results are robust and repeatable for simulations with sufficiently high resolution using adaptive mesh refinement. I have provided surface overpressure and wind velocity fields to tsunami modelers to use as time-dependent boundarymore » conditions and to test the hypothesis that this mechanism can enhance the strength of the resulting shallow-water wave. The enhanced momentum result suggests that coupling from an over-water plume-forming airburst could be a more efficient tsunami source mechanism than a collapsing impact cavity or direct air blast alone, but not necessarily due to the originally-proposed mechanism. This result has significant implications for asteroid impact risk assessment and airburst-generated tsunami will be the focus of a NASA-sponsored workshop at the Ames Research Center next summer, with follow-on funding expected.« less

  17. Human Injury Criteria for Underwater Blasts

    PubMed Central

    Lance, Rachel M.; Capehart, Bruce; Kadro, Omar; Bass, Cameron R.

    2015-01-01

    Underwater blasts propagate further and injure more readily than equivalent air blasts. Development of effective personal protection and countermeasures, however, requires knowledge of the currently unknown human tolerance to underwater blast. Current guidelines for prevention of underwater blast injury are not based on any organized injury risk assessment, human data or experimental data. The goal of this study was to derive injury risk assessments for underwater blast using well-characterized human underwater blast exposures in the open literature. The human injury dataset was compiled using 34 case reports on underwater blast exposure to 475 personnel, dating as early as 1916. Using severity ratings, computational reconstructions of the blasts, and survival information from a final set of 262 human exposures, injury risk models were developed for both injury severity and risk of fatality as functions of blast impulse and blast peak overpressure. Based on these human data, we found that the 50% risk of fatality from underwater blast occurred at 302±16 kPa-ms impulse. Conservatively, there is a 20% risk of pulmonary injury at a kilometer from a 20 kg charge. From a clinical point of view, this new injury risk model emphasizes the large distances possible for potential pulmonary and gut injuries in water compared with air. This risk value is the first impulse-based fatality risk calculated from human data. The large-scale inconsistency between the blast exposures in the case reports and the guidelines available in the literature prior to this study further underscored the need for this new guideline derived from the unique dataset of actual injuries in this study. PMID:26606655

  18. Analysis of In-Flight Collision Process During V-Type Firing Pattern in Surface Blasting Using Simple Physics

    NASA Astrophysics Data System (ADS)

    Chouhan, Lalit Singh; Raina, Avtar K.

    2015-10-01

    Blasting is a unit operation in Mine-Mill Fragmentation System (MMFS) and plays a vital role in mining cost. One of the goals of MMFS is to achieve optimum fragment size at minimal cost. Blast fragmentation optimization is known to result in better explosive energy utilization. Fragmentation depends on the rock, explosive and blast design variables. If burden, spacing and type of explosive used in a mine are kept constant, the firing sequence of blast-holes plays a vital role in rock fragmentation. To obtain smaller fragmentation size, mining professionals and relevant publications recommend V- or extended V-pattern of firing sequence. In doing so, it is assumed that the in-flight air collision breaks larger rock fragments into smaller ones, thus aiding further fragmentation. There is very little support to the phenomenon of breakage during in-flight collision of fragments during blasting in published literature. In order to assess the breakage of in-flight fragments due to collision, a mathematical simulation was carried over using basic principles of physics. The calculations revealed that the collision breakage is dependent on velocity of fragments, mass of fragments, the strength of the rock and the area of fragments over which collision takes place. For higher strength rocks, the in-flight collision breakage is very difficult to achieve. This leads to the conclusion that the concept demands an in-depth investigation and validation.

  19. Survey of seismic conditions of drilling and blasting operations near overhead electricity power lines

    NASA Astrophysics Data System (ADS)

    Korshunov, G. I.; Afanasev, P. I.; Bulbasheva, I. A.

    2017-10-01

    The monitoring and survey results of drilling and blasting operations are specified during the development of Afanasyevsky deposit of cement raw materials for a 110 kV electricity power lines structure. Seismic explosion waves and air shock waves were registered in the course of monitoring. The dependency of peak particle velocities on the scaled distance and explosive weight by the delay time was obtained.

  20. 30 CFR 56.6000 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... following definitions apply in this subpart. Blasting agent. Any substance classified as a blasting agent by... by a liquid to form a flammable vapor-air mixture near the surface of the liquid. Igniter cord. A... initiate other explosives or blasting agents. Safety switch. A switch that provides shunt protection in...

  1. 30 CFR 56.6000 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... following definitions apply in this subpart. Blasting agent. Any substance classified as a blasting agent by... by a liquid to form a flammable vapor-air mixture near the surface of the liquid. Igniter cord. A... initiate other explosives or blasting agents. Safety switch. A switch that provides shunt protection in...

  2. 30 CFR 56.6000 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... following definitions apply in this subpart. Blasting agent. Any substance classified as a blasting agent by... by a liquid to form a flammable vapor-air mixture near the surface of the liquid. Igniter cord. A... initiate other explosives or blasting agents. Safety switch. A switch that provides shunt protection in...

  3. 30 CFR 56.6312 - Secondary blasting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Use § 56.6312 Secondary blasting. Secondary blasts fired at the same time in the same work area shall be initiated from...

  4. Visualization of explosion phenomena using a high-speed video camera with an uncoupled objective lens by fiber-optic

    NASA Astrophysics Data System (ADS)

    Tokuoka, Nobuyuki; Miyoshi, Hitoshi; Kusano, Hideaki; Hata, Hidehiro; Hiroe, Tetsuyuki; Fujiwara, Kazuhito; Yasushi, Kondo

    2008-11-01

    Visualization of explosion phenomena is very important and essential to evaluate the performance of explosive effects. The phenomena, however, generate blast waves and fragments from cases. We must protect our visualizing equipment from any form of impact. In the tests described here, the front lens was separated from the camera head by means of a fiber-optic cable in order to be able to use the camera, a Shimadzu Hypervision HPV-1, for tests in severe blast environment, including the filming of explosions. It was possible to obtain clear images of the explosion that were not inferior to the images taken by the camera with the lens directly coupled to the camera head. It could be confirmed that this system is very useful for the visualization of dangerous events, e.g., at an explosion site, and for visualizations at angles that would be unachievable under normal circumstances.

  5. Full-scale testing of leakage of blast waves inside a partially vented room exposed to external air blast loading

    NASA Astrophysics Data System (ADS)

    Codina, R.; Ambrosini, D.

    2018-03-01

    For the last few decades, the effects of blast loading on structures have been studied by many researchers around the world. Explosions can be caused by events such as industrial accidents, military conflicts or terrorist attacks. Urban centers have been prone to various threats including car bombs, suicide attacks, and improvised explosive devices. Partially vented constructions subjected to external blast loading represent an important topic in protective engineering. The assessment of blast survivability inside structures and the development of design provisions with respect to internal elements require the study of the propagation and leakage of blast waves inside buildings. In this paper, full-scale tests are performed to study the effects of the leakage of blast waves inside a partially vented room that is subjected to different external blast loadings. The results obtained may be useful for proving the validity of different methods of calculation, both empirical and numerical. Moreover, the experimental results are compared with those computed using the empirical curves of the US Defense report/manual UFC 3-340. Finally, results of the dynamic response of the front masonry wall are presented in terms of accelerations and an iso-damage diagram.

  6. Wound ballistics and blast injuries.

    PubMed

    Prat, N J; Daban, J-L; Voiglio, E J; Rongieras, F

    2017-12-01

    Wounds due to gunshot and explosions, while usually observed during battlefield combat, are no longer an exceptional occurrence in civilian practice in France. The principles of wound ballistics are based on the interaction between the projectile and the human body as well as the transfer of energy from the projectile to tissues. The treatment of ballistic wounds relies on several principles: extremity wound debridement and absence of initial closure, complementary medical treatment, routine immobilization, revision surgery and secondary closure. Victims of explosions usually present with a complex clinical picture since injuries are directly or indirectly related to the shock wave (blast) originating from the explosion. These injuries depend on the type of explosive device, the environment and the situation of the victim at the time of the explosion, and are classed as primary, secondary, tertiary or quaternary. Secondary injuries due to flying debris and bomb fragments are generally the predominant presenting symptoms while isolated primary injuries (blast) are rare. The resulting complexity of the clinical picture explains why triage of these victims is particularly difficult. Certain myths, such as inevitable necrosis of the soft tissues that are displaced by the formation of the temporary cavitation by the projectile, or sterilization of the wounds by heat generated by the projectile should be forgotten. Ballistic-protective body armor and helmets are not infallible, even when they are not perforated, and can even be at the origin of injuries, either due to missile impact, or to the blast. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Retinal ganglion cell damage in an experimental rodent model of blast-mediated traumatic brain injury.

    PubMed

    Mohan, Kabhilan; Kecova, Helga; Hernandez-Merino, Elena; Kardon, Randy H; Harper, Matthew M

    2013-05-15

    To evaluate retina and optic nerve damage following experimental blast injury. Healthy adult mice were exposed to an overpressure blast wave using a custom-built blast chamber. The effects of blast exposure on retina and optic nerve function and structure were evaluated using the pattern electroretinogram (pERG), spectral domain optical coherence tomography (OCT), and the chromatic pupil light reflex. Assessment of the pupil response to light demonstrated decreased maximum pupil constriction diameter in blast-injured mice using red light or blue light stimuli 24 hours after injury compared with baseline in the eye exposed to direct blast injury. A decrease in the pupil light reflex was not observed chronically following blast exposure. We observed a biphasic pERG decrease with the acute injury recovering by 24 hours postblast and the chronic injury appearing at 4 months postblast injury. Furthermore, at 3 months following injury, a significant decrease in the retinal nerve fiber layer was observed using OCT compared with controls. Histologic analysis of the retina and optic nerve revealed punctate regions of reduced cellularity in the ganglion cell layer and damage to optic nerves. Additionally, a significant upregulation of proteins associated with oxidative stress was observed acutely following blast exposure compared with control mice. Our study demonstrates that decrements in retinal ganglion cell responses can be detected after blast injury using noninvasive functional and structural tests. These objective responses may serve as surrogate tests for higher CNS functions following traumatic brain injury that are difficult to quantify.

  8. Evaluation of Novel Polyunsaturated Fatty Acid Derived Lipid Mediators of Inflammation to Ameliorate the Deleterious Effects of Blast Overpressure on Eye and Brain Visual Processing Centers in Rats

    DTIC Science & Technology

    2013-10-01

    Evaluation of Novel Polyunsaturated Fatty Acid Derived Lipid Mediators 5a. CONTRACT NUMBER of Inflammation to Ameliorate the Deleterious Effects...studies have not been carried out as yet. Our hypothesis is that novel polyunsaturated fatty acid derived lipid mediators of inflammation, i.e., lipoxins

  9. Brain Vulnerability to Repeated Blast Overpressure and Polytrauma

    DTIC Science & Technology

    2014-11-01

    define underlying neurobiological mechanisms and rationally establish effective guidelines (e.g. return-to-duty) and 8 countermeasures to lessen...show a positive correlation with the accumulation of APP in different brain regions suggesting a distinct pathological mechanism leading to Alzheimer’s...date, the etiologies of these injuries are largely undefined. A high fidelity animal model is critical to define the mechanism (s) of injury and develop

  10. 30 CFR 75.1312 - Explosives and detonators in underground magazines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... magazines. 75.1312 Section 75.1312 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... Blasting § 75.1312 Explosives and detonators in underground magazines. (a) The quantity of explosives kept..., explosives and detonators taken underground shall be kept in— (1) Separate, closed magazines at least 5 feet...

  11. 30 CFR 57.6903 - Burning explosive material.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Burning explosive material. 57.6903 Section 57... General Requirements-Surface and Underground § 57.6903 Burning explosive material. If explosive material is suspected of burning at the blast site, persons shall be evacuated from the endangered area and...

  12. 30 CFR 57.6903 - Burning explosive material.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Burning explosive material. 57.6903 Section 57... General Requirements-Surface and Underground § 57.6903 Burning explosive material. If explosive material is suspected of burning at the blast site, persons shall be evacuated from the endangered area and...

  13. 30 CFR 57.6903 - Burning explosive material.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Burning explosive material. 57.6903 Section 57... General Requirements-Surface and Underground § 57.6903 Burning explosive material. If explosive material is suspected of burning at the blast site, persons shall be evacuated from the endangered area and...

  14. 30 CFR 57.6903 - Burning explosive material.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Burning explosive material. 57.6903 Section 57... General Requirements-Surface and Underground § 57.6903 Burning explosive material. If explosive material is suspected of burning at the blast site, persons shall be evacuated from the endangered area and...

  15. 30 CFR 57.6903 - Burning explosive material.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Burning explosive material. 57.6903 Section 57... General Requirements-Surface and Underground § 57.6903 Burning explosive material. If explosive material is suspected of burning at the blast site, persons shall be evacuated from the endangered area and...

  16. Rays as weapons.

    PubMed

    Vogel, H

    2007-08-01

    Ionizing radiation is being regarded as life threatening. Therefore, accidents in nuclear power plants are considered equal threatening as nuclear bomb explosions, and attacks with dirty bombs are thought as dangerous as nuclear weapon explosions. However, there are differences between a nuclear bomb explosion, the largest imaginable accident in a nuclear power plant, and an attack with a dirty bomb. It is intended to point them out. The processes are described, which damage in a nuclear bomb explosion, in the largest imaginable accident in a nuclear power plant, and in an attack with a dirty bomb. Their effects are compared with each other, i.e. explosion, heat, shock wave (blast), ionizing radiation, and fallout. In the center of the explosion of a nuclear bomb, the temperature rises to 100Mio degrees C, this induces damaging heat radiation and shock wave. In the largest imaginable accident in a nuclear power plant and in the conventional explosion of a dirty bomb, the temperature may rise up to 3000 degrees C, heat radiation and blast are limited to a short distance. In nuclear power plants, explosions due to oxyhydrogen gas or steam may occur. In nuclear explosions the dispersed radioactive material (fall out) consists mainly of isotopes with short half-life, in nuclear power plants and in dirty bomb attacks with longer half-life. The amount of fall out is comparable in nuclear bomb explosions with that in the largest imaginable accident in a nuclear power plant, it is smaller in attacks with dirty bombs. An explosion in a nuclear power plant even in the largest imaginable accident is not a nuclear explosion. In Hiroshima and Nagasaki, there were 200,000 victims nearly all by heat and blast, some 300 died by ionizing radiation. In Chernobyl, there have been less than 100 victims due to ionizing radiation up till now. A dirty bomb kills possibly with the explosion of conventional explosive, the dispersed radioactive material may damage individuals. The incorporation of irradiating substances may kill and be difficult to detect (Litvinenko). A new form of (government supported) terrorism/crime appears possible. The differences are important between a nuclear weapon explosion, the largest imaginable accident in a nuclear power plant, and an attack with a dirty bomb. Nuclear weapons kill by heat and blast; in the largest imaginable accident in a nuclear power plant, they are less strong and limited to the plant; an attack with a dirty bomb is as life threatening as an ("ordinary") bomb attack, dispersed radiating material may be a risk for individuals.

  17. Effect of casing yield stress on bomb blast impulse

    NASA Astrophysics Data System (ADS)

    Hutchinson, M. D.

    2012-08-01

    An equation to predict blast effects from cased charges was first proposed by U. Fano in 1944 and revised by E.M. Fisher in 1953 [1]. Fisher's revision provides much better matches to available blast impulse data, but still requires empirical parameter adjustments. A new derivation [2], based on the work of R.W. Gurney [3] and G.I. Taylor [4], has resulted in an equation which nearly matches experimental data. This new analytical model is also capable of being extended, through the incorporation of additional physics, such as the effects of early case fracture, finite casing thickness, casing metal strain energy dissipation, explosive gas escape through casing fractures and the comparative dynamics of blast wave and metal fragment impacts. This paper will focus on the choice of relevant case fracture strain criterion, as it will be shown that this allows the explicit inclusion of the dynamic properties of the explosive and casing metal. It will include a review and critique of the most significant earlier work on this topic, contained in a paper by Hoggatt and Recht [5]. Using this extended analytical model, good matches can readily be made to available free-field blast impulse data, without any empirical adjustments being needed. Further work will be required to apply this model to aluminised and other highly oxygen-deficient explosives.

  18. The influence of para-seismic vibrations, induced by blasting works, on structures: a Case Study

    NASA Astrophysics Data System (ADS)

    Andrusikiewicz, Wacław

    2018-04-01

    Underground mining operations are often associated with the necessity to use explosives. Several hundreds of kilograms of explosives, subdivided into small charges suitable for a specific mining job, are used each time in a blasting operation. In many cases, mining engineers carry out remote central blasting works, which means that all the charges placed at faces are initiated from one control point (usually, a control room in the mine) at the same time. Such coordinated explosions generate para-seismic movements whose consequences can be felt on land surface, with subsequent effects identified in buildings and structures. This paper discusses briefly selected standards applicable to the harmful para-seismic impacts. The author presents the results of the research conducted with the intention to identify harmful effects of the basting works carried out in the "Kłodawa" Salt Mine.

  19. Effect of type of explosives and physical-mechanical properties of explosive rock on formation of toxic gases in atmosphere of shafts

    NASA Technical Reports Server (NTRS)

    Mindeli, E. O.; Khudyakov, M. Y.

    1981-01-01

    The quality of toxic gases formed during explosive work in underground shafts depends upon the type of explosives and the conditions of explosion. Several types of explosives and rocks were examined. All remaining conditions were maintained the same (sandy-argillaceous stemming, electrical method of explosions, diameter of blast holes, and the direct triggering of charges).

  20. The development of shock wave overpressure driven by channel expansion of high current impulse discharge arc

    NASA Astrophysics Data System (ADS)

    Xiong, Jia-ming; Li, Lee; Dai, Hong-yu; Wu, Hai-bo; Peng, Ming-yang; Lin, Fu-chang

    2018-03-01

    During the formation of a high current impulse discharge arc, objects near the discharge arc will be strongly impacted. In this paper, a high power, high current gas switch is used as the site of the impulse discharge arc. The explosion wave theory and the arc channel energy balance equation are introduced to analyze the development of the shock wave overpressure driven by the high current impulse discharge arc, and the demarcation point of the arc channel is given, from which the energy of the arc channel is no longer converted into shock waves. Through the analysis and calculation, it is found that the magnitude of the shock wave overpressure caused by impulse discharge arc expansion is closely related to the arc current rising rate. The arc shock wave overpressure will undergo a slow decay process and then decay rapidly. The study of this paper will perform the function of deepening the understanding of the physical nature of the impulse arc discharge, which can be used to explain the damage effect of the high current impulse discharge arc.

  1. Anatomical manifestations of primary blast ocular trauma observed in a postmortem porcine model.

    PubMed

    Sherwood, Daniel; Sponsel, William E; Lund, Brian J; Gray, Walt; Watson, Richard; Groth, Sylvia L; Thoe, Kimberly; Glickman, Randolph D; Reilly, Matthew A

    2014-02-24

    We qualitatively describe the anatomic features of primary blast ocular injury observed using a postmortem porcine eye model. Porcine eyes were exposed to various levels of blast energy to determine the optimal conditions for future testing. We studied 53 enucleated porcine eyes: 13 controls and 40 exposed to a range of primary blast energy levels. Eyes were preassessed with B-scan and ultrasound biomicroscopy (UBM) ultrasonography, photographed, mounted in gelatin within acrylic orbits, and monitored with high-speed videography during blast-tube impulse exposure. Postimpact photography, ultrasonography, and histopathology were performed, and ocular damage was assessed. Evidence for primary blast injury was obtained. While some of the same damage was observed in the control eyes, the incidence and severity of this damage in exposed eyes increased with impulse and peak pressure, suggesting that primary blast exacerbated these injuries. Common findings included angle recession, internal scleral delamination, cyclodialysis, peripheral chorioretinal detachments, and radial peripapillary retinal detachments. No full-thickness openings of the eyewall were observed in any of the eyes tested. Scleral damage demonstrated the strongest associative tendency for increasing likelihood of injury with increased overpressure. These data provide evidence that primary blast alone (in the absence of particle impact) can produce clinically relevant ocular damage in a postmortem model. The blast parameters derived from this study are being used currently in an in vivo model. We also propose a new Cumulative Injury Score indicating the clinical relevance of observed injuries.

  2. 30 CFR 57.22604 - Blasting from the surface (II-B mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MINES Safety Standards for Methane in Metal and Nonmetal Mines Explosives § 57.22604 Blasting from the surface (II-B mines). All development, production, and bench rounds shall be initiated from the surface... methane tests shall not enter the mine until all blast areas have been tested for methane. ...

  3. 30 CFR 57.22604 - Blasting from the surface (II-B mines).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... MINES Safety Standards for Methane in Metal and Nonmetal Mines Explosives § 57.22604 Blasting from the surface (II-B mines). All development, production, and bench rounds shall be initiated from the surface... methane tests shall not enter the mine until all blast areas have been tested for methane. ...

  4. 30 CFR 57.22604 - Blasting from the surface (II-B mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... MINES Safety Standards for Methane in Metal and Nonmetal Mines Explosives § 57.22604 Blasting from the surface (II-B mines). All development, production, and bench rounds shall be initiated from the surface... methane tests shall not enter the mine until all blast areas have been tested for methane. ...

  5. 30 CFR 57.22604 - Blasting from the surface (II-B mines).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... MINES Safety Standards for Methane in Metal and Nonmetal Mines Explosives § 57.22604 Blasting from the surface (II-B mines). All development, production, and bench rounds shall be initiated from the surface... methane tests shall not enter the mine until all blast areas have been tested for methane. ...

  6. 30 CFR 57.22604 - Blasting from the surface (II-B mines).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... MINES Safety Standards for Methane in Metal and Nonmetal Mines Explosives § 57.22604 Blasting from the surface (II-B mines). All development, production, and bench rounds shall be initiated from the surface... methane tests shall not enter the mine until all blast areas have been tested for methane. ...

  7. 77 FR 9703 - Blasting and the Use of Explosives; Extension of the Office of Management and Budget's (OMB...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-17

    ... Burden Hours: 1,294. Estimated Cost (Operation and Maintenance): $400,000. IV. Public Participation..., reporting burden (time and costs) is minimal, collection instruments are clearly understood, and OSHA's... blasting operations to prevent the accidental discharge of electric blasting caps caused by current induced...

  8. 30 CFR 75.1313 - Explosives and detonators outside of magazines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Explosives and detonators outside of magazines... § 75.1313 Explosives and detonators outside of magazines. (a) The quantity of explosives outside a magazine for use in a working section or other area where blasting is to be performed shall— (1) Not exceed...

  9. Deaths Due to Accidental Air Conditioner Compressor Explosion: A Case Series.

    PubMed

    Behera, Chittaranjan; Bodwal, Jatin; Sikary, Asit K; Chauhan, Mohit Singh; Bijarnia, Manjul

    2017-01-01

    In an air-conditioning system, the compressor is a large electric pump that pressurizes the refrigerant gas as part of the process of turning it back into a liquid. The explosion of an air conditioner (AC) compressor is an uncommon event, and immediate death resulted from the blast effect is not reported in forensic literature. We report three such cases in which young AC mechanics were killed on the spot due to compressor blast, while repairing the domestic split AC unit. The autopsy findings, the circumstances leading to the explosion of the compressor, are discussed in this study. © 2016 American Academy of Forensic Sciences.

  10. Self-inflicted explosive death by intra-oral detonation of a firecracker: a case report.

    PubMed

    Makhoba, Musa Aubrey; du Toit-Prinsloo, Lorraine

    2017-12-01

    Self-inflicted explosive deaths due to detonation of fireworks are rare. In this case report, a peculiar case of an elderly male who discharged a firecracker inside his mouth, resulting in fatal blast induced craniofacial injuries, is described. There is paucity of published data describing fireworks-related suicidal and/or non-suicidal deaths. Even scantier data is present specifically describing fireworks-related blast induced neurotrauma and the mechanism(s) of injury involved in such cases. This case report emphasizes the severe damage that a commercially available explosive, the so-called "Gorilla Bomb", can cause, and raises questions about the relative ease of its acquisition.

  11. The Nuclear Barcode: a New Taggant for Identifying Explosives

    NASA Astrophysics Data System (ADS)

    Seman, James; Johnson, Catherine; Castaño, Carlos

    2017-06-01

    Creating an effective taggant system for explosives is a challenging problem since the taggant used must be designed to endure the detonation process. A new taggant for use in explosives has been recently developed and named the `nuclear barcode'. The nuclear barcode tags explosives by adding low concentrations of eight different elements to the explosive, and then reads the tag from the post-blast residue using neutron activation analysis (NAA) to identify the elements and their concentrations. The nuclear barcode can be used to identify explosives after detonation by sampling the post-blast residue that is deposited due to incomplete reaction of the explosives. This method of tagging explosives creates an identifying taggant that survives detonation as NAA detects atomic nuclei as opposed to using any chemical or physical properties of the taggant that don't always survive the detonation process. Additional advantages this taggant method offers is ease of recovery of the taggant after detonation, and a total of 25.6 billion possible taggants as currently conceived, which enables the nuclear barcode to be used to tag individual batches of explosives. This paper describes the development of the nuclear barcode taggant system and its potential use in the explosives industry.

  12. Characterizing the energy output generated by a standard electric detonator using shadowgraph imaging

    NASA Astrophysics Data System (ADS)

    Petr, V.; Lozano, E.

    2017-09-01

    This paper overviews a complete method for the characterization of the explosive energy output from a standard detonator. Measurements of the output of explosives are commonly based upon the detonation parameters of the chemical energy content of the explosive. These quantities provide a correct understanding of the energy stored in an explosive, but they do not provide a direct measure of the different modes in which the energy is released. This optically based technique combines high-speed and ultra-high-speed imaging to characterize the casing fragmentation and the detonator-driven shock load. The procedure presented here could be used as an alternative to current indirect methods—such as the Trauzl lead block test—because of its simplicity, high data accuracy, and minimum demand for test repetition. This technique was applied to experimentally measure air shock expansion versus time and calculating the blast wave energy from the detonation of the high explosive charge inside the detonator. Direct measurements of the shock front geometry provide insight into the physics of the initiation buildup. Because of their geometry, standard detonators show an initial ellipsoidal shock expansion that degenerates into a final spherical wave. This non-uniform shape creates variable blast parameters along the primary blast wave. Additionally, optical measurements are validated using piezoelectric pressure transducers. The energy fraction spent in the acceleration of the metal shell is experimentally measured and correlated with the Gurney model, as well as to several empirical formulations for blasts from fragmenting munitions. The fragment area distribution is also studied using digital particle imaging analysis and correlated with the Mott distribution. Understanding the fragmentation distribution plays a critical role when performing hazard evaluation from these types of devices. In general, this technique allows for characterization of the detonator within 6-8% error with no knowledge of the amount or type of explosive contained within the shell, making it also suitable for the study of unknown improvised explosive devices.

  13. Monte Carlo simulation as a tool to predict blasting fragmentation based on the Kuz Ram model

    NASA Astrophysics Data System (ADS)

    Morin, Mario A.; Ficarazzo, Francesco

    2006-04-01

    Rock fragmentation is considered the most important aspect of production blasting because of its direct effects on the costs of drilling and blasting and on the economics of the subsequent operations of loading, hauling and crushing. Over the past three decades, significant progress has been made in the development of new technologies for blasting applications. These technologies include increasingly sophisticated computer models for blast design and blast performance prediction. Rock fragmentation depends on many variables such as rock mass properties, site geology, in situ fracturing and blasting parameters and as such has no complete theoretical solution for its prediction. However, empirical models for the estimation of size distribution of rock fragments have been developed. In this study, a blast fragmentation Monte Carlo-based simulator, based on the Kuz-Ram fragmentation model, has been developed to predict the entire fragmentation size distribution, taking into account intact and joints rock properties, the type and properties of explosives and the drilling pattern. Results produced by this simulator were quite favorable when compared with real fragmentation data obtained from a blast quarry. It is anticipated that the use of Monte Carlo simulation will increase our understanding of the effects of rock mass and explosive properties on the rock fragmentation by blasting, as well as increase our confidence in these empirical models. This understanding will translate into improvements in blasting operations, its corresponding costs and the overall economics of open pit mines and rock quarries.

  14. Brain Vulnerability to Repeated Blast Overpressure and Polytrauma

    DTIC Science & Technology

    2010-05-28

    devoid of any obvious cell loss or injury when assessed using either Nissl or Fluoro Jade stains , they consistently showed widespread fiber degeneration...injured brain after thionine (l) or silver (r) staining . experimental parameters (e.g. driver volume, tube position, Mylar membrane thickness, and type...5. Thionine- (top) and silver- (bottom) stained brain sections following exposure to 126 kPa airblast at the mouth of the tube. From Long et al

  15. A Case Study of the Failure on Apollo 13: Based on TMX-65270, Report of Apollo 13 Review Board

    NASA Technical Reports Server (NTRS)

    Anderson, Brenda Lindley

    2011-01-01

    The dramatic journey of the crippled Apollo 13 vehicle has been heavily documented and popularized. Many people know there was an explosion in the service module which caused the vehicle to lose its oxygen supply. Less well known is the set of circumstances which led to the explosion. This paper examines the manufacturing, processing and testing history of oxygen tank #2, detailing the additive effects which caused the oxygen to ignite and to overpressure the tank.

  16. Simultaneous pyroclastic and effusive venting at rhyolite volcanoes: the cases of Puyehue-Cordón Caulle and Chaitén

    NASA Astrophysics Data System (ADS)

    Castro, J. M.; Schipper, C. I.; Tuffen, H.

    2012-04-01

    The recent silicic eruptions at volcán Chaiten and Puyehue-Cordón Caulle (PCC) demonstrate that ash and pyroclast production characterizes not only the vigorous initial stages of these eruptions, but can continue on for months, even during the effusive phases of activity. As we observed at PCC in January, 2012 and at Chaitén in 2008-2009, pyroclastic venting taking the form of ash jetting and punctuated Vulcanian blasts (Schipper et al. this session) occurs simultaneously with lava effusion (Tuffen et al., this session) and does so from what appears to be a common vent. This close spatial and temporal correlation implies a genetic and/or causal relation between two very different eruption styles. In this paper, we explore the chemical and physical signatures of this pyroclastic-effusive bridge, and discuss mechanisms by which silicic magma degasses to produce simultaneous, but apparently disparate eruption styles. Geochemical and textural analyses are underway on a range of eruption products from PCC and Chaitén, including early air-fall pyroclastic obsidian and pumice lapilli, ballistic bombs collected within 2 km of the vents, and glassy lavas. Ballistic bombs display a variety of textures ranging from homogeneous glassy obsidian through breadcrusted and highly brecciated bombs with re-annealing textures (e.g., collapsed foams and rewelded obsidian fragments). Bombs from Chaitén contain abundant tuffisites, comprising planar to anastomising veins filled with variably welded juvenile ash. At Chaiten, ballistic bomb water contents (~0.3-1.2 wt.% H2O) and H2O/OH speciation suggest that bombs are shallowly sourced (<<1 km) in the conduit and experienced similar pre-ejection cooling paths to magma that would become obsidian lava. These preliminary observations suggest that bombs are aliquots of magma attempting to become obsidian lava but this development was arrested by the build up of overpressure in the conduit followed by explosive evacuation. The build up of pressure depends on the permeability of the ascending magma, which is likely a function of the density of fractures and vesicularity of magma bodies. Thus factors that affect permeable flow through fractures and interconnected bubble pathways, such as magma deformation, ascent rate and rheology (relating to degassing path and cooling), likely control the cycling of explosive episodes during effusive activity. We are currently exploring how rheological and dynamical parameters inferred from samples can be related back to eruption observations at PCC, including the frequency of explosions and effusion and degassing rates, in order to evaluate the role of pyroclastic venting on the production of dense degassed rhyolite magma (lava). That explosive activity has persisted at PCC for several months suggests that a balance is maintained between the overpressure driving magma supply and the cycles of mechanical failure that typify pyroclastic and effusive activity at the PCC vent.

  17. Characteristics of laser-induced shock wave injury to the inner ear of rats

    NASA Astrophysics Data System (ADS)

    Kurioka, Takaomi; Matsunobu, Takeshi; Niwa, Katsuki; Tamura, Atsushi; Kawauchi, Satoko; Satoh, Yasushi; Sato, Shunichi; Shiotani, Akihiro

    2014-12-01

    Recently, the number of blast injuries of the inner ear has increased in the general population. In blast-induced inner ear injury, a shock wave (SW) component in the blast wave is considered to play an important role in sensorineural hearing loss. However, the mechanisms by which an SW affects inner ear tissue remain largely unknown. We aimed to establish a new animal model for SW-induced inner ear injury by using laser-induced SWs (LISWs) on rats. The LISWs were generated by irradiating an elastic laser target with 694-nm nanosecond pulses of a ruby laser. After LISW application to the cochlea through bone conduction, auditory measurements revealed the presence of inner ear dysfunction, the extent of which depended on LISW overpressure. A significantly lower survival rate of hair cells and spiral ganglion neurons, as well as severe oxidative damage, were observed in the inner ear exposed to an LISW. Although considerable differences in the pressure characteristics exist between LISWs and SWs in real blast waves, the functional and morphological changes shown by the present LISW-based model were similar to those observed in real blast-induced injury. Thus, our animal model is expected to be useful for laboratory-based research of blast-induced inner ear injury.

  18. Evaluation of human response to blasting vibration from excavation of a large scale rock slope: A case study

    NASA Astrophysics Data System (ADS)

    Yan, Peng; Lu, Wenbo; Zhang, Jing; Zou, Yujun; Chen, Ming

    2017-04-01

    Ground vibration, as the most critical public hazard of blasting, has received much attention from the community. Many countries established national standards to suppress vibration impact on structures, but a world-accepted blasting vibration criterion on human safety is still missing. In order to evaluate human response to the vibration from blasting excavation of a large-scale rock slope in China, this study aims to suggest a revised criterion. The vibration frequency was introduced to improve the existing single-factor (peak particle velocity) standard recommended by the United States Bureau of Mines (USBM). The feasibility of the new criterion was checked based on field vibration monitoring and investigation of human reactions. Moreover, the air overpressure or blast effects on human beings have also been discussed. The result indicates that the entire zone of influence can be divided into three subzones: severe-annoyance, light-annoyance and perception zone according to the revised safety standard. Both the construction company and local residents have provided positive comments on this influence degree assessment, which indicates that the presented criterion is suitable for evaluating human response to nearby blasts. Nevertheless, this specific criterion needs more field tests and verifications before it can be

  19. Characteristics of laser-induced shock wave injury to the inner ear of rats.

    PubMed

    Kurioka, Takaomi; Matsunobu, Takeshi; Niwa, Katsuki; Tamura, Atsushi; Kawauchi, Satoko; Satoh, Yasushi; Sato, Shunichi; Shiotani, Akihiro

    2014-12-01

    Recently, the number of blast injuries of the inner ear has increased in the general population. In blast-induced inner ear injury, a shock wave (SW) component in the blast wave is considered to play an important role in sensorineural hearing loss. However, the mechanisms by which an SW affects inner ear tissue remain largely unknown. We aimed to establish a new animal model for SW-induced inner ear injury by using laser-induced SWs (LISWs) on rats. The LISWs were generated by irradiating an elastic laser target with 694-nm nanosecond pulses of a ruby laser. After LISW application to the cochlea through bone conduction, auditory measurements revealed the presence of inner ear dysfunction, the extent of which depended on LISW overpressure. A significantly lower survival rate of hair cells and spiral ganglion neurons, as well as severe oxidative damage, were observed in the inner ear exposed to an LISW. Although considerable differences in the pressure characteristics exist between LISWs and SWs in real blast waves, the functional and morphological changes shown by the present LISW-based model were similar to those observed in real blast-induced injury. Thus, our animal model is expected to be useful for laboratory-based research of blast-induced inner ear injury.

  20. 29 CFR 1926.903 - Underground transportation of explosives.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Trucks used for the transportation of explosives underground shall have the electrical system checked weekly to detect any failures which may constitute an electrical hazard. A certification record which... powered by the truck's electrical system, shall be prohibited. (g) Explosives and blasting agents shall be...

  1. 29 CFR 1926.903 - Underground transportation of explosives.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Trucks used for the transportation of explosives underground shall have the electrical system checked weekly to detect any failures which may constitute an electrical hazard. A certification record which... powered by the truck's electrical system, shall be prohibited. (g) Explosives and blasting agents shall be...

  2. 29 CFR 1926.903 - Underground transportation of explosives.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Trucks used for the transportation of explosives underground shall have the electrical system checked weekly to detect any failures which may constitute an electrical hazard. A certification record which... powered by the truck's electrical system, shall be prohibited. (g) Explosives and blasting agents shall be...

  3. 29 CFR 1926.903 - Underground transportation of explosives.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Trucks used for the transportation of explosives underground shall have the electrical system checked weekly to detect any failures which may constitute an electrical hazard. A certification record which... powered by the truck's electrical system, shall be prohibited. (g) Explosives and blasting agents shall be...

  4. 29 CFR 1926.903 - Underground transportation of explosives.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Trucks used for the transportation of explosives underground shall have the electrical system checked weekly to detect any failures which may constitute an electrical hazard. A certification record which... powered by the truck's electrical system, shall be prohibited. (g) Explosives and blasting agents shall be...

  5. Fake ballistics and real explosions: field-scale experiments on the ejection and emplacement of volcanic bombs during vent-clearing explosive activity

    NASA Astrophysics Data System (ADS)

    Taddeucci, J.; Valentine, G.; Gaudin, D.; Graettinger, A. H.; Lube, G.; Kueppers, U.; Sonder, I.; White, J. D.; Ross, P.; Bowman, D. C.

    2013-12-01

    Ballistics - bomb-sized pyroclasts that travel from volcanic source to final emplacement position along ballistic trajectories - represent a prime source of volcanic hazard, but their emplacement range, size, and density is useful to inverse model key eruption parameters related to their initial ejection velocity. Models and theory, however, have so far focused on the trajectory of ballistics after leaving the vent, neglecting the complex dynamics of their initial acceleration phase in the vent/conduit. Here, we use field-scale buried explosion experiments to study the ground-to-ground ballistic emplacement of particles through their entire acceleration-deceleration cycle. Twelve blasts were performed at the University at Buffalo Large Scale Experimental Facility with a range of scaled depths (burial depth divided by the cubic root of the energy of the explosive charge) and crater configurations. In all runs, ballistic analogs were placed on the ground surface at variable distance from the vertical projection of the buried charge, resulting in variable ejection angle. The chosen analogs are tennis and ping-pong balls filled with different materials, covering a limited range of sizes and densities. The analogs are tracked in multiple high-speed and high-definition videos, while Particle Image Velocimetry is used to detail ground motion in response to the buried blasts. In addition, after each blast the emplacement position of all analog ballistics was mapped with respect to the blast location. Preliminary results show the acceleration history of ballistics to be quite variable, from very short and relatively simple acceleration coupled with ground motion, to more complex, multi-stage accelerations possibly affected not only by the initial ground motion but also by variable coupling with the gas-particle mixture generated by the blasts. Further analysis of the experimental results is expected to provide new interpretative tools for ballistic deposits and better hazard assessment, with particular emphasis for the case of vent-opening eruptions driven by explosive gas expansion beneath loose debris.

  6. Retinal Ganglion Cell Damage in an Experimental Rodent Model of Blast-Mediated Traumatic Brain Injury

    PubMed Central

    Mohan, Kabhilan; Kecova, Helga; Hernandez-Merino, Elena; Kardon, Randy H.; Harper, Matthew M.

    2013-01-01

    Purpose. To evaluate retina and optic nerve damage following experimental blast injury. Methods. Healthy adult mice were exposed to an overpressure blast wave using a custom-built blast chamber. The effects of blast exposure on retina and optic nerve function and structure were evaluated using the pattern electroretinogram (pERG), spectral domain optical coherence tomography (OCT), and the chromatic pupil light reflex. Results. Assessment of the pupil response to light demonstrated decreased maximum pupil constriction diameter in blast-injured mice using red light or blue light stimuli 24 hours after injury compared with baseline in the eye exposed to direct blast injury. A decrease in the pupil light reflex was not observed chronically following blast exposure. We observed a biphasic pERG decrease with the acute injury recovering by 24 hours postblast and the chronic injury appearing at 4 months postblast injury. Furthermore, at 3 months following injury, a significant decrease in the retinal nerve fiber layer was observed using OCT compared with controls. Histologic analysis of the retina and optic nerve revealed punctate regions of reduced cellularity in the ganglion cell layer and damage to optic nerves. Additionally, a significant upregulation of proteins associated with oxidative stress was observed acutely following blast exposure compared with control mice. Conclusions. Our study demonstrates that decrements in retinal ganglion cell responses can be detected after blast injury using noninvasive functional and structural tests. These objective responses may serve as surrogate tests for higher CNS functions following traumatic brain injury that are difficult to quantify. PMID:23620426

  7. Isolated primary blast alters neuronal function with minimal cell death in organotypic hippocampal slice cultures.

    PubMed

    Effgen, Gwen B; Vogel, Edward W; Lynch, Kimberly A; Lobel, Ayelet; Hue, Christopher D; Meaney, David F; Bass, Cameron R Dale; Morrison, Barclay

    2014-07-01

    An increasing number of U.S. soldiers are diagnosed with traumatic brain injury (TBI) subsequent to exposure to blast. In the field, blast injury biomechanics are highly complex and multi-phasic. The pathobiology caused by exposure to some of these phases in isolation, such as penetrating or inertially driven injuries, has been investigated extensively. However, it is unclear whether the primary component of blast, a shock wave, is capable of causing pathology on its own. Previous in vivo studies in the rodent and pig have demonstrated that it is difficult to deliver a primary blast (i.e., shock wave only) without rapid head accelerations and potentially confounding effects of inertially driven TBI. We have previously developed a well-characterized shock tube and custom in vitro receiver for exposing organotypic hippocampal slice cultures to pure primary blast. In this study, isolated primary blast induced minimal hippocampal cell death (on average, below 14% in any region of interest), even for the most severe blasts tested (424 kPa peak pressure, 2.3 ms overpressure duration, and 248 kPa*ms impulse). In contrast, measures of neuronal function were significantly altered at much lower exposures (336 kPa, 0.84 ms, and 86.5 kPa*ms), indicating that functional changes occur at exposures below the threshold for cell death. This is the first study to investigate a tolerance for primary blast-induced brain cell death in response to a range of blast parameters and demonstrate functional deficits at subthreshold exposures for cell death.

  8. Development of GP and GEP models to estimate an environmental issue induced by blasting operation.

    PubMed

    Faradonbeh, Roohollah Shirani; Hasanipanah, Mahdi; Amnieh, Hassan Bakhshandeh; Armaghani, Danial Jahed; Monjezi, Masoud

    2018-05-21

    Air overpressure (AOp) is one of the most adverse effects induced by blasting in the surface mines and civil projects. So, proper evaluation and estimation of the AOp is important for minimizing the environmental problems resulting from blasting. The main aim of this study is to estimate AOp produced by blasting operation in Miduk copper mine, Iran, developing two artificial intelligence models, i.e., genetic programming (GP) and gene expression programming (GEP). Then, the accuracy of the GP and GEP models has been compared to multiple linear regression (MLR) and three empirical models. For this purpose, 92 blasting events were investigated, and subsequently, the AOp values were carefully measured. Moreover, in each operation, the values of maximum charge per delay and distance from blast points, as two effective parameters on the AOp, were measured. After predicting by the predictive models, their performance prediction was checked in terms of variance account for (VAF), coefficient of determination (CoD), and root mean square error (RMSE). Finally, it was found that the GEP with VAF of 94.12%, CoD of 0.941, and RMSE of 0.06 is a more precise model than other predictive models for the AOp prediction in the Miduk copper mine, and it can be introduced as a new powerful tool for estimating the AOp resulting from blasting.

  9. Protective Effect of N-Acetylcysteine Amide on Blast-Induced Increase in Intracranial Pressure in Rats

    PubMed Central

    Kawoos, Usmah; McCarron, Richard M.; Chavko, Mikulas

    2017-01-01

    Blast-induced traumatic brain injury is associated with acute and possibly chronic elevation of intracranial pressure (ICP). The outcome after TBI is dependent on the progression of complex processes which are mediated by oxidative stress. So far, no effective pharmacological protection against TBI exists. In this study, rats were exposed to a single or repetitive blast overpressure (BOP) at moderate intensities of 72 or 110 kPa in a compressed air-driven shock tube. The degree and duration of the increase in ICP were proportional to the intensity and frequency of the blast exposure(s). In most cases, a single dose of antioxidant N-acetylcysteine amide (NACA) (500 mg/kg) administered intravenously 2 h after exposure to BOP significantly attenuated blast-induced increase in ICP. A single dose of NACA was not effective in improving the outcome in the group of animals that were subjected to repetitive blast exposures at 110 kPa on the same day. In this group, two treatments with NACA at 2 and 4 h post-BOP exposure resulted in significant attenuation of elevated ICP. Treatment with NACA prior to BOP exposure completely prevented the elevation of ICP. The findings indicate that oxidative stress plays an important role in blast-induced elevated ICP as treatment with NACA-ameliorated ICP increase, which is frequently related to poor functional recovery after TBI. PMID:28634463

  10. Quantification and aging of the post-blast residue of TNT landmines.

    PubMed

    Oxley, Jimmie C; Smith, James L; Resende, Elmo; Pearce, Evan

    2003-07-01

    Post-blast residues are potential interferents to chemical detection of landmines. To assess the potential problem related to 2,4,6-trinitrotoluene (TNT), its post-blast residue was identified and quantified. In the first part of this study laboratory-scale samples of TNT (2 g) were detonated in a small-scale explosivity device (SSED) to evaluate the explosive power and collect post-blast residue for chemical analysis. Initiator size was large relative to the TNT charge; thus, issues arose regarding choice of initiator, residue from the initiator, and afterburning of TNT. The second part of this study detonated 75 to 150 g of military-grade TNT (typical of antipersonnel mines) in 55-gal barrels containing various witness materials (metal plates, sand, barrel walls, the atmosphere). The witness materials were analyzed for explosive residue. In a third set of tests, 75-g samples of TNT were detonated over soil (from Fort Leonard Wood or Sandia National Laboratory) in an indoor firing chamber (100 by 4.6 by 2.7 m high). Targeted in these studies were TNT and four explosive-related compounds (ERC): 2,4-dinitrotoluene (DNT), 1,3-dinitrobenzene (DNB), 2- and 4-aminodinitrotoluene (2-ADNT and 4-ADNT). The latter two are microbial degradation products of TNT. Post-blast residue was allowed to age in the soils as a function of moisture contents (5 and 10%) in order to quantify the rate of degradation of the principal residues (TNT, DNT, and DNB) and formation of the TNT microbial degradation products (2-ADNT and 4-ADNT). The major distinction between landmine leakage and post-blast residue was not the identity of the species but relative ratios of amounts. In landmine leakage the DNT/TNT ratio was usually greater than 1. In post-blast residue it was on the order of 1 to 1/100th of a percent, and the total amount of pre-blast residue (landmine leakage) was a factor of 1/100 to 1/1000 less than post-blast. In addition, landmine leakage resulted in low DNT/ADNT ratios, usually less than 1, whereas pre-blast residues started with ratios above 20. Because with time DNT decreased and ADNT increased, over a month the ratio decreased by a factor of 2. The rate of TNT degradation in soil observed in this study was much slower than that reported when initial concentrations of TNT were lower. Degradation rates yielded half-lives of 40 and 100 days for 2,4-DNT and TNT, respectively.

  11. Explosive materials equivalency, test methods and evaluation

    NASA Technical Reports Server (NTRS)

    Koger, D. M.; Mcintyre, F. L.

    1980-01-01

    Attention is given to concepts of explosive equivalency of energetic materials based on specific airblast parameters. A description is provided of a wide bandwidth high accuracy instrumentation system which has been used extensively in obtaining pressure time profiles of energetic materials. The object of the considered test method is to determine the maximum output from the detonation of explosive materials in terms of airblast overpressure and positive impulse. The measured pressure and impulse values are compared with known characteristics of hemispherical TNT data to determine the equivalency of the test material in relation to TNT. An investigation shows that meaningful comparisons between various explosives and a standard reference material such as TNT should be based upon the same parameters. The tests should be conducted under the same conditions.

  12. Acute Assessment of Traumatic Brain Injury and Post-Traumatic Stress After Exposure to a Deployment-Related Explosive Blast.

    PubMed

    Baker, Monty T; Moring, John C; Hale, Willie J; Mintz, Jim; Young-McCaughan, Stacey; Bryant, Richard A; Broshek, Donna K; Barth, Jeffrey T; Villarreal, Robert; Lancaster, Cynthia L; Malach, Steffany L; Lara-Ruiz, Jose M; Isler, William; Peterson, Alan L

    2018-05-18

    Traumatic brain injury (TBI) and post-traumatic stress disorder (PTSD) are two of the signature injuries in military service members who have been exposed to explosive blasts during deployments to Iraq and Afghanistan. Acute stress disorder (ASD), which occurs within 2-30 d after trauma exposure, is a more immediate psychological reaction predictive of the later development of PTSD. Most previous studies have evaluated service members after their return from deployment, which is often months or years after the initial blast exposure. The current study is the first large study to collect psychological and neuropsychological data from active duty service members within a few days after blast exposure. Recruitment for blast-injured TBI patients occurred at the Air Force Theater Hospital, 332nd Air Expeditionary Wing, Joint Base Balad, Iraq. Patients were referred from across the combat theater and evaluated as part of routine clinical assessment of psychiatric and neuropsychological symptoms after exposure to an explosive blast. Four measures of neuropsychological functioning were used: the Military Acute Concussion Evaluation (MACE); the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS); the Headminder Cognitive Stability Index (CSI); and the Automated Neuropsychological Assessment Metrics, Version 4.0 (ANAM4). Three measures of combat exposure and psychological functioning were used: the Combat Experiences Scale (CES); the PTSD Checklist-Military Version (PCL-M); and the Acute Stress Disorder Scale (ASDS). Assessments were completed by a deployed clinical psychologist, clinical social worker, or mental health technician. A total of 894 patients were evaluated. Data from 93 patients were removed from the data set for analysis because they experienced a head injury due to an event that was not an explosive blast (n = 84) or they were only assessed for psychiatric symptoms (n = 9). This resulted in a total of 801 blast-exposed patients for data analysis. Because data were collected in-theater for the initial purpose of clinical evaluation, sample size varied widely between measures, from 565 patients who completed the MACE to 154 who completed the CES. Bivariate correlations revealed that the majority of psychological measures were significantly correlated with each other (ps ≤ 0.01), neuropsychological measures were correlated with each other (ps ≤ 0.05), and psychological and neuropsychological measures were also correlated with each other (ps ≤ 0.05). This paper provides one of the first descriptions of psychological and neuropsychological functioning (and their inter-correlation) within days after blast exposure in a large sample of military personnel. Furthermore, this report describes the methodology used to gather data for the acute assessment of TBI, PTSD, and ASD after exposure to an explosive blast in the combat theater. Future analyses will examine the common and unique symptoms of TBI and PTSD, which will be instrumental in developing new assessment approaches and intervention strategies.

  13. 77 FR 49277 - Takes of Marine Mammals During Specified Activities; Confined Blasting Operations by the U.S...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-15

    ... Miami Harbor in 2005 to 2006 estimated between 200 to 250 days of confined blasting with one shot per... blasting means that the shots would be ``confined'' in the rock with stemming that prevents the explosive... Harbor Miami-Dade County, Florida Navigation Study, Final General Reevaluation Report and Environmental...

  14. Two-material optimization of plate armour for blast mitigation using hybrid cellular automata

    NASA Astrophysics Data System (ADS)

    Goetz, J.; Tan, H.; Renaud, J.; Tovar, A.

    2012-08-01

    With the increased use of improvised explosive devices in regions at war, the threat to military and civilian life has risen. Cabin penetration and gross acceleration are the primary threats in an explosive event. Cabin penetration crushes occupants, damaging the lower body. Acceleration causes death at high magnitudes. This investigation develops a process of designing armour that simultaneously mitigates cabin penetration and acceleration. The hybrid cellular automaton (HCA) method of topology optimization has proven efficient and robust in problems involving large, plastic deformations such as crash impact. Here HCA is extended to the design of armour under blast loading. The ability to distribute two metallic phases, as opposed to one material and void, is also added. The blast wave energy transforms on impact into internal energy (IE) inside the solid medium. Maximum attenuation occurs with maximized IE. The resulting structures show HCA's potential for designing blast mitigating armour structures.

  15. On the formation of Friedlander waves in a compressed-gas-driven shock tube

    PubMed Central

    Tasissa, Abiy F.; Hautefeuille, Martin; Fitek, John H.; Radovitzky, Raúl A.

    2016-01-01

    Compressed-gas-driven shock tubes have become popular as a laboratory-scale replacement for field blast tests. The well-known initial structure of the Riemann problem eventually evolves into a shock structure thought to resemble a Friedlander wave, although this remains to be demonstrated theoretically. In this paper, we develop a semi-analytical model to predict the key characteristics of pseudo blast waves forming in a shock tube: location where the wave first forms, peak over-pressure, decay time and impulse. The approach is based on combining the solutions of the two different types of wave interactions that arise in the shock tube after the family of rarefaction waves in the Riemann solution interacts with the closed end of the tube. The results of the analytical model are verified against numerical simulations obtained with a finite volume method. The model furnishes a rational approach to relate shock tube parameters to desired blast wave characteristics, and thus constitutes a useful tool for the design of shock tubes for blast testing. PMID:27118888

  16. 29 CFR 1926.900 - General provisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... explosives. (b) Smoking, firearms, matches, open flame lamps, and other fires, flame or heat producing... magazine. (e) No explosives or blasting agents shall be abandoned. (f) No fire shall be fought where the fire is in imminent danger of contact with explosives. All employees shall be removed to a safe area...

  17. 29 CFR 1926.900 - General provisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... explosives. (b) Smoking, firearms, matches, open flame lamps, and other fires, flame or heat producing... magazine. (e) No explosives or blasting agents shall be abandoned. (f) No fire shall be fought where the fire is in imminent danger of contact with explosives. All employees shall be removed to a safe area...

  18. 29 CFR 1926.900 - General provisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... explosives. (b) Smoking, firearms, matches, open flame lamps, and other fires, flame or heat producing... magazine. (e) No explosives or blasting agents shall be abandoned. (f) No fire shall be fought where the fire is in imminent danger of contact with explosives. All employees shall be removed to a safe area...

  19. 30 CFR 57.6902 - Excessive temperatures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... detonation, explosive material shall not be loaded into hot areas, such as kilns or sprung holes. (b) When blasting sulfide ores where hot holes occur that may react with explosive material in blastholes, operators...

  20. 30 CFR 57.6902 - Excessive temperatures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... detonation, explosive material shall not be loaded into hot areas, such as kilns or sprung holes. (b) When blasting sulfide ores where hot holes occur that may react with explosive material in blastholes, operators...

  1. 30 CFR 57.6902 - Excessive temperatures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... detonation, explosive material shall not be loaded into hot areas, such as kilns or sprung holes. (b) When blasting sulfide ores where hot holes occur that may react with explosive material in blastholes, operators...

  2. 30 CFR 57.6902 - Excessive temperatures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... detonation, explosive material shall not be loaded into hot areas, such as kilns or sprung holes. (b) When blasting sulfide ores where hot holes occur that may react with explosive material in blastholes, operators...

  3. 30 CFR 57.6902 - Excessive temperatures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... detonation, explosive material shall not be loaded into hot areas, such as kilns or sprung holes. (b) When blasting sulfide ores where hot holes occur that may react with explosive material in blastholes, operators...

  4. Rock blasting and overbreak control

    DOT National Transportation Integrated Search

    1991-01-01

    This handbook is specifically designed as a guide to highway engineers and blasting practitioners working with highway applications. It was used as a handbook for the FHWA course of the above title. The handbook is a basic review of explosives and th...

  5. Seismo-acoustic analysis of the near quarry blasts using Plostina small aperture array

    NASA Astrophysics Data System (ADS)

    Ghica, Daniela; Stancu, Iulian; Ionescu, Constantin

    2013-04-01

    Seismic and acoustic signals are important to recognize different type of industrial blasting sources in order to discriminate between them and natural earthquakes. We have analyzed the seismic events listed in the Romanian catalogue (Romplus) for the time interval between 2011 and 2012, and occurred in the Dobrogea region, in order to determine detection seismo-acoustic signals of quarry blasts by Plostina array stations. Dobrogea is known as a seismic region characterized by crustal earthquakes with low magnitudes; at the same time, over 40 quarry mines are located in the area, being sources of blasts recorded both with the seismic and infrasound sensors of the Romanian Seismic Network. Plostina seismo-acoustic array, deployed in the central part of Romania, consists of 7 seismic sites (3C broad-band instruments and accelerometers) collocated with 7 infrasound instruments. The array is particularly used for the seismic monitoring of the local and regional events, as well as for the detection of infrasonic signals produced by various sources. Considering the characteristics of the infrasound sensors (frequency range, dynamic, sensibility), the array proved its efficiency in observing the signals produced by explosions, mine explosion and quarry blasts. The quarry mines included for this study cover distances of two hundreds of kilometers from the station and routinely generate explosions that are detected as seismic and infrasonic signals with Plostina array. The combined seismo-acoustic analysis uses two types of detectors for signal identification: one, applied for the seismic signal identification, is based on array processing techniques (beamforming and frequency-wave number analysis), while the other one, which is used for infrasound detection and characterization, is the automatic detector DFX-PMCC (Progressive Multi-Channel Correlation Method). Infrasonic waves generated by quarry blasts have frequencies ranging from 0.05 Hz up to at least 6 Hz and amplitudes below 5 Pa. Seismic data analysis shows that the frequency range of the signals are above 2 Hz. Surface explosions such as quarry blasts are useful sources for checking detection and location efficiency, when seismic measurements are added. The process is crucial for discrimination purposes and for establishing of a set of ground-truth infrasound events. Ground truth information plays a key role in the interpretation of infrasound signals, by including near-field observations from industrial blasts.

  6. Tympanic membrane perforation after combat blast exposure in Iraq: a poor biomarker of primary blast injury.

    PubMed

    Harrison, Corey D; Bebarta, Vikhyat S; Grant, Gerald A

    2009-07-01

    The US military has reported over 10,000 improvised explosive device attacks attributing to over 400 deaths in Iraq in 2005. Otologic blast injury and tympanic membrane (TM) perforation have traditionally been used as a predictor, or biomarker, of serious or occult primary blast injury (PBI). Although combat injuries from the US-Iraq conflict have been described, the utility of TM perforation as a marker of PBI has not. The objective of this study is to determine the incidence of tympanic perforation in patients subject to blast exposures and describe its utility as a biomarker of more serious primary barotrauma, as observed at a US military hospital in Iraq. In our institutional review board-approved study, all patients during a 30-day period who arrived at a tertiary US military hospital in Iraq were evaluated. All patients with blast injures were identified on arrival to the hospital emergency department and were followed up through their hospital course and evacuation to the United States to assure they received proper otolaryngology evaluation and follow-up. Demographic data and manifestations of PBI (TM perforation, pneumothorax, pulmonary contusion, nonpenetrating facial sinus injury, and bowel perforation) and other combat injuries were recorded. The diagnostic tests and clinical examination findings used to identify these complications were also recorded. One hundred sixty-seven patients were enrolled over 30 days. All blast exposures resulted from primary or secondary explosions from munitions used in combat. This included both combatants and civilians. All patients were men. The mean patient age was 28 years (range, 12-55 years). Sixteen percent (27 of 167) of blast-exposed patients had TM perforation. Thirteen of 27 patients with perforations had bilateral perforations. Twelve of 167 patients (7%) had PBI. Six of 12 patients (50%) with PBI had TM perforation. The use of TM perforation as a biomarker for PBI resulted in a sensitivity of 50% (95% CI, 22-78%) and specificity of 87% (95% CI, 81-92%). Both TM perforation and PBI are rare with improvised explosive devices and other explosive devices in the current Iraqi-US conflict. Contrary to previous belief and management guidelines, TM perforation had low sensitivity for serious or occult PBI and was not a good biomarker. On the basis of the findings of this study, the absence of TM perforation does not appear to exclude other serious PBI.

  7. Method for explosive expansion toward horizontal free faces for forming an in situ oil shale retort

    DOEpatents

    Ricketts, Thomas E.

    1980-01-01

    Formation is excavated from within a retort site in formation containing oil shale for forming a plurality of vertically spaced apart voids extending horizontally across different levels of the retort site, leaving a separate zone of unfragmented formation between each pair of adjacent voids. Explosive is placed in each zone, and such explosive is detonated in a single round for forming an in situ retort containing a fragmented permeable mass of formation particles containing oil shale. The same amount of formation is explosively expanded upwardly and downwardly toward each void. A horizontal void excavated at a production level has a smaller horizontal cross-sectional area than a void excavated at a lower level of the retort site immediately above the production level void. Explosive in a first group of vertical blast holes is detonated for explosively expanding formation downwardly toward the lower void, and explosive in a second group of vertical blast holes is detonated in the same round for explosively expanding formation upwardly toward the lower void and downwardly toward the production level void for forming a generally T-shaped bottom of the fragmented mass.

  8. Microstructural consequences of blast lung injury characterised with digital volume correlation

    NASA Astrophysics Data System (ADS)

    Arora, Hari; Nila, Alex; Vitharana, Kalpani; Sherwood, Joseph M.; Nguyen, Thuy-Tien N.; Karunaratne, Angelo; Mohammed, Idris K.; Bodey, Andrew J.; Hellyer, Peter J.; Overby, Darryl R.; Schroter, Robert C.; Hollis, Dave

    2017-12-01

    This study focuses on microstructural changes that occur within the mammalian lung when subject to blast and how these changes influence strain distributions within the tissue. Shock tube experiments were performed to generate the blast injured specimens (cadaveric Sprague-Dawley rats). Blast overpressures of 100 kPa and 180 kPa were studied. Synchrotron tomography imaging was used to capture volumetric image data of lungs. Specimens were ventilated using a custom-built system to study multiple inflation pressures during each tomography scan. This data enabled the first digital volume correlation (DVC) measurements in lung tissue to be performed. Quantitative analysis was performed to describe the damaged architecture of the lung. No clear changes in the microstructure of the tissue morphology were observed due to controlled low to moderate level blast exposure. However, significant focal sites of injury were observed using DVC, which allowed detection of bias and concentration in the patterns of strain level. Morphological analysis corroborated the findings, illustrating that the focal damage caused by a blast can give rise to diffuse influence across the tissue. It is important to characterise the non-instantly fatal doses of blast, given the transient nature of blast lung in the clinical setting. This research has highlighted the need for better understanding of focal injury and its zone of influence (alveolar inter-dependency and neighbouring tissue burden as a result of focal injury). Digital volume correlation techniques show great promise as a tool to advance this endeavour, providing a new perspective on lung mechanics post-blast.

  9. A modern combat trauma.

    PubMed

    Popivanov, Georgi; Mutafchiyski, V M; Belokonski, E I; Parashkevov, A B; Koutin, G L

    2014-03-01

    The world remains plagued by wars and terrorist attacks, and improvised explosive devices (IED) are the main weapons of our current enemies, causing almost two-thirds of all combat injuries. We wished to analyse the pattern of blast trauma on the modern battlefield and to compare it with combat gunshot injuries. Analysis of a consecutive series of combat trauma patients presenting to two Bulgarian combat surgical teams in Afghanistan over 11 months. Demographics, injury patterns and Injury Severity Scores (ISS) were compared between blast and gunshot-injured casualties using Fisher's Exact Test. The blast victims had significantly higher median ISS (20.54 vs 9.23) and higher proportion of ISS>16 (60% vs 33.92%, p=0.008) than gunshot cases. They also had more frequent involvement of three or more body regions (47.22% vs 3.58%, p<0.0001). A significantly higher frequency of head (27.27% vs 3.57%), facial (20% vs 0%) and extremities injuries (85.45% vs 42.86%) and burns (12.72% vs 0%) was noted among the victims of explosion (p<0.0001). Based on clinical examination and diagnostic imaging, primary blast injury was identified in 24/55 (43.6%), secondary blast injury in 37 blast cases (67.3%), tertiary in 15 (27.3%) and quaternary blast injury (all burns) in seven (12.72%). Our results corroborate the 'multidimensional' injury pattern of blast trauma. The complexity of the blast trauma demands a good knowledge and a special training of the military surgeons and hospital personnel before deployment.

  10. Use of noise attenuation modeling in managing missile motor detonation activities.

    PubMed

    McFarland, Michael J; Watkins, Jeffrey W; Kordich, Micheal M; Pollet, Dean A; Palmer, Glenn R

    2004-03-01

    The Sound Intensity Prediction System (SIPS) and Blast Operation Overpressure Model (BOOM) are semiempirical sound models that are employed by the Utah Test and Training Range (UTTR) to predict whether noise levels from the detonation of large missile motors will exceed regulatory thresholds. Field validation of SIPS confirmed that the model was effective in limiting the number of detonations of large missile motors that could potentially result in a regulatory noise exceedance. Although the SIPS accurately predicted the impact of weather on detonation noise propagation, regulators have required that the more conservative BOOM model be employed in conjunction with SIPS in evaluating peak noise levels in populated areas. By simultaneously considering the output of both models, in 2001, UTTR detonated 104 missile motors having net explosive weights (NEW) that ranged between 14,960 and 38,938 lb without a recorded public noise complaint. Based on the encouraging results, the U.S. Department of Defense is considering expanding the application of these noise models to support the detonation of missile motors having a NEW of 81,000 lb. Recent modeling results suggest that, under appropriate weather conditions, missile motors containing up to 96,000 lb NEW can be detonated at the UTTR without exceeding the regulatory noise limit of 134 decibels (dB).

  11. Numerical modeling of an experimental shock tube for traumatic brain injury studies

    NASA Astrophysics Data System (ADS)

    Phillips, Michael; Regele, Jonathan D.

    2015-11-01

    Unfortunately, Improvised Explosive Devices (IEDs) are encountered commonly by both civilians and military soldiers throughout the world. Over a decade of medical history suggests that traumatic brain injury (TBI) may result from exposure to the blast waves created by these explosions, even if the person does not experience any immediate injury or lose consciousness. Medical researchers study the exposure of mice and rats to blast waves created in specially designed shock tubes to understand the effect on brain tissue. A newly developed table-top shock tube with a short driver section has been developed for mice experiments to reduce the time necessary to administer the blast radiation and increase the amount of statistical information available. In this study, numerical simulations of this shock tube are performed to assess how the blast wave takes its shape. The pressure profiles obtained from the numerical results are compared with the pressure histories from the experimental pressure transducers. The results show differences in behavior from what was expected, but the blast wave may still be an effective means of studying TBI.

  12. Use of a Combination of Vertical and Horizontal Boreholes in Massive Blasting of Benches in the Surface Quarry Rodež

    NASA Astrophysics Data System (ADS)

    Tori, Matija; Vajović, Stanojle; Goleš, Niko; Muhić, Elvir; Peternel, Miha

    2017-12-01

    This article deals with the extraction of minerals (limestone/marl/flysch) in the quarry Rodež, which is located in western Slovenia. During the extraction of minerals in a quarry, drilling and blasting of benches are used. The focus of the article is on the analysis of the parameters related to drilling and blasting in surface excavations when using a combination of explosions and introducing horizontal wells along with vertical holes in the bench. On the basis of the analysis of basic parameters through a combination of drilling horizontal wells and charging those with the ammonal + Anfex explosive, analyses of effects of seismic disturbances on potentially affected buildings have also been conducted. The article is connected to and deals exclusively with the basic parameters of drilling and blasting, with the introduction of horizontal drilling and with the analysis of seismic measurements of threatened buildings in accordance with the German standard German Institute for Standardisation (DIN) 4150 during the use of a new method of blasting.

  13. Computer assisted blast design and assessment tools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cameron, A.R.; Kleine, T.H.; Forsyth, W.W.

    1995-12-31

    In general the software required by a blast designer includes tools that graphically present blast designs (surface and underground), can analyze a design or predict its result, and can assess blasting results. As computers develop and computer literacy continues to rise the development of and use of such tools will spread. An example of the tools that are becoming available includes: Automatic blast pattern generation and underground ring design; blast design evaluation in terms of explosive distribution and detonation simulation; fragmentation prediction; blast vibration prediction and minimization; blast monitoring for assessment of dynamic performance; vibration measurement, display and signal processing;more » evaluation of blast results in terms of fragmentation; and risk and reliability based blast assessment. The authors have identified a set of criteria that are essential in choosing appropriate software blasting tools.« less

  14. The use of explosives by the US Antarctic Program. Environmental report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ensminger, J.T.; Blasing, T.J.

    1995-06-01

    This report was prepared to assist principal investigators and others in complying with NEPA and the protocol on environmental protection to the Antarctic Treaty. Research activities and associated support operations in Antarctica sometimes require use of explosives. This report evaluates potential environmental impacts associated with such activities and possible methods for mitigating those impacts. The greatest single use of explosives, and the only type of blasting that will occur on the Polar Plateau (an exception is the rare use of explosives to cave in dangerous ice for safety reasons), is for seismic surveys. The charges for these are small-scale, aremore » placed in or on the snow or ice, are distributed linearly over long distances, and present no potential impacts to soil or geological substrata. Impacts from those would be less than minor or transitory. Wherever possible, blasting holes in sea ice will be replaced by drilling by auger or melting. Other uses of explosives, such as in geologic research and construction, are discussed.« less

  15. Foundations and Earth Structures. Design Manual 7.2

    DTIC Science & Technology

    1982-05-01

    Cairo only) I FT27 (: daho Falls only) 2 39E 7 FH25 MPhilndelphia, Portsmouth 1 712B I 42A3 VA, Camp Lejeune, Oakland, 4 FT31 4 453B Newport;, Great...8217 > 3 " 2 --5 - 1 2 3 5 7 10 20 30 5070 100 200 EXAMPLE: - Weight of Explosive Charge 8 lbs. - W Distance from Blast Point - 100 ft. - R4 R/(W)-/3 50...power. Explosives ............ Drill and blast ahead of pile tip a. To remove obstructions to open end piles under very severe conditions

  16. Lightweight Energy Absorbers for Blast Containers

    NASA Technical Reports Server (NTRS)

    Balles, Donald L.; Ingram, Thomas M.; Novak, Howard L.; Schricker, Albert F.

    2003-01-01

    Kinetic-energy-absorbing liners made of aluminum foam have been developed to replace solid lead liners in blast containers on the aft skirt of the solid rocket booster of the space shuttle. The blast containers are used to safely trap the debris from small explosions that are initiated at liftoff to sever frangible nuts on hold-down studs that secure the spacecraft to a mobile launch platform until liftoff.

  17. Lateral blasts at Mount St. Helens and hazard zonation

    USGS Publications Warehouse

    Crandell, D.R.; Hoblitt, R.P.

    1986-01-01

    Lateral blasts at andesitic and dacitic volcanoes can produce a variety of direct hazards, including ballistic projectiles which can be thrown to distances of at least 10 km and pyroclastic density flows which can travel at high speed to distances of more than 30 km. Indirect effect that may accompany such explosions include wind-borne ash, pyroclastic flows formed by the remobilization of rock debris thrown onto sloping ground, and lahars. Two lateral blasts occurred at a lava dome on the north flank of Mount St. Helens about 1200 years ago; the more energetic of these threw rock debris northeastward across a sector of about 30?? to a distance of at least 10 km. The ballistic debris fell onto an area estimated to be 50 km2, and wind-transported ash and lapilli derived from the lateral-blast cloud fell on an additional lobate area of at least 200 km2. In contrast, the vastly larger lateral blast of May 18, 1980, created a devastating pyroclastic density flow that covered a sector of as much as 180??, reached a maximum distance of 28 km, and within a few minutes directly affected an area of about 550 km2. The May 18 lateral blast resulted from the sudden, landslide-induced depressurization of a dacite cryptodome and the hydrothermal system that surrounded it within the volcano. We propose that lateral-blast hazard assessments for lava domes include an adjoining hazard zone with a radius of at least 10 km. Although a lateral blast can occur on any side of a dome, the sector directly affected by any one blast probably will be less than 180??. Nevertheless, a circular hazard zone centered on the dome is suggested because of the difficulty of predicting the direction of a lateral blast. For the purpose of long-term land-use planning, a hazard assessment for lateral blasts caused by explosions of magma bodies or pressurized hydrothermal systems within a symmetrical volcano could designate a circular potential hazard area with a radius of 35 km centered on the volcano. For short-term hazard assessments, if seismicity and deformation indicate that magma is moving toward the flank of a volcano, it should be recognized that a landslide could lead to the sudden unloading of a magmatic or hydrothermal system and thereby cause a catastrophic lateral blast. A hazard assessment should assume that a lateral blast could directly affect an area at least 180?? wide to a distance of 35 km from the site of the explosion, irrespective of topography. ?? 1986 Springer-Verlag.

  18. 29 CFR 1926.913 - Blasting in excavation work under compressed air.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... connecting wires are connected up. (b) When detonators or explosives are brought into an air lock, no... of explosives and detonators. (e) All metal pipes, rails, air locks, and steel tunnel lining shall be...

  19. Otologic consequences of blast exposure: a Finnish case study of a shopping mall bomb explosion.

    PubMed

    Mrena, Roderik; Pääkkönen, Rauno; Bäck, Leif; Pirvola, Ulla; Ylikoski, Jukka

    2004-10-01

    On 11 October, 2002, in the Myyrmanni shopping mall, Vantaa city, Finland, an explosion by a suicide bomber killed 7 people and injured at least 160,44 of whom had ear trauma. We investigated the acute and subacute otologic consequences of the explosion. Otologic examination of the 29 patients treated for ear trauma at the ENT clinic of the University Hospital of Helsinki was performed during the first month after the explosion, and a questionnaire was completed regarding subjective aural symptoms. Symptoms occurring directly after the explosion and for up to 1 month afterwards were assessed. Of the 29 patients, 66% had tinnitus as the initial symptom, 55% hearing loss, 41% pain in the ears and 28% sound distortion. Tinnitus and hearing loss in combination were experienced by 12 patients (41%). Eight patients who had been situated<10 m from the center of the explosion had a rupture of the tympanic membrane. This supported the initial evaluation by the authorities that the bomb had consisted of approximately 3 kg ammonium nitrate, equivalent to approximately 0.5 kg of trinitrotoluene. It was estimated that some kind of ear injury was likely for individuals situated<70 m from the center of the explosion. People often think that tinnitus and hearing impairment are naturally occurring phenomena after blast exposure, and if their symptoms resolve they do not seek medical advice. However, some of them may have substantial hearing impairment, particularly at high frequencies. Otologic consultation, or at least an audiometric screening test to exclude hearing impairment, should be performed regardless of symptoms, on the basis of exposure data only. Some symptoms, such as tinnitus and hearing loss, may be permanent consequences of a blast injury and their effect on quality of life may be substantial.

  20. Prediction of air blast mitigation in an array of rigid obstacles using smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Prasanna Kumar, S. S.; Patnaik, B. S. V.; Ramamurthi, K.

    2018-04-01

    The mitigation of blast waves propagating in air and interacting with rigid barriers and obstacles is numerically investigated using the mesh-free smoothed particle hydrodynamics method. A novel virtual boundary particle procedure with a skewed gradient wall boundary treatment is applied at the interfaces between air and rigid bodies. This procedure is validated with closed-form solutions for strong and weak shock reflection from rigid surfaces, supersonic flows over a wedge, formation of reflected, transverse, and Mach stem shocks, and also earlier experiments on interaction of a blast wave with concrete blocks. The mitigation of the overpressure and impulse transmitted to the protected structure due to an array of rigid obstacles of different shapes placed in the path of the blast wave is thereafter determined and discussed in the context of the existing experimental and numerical studies. It is shown that blockages having the shape of a right facing triangle or square placed in tandem or staggered provide better mitigation. The influence of the distance between the blockage array and protected structure is assessed, and the incorporation of a gap in the blockages is shown to improve the mitigation. The mechanisms responsible for the attenuation of air blast are identified through the simulations.

  1. Effects of Overpressures in Group Shelters on Animals and Dummies. Part 1

    DTIC Science & Technology

    1953-09-01

    organ, the urinary bladder, showed gross disruption or tearing of tissue as a result of the blast. (a) Skeletal- Muscular System. Gross evidence of... muscular , skeletal, and soft-tissue 3 injury was noted in only three dogs. No bone fractures were found. Animal D-14 showed multiple moderate-size...artelact of separation from the surrounding tissue. This was not apparent around muscular bronchial walls. Considerable dust was noted in the lungs of

  2. Forensic Seismology: constraints on terrorist bombings

    NASA Astrophysics Data System (ADS)

    Wallace, T. C.; Koper, K. D.

    2002-05-01

    Seismology has long been used as a tool to monitor and investigate explosions, both accidental and intentional. Seismic records can be used to provide a precise chronology of events, estimate the energy release in explosions and produce constraints to test various scenarios for the explosions. Truck bombs are a popular tool of terrorists, and at least two such attacks have been recorded seismically. On August 7, 1998 a truck bomb was detonated near the US embassy in Nairobi, Kenya. The bomb seriously damaging a dozen buildings, injuring more than 4000 people and causing 220 fatalities. The explosion was recorded on a short-period seismometer located north of the blast site; the blast seismogram contained body waves, Rayleigh waves and vibrations associated with the air blast. Modeling of the body and surfaces wave allowed an estimate of the origin time of the bombing, which it turn could be used as a constraint the timing of the air blasts. The speed of the air waves from an explosion depend on the air temperature and the size, or yield, of the explosion. In an effort to fully utilize the seismic recordings from such attacks, we analyzed the seismic records from a series of controlled truck bomb explosions carried out at White Sand Missile Range in New Mexico. We developed a new set of scaling laws that relate seismic and acoustic observations directly to the explosive mass (yield). These relationships give a yield of approximately 3000 kg of TNT equivalent for the Nairobi bomb. The terrorist bombing of the Murrah Federal Building in Oklahoma City in 1995 was also recorded on seismometers. One of these records showed 2 discrete surface wavetrains separated by approximately 10 seconds. Some groups seized on the seismic recordings as evidence that there were 2 explosions, and that the US government was actually behind the bombing. However, the USGS monitored the demolition of the remainder of the Murrah Building and showed that the collapse also produced 2 surface waves. The interpretation is that one group was the fundamental mode Rayleigh wave while the other was either a higher-mode surface wave or a scattered S-wave (Lg like) packet (Holzer et al, 1996). This example illustrates the utility of forensic seismology for testing various hypothesis for the explosions. As the number of permanent and temporarily installed seismometers increase in the next decade, the number of "exotic" sources recorded and investigated is grow dramatically. These studies can be very useful for investigating terrorist attacks, and developing scenarios for the crimes.

  3. Occupational Lung Diseases among Soldiers Deployed to Iraq and Afghanistan

    PubMed Central

    Szema, Anthony M

    2013-01-01

    Military personnel deployed to Iraq and Afghanistan, from 2004 to the present, has served in a setting of unique environmental conditions. Among these are exposures to burning trash in open air “burn pits” lit on fire with jet fuel JP-8. Depending on trash burned--water bottles, styrofoam trays, medical waste, unexploded munitions, and computers--toxins may be released such as dioxins and n-hexane and benzene. Particulate matter air pollution culminates from these fires and fumes. Additional environmental exposures entail sandstorms (Haboob, Shamal, and Sharqi) which differ in direction and relationship to rain. These wars saw the first use of improvised explosive devices (roadside phosphate bombs),as well as vehicle improvised explosive devices (car bombs), which not only potentially aerosolize metals, but also create shock waves to induce lung injury via blast overpressure. Conventional mortar rounds are also used by Al Qaeda in both Iraq and Afghanistan. Outdoor aeroallergens from date palm trees are prevalent in southern Iraq by the Tigris and Euphrates rivers, while indoor aeroallergen aspergillus predominates during the rainy season. High altitude lung disease may also compound the problem, particularly in Kandahar, Afghanistan. Clinically, soldiers may present with new-onset asthma or fixed airway obstruction. Some have constrictive bronchiolitis and vascular remodeling on open lung biopsy - despite having normal spirometry and chest xrays and CT scans of the chest. Others have been found to have titanium and other metals in the lung (rare in nature). Still others have fulminant biopsy-proven sarcoidiosis. We found DNA probe–positive Mycobacterium Avium Complex in lung from a soldier who had pneumonia, while serving near stagnant water and camels and goats outside Abu Gharib. This review highlights potential exposures, clinical syndromes, and the Denver Working Group recommendations on post-deployment health. PMID:24443711

  4. Occupational Lung Diseases among Soldiers Deployed to Iraq and Afghanistan.

    PubMed

    Szema, Anthony M

    2013-01-01

    Military personnel deployed to Iraq and Afghanistan, from 2004 to the present, has served in a setting of unique environmental conditions. Among these are exposures to burning trash in open air "burn pits" lit on fire with jet fuel JP-8. Depending on trash burned--water bottles, styrofoam trays, medical waste, unexploded munitions, and computers--toxins may be released such as dioxins and n-hexane and benzene. Particulate matter air pollution culminates from these fires and fumes. Additional environmental exposures entail sandstorms (Haboob, Shamal, and Sharqi) which differ in direction and relationship to rain. These wars saw the first use of improvised explosive devices (roadside phosphate bombs),as well as vehicle improvised explosive devices (car bombs), which not only potentially aerosolize metals, but also create shock waves to induce lung injury via blast overpressure. Conventional mortar rounds are also used by Al Qaeda in both Iraq and Afghanistan. Outdoor aeroallergens from date palm trees are prevalent in southern Iraq by the Tigris and Euphrates rivers, while indoor aeroallergen aspergillus predominates during the rainy season. High altitude lung disease may also compound the problem, particularly in Kandahar, Afghanistan. Clinically, soldiers may present with new-onset asthma or fixed airway obstruction. Some have constrictive bronchiolitis and vascular remodeling on open lung biopsy - despite having normal spirometry and chest xrays and CT scans of the chest. Others have been found to have titanium and other metals in the lung (rare in nature). Still others have fulminant biopsy-proven sarcoidiosis. We found DNA probe-positive Mycobacterium Avium Complex in lung from a soldier who had pneumonia, while serving near stagnant water and camels and goats outside Abu Gharib. This review highlights potential exposures, clinical syndromes, and the Denver Working Group recommendations on post-deployment health.

  5. Large blast and thermal simulator advanced concept driver design by computational fluid dynamics. Final report, 1987-1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Opalka, K.O.

    1989-08-01

    The construction of a large test facility has been proposed for simulating the blast and thermal environment resulting from nuclear explosions. This facility would be used to test the survivability and vulnerability of military equipment such as trucks, tanks, and helicopters in a simulated thermal and blast environment, and to perform research into nuclear blast phenomenology. The proposed advanced design concepts, heating of driver gas and fast-acting throat valves for wave shaping, are described and the results of CFD studies to advance these new technical concepts fro simulating decaying blast waves are reported.

  6. In silico investigation of intracranial blast mitigation with relevance to military traumatic brain injury.

    PubMed

    Nyein, Michelle K; Jason, Amanda M; Yu, Li; Pita, Claudio M; Joannopoulos, John D; Moore, David F; Radovitzky, Raul A

    2010-11-30

    Blast-induced traumatic brain injury is the most prevalent military injury in Iraq and Afghanistan, yet little is known about the mechanical effects of blasts on the human head, and still less is known about how personal protective equipment affects the brain's response to blasts. In this study we investigated the effect of the Advanced Combat Helmet (ACH) and a conceptual face shield on the propagation of stress waves within the brain tissue following blast events. We used a sophisticated computational framework for simulating coupled fluid-solid dynamic interactions and a three-dimensional biofidelic finite element model of the human head and intracranial contents combined with a detailed model of the ACH and a conceptual face shield. Simulations were conducted in which the unhelmeted head, head with helmet, and head with helmet and face shield were exposed to a frontal blast wave with incident overpressure of 10 atm. Direct transmission of stress waves into the intracranial cavity was observed in the unprotected head and head with helmet simulations. Compared to the unhelmeted head, the head with helmet experienced slight mitigation of intracranial stresses. This suggests that the existing ACH does not significantly contribute to mitigating blast effects, but does not worsen them either. By contrast, the helmet and face shield combination impeded direct transmission of stress waves to the face, resulting in a delay in the transmission of stresses to the intracranial cavity and lower intracranial stresses. This suggests a possible strategy for mitigating blast waves often associated with military concussion.

  7. In silico investigation of intracranial blast mitigation with relevance to military traumatic brain injury

    PubMed Central

    Nyein, Michelle K.; Jason, Amanda M.; Yu, Li; Pita, Claudio M.; Joannopoulos, John D.; Moore, David F.; Radovitzky, Raul A.

    2010-01-01

    Blast-induced traumatic brain injury is the most prevalent military injury in Iraq and Afghanistan, yet little is known about the mechanical effects of blasts on the human head, and still less is known about how personal protective equipment affects the brain’s response to blasts. In this study we investigated the effect of the Advanced Combat Helmet (ACH) and a conceptual face shield on the propagation of stress waves within the brain tissue following blast events. We used a sophisticated computational framework for simulating coupled fluid–solid dynamic interactions and a three-dimensional biofidelic finite element model of the human head and intracranial contents combined with a detailed model of the ACH and a conceptual face shield. Simulations were conducted in which the unhelmeted head, head with helmet, and head with helmet and face shield were exposed to a frontal blast wave with incident overpressure of 10 atm. Direct transmission of stress waves into the intracranial cavity was observed in the unprotected head and head with helmet simulations. Compared to the unhelmeted head, the head with helmet experienced slight mitigation of intracranial stresses. This suggests that the existing ACH does not significantly contribute to mitigating blast effects, but does not worsen them either. By contrast, the helmet and face shield combination impeded direct transmission of stress waves to the face, resulting in a delay in the transmission of stresses to the intracranial cavity and lower intracranial stresses. This suggests a possible strategy for mitigating blast waves often associated with military concussion. PMID:21098257

  8. The behavior limestone under explosive load

    NASA Astrophysics Data System (ADS)

    Orlov, M. Yu; Orlova, Yu N.; Bogomolov, G. N.

    2016-11-01

    Limestone behavior under explosive loading was investigated. The behavior of the limestone by the action of the three types of explosives, including granular, ammonite and emulsion explosives was studied in detail. The shape and diameter of the explosion craters were obtained. The observed fragments after the blast have been classified as large, medium and small fragments. Three full-scale experiments were carried out. The research results can be used as a qualitative test for the approbation of numerical methods.

  9. Insights into different Strombolian explosive styles by remote controlled OP-FTIR (CERBERUS) measurements

    NASA Astrophysics Data System (ADS)

    Spina Alessandro, La; Mike, Burton; Filippo, Murè; Roberto, Maugeri

    2014-05-01

    In this paper we present the results and interpretation of gas composition data collected by a permanent OP-FTIR system (CERBERUS) installed at Stromboli summit. The instrument allows remote control observation and measurement of gas emissions from different points within volcano's crater terrace, using an integrated infrared camera / scanning mirror / FTIR system. Given that an OpenPath Fourier Transform InfraRed (FTIR) spectrometer allows the simultaneously measure all the major species contained in volcanic gas emissions, we could observe the different explosive styles fed by Stromboli volcano. Stromboli volcano, in the Aeolian island arc, is known as the "Lighthouse of the Mediterranean" for its regular (~every 10-20 min) explosive activity, launching crystal-rich black scoriae to 100-200 m height constituting a rich and impressive spectacle for both volcanologists and tourists from every part of the world. This ordinary activity has been classified in two types in relation to the their content of ash ejected. Type 1 is dominated melt ballistic particles whereas Type 2 consists of an ash-rich plume. On 18 July we recorded both explosive styles at the SW crater of Stromboli finding quite similar CO2/SO2 ratio, although we observed a higher value of SO2/HCl molar ratio for the Type 2. Moreover prior to both types of explosions the CO2 amount showed similar trend, whereas a different pattern in SO2 and in HCl gas content, was observed. In detail type 2 was preceded by decrease in SO2 and HCl amounts with respect to type 1. The decreasing trend observed before the onset of style 2 and the higher SO2/HCl ratio might be an indication of overpressure that might have induced the difference between the two types of explosions. In this context, the evidence of no change in the amount of CO2 and in CO2/SO2 ratio suggested us that this overpressure occurred in very shallow depths within the volcano feeding system. If our observations will be confirmed by other explosive event data, we will be able featuring the different source conditions triggering the ordinary explosive activity at Stromboli.

  10. "Special Case" Stellar Blast Teaching Astronomers New Lessons About Cosmic Explosions

    NASA Astrophysics Data System (ADS)

    2006-07-01

    A powerful thermonuclear explosion on a dense white-dwarf star last February has given astronomers their best look yet at the early stages of such explosions, called novae, and also is giving them tantalizing new clues about the workings of bigger explosions, called supernovae, that are used to measure the Universe. RS Ophiuchi Expansion RS Ophiuchi Expansion CREDIT: Rupen, Mioduszewski & Sokoloski, NRAO/AUI/NSF (Click on image for full-sized image and detailed caption) Using the National Science Foundation's Very Long Baseline Array (VLBA) and other telescopes, "We have seen structure in the blast earlier than in any other stellar explosion," said Tim O'Brien of the University of Manchester's Jodrell Bank Observatory in the U.K. "We see evidence that the explosion may be ejecting material in jets, contrary to theoretical models that assumed a spherical shell of ejected material," O'Brien added. The explosion occurred in a star system called RS Ophiuchi, in the constellation Ophiuchus. RS Ophiuchi consists of a dense white dwarf star with a red giant companion whose prolific stellar wind dumps material onto the surface of the white dwarf. When enough of this material has accumulated, theorists say, a gigantic thermonuclear explosion, similar to a hydrogen bomb but much larger, occurs. Systems such as RS Ophiuchi may eventually produce a vastly more powerful explosion -- a supernova -- when the white dwarf accumulates enough mass to cause it to collapse and explode violently. Because such supernova explosions (called Type 1a supernovae by astronomers) all are triggered as the white dwarf reaches the same mass, they are thought to be identical in their intrinsic brightness. This makes them extremely valuable as "standard candles" for measuring distances in the Universe. "We think the white dwarf in RS Ophiuchi is about as massive as a white dwarf can get, and so is close to the point when it will become a supernova," said Jennifer Sokoloski, of the Harvard- Smithsonian Center for Astrophysics. "If astronomers use such supernovae to measure the Universe, it's important to fully understand how these systems evolve prior to the explosion," she added. RS Ophiuchi is a "recurrent" nova that experienced such blasts in 1898, 1933, 1958, 1967, and 1985 prior to this year's event. Sokoloski also pointed out that RS Ophiuchi is "a very special type of system," in which the nova explosions occur inside a gaseous nebula created by the stellar wind coming from the red giant companion to the white dwarf. "This means that we can track the outward-moving blast wave from the explosion by observing X-rays produced as the blast plows through this nebula," said Sokoloski, who led a team using the Rossi X-Ray Timing Explorer (RXTE) satellite to do so. "One natural way to produce what we observe is with an explosion that was not spherical," she added. Another surprise came when the radio waves coming from RS Ophiuchi indicated that a strong magnetic field is present in the material ejected by the explosion. "This is the first case we've seen that showed signs of such a magnetic field in a recurrent nova," said Michael Rupen who, with Amy Mioduszewski, both of the National Radio Astronomy Observatory, and Sokoloski, did another study of the system using the VLBA. Rupen pointed out the importance of observing the object with both X-ray and radio telescopes. "What we could infer from the X-ray data, we could image with the radio telescopes," he said. All the researchers agree that their studies show that the explosion is more complex than scientists previously thought such blasts to be. "It's a jet-like explosion, probably shaped by the geometry of the binary-star system at the center," said O'Brien. Rupen added that RS Ophiuchi showed the "earliest detection ever of such a jet. In fact, we could actually tell -- within a couple of days -- when the jet turned on." The new information is valuable for understanding not just nova explosions but other stellar blasts, the scientists believe. "The physics is analogous to the physics of supernova explosions, so what we're learning from this object can be applied to supernovae and possibly to stellar explosions in general," Sokoloski said. In addition, she said, "in the early days of this explosion, we saw changes in the blast wave that it would take hundreds of years to see in a supernova explosion." The teams led by O'Brien and Sokoloski reported their findings in the July 20 edition of the scientific journal Nature. Rupen and Mioduszewski are submitting their results to the Astrophysical Journal Letters. Working with O'Brien were Mike Bode of Liverpool John Moores University in the U.K., Richard Porcas of the Max Planck Institute for Radioastronomy in Germany, Tom Muxlow of Jodrell Bank Observatory, Stewart Eyres of the University of Central Lancashire in the U.K., Rob Beswick, Simon Garrington and Richard Davis, all of Jodrell Bank, and Nye Evans of Keele University in the U.K. Working with Sokoloski were Gerardo Luna of the Harvard Smithsonian Center for Astrophysics, Koji Mukai of NASA's Goddard Space Flight Center and Scott Kenyon of the Harvard-Smithsonian Center for Astrophysics. In addition to the VLBA, O'Brien's group used the NSF's Very Large Array (VLA), the Multi-Element Radio-Linked Interferometer Network (MERLIN) in the U.K., and the European VLBI Network (EVN). The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  11. Numerical Simulation of Quarry Blast Sources

    DTIC Science & Technology

    1993-01-01

    Phillips Laboratory (PL/PKVA) AGENCY REPORT NUMBER 3701 N. Fairfax Dr. #717 3651 Lowry Avenue, SE Arlington, VA 2203-1714 Kirtland, AFB, NM 87117...Freeman and Company, San Francisco. Smith, A. T. (1992), "Discrimination of Explosions from Simultaneous Mining Blasts," Lawrence Livermore Report UCRL

  12. Identical fracture patterns in combat vehicle blast injuries due to improvised explosive devices; a case series

    PubMed Central

    2012-01-01

    Background In November 2008, a surgical team from the Red Cross Hospital Beverwijk, the Netherlands, was deployed in Afghanistan for three months to attend in the army hospital of Kandahar. During their stay, four incidents of armored personnel carriers encountering an improvised explosive device were assessed. In each incident, two soldiers were involved, whose injuries were strikingly similar. Case presentation The described cases comprise paired thoracic vertebral fractures, radial neck fractures, calcaneal fractures and talar fractures. Moreover, the different types of blast injury are mentioned and related to the injuries described in our series. Acknowledging the different blast mechanisms is important for understanding possible injury patterns. Conclusion From this case series, as well as the existing literature on injury patterns caused by blast injuries, it seems appropriate to pay extra attention to bodily areas that were injured in other occupants of the same vehicle. Obviously, the additional surveillance for specific injuries should be complementary to the regular trauma work-up (e.g., ATLS). PMID:23051981

  13. Extended adiabatic blast waves and a model of the soft X-ray background. [interstellar matter

    NASA Technical Reports Server (NTRS)

    Cox, D. P.; Anderson, P. R.

    1981-01-01

    An analytical approximation is generated which follows the development of an adiabatic spherical blast wave in a homogeneous ambient medium of finite pressure. An analytical approximation is also presented for the electron temperature distribution resulting from coulomb collisional heating. The dynamical, thermal, ionization, and spectral structures are calculated for blast waves of energy E sub 0 = 5 x 10 to the 50th power ergs in a hot low-density interstellar environment. A formula is presented for estimating the luminosity evolution of such explosions. The B and C bands of the soft X-ray background, it is shown, are reproduced by such a model explosion if the ambient density is about .000004 cm, the blast radius is roughly 100 pc, and the solar system is located inside the shocked region. Evolution in a pre-existing cavity with a strong density gradient may, it is suggested, remove both the M band and OVI discrepancies.

  14. The effect of suppressors and muzzle brakes on shock wave strength

    NASA Astrophysics Data System (ADS)

    Phan, K. C.; Stollery, J. L.

    Experimental simulations of a gun blast were performed in the course of an optimization study of shock-wave suppressor and muzzle-brake geometry. A single-spark schlieren system was used to photograph the shock waves emerging from a 32-mm shock tube. The suppressor systems tested with respect to the overpressure level included a perforated tube enclosed in an expansion chamber, a cup-and-box suppressor, and noise-absorbent materials inside a suppressor; high suppression efficiency was observed for the first two. Recoil simulation tests, performed with plain and pyramidal baffles, disk, and cylinder, show that the blast level is generally higher for a more efective muzzle brake. An optimum distance from the muzzle to the brake is suggested to be in the region of one caliber.

  15. Comparative outcome of bomb explosion injuries versus high-powered gunshot injuries of the upper extremity in a civilian setting.

    PubMed

    Luria, Shai; Rivkin, Gurion; Avitzour, Malka; Liebergall, Meir; Mintz, Yoav; Mosheiff, Ram

    2013-03-01

    Explosion injuries to the upper extremity have specific clinical characteristics that differ from injuries due to other mechanisms. To evaluate the upper extremity injury pattern of attacks on civilian targets, comparing bomb explosion injuries to gunshot injuries and their functional recovery using standard outcome measures. Of 157 patients admitted to the hospital between 2000 and 2004, 72 (46%) sustained explosion injuries and 85 (54%) gunshot injuries. The trauma registry files were reviewed and the patients completed the DASH Questionnaire (Disabilities of Arm, Shoulder and Hand) and SF-12 (Short Form-12) after a minimum period of 1 year. Of the 157 patients, 72 (46%) had blast injuries and 85 (54%) had shooting injuries. The blast casualties had higher Injury Severity Scores (47% vs. 22% with a score of > 16, P = 0.02) and higher percent of patients treated in intensive care units (47% vs. 28%, P = 0.02). Although the Abbreviated Injury Scale score of the upper extremity injury was similar in the two groups, the blast casualties were found to have more bilateral and complex soft tissue injuries and were treated surgically more often. No difference was found in the SF-12 or DASH scores between the groups at follow up. The casualties with upper extremity blast injuries were more severely injured and sustained more bilateral and complex soft tissue injuries to the upper extremity. However, the rating of the local injury to the isolated limb is similar, as was the subjective functional recovery.

  16. Neurological Effects of Blast Injury

    PubMed Central

    Hicks, Ramona R.; Fertig, Stephanie J.; Desrocher, Rebecca E.; Koroshetz, Walter J.; Pancrazio, Joseph J.

    2010-01-01

    Over the last few years, thousands of soldiers and an even greater number of civilians have suffered traumatic injuries due to blast exposure, largely attributed to improvised explosive devices in terrorist and insurgent activities. The use of body armor is allowing soldiers to survive blasts that would otherwise be fatal due to systemic damage. Emerging evidence suggests that exposure to a blast can produce neurological consequences in the brain, but much remains unknown. To elucidate the current scientific basis for understanding blast-induced traumatic brain injury (bTBI), the NIH convened a workshop in April, 2008. A multidisciplinary group of neuroscientists, engineers, and clinicians were invited to share insights on bTBI, specifically pertaining to: physics of blast explosions, acute clinical observations and treatments, preclinical and computational models, and lessons from the international community on civilian exposures. This report provides an overview of the state of scientific knowledge of bTBI, drawing from the published literature, as well as presentations, discussions, and recommendations from the workshop. One of the major recommendations from the workshop was the need to characterize the effects of blast exposure on clinical neuropathology. Clearer understanding of the human neuropathology would enable validation of preclinical and computational models, which are attempting to simulate blast wave interactions with the central nervous system. Furthermore, the civilian experience with bTBI suggests that polytrauma models incorporating both brain and lung injuries may be more relevant to the study of civilian countermeasures than considering models with a neurological focus alone. PMID:20453776

  17. Implementation of Smoothed Particle Hydrodynamics for Detonation of Explosive with Application to Rock Fragmentation

    NASA Astrophysics Data System (ADS)

    Pramanik, R.; Deb, D.

    2015-07-01

    The paper presents a methodology in the SPH framework to analyze physical phenomena those occur in detonation process of an explosive. It mainly investigates the dynamic failure mechanism in surrounding brittle rock media under blast-induced stress wave and expansion of high pressure product gases. A program burn model is implemented along with JWL equation of state to simulate the reaction zone in between unreacted explosive and product gas. Numerical examples of detonation of one- and two-dimensional explosive slab have been carried out to investigate the effect of reaction zone in detonation process and outward dispersion of gaseous product. The results are compared with those obtained from existing solutions. A procedure is also developed in SPH framework to apply continuity conditions between gas and rock interface boundaries. The modified Grady-Kipp damage model for the onset of tensile yielding and Drucker-Prager model for shear failure are implemented for elasto-plastic analysis of rock medium. The results show that high compressive stress causes high crack density in the vicinity of blast hole. The major principal stress (tensile) is responsible for forming radial cracks from the blast hole. Spalling zones are also developed due to stress waves reflected from the free surfaces.

  18. Petrologic constraints on the decompression history of magma prior to Vulcanian explosions at the Soufrière Hills volcano, Montserrat

    NASA Astrophysics Data System (ADS)

    Clarke, A. B.; Stephens, S.; Teasdale, R.; Sparks, R. S. J.; Diller, K.

    2007-04-01

    A series of 88 Vulcanian explosions occurred at the Soufrière Hills volcano, Montserrat, between August and October, 1997. Conduit conditions conducive to creating these and other Vulcanian explosions were explored via analysis of eruptive products and one-dimensional numerical modeling of magma ascent through a cylindrical conduit. The number densities and textures of plagioclase microlites were documented for twenty-three samples from the events. The natural samples all show very high number densities of microlites, and > 50% by number of microlites have areas < 20 μm 2. Pre-explosion conduit conditions and decompression history have been inferred from these data by comparison with experimental decompressions of similar groundmass compositions. Our comparisons suggest quench pressures < 30 MPa (origin depths < 2 km) and multiple rapid decompressions of > 13.75 MPa each during ascent from chamber to surface. Values are consistent with field studies of the same events and statistical analysis of explosion time-series data. The microlite volume number density trend with depth reveals an apparent transition from growth-dominated crystallization to nucleation-dominated crystallization at pressures of ˜ 7 MPa and lower. A concurrent sharp increase in bulk density marks the onset of significant open-system degassing, apparently due to a large increase in system permeability above ˜ 70% vesicularity. This open-system degassing results in a dense plug which eventually seals the conduit and forms conditions favorable to Vulcanian explosions. The corresponding inferred depth of overpressure at 250-700 m, near the base of the dense plug, is consistent with depth to center of pressure estimated from deformation measurements. Here we also illustrate that one-dimensional models representing ascent of a degassing, crystal-rich magma are broadly consistent with conduit profiles constructed via our petrologic analysis. The comparison between models and petrologic data suggests that the dense conduit plug forms as a result of high overpressure and open-system degassing through conduit walls.

  19. Damage Detection of a Concrete Column Subject to Blast Loads Using Embedded Piezoceramic Transducers.

    PubMed

    Xu, Kai; Deng, Qingshan; Cai, Lujun; Ho, Siuchun; Song, Gangbing

    2018-04-28

    Some of the most severe structural loadings come in the form of blast loads, which may be caused by severe accidents or even terrorist activities. Most commonly after exposure to explosive forces, a structure will suffer from different degrees of damage, and even progress towards a state of collapse. Therefore, damage detection of a structure subject to explosive loads is of importance. This paper proposes a new approach to damage detection of a concrete column structure subjected to blast loads using embedded piezoceramic smart aggregates (SAs). Since the sensors are embedded in the structure, the proposed active-sensing based approach is more sensitive to internal or through cracks than surface damage. In the active sensing approach, the embedded SAs act as actuators and sensors, that can respectively generate and detect stress waves. If the stress wave propagates across a crack, the energy of the wave attenuates, and the reduction of the energy compared to the healthy baseline is indicative of a damage. With a damage index matrix constructed by signals obtained from an array of SAs, cracks caused by blast loads can be detected throughout the structure. Conventional sensing methods such as the measurement of dynamic strain and acceleration were included in the experiment. Since columns are critical elements needed to prevent structural collapse, knowledge of their integrity and damage conditions is essential for safety after exposure to blast loads. In this research, a concrete column with embedded SAs was chosen as the specimen, and a series of explosive tests were conducted on the column. Experimental results reveal that surface damages, though appear severe, cause minor changes in the damage index, and through cracks result in significant increase of the damage index, demonstrating the effectiveness of the active sensing, enabled by embedded SAs, in damage monitoring of the column under blast loads, and thus providing a reliable indication of structural integrity in the event of blast loads.

  20. Damage Detection of a Concrete Column Subject to Blast Loads Using Embedded Piezoceramic Transducers

    PubMed Central

    Deng, Qingshan; Cai, Lujun; Ho, Siuchun; Song, Gangbing

    2018-01-01

    Some of the most severe structural loadings come in the form of blast loads, which may be caused by severe accidents or even terrorist activities. Most commonly after exposure to explosive forces, a structure will suffer from different degrees of damage, and even progress towards a state of collapse. Therefore, damage detection of a structure subject to explosive loads is of importance. This paper proposes a new approach to damage detection of a concrete column structure subjected to blast loads using embedded piezoceramic smart aggregates (SAs). Since the sensors are embedded in the structure, the proposed active-sensing based approach is more sensitive to internal or through cracks than surface damage. In the active sensing approach, the embedded SAs act as actuators and sensors, that can respectively generate and detect stress waves. If the stress wave propagates across a crack, the energy of the wave attenuates, and the reduction of the energy compared to the healthy baseline is indicative of a damage. With a damage index matrix constructed by signals obtained from an array of SAs, cracks caused by blast loads can be detected throughout the structure. Conventional sensing methods such as the measurement of dynamic strain and acceleration were included in the experiment. Since columns are critical elements needed to prevent structural collapse, knowledge of their integrity and damage conditions is essential for safety after exposure to blast loads. In this research, a concrete column with embedded SAs was chosen as the specimen, and a series of explosive tests were conducted on the column. Experimental results reveal that surface damages, though appear severe, cause minor changes in the damage index, and through cracks result in significant increase of the damage index, demonstrating the effectiveness of the active sensing, enabled by embedded SAs, in damage monitoring of the column under blast loads, and thus providing a reliable indication of structural integrity in the event of blast loads. PMID:29710807

  1. 30 CFR 75.1319 - Weight of explosives permitted in boreholes in bituminous and lignite mines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Weight of explosives permitted in boreholes in bituminous and lignite mines. 75.1319 Section 75.1319 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... 3 pounds except when blasting solid rock in its natural deposit. (b) The total weight of explosives...

  2. 30 CFR 75.1319 - Weight of explosives permitted in boreholes in bituminous and lignite mines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Weight of explosives permitted in boreholes in bituminous and lignite mines. 75.1319 Section 75.1319 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... 3 pounds except when blasting solid rock in its natural deposit. (b) The total weight of explosives...

  3. 30 CFR 75.1319 - Weight of explosives permitted in boreholes in bituminous and lignite mines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Weight of explosives permitted in boreholes in bituminous and lignite mines. 75.1319 Section 75.1319 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... 3 pounds except when blasting solid rock in its natural deposit. (b) The total weight of explosives...

  4. 30 CFR 75.1319 - Weight of explosives permitted in boreholes in bituminous and lignite mines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Weight of explosives permitted in boreholes in bituminous and lignite mines. 75.1319 Section 75.1319 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... 3 pounds except when blasting solid rock in its natural deposit. (b) The total weight of explosives...

  5. 30 CFR 75.1319 - Weight of explosives permitted in boreholes in bituminous and lignite mines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Weight of explosives permitted in boreholes in bituminous and lignite mines. 75.1319 Section 75.1319 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... 3 pounds except when blasting solid rock in its natural deposit. (b) The total weight of explosives...

  6. 30 CFR 817.62 - Use of explosives: Preblasting survey.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ACTIVITIES § 817.62 Use of explosives: Preblasting survey. (a) At least 30 days before initiation of blasting... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Use of explosives: Preblasting survey. 817.62... located within 1/2 mile of the permit area how to request a preblasting survey. (b) A resident or owner of...

  7. 30 CFR 816.62 - Use of explosives: Preblasting survey.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ACTIVITIES § 816.62 Use of explosives: Preblasting survey. (a) At least 30 days before initiation of blasting... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Use of explosives: Preblasting survey. 816.62... located within 1/2 mile of the permit area how to request a preblasting survey. (b) A resident or owner of...

  8. Primary Blast-Induced Traumatic Brain Injury in Rats Leads to Increased Prion Protein in Plasma: A Potential Biomarker for Blast-Induced Traumatic Brain Injury

    PubMed Central

    Pham, Nam; Sawyer, Thomas W.; Wang, Yushan; Jazii, Ferdous Rastgar; Vair, Cory

    2015-01-01

    Abstract Traumatic brain injury (TBI) is deemed the “signature injury” of recent military conflicts in Afghanistan and Iraq, largely because of increased blast exposure. Injuries to the brain can often be misdiagnosed, leading to further complications in the future. Therefore, the use of protein biomarkers for the screening and diagnosis of TBI is urgently needed. In the present study, we have investigated the plasma levels of soluble cellular prion protein (PrPC) as a novel biomarker for the diagnosis of primary blast-induced TBI (bTBI). We hypothesize that the primary blast wave can disrupt the brain and dislodge extracellular localized PrPC, leading to a rise in concentration within the systemic circulation. Adult male Sprague–Dawley rats were exposed to single pulse shockwave overpressures of varying intensities (15-30 psi or 103.4–206.8 kPa] using an advanced blast simulator. Blood plasma was collected 24 h after insult, and PrPC concentration was determined with a modified commercial enzyme-linked immunosorbent assay (ELISA) specific for PrPC. We provide the first report that mean PrPC concentration in primary blast exposed rats (3.97 ng/mL±0.13 SE) is significantly increased compared with controls (2.46 ng/mL±0.14 SE; two tailed test p<0.0001). Furthermore, we report a mild positive rank correlation between PrPC concentration and increasing blast intensity (psi) reflecting a plateaued response at higher pressure magnitudes, which may have implications for all military service members exposed to blast events. In conclusion, it appears that plasma levels of PrPC may be a novel biomarker for the detection of primary bTBI. PMID:25058115

  9. Preliminary report on the Black Thunder, Wyoming CTBT R and D experiment quicklook report: LLNL input from regional stations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harben, P.E.; Glenn, L.A.

    This report presents a preliminary summary of the data recorded at three regional seismic stations from surface blasting at the Black Thunder Coal Mine in northeast Wyoming. The regional stations are part of a larger effort that includes many more seismic stations in the immediate vicinity of the mine. The overall purpose of this effort is to characterize the source function and propagation characteristics of large typical surface mine blasts. A detailed study of source and propagation features of conventional surface blasts is a prerequisite to attempts at discriminating this type of blasting activity from other sources of seismic events.more » The Black Thunder Seismic experiment is a joint verification effort to determine seismic source and path effects that result from very large, but routine ripple-fired surface mining blasts. Studies of the data collected will be for the purpose of understanding how the near-field and regional seismic waveforms from these surface mining blasts are similar to, and different from, point shot explosions and explosions at greater depth. The Black Hills Station is a Designated Seismic Station that was constructed for temporary occupancy by the Former Soviet Union seismic verification scientists in accordance with the Threshold Test Ban Treaty protocol.« less

  10. Perspectives on repeated low-level blast and the measurement of neurotrauma in humans as an occupational exposure risk

    NASA Astrophysics Data System (ADS)

    Carr, W.; Dell, K. C.; Yanagi, M. A.; Hassan, D. M.; LoPresti, M. L.

    2017-11-01

    A pressing question in military medical research is the nature and degree of effects on the human brain from occupational repeated exposure to low-level explosive blast, but reliable and effective means to objectively measure such effects remain elusive. In survey results, headache, difficulty sleeping, irritability, cognitive impairment, and a variety of other symptoms consistent with post-concussive syndrome have been reported by those exposed to blast and there was positive correlation between degree of blast exposure and degree of symptomology, but an important goal is to obtain more objective evidence of an effect than self-report alone. This review reflects recent efforts to measure and evaluate such hypothesized effects and current recommendations for ongoing study. Optimal measures are likely those with sensitivity and specificity to systemic effects in mild neurotrauma, that have minimal to no volitional component, and that can be sampled relatively quickly with minimal intrusion in prospective, observational field studies during routine training with explosives. An understanding of an association between parameters of exposure to repeated low-level blast and negative neurologic effects would support the evaluation of clinical implications and development of protective equipment and surveillance protocols where warranted. At present, low-level blast exposure surveillance measurements do not exist as a systematic record for any professional community.

  11. Thermal explosion analysis of methyl ethyl ketone peroxide by non-isothermal and isothermal calorimetric applications.

    PubMed

    Chi, Jen-Hao; Wu, Sheng-Hung; Shu, Chi-Min

    2009-11-15

    In the past, process incidents attributed to organic peroxides (OPs) that involved near misses, over-pressures, runaway reactions, and thermal explosions occurred because of poor training, human error, incorrect kinetic assumptions, insufficient change management, and inadequate chemical knowledge in the manufacturing process. Calorimetric applications were employed broadly to test organic peroxides on a small-scale because of their thermal hazards, such as exothermic behavior and self-accelerating decomposition in the laboratory. In essence, methyl ethyl ketone peroxide (MEKPO) is highly reactive and exothermically unstable. In recent years, it has undergone many thermal explosions and runaway reaction incidents in the manufacturing process. Differential scanning calorimetry (DSC), vent sizing package 2 (VSP2), and thermal activity monitor (TAM) were employed to analyze thermokinetic parameters and safety index. The intent of the analyses was to facilitate the use of various auto-alarm equipments to detect over-pressure, over-temperature, and hazardous materials leaks for a wide spectrum of operations. Results indicated that MEKPO decomposition is detected at low temperatures (30-40 degrees C), and the rate of decomposition was shown to exponentially increase with temperature and pressure. Determining time to maximum rate (TMR), self-accelerating decomposition temperature (SADT), maximum temperature (T(max)), exothermic onset temperature (T(0)), and heat of decomposition (DeltaH(d)) was essential for identifying early-stage runaway reactions effectively for industries.

  12. On the Accurate Determination of Shock Wave Time-Pressure Profile in the Experimental Models of Blast-Induced Neurotrauma

    PubMed Central

    Skotak, Maciej; Alay, Eren; Chandra, Namas

    2018-01-01

    Measurement issues leading to the acquisition of artifact-free shock wave pressure-time profiles are discussed. We address the importance of in-house sensor calibration and data acquisition sampling rate. Sensor calibration takes into account possible differences between calibration methodology in a manufacturing facility, and those used in the specific laboratory. We found in-house calibration factors of brand new sensors differ by less than 10% from their manufacturer supplied data. Larger differences were noticeable for sensors that have been used for hundreds of experiments and were as high as 30% for sensors close to the end of their useful lifetime. These observations were despite the fact that typical overpressures in our experiments do not exceed 50 psi for sensors that are rated at 1,000 psi maximum pressure. We demonstrate that sampling rate of 1,000 kHz is necessary to capture the correct rise time values, but there were no statistically significant differences between peak overpressure and impulse values for low-intensity shock waves (Mach number <2) at lower rates. We discuss two sources of experimental errors originating from mechanical vibration and electromagnetic interference on the quality of a waveform recorded using state-of-the-art high-frequency pressure sensors. The implementation of preventive measures, pressure acquisition artifacts, and data interpretation with examples, are provided in this paper that will help the community at large to avoid these mistakes. In order to facilitate inter-laboratory data comparison, common reporting standards should be developed by the blast TBI research community. We noticed the majority of published literature on the subject limits reporting to peak overpressure; with much less attention directed toward other important parameters, i.e., duration, impulse, and dynamic pressure. These parameters should be included as a mandatory requirement in publications so the results can be properly compared with others. PMID:29467718

  13. A Mouse Model of Blast-Induced mild Traumatic Brain Injury

    PubMed Central

    Rubovitch, Vardit; Ten-Bosch, Meital; Zohar, Ofer; Harrison, Catherine R.; Tempel-Brami, Catherine; Stein, Elliot; Hoffer, Barry J.; Balaban, Carey D.; Schreiber, Shaul; Chiu, Wen-Ta; Pick, Chaim G.

    2011-01-01

    Improvised explosive devices (IEDs) are one of the main causes for casualties among civilians and military personnel in the present war against terror. Mild traumatic brain injury from IEDs induces various degrees of cognitive, emotional and behavioral disturbances but knowledge of the exact brain pathophysiology following exposure to blast is poorly understood. The study was aimed at establishing a murine model for a mild BI-TBI that isolates low-level blast pressure effects to the brain without systemic injuries. An open-field explosives detonation was used to replicate, as closely as possible, low-level blast trauma in the battlefield or at a terror-attack site. No alterations in basic neurological assessment or brain gross pathology were found acutely in the blast-exposed mice. At 7 days post blast, cognitive and behavioral tests revealed significantly decreased performance at both 4 and 7 meters distance from the blast (5.5 and 2.5 PSI, respectively). At 30 days post-blast, clear differences were found in animals at both distances in the object recognition test, and in the 7 m group in the Y maze test. Using MRI, T1 weighted images showed an increased BBB permeability one month post-blast. DTI analysis showed an increase in fractional anisotropy (FA) and a decrease in radial diffusivity. These changes correlated with sites of up-regulation of manganese superoxide dismutase 2 in neurons and CXC-motif chemokine receptor 3 around blood vessels in fiber tracts. These results may represent brain axonal and myelin abnormalities. Cellular and biochemical studies are underway in order to further correlate the blast-induced cognitive and behavioral changes and to identify possible underlying mechanisms that may help develop treatment- and neuroprotective modalities. PMID:21946269

  14. 30 CFR 56.6403 - Branch circuits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Electric Blasting § 56.6403 Branch circuits. (a) If electric blasting includes the use of branch circuits, each... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Branch circuits. 56.6403 Section 56.6403...

  15. 30 CFR 57.6403 - Branch circuits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Electric Blasting-Surface and Underground § 57.6403 Branch circuits. (a) If electric blasting includes the use of... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Branch circuits. 57.6403 Section 57.6403...

  16. 30 CFR 56.6405 - Firing devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Electric Blasting § 56... all electric detonators to be fired with the type of circuits used. Storage or dry cell batteries are not permitted as power sources. (b) Blasting machines shall be tested, repaired, and maintained in...

  17. The Foulness Multiton Air Blast Simulator. Part 3. Blast Wave Formation and Methods Used to Drive the Simulator,

    DTIC Science & Technology

    1980-03-01

    the total energy release of the explosive driver using expanded polystyrene and at the same time, controlling the rate of release. The part played by aqueous foam in minimising irregularities in waveform also is described. (Author)

  18. Some issues for blast from a structural reactive material solid

    NASA Astrophysics Data System (ADS)

    Zhang, F.

    2018-07-01

    Structural reactive material (SRM) is consolidated from a mixture of micro- or nanometric reactive metals and metal compounds to the mixture theoretical maximum density. An SRM can thus possess a higher energy density, relying on various exothermic reactions, and higher mechanical strength and heat resistance than that of conventional CHNO explosives. Progress in SRM solid studies is reviewed specifically as an energy source for air blast through the reaction of fine SRM fragments under explosive loading. This includes a baseline SRM solid explosion characterization, material properties of an SRM solid, and its dynamic fine fragmentation mechanisms and fragment reaction mechanisms. The overview is portrayed mainly from the author's own experimental studies combined with theoretical and numerical explanation. These advances have laid down some fundamentals for the next stage of developments.

  19. Some issues for blast from a structural reactive material solid

    NASA Astrophysics Data System (ADS)

    Zhang, F.

    2018-03-01

    Structural reactive material (SRM) is consolidated from a mixture of micro- or nanometric reactive metals and metal compounds to the mixture theoretical maximum density. An SRM can thus possess a higher energy density, relying on various exothermic reactions, and higher mechanical strength and heat resistance than that of conventional CHNO explosives. Progress in SRM solid studies is reviewed specifically as an energy source for air blast through the reaction of fine SRM fragments under explosive loading. This includes a baseline SRM solid explosion characterization, material properties of an SRM solid, and its dynamic fine fragmentation mechanisms and fragment reaction mechanisms. The overview is portrayed mainly from the author's own experimental studies combined with theoretical and numerical explanation. These advances have laid down some fundamentals for the next stage of developments.

  20. Blast from the past

    NASA Astrophysics Data System (ADS)

    Carlowicz, Michael

    1996-02-01

    Forget dynamite or hydraulic and mechanical drills. Industrial and federal researchers have started boring holes with rocket fuel. In a cooperative arrangement between Sandia National Laboratory, Global Environmental Solutions, and Universal Tech Corp., scientists and engineers extracted fuel from 200 rocket motors and used it as a mining explosive. In a demonstration completed last fall, researchers used 4950 kg of solid rocket propellant to move more than 22,500 metric tons of rock from the Lone Star Quarry in Prairie, Oklahoma. They found that the fuel improved blast energy and detonation velocity over traditional explosives, and it required fewer drill holes.

  1. Overview of major hazards. Part 2: Source term; dispersion; combustion; blast, missiles, venting; fire; radiation; runaway reactions; toxic substances; dust explosions

    NASA Astrophysics Data System (ADS)

    Vilain, J.

    Approaches to major hazard assessment and prediction are reviewed. Source term: (phenomenology/modeling of release, influence on early stages of dispersion); dispersion (atmospheric advection, diffusion and deposition, emphasis on dense/cold gases); combustion (flammable clouds and mists covering flash fires, deflagration, transition to detonation; mostly unconfined/partly confined situations); blast formation, propagation, interaction with structures; catastrophic fires (pool fires, torches and fireballs; highly reactive substances) runaway reactions; features of more general interest; toxic substances, excluding toxicology; and dust explosions (phenomenology and protective measures) are discussed.

  2. Neurocognitive and Biomarker Evaluation of Combination mTBI from Blast Overpressure and Traumatic Stress

    DTIC Science & Technology

    2014-11-01

    that the BOP produced a retrograde amnesia . In this regard, it is notable that the BOP exposures took place beginning at ~22 hours after the IES. It is...followed a passive avoidance task (Ahlers et al., 2012). Typically, more severe injuries are required to produce a retrograde amnesia for events already...although to a lesser degree than the sham-BOP treatment group. Thus, the retrograde amnesia would have to be characterized as partial. While a

  3. Neurocognitive and Biomarker Evaluation of Combination mTBI from Blast Overpressure and Traumatic Stress

    DTIC Science & Technology

    2013-09-01

    such as anterograde amnesia (Ahlers, et al., 2012). Additionally, we used three BOP exposures (1/day). This regimen has been used previously and...second interpretation of this result is that the BOP produced a retrograde amnesia . In this regard, it is notable that the BOP exposures took place...produce a retrograde amnesia for events already presumed to be consolidated into long term memory (e.g., Chen, et al., 2009). It is also notable that BOP

  4. The Effect of Propellant Composition on Secondary Muzzle Blast Overpressure

    DTIC Science & Technology

    1983-04-01

    LOVA propellants evaluated included PU/HMX, CTBN /HMX, HTPB/HMX, CAB/RDX, CA/RDX, Kraton/RDX, and EC/NC/RDX. Details of the propellant compositions...RDX tests. Secondary flash was observed for all the firings of all the other candidates, even CTBN /HMX, which had some suppressant. All of these...Propellant Flame Temp (K) Intensity (Mcd) Observations of Flash Kraton/RDX 2283 18.2 ± 1 . 2 11 11 CTBN /HMX 2379 13.8 ± • 72 8 8 HTPB/HMX 2363 10.5

  5. NOVA-2 -- A Digital Computer Program for Analyzing Nuclear Overpressure Effects on Aircraft. Part 1. Theory

    DTIC Science & Technology

    1976-08-01

    extensive areas of good agreement with measured loadings where the prediction is based on acoustic theory. Acoustic theory as applied to thin airfoils...Acoustic thaory ha« baen demonstrated by references 12 through 18 to provide fairly good agreeaent with measured airloads due to blast and shock... ia found to riae to large values near the leading edge. Higher observed values of Ac further rearward of the leading edge ere found to compel

  6. Attenuation Effects of Thermal Radiation on Internal Blast Overpressure.

    DTIC Science & Technology

    1979-12-01

    SECURITY CLASSIFICATION OF THIS ZaGt ("OR. 08e. Enered) REPORT DOCUMENTATION PAGE READ MTRU,-TIORS REPORT MU01 Ia.VT ACCEMIOl Mo. MY r CATALOG UMrERt...014-6o 0 SECURITY CLASSIFICATION OFr..Is , . o. l I UNCLASSIFIED Secum". CLUIUCYIOW O s margWn o fee e. pressure was computed. Reports of the results...were calculated and thermodynamic equilibrium was demonstrated through statistical considerations. \\AccessiMf nor NTIS .I DDC TA UG ann o unc e

  7. Kevlar Vest Protection against Blast Overpressure Brain Injury: Systemic Contributions to Injury Etiology

    DTIC Science & Technology

    2015-07-01

    F. S., Invest. Ophthal- mol. Vis. Sci. 2003, 44, 3219–3225. [52] Sun , Y., Jin , K., Xie, L., Childs, J., Mao, X. O., Logvinova, A., Greenberg, D. A...traumatic stress disorder (PTSD) within the Department of Defense. Clin. Neuropsychol. 23, 1291–1298. Jin , K., Zhu, Y., Sun , Y., Mao, X. O., Xie, L., and...task-specific neurobehavioral experience. Neurosci. Lett. 431, 226–230. Jin , K., Zhu, Y., Sun , Y., Mao, X. O., Xie, L., and Greenberg, D. A. (2002

  8. 75 FR 56489 - Separation Distances of Ammonium Nitrate and Blasting Agents From Explosives or Blasting Agents...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-16

    ... combustible, organic material calculated as carbon, or (3) ammonium nitrate-based fertilizers containing... that passes the insensitivity test prescribed in the definition of ammonium nitrate fertilizer issued by the Fertilizer Institute'' in its ``Definition and Test Procedures for Ammonium Nitrate Fertilizer...

  9. 30 CFR 816.67 - Use of explosives: Control of adverse effects.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... established in accordance with either the maximum peak-particle-velocity limits of paragraph (d)(2), the... in the blasting plan and approved by the regulatory authority. (2) Maximum peak particle velocity. (i... (D), from the blasting site, in feet Maximum allowable peak particle velocity (V max) for ground...

  10. 30 CFR 816.67 - Use of explosives: Control of adverse effects.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... established in accordance with either the maximum peak-particle-velocity limits of paragraph (d)(2), the... in the blasting plan and approved by the regulatory authority. (2) Maximum peak particle velocity. (i... (D), from the blasting site, in feet Maximum allowable peak particle velocity (V max) for ground...

  11. 30 CFR 816.67 - Use of explosives: Control of adverse effects.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... established in accordance with either the maximum peak-particle-velocity limits of paragraph (d)(2), the... in the blasting plan and approved by the regulatory authority. (2) Maximum peak particle velocity. (i... (D), from the blasting site, in feet Maximum allowable peak particle velocity (V max) for ground...

  12. 30 CFR 816.67 - Use of explosives: Control of adverse effects.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... established in accordance with either the maximum peak-particle-velocity limits of paragraph (d)(2), the... in the blasting plan and approved by the regulatory authority. (2) Maximum peak particle velocity. (i... (D), from the blasting site, in feet Maximum allowable peak particle velocity (V max) for ground...

  13. 30 CFR 816.67 - Use of explosives: Control of adverse effects.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... established in accordance with either the maximum peak-particle-velocity limits of paragraph (d)(2), the... in the blasting plan and approved by the regulatory authority. (2) Maximum peak particle velocity. (i... (D), from the blasting site, in feet Maximum allowable peak particle velocity (V max) for ground...

  14. 30 CFR 817.61 - Use of explosives: General requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... underground mines. (2) The blast design may be presented as part of a permit application or at a time, before... airblast, flyrock, and ground-vibration standards in § 817.67. (4) The blast design shall be prepared and... INTERIOR PERMANENT PROGRAM PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-UNDERGROUND MINING...

  15. Application of directional blasting in mining and civil engineering, 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chernigovskii, A.A.

    1986-01-01

    The author describes the mechanism of breaking mineral rocks through blasting and offers recommendations on the application of directional blasting in mining and civil engineering. He also introduces criteria for cost-effectiveness of transporting rock mass from stope to pile by means of energy of explosion. And, the book presents ballistic tables to be used in constructing the trajectory of movement of a rock fragment during blasting operations while taking into account the topography of the land. In this edition, the author presents a more detailed theoretical treatment on the mechanism of fragmentation of a monolithic or fissured rock mass throughmore » blasting.« less

  16. In Vitro Studies of Primary Explosive Blast Loading on Neurons

    DTIC Science & Technology

    2015-09-01

    blast but was significantly higher for the triple blast. Membrane permeability was also evaluated by calcein dye . Calcein is normally a membrane...impermeable dye ; however, upon damage to the plasma membrane, leakage of the dye into the cytosol can occur, causing an increase in the fluorescence of the...intensities were significantly higher for the injured cells compared with the control and sham. However, the difference in dye uptake between the singly and

  17. A Survey of Blast Injury across the Full Landscape of Military Science (Etude d’ensemble des blessures dues aux explosions a travers le panorama complet de la science militaire)

    DTIC Science & Technology

    2011-04-01

    Military Science (RTO-MP-HFM-207) Executive Summary Blast injury is a significant source of casualties in current NATO operations. The term “blast...toxicologique du souffle incluant les mécanismes de dose (par exemple, normes d’exposition à un tube à choc ), la description des points limites dose

  18. Research on a Sudden Explosion and its Environmental Impact

    NASA Astrophysics Data System (ADS)

    Ye, Maosheng; Ma, Hui; Ni, Qingwei

    2017-12-01

    A sudden blast was chosen as the studied topic. Also, one computer based virtual experimentation was used to estimate the dimensional impact of initial pollutant plume from blasts. Self-made method using Mathcad code was used to generate the output for the period of the first tenth of a second (1deci-second) to 1minute (60s) of the blast at the point source. It also depicted long-range air pollution travel within the first 1 to 10 minutes. In the case study, it assumed an average directional diffusivity of 1720 m2s-1 which is about 25 per cent of the average generated speed of common explosives. The newly developed model revealed a plume cloud impact of 6.8×107µgm-3 in the first 1millisecond (0.01s) which decayed suddenly to a value of 1.7×107µgm-3 in the first 1decisecond (0.1s). The impact concentration at the point source by the end of the first second (1.0s) was 3.2×105µgm-3 which implied a 99.5% sudden decay when compared to 0.01s concentration value at the emission point source. Computerized experiments observed that air pollutants release from explosives/blasts were dispersed into the atmosphere in the first few seconds by forceful injection instead of by gradual dispersion as is the case with normal air pollutants plume releases.

  19. A Distribution-Free Description of Fragmentation by Blasting Based on Dimensional Analysis

    NASA Astrophysics Data System (ADS)

    Sanchidrián, José A.; Ouchterlony, Finn

    2017-04-01

    A model for fragmentation in bench blasting is developed from dimensional analysis adapted from asteroid collision theory, to which two factors have been added: one describing the discontinuities spacing and orientation and another the delay between successive contiguous shots. The formulae are calibrated by nonlinear fits to 169 bench blasts in different sites and rock types, bench geometries and delay times, for which the blast design data and the size distributions of the muckpile obtained by sieving were available. Percentile sizes of the fragments distribution are obtained as the product of a rock mass structural factor, a rock strength-to-explosive energy ratio, a bench shape factor, a scale factor or characteristic size and a function of the in-row delay. The rock structure is described by means of the joints' mean spacing and orientation with respect to the free face. The strength property chosen is the strain energy at rupture that, together with the explosive energy density, forms a combined rock strength/explosive energy factor. The model is applicable from 5 to 100 percentile sizes, with all parameters determined from the fits significant to a 0.05 level. The expected error of the prediction is below 25% at any percentile. These errors are half to one-third of the errors expected with the best prediction models available to date.

  20. New possibilities to analyse non-standard explosives and post blast residues in forensic practice

    NASA Astrophysics Data System (ADS)

    Kotrlý, Marek; Turková, Ivana

    2005-05-01

    Nonstandard and home-made explosives always pose a considerable threat for security forces in terms of their practically unlimited variability, both in composition and in construction of explosive devises. Electron microscopy - SEM with EDS/WDS is one of the key techniques for an analysis of non-standard explosives and post-blast residues. If the amount of materials allows it, a number of other analytical techniques are utilized, such as XRD that is capable of a direct phase identification of a crystalline substance, namely in mixtures. TLC has constantly proved itself useful for laboratory screening. Furthermore, combinations of FTIR, Raman spectrometry, LC MS, GC MS, XRF, micro XRF and other ones are applied. In the case of identification of post-blast residues, where an investigation is often conducted at the level of separate microscopic particles, the role of SEM is unsubstitutable, whereas the analysis of the organic phase from these often sporadic microparticles has been infeasible until recently. One of the very interesting options appears to be Raman spectrometry technique, which is nowadays obtainable as a supplement to SEM EDX. Newly available is the device that is fully confocal, SEM keeps full functionality and scan range, very high resolution (for green laser resolution 360nm FWHM; 430nm Rayleigh), it is fitted with high quality objective lens, enhances mapping through Raman spectrometry in a volume 250μm x 250μm x 250μm by piezo driven scanner (capacitive feedback linearized) and obtaining a high quality white light image (250μm x 250μm) immediately in the SEM chamber. This technique is currently undergoing intensive testing and it seems that the method could significantly help to address issues with the analysis of organic phases in electron microscopy not only in the case of post-blast residues and explosives.

  1. Blast optimization for improved dragline productivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humphreys, M.; Baldwin, G.

    1994-12-31

    A project aimed at blast optimization for large open pit coal mines is utilizing blast monitoring and analysis techniques, advanced dragline monitoring equipment, and blast simulation software, to assess the major controlling factors affecting both blast performance and subsequent dragline productivity. This has involved collaborative work between the explosives supplier, mine operator, monitoring equipment manufacturer, and a mining research organization. The results from trial blasts and subsequently monitored dragline production have yielded promising results and continuing studies are being conducted as part of a blast optimization program. It should be stressed that the optimization of blasting practices for improved draglinemore » productivity is a site specific task, achieved through controlled and closely monitored procedures. The benefits achieved at one location can not be simply transferred to another minesite unless similar improvement strategies are first implemented.« less

  2. Comparison between a typical and a simplified model for blast load-induced structural response

    NASA Astrophysics Data System (ADS)

    Abd-Elhamed, A.; Mahmoud, S.

    2017-02-01

    As explosive blasts continue to cause severe damage as well as victims in both civil and military environments. There is a bad need for understanding the behavior of structural elements to such extremely short duration dynamic loads where it is of great concern nowadays. Due to the complexity of the typical blast pressure profile model and in order to reduce the modelling and computational efforts, the simplified triangle model for blast loads profile is used to analyze structural response. This simplified model considers only the positive phase and ignores the suction phase which characterizes the typical one in simulating blast loads. The closed from solution for the equation of motion under blast load as a forcing term modelled either typical or simplified models has been derived. The considered herein two approaches have been compared using the obtained results from simulation response analysis of a building structure under an applied blast load. The computed error in simulating response using the simplified model with respect to the typical one has been computed. In general, both simplified and typical models can perform the dynamic blast-load induced response of building structures. However, the simplified one shows a remarkably different response behavior as compared to the typical one despite its simplicity and the use of only positive phase for simulating the explosive loads. The prediction of the dynamic system responses using the simplified model is not satisfactory due to the obtained larger errors as compared to the system responses obtained using the typical one.

  3. [Characteristics and Treatment Strategies for Penetrating Injuries on the Example of Gunshot and Blast Victims without Ballistic Body Armour in Afghanistan (2009 - 2013)].

    PubMed

    Güsgen, Christoph; Willms, Arnulf; Richardsen, Ines; Bieler, Dan; Kollig, Erwin; Schwab, Robert

    2017-08-01

    Much like other countries, Germany has recently seen terrorist attacks being planned, executed or prevented at the last minute. This highlights the need for expertise in the treatment of penetrating torso traumas by bullets or explosions. Data on the treatment of firearm injuries and, even more so, blast injuries often stems from crises or war regions. However, it is difficult to compare injuries from such regions with injuries from civilian terrorist attacks due to the ballistic body protection (protective vests, body armour) worn by soldiers. Methods An analysis was performed based on data from patients who were treated in the German Military Hospital Mazar-e Sharif for gunshots or injuries from explosions in the years 2009 to 2013. The data selection was based on patients with penetrating injuries to the thorax and/or abdomen. For better comparability with civilian attack scenarios, this study only included civilian patients without ballistic body protection (body armour, protective vests). Results Out of 117 analysed patients, 58 were affected by firearms and 59 by explosive injuries of the thorax or abdomen. 60% of patients had a thoracic injury, 69% had an abdominal injury, and 25.6% had combined thoracic-abdominal injuries. Blast injury patients were significantly more affected by thoracic trauma. As regards abdominal injuries, liver, intestinal, and colonic lesions were leading in number. Patients with blast injuries had significantly more injured organs and a significantly higher ISS averaging 29. 26% of the shot patients and 41% of the blast wounded patients received Damage Control Surgery (DCS). Despite a lower ISS, gunshot victims did not have a lower total number of operations per patient. Overall mortality was 13.7% (10.3% gunshot wounds, 16.7% blast injury). The highest mortality rate (25.7%) was recorded for patients with combined thoracoabdominal injuries (vs. 8.3% for thoracic and 8.7% for abdominal injuries). The ISS of deceased patients was significantly higher at 32.9%. Conclusion Patients without ballistic protection of the torso have high mortality rates, especially when suffering thoracoabdominal blast injuries. Blast injuries frequently lead to the DCS indication. The care of firearm and blast injury patients requires knowledge and competence in the damage control procedures for thorax and abdomen. Georg Thieme Verlag KG Stuttgart · New York.

  4. 27 CFR 555.124 - Records maintained by licensed dealers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... following the date of purchase or other acquisition of explosive materials (except as provided in paragraph... identification. (4) Quantity (applicable quantity units, such as pounds of explosives, number of detonators, number of display fireworks, etc.). (5) Description (dynamite (dyn), blasting agents (ba), detonators...

  5. 27 CFR 555.122 - Records maintained by licensed importers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... quantity units, such as pounds of explosives, number of detonators, number of display fireworks, etc.). (5) Description (dynamite (dyn), blasting agents (ba), detonators (det), display fireworks (df), etc.) and size... identification. (4) Quantity (applicable quantity units, such as pounds of explosives, number of detonators...

  6. 27 CFR 555.124 - Records maintained by licensed dealers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... following the date of purchase or other acquisition of explosive materials (except as provided in paragraph... identification. (4) Quantity (applicable quantity units, such as pounds of explosives, number of detonators, number of display fireworks, etc.). (5) Description (dynamite (dyn), blasting agents (ba), detonators...

  7. 27 CFR 555.122 - Records maintained by licensed importers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... quantity units, such as pounds of explosives, number of detonators, number of display fireworks, etc.). (5) Description (dynamite (dyn), blasting agents (ba), detonators (det), display fireworks (df), etc.) and size... identification. (4) Quantity (applicable quantity units, such as pounds of explosives, number of detonators...

  8. Blast-Absorbing Bag

    NASA Technical Reports Server (NTRS)

    Kahn, Jon B.

    1992-01-01

    Proposed expandable bag contains debris from explosion. Permanently surrounds vessel or devices prone to explosive disintegration or slipped around small bomb. Finned cells shaped like outward-opening cups. Cells built up from overlapped sheets of fabric and stitched together to form expandable polyhedral bag. Cells pentagonal, triangular or square.

  9. Waveform inversion of acoustic waves for explosion yield estimation

    DOE PAGES

    Kim, K.; Rodgers, A. J.

    2016-07-08

    We present a new waveform inversion technique to estimate the energy of near-surface explosions using atmospheric acoustic waves. Conventional methods often employ air blast models based on a homogeneous atmosphere, where the acoustic wave propagation effects (e.g., refraction and diffraction) are not taken into account, and therefore, their accuracy decreases with increasing source-receiver distance. In this study, three-dimensional acoustic simulations are performed with a finite difference method in realistic atmospheres and topography, and the modeled acoustic Green's functions are incorporated into the waveform inversion for the acoustic source time functions. The strength of the acoustic source is related to explosionmore » yield based on a standard air blast model. The technique was applied to local explosions (<10 km) and provided reasonable yield estimates (<~30% error) in the presence of realistic topography and atmospheric structure. In conclusion, the presented method can be extended to explosions recorded at far distance provided proper meteorological specifications.« less

  10. Times and locations of explosions; U.S. Geological Survey 1962 field season

    USGS Publications Warehouse

    Roller, John C.

    1962-01-01

    The U.S. Geological Survey detonated 86 large charges of chemical explosives in the western United States from 6 June to 9 August 1962, in a study of crustal structure in the western United States. This Technical Letter consists of two tables containing information about these explosions. Table I gives a brief geographical description of the shotpoints, and Table II gives the date, time, location, charge size, surface elevation, and some general information about the shots. In the Remarks column (Table II), the configuration and depth of most of the charges are given. This part of the table is not complete, as some of this information has not yet been compiled. Three types of explosives were used in the program. These were: Nitramon WW, a carbo-nitrate blasting agent; Composition B, a mixture of RDX and TNT; and Tovex-Gel, a non-nitroglycerin blasting slurry. The loading, firing, and surveying was done by United ElectroDynamics, Inc., of Pasadena, California. The timing was done by the U.S. Geological Survey.

  11. Waveform inversion of acoustic waves for explosion yield estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, K.; Rodgers, A. J.

    We present a new waveform inversion technique to estimate the energy of near-surface explosions using atmospheric acoustic waves. Conventional methods often employ air blast models based on a homogeneous atmosphere, where the acoustic wave propagation effects (e.g., refraction and diffraction) are not taken into account, and therefore, their accuracy decreases with increasing source-receiver distance. In this study, three-dimensional acoustic simulations are performed with a finite difference method in realistic atmospheres and topography, and the modeled acoustic Green's functions are incorporated into the waveform inversion for the acoustic source time functions. The strength of the acoustic source is related to explosionmore » yield based on a standard air blast model. The technique was applied to local explosions (<10 km) and provided reasonable yield estimates (<~30% error) in the presence of realistic topography and atmospheric structure. In conclusion, the presented method can be extended to explosions recorded at far distance provided proper meteorological specifications.« less

  12. Underbody Blast Models of TBI Caused by Hyper-Acceleration and Secondary Head Impact

    DTIC Science & Technology

    2017-10-01

    brain injury (TBI), with most of these head injuries caused by explosive munitions such as bombs , land mines, improvised explosive devices and missiles...with most of these injuries caused by explosive munitions such as bombs , land mines, improvised explosive devices (IEDs), and missiles.1,2 Little is...Neurosurg. 2008;108: 124–131. 21. Richards EM , Fiskum G, Rosenthal RE, Hopkins I, McKenna MC. Hyperoxic reperfusion after global ischemia decreases

  13. Blast Overpressure Studies with Animals and Man: Biological Response to Complex Blast Waves

    DTIC Science & Technology

    1993-10-31

    cases, hemorrhage and edema reduced the lumen diameter of the organ making it difficult to breath. In subjects with extensive lung hemorrhage, confluent...IAF ui UU LU WiL N .4 C A p ... 4 n 1 - u- --- -j -j -j*-1 LA ZN MA’ P W I 4A MC I A U A( A fac U a*gJ*J~ U09 "~L rn in CM ININ~~ :2-. :2 a) - 41...tuU UU j ** ~ ~ ~ ( (A 0O~ -t u’ CO (Ao -*~~~L us~N-sr, ULA -U z, zd z~ 2*- . .01 -0 c Xo cm 1:2 𔃺 CO 2 L^m C .- Mp i m 3 - K -1§ LA x ’U.’x 0’ x Ixx

  14. Photographic laboratory studies of explosions.

    NASA Technical Reports Server (NTRS)

    Kamel, M. M.; Oppenheim, A. K.

    1973-01-01

    Description of a series of cinematographic studies of explosions made with a high-speed rotating-mirror streak camera which uses a high-frequency stroboscopic ruby laser as the light source. The results obtained mainly concern explosions initiated by focused laser irradiation from a pulsed neodymium laser in a detonating gas consisting essentially of an equimolar mixture of acetylene and oxygen at an initial pressure of 100 torr at room temperature. Among the most significant observations were observations of a spherical blast wave preceded by a Chapman-Jouguet detonation which is stabilized immediately after initiation, the merging of a spherical flame with a shock front of the blast wave in which the flame is propagating, the division of a spherical detonation front into a shock wave and flame, and the generation of shock waves by a network of spherical flames.

  15. Blast Load Simulator Experiments for Computational Model Validation Report 3

    DTIC Science & Technology

    2017-07-01

    establish confidence in the results produced by the simulations. This report describes a set of replicate experiments in which a small, non - responding steel...designed to simulate blast waveforms for explosive yields up to 20,000 lb of TNT equivalent at a peak reflected pressure up to 80 psi and a peak...the pressure loading on a non - responding box-type structure at varying obliquities located in the flow of the BLS simulated blast environment for

  16. Analysis of Otologic Injuries Due to Blast Trauma by Handmade Explosives

    PubMed Central

    Aslıer, Mustafa; Aslıer, Nesibe Gül Yüksel

    2017-01-01

    Objective The aim of this study is to identify the otologic injuries due to handmade explosive-welded blast travma in the law enforcement officers during the combat operations in the curfew security region and to specify the disorders that Otolaryngology and Head Neck Surgery (OHNS) physicians can face during such operations. Methods Medical records of patients in law enforcement who were initially treated by OHNS physicians of Silopi State Hospital during combat operations, between December 14, 2015 and January 15, 2016 were reviewed. Twenty-five patients with otologic injuries due to blast trauma were included in the study. Trauma characteristics, physical examination findings, and beginning treatments were identified. Results Primary blast injury (PBI) was identified as the major disorder in all 24 cases. Tinnitus and hearing loss were the most frequent complaints. In physical examination, tympanic membrane perforations were found in four ears of three patients. Oral methylprednisolone in decreasing doses for 10 days was commenced as an initial treatment in patients with PBI. Secondary blast injury presented in the form of soft tissue damage in the auricular helix due to shrapnel pieces in one patient and a minor surgery was performed. Conclusion Otologic injuries due to blast trauma may often develop during this type of combat operations. Otologic symptoms should be checked, otoscopic examination should be performed, and patients should consult OHNS physicians as soon as possible after trauma. PMID:29392057

  17. Analysis of Otologic Injuries Due to Blast Trauma by Handmade Explosives.

    PubMed

    Aslıer, Mustafa; Aslıer, Nesibe Gül Yüksel

    2017-06-01

    The aim of this study is to identify the otologic injuries due to handmade explosive-welded blast travma in the law enforcement officers during the combat operations in the curfew security region and to specify the disorders that Otolaryngology and Head Neck Surgery (OHNS) physicians can face during such operations. Medical records of patients in law enforcement who were initially treated by OHNS physicians of Silopi State Hospital during combat operations, between December 14, 2015 and January 15, 2016 were reviewed. Twenty-five patients with otologic injuries due to blast trauma were included in the study. Trauma characteristics, physical examination findings, and beginning treatments were identified. Primary blast injury (PBI) was identified as the major disorder in all 24 cases. Tinnitus and hearing loss were the most frequent complaints. In physical examination, tympanic membrane perforations were found in four ears of three patients. Oral methylprednisolone in decreasing doses for 10 days was commenced as an initial treatment in patients with PBI. Secondary blast injury presented in the form of soft tissue damage in the auricular helix due to shrapnel pieces in one patient and a minor surgery was performed. Otologic injuries due to blast trauma may often develop during this type of combat operations. Otologic symptoms should be checked, otoscopic examination should be performed, and patients should consult OHNS physicians as soon as possible after trauma.

  18. 30 CFR 57.22603 - Blasting from the surface (II-A mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MINES Safety Standards for Methane in Metal and Nonmetal Mines Explosives § 57.22603 Blasting from the surface (II-A mines). (a) All development, production, and bench rounds shall be initiated from the... least one atmospheric monitoring sensor. (b) If the monitoring system indicates that methane in the mine...

  19. 30 CFR 57.22603 - Blasting from the surface (II-A mines).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... MINES Safety Standards for Methane in Metal and Nonmetal Mines Explosives § 57.22603 Blasting from the surface (II-A mines). (a) All development, production, and bench rounds shall be initiated from the... least one atmospheric monitoring sensor. (b) If the monitoring system indicates that methane in the mine...

  20. 30 CFR 57.22603 - Blasting from the surface (II-A mines).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... MINES Safety Standards for Methane in Metal and Nonmetal Mines Explosives § 57.22603 Blasting from the surface (II-A mines). (a) All development, production, and bench rounds shall be initiated from the... least one atmospheric monitoring sensor. (b) If the monitoring system indicates that methane in the mine...

Top