Considerations for Explosively Driven Conical Shock Tube Design: Computations and Experiments
2017-02-16
ARL-TR-7953 ● FEB 2017 US Army Research Laboratory Considerations for Explosively Driven Conical Shock Tube Design : Computations...The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized...Considerations for Explosively Driven Conical Shock Tube Designs : Computations and Experiments by Joel B Stewart Weapons and Materials Research Directorate
2018-03-30
ARL-TR-8335•MAR 2018 US Army Research Laboratory Influence of Test Section Geometry on theBlast Environment in an Explosively DrivenConical Shock...ARL-TR-8335•MAR 2018 US Army Research Laboratory Influence of Test Section Geometry on theBlast Environment in an Explosively DrivenConical Shock...Tube by Joel B Stewart Weapons and Materials Research Directorate, ARL Approved for public release; distribution is unlimited. REPORT DOCUMENTATION
Explosively driven air blast in a conical shock tube
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, Joel B., E-mail: joel.b.stewart2.civ@mail.mil; Pecora, Collin, E-mail: collin.r.pecora.civ@mail.mil
2015-03-15
Explosively driven shock tubes present challenges in terms of safety concerns and expensive upkeep of test facilities but provide more realistic approximations to the air blast resulting from free-field detonations than those provided by gas-driven shock tubes. Likewise, the geometry of conical shock tubes can naturally approximate a sector cut from a spherically symmetric blast, leading to a better agreement with the blast profiles of free-field detonations when compared to those provided by shock tubes employing constant cross sections. The work presented in this article documents the design, fabrication, and testing of an explosively driven conical shock tube whose goalmore » was to closely replicate the blast profile seen from a larger, free-field detonation. By constraining the blast through a finite area, large blasts (which can add significant damage and safety constraints) can be simulated using smaller explosive charges. The experimental data presented herein show that a close approximation to the free-field air blast profile due to a 1.5 lb charge of C4 at 76 in. can be achieved by using a 0.032 lb charge in a 76-in.-long conical shock tube (which translates to an amplification factor of nearly 50). Modeling and simulation tools were used extensively in designing this shock tube to minimize expensive fabrication costs.« less
Optical diagnostics of turbulent mixing in explosively-driven shock tube
NASA Astrophysics Data System (ADS)
Anderson, James; Hargather, Michael
2016-11-01
Explosively-driven shock tube experiments were performed to investigate the turbulent mixing of explosive product gases and ambient air. A small detonator initiated Al / I2O5 thermite, which produced a shock wave and expanding product gases. Schlieren and imaging spectroscopy were applied simultaneously along a common optical path to identify correlations between turbulent structures and spatially-resolved absorbance. The schlieren imaging identifies flow features including shock waves and turbulent structures while the imaging spectroscopy identifies regions of iodine gas presence in the product gases. Pressure transducers located before and after the optical diagnostic section measure time-resolved pressure. Shock speed is measured from tracking the leading edge of the shockwave in the schlieren images and from the pressure transducers. The turbulent mixing characteristics were determined using digital image processing. Results show changes in shock speed, product gas propagation, and species concentrations for varied explosive charge mass. Funded by DTRA Grant HDTRA1-14-1-0070.
Steady-state shock-driven reactions in mixtures of nano-sized aluminum and dilute hydrogen peroxide
Schmitt, Matthew Mark; Bowden, Patrick Robert; Tappan, Bryce C.; ...
2017-09-21
Mixtures of nanoaluminum (nAl) and dilute hydrogen peroxide (HP) were studied to determine their potential to detonate when subjected to explosive shock. Results of explosively driven rate stick experiments revealed steady shock propagation for stoichiometric mixtures of nAl and 10 wt% HP. The critical diameter of this composition is estimated to be between 27.7 and 34.5 mm. Detonation velocities between 3.034 and 3.187 mm/μs were obtained, varying with charge diameter and density. Furthermore this represents the first measured shock-driven, self-sustained reaction in nAl and dilute HP mixtures.
Quantifying the Hydrodynamic Performance of an Explosively-Driven Two-Shock Source
NASA Astrophysics Data System (ADS)
Furlanetto, Michael; Bauer, Amy; King, Robert; Buttler, William; Olson, Russell; Hagelberg, Carl
2015-06-01
An explosively-driven experimental package capable of generating a tunable two-shock drive would enable a host of experiments in shock physics. To make the best use of such a platform, though, its symmetry, reproducibility, and performance must be characterized thoroughly. We report on a series of experiments on a particular two-shock design that used shock reverberation between the sample and a heavy anvil to produce a second shock. Drive package diameters were varied between 50 and 76 mm in order to investigate release wave propagation. We used proton radiography to characterize the detonation and reverberation fronts within the high explosive elements of the packages, as well as surface velocimetry to measure the resulting shock structure in the sample under study. By fielding more than twenty channels of velocimetry per shot, we were able to quantify the symmetry and reproducibility of the drive.
Astrophysical Connections to Collapsing Radiative Shock Experiments
NASA Astrophysics Data System (ADS)
Reighard, A. B.; Hansen, J. F.; Bouquet, S.; Koenig, M.
2005-10-01
Radiative shocks occur in many high-energy density explosions, but prove difficult to create in laboratory experiments or to fully model with astrophysical codes. Low astrophysical densities combined with powerful explosions provide ideal conditions for producing radiative shocks. Here we describe an experiment significant to astrophysical shocks, which produces a driven, planar radiative shock in low density Xe gas. Including radiation effects precludes scaling experiments directly to astrophysical conditions via Euler equations, as can be done in purely hydrodynamic experiments. We use optical depth considerations to make comparisons between the driven shock in xenon and specific astrophysical phenomena. This planar shock may be subject to thin shell instabilities similar to those affecting the evolution of astrophysical shocks. This research was sponsored by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Research Grants DE-FG52-03NA00064, DE-FG53-2005-NA26014, and other grants and contracts.
NASA Astrophysics Data System (ADS)
Ott, Christian D.; Roberts, Luke F.; da Silva Schneider, André; Fedrow, Joseph M.; Haas, Roland; Schnetter, Erik
2018-03-01
We present a first study of the progenitor star dependence of the three-dimensional (3D) neutrino mechanism of core-collapse supernovae. We employ full 3D general-relativistic multi-group neutrino radiation-hydrodynamics and simulate the postbounce evolutions of progenitors with zero-age main sequence masses of 12, 15, 20, 27, and 40 M ⊙. All progenitors, with the exception of the 12 M ⊙ star, experience shock runaway by the end of their simulations. In most cases, a strongly asymmetric explosion will result. We find three qualitatively distinct evolutions that suggest a complex dependence of explosion dynamics on progenitor density structure, neutrino heating, and 3D flow. (1) Progenitors with massive cores, shallow density profiles, and high post-core-bounce accretion rates experience very strong neutrino heating and neutrino-driven turbulent convection, leading to early shock runaway. Accretion continues at a high rate, likely leading to black hole formation. (2) Intermediate progenitors experience neutrino-driven, turbulence-aided explosions triggered by the arrival of density discontinuities at the shock. These occur typically at the silicon/silicon–oxygen shell boundary. (3) Progenitors with small cores and density profiles without strong discontinuities experience shock recession and develop the 3D standing-accretion shock instability (SASI). Shock runaway ensues late, once declining accretion rate, SASI, and neutrino-driven convection create favorable conditions. These differences in explosion times and dynamics result in a non-monotonic relationship between progenitor and compact remnant mass.
NASA Astrophysics Data System (ADS)
Nakamura, Ko; Takiwaki, Tomoya; Kuroda, Takami; Kotake, Kei
2015-12-01
We present an overview of two-dimensional (2D) core-collapse supernova simulations employing a neutrino transport scheme by the isotropic diffusion source approximation. We study 101 solar-metallicity, 247 ultra metal-poor, and 30 zero-metal progenitors covering zero-age main sequence mass from 10.8 M⊙ to 75.0 M⊙. Using the 378 progenitors in total, we systematically investigate how the differences in the structures of these multiple progenitors impact the hydrodynamics evolution. By following a long-term evolution over 1.0 s after bounce, most of the computed models exhibit neutrino-driven revival of the stalled bounce shock at ˜200-800 ms postbounce, leading to the possibility of explosion. Pushing the boundaries of expectations in previous one-dimensional studies, our results confirm that the compactness parameter ξ that characterizes the structure of the progenitors is also a key in 2D to diagnosing the properties of neutrino-driven explosions. Models with high ξ undergo high ram pressure from the accreting matter onto the stalled shock, which affects the subsequent evolution of the shock expansion and the mass of the protoneutron star under the influence of neutrino-driven convection and the standing accretion-shock instability. We show that the accretion luminosity becomes higher for models with high ξ, which makes the growth rate of the diagnostic explosion energy higher and the synthesized nickel mass bigger. We find that these explosion characteristics tend to show a monotonic increase as a function of the compactness parameter ξ.
Second shock ejecta measurements with an explosively driven two-shockwave drive
NASA Astrophysics Data System (ADS)
Buttler, W. T.; Oró, D. M.; Olson, R. T.; Cherne, F. J.; Hammerberg, J. E.; Hixson, R. S.; Monfared, S. K.; Pack, C. L.; Rigg, P. A.; Stone, J. B.; Terrones, G.
2014-09-01
We develop and apply an explosively driven two-shockwave tool in material damage experiments on Sn. The two shockwave tool allows the variation of the first shockwave amplitude over range 18.5 to 26.4 GPa, with a time interval variation between the first and second shock of 5 to 7 μs. Simulations imply that the second shock amplitude can be varied as well and we briefly describe how to achieve such a variation. Our interest is to measure ejecta masses from twice shocked metals. In our application of the two-shockwave tool, we observed second shock ejected areal masses of about 4 ± 1 mg/cm2, a value we attribute to unstable Richtmyer-Meshkov impulse phenomena. We also observed an additional mass ejection process caused by the abrupt recompression of the local spallation or cavitation of the twice shocked Sn.
Neutrino oscillations in magnetically driven supernova explosions
NASA Astrophysics Data System (ADS)
Kawagoe, Shio; Takiwaki, Tomoya; Kotake, Kei
2009-09-01
We investigate neutrino oscillations from core-collapse supernovae that produce magnetohydrodynamic (MHD) explosions. By calculating numerically the flavor conversion of neutrinos in the highly non-spherical envelope, we study how the explosion anisotropy has impacts on the emergent neutrino spectra through the Mikheyev-Smirnov-Wolfenstein effect. In the case of the inverted mass hierarchy with a relatively large θ13 (sin2 2θ13 gtrsim 10-3), we show that survival probabilities of bar nue and νe seen from the rotational axis of the MHD supernovae (i.e., polar direction), can be significantly different from those along the equatorial direction. The event numbers of bar nue observed from the polar direction are predicted to show steepest decrease, reflecting the passage of the magneto-driven shock to the so-called high-resonance regions. Furthermore we point out that such a shock effect, depending on the original neutrino spectra, appears also for the low-resonance regions, which could lead to a noticeable decrease in the νe signals. This reflects a unique nature of the magnetic explosion featuring a very early shock-arrival to the resonance regions, which is in sharp contrast to the neutrino-driven delayed supernova models. Our results suggest that the two features in the bar nue and νe signals, if visible to the Super-Kamiokande for a Galactic supernova, could mark an observational signature of the magnetically driven explosions, presumably linked to the formation of magnetars and/or long-duration gamma-ray bursts.
NASA Astrophysics Data System (ADS)
Garno, Joshua; Ouellet, Frederick; Koneru, Rahul; Balachandar, Sivaramakrishnan; Rollin, Bertrand
2017-11-01
An analytic model to describe the hydrodynamic forces on an explosively driven particle is not currently available. The Maxey-Riley-Gatignol (MRG) particle force equation generalized for compressible flows is well-studied in shock-tube applications, and captures the evolution of particle force extracted from controlled shock-tube experiments. In these experiments only the shock-particle interaction was examined, and the effects of the contact line were not investigated. In the present work, the predictive capability of this model is considered for the case where a particle is explosively ejected from a rigid barrel into ambient air. Particle trajectory information extracted from simulations is compared with experimental data. This configuration ensures that both the shock and contact produced by the detonation will influence the motion of the particle. The simulations are carried out using a finite volume, Euler-Lagrange code using the JWL equation of state to handle the explosive products. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program,under Contract No. DE-NA0002378.
Completely explosive ultracompact high-voltage nanosecond pulse-generating system
NASA Astrophysics Data System (ADS)
Shkuratov, Sergey I.; Talantsev, Evgueni F.; Baird, Jason; Rose, Millard F.; Shotts, Zachary; Altgilbers, Larry L.; Stults, Allen H.
2006-04-01
A conventional pulsed power technology has been combined with an explosive pulsed power technology to produce an autonomous high-voltage power supply. The power supply contained an explosive-driven high-voltage primary power source and a power-conditioning stage. The ultracompact explosive-driven primary power source was based on the physical effect of shock-wave depolarization of high-energy Pb (Zr52Ti48)O3 ferroelectric material. The volume of the energy-carrying ferroelectric elements in the shock-wave ferroelectric generators (SWFEGs) varied from 1.2 to 2.6cm3. The power-conditioning stage was based on the spiral vector inversion generator (VIG). The SWFEG-VIG system demonstrated successful operation and good performance. The amplitude of the output voltage pulse of the SWFEG-VIG system exceeded 90kV, with a rise time of 5.2ns.
High-speed multi-frame laser Schlieren for visualization of explosive events
NASA Astrophysics Data System (ADS)
Clarke, S. A.; Murphy, M. J.; Landon, C. D.; Mason, T. A.; Adrian, R. J.; Akinci, A. A.; Martinez, M. E.; Thomas, K. A.
2007-09-01
High-Speed Multi-Frame Laser Schlieren is used for visualization of a range of explosive and non-explosive events. Schlieren is a well-known technique for visualizing shock phenomena in transparent media. Laser backlighting and a framing camera allow for Schlieren images with very short (down to 5 ns) exposure times, band pass filtering to block out explosive self-light, and 14 frames of a single explosive event. This diagnostic has been applied to several explosive initiation events, such as exploding bridgewires (EBW), Exploding Foil Initiators (EFI) (or slappers), Direct Optical Initiation (DOI), and ElectroStatic Discharge (ESD). Additionally, a series of tests have been performed on "cut-back" detonators with varying initial pressing (IP) heights. We have also used this Diagnostic to visualize a range of EBW, EFI, and DOI full-up detonators. The setup has also been used to visualize a range of other explosive events, such as explosively driven metal shock experiments and explosively driven microjets. Future applications to other explosive events such as boosters and IHE booster evaluation will be discussed. Finite element codes (EPIC, CTH) have been used to analyze the schlieren images to determine likely boundary or initial conditions to determine the temporal-spatial pressure profile across the output face of the detonator. These experiments are part of a phased plan to understand the evolution of detonation in a detonator from initiation shock through run to detonation to full detonation to transition to booster and booster detonation.
Note: A table-top blast driven shock tube
NASA Astrophysics Data System (ADS)
Courtney, Michael W.; Courtney, Amy C.
2010-12-01
The prevalence of blast-induced traumatic brain injury in conflicts in Iraq and Afghanistan has motivated laboratory scale experiments on biomedical effects of blast waves and studies of blast wave transmission properties of various materials in hopes of improving armor design to mitigate these injuries. This paper describes the design and performance of a table-top shock tube that is more convenient and widely accessible than traditional compression driven and blast driven shock tubes. The design is simple: it is an explosive driven shock tube employing a rifle primer that explodes when impacted by the firing pin. The firearm barrel acts as the shock tube, and the shock wave emerges from the muzzle. The small size of this shock tube can facilitate localized application of a blast wave to a subject, tissue, or material under test.
Note: A table-top blast driven shock tube.
Courtney, Michael W; Courtney, Amy C
2010-12-01
The prevalence of blast-induced traumatic brain injury in conflicts in Iraq and Afghanistan has motivated laboratory scale experiments on biomedical effects of blast waves and studies of blast wave transmission properties of various materials in hopes of improving armor design to mitigate these injuries. This paper describes the design and performance of a table-top shock tube that is more convenient and widely accessible than traditional compression driven and blast driven shock tubes. The design is simple: it is an explosive driven shock tube employing a rifle primer that explodes when impacted by the firing pin. The firearm barrel acts as the shock tube, and the shock wave emerges from the muzzle. The small size of this shock tube can facilitate localized application of a blast wave to a subject, tissue, or material under test.
Shot H3837: Darht's first dual-axis explosive experiment
NASA Astrophysics Data System (ADS)
Harsh, James F.; Hull, Lawrence; Mendez, Jacob; McNeil, Wendy Vogan
2012-03-01
Test H3837 was the first explosive shot performed in front of both flash x-ray axes at the Los Alamos Dual Axis Radiographic Hydrodynamic Test (DARHT) facility. Executed in November 2009, the shot was an explosively-driven metal flyer plate in a series of experiments designed to explore equation-of-state properties of shocked materials. Imaging the initial shock wave traveling through the flyer plate, DARHT Axis II captured the range of motion from the shock front emergence in the flyer to breakout at the free surface; the Axis I pulse provided a perpendicular perspective of the shot at a time coinciding with the third pulse of Axis II.
A Multi-Mode Shock Tube for Investigation of Blast-Induced Traumatic Brain Injury
Reneer, Dexter V.; Hisel, Richard D.; Hoffman, Joshua M.; Kryscio, Richard J.; Lusk, Braden T.
2011-01-01
Abstract Blast-induced mild traumatic brain injury (bTBI) has become increasingly common in recent military conflicts. The mechanisms by which non-impact blast exposure results in bTBI are incompletely understood. Current small animal bTBI models predominantly utilize compressed air-driven membrane rupture as their blast wave source, while large animal models use chemical explosives. The pressure-time signature of each blast mode is unique, making it difficult to evaluate the contributions of the different components of the blast wave to bTBI when using a single blast source. We utilized a multi-mode shock tube, the McMillan blast device, capable of utilizing compressed air- and compressed helium-driven membrane rupture, and the explosives oxyhydrogen and cyclotrimethylenetrinitramine (RDX, the primary component of C-4 plastic explosives) as the driving source. At similar maximal blast overpressures, the positive pressure phase of compressed air-driven blasts was longer, and the positive impulse was greater, than those observed for shockwaves produced by other driving sources. Helium-driven shockwaves more closely resembled RDX blasts, but by displacing air created a hypoxic environment within the shock tube. Pressure-time traces from oxyhydrogen-driven shockwaves were very similar those produced by RDX, although they resulted in elevated carbon monoxide levels due to combustion of the polyethylene bag used to contain the gases within the shock tube prior to detonation. Rats exposed to compressed air-driven blasts had more pronounced vascular damage than those exposed to oxyhydrogen-driven blasts of the same peak overpressure, indicating that differences in blast wave characteristics other than peak overpressure may influence the extent of bTBI. Use of this multi-mode shock tube in small animal models will enable comparison of the extent of brain injury with the pressure-time signature produced using each blast mode, facilitating evaluation of the blast wave components contributing to bTBI. PMID:21083431
A multi-mode shock tube for investigation of blast-induced traumatic brain injury.
Reneer, Dexter V; Hisel, Richard D; Hoffman, Joshua M; Kryscio, Richard J; Lusk, Braden T; Geddes, James W
2011-01-01
Blast-induced mild traumatic brain injury (bTBI) has become increasingly common in recent military conflicts. The mechanisms by which non-impact blast exposure results in bTBI are incompletely understood. Current small animal bTBI models predominantly utilize compressed air-driven membrane rupture as their blast wave source, while large animal models use chemical explosives. The pressure-time signature of each blast mode is unique, making it difficult to evaluate the contributions of the different components of the blast wave to bTBI when using a single blast source. We utilized a multi-mode shock tube, the McMillan blast device, capable of utilizing compressed air- and compressed helium-driven membrane rupture, and the explosives oxyhydrogen and cyclotrimethylenetrinitramine (RDX, the primary component of C-4 plastic explosives) as the driving source. At similar maximal blast overpressures, the positive pressure phase of compressed air-driven blasts was longer, and the positive impulse was greater, than those observed for shockwaves produced by other driving sources. Helium-driven shockwaves more closely resembled RDX blasts, but by displacing air created a hypoxic environment within the shock tube. Pressure-time traces from oxyhydrogen-driven shockwaves were very similar those produced by RDX, although they resulted in elevated carbon monoxide levels due to combustion of the polyethylene bag used to contain the gases within the shock tube prior to detonation. Rats exposed to compressed air-driven blasts had more pronounced vascular damage than those exposed to oxyhydrogen-driven blasts of the same peak overpressure, indicating that differences in blast wave characteristics other than peak overpressure may influence the extent of bTBI. Use of this multi-mode shock tube in small animal models will enable comparison of the extent of brain injury with the pressure-time signature produced using each blast mode, facilitating evaluation of the blast wave components contributing to bTBI.
NASA Astrophysics Data System (ADS)
Stewart, J. B.
2018-02-01
This paper presents experimental data on incident overpressures and the corresponding impulses obtained in the test section of an explosively driven 10° (full angle) conical shock tube. Due to the shock tube's steel walls approximating the boundary conditions seen by a spherical sector cut out of a detonating sphere of energetic material, a 5.3-g pentolite shock tube driver charge produces peak overpressures corresponding to a free-field detonation from an 816-g sphere of pentolite. The four test section geometries investigated in this paper (open air, cylindrical, 10° inscribed square frustum, and 10° circumscribed square frustum) provide a variety of different time histories for the incident overpressures and impulses, with a circumscribed square frustum yielding the best approximation of the estimated blast environment that would have been produced by a free-field detonation.
The shock sensitivities of nitromethane/methanol mixtures
NASA Astrophysics Data System (ADS)
Dattelbaum, D. M.; Sheffield, S. A.; Bartram, B. D.; Gibson, L. L.; Bowden, P. R.; Schilling, B. F.
2014-05-01
Dilution of liquid explosives with "inert" solvents have been shown previously to affect a degradation in the detonation performance properties of the explosive, and result in a rapid increase in the critical diameter with increasing diluent. To date, the shock sensitivities of liquid explosive-diluent mixtures have not been measured. In this work, we describe the results of a series of gas gun-driven plate impact experiments on nitromethane (NM)-methanol (MeOH) solutions of several concentrations, using in situ electromagnetic gauging to measure the initial shock state (Hugoniot) of the mixture, as well as the overtake-time-to-detonation (Pop-plot). Surprisingly, the shock sensitivities did not fall off dramatically with increasing MeOH concentration. In fact, at some concentrations MeOH appears to sensitize NM, relative to neat NM.
NASA Astrophysics Data System (ADS)
Müller, Bernhard; Melson, Tobias; Heger, Alexander; Janka, Hans-Thomas
2017-11-01
We study the impact of large-scale perturbations from convective shell burning on the core-collapse supernova explosion mechanism using 3D multigroup neutrino hydrodynamics simulations of an 18M⊙ progenitor. Seed asphericities in the O shell, obtained from a recent 3D model of O shell burning, help trigger a neutrino-driven explosion 330 ms after bounce whereas the shock is not revived in a model based on a spherically symmetric progenitor for at least another 300 ms. We tentatively infer a reduction of the critical luminosity for shock revival by ˜ 20 {per cent} due to pre-collapse perturbations. This indicates that convective seed perturbations play an important role in the explosion mechanism in some progenitors. We follow the evolution of the 18M⊙ model into the explosion phase for more than 2 s and find that the cycle of accretion and mass ejection is still ongoing at this stage. With a preliminary value of 7.7 × 1050 erg for the diagnostic explosion energy, a baryonic neutron star mass of 1.85M⊙, a neutron star kick of ˜ 600 km s^{-1} and a neutron star spin period of ˜ 20 ms at the end of the simulation, the explosion and remnant properties are slightly atypical, but still lie comfortably within the observed distribution. Although more refined simulations and a larger survey of progenitors are still called for, this suggests that a solution to the problem of shock revival and explosion energies in the ballpark of observations is within reach for neutrino-driven explosions in 3D.
In situ insights into shock-driven reactive flow
NASA Astrophysics Data System (ADS)
Dattelbaum, Dana
2017-06-01
Shock-driven reactions are commonplace. Examples include the detonation of high explosives, shock-driven dissociation of polymers, and transformation of carbon from graphite to diamond phases. The study of shock-driven chemical reactions is important for understanding reaction thresholds, their mechanisms and rates, and associated state sensitivities under the extreme conditions generated by shock compression. Reactions are distinguished by their thermicity - e.g. the volume and enthalpy changes along the reaction coordinate. A survey of the hallmarks of shock-driven reactivity for a variety of simple molecules and polymers will be presented, including benzene, acetylenes and nitriles, and formic acid. Many of the examples will illustrate the nature of the reactive flow through particle velocity wave profiles measured by in situ electromagnetic gauging in gas gun-driven plate impact experiments. General trends will be presented linking molecular moieties, shock temperatures, and reaction state sensitivities. Progress in applying bond-specific diagnostics will also be presented, including time-resolved Raman spectroscopy, and recent results of in situ x-ray diffraction of carbon at the Linac Coherent Light Souce (LCLS) free electron laser.
Convection- and SASI-driven flows in parametrized models of core-collapse supernova explosions
Endeve, E.; Cardall, C. Y.; Budiardja, R. D.; ...
2016-01-21
We present initial results from three-dimensional simulations of parametrized core-collapse supernova (CCSN) explosions obtained with our astrophysical simulation code General Astrophysical Simulation System (GenASIS). We are interested in nonlinear flows resulting from neutrino-driven convection and the standing accretion shock instability (SASI) in the CCSN environment prior to and during the explosion. By varying parameters in our model that control neutrino heating and shock dissociation, our simulations result in convection-dominated and SASI-dominated evolution. We describe this initial set of simulation results in some detail. To characterize the turbulent flows in the simulations, we compute and compare velocity power spectra from convection-dominatedmore » and SASI-dominated (both non-exploding and exploding) models. When compared to SASI-dominated models, convection-dominated models exhibit significantly more power on small spatial scales.« less
The Status of Multi-Dimensional Core-Collapse Supernova Models
NASA Astrophysics Data System (ADS)
Müller, B.
2016-09-01
Models of neutrino-driven core-collapse supernova explosions have matured considerably in recent years. Explosions of low-mass progenitors can routinely be simulated in 1D, 2D, and 3D. Nucleosynthesis calculations indicate that these supernovae could be contributors of some lighter neutron-rich elements beyond iron. The explosion mechanism of more massive stars remains under investigation, although first 3D models of neutrino-driven explosions employing multi-group neutrino transport have become available. Together with earlier 2D models and more simplified 3D simulations, these have elucidated the interplay between neutrino heating and hydrodynamic instabilities in the post-shock region that is essential for shock revival. However, some physical ingredients may still need to be added/improved before simulations can robustly explain supernova explosions over a wide range of progenitors. Solutions recently suggested in the literature include uncertainties in the neutrino rates, rotation, and seed perturbations from convective shell burning. We review the implications of 3D simulations of shell burning in supernova progenitors for the `perturbations-aided neutrino-driven mechanism,' whose efficacy is illustrated by the first successful multi-group neutrino hydrodynamics simulation of an 18 solar mass progenitor with 3D initial conditions. We conclude with speculations about the impact of 3D effects on the structure of massive stars through convective boundary mixing.
ON THE IMPORTANCE OF THE EQUATION OF STATE FOR THE NEUTRINO-DRIVEN SUPERNOVA EXPLOSION MECHANISM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suwa, Yudai; Takiwaki, Tomoya; Kotake, Kei
2013-02-10
By implementing the widely used equations of state (EOS) from Lattimer and Swesty (LS) and H. Shen et al. (SHEN) in core-collapse supernova simulations, we explore possible impacts of these EOS on the post-bounce dynamics prior to the onset of neutrino-driven explosions. Our spherically symmetric (1D) and axially symmetric (2D) models are based on neutrino radiation hydrodynamics including spectral transport, which is solved by the isotropic diffusion source approximation. We confirm that in 1D simulations neutrino-driven explosions cannot be obtained for any of the employed EOS. Impacts of the EOS on the post-bounce hydrodynamics are more clearly visible in 2Dmore » simulations. In 2D models of a 15 M {sub Sun} progenitor using the LS EOS, the stalled bounce shock expands to increasingly larger radii, which is not the case when using the SHEN EOS. Keeping in mind that the omission of the energy drain by heavy-lepton neutrinos in the present scheme could facilitate explosions, we find that 2D models of an 11.2 M {sub Sun} progenitor produce neutrino-driven explosions for all the EOS under investigation. Models using the LS EOS are slightly more energetic compared with those with the SHEN EOS. The more efficient neutrino heating in the LS models coincides with a higher electron antineutrino luminosity and a larger mass that is enclosed within the gain region. The models based on the LS EOS also show a more vigorous and aspherical downflow of accreting matter to the surface of the protoneutron star (PNS). The accretion pattern is essential for the production and strength of outgoing pressure waves, which can push in turn the shock to larger radii and provide more favorable conditions for the explosion. Based on our models, we investigate several diagnostic indicators of the explosion that have been suggested in the literature, e.g., the amplitude of the standing accretion shock instability mode, the mass-weighted average entropy in the gain region, the PNS radius, the antesonic condition, the ratio of advection and heating timescales, the neutrino heating efficiency, and the growth parameter of convection.« less
Microenergetic Shock Initiation Studies on Deposited Films of Petn
NASA Astrophysics Data System (ADS)
Tappan, Alexander S.; Wixom, Ryan R.; Trott, Wayne M.; Long, Gregory T.; Knepper, Robert; Brundage, Aaron L.; Jones, David A.
2009-12-01
Films of the high explosive PETN (pentaerythritol tetranitrate) up to 500-μm thick have been deposited through physical vapor deposition, with the intent of creating well-defined samples for shock-initiation studies. PETN films were characterized with microscopy, x-ray diffraction, and focused ion beam nanotomography. These high-density films were subjected to strong shocks in both the out-of-plane and in-plane orientations. Initiation behavior was monitored with high-speed framing and streak camera photography. Direct initiation with a donor explosive (either RDX with binder, or CL-20 with binder) was possible in both orientations, but with the addition of a thin aluminum buffer plate (in-plane configuration only), initiation proved to be difficult. Initiation was possible with an explosively-driven 0.13-mm thick Kapton flyer and direct observation of initiation behavior was examined using streak camera photography at different flyer velocities. Models of this configuration were created using the shock physics code CTH.
2011-07-01
sensitivity. We employ direct laser irradiation, and indirect laser-driven shock, techniques to initiate thin-film explosive samples contained in a...energetic events in a few minutes. 14. ABSTRACT A detonation wave passing through an organic explosive , such as pentaerythritol tetranitrate (PETN...C5H4N4O12), is remarkably efficient in converting the solid explosive into final thermodynamically-stable gaseous products (e.g. N2, CO2, H2O
The impact of vorticity waves on the shock dynamics in core-collapse supernovae
NASA Astrophysics Data System (ADS)
Huete, César; Abdikamalov, Ernazar; Radice, David
2018-04-01
Convective perturbations arising from nuclear shell burning can play an important role in propelling neutrino-driven core-collapse supernova explosions. In this work, we analyse the impact of vorticity waves on the shock dynamics, and subsequently on the post-shock flow, using the solution of the linear hydrodynamics equations. As a result of the interaction with the shock wave, vorticity waves increase their kinetic energy, and a new set of entropic and acoustic waves is deposited in the post-shock region. These perturbations interact with the neutrino-driven turbulent convection that develops in that region. Although both vorticity and acoustic waves inject non-radial motion into the gain region, the contribution of the acoustic waves is found to be negligibly small in comparison to that of the vorticity waves. On the other hand, entropy waves become buoyant and trigger more convection. Using the concept of critical neutrino luminosity, we assess the impact of these modes on the explosion conditions. While the direct injection of non-radial motion reduces the critical neutrino luminosity by ˜ 12 per cent for typical problem parameters, the buoyancy-driven convection triggered by entropy waves reduces the critical luminosity by ˜ 17-24 per cent, which approximately agrees with the results of three-dimensional neutrino-hydrodynamics simulations. Finally, we discuss the limits of validity of the assumptions employed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saint-Amans, C.; Hébert, P., E-mail: philippe.hebert@cea.fr; Doucet, M.
2015-01-14
We have developed a single-shot Raman spectroscopy experiment to study at the molecular level the initiation mechanisms that can lead to sustained detonation of a triaminotrinitrobenzene-based explosive. Shocks up to 30 GPa were generated using a two-stage laser-driven flyer plate generator. The samples were confined by an optical window and shock pressure was maintained for at least 30 ns. Photon Doppler Velocimetry measurements were performed at the explosive/window interface to determine the shock pressure profile. Raman spectra were recorded as a function of shock pressure and the shifts of the principal modes were compared to static high-pressure measurements performed in a diamondmore » anvil cell. Our shock data indicate the role of temperature effects. Our Raman spectra also show a progressive extinction of the signal which disappears around 9 GPa. High-speed photography images reveal a simultaneous progressive darkening of the sample surface up to total opacity at 9 GPa. Reflectivity measurements under shock compression show that this opacity is due to a broadening of the absorption spectrum over the entire visible region.« less
Multi-shock experiments on a TATB-based composition
NASA Astrophysics Data System (ADS)
Sorin, Remy
2017-06-01
Temperature based models for condensed explosive need an unreacted equation of state (EOS) that allows a realistic estimation of the temperature for a shock compression driven at detonation velocity. To feed the detonation models, we aim at exploring the high pressure shock Hugoniot of unreacted TATB composition up to 30 GPa with both hydrodynamic and temperature measurements. We performed on the gas gun facility ARES, multi-shock experiments where the first shock is designed to desensitize the explosive and inhibit the reactivity of the composition. The hydrodynamic behavior was measured via the velocity of a TATB/LiF interface with PDV probes. We attempted to measure the temperature of the shocked material via surface emissivity with a pyrometer calibrated to the expected low temperature range. Based on single shock experiments and on ab-initio calculation, we built a complete EOS for the unreacted phase of the TATB explosive. The hydrodynamic data are in good agreement with our unreacted EOS. Despite the record of multi-stage emissivity signals, the temperature measurements were difficult to interpret dur to high-luminisity phenomena pertubation. In collaboration with: Nicolas Desbiens, Vincent Dubois and Fabrice Gillot, CEA DAM DIF.
A fast, low resistance switch for small slapper detonators
NASA Astrophysics Data System (ADS)
Richardson, D. D.; Jones, D. A.
1986-10-01
A novel design for a shock compression conduction switch for use with slapper detonators is described. The switch is based on the concept of an explosively driven flyer plate impacting a plastic insulator and producing sufficient pressure within the insulator to produce a conduction transition. An analysis of the functioning of the switch is made using a simple Gurney model for the explosive, and basic shock wave theory to calculate impact pressure and switch closure times. The effect of explosive tamping is considered, and calculations are carried out for two donor explosive thicknesses and a range of flyer plate thicknesses. The new switch has been successfully tested in a series of experimental slapper detonator firings. The results of these tests show trends in overall agreement with those predicted by the calculations.
STOCHASTICITY AND EFFICIENCY IN SIMPLIFIED MODELS OF CORE-COLLAPSE SUPERNOVA EXPLOSIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardall, Christian Y.; Budiardja, Reuben D., E-mail: cardallcy@ornl.gov, E-mail: reubendb@utk.edu
2015-11-01
We present an initial report on 160 simulations of a highly simplified model of the post-bounce core-collapse supernova environment in three spatial dimensions (3D). We set different values of a parameter characterizing the impact of nuclear dissociation at the stalled shock in order to regulate the post-shock fluid velocity, thereby determining the relative importance of convection and the stationary accretion shock instability (SASI). While our convection-dominated runs comport with the paradigmatic notion of a “critical neutrino luminosity” for explosion at a given mass accretion rate (albeit with a nontrivial spread in explosion times just above threshold), the outcomes of ourmore » SASI-dominated runs are much more stochastic: a sharp threshold critical luminosity is “smeared out” into a rising probability of explosion over a ∼20% range of luminosity. We also find that the SASI-dominated models are able to explode with 3–4 times less efficient neutrino heating, indicating that progenitor properties, and fluid and neutrino microphysics, conducive to the SASI would make the neutrino-driven explosion mechanism more robust.« less
Stochasticity and efficiency of convection-dominated vs. SASI-dominated supernova explosions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardall, Christian Y.; Budiardja, Reuben D.
2015-10-22
We present an initial report on 160 simulations of a highly simplified model of the post-bounce supernova environment in three position space dimensions (3D). We set different values of a parameter characterizing the impact of nuclear dissociation at the stalled shock in order to regulate the post-shock fluid velocity, thereby determining the relative importance of convection and the stationary accretion shock instability (SASI). While our convection-dominated runs comport with the paradigmatic notion of a `critical neutrino luminosity' for explosion at a given mass accretion rate (albeit with a nontrivial spread in explosion times just above threshold), the outcomes of our SASI-dominated runs are more stochastic: a sharp threshold critical luminosity is `smeared out' into a rising probability of explosion over amore » $$\\sim 20\\%$$ range of luminosity. We also find that the SASI-dominated models are able to explode with 3 to 4 times less efficient neutrino heating, indicating that progenitor properties, and fluid and neutrino microphysics, conducive to the SASI would make the neutrino-driven explosion mechanism more robust.« less
Pressure Amplification Off High Impedance Barriers in DDT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heatwole, Eric Mann; Broilo, Robert M.; Kistle, Trevin Joseph
The Deflagration-to-Detonation Transition (DDT) in one-dimensional porous explosive, where combustion in an explosive transitions to detonation, can be described by the following model. This simplified model proceeds in five steps, as follows: 1) Ignition of the explosive, surface burning. 2) Convective burning, with the flame front penetrating through the porous network of the explosive. This proceeds until the pressure grows high enough to result in choked flow in the pores restricting the convective burn. 3) The choked flow results in the formation of a high-density compact of explosive. This compact is driven into undisturbed material by the pressure of themore » burning explosive. See Figure1. 4) The compression of the undisturbed porous explosive by the compact leads to the ignition of a compressive burn. This builds in pressure until a supported shock forms. 5) The shock builds in pressure until detonation occurs. See Figure 2 for an overview streak of the proceeding steps.« less
NASA Astrophysics Data System (ADS)
Archer, R. D.; Milton, B. E.
Techniques and facilities are examined, taking into account compressor cascades research using a helium-driven shock tube, the suppression of shocks on transonic airfoils, methods of isentropically achieving superpressures, optimized performance of arc heated shock tubes, pressure losses in free piston driven shock tubes, large shock tubes designed for nuclear survivability testing, and power-series solutions of the gasdynamic equations for Mach reflection of a planar shock by a wedge. Other subjects considered are related to aerodynamics in shock tubes, shocks in dusty gases, chemical kinetics, and lasers, plasmas, and optical methods. Attention is given to vapor explosions and the blast at Mt. St. Helens, combustion reaction mechanisms from ignition delay times, the development and use of free piston wind tunnels, models for nonequilibrium flows in real shock tubes, air blast measuring techniques, finite difference computations of flow about supersonic lifting bodies, and the investigation of ionization relaxation in shock tubes.
Design and Construction of a Shock Tube Experiment for Multiphase Instability Experiments
NASA Astrophysics Data System (ADS)
Middlebrooks, John; Black, Wolfgang; Avgoustopoulos, Constantine; Allen, Roy; Kathakapa, Raj; Guo, Qiwen; McFarland, Jacob
2016-11-01
Hydrodynamic instabilities are important phenomena that have a wide range of practical applications in engineering and physics. One such instability, the shock driven multiphase instability (SDMI), arises when a shockwave accelerates an interface between two particle-gas mixtures with differing multiphase properties. The SDMI is present in high energy explosives, scramjets, and supernovae. A practical way of studying shock wave driven instabilities is through experimentation in a shock tube laboratory. This poster presentation will cover the design and data acquisition process of the University of Missouri's Fluid Mixing Shock Tube Laboratory. In the shock tube, a pressure generated shockwave is passed through a multiphase interface, creating the SDMI instability. This can be photographed for observation using high speed cameras, lasers, and advance imaging techniques. Important experimental parameters such as internal pressure and temperature, and mass flow rates of gases can be set and recorded by remotely controlled devices. The experimental facility provides the University of Missouri's Fluid Mixing Shock Tube Laboratory with the ability to validate simulated experiments and to conduct further inquiry into the field of shock driven multiphase hydrodynamic instabilities. Advisor.
Shot H3837: Darht's First Dual-Axis Explosive Experiment
NASA Astrophysics Data System (ADS)
Mendez, Jacob; McNeil, Wendy Vogan; Harsh, James; Hull, Lawrence
2011-06-01
Test H3837 was the first explosive shot performed in front of both flash x-ray axes at the Los Alamos Dual Axis Radiographic HydroTest (DARHT) facility. Executed in November 2009, the shot was an explosively-driven metal flyer plate in a series of experiments designed to explore equation-of-state properties of shocked materials. Imaging the initial shock wave traveling through the flyer plate, DARHT Axis II captured the range of motion from the shock front emergence in the flyer to breakout at the free surface; the Axis I pulse provided a perpendicular perspective of the shot at a time coinciding with the third pulse of Axis II. Since the days of the Manhattan Project, penetrating radiography with multiple frames from different viewing angles has remained a high-profile goal at the Laboratory. H3837 is merely the beginning of a bright future for two-axis penetrating radiography.
Shock compression and flash-heating of molecular adsorbates on the picosecond time scale
NASA Astrophysics Data System (ADS)
Berg, Christopher Michael
An ultrafast nonlinear coherent laser spectroscopy termed broadband multiplex vibrational sum-frequency generation (SFG) with nonresonant suppression was employed to monitor vibrational transitions of molecular adsorbates on metallic substrates during laser-driven shock compression and flash-heating. Adsorbates were in the form of well-ordered self-assembled monolayers (SAMs) and included molecular explosive simulants, such as nitroaromatics, and long chain-length alkanethiols. Based on reflectance measurements of the metallic substrates, femtosecond flash-heating pulses were capable of producing large-amplitude temperature jumps with DeltaT = 500 K. Laser-driven shock compression of SAMs produced pressures up to 2 GPa, where 1 GPa ≈ 1 x 104 atm. Shock pressures were estimated via comparison with frequency shifts observed in the monolayer vibrational transitions during hydrostatic pressure measurements in a SiC anvil cell. Molecular dynamics during flash-heating and shock loading were probed with vibrational SFG spectroscopy with picosecond temporal resolution and sub-nanometer spatial resolution. Flash-heating studies of 4-nitrobenzenethiolate (NBT) on Au provided insight into effects from hot-electron excitation of the molecular adsorbates at early pump-probe delay times. At longer delay times, effects from the excitation of SAM lattice modes and lower-energy NBT vibrations were shown. In addition, flash-heating studies of alkanethiolates demonstrated chain disordering behaviors as well as interface thermal conductances across the Au-SAM junction, which was of specific interest within the context of molecular electronics. Shock compression studies of molecular explosive simulants, such as 4-nitrobenzoate (NBA), demonstrated the proficiency of this technique to observe shock-induced molecular dynamics, in this case orientational dynamics, on the picosecond time scale. Results validated the utilization of these refined shock loading techniques to probe the shock initiation or first bond-breaking reactions in molecular explosives such as delta-HMX: a necessary study for the development of safer and more effective energetic materials.
Thermally generated magnetic fields in laser-driven compressions and explosions
NASA Technical Reports Server (NTRS)
Tidman, D. A.
1975-01-01
The evolution of thermally generated magnetic fields in a plasma undergoing a nearly spherically symmetric adiabatic compression or expansion is calculated. The analysis is applied to obtain approximate results for the development of magnetic fields in laser-driven compression and explosion of a pellet of nuclear fuel. Localized sources, such as those occurring at composition boundaries in structured pellets or at shock fronts, give stronger fields than those deriving from smoothly distributed asymmetries. Although these fields may approach 10 million G in the late stages of compression, this is not expected to present difficulties for the compression process. Assuming ignition of a nuclear explosion occurs, the sources become much stronger, and values of approximately 10 billion G are obtained at tamper boundaries assuming a 20% departure from spherical symmetry during the explosion.
Influence of Hot SPOT Features on the Shock Initiation of Heterogeneous Nitromethane
NASA Astrophysics Data System (ADS)
Dattelbaum, D. M.; Sheffield, S. A.; Stahl, D. B.; Dattelbaum, A. M.
2009-12-01
"Hot spots," or regions of localized high temperature and pressure that arise during the shock compression of heterogeneous materials, are known to highly influence the initiation characteristics of explosives. By introducing controlled-size particles at known number densities into otherwise homogeneous explosives, details about hot spot criticality can be mapped for a given material. Here, we describe a series of gas gun-driven plate impact experiments on nitromethane loaded with 40 μm silica beads at 6 wt%. Through the use of embedded electromagnetic gauges, we have gained insight into the initiation mechanisms as a function of the input shock pressure, and present a Pop-plot for the mixture, which is further compared to neat nitromethane.
NASA Astrophysics Data System (ADS)
Badziak, J.; Krousky, E.; Kucharik, M.; Liska, R.
2016-03-01
Generation of strong shock waves for the production of Mbar or Gbar pressures is a topic of high relevance for contemporary research in various domains, including inertial confinement fusion, laboratory astrophysics, planetology and material science. The pressures in the multi-Mbar range can be produced by the shocks generated using chemical explosions, light-gas guns, Z-pinch machines or lasers. Higher pressures, in the sub-Gbar or Gbar range are attainable only with nuclear explosions or laser-based methods. Unfortunately, due to the low efficiency of energy conversion from a laser to the shock (below a few percent), multi-kJ, multi-beam lasers are needed to produce such pressures with these methods. Here, we propose and investigate a novel scheme for generating high-pressure shocks which is much more efficient than the laser-based schemes known so far. In the proposed scheme, the shock is generated in a dense target by the impact of a fast projectile driven by the laser-induced cavity pressure acceleration (LICPA) mechanism. Using two-dimensional hydrodynamic simulations and the measurements performed at the kilojoule PALS laser facility it is shown that in the LICPA-driven collider the laser-to-shock energy conversion efficiency can reach a very high value ~ 15-20 % and, as a result, the shock pressure ~ 0.5-1 Gbar can be produced using lasers of energy <= 0.5 kJ. On the other hand, the pressures in the multi-Mbar range could be produced in this collider with low-energy (~ 10 J) lasers available on the market. It would open up the possibility of conducting research in high energy-density science also in small, university-class laboratories.
Improved Reactive Flow Modeling of the LX-17 Double Shock Experiments
NASA Astrophysics Data System (ADS)
Rehagen, Thomas J.; Vitello, Peter
2017-06-01
Over driven double shock experiments provide a measurement of the properties of the reaction product states of the insensitive high explosive LX-17 (92.5% TATB and 7.5% Kel-F by weight). These experiments used two flyer materials mounted on the end of a projectile to send an initial shock through the LX-17, followed by a second shock of a higher magnitude into the detonation products. In the experiments, the explosive was initially driven by the flyer plate to pressures above the Chapman-Jouguet state. The particle velocity history was recorded by Photonic Doppler Velocimetry (PDV) probes pointing at an aluminum foil coated LiF window. The PDV data shows a sharp initial shock and decay, followed by a rounded second shock. Here, the experimental results are compared to 2D and 3D Cheetah reactive flow modeling. Our default Cheetah reactive flow model fails to accurately reproduce the decay of the first shock or the curvature or strength of the second shock. A new model is proposed in which the carbon condensate produced in the reaction zone is controlled by a kinetic rate. This allows the carbon condensate to be initially out of chemical equilibrium with the product gas. This new model reproduces the initial detonation peak and decay, and matches the curvature of the second shock, however, it still over-predicts the strength of the second shock. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.
Influence of hot spot features on the shock initiation of heterogenous nitromethane
NASA Astrophysics Data System (ADS)
Dattelbaum, Dana; Sheffield, Stephen; Stahl, David; Dattelbaum, Andrew
2009-06-01
The shock initiation sensitivity of heterogeneous explosives is known to be strongly related to the confluence of ``hot spots'' or localized regions of high pressure and temperature. Physical origins of hot spots within a material include dynamic pore collapse, friction from motion along closed cracks, and wave reflections from other in situ interfaces. A complex interplay among numerous physical and chemical factors, spanning several length scales, determines whether or not a hot spot will quench or lead to initiation. To further elucidate key features of hot spots on energetic materials sensitivity and initiation mechanisms, we have intentionally introduced well-defined particles into the homogeneous liquid explosive nitromethane which has been gelled so the particles are somewhat stationary. Gas-gun driven shock initiation experiments using embedded electromagnetic gauging methods have been performed on these materials, revealing new insights into the role of heterogeneities on the sensitivity of the explosives through shock input-to-run distance relationships (Pop-plots), and reactive chemistry growth in and behind the incident shock front. By logically mapping out these relationships, the data provide a scientific foundation for the development of predictive capabilities for modeling new formulations, and designing next-generation energetic materials.
Shock initiation of explosives: High temperature hot spots explained
NASA Astrophysics Data System (ADS)
Bassett, Will P.; Johnson, Belinda P.; Neelakantan, Nitin K.; Suslick, Kenneth S.; Dlott, Dana D.
2017-08-01
We investigated the shock initiation of energetic materials with a tabletop apparatus that uses km s-1 laser-driven flyer plates to initiate tiny explosive charges and obtains complete temperature histories with a high dynamic range. By comparing various microstructured formulations, including a pentaerythritol tetranitrate (PETN) based plastic explosive (PBX) denoted XTX-8003, we determined that micron-scale pores were needed to create high hot spot temperatures. In charges where micropores (i.e., micron-sized pores) were present, a hot spot temperature of 6000 K was observed; when the micropores were pre-compressed to nm scale, however, the hot spot temperature dropped to ˜4000 K. By comparing XTX-8003 with an analog that replaced PETN by nonvolatile silica, we showed that the high temperatures require gas in the pores, that the high temperatures were created by adiabatic gas compression, and that the temperatures observed can be controlled by the choice of ambient gases. The hot spots persist in shock-compressed PBXs even in vacuum because the initially empty pores became filled with gas created in-situ by shock-induced chemical decomposition.
Multidimensional simulations of core-collapse supernovae with CHIMERA
NASA Astrophysics Data System (ADS)
Lentz, Eric J.; Bruenn, S. W.; Yakunin, K.; Endeve, E.; Blondin, J. M.; Harris, J. A.; Hix, W. R.; Marronetti, P.; Messer, O. B.; Mezzacappa, A.
2014-01-01
Core-collapse supernovae are driven by a multidimensional neutrino radiation hydrodynamic (RHD) engine, and full simulation requires at least axisymmetric (2D) and ultimately symmetry-free 3D RHD simulation. We present recent and ongoing work with our multidimensional RHD supernova code CHIMERA to understand the nature of the core-collapse explosion mechanism and its consequences. Recently completed simulations of 12-25 solar mass progenitors(Woosley & Heger 2007) in well resolved (0.7 degrees in latitude) 2D simulations exhibit robust explosions meeting the observationally expected explosion energy. We examine the role of hydrodynamic instabilities (standing accretion shock instability, neutrino driven convection, etc.) on the explosion dynamics and the development of the explosion energy. Ongoing 3D and 2D simulations examine the role that simulation resolution and the removal of the imposed axisymmetry have in the triggering and development of an explosion from stellar core collapse. Companion posters will explore the gravitational wave signals (Yakunin et al.) and nucleosynthesis (Harris et al.) of our simulations.
Experiments on a Miniature Hypervelocity Shock Tube
NASA Astrophysics Data System (ADS)
Tasker, Douglas; Johnson, Carl; Murphy, Michael; Lieber, Mark; MIMS Team
2013-06-01
A miniature explosively-driven shock tube, based on the Voitenko compressor design, has been designed to produce shock speeds in light gases in excess of 80 km/s. Voitenko compressors over 1 meter in diameter have been reported but here experiments on miniature shock tubes with ~1-mm bore diameters are described. In this design a 12-mm diameter explosive pellet drives a metal plate into a hemispherical gas compression chamber. Downstream from the piston a mica diaphragm separates the gas from an evacuated shock tube which is confined by a massive polymethylmethacrylate (PMMA) block. The diaphragm eventually ruptures under the applied pressure loading and the compressed gases escape into the evacuated shock tube at hyper velocities. The progress of gas shocks in the tube and bow shocks in the PMMA are monitored with an ultra-high-speed imaging system, the Shock Wave Image Framing Technique (SWIFT). The resulting time-resolved images yield two-dimensional visualizations of shock geometry and progression. By measuring both the gas and bow shocks, accurate and unequivocal measurements of shock position history are obtained. The experimental results were compared with those of hydrocode modeling to optimize the design. The first experiments were suboptimum in that the velocities were ~16 km/s. Progress with these experiments will be reported.
Appraisal of UTIAS implosion-driven hypervelocity launchers and shock tubes.
NASA Technical Reports Server (NTRS)
Glass, I. I.
1972-01-01
A critical appraisal is made of the design, research, development, and operation of the novel UTIAS implosion-driven hypervelocity launchers and shock tubes. Explosively driven (PbN6-lead azide, PETN-pentaerythritetetranitrate) implosions in detonating stoichiometric hydrogen-oxygen mixtures have been successfully developed as drivers for hypervelocity launchers and shock tubes in a safe and reusable facility. Intense loadings at very high calculated pressures, densities, and temperatures, at the implosion center, cause severe problems with projectile integrity. Misalignment of the focal point can occur and add to the difficulty in using small caliber projectiles. In addition, the extreme driving conditions cause barrel expansion, erosion, and possible gas leakage from the base to the head of the projectile which cut the predicted muzzle velocities to half or a third of the lossless calculated values. However, in the case of a shock-tube operation these difficulties are minimized or eliminated and the possibilities of approaching Jovian reentry velocities are encouraging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chavez, Marcus Alexander; Willis, Michael David; Covert, Timothy Todd
2014-09-01
The miniaturization of explosive components has driven the need for a corresponding miniaturization of the current diagnostic techniques available to measure the explosive phenomena. Laser interferometry and the use of spectrally coated optical windows have proven to be an essential interrogation technique to acquire particle velocity time history data in one- dimensional gas gun and relatively large-scale explosive experiments. A new diagnostic technique described herein allows for experimental measurement of apparent particle velocity time histories in microscale explosive configurations and can be applied to shocks/non-shocks in inert materials. The diagnostic, Embedded Fiber Optic Sensors (EFOS), has been tested in challengingmore » microscopic experimental configurations that give confidence in the technique's ability to measure the apparent particle velocity time histories of an explosive with pressure outputs in the tenths of kilobars to several kilobars. Embedded Fiber Optic Sensors also allow for several measurements to be acquired in a single experiment because they are microscopic, thus reducing the number of experiments necessary. The future of EFOS technology will focus on further miniaturization, material selection appropriate for the operating pressure regime, and extensive hydrocode and optical analysis to transform apparent particle velocity time histories into true particle velocity time histories as well as the more meaningful pressure time histories.« less
NASA Astrophysics Data System (ADS)
Summa, Alexander; Hanke, Florian; Janka, Hans-Thomas; Melson, Tobias; Marek, Andreas; Müller, Bernhard
2016-07-01
We present self-consistent, axisymmetric core-collapse supernova simulations performed with the Prometheus-Vertex code for 18 pre-supernova models in the range of 11-28 M ⊙, including progenitors recently investigated by other groups. All models develop explosions, but depending on the progenitor structure, they can be divided into two classes. With a steep density decline at the Si/Si-O interface, the arrival of this interface at the shock front leads to a sudden drop of the mass-accretion rate, triggering a rapid approach to explosion. With a more gradually decreasing accretion rate, it takes longer for the neutrino heating to overcome the accretion ram pressure and explosions set in later. Early explosions are facilitated by high mass-accretion rates after bounce and correspondingly high neutrino luminosities combined with a pronounced drop of the accretion rate and ram pressure at the Si/Si-O interface. Because of rapidly shrinking neutron star radii and receding shock fronts after the passage through their maxima, our models exhibit short advection timescales, which favor the efficient growth of the standing accretion-shock instability. The latter plays a supportive role at least for the initiation of the re-expansion of the stalled shock before runaway. Taking into account the effects of turbulent pressure in the gain layer, we derive a generalized condition for the critical neutrino luminosity that captures the explosion behavior of all models very well. We validate the robustness of our findings by testing the influence of stochasticity, numerical resolution, and approximations in some aspects of the microphysics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Summa, Alexander; Hanke, Florian; Janka, Hans-Thomas
We present self-consistent, axisymmetric core-collapse supernova simulations performed with the Prometheus-Vertex code for 18 pre-supernova models in the range of 11–28 M {sub ⊙}, including progenitors recently investigated by other groups. All models develop explosions, but depending on the progenitor structure, they can be divided into two classes. With a steep density decline at the Si/Si–O interface, the arrival of this interface at the shock front leads to a sudden drop of the mass-accretion rate, triggering a rapid approach to explosion. With a more gradually decreasing accretion rate, it takes longer for the neutrino heating to overcome the accretion rammore » pressure and explosions set in later. Early explosions are facilitated by high mass-accretion rates after bounce and correspondingly high neutrino luminosities combined with a pronounced drop of the accretion rate and ram pressure at the Si/Si–O interface. Because of rapidly shrinking neutron star radii and receding shock fronts after the passage through their maxima, our models exhibit short advection timescales, which favor the efficient growth of the standing accretion-shock instability. The latter plays a supportive role at least for the initiation of the re-expansion of the stalled shock before runaway. Taking into account the effects of turbulent pressure in the gain layer, we derive a generalized condition for the critical neutrino luminosity that captures the explosion behavior of all models very well. We validate the robustness of our findings by testing the influence of stochasticity, numerical resolution, and approximations in some aspects of the microphysics.« less
Sundaramurthy, Aravind; Chandra, Namas
2014-01-01
Detonation of a high-explosive produces shock-blast wave, shrapnel, and gaseous products. While direct exposure to blast is a concern near the epicenter, shock-blast can affect subjects, even at farther distances. When a pure shock-blast wave encounters the subject, in the absence of shrapnels, fall, or gaseous products the loading is termed as primary blast loading and is the subject of this paper. The wave profile is characterized by blast overpressure, positive time duration, and impulse and called herein as shock-blast wave parameters (SWPs). These parameters in turn are uniquely determined by the strength of high explosive and the distance of the human subjects from the epicenter. The shape and magnitude of the profile determine the severity of injury to the subjects. As shown in some of our recent works (1–3), the profile not only determines the survival of the subjects (e.g., animals) but also the acute and chronic biomechanical injuries along with the following bio-chemical sequelae. It is extremely important to carefully design and operate the shock tube to produce field-relevant SWPs. Furthermore, it is vital to identify and eliminate the artifacts that are inadvertently introduced in the shock-blast profile that may affect the results. In this work, we examine the relationship between shock tube adjustable parameters (SAPs) and SWPs that can be used to control the blast profile; the results can be easily applied to many of the laboratory shock tubes. Further, replication of shock profile (magnitude and shape) can be related to field explosions and can be a standard in comparing results across different laboratories. Forty experiments are carried out by judiciously varying SAPs such as membrane thickness, breech length (66.68–1209.68 mm), measurement location, and type of driver gas (nitrogen, helium). The effects SAPs have on the resulting shock-blast profiles are shown. Also, the shock-blast profiles of a TNT explosion from ConWep software is compared with the profiles obtained from the shock tube. To conclude, our experimental results demonstrate that a compressed-gas shock tube when designed and operated carefully can replicate the blast time profiles of field explosions accurately. Such a faithful replication is an essential first step when studying the effects of blast induced neurotrauma using animal models. PMID:25520701
Characterisation and Modification of Thermally Stable High Explosives for Laser Flyer Applications
NASA Astrophysics Data System (ADS)
Parker, A.; Claridge, R. P.; Proud, W. G.; Johnson, N. A.
2007-12-01
Laser initiation offers improved weapon survivability, versatility and greater Insensitive Munitions (IM) compliance. Detonators based on laser-driven flyers are less vulnerable to electrical initiation and can be based on insensitive secondary explosives. Additionally, this technology will offer advantages in terms of improved flexibility and reliability. Hexanitrostilbene (HNS) and nonanitro-m-terphenyl (NONA) were selected for investigation at QinetiQ as their increased thermal stability over conventional explosives makes them ideal candidates for use in insensitive munition compliant applications. The response of these materials to short duration high-amplitude shock impulses provided by exploding foil initiators (EFI), the electrical equivalent of a laser-driven flyer system, was investigated. Preparation techniques including sonication and the incorporation of additives were used to sensitize the materials to flyer impact, yet maintain their insensitivity to external hazards. Sonication significantly reduced the particle size of both HNS and NONA. The reduced-size explosives exhibited increased sensitivity to EFI impact than the starting materials.
Turbulence in core-collapse supernovae
NASA Astrophysics Data System (ADS)
Radice, David; Abdikamalov, Ernazar; Ott, Christian D.; Mösta, Philipp; Couch, Sean M.; Roberts, Luke F.
2018-05-01
Multidimensional simulations show that non-radial, turbulent, fluid motion is a fundamental component of the core-collapse supernova explosion mechanism. Neutrino-driven convection, the standing accretion shock instability, and relic-perturbations from advanced nuclear burning stages can all impact the outcome of core collapse in a qualitative and quantitative way. Here, we review the current understanding of these phenomena and their role in the explosion of massive stars. We also discuss the role of protoneutron star convection and of magnetic fields in the context of the delayed neutrino mechanism.
Ultrafast shock-induced orientation of polycrystalline films: Applications to high explosives
NASA Astrophysics Data System (ADS)
Franken, Jens; Hambir, Selezion A.; Dlott, Dana D.
1999-02-01
Tiny laser-driven shock waves of ˜5 GPa pressure (nanoshocks) are used to study fast mechanical processes occurring in a thin layer of polycrystalline insensitive energetic material, (3-nitro-1,2,4-triazol-5-one) (NTO). Ultrafast coherent Raman spectroscopy of shocked NTO shows the existence of three distinct mechanical processes. Very fast (˜600 ps) changes in intensity and the appearance of new transitions are associated with the uniaxial nature of compression by the shock front. Frequency shifting and broadening processes which track the ˜2 ns duration nanoshock are associated with transient changes in density and temperature. A novel slower process (5-10 ns) starts as the shock begins to unload, and continues for several nanoseconds after the shock is over, resulting in changes of widths and intensities of several vibrational transitions. By comparing ultrafast spectra to static Raman spectra of single NTO crystals in various orientations, it is concluded that this process involves shock-induced partial orientation of the crystals in the NTO layer. The NTO crystals are oriented faster than the time scale for initiating chemical reactions. The sensitivity of explosive crystals to shock initiation may depend dramatically on the orientation of the crystal relative to the direction of shock propagation, so the implications of fast shock-induced orientation for energetic materials initiation are discussed briefly.
Nucleosynthesis in neutrino-driven, aspherical Population III supernovae
NASA Astrophysics Data System (ADS)
Fujimoto, Shin-ichiro; Hashimoto, Masa-aki; Ono, Masaomi; Kotake, Kei
2012-09-01
We investigate explosive nucleosynthesis during neutrino-driven, aspherical supernova (SN) explosion aided by standing accretion shock instability (SASI), based on two-dimensional hydrodynamic simulations of the explosion of 11, 15, 20, 25, 30 and 40M ⊙ stars with zero metallicity. The magnitude and asymmetry of the explosion energy are estimated with simulations, for a given set of neutrino luminosities and temperatures, not as in the previous study in which the explosion is manually and spherically initiated by means of a thermal bomb or a piston and also some artificial mixing procedures are applied for the estimate of abundances of the SN ejecta. By post-processing calculations with a large nuclear reaction network, we have evaluated abundances and masses of ejecta from the aspherical SNe. We find that matter mixing induced via SASI is important for the abundant production of nuclei with atomic number >= 21, in particular Sc, which is underproduced in the spherical models without artificial mixing. We also find that the IMF-averaged abundances are similar to those observed in extremely metal poor stars. However, observed [K/Fe] cannot be reproduced with our aspherical SN models.
NASA Astrophysics Data System (ADS)
Janka, Hans-Thomas
The question why and how core-collapse supernovae (SNe) explode is one of the central and most long-standing riddles of stellar astrophysics. Solving this problem is crucial for deciphering the supernova (SN) phenomenon; for predicting its observable signals such as light curves and spectra, nucleosynthesis yields, neutrinos, and gravitational waves; for defining the role of SNe in the dynamical and chemo-dynamical evolution of galaxies; and for explaining the birth conditions and properties of neutron stars (NSs) and stellar-mass black holes. Since the formation of such compact remnants releases over hundred times more energy in neutrinos than the kinetic energy of the SN explosion, neutrinos can be the decisive agents for powering the SN outburst. According to the standard paradigm of the neutrino-driven mechanism, the energy transfer by the intense neutrino flux to the medium behind the stagnating core bounce shock, assisted by violent hydrodynamic mass motions (sometimes subsumed by the term "turbulence"), revives the outward shock motion and thus initiates the SN explosion. Because of the weak coupling of neutrinos in the region of this energy deposition, detailed, multidimensional hydrodynamic models including neutrino transport and a wide variety of physics are needed to assess the viability of the mechanism. Owing to advanced numerical codes and increasing supercomputer power, considerable progress has been achieved in our understanding of the physical processes that have to act in concert for the success of neutrino-driven explosions. First studies begin to reveal observational implications and avenues to test the theoretical picture by data from individual SNe and SN remnants but also from population-integrated observables. While models will be further refined, a real breakthrough is expected through the next galactic core-collapse SN, when neutrinos and gravitational waves can be used to probe the conditions deep inside the dying star.
Abaqus Simulations of Rock Response to Dynamic Loading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steedman, David W.; Coblentz, David
The LANL Geodynamics Team has been applying Abaqus modeling to achieve increasingly complex simulations. Advancements in Abaqus model building and simulation tools allows this progress. We use Lab-developed constitutive models, the fully coupled CEL Abaqus and general contact to simulate response of realistic sites to explosively driven shock.
Delayed Neutrino-Driven Supernova Explosions Aided by the Standing Accretion-Shock Instability
NASA Astrophysics Data System (ADS)
Marek, A.; Janka, H.-Th.
2009-03-01
We present two-dimensional hydrodynamic simulations of stellar core collapse and develop the framework for a detailed analysis of the energetic aspects of neutrino-powered supernova explosions. Our results confirm that the neutrino-heating mechanism remains a viable explanation of the explosion of a wider mass range of supernova progenitors with iron cores, but the explosion sets in later and develops differently than thought so far. The calculations were performed with an energy-dependent treatment of the neutrino transport based on the "ray-by-ray plus" approximation, in which the neutrino number, energy, and momentum equations are closed with a variable Eddington factor obtained by iteratively solving a model Boltzmann equation. We focus here on the evolution of a 15 M sun progenitor and provide evidence that shock revival and an explosion are initiated at about 600 ms after core bounce, powered by neutrino energy deposition. This is significantly later than previously found for an 11.2 M sun star, for which we also present a continuation of the explosion model published by Buras et al. The onset of the blast is fostered in both cases by the standing accretion-shock instability. This instability exhibits highest growth rates for the dipole and quadrupole modes, which lead to large-amplitude bipolar shock oscillations and push the shock to larger radii, thus increasing the time accreted matter is exposed to neutrino heating in the gain layer. As a consequence, also convective overturn behind the shock is strengthened, which otherwise is suppressed or damped because of the small shock stagnation radius. When the explosion sets in, the shock reveals a pronounced global deformation with a dominant dipolar component. In both the 11.2 M sun and 15 M sun explosions long-lasting equatorial downflows supply the gain layer with fresh gas, of which a sizable fraction is heated by neutrinos and leads to the build-up of the explosion energy of the ejecta over possibly hundreds of milliseconds. A "soft" nuclear equation of state that causes a rapid contraction, and a smaller radius of the forming neutron star and thus a fast release of gravitational binding energy, seems to be more favorable for the development of an explosion. Rotation has the opposite effect because in the long run it leads to a more extended and cooler neutron star and thus lower neutrino luminosities and mean energies and overall less neutrino heating. Neutron star g-mode oscillations, although we see their presence, and the acoustic mechanism play no important role in our simulations. While numerical tests show that our code is also well able to follow large-amplitude core g-modes if they are instigated; the amplitude of such oscillations remains small in our supernova runs and the acoustic energy flux injected by the ringing neutron star and by the deceleration of supersonic downflows near the neutron star surface is small compared to the neutrino energy deposition.
NASA Astrophysics Data System (ADS)
Petr, V.; Lozano, E.
2017-09-01
This paper overviews a complete method for the characterization of the explosive energy output from a standard detonator. Measurements of the output of explosives are commonly based upon the detonation parameters of the chemical energy content of the explosive. These quantities provide a correct understanding of the energy stored in an explosive, but they do not provide a direct measure of the different modes in which the energy is released. This optically based technique combines high-speed and ultra-high-speed imaging to characterize the casing fragmentation and the detonator-driven shock load. The procedure presented here could be used as an alternative to current indirect methods—such as the Trauzl lead block test—because of its simplicity, high data accuracy, and minimum demand for test repetition. This technique was applied to experimentally measure air shock expansion versus time and calculating the blast wave energy from the detonation of the high explosive charge inside the detonator. Direct measurements of the shock front geometry provide insight into the physics of the initiation buildup. Because of their geometry, standard detonators show an initial ellipsoidal shock expansion that degenerates into a final spherical wave. This non-uniform shape creates variable blast parameters along the primary blast wave. Additionally, optical measurements are validated using piezoelectric pressure transducers. The energy fraction spent in the acceleration of the metal shell is experimentally measured and correlated with the Gurney model, as well as to several empirical formulations for blasts from fragmenting munitions. The fragment area distribution is also studied using digital particle imaging analysis and correlated with the Mott distribution. Understanding the fragmentation distribution plays a critical role when performing hazard evaluation from these types of devices. In general, this technique allows for characterization of the detonator within 6-8% error with no knowledge of the amount or type of explosive contained within the shell, making it also suitable for the study of unknown improvised explosive devices.
A comparison study of exploding a Cu wire in air, water, and solid powders
NASA Astrophysics Data System (ADS)
Han, Ruoyu; Wu, Jiawei; Ding, Weidong; Zhou, Haibin; Qiu, Aici; Wang, Yanan
2017-11-01
In this paper, an experimental study on exploding a copper wire in air, water, incombustible powders, and energetic materials is performed. We examined the effects of the surrounding media on the explosion process and its related phenomena. Experiments were first carried out with copper wire explosions driven by microsecond timescale pulsed currents in air, water, and the half-half case. Then, the copper wires were exploded in air, water, SiO2 powders, quartz sand, NaCl powders, and energetic-material cylinders, respectively. Our experimental results indicated that the explosion process was significantly influenced by the surrounding media, resulting in noticeable differences in energy deposition, optical emission, and shock waves. In particular, incombustible powders could throttle the current flow completely when a fine wire was adopted. We also found that an air or incombustible-powder layer could drastically attenuate the shock wave generated by a wire explosion. As for energetic-material loads, obvious discrepancies were found in voltage/current waveforms from vaporization when compared with a wire explosion in air/water, which meant the metal vapor/liquid drops play a significant role in the ignition process.
Multi-parametric studies of electrically-driven flyer plates
NASA Astrophysics Data System (ADS)
Neal, William; Bowden, Michael; Explosive Trains; Devices Collaboration
2015-06-01
Exploding foil initiator (EFI) detonators function by the acceleration of a flyer plate, by the electrical explosion of a metallic bridge, into an explosive pellet. The length, and therefore time, scales of this shock initation process is dominated by the magnitude and duration of the imparted shock pulse. To predict the dynamics of this initiation, it is critical to further understand the velocity, shape and thickness of this flyer plate. This study uses multi-parametric diagnostics to investigate the geometry and velocity of the flyer plate upon impact including the imparted electrical energy: photon Doppler velocimetry (PDV), dual axis imaging, time-resolved impact imaging, voltage and current. The investigation challenges the validity of traditional assumptions about the state of the flyer plate at impact and discusses the improved understanding of the process.
Poynting-Flux-Driven Bubbles and Shocks Around Merging Neutron Star Binaries
NASA Astrophysics Data System (ADS)
Medvedev, M. V.; Loeb, A.
2013-04-01
Merging binaries of compact relativistic objects are thought to be progenitors of short gamma-ray bursts. Because of the strong magnetic field of one or both binary members and high orbital frequencies, these binaries are strong sources of energy in the form of Poynting flux. The steady injection of energy by the binary forms a bubble filled with matter with the relativistic equation of state, which pushes on the surrounding plasma and can drive a shock wave in it. Unlike the Sedov-von Neumann-Taylor blast wave solution for a point-like explosion, the shock wave here is continuously driven by the ever-increasing pressure inside the bubble. We calculate from the first principles the dynamics and evolution of the bubble and the shock surrounding it, demonstrate that it exhibits finite time singularity and find the corresponding analytical solution. We predict that such binaries can be observed as radio sources a few hours before and after the merger.
Equations of state of detonation products: ammonia and methane
NASA Astrophysics Data System (ADS)
Lang, John; Dattelbaum, Dana; Goodwin, Peter; Garcia, Daniel; Coe, Joshua; Leiding, Jeffery; Gibson, Lloyd; Bartram, Brian
2015-06-01
Ammonia (NH3) and methane (CH4) are two principal product gases resulting from explosives detonation, and the decomposition of other organic materials under shockwave loading (such as foams). Accurate thermodynamic descriptions of these gases are important for understanding the detonation performance of high explosives. However, shock compression data often do not exist for molecular species in the dense gas phase, and are limited in the fluid phase. Here, we present equation of state measurements of elevated initial density ammonia and methane gases dynamically compressed in gas-gun driven plate impact experiments. Pressure and density of the shocked gases on the principal Hugoniot were determined from direct particle velocity and shock wave velocity measurements recorded using optical velocimetry (Photonic Doppler velocimetry (PDV) and VISAR (velocity interferometer system for any reflector)). Streak spectroscopy and 5-color pyrometry were further used to measure the emission from the shocked gases, from which the temperatures of the shocked gases were estimated. Up to 0.07 GPa, ammonia was not observed to ionize, with temperature remaining below 7000 K. These results provide quantitative measurements of the Hugoniot locus for improving equations of state models of detonation products.
Characterizing the growth to detonation in HNS with small-scale PDV "cutback" experiments
NASA Astrophysics Data System (ADS)
Wixom, Ryan R.; Yarrington, Cole D.; Knepper, Robert; Tappan, Alexander S.; Olles, Joseph D.; Damm, David L.
2017-01-01
For many decades, cutback experiments have been used to characterize the equation of state and growth to steady detonation in explosive formulations. More recently, embedded gauges have been used to capture the growth to steady detonation in gas-gun impacted samples. Data resulting from these experiments are extremely valuable for parameterizing equation of state and reaction models used in hydrocode simulations. Due to the extremely fast growth to detonation in typical detonator explosives, cutback and embedded gauge experiments are particularly difficult, if not impossible. Using frequency shifted photonic Doppler velocimetry (PDV) we have measured particle velocity histories from vapor-deposited explosive films impacted with electrically driven flyers. By varying the sample thickness and impact conditions we were able to capture the growth from inert shock to full detonation pressure within distances as short as 100 µm. These data are being used to assess and improve burn-model parameterization and equations of state for simulating shock initiation.
Asymmetric material impact: Achieving free surfaces velocities nearly double that of the projectile
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aslam, Tariq; Dattelbaum, Dana; Gustavsen, Richard
Hypervelocity impact speeds are often limited by practical considerations in guns and explosive driven systems. In particular, for gas guns (both powder driven and light gas guns), there is the general trend that higher projectile speeds often come at the expense of smaller diameters, and thus less time for examining shock phenomena prior to two dimensional release waves affecting the observed quantities of interest. Similarly, explosive driven systems have their own set of limiting conditions due to limitations in explosive energy and size of devices required as engineering dimensions increase. The focus in this study is to present a methodologymore » of obtaining free surface velocities well in excess of the projectile velocity. The key to this approach is in using a high impedance projectile that impacts a series of progressively lower impedance materials. The free surface velocity (if they were separated) of each of the progressively lower impedance materials would increase for each material. The theory behind this approach, as well as experimental results are presented.« less
Asymmetric material impact: Achieving free surfaces velocities nearly double that of the projectile
Aslam, Tariq; Dattelbaum, Dana; Gustavsen, Richard; ...
2015-05-19
Hypervelocity impact speeds are often limited by practical considerations in guns and explosive driven systems. In particular, for gas guns (both powder driven and light gas guns), there is the general trend that higher projectile speeds often come at the expense of smaller diameters, and thus less time for examining shock phenomena prior to two dimensional release waves affecting the observed quantities of interest. Similarly, explosive driven systems have their own set of limiting conditions due to limitations in explosive energy and size of devices required as engineering dimensions increase. The focus in this study is to present a methodologymore » of obtaining free surface velocities well in excess of the projectile velocity. The key to this approach is in using a high impedance projectile that impacts a series of progressively lower impedance materials. The free surface velocity (if they were separated) of each of the progressively lower impedance materials would increase for each material. The theory behind this approach, as well as experimental results are presented.« less
NASA Astrophysics Data System (ADS)
Xiong, Jia-ming; Li, Lee; Dai, Hong-yu; Wu, Hai-bo; Peng, Ming-yang; Lin, Fu-chang
2018-03-01
During the formation of a high current impulse discharge arc, objects near the discharge arc will be strongly impacted. In this paper, a high power, high current gas switch is used as the site of the impulse discharge arc. The explosion wave theory and the arc channel energy balance equation are introduced to analyze the development of the shock wave overpressure driven by the high current impulse discharge arc, and the demarcation point of the arc channel is given, from which the energy of the arc channel is no longer converted into shock waves. Through the analysis and calculation, it is found that the magnitude of the shock wave overpressure caused by impulse discharge arc expansion is closely related to the arc current rising rate. The arc shock wave overpressure will undergo a slow decay process and then decay rapidly. The study of this paper will perform the function of deepening the understanding of the physical nature of the impulse arc discharge, which can be used to explain the damage effect of the high current impulse discharge arc.
Shock Driven Multiphase Instabilities in Scramjet Applications
NASA Astrophysics Data System (ADS)
McFarland, Jacob
2016-11-01
Shock driven multiphase instabilities (SDMI) arise in many applications from dust production in supernovae to ejecta distribution in explosions. At the limit of small, fast reacting particles the instability evolves similar to the Richtmyer-Meshkov (RM) instability. However, as additional particle effects such as lag, phase change, and collisions become significant the required parameter space becomes much larger and the instability deviates significantly from the RM instability. In scramjet engines the SDMI arises during a cold start where liquid fuel droplets are injected and processed by shock and expansion waves. In this case the particle evaporation and mixing is important to starting and sustaining combustion, but the particles are large and slow to react, creating significant multiphase effects. This talk will examine multiphase mixing in scramjet relevant conditions in 3D multiphase hydrodynamic simulations using the FLASH code from the University of Chicago FLASH center.
Investigation Of Vapor Explosion Mechanisms Using High Speed Photography
NASA Astrophysics Data System (ADS)
Armstrong, Donn R.; Anderson, Richard P.
1983-03-01
The vapor explosion, a physical interaction between hot and cold liquids that causes the explosive vaporization of the cold liquid, is a hazard of concern in such diverse industries as metal smelting and casting, paper manufacture, and nuclear power generation. Intensive work on this problem worldwide, for the past 25 years has generated a number of theories and mechanisms proposed to explain vapor explosions. High speed photography has been the major instrument used to test the validity of the theories and to provide the observations that have lead to new theories. Examples are given of experimental techniques that have been used to investigate vapor explosions. Detailed studies of specific mechanisms have included microsecond flash photograph of contact boiling and high speed cinematography of shock driven breakup of liquid drops. Other studies looked at the explosivity of various liquid pairs using cinematography inside a pulsed nuclear reactor and x-ray cinematography of a thermite-sodium interaction.
Hot spot-derived shock initiation phenomena in heterogeneous nitromethane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dattelbaum, Dana M; Sheffield, Stephen A; Stahl, David B
2009-01-01
The addition of solid silica particles to gelled nitromethane offers a tractable model system for interrogating the role of impedance mismatches as one type of hot spot 'seed' on the initiation behaviors of explosive formulations. Gas gun-driven plate impact experiments are used to produce well-defined shock inputs into nitromethane-silica mixtures containing size-selected silica beads at 6 wt%. The Pop-plots or relationships between shock input pressure and rundistance (or time)-to-detonation for mixtures containing small (1-4 {micro}m) and large (40 {micro}m) beads are presented. Overall, the addition of beads was found to influence the shock sensitivity of the mixtures, with the smallermore » beads being more sensitizing than the larger beads, lowering the shock initiation threshold for the same run distance to detonation compared with neat nitromethane. In addition, the use of embedded electromagnetic gauges provides detailed information pertaining to the mechanism of the build-up to detonation and associated reactive flow. Of note, an initiation mechanism characteristic of homogeneous liquid explosives, such as nitromethane, was observed in the nitromethane-40 {micro}m diameter silica samples at high shock input pressures, indicating that the influence of hot spots on the initiation process was minimal under these conditions.« less
The shock sensitivity of nitromethane/methanol mixtures
NASA Astrophysics Data System (ADS)
Bartram, Brian; Dattelbaum, Dana; Sheffield, Steve; Gibson, Lee
2013-06-01
The dilution of liquid explosives has multiple effects on detonation properties including an increase in critical diameter, spatiotemporal lengthening of the chemical reaction zone, and the development of propagating wave instabilities. Earlier detonation studies of NM/methanol mixtures have shown several effects of increasing dilution, including: 1) a continual increase in the critical diameter, 2) lowering of the Chapman-Jouguet detonation pressure, and 3) slowing of the steady detonation velocity (Koldunov et al., Comb. Expl. Shock Waves). Here, we present the results of a series of gas gun-driven plate-impact experiments to study the shock-to-detonation transition in NM/methanol mixtures. Embedded electromagnetic gauges were used to obtain in situ particle velocity wave profiles at multiple Lagrangian positions in the initiating explosive mixture. From the wave profiles obtained in each experiment, an unreacted Hugoniot locus, the initiation mechanism, and the overtake-time-to-detonation were obtained as a function of shock input condition for mixture concentrations from 100% NM to 50 wt%/50 wt% NM/methanol. Desensitization with dilution is less than expected. For example, little change in overtake time occurs in 80 wt%/20 wt% NM/methanol when compared with neat NM. Furthermore, the shock wave profiles from the gauges indicate that wave instabilities grow in as the overdriven detonation wave settles down following the shock-to-detonation transition.
Twinning, texture and constitutive relations for explosively formed jets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schiferl, S.K.
1989-01-01
We have used crystallographic-texture calculations to simulate the evolution of preferred grain orientations, and the corresponding changes in anisotropic plasticity, during explosively-driven liner collapse in metallic shaped-charge jets. For hcp metals, twinning tends to be an important deformation mechanism, and twinning is known to be strongly influenced by shocks. We consider cases of enhanced and inhibited twinning for titanium and titanium-alloys; the consequences of these treatments for the evolution of plasticity in early jet formation are discussed. 10 refs., 3 figs., 1 tab.
Spatial distribution of radionuclides in 3D models of SN 1987A and Cas A
NASA Astrophysics Data System (ADS)
Janka, Hans-Thomas; Gabler, Michael; Wongwathanarat, Annop
2017-02-01
Fostered by the possibilities of multi-dimensional computational modeling, in particular the advent of three-dimensional (3D) simulations, our understanding of the neutrino-driven explosion mechanism of core-collapse supernovae (SNe) has experienced remarkable progress over the past decade. First self-consistent, first-principle models have shown successful explosions in 3D, and even failed cases may be cured by moderate changes of the microphysics inside the neutron star (NS), better grid resolution, or more detailed progenitor conditions at the onset of core collapse, in particular large-scale perturbations in the convective Si and O burning shells. 3D simulations have also achieved to follow neutrino-driven explosions continuously from the initiation of the blast wave, through the shock breakout from the progenitor surface, into the radioactively powered evolution of the SN, and towards the free expansion phase of the emerging remnant. Here we present results from such simulations, which form the basis for direct comparisons with observations of SNe and SN remnants in order to derive constraints on the still disputed explosion mechanism. It is shown that predictions based on hydrodynamic instabilities and mixing processes associated with neutrino-driven explosions yield good agreement with measured NS kicks, light-curve properties of SN 1987A and asymmetries of iron and 44Ti distributions observed in SN 1987A and Cassiopeia A.
Explosively Driven Shock Induced Damage in OFHC Copper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koller, D. D.; Hixson, R. S.; Gray, G. T. III
OFHC Cu samples were subjected to shock loading using plane wave HE lenses to produce a uniaxial Taylor wave profile (shock followed by immediate release). Upon arrival of the shock wave at the free surface of the sample, the wave is reflected and propagates back into the sample as a release wave. It is the interaction of initial and reflected release waves that place the material in a localized state of tension which can ultimately result in damage and possibly complete failure of the material. The peak tensile stress and its location in the material are determined by the wavemore » shape. Damage evolution processes and localized behavior are discussed based on results from time-resolved free surface velocity (VISAR) interferometry and post shock metallurgical analysis of the soft recovered samples.« less
Revisiting Shock Initiation Modeling of Homogeneous Explosives
NASA Astrophysics Data System (ADS)
Partom, Yehuda
2013-04-01
Shock initiation of homogeneous explosives has been a subject of research since the 1960s, with neat and sensitized nitromethane as the main materials for experiments. A shock initiation model of homogeneous explosives was established in the early 1960s. It involves a thermal explosion event at the shock entrance boundary, which develops into a superdetonation that overtakes the initial shock. In recent years, Sheffield and his group, using accurate experimental tools, were able to observe details of buildup of the superdetonation. There are many papers on modeling shock initiation of heterogeneous explosives, but there are only a few papers on modeling shock initiation of homogeneous explosives. In this article, bulk reaction reactive flow equations are used to model homogeneous shock initiation in an attempt to reproduce experimental data of Sheffield and his group. It was possible to reproduce the main features of the shock initiation process, including thermal explosion, superdetonation, input shock overtake, overdriven detonation after overtake, and the beginning of decay toward Chapman-Jouget (CJ) detonation. The time to overtake (TTO) as function of input pressure was also calculated and compared to the experimental TTO.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ro, Stephen; Matzner, Christopher D., E-mail: ro@astro.utoronto.ca
Wave-driven outflows and non-disruptive explosions have been implicated in pre-supernova outbursts, supernova impostors, luminous blue variable eruptions, and some narrow-line and superluminous supernovae. To model these events, we investigate the dynamics of stars set in motion by strong acoustic pulses and wave trains, focusing on nonlinear wave propagation, shock formation, and an early phase of the development of a weak shock. We identify the shock formation radius, showing that a heuristic estimate based on crossing characteristics matches an exact expansion around the wave front and verifying both with numerical experiments. Our general analytical condition for shock formation applies to one-dimensionalmore » motions within any static environment, including both eruptions and implosions. We also consider the early phase of shock energy dissipation. We find that waves of super-Eddington acoustic luminosity always create shocks, rather than damping by radiative diffusion. Therefore, shock formation is integral to super-Eddington outbursts.« less
Fates of the most massive primordial stars
NASA Astrophysics Data System (ADS)
Chen, Ke-Jung; Heger, Alexander; Almgren, Ann; Woosley, Stan
2012-09-01
We present our results of numerical simulations of the most massive primordial stars. For the extremely massive non-rotating Pop III stars over 300Msolar, they would simply die as black holes. But the Pop III stars with initial masses 140 - 260Msolar may have died as gigantic explosions called pair-instability supernovae (PSNe). We use a new radiation-hydrodynamics code CASTRO to study evolution of PSNe. Our models follow the entire explosive burning and the explosion until the shock breaks out from the stellar surface. In our simulations, we find that fluid instabilities occurred during the explosion. These instabilities are driven by both nuclear burning and hydrodynamical instability. In the red supergiant models, fluid instabilities can lead to significant mixing of supernova ejecta and alter the observational signature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vandersall, K S; Tarver, C M; Garcia, F
Shock initiation experiments on the HMX based explosives LX-10 (95% HMX, 5% Viton by weight) and LX-07 (90% HMX, 10% Viton by weight) were performed to obtain in-situ pressure gauge data, run-distance-to-detonation thresholds, and Ignition and Growth modeling parameters. A 101 mm diameter propellant driven gas gun was utilized to initiate the explosive samples with manganin piezoresistive pressure gauge packages placed between sample slices. The run-distance-to-detonation points on the Pop-plot for these experiments and prior experiments on another HMX based explosive LX LX-04 (85% HMX, 15% Viton by weight) will be shown, discussed, and compared as a function of themore » binder content. This parameter set will provide additional information to ensure accurate code predictions for safety scenarios involving HMX explosives with different percent binder content additions.« less
Cinematographic investigations of the explosively driven dispersion and ignition of solid particles
NASA Astrophysics Data System (ADS)
Grégoire, Y.; Sturtzer, M.-O.; Khasainov, B. A.; Veyssière, B.
2014-07-01
We present results of an experimental study of blast wave propagation and particle dispersion induced by a free-field detonation of spherical charges made of a 125 g C-4 explosive surrounded by inert or reactive particles. Visualization of the flow was performed with a high-frame-rate video camera. Background oriented Schlieren (BOS) methods were adapted to process the images that allowed the detection of the shock waves. BOS analysis also revealed that particles form agglomerates, which may generate precursor perturbations on the recorded pressure signals. While inert glass particles notably delay the shock, the combustion of aluminium particles can accelerate it, especially if they are small atomized or flaked particles. When a mixture of inert glass particles with reactive particles is dispersed, the agglomerates are formed by coalescence of both materials.
Shock Equation of State of Multi-Phase Epoxy-Based Composite (Al-MnO2-Epoxy)
2010-10-01
single stage light gas gun , two...using three different loading techniques— single stage light gas gun , two stage light gas gun , and explosive loading—with multiple diagnostic...wave speed. B. Single stage gas gun loading experiments Four gas gun -driven equation of state experiments were conducted at NSWC-Indian Head using
Explosively driven two-shockwave tools with applications
NASA Astrophysics Data System (ADS)
Buttler, W. T.; Oró, D. M.; Mariam, F. G.; Saunders, A.; Andrews, M. J.; Cherne, F. J.; Hammerberg, J. E.; Hixson, R. S.; Monfared, S. K.; Morris, C.; Olson, R. T.; Preston, D. L.; Stone, J. B.; Terrones, G.; Tupa, D.; Vogan-McNeil, W.
2014-05-01
We present the development of an explosively driven physics tool to generate two mostly uniaxial shockwaves. The tool is being used to extend single shockwave ejecta models to account for a second shockwave a few microseconds later. We explore techniques to vary the amplitude of both the first and second shockwaves, and we apply the tool experimentally at the Los Alamos National Laboratory Proton Radiography (pRad)facility. The tools have been applied to Sn with perturbations of wavelength λ = 550 μm, and various amplitudes that give wavenumber amplitude products of kh in {3/4,1/2,1/4,1/8}, where h is the perturbation amplitude, and k = 2π/λ is the wavenumber. The pRad data suggest the development of a second shock ejecta model based on unstable Richtmyer-Meshkov physics.
High Explosive Detonation-Confiner Interactions
NASA Astrophysics Data System (ADS)
Short, Mark; Quirk, James J.
2018-01-01
The primary purpose of a detonation in a high explosive (HE) is to provide the energy to drive a surrounding confiner, typically for mining or munitions applications. The details of the interaction between an HE detonation and its confinement are essential to achieving the objectives of the explosive device. For the high pressures induced by detonation loading, both the solid HE and confiner materials will flow. The structure and speed of a propagating detonation, and ultimately the pressures generated in the reaction zone to drive the confiner, depend on the induced flow both within the confiner and along the HE-confiner material interface. The detonation-confiner interactions are heavily influenced by the material properties and, in some cases, the thickness of the confiner. This review discusses the use of oblique shock polar analysis as a means of characterizing the possible range of detonation-confiner interactions. Computations that reveal the fluid mechanics of HE detonation-confiner interactions for finite reaction-zone length detonations are discussed and compared with the polar analysis. This includes cases of supersonic confiner flow; subsonic, shock-driven confiner flow; subsonic, but shockless confiner flow; and sonic flow at the intersection of the detonation shock and confiner material interface. We also summarize recent developments, including the effects of geometry and porous material confinement, on detonation-confiner interactions.
Black Hole Formation and Fallback during the Supernova Explosion of a 40 M ⊙ Star
NASA Astrophysics Data System (ADS)
Chan, Conrad; Müller, Bernhard; Heger, Alexander; Pakmor, Rüdiger; Springel, Volker
2018-01-01
Fallback in core-collapse supernovae is considered a major ingredient for explaining abundance anomalies in metal-poor stars and the natal kicks and spins of black holes (BHs). We present a first 3D simulation of BH formation and fallback in an “aborted” neutrino-driven explosion of a 40 solar mass zero-metallicity progenitor from collapse to shock breakout. We follow the phase up to BH formation using the relativistic COCONUT-FMT code. For the subsequent evolution to shock breakout we apply the moving-mesh code AREPO to core-collapse supernovae for the first time. Our simulation shows that despite early BH formation, neutrino-heated bubbles can survive for tens of seconds before being accreted, leaving them sufficient time to transfer part of their energy to sustain the shock wave as is propagates through the envelope. Although the initial net energy (∼2 Bethe) of the neutrino-heated ejecta barely equals the binding energy of the envelope, 11 {M}ȯ of hydrogen are still expelled with an energy of 0.23 Bethe. We find no significant mixing and only a modest BH kick and spin, but speculate that stronger effects could occur for slightly more energetic explosions or progenitors with less tightly bound envelopes.
Shock Initiation and Equation of State of Ammonium Nitrate
NASA Astrophysics Data System (ADS)
Robbins, David; Sheffield, Steve; Dattelbaum, Dana; Chellappa, Raja; Velisavljevic, Nenad
2013-06-01
Ammonium nitrate (AN) is a widely used fertilizer and mining explosive commonly found in ammonium nitrate-fuel oil. Neat AN is a non-ideal explosive with measured detonation velocities approaching 4 km/s. Previously, we reported a thermodynamically-complete equation of state for AN based on its maximum density, and showed that near-full density AN did not initiate when subjected to shock input conditions up to 22 GPa. In this work, we extend these initial results, by presenting new Hugoniot data for intermediate density neat AN obtained from gas gun-driven plate impact experiments. AN at densities from 1.8 to 1.5 g/cm3 were impacted into LiF windows using a two-stage light gas gun. Dual VISARs were used to measure the interfacial particle velocity wave profile as a function of time following impact. The new Hugoniot data, in addition to updates to thermodynamic parameters derived from structural analysis and vibrational spectroscopy measurements in high pressure diamond anvil cell experiments, are used to refine the unreacted EOS for AN. Furthermore, shock initiation of neat AN was observed as the initial porosity increased (density decreased). Insights into the relationship(s) between initial density and shock initiation sensitivity are also presented, from evidence of shock initiation in the particle velocity profiles obtained for the lower density AN samples.
Numerical study of multiscale compaction-initiated detonation
NASA Astrophysics Data System (ADS)
Gambino, J. R.; Schwendeman, D. W.; Kapila, A. K.
2018-02-01
A multiscale model of heterogeneous condensed-phase explosives is examined computationally to determine the course of transient events following the application of a piston-driven stimulus. The model is a modified version of that introduced by Gonthier (Combust Sci Technol 175(9):1679-1709, 2003. https://doi.org/10.1080/00102200302373) in which the explosive is treated as a porous, compacting medium at the macro-scale and a collection of closely packed spherical grains capable of undergoing reaction and diffusive heat transfer at the meso-scale. A separate continuum description is ascribed to each scale, and the two scales are coupled together in an energetically consistent manner. Following piston-induced compaction, localized energy deposition at the sites of intergranular contact creates hot spots where reaction begins preferentially. Reaction progress at the macro-scale is determined by the spatial average of that at the grain scale. A parametric study shows that combustion at the macro-scale produces an unsteady detonation with a cyclical character, in which the lead shock loses strength and is overtaken by a stronger secondary shock generated in the partially reacted material behind it. The secondary shock in turn becomes the new lead shock and the process repeats itself.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, George T
2010-12-14
Widespread research over the past five decades has provided a wealth of experimental data and insight concerning shock hardening and the spallation response of materials subjected to square-topped shock-wave loading profiles. Less quantitative data have been gathered on the effect of direct, in-contact, high explosive (HE)-driven Taylor wave (or triangular-wave) loading profile shock loading on the shock hardening, damage evolution, or spallation response of materials. Explosive loading induces an impulse dubbed a 'Taylor Wave'. This is a significantly different loading history than that achieved by a square-topped impulse in terms of both the pulse duration at a fixed peak pressure,more » and a different unloading strain rate from the peak Hugoniot state achieved. The goal of this research is to quantify the influence of shockwave obliquity on the spallation response of copper and tantalum by subjecting plates of each material to HE-driven sweeping detonation-wave loading and quantify both the wave propagation and the post-mortem damage evolution. This talk will summarize our current understanding of damage evolution during sweeping detonation-wave spallation loading in Cu and Ta and show comparisons to modeling simulations. The spallation responses of Cu and Ta are both shown to be critically dependent on the shockwave profile and the stress-state of the shock. Based on variations in the specifics of the shock drive (pulse shape, peak stress, shock obliquity) and sample geometry in Cu and Ta, 'spall strength' varies by over a factor of two and the details of the mechanisms of the damage evolution is seen to vary. Simplistic models of spallation, such as P{sub min} based on 1-D square-top shock data lack the physics to capture the influence of kinetics on damage evolution such as that operative during sweeping detonation loading. Such considerations are important for the development of predictive models of damage evolution and spallation in metals and alloys.« less
NASA Astrophysics Data System (ADS)
Demir, Ozgur; Sahin, Abdurrahman; Yilmaz, Tamer
2012-09-01
Underwater explosion induced shock loads are capable of causing considerable structural damage. Investigations of the underwater explosion (UNDEX) effects on structures have seen continuous developments because of security risks. Most of the earlier experimental investigations were performed by military since the World War I. Subsequently; Cole [1] established mathematical relations for modeling underwater explosion shock loading, which were the outcome of many experimental investigations This study predicts and establishes the transient responses of a panel structure to underwater explosion shock loads using non-linear finite element code Ls-Dyna. Accordingly, in this study a new MATLAB code has been developed for predicting shock loading profile for different weight of explosive and different shock factors. Numerical analysis was performed for various test conditions and results are compared with Ramajeyathilagam's experimental study [8].
Improved models of stellar core collapse and still no explosions: what is missing?
Buras, R; Rampp, M; Janka, H-Th; Kifonidis, K
2003-06-20
Two-dimensional hydrodynamic simulations of stellar core collapse are presented which for the first time were performed by solving the Boltzmann equation for the neutrino transport including a state-of-the-art description of neutrino interactions. Stellar rotation is also taken into account. Although convection develops below the neutrinosphere and in the neutrino-heated region behind the supernova shock, the models do not explode. This suggests missing physics, possibly with respect to the nuclear equation of state and weak interactions in the subnuclear regime. However, it might also indicate a fundamental problem with the neutrino-driven explosion mechanism.
Shock Initiation Characteristics of an Aluminized DNAN/RDX Melt-Cast Explosive
NASA Astrophysics Data System (ADS)
Cao, Tong-Tang; Zhou, Lin; Zhang, Xiang-Rong; Zhang, Wei; Miao, Fei-Chao
2017-10-01
Shock sensitivity is one of the key parameters for newly developed, 2,4-dinitroanisole (DNAN)-based, melt-cast explosives. For this paper, a series of shock initiation experiments were conducted using a one-dimensional Lagrangian system with a manganin piezoresistive pressure gauge technique to evaluate the shock sensitivity of an aluminized DNAN/cyclotrimethylenetrinitramine (RDX) melt-cast explosive. This study fully investigated the effects of particle size distributions in both RDX and aluminum, as well as the RDX's crystal quality on the shock sensitivity of the aluminized DNAN/RDX melt-cast explosive. Ultimately, the shock sensitivity of the aluminized DNAN/RDX melt-cast explosives increases when the particle size decreases in both RDX and aluminum. Additionally, shock sensitivity increases when the RDX's crystal quality decreases. In order to simulate these effects, an Ignition and Growth (I&G) reactive flow model was calibrated. This calibrated I&G model was able to predict the shock initiation characteristics of the aluminized DNAN/RDX melt-cast explosive.
Single shot ultrafast dynamic ellipsometry (UDE) of laser-driven shocks in single crystal explosives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitley, Von H; Mcgrane, Shawn D; Moore, David S
2009-01-01
We report on the first experiments to measure states in shocked energetic single crystals with dynamic ellipsometry. We demonstrate that these ellipsometric techniques can produce reasonable Hugoniot values using small amounts of crystalline RDX and PETN. Pressures, particle velocities and shock velocities obtained using shocked ellipsometry are comparable to those found using gas-gun flyer plates and molecular dynamics calculations. The adaptation of the technique from uniform thin films of polymers to thick non-perfect crystalline materials was a significant achievement. Correct sample preparation proved to be a crucial component. Through trial and error, we were able to resolve polishing issues, samplemore » quality problems, birefringence effects and mounting difficulties that were not encountered using thin polymer films.« less
A numerical framework for the direct simulation of dense particulate flow under explosive dispersal
NASA Astrophysics Data System (ADS)
Mo, H.; Lien, F.-S.; Zhang, F.; Cronin, D. S.
2018-05-01
In this paper, we present a Cartesian grid-based numerical framework for the direct simulation of dense particulate flow under explosive dispersal. This numerical framework is established through the integration of the following numerical techniques: (1) operator splitting for partitioned fluid-solid interaction in the time domain, (2) the second-order SSP Runge-Kutta method and third-order WENO scheme for temporal and spatial discretization of governing equations, (3) the front-tracking method for evolving phase interfaces, (4) a field function proposed for low-memory-cost multimaterial mesh generation and fast collision detection, (5) an immersed boundary method developed for treating arbitrarily irregular and changing boundaries, and (6) a deterministic multibody contact and collision model. Employing the developed framework, this paper further studies particle jet formation under explosive dispersal by considering the effects of particle properties, particulate payload morphologies, and burster pressures. By the simulation of the dispersal processes of dense particle systems driven by pressurized gas, in which the driver pressure reaches 1.01325× 10^{10} Pa (10^5 times the ambient pressure) and particles are impulsively accelerated from stationary to a speed that is more than 12000 m/s within 15 μ s, it is demonstrated that the presented framework is able to effectively resolve coupled shock-shock, shock-particle, and particle-particle interactions in complex fluid-solid systems with shocked flow conditions, arbitrarily irregular particle shapes, and realistic multibody collisions.
Characterization of Hypervelocity Metal Fragments for Explosive Initiation
NASA Astrophysics Data System (ADS)
Yeager, John; Bowden, Patrick; Guildenbecher, Daniel; Olles, Joseph
2017-06-01
The off-normal detonation behavior of two plastic-bonded explosive (PBX) formulations was studied using explosively-driven aluminum fragments moving at hypersonic velocity. Witness plate materials, including copper and polycarbonate, were used to characterize the distribution of particles, finding that the aluminum did not fragment homogeneously but rather with larger particles in a ring surrounding finer particles. Digital holography experiments were conducted to measure three-dimensional shape and size of the fastest-moving fragments, which ranged between 100 and 700 microns and traveled between 2 and 3.5 km/s. Crucially, these experiments showed variability in the fragmentation in terms of the number of fragments at the leading edge of the fragment field, indicating that both single and multiple shock impacts could be imparted to the target material. Lower density PBX 9407 (RDX-based) was initiable at up to 4.5 inches, while higher density PBX 9501 (HMX-based) was only initiable at up to 0.25 inches. This type of data is critical for safety experiments and hydrocode simulations to quantify shock-to-detonation transition mechanisms and the associated risk-margins for these materials.
Shock Initiation of Wedge-shaped Explosive Measured with Smear Camera and Photon Doppler Velocimetry
NASA Astrophysics Data System (ADS)
Gu, Yan
2017-06-01
Triaminotrinitrobenzene (TATB) is an important insensitive high explosive in conventional weapons due to its safety and high energy. In order to have an insight into the shock initiation performance of a TATB-based insensitive high explosive (IHE), experimental measurements of the particle velocity histories of the TATB-based Explosive using Photon Doppler Velocimetry and shock wave profile of the TATB-based explosive using High Speed Rotating Mirror Smear Camera had been performed. In this paper, we would describe the shock initiation performance of the TATB-based explosive by run-to-detonation distance and the particle velocity history at an initialization shock of about 7.9 GPa. The parameters of hugoniot of unreacted the TATB-based explosive and Pop relationship could be derived with the particle velocity history obtained in this paper.
Modeling normal shock velocity curvature relations for heterogeneous explosives
NASA Astrophysics Data System (ADS)
Yoo, Sunhee; Crochet, Michael; Pemberton, Steven
2017-01-01
The theory of Detonation Shock Dynamics (DSD) is, in part, an asymptotic method to model a functional form of the relation between the shock normal, its time rate and shock curvature κ. In addition, the shock polar analysis provides a relation between shock angle θ and the detonation velocity Dn that is dependent on the equations of state (EOS) of two adjacent materials. For the axial detonation of an explosive material confined by a cylinder, the shock angle is defined as the angle between the shock normal and the normal to the cylinder liner, located at the intersection of the shock front and cylinder inner wall. Therefore, given an ideal explosive such as PBX-9501 with two functional models determined, a unique, smooth detonation front shape ψ can be determined that approximates the steady state detonation shock front of the explosive. However, experimental measurements of the Dn(κ) relation for heterogeneous explosives such as PBXN-111 [D. K. Kennedy, 2000] are challenging due to the non-smoothness and asymmetry usually observed in the experimental streak records of explosion fronts. Out of many possibilities the asymmetric character may be attributed to the heterogeneity of the explosives; here, material heterogeneity refers to compositions with multiple components and having a grain morphology that can be modeled statistically. Therefore in extending the formulation of DSD to modern novel explosives, we pose two questions: (1) is there any simple hydrodynamic model that can simulate such an asymmetric shock evolution, and (2) what statistics can be derived for the asymmetry using simulations with defined structural heterogeneity in the unreacted explosive? Saenz, Taylor and Stewart [1] studied constitutive models for derivation of the Dn(κ) relation for porous homogeneous explosives and carried out simulations in a spherical coordinate frame. In this paper we extend their model to account for heterogeneity and present shock evolutions in heterogeneous explosives using 2-D hydrodynamic simulations with some statistical examination. As an initial work, we assume that the heterogeneity comes from the local density variation or porosity only.
NASA Astrophysics Data System (ADS)
Nath, G.; Vishwakarma, J. P.
2016-11-01
Similarity solutions are obtained for the flow behind a spherical shock wave in a non-ideal gas under gravitational field with conductive and radiative heat fluxes, in the presence of a spatially decreasing azimuthal magnetic field. The shock wave is driven by a piston moving with time according to power law. The radiation is considered to be of the diffusion type for an optically thick grey gas model and the heat conduction is expressed in terms of Fourier's law for heat conduction. Similarity solutions exist only when the surrounding medium is of constant density. The gas is assumed to have infinite electrical conductivity and to obey a simplified van der Waals equation of state. It is shown that an increase of the gravitational parameter or the Alfven-Mach number or the parameter of the non-idealness of the gas decreases the compressibility of the gas in the flow-field behind the shock, and hence there is a decrease in the shock strength. The pressure and density vanish at the inner surface (piston) and hence a vacuum is formed at the center of symmetry. The shock waves in conducting non-ideal gas under gravitational field with conductive and radiative heat fluxes can be important for description of shocks in supernova explosions, in the study of a flare produced shock in the solar wind, central part of star burst galaxies, nuclear explosion etc. The solutions obtained can be used to interpret measurements carried out by space craft in the solar wind and in neighborhood of the Earth's magnetosphere.
NASA Astrophysics Data System (ADS)
Vandersall, Kevin S.; Tarver, Craig M.; Garcia, Frank; Chidester, Steven K.
2010-05-01
In large explosive and propellant charges, relatively low shock pressures on the order of 1-2 GPa impacting large volumes and lasting tens of microseconds can cause shock initiation of detonation. The pressure buildup process requires several centimeters of shock propagation before shock to detonation transition occurs. In this paper, experimentally measured run distances to detonation for lower input shock pressures are shown to be much longer than predicted by extrapolation of high shock pressure data. Run distance to detonation and embedded manganin gauge pressure histories are measured using large diameter charges of six octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) based plastic bonded explosives (PBX's): PBX 9404; LX-04; LX-07; LX-10; PBX 9501; and EDC37. The embedded gauge records show that the lower shock pressures create fewer and less energetic "hot spot" reaction sites, which consume the surrounding explosive particles at reduced reaction rates and cause longer distances to detonation. The experimental data is analyzed using the ignition and growth reactive flow model of shock initiation in solid explosives. Using minimum values of the degrees of compression required to ignite hot spot reactions, the previously determined high shock pressure ignition and growth model parameters for the six explosives accurately simulate the much longer run distances to detonation and much slower growths of pressure behind the shock fronts measured during the shock initiation of HMX PBX's at several low shock pressures.
NASA Astrophysics Data System (ADS)
Krehl, Peter O. K.
2011-07-01
In the period of the Cold War (1945-1991), Shock Wave Physics and Detonation Physics (SWP&DP) — until the beginning of WWII mostly confined to gas dynamics, high-speed aerodynamics, and military technology (such as aero- and terminal ballistics, armor construction, chemical explosions, supersonic gun, and other firearms developments) — quickly developed into a large interdisciplinary field by its own. This rapid expansion was driven by an enormous financial support and two efficient feedbacks: the Terminal Ballistic Cycleand the Research& Development Cycle. Basic knowledge in SWP&DP, initially gained in the Classic Period(from 1808) and further extended in the Post-Classic Period(from the 1930s to present), is now increasingly used also in other branches of Science and Engineering (S&E). However, also independent S&E branches developed, based upon the fundamentals of SWP&DP, many of those developments will be addressed (see Tab. 2). Thus, shock wave and detonation phenomena are now studied within an enormous range of dimensions, covering microscopic, macroscopic, and cosmic dimensions as well as enormous time spans ranging from nano-/picosecond shock durations (such as produced by ultra-short laser pulses) to shock durations that continue for centuries (such as blast waves emitted from ancient supernova explosions). This paper reviews these developments from a historical perspective.
Non-radial instabilities and progenitor asphericities in core-collapse supernovae
NASA Astrophysics Data System (ADS)
Müller, B.; Janka, H.-Th.
2015-04-01
Since core-collapse supernova simulations still struggle to produce robust neutrino-driven explosions in 3D, it has been proposed that asphericities caused by convection in the progenitor might facilitate shock revival by boosting the activity of non-radial hydrodynamic instabilities in the post-shock region. We investigate this scenario in depth using 42 relativistic 2D simulations with multigroup neutrino transport to examine the effects of velocity and density perturbations in the progenitor for different perturbation geometries that obey fundamental physical constraints (like the anelastic condition). As a framework for analysing our results, we introduce semi-empirical scaling laws relating neutrino heating, average turbulent velocities in the gain region, and the shock deformation in the saturation limit of non-radial instabilities. The squared turbulent Mach number,
Analysis of xRAGE and flag high explosive burn models with PBX 9404 cylinder tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrier, Danielle; Andersen, Kyle Richard
High explosives are energetic materials that release their chemical energy in a short interval of time. They are able to generate extreme heat and pressure by a shock driven chemical decomposition reaction, which makes them valuable tools that must be understood. This study investigated the accuracy and performance of two Los Alamos National Laboratory hydrodynamic codes, which are used to determine the behavior of explosives within a variety of systems: xRAGE which utilizes an Eulerian mesh, and FLAG with utilizes a Lagrangian mesh. Various programmed and reactive burn models within both codes were tested using a copper cylinder expansion test.more » The test was based on a recent experimental setup which contained the plastic bonded explosive PBX 9404. Detonation velocity versus time curves for this explosive were obtained using Photon Doppler Velocimetry (PDV). The modeled results from each of the burn models tested were then compared to one another and to the experimental results. This study validate« less
Method for attenuating seismic shock from detonating explosive in an in situ oil shale retort
Studebaker, Irving G.; Hefelfinger, Richard
1980-01-01
In situ oil shale retorts are formed in formation containing oil shale by excavating at least one void in each retort site. Explosive is placed in a remaining portion of unfragmented formation within each retort site adjacent such a void, and such explosive is detonated in a single round for explosively expanding formation within the retort site toward such a void for forming a fragmented permeable mass of formation particles containing oil shale in each retort. This produces a large explosion which generates seismic shock waves traveling outwardly from the blast site through the underground formation. Sensitive equipment which could be damaged by seismic shock traveling to it straight through unfragmented formation is shielded from such an explosion by placing such equipment in the shadow of a fragmented mass in an in situ retort formed prior to the explosion. The fragmented mass attenuates the velocity and magnitude of seismic shock waves traveling toward such sensitive equipment prior to the shock wave reaching the vicinity of such equipment.
Augmented shock wave fracture/severance of materials
NASA Technical Reports Server (NTRS)
Schimmel, Morry L. (Inventor); Bement, Laurence J. (Inventor)
1995-01-01
The present invention related generally to severing materials, and more particularly to severing or weakening materials through explosively induced, augmented shock waves. Explosive cords are placed in grooves on the upper surface of the material to be severed or weakened. The explosive cords are initiated simultaneously to introduce explosive shock waves into the material. These shock waves progress toward the centerline between the explosive cords and the lower surface of the material. Intersecting and reflected waves produce a rarefaction zone on the centerline to fail the material in tension. A groove may also be cut in the lower surface of the material to aid in severing or weakening the material.
A Study of SDT in an Ammonium Nitrate (NH4 NO3) Based Granular Explosive
NASA Astrophysics Data System (ADS)
Burns, Malcolm; Taylor, Peter
2007-06-01
In order to study the SDT process in a granular non ideal explosive (NIE) an experimental technique has been developed that allows the granular explosive to be shock initiated at a well controlled ``tap density''. The granular NIE was contained in a PMMA cone and a planar shock was delivered to the explosive through buffer plates of varying material. A combination of piezoelectric probes, ionization pins, PVDF stress gauges and a high speed framing camera were used to measure the input shock pressure and shock and detonation wave positions in the explosive. Four trials were performed to characterize the run to detonation distance versus pressure relationship (Pop plot) of the granular NH4 NO3 explosive. Input pressures ranged from close to the 4GPa predicted CJ pressure of the granular explosive down to 1.4 GPa, giving run distances up to 14mm for the lowest pressure. The data indicates a steady acceleration of the input shock to the detonation velocity, implying significant reaction growth at the shock front. This is in contrast to the behaviour of most high density pressed PBXs which show little growth in shock front velocity before transit to detonation. The experimentally observed initiation behaviour is compared to that predicted by a simple JWL++ reactive burn model for the granular NH4 NO3 explosive which has been fitted to other detonics experiments on this material.
Li, Kebin; Li, Xiaojie; Yan, Honghao; Wang, Xiaohong; Miao, Yusong
2017-12-01
A new velocity probe which permits recording the time history of detonation and shock waves has been developed by improving the commercial on principle and structure. A method based on the probe is then designed to measure the detonation velocity and near-field shock parameters in a single underwater explosion, by which the oblique shock wave front of cylindrical charges and the peak pressure attenuation curve of spherical explosive are obtained. A further derivation of detonation pressure, adiabatic exponent, and other shock parameters is conducted. The present method offers a novel and reliable parameter determination for near-field underwater explosion.
NASA Astrophysics Data System (ADS)
Li, Kebin; Li, Xiaojie; Yan, Honghao; Wang, Xiaohong; Miao, Yusong
2017-12-01
A new velocity probe which permits recording the time history of detonation and shock waves has been developed by improving the commercial on principle and structure. A method based on the probe is then designed to measure the detonation velocity and near-field shock parameters in a single underwater explosion, by which the oblique shock wave front of cylindrical charges and the peak pressure attenuation curve of spherical explosive are obtained. A further derivation of detonation pressure, adiabatic exponent, and other shock parameters is conducted. The present method offers a novel and reliable parameter determination for near-field underwater explosion.
NASA Astrophysics Data System (ADS)
Springer, H. Keo
2017-06-01
Advanced manufacturing techniques offer control of explosive mesostructures necessary to tailor its shock sensitivity. However, structure-property relationships are not well established for explosives so there is little material design guidance for these techniques. The objective of this numerical study is to demonstrate how TATB-based explosives can be sensitized to shocks using mesostructural features. For this study, we use LX-17 (92.5%wt TATB, 7.5%wt Kel-F 800) as the prototypical TATB-based explosive. We employ features with different geometries and materials. HMX-based explosive features, high shock impedance features, and pores are used to sensitive the LX-17. Simulations are performed in the multi-physics hydrocode, ALE3D. A reactive flow model is used to simulate the shock initiation response of the explosives. Our metric for shock sensitivity in this study is run distance to detonation as a function of applied pressure. These numerical studies are important because they guide the design of novel energetic materials. This work was performed under the auspices of the United States Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-724986.
Double Shock Experiments on PBX Explosive JOB-9003
NASA Astrophysics Data System (ADS)
Zhang, Xu
2017-06-01
One-dimensional plate impact experiments have been performed to study the double shock to detonation transition and Hugoniot state in the HMX-based explosive JOB-9003. The flyer was a combination with sapphire and Kel-F which could pass two different pressure waves into PBX Explosive JOB-9003 sample after impact. The particle velocities at interface and different depths in the PBX JOB-9003 sample were measured with Al-based electromagnetic particle velocity gauge technique, thus obtaining particle velocity - time diagram. According to the diagram, the corresponding Hugoniot state can be determined based on the particle velocity and shock wave velocity in the sample. Comparing with the single shock experiments, PBX Explosive JOB-9003 shows desensitization features due to the pre-pressed shock wave, the shock to detonation transition distance is longer than those single shock experiments.
Modeling Type IIn Supernovae: Understanding How Shock Development Effects Light Curves Properties
NASA Astrophysics Data System (ADS)
De La Rosa, Janie
2016-06-01
Type IIn supernovae are produced when massive stars experience dramatic mass loss phases caused by opacity edges or violent explosions. Violent mass ejections occur quite often just prior to the collapse of the star. If the final episode happens just before collapse, the outward ejecta is sufficiently dense to alter the supernova light-curve, both by absorbing the initial supernova light and producing emission when the supernova shock hits the ejecta. Initially, the ejecta is driven by shock progating through the interior of the star, and eventually expands through the circumstellar medium, forming a cold dense shell. As the shock wave approaches the shell, there is an increase in UV and optical radiation at the location of the shock breakout. We have developed a suite of simple semi-analytical models in order to understand the relationship between our observations and the properties of the expanding SN ejecta. When we compare Type IIn observations to a set of modeled SNe, we begin to see the influence of initial explosion conditions on early UV light curve properties such as peak luminosities and decay rate.The fast rise and decay corresponds to the models representing a photosphere moving through the envelope, while the modeled light curves with a slower rise and decay rate are powered by 56Ni decay. However, in both of these cases, models that matched the luminosity were unable to match the low radii from the blackbody models. The effect of shock heating as the supernova material blasts through the circumstellar material can drastically alter the temperature and position of the photosphere. The new set of models redefine the initial modeling conditions to incorporate an outer shell-like structure, and include late-time shock heating from shocks produced as the supernova ejecta travels through the inhomogeneous circumstellar medium.
NASA Astrophysics Data System (ADS)
Jones, J. D.; Ma, Xia; Clements, B. E.; Gibson, L. L.; Gustavsen, R. L.
2017-06-01
Gas-gun driven plate-impact techniques were used to study the shock to detonation transition in LX-14 (95.5 weight % HMX, 4.5 weight % estane binder). The transition was recorded using embedded electromagnetic particle velocity gauges. Initial shock pressures, P, ranged from 2.5 to 8 GPa and the resulting distances to detonation, xD, were in the range 1.9 to 14 mm. Numerical simulations using the SURF reactive burn scheme coupled with a linear US -up / Mie-Grueneisen equation of state for the reactant and a JWL equation of state for the products, match the experimental data well. Comparison of simulation with experiment as well as the ``best fit'' parameter set for the simulations is presented.
Adiabatic Compression Sensitivity of Liquid Fuels and Monopropellants
NASA Technical Reports Server (NTRS)
Ismail, Ismail M. K.; Hawkins, Tom W.
2000-01-01
Liquid rocket propellants can be sensitive to rapid compression. Such liquids may undergo decomposition and their handling may be accompanied with risk. Decomposition produces small gas bubbles in the liquid, which upon rapid compression may cause catastrophic explosions. The rapid compression can result from mechanical shocks applied on the tank containing the liquid or from rapid closure of the valves installed on the lines. It is desirable to determine the conditions that may promote explosive reactions. At Air Force Research Laboratory (AFRL), we constructed an apparatus and established a safe procedure for estimating the sensitivity of propellant materials towards mechanical shocks (Adiabatic Compression Tester). A sample is placed on a stainless steel U-tube, held isothermally at a temperature between 20 and 150 C then exposed to an abrupt mechanical shock of nitrogen gas at a pressure between 6.9 and 20.7 MPa (1000 to 3000 psi). The apparatus is computer interfaced and is driven with LABTECH NOTEBOOK-pro (registered) Software. In this presentation, the design of the apparatus is shown, the operating procedure is outlined, and the safety issues are addressed. The results obtained on different energetic materials are presented.
NASA Astrophysics Data System (ADS)
Austin, Daniel E.; Shen, Andy H. T.; Beauchamp, J. L.; Ahrens, Thomas J.
2012-04-01
We have developed an orthogonal-acceleration time-of-flight mass spectrometer to study the volatiles produced when a mineral's shock-compressed state is isentropically released, as occurs when a shock wave, driven into the mineral by an impact, reflects upon reaching a free surface. The instrument is designed to use a gun or explosive-launched projectile as the source of the shock wave, impact onto a flange separating a poor vacuum and the high vacuum (10-7 Torr) interior of the mass spectrometer, and transmission of the shock wave through the flange to a mineral sample mounted on the high-vacuum side of the flange. The device extracts and analyzes the neutrals and ions produced from the shocked mineral prior to the possible occurrence of collateral instrument damage from the shock-inducing impact. The instrument has been tested using laser ablation of various mineral surfaces, and the resulting spectra are presented. Mass spectra are compared with theoretical distributions of molecular species, and with expected distributions from laser desorption.
The Explosion Mechanism of Core-Collapse Supernovae: Progress in Supernova Theory and Experiments
Foglizzo, Thierry; Kazeroni, Rémi; Guilet, Jérôme; ...
2015-01-01
The explosion of core-collapse supernova depends on a sequence of events taking place in less than a second in a region of a few hundred kilometers at the center of a supergiant star, after the stellar core approaches the Chandrasekhar mass and collapses into a proto-neutron star, and before a shock wave is launched across the stellar envelope. Theoretical efforts to understand stellar death focus on the mechanism which transforms the collapse into an explosion. Progress in understanding this mechanism is reviewed with particular attention to its asymmetric character. We highlight a series of successful studies connecting observations of supernovamore » remnants and pulsars properties to the theory of core-collapse using numerical simulations. The encouraging results from first principles models in axisymmetric simulations is tempered by new puzzles in 3D. The diversity of explosion paths and the dependence on the pre-collapse stellar structure is stressed, as well as the need to gain a better understanding of hydrodynamical and MHD instabilities such as SASI and neutrino-driven convection. The shallow water analogy of shock dynamics is presented as a comparative system where buoyancy effects are absent. This dynamical system can be studied numerically and also experimentally with a water fountain. Lastly, we analyse the potential of this complementary research tool for supernova theory. We also review its potential for public outreach in science museums.« less
Physics of Core-Collapse Supernovae in Three Dimensions: A Sneak Preview
NASA Astrophysics Data System (ADS)
Janka, Hans-Thomas; Melson, Tobias; Summa, Alexander
2016-10-01
Nonspherical mass motions are a generic feature of core-collapse supernovae, and hydrodynamic instabilities play a crucial role in the explosion mechanism. The first successful neutrino-driven explosions could be obtained with self-consistent, first-principles simulations in three spatial dimensions. But three-dimensional (3D) models tend to be less prone to explosion than the corresponding axisymmetric two-dimensional (2D) ones. The reason is that 3D turbulence leads to energy cascading from large to small spatial scales, the inverse of the 2D case, thus disfavoring the growth of buoyant plumes on the largest scales. Unless the inertia to explode simply reflects a lack of sufficient resolution in relevant regions, some important component of robust and sufficiently energetic neutrino-powered explosions may still be missing. Such a deficit could be associated with progenitor properties such as rotation, magnetic fields, or precollapse perturbations, or with microphysics that could cause enhancement of neutrino heating behind the shock. 3D simulations have also revealed new phenomena that are not present in 2D ones, such as spiral modes of the standing accretion shock instability (SASI) and a stunning dipolar lepton-number emission self-sustained asymmetry (LESA). Both impose time- and direction-dependent variations on the detectable neutrino signal. The understanding of these effects and of their consequences is still in its infancy.
The Explosion Mechanism of Core-Collapse Supernovae: Progress in Supernova Theory and Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foglizzo, Thierry; Kazeroni, Rémi; Guilet, Jérôme
The explosion of core-collapse supernova depends on a sequence of events taking place in less than a second in a region of a few hundred kilometers at the center of a supergiant star, after the stellar core approaches the Chandrasekhar mass and collapses into a proto-neutron star, and before a shock wave is launched across the stellar envelope. Theoretical efforts to understand stellar death focus on the mechanism which transforms the collapse into an explosion. Progress in understanding this mechanism is reviewed with particular attention to its asymmetric character. We highlight a series of successful studies connecting observations of supernovamore » remnants and pulsars properties to the theory of core-collapse using numerical simulations. The encouraging results from first principles models in axisymmetric simulations is tempered by new puzzles in 3D. The diversity of explosion paths and the dependence on the pre-collapse stellar structure is stressed, as well as the need to gain a better understanding of hydrodynamical and MHD instabilities such as SASI and neutrino-driven convection. The shallow water analogy of shock dynamics is presented as a comparative system where buoyancy effects are absent. This dynamical system can be studied numerically and also experimentally with a water fountain. Lastly, we analyse the potential of this complementary research tool for supernova theory. We also review its potential for public outreach in science museums.« less
Shock initiation of 2,4-dinitroimidazole (2,4-DNI)
NASA Astrophysics Data System (ADS)
Urtiew, P. A.; Tarver, C. M.; Simpson, R. L.
1996-05-01
The shock sensitivity of the pressed solid explosive 2,4-dinitroimidazole (2,4-DNI) was determined using the embedded manganin pressure gauge technique. At an initial shock pressure of 2 GPa, several microseconds were required before any exothermic reaction was observed. At 4 GPa, 2,4-DNI reacted more rapidly but did not transition to detonation at the 12 mm deep gauge position. At 6 GPa, detonation occurred in less than 6 mm of shock propagation. Thus, 2,4-DNI is more shock sensitive than TATB-based explosives but is considerably less shock sensitive than HMX-based explosives. An Ignition and Growth reactive flow model for 2,4-DNI based on these gauge records showed that 2,4-DNI exhibits shock initiation characteristics similar to TATB but reacts faster. The chemical structure of 2,4-DNI suggests that it may exhibit thermal decomposition reactions similar to nitroguanine and explosives with similar ring structures, such as ANTA and NTO.
Modeling shock responses of plastic bonded explosives using material point method
NASA Astrophysics Data System (ADS)
Shang, Hailin; Zhao, Feng; Fu, Hua
2017-01-01
Shock responses of plastic bonded explosives are modeled using material point method as implemented in the Uintah Computational Framework. Two-dimensional simulation model was established based on the micrograph of PBX9501. Shock loading for the explosive was performed by a piston moving at a constant velocity. Unreactive simulation results indicate that under shock loading serious plastic strain appears on the boundary of HMX grains. Simultaneously, the plastic strain energy transforms to thermal energy, causing the temperature to rise rapidly on grain boundary areas. The influence of shock strength on the responses of explosive was also investigated by increasing the piston velocity. And the results show that with increasing shock strength, the distribution of plastic strain and temperature does not have significant changes, but their values increase obviously. Namely, the higher the shock strength is, the higher the temperature rise will be.
NASA Astrophysics Data System (ADS)
Summa, Alexander; Janka, Hans-Thomas; Melson, Tobias; Marek, Andreas
2018-01-01
We present the first self-consistent, 3D core-collapse supernova simulations performed with the PROMETHEUS-VERTEX code for a rotating progenitor star. Besides using the angular momentum of the 15 M ⊙ model as obtained in the stellar evolution calculation with an angular frequency of ∼10‑3 rad s‑1 (spin period of more than 6000 s) at the Si/Si–O interface, we also computed 2D and 3D cases with no rotation and with a ∼300 times shorter rotation period and different angular resolutions. In 2D, only the nonrotating and slowly rotating models explode, while rapid rotation prevents an explosion within 500 ms after bounce because of lower radiated neutrino luminosities and mean energies and thus reduced neutrino heating. In contrast, only the fast-rotating model develops an explosion in 3D when the Si/Si–O interface collapses through the shock. The explosion becomes possible by the support of a powerful standing accretion shock instability spiral mode, which compensates for the reduced neutrino heating and pushes strong shock expansion in the equatorial plane. Fast rotation in 3D leads to a “two-dimensionalization” of the turbulent energy spectrum (yielding roughly a ‑3 instead of a ‑5/3 power-law slope at intermediate wavelengths) with enhanced kinetic energy on the largest spatial scales. We also introduce a generalization of the “universal critical luminosity condition” of Summa et al. to account for the effects of rotation, and we demonstrate its viability for a set of more than 40 core-collapse simulations, including 9 and 20 M ⊙ progenitors, as well as black-hole-forming cases of 40 and 75 M ⊙ stars to be discussed in forthcoming papers.
Nanosecond formation of diamond and lonsdaleite by shock compression of graphite.
Kraus, D; Ravasio, A; Gauthier, M; Gericke, D O; Vorberger, J; Frydrych, S; Helfrich, J; Fletcher, L B; Schaumann, G; Nagler, B; Barbrel, B; Bachmann, B; Gamboa, E J; Göde, S; Granados, E; Gregori, G; Lee, H J; Neumayer, P; Schumaker, W; Döppner, T; Falcone, R W; Glenzer, S H; Roth, M
2016-03-14
The shock-induced transition from graphite to diamond has been of great scientific and technological interest since the discovery of microscopic diamonds in remnants of explosively driven graphite. Furthermore, shock synthesis of diamond and lonsdaleite, a speculative hexagonal carbon polymorph with unique hardness, is expected to happen during violent meteor impacts. Here, we show unprecedented in situ X-ray diffraction measurements of diamond formation on nanosecond timescales by shock compression of pyrolytic as well as polycrystalline graphite to pressures from 19 GPa up to 228 GPa. While we observe the transition to diamond starting at 50 GPa for both pyrolytic and polycrystalline graphite, we also record the direct formation of lonsdaleite above 170 GPa for pyrolytic samples only. Our experiment provides new insights into the processes of the shock-induced transition from graphite to diamond and uniquely resolves the dynamics that explain the main natural occurrence of the lonsdaleite crystal structure being close to meteor impact sites.
Nanosecond formation of diamond and lonsdaleite by shock compression of graphite
Kraus, D.; Ravasio, A.; Gauthier, M.; ...
2016-03-14
The shock-induced transition from graphite to diamond has been of great scientific and technological interest since the discovery of microscopic diamonds in remnants of explosively driven graphite. Furthermore, shock synthesis of diamond and lonsdaleite, a speculative hexagonal carbon polymorph with unique hardness, is expected to happen during violent meteor impacts. Here, we show unprecedented in situ X-ray diffraction measurements of diamond formation on nanosecond timescales by shock compression of pyrolytic as well as polycrystalline graphite to pressures from 19 GPa up to 228 GPa. While we observe the transition to diamond starting at 50 GPa for both pyrolytic and polycrystallinemore » graphite, we also record the direct formation of lonsdaleite above 170 GPa for pyrolytic samples only. In conclusion, our experiment provides new insights into the processes of the shock-induced transition from graphite to diamond and uniquely resolves the dynamics that explain the main natural occurrence of the lonsdaleite crystal structure being close to meteor impact sites.« less
Nanosecond formation of diamond and lonsdaleite by shock compression of graphite
Kraus, D.; Ravasio, A.; Gauthier, M.; Gericke, D. O.; Vorberger, J.; Frydrych, S.; Helfrich, J.; Fletcher, L. B.; Schaumann, G.; Nagler, B.; Barbrel, B.; Bachmann, B.; Gamboa, E. J.; Göde, S.; Granados, E.; Gregori, G.; Lee, H. J.; Neumayer, P.; Schumaker, W.; Döppner, T.; Falcone, R. W.; Glenzer, S. H.; Roth, M.
2016-01-01
The shock-induced transition from graphite to diamond has been of great scientific and technological interest since the discovery of microscopic diamonds in remnants of explosively driven graphite. Furthermore, shock synthesis of diamond and lonsdaleite, a speculative hexagonal carbon polymorph with unique hardness, is expected to happen during violent meteor impacts. Here, we show unprecedented in situ X-ray diffraction measurements of diamond formation on nanosecond timescales by shock compression of pyrolytic as well as polycrystalline graphite to pressures from 19 GPa up to 228 GPa. While we observe the transition to diamond starting at 50 GPa for both pyrolytic and polycrystalline graphite, we also record the direct formation of lonsdaleite above 170 GPa for pyrolytic samples only. Our experiment provides new insights into the processes of the shock-induced transition from graphite to diamond and uniquely resolves the dynamics that explain the main natural occurrence of the lonsdaleite crystal structure being close to meteor impact sites. PMID:26972122
Development of a flyer design to perform plate impact shock-release-shock experiments on explosives
NASA Astrophysics Data System (ADS)
Finnegan, Simon; Ferguson, James; Millett, Jeremy; Goff, Michael
2017-06-01
A flyer design to generate a shock-release-shock loading history within a gas gun target was developed before being used to study the response of an HMX based explosive. The flyer consisted of two flyer plates separated by a vacuum gap. This created a rear free surface that, with correct material choice, allowed the target to release to close to ambient pressure between the initial shock and subsequent re-shock. The design was validated by impacting piezoelectric pin arrays to record the front flyer deformation. Shots were performed on PCTFE targets to record the shock states generated in an inert material prior to subjecting an HMX based explosive to the same loading. The response of the explosive to this loading history was recorded using magnetic particle velocity (PV) gauges embedded within the targets. The behavior during the run to detonation is compared with the response to sustained shocks at similar input pressures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kay, Jeffrey J.; Park, Samuel; Kohl, Ian Thomas
In this work, shock-induced reactions in high explosives and their chemical mechanisms were investigated using state-of-the-art experimental and theoretical techniques. Experimentally, ultrafast shock interrogation (USI, an ultrafast interferometry technique) and ultrafast absorption spectroscopy were used to interrogate shock compression and initiation of reaction on the picosecond timescale. The experiments yielded important new data that appear to indicate reaction of high explosives on the timescale of tens of picoseconds in response to shock compression, potentially setting new upper limits on the timescale of reaction. Theoretically, chemical mechanisms of shock-induced reactions were investigated using density functional theory. The calculations generated important insightsmore » regarding the ability of several hypothesized mechanisms to account for shock-induced reactions in explosive materials. The results of this work constitute significant advances in our understanding of the fundamental chemical reaction mechanisms that control explosive sensitivity and initiation of detonation.« less
Detonation Propagation in Slabs and Axisymmetric Rate Sticks
NASA Astrophysics Data System (ADS)
Romick, Christopher; Aslam, Tariq
Insensitive high explosives (IHE) have many benefits; however, these IHEs exhibit longer reaction zones than more conventional high explosives (HE). This makes IHEs less ideal explosives and more susceptible to edge effects as well as other performance degradation issues. Thus, there is a resulting reduction in the detonation speed within the explosive. Many HE computational models, e. g. WSD, SURF, CREST, have shock-dependent reaction rates. This dependency places a high value on having an accurate shock speed. In the common practice of shock-capturing, there is ambiguity in the shock-state due to smoothing of the shock-front. Moreover, obtaining an accurate shock speed with shock-capturing becomes prohibitively computationally expensive in multiple dimensions. The use of shock-fitting removes the ambiguity of the shock-state as it is one of the boundaries. As such, the required resolution for a given error in the detonation speed is less than with shock-capturing. This allows for further insight into performance degradation. A two-dimensional shock-fitting scheme has been developed for unconfined slabs and rate sticks of HE. The HE modeling is accomplished by Euler equations utilizing several models with single-step irreversible kinetics in slab and rate stick geometries. Department of Energy - LANL.
Simulation of Metal Particulates in High Energetic Materials
2015-05-28
in explosive mixtures increases the density of the shock wave, causing a higher pressure in the shock . The high pressure in the shock is devastating...19 2.3.3 Explosive Materials with Aluminum Powders . . . . . . . . . . . . . . . . . 21 2.3.4 An Analysis of Shock ...32 3.2.4 Nozzling Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.3
Shock interaction with a two-gas interface in a novel dual-driver shock tube
NASA Astrophysics Data System (ADS)
Labenski, John R.
Fluid instabilities exist at the interface between two fluids having different densities if the flow velocity and density gradient are anti-parallel or if a shock wave crosses the boundary. The former case is called the Rayleigh-Taylor (R-T) instability and the latter, the Richtmyer-Meshkov (R-M) instability. Small initial perturbations on the interface destabilize and grow into larger amplitude structures leading to turbulent mixing. Instabilities of this type are seen in inertial confinement fusion (ICF) experiments, laser produced plasmas, supernova explosions, and detonations. A novel dual-driver shock tube was used to investigate the growth rate of the R-M instability. One driver is used to create an argon-refrigerant interface, and the other at the opposite end of the driven section generates a shock to force the interface with compressible flows behind the shock. The refrigerant gas in the first driver is seeded with sub-micron oil droplets for visualization of the interface. The interface travels down the driven section past the test section for a fixed amount of time. A stronger shock of Mach 1.1 to 1.3 drives the interface back past the test section where flow diagnostics are positioned. Two schlieren systems record the density fluctuations while light scattering detectors record the density of the refrigerant as a function of position over the interface. A pair of digital cameras take stereo images of the interface, as mapped out by the tracer particles under illumination by a Q-switched ruby laser. The amount of time that the interface is allowed to travel up the driven section determines the interaction time as a control. Comparisons made between the schlieren signals, light scattering detector outputs, and the images quantify the fingered characteristics of the interface and its growth due to shock forcing. The results show that the interface has a distribution of thickness and that the interaction with a shock further broadens the interface. The growth rate was found to exhibit a dependence on the shock strength.
Blast waves from violent explosive activity at Yasur Volcano, Vanuatu
NASA Astrophysics Data System (ADS)
Marchetti, E.; Ripepe, M.; Delle Donne, D.; Genco, R.; Finizola, A.; Garaebiti, E.
2013-11-01
and seismic waveforms were collected during violent strombolian activity at Yasur Volcano (Vanuatu). Averaging ~3000 seismic events showed stable waveforms, evidencing a low-frequency (0.1-0.3 Hz) signal preceding ~5-6 s the explosion. Infrasonic waveforms were mostly asymmetric with a sharp compressive (5-106 Pa) onset, followed by a small long-lasting rarefaction phase. Regardless of the pressure amplitude, the ratio between the positive and negative phases was constant. These waveform characteristics closely resembled blast waves. Infrared imagery showed an apparent cold spherical front ~20 m thick, which moved between 342 and 405 m/s before the explosive hot gas/fragments cloud. We interpret this cold front as that produced by the vapor condensation induced by the passage of the shock front. We suggest that violent strombolian activity at Yasur was driven by supersonic dynamics with gas expanding at 1.1 Mach number inside the conduit.
Lattice Boltzmann modeling to explain volcano acoustic source.
Brogi, Federico; Ripepe, Maurizio; Bonadonna, Costanza
2018-06-22
Acoustic pressure is largely used to monitor explosive activity at volcanoes and has become one of the most promising technique to monitor volcanoes also at large scale. However, no clear relation between the fluid dynamics of explosive eruptions and the associated acoustic signals has yet been defined. Linear acoustic has been applied to derive source parameters in the case of strong explosive eruptions which are well-known to be driven by large overpressure of the magmatic fluids. Asymmetric acoustic waveforms are generally considered as the evidence for supersonic explosive dynamics also for small explosive regimes. We have used Lattice-Boltzmann modeling of the eruptive fluid dynamics to analyse the acoustic wavefield produced by different flow regimes. We demonstrate that acoustic waveform well reproduces the flow dynamics of a subsonic fluid injection related to discrete explosive events. Different volumetric flow rate, at low-Mach regimes, can explain both the observed symmetric and asymmetric waveform. Hence, asymmetric waveforms are not necessarily related to the shock/supersonic fluid dynamics of the source. As a result, we highlight an ambiguity in the general interpretation of volcano acoustic signals for the retrieval of key eruption source parameters, necessary for a reliable volcanic hazard assessment.
Isolator fragmentation and explosive initiation tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickson, Peter; Rae, Philip John; Foley, Timothy J.
2016-09-19
Three tests were conducted to evaluate the effects of firing an isolator in proximity to a barrier or explosive charge. The tests with explosive were conducted without a barrier, on the basis that since any barrier will reduce the shock transmitted to the explosive, bare explosive represents the worst-case from an inadvertent initiation perspective. No reaction was observed. The shock caused by the impact of a representative plastic material on both bare and cased PBX 9501 is calculated in the worst-case, 1-D limit, and the known shock response of the HE is used to estimate minimum run-to-detonation lengths. The estimatesmore » demonstrate that even 1-D impacts would not be of concern and that, accordingly, the divergent shocks due to isolator fragment impact are of no concern as initiating stimuli.« less
Isolator fragmentation and explosive initiation tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickson, Peter; Rae, Philip John; Foley, Timothy J.
2015-09-30
Three tests were conducted to evaluate the effects of firing an isolator in proximity to a barrier or explosive charge. The tests with explosive were conducted without barrier, on the basis that since any barrier will reduce the shock transmitted to the explosive, bare explosive represents the worst-case from an inadvertent initiation perspective. No reaction was observed. The shock caused by the impact of a representative plastic material on both bare and cased PBX9501 is calculated in the worst-case, 1-D limit, and the known shock response of the HE is used to estimate minimum run-to-detonation lengths. The estimates demonstrate thatmore » even 1-D impacts would not be of concern and that, accordingly, the divergent shocks due to isolator fragment impact are of no concern as initiating stimuli.« less
Invited Article: Quantitative imaging of explosions with high-speed cameras
McNesby, Kevin L.; Homan, Barrie E.; Benjamin, Richard A.; ...
2016-05-31
Here, the techniques presented in this paper allow for mapping of temperature, pressure, chemical species, and energy deposition during and following detonations of explosives, using high speed cameras as the main diagnostic tool. Additionally, this work provides measurement in the explosive near to far-field (0-500 charge diameters) of surface temperatures, peak air-shock pressures, some chemical species signatures, shock energy deposition, and air shock formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shafer, D.; Toker, G. R.; Gurovich, V. Tz.
2013-05-15
Nanosecond timescale underwater electrical wire explosions of ring-shaped Cu wires were investigated using a pulsed generator with a current amplitude up to 50 kA. It was shown that this type of wire explosion results in the generation of a toroidal shock wave (SW). Time- and space-resolved optical diagnostics were used to determine azimuthal uniformity of the shock wave front and its velocity. It was found that the shock wave preserves its circular front shape in the range of radii 50μm
Critical energy for shock initiation of fuze train explosives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, F.E.; Wasley, R.J.; Green, L.G.
1973-01-01
Results of shock initiation experiments conducted for tetryl and A-5 are presented, along with some data on the shock initiation of other explosives. The experiments were conducted using a gun system. An equation which has been useful in correlating these shock data is given. Some applications of the critical energy concept (represented by the above equation), to explosive train designs for NASA space systems are included. The concept's usefulness to DOD ordnance agencies now replacing tetryl in fuze trains with A-5 is also indicated. (auth)
Modeling and Simulation of Explosively Driven Electromechanical Devices
NASA Astrophysics Data System (ADS)
Demmie, Paul N.
2002-07-01
Components that store electrical energy in ferroelectric materials and produce currents when their permittivity is explosively reduced are used in a variety of applications. The modeling and simulation of such devices is a challenging problem since one has to represent the coupled physics of detonation, shock propagation, and electromagnetic field generation. The high fidelity modeling and simulation of complicated electromechanical devices was not feasible prior to having the Accelerated Strategic Computing Initiative (ASCI) computers and the ASCI developed codes at Sandia National Laboratories (SNL). The EMMA computer code is used to model such devices and simulate their operation. In this paper, I discuss the capabilities of the EMMA code for the modeling and simulation of one such electromechanical device, a slim-loop ferroelectric (SFE) firing set.
NASA Astrophysics Data System (ADS)
Liu, Yan; Hussain, Tariq; Huang, Fenglei; Duan, Zhuoping
2016-07-01
All solid explosives in practical use are more or less porous. Although it is known that the change in porosity affects the shock sensitivity of solid explosives, the effect of small changes in porosity on the sensitivity needs to be determined for safe and efficient use of explosive materials. In this study, the influence of a small change in porosity on shock initiation and the subsequent detonation growth process of a plastic-bonded explosive PBXC03, composed of 87% cyclotetramethylene-tetranitramine (HMX), 7% triaminotrinitrobenzene (TATB), and 6% Viton by weight, are investigated by shock to detonation transition experiments. Two explosive formulations of PBXC03 having the same initial grain sizes pressed to 98 and 99% of theoretical mass density (1.873 g/cm3) respectively are tested using the in situ manganin piezoresistive pressure gauge technique. Numerical modeling of the experiments is performed using an ignition and growth reactive flow model. Reasonable agreement with the experimental results is obtained by increasing the growth term coefficient in the Lee-Tarver ignition and growth model with porosity. Combining the experimental and simulation results shows that the shock sensitivity increases with porosity for PBXC03 having the same explosive initial grain sizes for the pressures (about 3.1 GPa) applied in the experiments.
Understanding the shock and detonation response of high explosives at the continuum and meso scales
NASA Astrophysics Data System (ADS)
Handley, C. A.; Lambourn, B. D.; Whitworth, N. J.; James, H. R.; Belfield, W. J.
2018-03-01
The shock and detonation response of high explosives has been an active research topic for more than a century. In recent years, high quality data from experiments using embedded gauges and other diagnostic techniques have inspired the development of a range of new high-fidelity computer models for explosives. The experiments and models have led to new insights, both at the continuum scale applicable to most shock and detonation experiments, and at the mesoscale relevant to hotspots and burning within explosive microstructures. This article reviews the continuum and mesoscale models, and their application to explosive phenomena, gaining insights to aid future model development and improved understanding of the physics of shock initiation and detonation propagation. In particular, it is argued that "desensitization" and the effect of porosity on high explosives can both be explained by the combined effect of thermodynamics and hydrodynamics, rather than the traditional hotspot-based explanations linked to pressure-dependent reaction rates.
Optical Pressure Measurements of Explosions
2013-09-01
near field detonation product gases can have a significant effect upon afterburn ignition times (4). The implication being that afterburning times...can be tuned to bring detonation product afterburning into proximity of the leading shock, influencing brisance, and explosive impulse on target. 3...R. Z.; McAndrew, B. A. Afterburn Ignition Delay and Shock Augmentation in Fuel Rich Solid Explosives. Propellants, Explosives, Pyrotechnics 2010
Three dimensional core-collapse supernova simulated using a 15 M ⊙ progenitor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lentz, Eric J.; Bruenn, Stephen W.; Hix, W. Raphael
We have performed ab initio neutrino radiation hydrodynamics simulations in three and two spatial dimensions (3D and 2D) of core-collapse supernovae from the same 15 M⊙ progenitor through 440 ms after core bounce. Both 3D and 2D models achieve explosions; however, the onset of explosion (shock revival) is delayed by ~100 ms in 3D relative to the 2D counterpart and the growth of the diagnostic explosion energy is slower. This is consistent with previously reported 3D simulations utilizing iron-core progenitors with dense mantles. In the ~100 ms before the onset of explosion, diagnostics of neutrino heating and turbulent kinetic energymore » favor earlier explosion in 2D. During the delay, the angular scale of convective plumes reaching the shock surface grows and explosion in 3D is ultimately lead by a single, large-angle plume, giving the expanding shock a directional orientation not dissimilar from those imposed by axial symmetry in 2D simulations. Finally, we posit that shock revival and explosion in the 3D simulation may be delayed until sufficiently large plumes form, whereas such plumes form more rapidly in 2D, permitting earlier explosions.« less
Three dimensional core-collapse supernova simulated using a 15 M ⊙ progenitor
Lentz, Eric J.; Bruenn, Stephen W.; Hix, W. Raphael; ...
2015-07-10
We have performed ab initio neutrino radiation hydrodynamics simulations in three and two spatial dimensions (3D and 2D) of core-collapse supernovae from the same 15 M⊙ progenitor through 440 ms after core bounce. Both 3D and 2D models achieve explosions; however, the onset of explosion (shock revival) is delayed by ~100 ms in 3D relative to the 2D counterpart and the growth of the diagnostic explosion energy is slower. This is consistent with previously reported 3D simulations utilizing iron-core progenitors with dense mantles. In the ~100 ms before the onset of explosion, diagnostics of neutrino heating and turbulent kinetic energymore » favor earlier explosion in 2D. During the delay, the angular scale of convective plumes reaching the shock surface grows and explosion in 3D is ultimately lead by a single, large-angle plume, giving the expanding shock a directional orientation not dissimilar from those imposed by axial symmetry in 2D simulations. Finally, we posit that shock revival and explosion in the 3D simulation may be delayed until sufficiently large plumes form, whereas such plumes form more rapidly in 2D, permitting earlier explosions.« less
Microjetting from grooved surfaces in metallic samples subjected to laser driven shocks
NASA Astrophysics Data System (ADS)
de Rességuier, T.; Lescoute, E.; Sollier, A.; Prudhomme, G.; Mercier, P.
2014-01-01
When a shock wave propagating in a solid sample reflects from a free surface, geometrical effects predominantly governed by the roughness and defects of that surface may lead to the ejection of tiny jets that may breakup into high velocity, approximately micrometer-size fragments. This process referred to as microjetting is a major safety issue for engineering applications such as pyrotechnics or armour design. Thus, it has been widely studied both experimentally, under explosive and impact loading, and theoretically. In this paper, microjetting is investigated in the specific loading conditions associated to laser shocks: very short duration of pressure application, very high strain rates, small spatial scales. Material ejection from triangular grooves in the free surface of various metallic samples is studied by combining transverse optical shadowgraphy and time-resolved velocity measurements. The influences of the main parameters (groove angle, shock pressure, nature of the metal) on jet formation and ejection velocity are quantified, and the results are compared to theoretical estimates.
Influence of hot spot features on the initiation characteristics of heterogeneous nitromethane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dattelbaum, Dana M; Sheffield, Stephen A; Stahl, David B
2010-01-01
To gain insights into the critical hot spot features influencing energetic materials initiation characteristics, well-defined micron-scale particles have been intentionally introduced into the homogeneous explosive nitromethane (NM). Two types of potential hot spot origins have been examined - shock impedance mismatches using solid silica beads, and porosity using hollow microballoons - as well as their sizes and inter-particle separations. Here, we present the results of several series of gas gun-driven plate impact experiments on NM/particle mixtures with well-controlled shock inputs. Detailed insights into the nature of the reactive flow during the build-up to detonation have been obtained from the responsemore » of in-situ electromagnetic gauges, and the data have been used to establish Pop-plots (run-distance-to-detonation vs. shock input pressure) for the mixtures. Comparisons of sensitization effects and energy release characteristics relative to the initial shock front between the solid and hollow beads are presented.« less
Microjetting from grooved surfaces in metallic samples subjected to laser driven shocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rességuier, T. de, E-mail: resseguier@ensma.fr; Lescoute, E.; Sollier, A.
2014-01-28
When a shock wave propagating in a solid sample reflects from a free surface, geometrical effects predominantly governed by the roughness and defects of that surface may lead to the ejection of tiny jets that may breakup into high velocity, approximately micrometer-size fragments. This process referred to as microjetting is a major safety issue for engineering applications such as pyrotechnics or armour design. Thus, it has been widely studied both experimentally, under explosive and impact loading, and theoretically. In this paper, microjetting is investigated in the specific loading conditions associated to laser shocks: very short duration of pressure application, verymore » high strain rates, small spatial scales. Material ejection from triangular grooves in the free surface of various metallic samples is studied by combining transverse optical shadowgraphy and time-resolved velocity measurements. The influences of the main parameters (groove angle, shock pressure, nature of the metal) on jet formation and ejection velocity are quantified, and the results are compared to theoretical estimates.« less
Guidance on the Assessment and Development of Insensitive Munitions (MURAT)
2006-05-01
theoretical modelling . For this reason it is the best understood of all the areas on the flowchart. If the charge is already shocked by a previous impact...the initiation of heterogeneous high explosives due to shock waves are finite rate chemical reactions involved in the conversion of solid explosive ... explosive , increasing the chance of shock initiation (N26) Such an impact would have to take account of case material ahead of the fragment
Magnetic gauge instrumentation on the LANL gas-driven two-stage gun
NASA Astrophysics Data System (ADS)
Alcon, R. R.; Sheffield, S. A.; Martinez, A. R.; Gustavsen, R. L.
1998-07-01
The LANL gas-driven two-stage gun was designed and built to do initiation studies on insensitive high explosives as well as equation of state and reaction experiments on other materials. The preferred method of measuring reaction phenomena involves the use of in-situ magnetic particle velocity gauges. In order to accommodate this type of gauging in our two-stage gun, it has a 50-mm-diameter launch tube. We have used magnetic gauging on our 72-mm bore diameter single-stage gun for over 15 years and it has proven a very effective technique for all types of shock wave experiments, including those on high explosives. This technique has now been installed on our gas-driven two-stage gun. We describe the method used, as well as some of the difficulties that arose during the installation. Several magnetic gauge experiments have been completed on plastic materials. Waveforms obtained in some of the experiments will be discussed. Up to 10 in-situ particle velocity measurements can be made in a single experiment. This new technique is now working quite well, as is evidenced by the data. To our knowledge, this is the first time magnetic gauging has been used on a two-stage gun.
Dynamics of vapor emissions at wire explosion thresholda)
NASA Astrophysics Data System (ADS)
Belony, Paul A.; Kim, Yong W.
2010-10-01
X-pinch plasmas have been actively studied in the recent years. Numerical simulation of the ramp-up of metallic vapor emissions from wire specimens shows that under impulsive Ohmic heating the wire core invariably reaches a supercritical state before explosion. The heating rate depends sensitively on the local wire resistance, leading to highly variable vapor emission flux along the wire. To examine the vapor emission process, we have visualized nickel wire explosions by means of shock formation in air. In a single explosion as captured by shadowgraphy, there usually appear several shocks with spherical or cylindrical wave front originating from different parts of the wire. Growth of various shock fronts in time is well characterized by a power-law scaling in one form or another. Continuum emission spectra are obtained and calibrated to measure temperature near the explosion threshold. Shock front structures and vapor plume temperature are examined.
Effect of Shock Precompression on the Critical Diameter of Liquid Explosives
NASA Astrophysics Data System (ADS)
Petel, Oren E.; Higgins, Andrew J.; Yoshinaka, Akio C.; Zhang, Fan
2006-07-01
The critical diameter of both ambient and shock-precompressed liquid nitromethane confined in PVC tubing are measured experimentally. The experiment was conducted for both amine sensitized and neat NM. In the precompression experiments, the explosive is compressed by a strong shock wave generated by a donor explosive and reflected from a high impedance anvil prior to being detonated by a secondary event. The pressures reached in the test sections prior to detonation propagation was approximately 7 and 8 GPa for amine sensitized and neat NM respectively. The results demonstrated a 30% - 65% decrease in the critical diameter for the shock-compressed explosives. This critical diameter decrease is observed despite a significant decrease in the predicted Von Neumann temperature of the detonation in the precompressed explosive. The results are discussed in the context of theoretical predictions based on thermal ignition theory and previous critical diameter measurements.
NASA Astrophysics Data System (ADS)
Li, Liuxia; Qian, Dun; Zou, Xiaobing; Wang, Xinxin
2018-05-01
The shock waves generated by an underwater electrical wire explosion were investigated. A microsecond time-scale pulsed current source was used to trigger the electrical explosion of copper wires with a length of 5 cm and a diameter of 200 μm. The energy-storage capacitor was charged to a relatively low energy so that the energy deposited onto the wire was not large enough to fully vaporize the whole wire. Two shock waves were recorded with a piezoelectric gauge that was located at a position of 100 mm from the exploding wire. The first and weak shock wave was confirmed to be the contribution from wire melting, while the second and stronger shock wave was the contribution from wire vaporization. The phenomenon whereby the first shock wave generated by melting being overtaken by the shock wave due to vaporization was observed.
Apparatus for reducing shock and overpressure
Walter, C.E.
1975-01-28
An apparatus for reducing shock and overpressure is particularly useful in connection with the sequential detonation of a series of nuclear explosives under ground. A coupling and decoupling arrangement between adjacent nuclear explosives in the tubing string utilized to emplace the explosives is able to support lower elements on the string but yields in a manner which absorbs energy when subjected to the shock wave produced upon detonation of one of the explosives. Overpressure is accomodated by an arrangement in the string which provides an additional space into which the pressurized material can expand at a predetermined overpressure. (10 claims)
Apparatus for reducing shock and overpressure
Walter, C.E.
1975-10-21
The design is given of an apparatus for reducing shock and overpressure particularly useful in connection with the sequential detonation of a series of nuclear explosives underground. A coupling and decoupling arrangement between adjacent nuclear explosives in the tubing string utilized to emplace the explosives is able to support lower elements on the string but yields in a manner which absorbs energy when subjected to the shock wave produced upon detonation of one of the explosives. Overpressure is accommodated by an arrangement in the string which provides an additional space into which the pressurized material can expand at a predetermined overpressure.
Reaction Buildup of PBX Explosives JOB-9003 under Different Initiation Pressures
NASA Astrophysics Data System (ADS)
Zhang, Xu; Wang, Yan-fei; Hung, Wen-bin; Gu, Yan; Zhao, Feng; Wu, Qiang; Yu, Xin; Yu, Heng
2017-04-01
Aluminum-based embedded multiple electromagnetic particle velocity gauge technique has been developed in order to measure the shock initiation behavior of JOB-9003 explosives. In addition, another gauge element called a shock tracker has been used to monitor the progress of the shock front as a function of time, thus providing a position-time trajectory of the wave front as it moves through the explosive sample. The data are used to determine the position and time for shock to detonation transition. All the experimental results show that: the rising-up time of Al-based electromagnetic particle velocity gauge was very fast and less than 20 ns; the reaction buildup velocity profiles and the position-time for shock to detonation transition of HMX-based PBX explosive JOB-9003 with 1-8 mm depth from the origin of impact plane under different initiation pressures are obtained with high accuracy.
Shock waves in aviation security and safety
NASA Astrophysics Data System (ADS)
Settles, G. S.; Keane, B. T.; Anderson, B. W.; Gatto, J. A.
Accident investigations such as of Pan Am 103 and TWA 800 reveal the key role of shock-wave propagation in destroying the aircraft when an on-board explosion occurs. This paper surveys shock wave propagation inside an aircraft fuselage, caused either by a terrorist device or by accident, and provides some new experimental results. While aircraft-hardening research has been under way for more than a decade, no such experiments to date have used the crucial tool of high-speed optical imaging to visualize shock motion. Here, Penn State's Full-Scale Schlieren flow visualization facility yields the first shock-motion images in aviation security scenarios: 1) Explosions beneath full-size aircraft seats occupied by mannequins, 2) Explosions inside partially-filled luggage containers, and 3) Luggage-container explosions resulting in hull-holing. Both single-frame images and drum-camera movies are obtained. The implications of these results are discussed, though the overall topic must still be considered in its infancy.
Shock tube Multiphase Experiments
NASA Astrophysics Data System (ADS)
Middlebrooks, John; Allen, Roy; Paudel, Manoj; Young, Calvin; Musick, Ben; McFarland, Jacob
2017-11-01
Shock driven multiphase instabilities (SDMI) are unique physical phenomena that have far-reaching practical applications in engineering and science. The instability is present in high energy explosions, scramjet combustors, and supernovae events. The SDMI arises when a multiphase interface is impulsively accelerated by the passage of a shockwave. It is similar in development to the Richtmyer-Meshkov (RM) instability however, particle-to-gas coupling is the driving mechanism of the SDMI. As particle effects such as lag and phase change become more prominent, the SDMI's development begins to significantly deviate from the RM instability. We have developed an experiment for studying the SDMI in our shock tube facility. In our experiments, a multiphase interface is created using a laminar jet and flowed into the shock tube where it is accelerated by the passage of a planar shockwave. The interface development is captured using CCD cameras synchronized with planar laser illumination. This talk will give an overview of new experiments conducted to examine the development of a shocked cylindrical multiphase interface. The effects of Atwood number, particle size, and a second acceleration (reshock) of the interface will be discussed.
Planar blast scaling with condensed-phase explosives in a shock tube
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, Scott L
2011-01-25
Blast waves are strong shock waves that result from large power density deposition into a fluid. The rapid energy release of high-explosive (HE) detonation provides sufficiently high power density for blast wave generation. Often it is desirable to quantify the energy released by such an event and to determine that energy relative to other reference explosives to derive an explosive-equivalence value. In this study, we use condensed-phase explosives to drive a blast wave in a shock tube. The explosive material and quantity were varied to produce blast waves of differing strengths. Pressure transducers at varying lengths measured the post-shock pressure,more » shock-wave arrival time and sidewall impulse associated with each test. Blast-scaling concepts in a one-dimensional geometry were then used to both determine the energy release associated with each test and to verify the scaling of the shock position versus time, overpressure versus distance, and impulse. Most blast scaling measurements to-date have been performed in a three-dimensional geometry such as a blast arena. Testing in a three-dimensional geometry can be challenging, however, as spherical shock-wave symmetry is required for good measurements. Additionally, the spherical wave strength decays rapidly with distance and it can be necessary to utilize larger (several kg) quantities of explosive to prevent significant decay from occurring before an idealized blast wave has formed. Such a mode of testing can be expensive, require large quantities of explosive, and be limited by both atmospheric conditions (such as rain) and by noise complaints from the population density near the test arena. Testing is possible in more compact geometries, however. Non-planar blast waves can be formed into a quasi-planar shape by confining the shock diffraction with the walls of a shock tube. Regardless of the initial form, the wave shape will begin to approximate a planar front after successive wave reflections from the tube walls. Such a technique has previously been used to obtain blast scaling measurements in the planar geometry with gaseous explosives and the condensed-phase explosive nitroguanidine. Recently, there has been much interest in the blast characterization of various non-ideal high explosive (NIHE) materials. With non-ideals, the detonation reaction zone is significantly larger (up to several cm for ANFO) than more ideal explosives. Wave curvature, induced by charge-geometry, can significantly affect the energy release associated with NIHEs. To measure maximum NIHE energy release accurately, it is desirable to minimize any such curvature and, if possible, to overdrive the detonation shock to ensure completion of chemical reactions ahead of the sonic locus associated with the reaction zone. This is achieved in the current study through use of a powerful booster HE and a charge geometry consisting of short cylindrical lengths of NIHE initiated along the charge centerline.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanenkov, G. V.; Gus'kov, S. Yu.; Barishpol'tsev, D. V.
2010-01-15
Results of experiments on the generation of shock waves during electric explosions of fine copper and tungsten wires in air are analyzed. The generation mechanism of stationary shock wave by a plasma piston formed during the shunting breakdown of the electrode gap in the course of a wire explosion is investigated. The role of structural elements of such discharges, such as the core, corona, and wire environment, is analyzed.
Droplet and multiphase effects in a shock-driven hydrodynamic instability with reshock
NASA Astrophysics Data System (ADS)
Middlebrooks, John B.; Avgoustopoulos, Constantine G.; Black, Wolfgang J.; Allen, Roy C.; McFarland, Jacob A.
2018-06-01
Shock-driven multiphase instabilities (SDMI) are unique physical phenomena that have far-reaching applications in engineering and science such as high energy explosions, scramjet combustors, and supernovae events. The SDMI arises when a multiphase field is impulsively accelerated by a shock wave and evolves as a result of gradients in particle-gas momentum transfer. A new shock tube facility has been constructed to study the SDMI. Experiments were conducted to investigate liquid particle and multiphase effects in the SDMI. A multiphase cylindrical interface was created with water droplet laden air in our horizontal shock tube facility. The interface was accelerated by a Mach 1.66 shock wave, and its reflection from the end wall. The interface development was captured using laser illumination and a high-resolution CCD camera. Laser interferometry was used to determine the droplet size distribution. A particle filtration technique was used to determine mass loading within an interface and verify particle size distribution. The effects of particle number density, particle size, and a secondary acceleration (reshock) of the interface were noted. Particle number density effects were found comparable to Atwood number effects in the Richtmyer-Meshkov instability for small (˜ 1.7 {μ }m) droplets. Evaporation was observed to alter droplet sizes and number density, markedly after reshock. For large diameter droplets (˜ 10.7 {μ }m), diminished development was observed with larger droplets lagging far behind the interface. These lagging droplets were also observed to breakup after reshock into structured clusters of smaller droplets. Mixing width values were reported to quantify mixing effects seen in images.
NASA Astrophysics Data System (ADS)
Hussain, Tariq; Liu, Yan; Huang, Fenglei; Duan, Zhuoping
2016-01-01
The change in shock sensitivity of explosives having various explosive grain sizes is discussed. Along with other parameters, explosive grain size is one of the key parameters controlling the macroscopic behavior of shocked pressed explosives. Ignition and growth reactive flow modeling is performed for the shock initiation experiments carried out by using the in situ manganin piezoresistive pressure gauge technique to investigate the influences of the octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) particle size on the shock initiation and the subsequent detonation growth process for the three explosive formulations of pressed PBXC03 (87% HMX, 7% 1,3,5-trichloro-2,4,6-trinitrobenzene (TATB), 6% Viton by weight). All of the formulation studied had the same density but different explosive grain sizes. A set of ignition and growth parameters was obtained for all three formulations. Only the coefficient G1 of the first growth term in the reaction rate equation was varied with the grain size; all other parameters were kept the same for all formulations. It was found that G1 decreases almost linearly with HMX particle size for PBXC03. However, the equation of state (EOS) for solid explosive had to be adjusted to fit the experimental data. Both experimental and numerical simulation results show that the shock sensitivity of PBXC03 decreases with increasing HMX particle size for the sustained pressure pulses (around 4 GPa) as obtained in the experiment. This result is in accordance with the results reported elsewhere in literature. For future work, a better approach may be to find standard solid Grüneisen EOS and product Jones-Wilkins-Lee (JWL) EOS for each formulation for the best fit to the experimental data.
Hot spot initiation and chemical reaction in shocked polymeric bonded explosives
NASA Astrophysics Data System (ADS)
An, Qi; Zybin, Sergey; Jaramillo-Botero, Andres; Goddard, William; Materials; Process Simulation Center, Caltech Team
2011-06-01
A polymer bonded explosive (PBX) model based on PBXN-106 is studied via molecular dynamics (MD) simulations using reactive force field (ReaxFF) under shock loading conditions. Hotspot is observed when shock waves pass through the non-planar interface of explosives and elastomers. Adiabatic shear localization is proposed as the main mechanism of hotspot ignition in PBX for high velocity impact. Our simulation also shows that the coupling of shear localization and chemical reactions at hotspot region play important rules at stress relaxtion for explosives. The phenomenon that shock waves are obsorbed by elastomers is also observed in the MD simulations. This research received supports from ARO (W911NF-05-1-0345; W911NF-08-1-0124), ONR (N00014-05-1-0778), and Los Alamos National Laboratory (LANL).
Experimental investigation of turbulent mixing in post-explosion environment
NASA Astrophysics Data System (ADS)
Smith, Josh; Hargather, Michael
2015-11-01
Experiments are performed to investigate the turbulent mixing of product gases and the ambient environment in a post-explosion environment. The experiments are performed in a specially constructed shock tunnel where thermite-enhanced explosions are set off. The explosives are detonated at one end of the tunnel, producing a one-dimensional shock wave and product gas expansion which moves toward the open end of the tunnel. Optical diagnostics are applied to study the shock wave motion and the turbulent mixing of the gases after the detonation. Results are presented for schlieren, shadowgraph, and interferometry imaging of the expanding gases with simultaneous pressure measurements. An imaging spectrometer is used to identify the motion of product gas species. Results show varying shock speed with thermite mass and the identification of turbulent mixing regions.
Modeling and Laboratory Investigations of Radiative Shocks
NASA Astrophysics Data System (ADS)
Grun, Jacob; Laming, J. Martin; Manka, Charles; Moore, Christopher; Jones, Ted; Tam, Daniel
2001-10-01
Supernova remnants are often inhomogeneous, with knots or clumps of material expanding in ambient plasma. This structure may be initiated by hydrodynamic instabilities occurring during the explosion, but it may plausibly be amplified by instabilities of the expanding shocks such as, for example, corrugation instabilities described by D’yakov in 1954, Vishniac in 1983, and observed in the laboratory by Grun et al. in 1991. Shock instability can occur when radiation lowers the effective adiabatic index of the gas. In view of the difficulty of modeling radiation in non-equilibrium plasmas, and the dependence of shock instabilities on such radiation, we are performing a laboratory experiment to study radiative shocks. The shocks are generated in a miniature, laser-driven shock tube. The gas density inside the tube at any instant in time is measured using time and space-resolved interferometry, and the emission spectrum of the gas is measured with time-resolved spectroscopy. We simulate the experiment with a 1D code that models time dependent post-shock ionization and non-equilibrium radiative cooling. S. P. D’yakov, Zhurnal Eksperimentalnoi Teoreticheskoi Fiziki 27, 288 (1954); see also section 90 in L.D. Landau and E.M. Lifshitz, Fluid Mechanics (Butterworth-Heinemann 1987); E.T. Vishniac, Astrophys. J. 236, 880 (1983); J. Grun, et al., Phys. Rev. Lett., 66, 2738 (1991)
Kink-bands: Shock deformation of biotite resulting from a nuclear explosion
Cummings, D.
1965-01-01
Microscopic examination of granodiorite samples from the shock region around a nuclear explosion reveals sharply folded lens-shaped zones (kink-bands) in the mineral biotite. Fifty percent of these zones are oriented approximately 90?? to the direction of shock-wave propagation, but other zones are symmetrically concentrated at shear angles of 50?? and 70?? to the direction of shock-wave propagation.
Magnetic Gauge Instrumentation on the LANL Gas-Driven Two-Stage Gun
NASA Astrophysics Data System (ADS)
Alcon, R. R.; Sheffield, S. A.; Martinez, A. R.; Gustavsen, R. L.
1997-07-01
Our gas-driven two-stage gun was designed and built to do initiation studies on insensitive high explosives as well as other equation of state experiments on inert materials. Our preferred method of measuring initiation phenomena involves the use of in-situ magnetic particle velocity gauges. In order to provide the 1-D experimental area to accommodate this type of gauging in our two-stage gun, it has a 50-mm-diameter launch tube. We have used magnetic gauging on our 72-mm bore diameter single-stage gun for over 15 years and it has proven a very effective technique for all types of shock wave experiments, including those on high explosives. This technique has now been installed on our two-stage gun. We describe the experimental method, as well as some of the difficulties that arose during the installation. Several magnetic gauge experiments have been completed on plastic and high explosive materials. Waveforms obtained in some of the experiments will be discussed. Up to 10 in-situ particle velocity measurements can be made in a single experiment. This new technique is now working quite well, as is evidenced by the data. To our knowledge, this is the first time magnetic gauging has been used on a two-stage gun.
Large-Amplitude Deformation and Bond Breakage in Shock-Induced Reactions of Explosive Molecules
NASA Astrophysics Data System (ADS)
Kay, Jeffrey
The response of explosive molecules to large-amplitude mechanical deformation plays an important role in shock-induced reactions and the initiation of detonation in explosive materials. In this presentation, the response of a series of explosive molecules (nitromethane, 2,4,6-trinitrotoluene [TNT], and 2,4,6-triamino-1,3,5-trinitrobenzene [TATB]) to a variety of large-amplitude deformations are examined using ab initio quantum chemical calculations. Large-amplitude motions that result in bond breakage are described, and the insights these results provide into both previous experimental observations and previous theoretical predictions of shock-induced reactions are discussed.
Mesoscopic simulations of shock-to-detonation transition in reactive liquid high explosive
NASA Astrophysics Data System (ADS)
Maillet, J. B.; Bourasseau, E.; Desbiens, N.; Vallverdu, G.; Stoltz, G.
2011-12-01
An extension of the model described in a previous work (see Maillet J. B. et al., EPL, 78 (2007) 68001) based on Dissipative Particle Dynamics is presented and applied to a liquid high explosive (HE), with thermodynamic properties mimicking those of liquid nitromethane. Large scale nonequilibrium simulations of reacting liquid HE with model kinetic under sustained shock conditions allow a better understanding of the shock-to-detonation transition in homogeneous explosives. Moreover, the propagation of the reactive wave appears discontinuous since ignition points in the shocked material can be activated by the compressive waves emitted from the onset of chemical reactions.
Comparison Between Surf and Multi-Shock Forest Fire High Explosive Burn Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenfield, Nicholas Alexander
PAGOSA1 has several different burn models used to model high explosive detonation. Two of these, Multi-Shock Forest Fire and Surf, are capable of modeling shock initiation. Accurately calculating shock initiation of a high explosive is important because it is a mechanism for detonation in many accident scenarios (i.e. fragment impact). Comparing the models to pop-plot data give confidence that the models are accurately calculating detonation or lack thereof. To compare the performance of these models, pop-plots2 were created from simulations where one two cm block of PBX 9502 collides with another block of PBX 9502.
Large Area and Short-Pulse Shock Initiation of a Tatb/hmx Mixed Explosive
NASA Astrophysics Data System (ADS)
Guiji, Wang; Chengwei, Sun; Jun, Chen; Cangli, Liu; Jianheng, Zhao; Fuli, Tan; Ning, Zhang
2007-12-01
The large area and short-pulse shock initiation experiments on the plastic bonded mixed explosive of TATB(80%) and HMX(15%) have been performed with an electric gun where a Mylar flyer of 10-19 mm in diameter and 0.05˜0.30 mm in thickness was launched by an electrically exploding metallic bridge foil. The cylindrical explosive specimens (Φ16 mm×8 mm in size) were initiated by the Mylar flyers in thickness of 0.07˜0.20 mm, which induced shock pressure in specimen was of duration ranging from 0.029 to 0.109 μs. The experimental data were treated with the DRM(Delayed Robbins-Monro) procedure and to provide the initiation threshold of flyer velocities at 50% probability are 3.398˜1.713 km/s and that of shock pressure P 13.73˜5.23 GPa, respectively for different pulse durations. The shock initiation criteria of the explosive specimen at 50% and 100% probabilities are yielded. In addition, the 30° wedged sample was tested and the shock to detonation transition (SDT) process emerging on its inclined surface was diagnosed with a device consisting of multiple optical fiber probe, optoelectronic transducer and digital oscilloscope. The POP plot of the explosive has been gained from above SDT data.
Analysis of Xrage and Flag High Explosive Burn Models with PBX 9404 Cylinder Tests
NASA Astrophysics Data System (ADS)
Harrier, Danielle; Fessenden, Julianna; Ramsey, Scott
2016-11-01
High explosives are energetic materials that release their chemical energy in a short interval of time. They are able to generate extreme heat and pressure by a shock driven chemical decomposition reaction, which makes them valuable tools that must be understood. This study investigated the accuracy and performance of two Los Alamos National Laboratory hydrodynamic codes, which are used to determine the behavior of explosives within a variety of systems: xRAGE which utilizes an Eulerian mesh, and FLAG with utilizes a Lagrangian mesh. Various programmed and reactive burn models within both codes were tested, using a copper cylinder expansion test. The test was based off of a recent experimental setup which contained the plastic bonded explosive PBX 9404. Detonation velocity versus time curves for this explosive were obtained from the experimental velocity data collected using Photon Doppler Velocimetry (PDV). The modeled results from each of the burn models tested were then compared to one another and to the experimental results using the Jones-Wilkins-Lee (JWL) equation of state parameters that were determined and adjusted from the experimental tests. This study is important to validate the accuracy of our high explosive burn models and the calibrated EOS parameters, which are important for many research topics in physical sciences.
Phase velocity enhancement of linear explosive shock tubes
NASA Astrophysics Data System (ADS)
Loiseau, Jason; Serge, Matthew; Szirti, Daniel; Higgins, Andrew; Tanguay, Vincent
2011-06-01
Strong, high density shocks can be generated by sequentially detonating a hollow cylinder of explosives surrounding a thin-walled, pressurized tube. Implosion of the tube results in a pinch that travels at the detonation velocity of the explosive and acts like a piston to drive a shock into the gas ahead of it. In order to increase the maximum shock velocities that can be obtained, a phase velocity generator can be used to drag an oblique detonation wave along the gas tube at a velocity much higher than the base detonation velocity of the explosive. Since yielding and failure of the gas tube is the primary limitation of these devices, it is desirable to retain the dynamic confinement effects of a heavy-walled tamper without interfering with operation of the phase velocity generator. This was accomplished by cutting a slit into the tamper and introducing a phased detonation wave such that it asymmetrically wraps around the gas tube. This type of configuration has been previously experimentally verified to produce very strong shocks but the post-shock pressure and shock velocity limits have not been investigated. This study measured the shock trajectory for various fill pressures and phase velocities to ascertain the limiting effects of tube yield, detonation obliquity and pinch aspect ratio.
Proton Radiography of a Thermal Explosion in PBX9501
NASA Astrophysics Data System (ADS)
Smilowitz, L.; Henson, B. F.; Romero, J. J.; Sandstrom, M. M.; Asay, B. W.; Schwartz, C.; Saunders, A.; Merrill, F.; Morris, C.; Murray, M. M.; McNeil, W. V.; Marr-Lyon, M.; Rightley, P. M.
2007-12-01
The understanding of thermal explosions and burn propagation lags that of detonations and shock propagation. Diagnostics such as high energy radiography have been used to image shocks, but have been previously precluded from use in thermal explosions due to their stringent timing requirements: shock propagation can be synchronized to an external diagnostic while thermal explosion can not. This issue is solved by following the evolution of the ignition volume in a thermal explosion and using a laser pulse to provide a temperature jump in that central volume during the final thermal runaway leading to ignition. Thermal explosion experiments have been conducted at the Los Alamos Proton Radiography facility and have yielded images of the evolution of ignition, post-ignition burn propagation, and case failure in a radially confined cylinder of PBX 9501. This paper presents images taken during the hours long quasistatic heating, the final minutes of thermal runaway, and the post ignition burn propagation.
Generalized Pseudo-Reaction Zone Model for Non-Ideal Explosives
NASA Astrophysics Data System (ADS)
Wescott, Bradley
2007-06-01
The pseudo-reaction zone model was proposed to improve engineering scale simulations when using Detonation Shock Dynamics with high explosives that have a slow reaction component. In this work an extension of the pseudo-reaction zone model is developed for non-ideal explosives that propagate well below their steady-planar Chapman-Jouguet velocity. A programmed burn method utilizing Detonation Shock Dynamics and a detonation velocity dependent pseudo-reaction rate has been developed for non-ideal explosives and applied to the explosive mixture of ammonium nitrate and fuel oil (ANFO). The pseudo-reaction rate is calibrated to the experimentally obtained normal detonation velocity---shock curvature relation. The generalized pseudo-reaction zone model proposed here predicts the cylinder expansion to within 1% by accounting for the slow reaction in ANFO.
NQR Line Broadening Due to Crystal Lattice Imperfections and Its Relationship to Shock Sensitivity
NASA Astrophysics Data System (ADS)
Caulder, S. M.; Buess, M. L.; Garroway, A. N.; Miller, P. J.
2004-07-01
The hydrodynamic hot spot model is used to explain the difference between shock sensitive and shock insensitive explosives. Among the major factors that influence the shock sensitivity of energetic compounds are the quality and particle size of the energetic crystals used to formulate the cast plastic bonded explosive. As do all energetic compounds, RDX and HMX exhibit internal crystal defects the magnitude and type of which depend on the manufacturing process used to synthesize and re-crystallize the energetic compound. Nuclear Quadrupole Resonance (NQR) spectroscopy was used to determine the crystal quality of RDX, HMX and CL-20 obtained from various manufacturers. The NQR experimental results are discussed. Cast plastic bonded explosives were made using the RDX and HMX obtained from the various manufacturers and subsequently subjected to the NOL large-scale gap test (LSGT). The results of the LSGT are discussed and correlated with the NQR results. A relationship between the crystal defect density and shock initiation pressure of the plastic bonded explosive is developed and discussed.
Direct Quantum Mechanical Simulations of Shocked Energetic Materials
2008-12-01
dynamics (QMD) simulations of shocked pentaerythritol tetranitrate (PETN), a conventional high explosive , and the polymeric cubic gauche phase of...nitrogen (cg-N), proposed as an environmentally acceptable energetic alternative to conventional explosive formulations. These simulations, made...stored structural potential energy can be liberated quickly enough, it is possible that explosion can occur with energies several orders of magnitude
Quantification of non-ideal explosion violence with a shock tube
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, Scott I; Hill, Larry G
There is significant interest in quantifying the blast violence associated with various nonideal explosions. Such data is essential to evaluate the damage potential of both explosive cookoff and terrorist explosive scenarios. We present a technique designed to measure the source energy associated with a non-ideal, asymmetrical, and three-dimensional explosion. A tube is used to confine and focus energy from a blast event into a one-dimensional, quasi-planar shock front. During propagation along the length of the tube, the wave is allowed to shocksteepen into a more ideal form. Pressure transducers then measure the shock overpressure as a function of the distancemore » from the source. One-dimensional blast scaling theory allows calculation of the source energy from this data. This small-scale test method addresses cost and noise concerns as well as boosting and symmetry issues associated with large-scale, three-dimensional, blast arena tests. Results from both ideal explosives and non-ideal explosives are discussed.« less
Ignition sensitivity study of an energetic train configuration using experiments and simulation
NASA Astrophysics Data System (ADS)
Kim, Bohoon; Yu, Hyeonju; Yoh, Jack J.
2018-06-01
A full scale hydrodynamic simulation intended for the accurate description of shock-induced detonation transition was conducted as a part of an ignition sensitivity analysis of an energetic component system. The system is composed of an exploding foil initiator (EFI), a donor explosive unit, a stainless steel gap, and an acceptor explosive. A series of velocity interferometer system for any reflector measurements were used to validate the hydrodynamic simulations based on the reactive flow model that describes the initiation of energetic materials arranged in a train configuration. A numerical methodology with ignition and growth mechanisms for tracking multi-material boundary interactions as well as severely transient fluid-structure coupling between high explosive charges and metal gap is described. The free surface velocity measurement is used to evaluate the sensitivity of energetic components that are subjected to strong pressure waves. Then, the full scale hydrodynamic simulation is performed on the flyer impacted initiation of an EFI driven pyrotechnical system.
Numerical Simulation of Energy Conversion Mechanism in Electric Explosion
NASA Astrophysics Data System (ADS)
Wanjun, Wang; Junjun, Lv; Mingshui, Zhu; Qiubo, Fu; EFIs Integration R&D Group Team
2017-06-01
Electric explosion happens when micron-scale metal films such as copper film is stimulated by short-time current pulse, while generating high temperature and high pressure plasma. The expansion process of the plasma plays an important role in the study of the generation of shock waves and the study of the EOS of matter under high pressure. In this paper, the electric explosion process is divided into two stages: the energy deposition stage and the quasi-isentropic expansion stage, and a dynamic EOS of plasma considering the energy replenishment is established. On this basis, flyer driven by plasma is studied numerically, the pressure and the internal energy of plasma in the energy deposition stage and the quasi - isentropic expansion stage are obtained by comparing the velocity history of the flyer with the experimental results. An energy conversion model is established, and the energy conversion efficiency of each process is obtained, and the influence of impedance matching relationship between flyer and metal plasma on the energy conversion efficiency is proposed in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, George; Gilbertson, Steve Michael
Chirped fiber Bragg grating (CFBG) sensors coupled to high speed interrogation systems are described as robust diagnostic approaches to monitoring shock wave and detonation front propagation tracking events for use in high energy density shock physics applications. Taking advantage of the linear distributed spatial encoding of the spectral band in single-mode CFBGs, embedded fiber systems and associated photonic interrogation methodologies are shown as an effective approach to sensing shock and detonation-driven loading processes along the CFBG length. Two approaches, one that detects spectral changes in the integrated spectrum of the CFBG and another coherent pulse interrogation approach that fully resolvesmore » its spectral response, shows that 100-MHz–1-GHz interrogation rates are possible with spatial resolution along the CFBG in the 50 µm to sub-millimeter range depending on the combination of CFBG parameters (i.e., length, chirp rate, spectrum) and interrogator design specifics. In conclusion, results from several dynamic tests are used to demonstrate the performance of these high speed systems for shock and detonation propagation tracking under strong and weak shock pressure loading: (1) linear detonation front tracking in the plastic bonded explosive (PBX) PBX-9501; (2) tracking of radial decaying shock with crossover to non-destructive CFBG response; (3) shock wave tracking along an aluminum cylinder wall under weak loading accompanied by dynamic strain effects in the CFBG sensor.« less
High-Speed Photography of Detonation Propagation in Dynamically Precompressed Liquid Explosives
NASA Astrophysics Data System (ADS)
Petel, O. E.; Higgins, A. J.; Yoshinaka, A. C.; Zhang, F.
2007-12-01
The propagation of detonation in shock-compressed nitromethane was observed with a high-speed framing camera. The test explosive, nitromethane, was compressed by a reverberating shock wave to pressures as high as 10 GPa prior to being detonated by a secondary detonation event. The pressure and density in the test explosive prior to detonation were determined using two methods: manganin stress gauge measurements and LS-DYNA simulations. The velocity of the detonation front was determined from consecutive frames and correlated to the density of the reverberating shock-compressed explosive prior to detonation. Observing detonation propagation under these non-ambient conditions provides data which can be useful in the validation of equation of state models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNesby, Kevin L.; Homan, Barrie E.; Benjamin, Richard A.
Here, the techniques presented in this paper allow for mapping of temperature, pressure, chemical species, and energy deposition during and following detonations of explosives, using high speed cameras as the main diagnostic tool. Additionally, this work provides measurement in the explosive near to far-field (0-500 charge diameters) of surface temperatures, peak air-shock pressures, some chemical species signatures, shock energy deposition, and air shock formation.
An integral condition for core-collapse supernova explosions
Murphy, Jeremiah W.; Dolence, Joshua C.
2017-01-10
Here, we derive an integral condition for core-collapse supernova (CCSN) explosions and use it to construct a new diagnostic of explodability. The fundamental challenge in CCSN theory is to explain how a stalled accretion shock revives to explode a star. In this manuscript, we assume that the shock revival is initiated by the delayed-neutrino mechanism and derive an integral condition for spherically symmetric shock expansion, v s > 0. One of the most useful one-dimensional explosion conditions is the neutrino luminosity and mass-accretion rate (more » $${L}_{\
Numerical study of blast characteristics from detonation of homogeneous explosives
NASA Astrophysics Data System (ADS)
Balakrishnan, Kaushik; Genin, Franklin; Nance, Doug V.; Menon, Suresh
2010-04-01
A new robust numerical methodology is used to investigate the propagation of blast waves from homogeneous explosives. The gas-phase governing equations are solved using a hybrid solver that combines a higher-order shock capturing scheme with a low-dissipation central scheme. Explosives of interest include Nitromethane, Trinitrotoluene, and High-Melting Explosive. The shock overpressure and total impulse are estimated at different radial locations and compared for the different explosives. An empirical scaling correlation is presented for the shock overpressure, incident positive phase pressure impulse, and total impulse. The role of hydrodynamic instabilities to the blast effects of explosives is also investigated in three dimensions, and significant mixing between the detonation products and air is observed. This mixing results in afterburn, which is found to augment the impulse characteristics of explosives. Furthermore, the impulse characteristics are also observed to be three-dimensional in the region of the mixing layer. This paper highlights that while some blast features can be successfully predicted from simple one-dimensional studies, the growth of hydrodynamic instabilities and the impulsive loading of homogeneous explosives require robust three-dimensional investigation.
Symposium on Explosives and Pyrotechnics, 13th, Hilton Head Island, SC, Dec. 2-4, 1986, Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-01-01
The present conference on explosive and pyrotechnic technologies discusses the shock-sensitivity of RDX, the thermodynamic properties of RDX, TNT, nitroglycerine, and HMX energetic molecules, the dynamic resistivity of exploding conductors, the decomposition of azides, the critical shock-initiation energy of emulsion explosives, actuator valve optimization, pyrotechnic aerosolization from novel imbibed liquid matrices, tetrazole initiators, and polymeric binders for red phosphorus pellets. Also discussed are channel-effect studies, the dynamic desensitization of coal mine explosives, the electromagnetic and electrostatic protection of explosives, the reliability of fuze explosive trains, the hazardous properties of explosive chemicals, the emulsification of an explosive with a chemical foamingmore » agent, and low energy ignition of HMX using a foil bridge.« less
Tuck, J.L.
1955-03-01
This patent relates to means for ascertaining the instant of arrival of a shock wave in an exploslve charge and apparatus utilizing this means to coordinate the timing of two operations involving a short lnterval of time. A pair of spaced electrodes are inserted along the line of an explosive train with a voltage applied there-across which is insufficient to cause discharge. When it is desired to initiate operation of a device at the time the explosive shock wave reaches a particular point on the explosive line, the device having an inherent time delay, the electrodes are located ahead of the point such that the ionization of the area between the electrodes caused by the traveling explosive shock wave sends a signal to initiate operation of the device to cause it to operate at the proper time. The operated device may be photographic equipment consisting of an x-ray illuminating tube.
Shock initiation and detonation properties of bisfluorodinitroethyl formal (FEFO)
NASA Astrophysics Data System (ADS)
Gibson, L. L.; Sheffield, S. A.; Dattelbaum, Dana M.; Stahl, David B.
2012-03-01
FEFO is a liquid explosive with a density of 1.60 g/cm3 and an energy output similar to that of trinitrotoluene (TNT), making it one of the more energetic liquid explosives. Here we describe shock initiation experiments that were conducted using a two-stage gas gun using magnetic gauges to measure the wave profiles during a shock-to-detonation transition. Unreacted Hugoniot data, time-to detonation (overtake) measurements, and reactive wave profiles were obtained from each experiment. FEFO was found to initiate by the homogeneous initiation model, similar to all other liquid explosives we have studied (nitromethane, isopropyl nitrate, hydrogen peroxide). The new unreacted Hugoniot points agree well with other published data. A universal liquid Hugoniot estimation slightly under predicts the measured Hugoniot data. FEFO is very insensitive, with about the same shock sensitivity as the triamino-trinitro-benzene (TATB)-based explosive PBX9502 and cast TNT.
NASA Astrophysics Data System (ADS)
Monfared, S. K.; Buttler, W. T.; Frayer, D. K.; Grover, M.; LaLone, B. M.; Stevens, G. D.; Stone, J. B.; Turley, W. D.; Schauer, M. M.
2015-06-01
We report on the development of a diagnostic to provide constraints on the size of particles ejected from shocked metallic surfaces. The diagnostic is based on measurements of the intensity of laser light transmitted through a cloud of ejected particles as well as the angular distribution of scattered light, and the analysis of the resulting data is done using the Mie solution. We describe static experiments to test our experimental apparatus and present initial results of dynamic experiments on Sn targets. Improvements for future experiments are briefly discussed.
Validation of the Transient Structural Response of a Threaded Assembly: Phase I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doebling, Scott W.; Hemez, Francois M.; Robertson, Amy N.
2004-04-01
This report explores the application of model validation techniques in structural dynamics. The problem of interest is the propagation of an explosive-driven mechanical shock through a complex threaded joint. The study serves the purpose of assessing whether validating a large-size computational model is feasible, which unit experiments are required, and where the main sources of uncertainty reside. The results documented here are preliminary, and the analyses are exploratory in nature. The results obtained to date reveal several deficiencies of the analysis, to be rectified in future work.
Early Emission from Type Ia Supernovae
NASA Astrophysics Data System (ADS)
Rabinak, Itay; Livne, Eli; Waxman, Eli
2012-09-01
A unique feature of deflagration-to-detonation (DDT) white dwarf explosion models of supernovae of type Ia is the presence of a strong shock wave propagating through the outer envelope. We consider the early emission expected in such models, which is produced by the expanding shock-heated outer part of the ejecta and precedes the emission driven by radioactive decay. We expand on earlier analyses by considering the modification of the pre-detonation density profile by the weak shocks generated during the deflagration phase, the time evolution of the opacity, and the deviation of the post-shock equation of state from that obtained for radiation pressure domination. A simple analytic model is presented and shown to provide an acceptable approximation to the results of one-dimensional numerical DDT simulations. Our analysis predicts a ~103 s long UV/optical flash with a luminosity of ~1 to ~3 × 1039 erg s-1. Lower luminosity corresponds to faster (turbulent) deflagration velocity. The luminosity of the UV flash is predicted to be strongly suppressed at t > t drop ~ 1 hr due to the deviation from pure radiation domination.
Shock Isolation Elements Testing for High Input Loadings. Volume II. Foam Shock Isolation Elements.
SHOCK ABSORBERS ), (*GUIDED MISSILE SILOS, SHOCK ABSORBERS ), (*EXPANDED PLASTICS, (*SHOCK(MECHANICS), REDUCTION), TEST METHODS, SHOCK WAVES, STRAIN(MECHANICS), LOADS(FORCES), MATHEMATICAL MODELS, NUCLEAR EXPLOSIONS, HARDENING.
NASA Astrophysics Data System (ADS)
Monfared, Shabnam; Buttler, William; Schauer, Martin; Lalone, Brandon; Pack, Cora; Stevens, Gerald; Stone, Joseph; Special Technologies Laboratory Collaboration; Los Alamos National Laboratory Team
2014-03-01
Los Alamos National Laboratory is actively engaged in the study of material failure physics to support the hydrodynamic models development, where an important failure mechanism of explosively shocked metals causes mass ejection from the backside of a shocked surface with surface perturbations. Ejecta models are in development for this situation. Our past work has clearly shown that the total ejected mass and mass-velocity distribution sensitively link to the wavelength and amplitude of these perturbations. While we have had success developing ejecta mass and mass-velocity models, we need to better understand the size and size-velocity distributions of the ejected mass. To support size measurements we have developed a dynamic Mie scattering diagnostic based on a CW laser that permits measurement of the forward attenuation cross-section combined with a dynamic mass-density and mass-velocity distribution, as well as a measurement of the forward scattering cross-section at 12 angles (5- 32.5 degrees) in increments of 2.5 degrees. We compare size distribution followed from Beers law with attenuation cross-section and mass measurement to the dynamic size distribution determined from scattering cross-section alone. We report results from our first quality experiments.
High-Speed Photography of Detonation Propagation in Dynamically Precompressed Liquid Explosives
NASA Astrophysics Data System (ADS)
Petel, Oren; Higgins, Andrew; Yoshinaka, Akio; Zhang, Fan
2007-06-01
The propagation of detonation in shock compressed nitromethane was observed with a high speed framing camera. The test explosive, nitromethane, was compressed by a reverberating shock wave to pressures on the order of 10 GPa prior to being detonated by a secondary detonation event. The pressure and density in the test explosive prior to detonation was determined using two methods: manganin strain gauge measurements and LS-DYNA simulations. The velocity of the detonation front was determined from consecutive frames and correlated to the density of the explosive post-reverberating shock wave and prior to being detonated. Observing detonation propagation under these non-ambient conditions provides data which can be useful in the validation of equation of state models.
Ultrafast Fiber Bragg Grating Interrogation for Sensing in Detonation and Shock Wave Experiments.
Rodriguez, George; Gilbertson, Steve M
2017-01-27
Chirped fiber Bragg grating (CFBG) sensors coupled to high speed interrogation systems are described as robust diagnostic approaches to monitoring shock wave and detonation front propagation tracking events for use in high energy density shock physics applications. Taking advantage of the linear distributed spatial encoding of the spectral band in single-mode CFBGs, embedded fiber systems and associated photonic interrogation methodologies are shown as an effective approach to sensing shock and detonation-driven loading processes along the CFBG length. Two approaches, one that detects spectral changes in the integrated spectrum of the CFBG and another coherent pulse interrogation approach that fully resolves its spectral response, shows that 100-MHz-1-GHz interrogation rates are possible with spatial resolution along the CFBG in the 50 µm to sub-millimeter range depending on the combination of CFBG parameters (i.e., length, chirp rate, spectrum) and interrogator design specifics. Results from several dynamic tests are used to demonstrate the performance of these high speed systems for shock and detonation propagation tracking under strong and weak shock pressure loading: (1) linear detonation front tracking in the plastic bonded explosive (PBX) PBX-9501; (2) tracking of radial decaying shock with crossover to non-destructive CFBG response; (3) shock wave tracking along an aluminum cylinder wall under weak loading accompanied by dynamic strain effects in the CFBG sensor.
Ultrafast Fiber Bragg Grating Interrogation for Sensing in Detonation and Shock Wave Experiments
Rodriguez, George; Gilbertson, Steve M.
2017-01-01
Chirped fiber Bragg grating (CFBG) sensors coupled to high speed interrogation systems are described as robust diagnostic approaches to monitoring shock wave and detonation front propagation tracking events for use in high energy density shock physics applications. Taking advantage of the linear distributed spatial encoding of the spectral band in single-mode CFBGs, embedded fiber systems and associated photonic interrogation methodologies are shown as an effective approach to sensing shock and detonation-driven loading processes along the CFBG length. Two approaches, one that detects spectral changes in the integrated spectrum of the CFBG and another coherent pulse interrogation approach that fully resolves its spectral response, shows that 100-MHz–1-GHz interrogation rates are possible with spatial resolution along the CFBG in the 50 μm to sub-millimeter range depending on the combination of CFBG parameters (i.e., length, chirp rate, spectrum) and interrogator design specifics. Results from several dynamic tests are used to demonstrate the performance of these high speed systems for shock and detonation propagation tracking under strong and weak shock pressure loading: (1) linear detonation front tracking in the plastic bonded explosive (PBX) PBX-9501; (2) tracking of radial decaying shock with crossover to non-destructive CFBG response; (3) shock wave tracking along an aluminum cylinder wall under weak loading accompanied by dynamic strain effects in the CFBG sensor. PMID:28134819
Ultrafast Fiber Bragg Grating Interrogation for Sensing in Detonation and Shock Wave Experiments
Rodriguez, George; Gilbertson, Steve Michael
2017-01-27
Chirped fiber Bragg grating (CFBG) sensors coupled to high speed interrogation systems are described as robust diagnostic approaches to monitoring shock wave and detonation front propagation tracking events for use in high energy density shock physics applications. Taking advantage of the linear distributed spatial encoding of the spectral band in single-mode CFBGs, embedded fiber systems and associated photonic interrogation methodologies are shown as an effective approach to sensing shock and detonation-driven loading processes along the CFBG length. Two approaches, one that detects spectral changes in the integrated spectrum of the CFBG and another coherent pulse interrogation approach that fully resolvesmore » its spectral response, shows that 100-MHz–1-GHz interrogation rates are possible with spatial resolution along the CFBG in the 50 µm to sub-millimeter range depending on the combination of CFBG parameters (i.e., length, chirp rate, spectrum) and interrogator design specifics. In conclusion, results from several dynamic tests are used to demonstrate the performance of these high speed systems for shock and detonation propagation tracking under strong and weak shock pressure loading: (1) linear detonation front tracking in the plastic bonded explosive (PBX) PBX-9501; (2) tracking of radial decaying shock with crossover to non-destructive CFBG response; (3) shock wave tracking along an aluminum cylinder wall under weak loading accompanied by dynamic strain effects in the CFBG sensor.« less
Implosion-driven technique to create fast shockwaves in high-density gas
NASA Astrophysics Data System (ADS)
Serge, Matthew; Loiseau, Jason; Huneault, Justin; Szirti, Daniel; Higgins, Andrew; Tanguay, Vincent
2012-03-01
Pressurized tubes surrounded by either one or two layers (separated by a secondary tube) of sensitized nitromethane and encased in a thick-walled tube (the tamper) were imploded. The distance between the detonation wave in the explosive and shock wave in the innermost tube were measured (the standoff). A simple model based on hoop stress and acoustic interactions between the tubing was developed and used to predict the standoff distance. At low initial pressures (on the order of 7MPa), results indicate that the secondary tube and two layers of explosive did not prove to significantly increase the standoff. However, at higher pressures (on the order of 10 MPa), standoff was noticeably greater when the secondary tube was inserted between the pressurized tube and the tamper. The measured values are in reasonable agreement with the predictions of the model.
Characterization of shock-dependent reaction rates in an aluminum/perfluoropolyether pyrolant
NASA Astrophysics Data System (ADS)
Wilson, Dennis; Granier, John; Johnson, Richard; Littrell, Donald
2017-01-01
Energetic formulations of perfluoropolyether (PFPE) and aluminum are highly non-ideal. They release energy via a fast self-oxidized combustion wave rather than a true self-sustaining detonation. Unlike high explosives, the reactions are shock dependent and can be overdriven to control energy release rate. Reaction rate experiments show that the velocity can vary from 1.25 to 3 km/s. This paper examines the effect of the initial shock conditions upon the reaction rate of the explosive. The following conditions were varied in a series of reaction rate experiments: the high explosive booster mass and geometry; shock attenuation; confinement; and rate stick diameter and length. Several experiments designed to isolate and quantify these dependencies are described and summarized.
The association of GRB 060218 with a supernova and the evolution of the shock wave.
Campana, S; Mangano, V; Blustin, A J; Brown, P; Burrows, D N; Chincarini, G; Cummings, J R; Cusumano, G; Della Valle, M; Malesani, D; Mészáros, P; Nousek, J A; Page, M; Sakamoto, T; Waxman, E; Zhang, B; Dai, Z G; Gehrels, N; Immler, S; Marshall, F E; Mason, K O; Moretti, A; O'Brien, P T; Osborne, J P; Page, K L; Romano, P; Roming, P W A; Tagliaferri, G; Cominsky, L R; Giommi, P; Godet, O; Kennea, J A; Krimm, H; Angelini, L; Barthelmy, S D; Boyd, P T; Palmer, D M; Wells, A A; White, N E
2006-08-31
Although the link between long gamma-ray bursts (GRBs) and supernovae has been established, hitherto there have been no observations of the beginning of a supernova explosion and its intimate link to a GRB. In particular, we do not know how the jet that defines a gamma-ray burst emerges from the star's surface, nor how a GRB progenitor explodes. Here we report observations of the relatively nearby GRB 060218 (ref. 5) and its connection to supernova SN 2006aj (ref. 6). In addition to the classical non-thermal emission, GRB 060218 shows a thermal component in its X-ray spectrum, which cools and shifts into the optical/ultraviolet band as time passes. We interpret these features as arising from the break-out of a shock wave driven by a mildly relativistic shell into the dense wind surrounding the progenitor. We have caught a supernova in the act of exploding, directly observing the shock break-out, which indicates that the GRB progenitor was a Wolf-Rayet star.
Sound velocity of tantalum under shock compression in the 18–142 GPa range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xi, Feng, E-mail: xifeng@caep.cn; Jin, Ke; Cai, Lingcang, E-mail: cai-lingcang@aliyun.com
2015-05-14
Dynamic compression experiments of tantalum (Ta) within a shock pressure range from 18–142 GPa were conducted driven by explosive, a two-stage light gas gun, and a powder gun, respectively. The time-resolved Ta/LiF (lithium fluoride) interface velocity profiles were recorded with a displacement interferometer system for any reflector. Sound velocities of Ta were obtained from the peak state time duration measurements with the step-sample technique and the direct-reverse impact technique. The uncertainty of measured sound velocities were analyzed carefully, which suggests that the symmetrical impact method with step-samples is more accurate for sound velocity measurement, and the most important parameter in thismore » type experiment is the accurate sample/window particle velocity profile, especially the accurate peak state time duration. From these carefully analyzed sound velocity data, no evidence of a phase transition was found up to the shock melting pressure of Ta.« less
Explosively Generated Plasmas: Measurement and Models of Shock Generation and Material Interactions
NASA Astrophysics Data System (ADS)
Emery, Samuel; Elert, Mark; Giannuzzi, Paul; Le, Ryan; McCarthy, Daniel; Schweigert, Igor
2017-06-01
Explosively generated plasmas (EGPs) are created by the focusing of a shock produced from an explosive driver via a conical waveguide. In the waveguide, the gases from the explosive along with the trapped air are accelerated and compressed (via Mach stemming) to such extent that plasma is produced. These EGPs have been measured in controlled experiments to achieve temperatures on the order of 1 eV and velocities as high as 25 km/s. We have conducted a combined modeling and measurement effort to increase the understanding for design purposes of the shock generation of EGPs and the interaction of EGP with explosive materials. Such efforts have led to improved measures of pressure and temperature, spatial structure of the plasma, and the decomposition/deflagration behavior of RDX upon exposure to an EGP. Funding provided by the Environmental Security Technology Certification Program (ESTCP) Munitions Response program area.
Hot-spot contributions in shocked high explosives from mesoscale ignition models
NASA Astrophysics Data System (ADS)
Levesque, G.; Vitello, P.; Howard, W. M.
2013-06-01
High explosive performance and sensitivity is strongly related to the mesoscale defect densities. Bracketing the population of mesoscale hot spots that are active in the shocked ignition of explosives is important for the development of predictive reactive flow models. By coupling a multiphysics-capable hydrodynamics code (ale3d) with a chemical kinetics solver (cheetah), we can parametrically analyze different pore sizes undergoing collapse in high pressure shock conditions with evolving physical parameter fields. Implementing first-principles based decomposition kinetics, burning hot spots are monitored, and the regimes of pore sizes that contribute significantly to burnt mass faction and those that survive thermal conduction on the time scales of ignition are elucidated. Comparisons are drawn between the thermal explosion theory and the multiphysics models for the determination of nominal pore sizes that burn significantly during ignition for the explosive 1,3,5-triamino-2,4,6-trinitrobenzene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hull, Lawrence Mark; Miller, Phillip Isaac; Moro, Erik Allan
In the instance of multiple fragment impact on cased explosive, isolated curved shocks are generated in the explosive. These curved shocks propagate and may interact and form irregular or Mach reflections along the interaction loci, thereby producing a single shock that may be sufficient to initiate PBX-9501. However, the incident shocks are divergent and their intensity generally decreases as they expand, and the regions behind the Mach stem interaction loci are generally unsupported and allow release waves to rapidly affect the flow. The effects of release waves and divergent shocks may be considered theoretically through a “Shock Change Equation”.
The Shock and Vibration Bulletin. Part 2. Structural Analysis, Design Techniques
1973-06-01
FLOATING SHOCK PLATFORM SUBJECTED TO UNDERWATER EXPLOSIONS R. P. Brooks, and B. C, McNalght Naval Air Engineering Center Philadelphia, Pa, A lumped...Lohwasser, Air Force Flight Dynamics Laboratory, Wright -Patterson APB, Ohio AN ALGORITHM FOR SEMI-INVERSE ANALYSIS OF NONLINEAR DYNAMIC SYSTEMS ... 65 R...MATHEMATICAL MODEL OF A TYPICAL.FOATING SHOCK PLATFORM SSUBJECTED TO-UNDERWATE- EXPLOSIONS .......... ...................... 143 R. P. Brooks and B. C
SHOCK ABSORBERS ), (*GUIDED MISSILE SILOS, SHOCK ABSORBERS ), (*SPRINGS, (*SHOCK(MECHANICS), REDUCTION), TORSION BARS, ELASTOMERS, DAMPING, EQUATIONS OF MOTION, MODEL TESTS, TEST METHODS, NUCLEAR EXPLOSIONS, HARDENING.
NASA Astrophysics Data System (ADS)
Hamashima, H.; Osada, A.; Itoh, S.; Kato, Y.
2007-12-01
It is well known that some liquid explosives have two detonation behaviors, high velocity detonation (HVD) or low velocity detonation (LVD) can propagate. A physical model to describe the propagation mechanism of LVD in liquid explosives was proposed that LVD is not a self-reactive detonation, but rather a supported-reactive detonation from the cavitation field generated by precursor shock waves. However, the detailed structure of LVD in liquid explosives has not yet been clarified. In this study, high-speed photography was used to investigate the effects of the precursor shock waves propagating in various container materials for LVD in nitromethane (NM). Stable LVD was not observed in all containers, although transient LVD was observed. A very complicated structure of LVD was observed: the interaction of multiple precursor shock waves, multiple oblique shock waves, and the cavitation field.
NASA Astrophysics Data System (ADS)
Hamashima, Hideki; Osada, Akinori; Kato, Yukio; Itoh, Shigeru
2007-06-01
It is well known that some liquid explosives have two detonation behaviors, high velocity detonation (HVD) or low velocity detonation (LVD) can propagate. A physical model to describe the propagation mechanism of LVD in liquid explosives was proposed that LVD is not a self-reactive detonation, but rather a supported-reactive detonation from the cavitation field generated by precursor shock waves. However, the detailed structure of LVD in liquid explosives has not yet been clarified. In this study, high-speed photography was used to investigate the effects of the precursor shock waves propagating in various container materials for LVD in nitromethane (NM). Stable LVD was not observed in all containers, although transient LVD was observed. A very complicated structure of LVD was observed: the interaction of multiple precursor shock waves, multiple oblique shock waves, and the cavitation field.
Calculated shock pressures in the aquarium test
NASA Astrophysics Data System (ADS)
Johnson, J. N.
1982-04-01
A new method of analysis has been developed for determintion of shock pressures in aquarium tests on commercial explosives. This test consists of photographing the expanding cylindrical tube wall (which contains the detonation products) and the shock wave in water surrounding the explosive charge. By making a least-squares fit to the shock-front data, it is possible to determine the peak shock-front pressure as a function of distance from the cylinder wall. This has been done for 10-cm and 20-cm-diam ANFO (ammonium nitrate/fuel oil) and aluminized ANFO (7.5 wt% Al) aquarium test data.
Characterization of hypervelocity metal fragments for explosive initiation
Yeager, John D.; Bowden, Patrick R.; Guildenbecher, Daniel R.; ...
2017-07-17
The fragment impact response of two plastic-bonded explosive (PBX) formulations was studied using explosively driven aluminum fragments. A generic aluminum-capped detonator generated sub-mm aluminum particles moving at hypersonic velocities. The ability of these fragments to initiate reaction or otherwise damage two PBX materials was assessed using go/no-go experiments at standoff distances of up to 160 mm. Lower density PBX 9407 (RDX-based) was initiable at up to 115 mm, while higher density PBX 9501 (HMX-based) was only initiable at up to 6 mm. Several techniques were used to characterize the size, distribution, and velocity of the particles. Witness plate materials, includingmore » copper and polycarbonate, and backlit high speed video were used to characterize the distribution of particles, finding that the aluminum cap did not fragment homogeneously but rather with larger particles in a ring surrounding finer particles. Finally, precise digital holography experiments were conducted to measure the three-dimensional shape and size of the fastest-moving fragments, which ranged between 100 and 700 μm and traveled between 2.2 and 3.2 km/s. Crucially, these experiments showed variability in the fragmentation in terms of the number of fragments at the leading edge of the fragment field, indicating that both single and multiple shock impacts could be imparted to the target material. As a result, these types of data are critical for safety experiments and hydrocode simulations to quantify shock-to-detonation transition mechanisms and the associated risk-margins for these materials.« less
Characterization of hypervelocity metal fragments for explosive initiation
NASA Astrophysics Data System (ADS)
Yeager, John D.; Bowden, Patrick R.; Guildenbecher, Daniel R.; Olles, Joseph D.
2017-07-01
The fragment impact response of two plastic-bonded explosive (PBX) formulations was studied using explosively driven aluminum fragments. A generic aluminum-capped detonator generated sub-mm aluminum particles moving at hypersonic velocities. The ability of these fragments to initiate reaction or otherwise damage two PBX materials was assessed using go/no-go experiments at standoff distances of up to 160 mm. Lower density PBX 9407 (RDX-based) was initiable at up to 115 mm, while higher density PBX 9501 (HMX-based) was only initiable at up to 6 mm. Several techniques were used to characterize the size, distribution, and velocity of the particles. Witness plate materials, including copper and polycarbonate, and backlit high speed video were used to characterize the distribution of particles, finding that the aluminum cap did not fragment homogeneously but rather with larger particles in a ring surrounding finer particles. Finally, precise digital holography experiments were conducted to measure the three-dimensional shape and size of the fastest-moving fragments, which ranged between 100 and 700 μm and traveled between 2.2 and 3.2 km/s. Crucially, these experiments showed variability in the fragmentation in terms of the number of fragments at the leading edge of the fragment field, indicating that both single and multiple shock impacts could be imparted to the target material. These types of data are critical for safety experiments and hydrocode simulations to quantify shock-to-detonation transition mechanisms and the associated risk-margins for these materials.
Spherization of the remnants of asymmetrical SN explosions in a uniform medium
NASA Astrophysics Data System (ADS)
Bisnovatyi-Kogan, G. S.; Blinnikov, S. I.
A 'snow-plow' approximation is used to project a spherical shape for a supernova remnant (SNR) after a shock wave has traveled through a uniform medium following an asymmetrical SN explosion. The asymmetry arises as magnetorotation causes the explosion. It is assumed that the main part of the mass remains in a thin layer after the explosion and that the layer can be described by 1,5-dimensional hydrodynamics. The cavity pressure inside the shock is assumed much greater than the pressure of the outside medium. The snow-plow model accounts for asymmetrical particle velocities in the expanding layer and the tangential velocity averaged across the shock. The equations are configured to conserve mass and momentum and have specific initial conditions. The calculations are in agreement with observations of Cas A.
Fracture/Severance of Materials
NASA Technical Reports Server (NTRS)
Schimmel, Morry L. (Inventor); Bement, Laurence J. (Inventor); DuBrucq, Glenn F., Jr. (Inventor); Klein, Edward A. (Inventor)
1998-01-01
A method for severing or weakening materials is discussed. Explosive cords are placed in grooves on the upper surface of the material to be severed or weakened. The explosive cords are initiated simultaneously to introduce explosive shock waves into the material. These shock waves progress toward the centerline between the explosive cords and the lower surface of the material. Intersecting and reflected waves produce a rarefaction zone on the centerline to fail the material in tension. A groove may also be cut in the lower surface of the material to aid in severing or weakening the material.
On high explosive launching of projectiles for shock physics experiments
NASA Astrophysics Data System (ADS)
Swift, Damian C.; Forest, Charles A.; Clark, David A.; Buttler, William T.; Marr-Lyon, Mark; Rightley, Paul
2007-06-01
The hydrodynamic operation of the "Forest Flyer" type of explosive launching system for shock physics projectiles was investigated in detail using one and two dimensional continuum dynamics simulations. The simulations were numerically converged and insensitive to uncertainties in the material properties; they reproduced the speed of the projectile and the shape of its rear surface. The most commonly used variant, with an Al alloy case, was predicted to produce a slightly curved projectile, subjected to some shock heating and likely exhibiting some porosity from tensile damage. The curvature is caused by a shock reflected from the case; tensile damage is caused by the interaction of the Taylor wave pressure profile from the detonation wave with the free surface of the projectile. The simulations gave only an indication of tensile damage in the projectile, as damage is not understood well enough for predictions in this loading regime. The flatness can be improved by using a case of lower shock impedance, such as polymethyl methacrylate. High-impedance cases, including Al alloys but with denser materials improving the launching efficiency, can be used if designed according to the physics of oblique shock reflection, which indicates an appropriate case taper for any combination of explosive and case material. The tensile stress induced in the projectile depends on the relative thickness of the explosive, expansion gap, and projectile. The thinner the projectile with respect to the explosive, the smaller the tensile stress. Thus if the explosive is initiated with a plane wave lens, the tensile stress is lower than that for initiation with multiple detonators over a plane. The previous plane wave lens designs did, however, induce a tensile stress close to the spall strength of the projectile. The tensile stress can be reduced by changes in the component thicknesses. Experiments verifying the operation of explosively launched projectiles should attempt to measure porosity induced in the projectile: arrival time measurements are likely to be insensitive to porous regions caused by damaged or recollected material.
Harpoon Pyrotechnic Shock Study
1979-09-01
Air Systems Command, was performed from July 1973 to July 1979. In the Interest of economy and timeliness in presenting the information, the report is...Both actual test data and predicted shock levey are presented. .L{U’Shock spectra environment predictions are made for several types of explosive ...mounting structure 5 to 10 inches (127 to 254 mm) from the explosive device. Attenuation across the component mounting interface is the only loss
NASA Astrophysics Data System (ADS)
Mezzacappa, A.; Calder, A. C.; Bruenn, S. W.; Blondin, J. M.; Guidry, M. W.; Strayer, M. R.; Umar, A. S.
1998-03-01
We investigate neutrino-driven convection in core collapse supernovae and its ramifications for the explosion mechanism. We begin with a postbounce model that is optimistic in two important respects: (1) we begin with a 15 M⊙ precollapse model, which is representative of the class of stars with compact iron cores; (2) we implement Newtonian gravity. Our precollapse model is evolved through core collapse and bounce in one dimension using multigroup (neutrino energy-dependent) flux-limited diffusion (MGFLD) neutrino transport and Newtonian Lagrangian hydrodynamics, providing realistic initial conditions for the postbounce convection and evolution. Our two-dimensional simulation begins at 12 ms after bounce and proceeds for 500 ms. We couple two-dimensional piecewise parabolic method (PPM) hydrodynamics to precalculated one-dimensional MGFLD neutrino transport. (The neutrino distributions used for matter heating and deleptonization in our two-dimensional run are obtained from an accompanying one-dimensional simulation. The accuracy of this approximation is assessed.) For the moment, we sacrifice dimensionality for realism in other aspects of our neutrino transport. MGFLD is an implementation of neutrino transport that simultaneously (1) is multigroup and (2) simulates with sufficient realism the transport of neutrinos in opaque, semitransparent, and transparent regions. Both are crucial to the accurate determination of postshock neutrino heating, which sensitively depends on the luminosities, spectra, and flux factors of the electron neutrinos and antineutrinos emerging from their respective neutrinospheres. By 137 ms after bounce, we see neutrino-driven convection rapidly developing beneath the shock. By 212 ms after bounce, this convection becomes large scale, characterized by higher entropy, expanding upflows and lower entropy, denser, finger-like downflows. The upflows reach the shock and distort it from sphericity. The radial convection velocities at this time become supersonic just below the shock, reaching magnitudes in excess of 109 cm s-1. Eventually, however, the shock recedes to smaller radii, and at ~500 ms after bounce there is no evidence in our simulation of an explosion or of a developing explosion. Our angle-averaged density, entropy, electron fraction, and radial velocity profiles in our two-dimensional model agree well with their counterparts in our accompanying one-dimensional MGFLD run above and below the neutrino-driven convection region. In the convection region, the one-dimensional and angle-averaged profiles differ somewhat because (1) convection tends to flatten the density, entropy, and electron fraction profiles, and (2) the shock radius is boosted somewhat by convection. However, the differences are not significant, indicating that, while vigorous, neutrino-driven convection in our model does not have a significant impact on the overall shock dynamics. The differences between our results and those of other groups are considered. These most likely result from differences in (1) numerical hydrodynamics methods; (2) initial postbounce models, and, most important; (3) neutrino transport approximations. We have compared our neutrino luminosities, rms energies, and inverse flux factors with those from the exploding models of other groups. Above all, we find that the neutrino rms energies computed by our multigroup (MGFLD) transport are significantly lower than the values obtained by Burrows and coworkers, who specified their neutrino spectra by tying the neutrino temperature to the matter temperature at the neutrinosphere and by choosing the neutrino degeneracy parameter arbitrarily, and by Herant and coworkers in their transport scheme, which (1) is gray and (2) patches together optically thick and thin regions. The most dramatic difference between our results and those of Janka and Müller is exhibited by the difference in the net cooling rate below the gain radii: Our rate is 2-3 times greater during the critical 50-100 ms after bounce. We have computed the mass and internal energy in the gain region as a function of time. Up to ~150 ms after bounce, we find that both increase as a result of the increasing gain region volume, as the gain and shock radii diverge. However, at all subsequent times, we find that the mass and internal energy in the gain region decrease with time in accordance with the density falloff in the preshock region and with the flow of matter into the gain region at the shock and out of the gain region at the gain radius. Therefore, we see no evidence in the simulations presented here that neutrino-driven convection leads to mass and energy accumulation in the gain region. We have compared our one- and two-dimensional densities, temperatures, and electron fractions in the region below the electron neutrino and antineutrino gain radii, above which the neutrino luminosities are essentially constant (i.e., the neutrino sources are entirely enclosed), in an effort to assess how spherically symmetric our neutrino sources remain during our two-dimensional evolution, and therefore, in an effort to assess our use of precalculated one-dimensional MGFLD neutrino distributions in calculating the matter heating and deleptonization. We find no difference below the neutrinosphere radii. Between the neutrinosphere and gain radii we find no differences with obvious ramifications for the supernova outcome. We note that the interplay between neutrino transport and convection below the neutrinospheres is a delicate matter and is discussed at greater length in another paper (Mezzacappa and coworkers). However, the results presented therein do support our use of precalculated one-dimensional MGFLD in the present context. Failure in our ``optimistic'' 15 M⊙ Newtonian model leads us to conclude that it is unlikely, at least in our approximation, that neutrino-driven convection will lead to explosions for more massive stars with fatter iron cores or in cases in which general relativity is included.
HERMES: A Model to Describe Deformation, Burning, Explosion, and Detonation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reaugh, J E
2011-11-22
HERMES (High Explosive Response to MEchanical Stimulus) was developed to fill the need for a model to describe an explosive response of the type described as BVR (Burn to Violent Response) or HEVR (High Explosive Violent Response). Characteristically this response leaves a substantial amount of explosive unconsumed, the time to reaction is long, and the peak pressure developed is low. In contrast, detonations characteristically consume all explosive present, the time to reaction is short, and peak pressures are high. However, most of the previous models to describe explosive response were models for detonation. The earliest models to describe the responsemore » of explosives to mechanical stimulus in computer simulations were applied to intentional detonation (performance) of nearly ideal explosives. In this case, an ideal explosive is one with a vanishingly small reaction zone. A detonation is supersonic with respect to the undetonated explosive (reactant). The reactant cannot respond to the pressure of the detonation before the detonation front arrives, so the precise compressibility of the reactant does not matter. Further, the mesh sizes that were practical for the computer resources then available were large with respect to the reaction zone. As a result, methods then used to model detonations, known as {beta}-burn or program burn, were not intended to resolve the structure of the reaction zone. Instead, these methods spread the detonation front over a few finite-difference zones, in the same spirit that artificial viscosity is used to spread the shock front in inert materials over a few finite-difference zones. These methods are still widely used when the structure of the reaction zone and the build-up to detonation are unimportant. Later detonation models resolved the reaction zone. These models were applied both to performance, particularly as it is affected by the size of the charge, and to situations in which the stimulus was less than that needed for reliable performance, whether as a result of accident, hazard, or a fault in the detonation train. These models describe the build-up of detonation from a shock stimulus. They are generally consistent with the mesoscale picture of ignition at many small defects in the plane of the shock front and the growth of the resulting hot-spots, leading to detonation in heterogeneous explosives such as plastic-bonded explosives (PBX). The models included terms for ignition, and also for the growth of reaction as tracked by the local mass fraction of product gas, {lambda}. The growth of reaction in such models incorporates a form factor that describes the change of surface area per unit volume (specific surface area) as the reaction progresses. For unimolecular crystalline-based explosives, the form factor is consistent with the mesoscale picture of a galaxy of hot spots burning outward and eventually interacting with each other. For composite explosives and propellants, where the fuel and oxidizer are segregated, the diffusion flame at the fuel-oxidizer interface can be interpreted with a different form factor that corresponds to grains burning inward from their surfaces. The form factor influences the energy release rate, and the amount of energy released in the reaction zone. Since the 19th century, gun and cannon propellants have used perforated geometric shapes that produce an increasing surface area as the propellant burns. This helps maintain the pressure as burning continues while the projectile travels down the barrel, which thereby increases the volume of the hot gas. Interior ballistics calculations use a geometric form factor to describe the changing surface area precisely. As a result, with a suitably modified form factor, detonation models can represent burning and explosion in damaged and broken reactant. The disadvantage of such models in application to accidents is that the ignition term does not distinguish between a value of pressure that results from a shock, and the same pressure that results from a more gradual increase. This disagrees with experiments, where explosives were subjected to a gradual rise in pressure and did not exhibit reaction. More recent models do distinguish between slow pressure rises and shocks, and have had some success in the describing the response of explosives to single and multiple shocks, and the increase of shock sensitivity with porosity, at least over a limited range. The original formulation is appropriate for sustained shocks, but further work is ongoing to describe the response to short pulses. The HERMES model combines features from these prior models. It describes burning and explosion in damaged reactant, and also will develop a detonation if the gradual rise in pressure from burning steepens into a strong-enough shock. The shock strength needed for detonation in a fixed run distance decreases with increasing porosity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Couch, Sean M., E-mail: smc@flash.uchicago.edu
2013-09-20
We present one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) hydrodynamical simulations of core-collapse supernovae including a parameterized neutrino heating and cooling scheme in order to investigate the critical core neutrino luminosity (L{sub crit}) required for explosion. In contrast to some previous works, we find that 3D simulations explode later than 2D simulations, and that L{sub crit} at fixed mass accretion rate is somewhat higher in three dimensions than in two dimensions. We find, however, that in two dimensions L{sub crit} increases as the numerical resolution of the simulation increases. In contrast to some previous works, we argue that the averagemore » entropy of the gain region is in fact not a good indicator of explosion but is rather a reflection of the greater mass in the gain region in two dimensions. We compare our simulations to semi-analytic explosion criteria and examine the nature of the convective motions in two dimensions and three dimensions. We discuss the balance between neutrino-driven buoyancy and drag forces. In particular, we show that the drag force will be proportional to a buoyant plume's surface area while the buoyant force is proportional to a plume's volume and, therefore, plumes with greater volume-to-surface-area ratios will rise more quickly. We show that buoyant plumes in two dimensions are inherently larger, with greater volume-to-surface-area ratios, than plumes in three dimensions. In the scenario that the supernova shock expansion is dominated by neutrino-driven buoyancy, this balance between buoyancy and drag forces may explain why 3D simulations explode later than 2D simulations and why L{sub crit} increases with resolution. Finally, we provide a comparison of our results with other calculations in the literature.« less
Monfared, Shabnam Khalighi; Buttler, William Tillman; Frayer, Daniel K.; ...
2015-06-11
In this paper, we report on the development of a diagnostic to provide constraints on the size of particles ejected from shocked metallic surfaces. The diagnostic is based on measurements of the intensity of laser light transmitted through a cloud of ejected particles as well as the angular distribution of scattered light, and the analysis of the resulting data is done using the Mie solution. Finally, we describe static experiments to test our experimental apparatus and present initial results of dynamic experiments on Sn targets. Improvements for future experiments are briefly discussed.
The Multi-dimensional Character of Core-collapse Supernovae
Hix, W. R.; Lentz, E. J.; Bruenn, S. W.; ...
2016-03-01
Core-collapse supernovae, the culmination of massive stellar evolution, are spectacular astronomical events and the principle actors in the story of our elemental origins. Our understanding of these events, while still incomplete, centers around a neutrino-driven central engine that is highly hydrodynamically unstable. Increasingly sophisticated simulations reveal a shock that stalls for hundreds of milliseconds before reviving. Though brought back to life by neutrino heating, the development of the supernova explosion is inextricably linked to multi-dimensional fluid flows. In this paper, the outcomes of three-dimensional simulations that include sophisticated nuclear physics and spectral neutrino transport are juxtaposed to learn about themore » nature of the three-dimensional fluid flow that shapes the explosion. Comparison is also made between the results of simulations in spherical symmetry from several groups, to give ourselves confidence in the understanding derived from this juxtaposition.« less
Alternate methodologies to experimentally investigate shock initiation properties of explosives
NASA Astrophysics Data System (ADS)
Svingala, Forrest R.; Lee, Richard J.; Sutherland, Gerrit T.; Benjamin, Richard; Boyle, Vincent; Sickels, William; Thompson, Ronnie; Samuels, Phillip J.; Wrobel, Erik; Cornell, Rodger
2017-01-01
Reactive flow models are desired for new explosive formulations early in the development stage. Traditionally, these models are parameterized by carefully-controlled 1-D shock experiments, including gas-gun testing with embedded gauges and wedge testing with explosive plane wave lenses (PWL). These experiments are easy to interpret due to their 1-D nature, but are expensive to perform and cannot be performed at all explosive test facilities. This work investigates alternative methods to probe shock-initiation behavior of new explosives using widely-available pentolite gap test donors and simple time-of-arrival type diagnostics. These experiments can be performed at a low cost at most explosives testing facilities. This allows experimental data to parameterize reactive flow models to be collected much earlier in the development of an explosive formulation. However, the fundamentally 2-D nature of these tests may increase the modeling burden in parameterizing these models and reduce general applicability. Several variations of the so-called modified gap test were investigated and evaluated for suitability as an alternative to established 1-D gas gun and PWL techniques. At least partial agreement with 1-D test methods was observed for the explosives tested, and future work is planned to scope the applicability and limitations of these experimental techniques.
A mesoscopic reaction rate model for shock initiation of multi-component PBX explosives.
Liu, Y R; Duan, Z P; Zhang, Z Y; Ou, Z C; Huang, F L
2016-11-05
The primary goal of this research is to develop a three-term mesoscopic reaction rate model that consists of a hot-spot ignition, a low-pressure slow burning and a high-pressure fast reaction terms for shock initiation of multi-component Plastic Bonded Explosives (PBX). Thereinto, based on the DZK hot-spot model for a single-component PBX explosive, the hot-spot ignition term as well as its reaction rate is obtained through a "mixing rule" of the explosive components; new expressions for both the low-pressure slow burning term and the high-pressure fast reaction term are also obtained by establishing the relationships between the reaction rate of the multi-component PBX explosive and that of its explosive components, based on the low-pressure slow burning term and the high-pressure fast reaction term of a mesoscopic reaction rate model. Furthermore, for verification, the new reaction rate model is incorporated into the DYNA2D code to simulate numerically the shock initiation process of the PBXC03 and the PBXC10 multi-component PBX explosives, and the numerical results of the pressure histories at different Lagrange locations in explosive are found to be in good agreements with previous experimental data. Copyright © 2016 Elsevier B.V. All rights reserved.
Role of helmet in the mechanics of shock wave propagation under blast loading conditions.
Ganpule, S; Gu, L; Alai, A; Chandra, N
2012-01-01
The effectiveness of helmets in extenuating the primary shock waves generated by the explosions of improvised explosive devices is not clearly understood. In this work, the role of helmet on the overpressurisation and impulse experienced by the head were examined. The shock wave-head interactions were studied under three different cases: (i) unprotected head, (ii) head with helmet but with varying head-helmet gaps and (iii) head covered with helmet and tightly fitting foam pads. The intensification effect was discussed by examining the shock wave flow pattern and verified with experiments. A helmet with a better protection against shock wave is suggested.
Shatter cones formed in large-scale experimental explosion craters
NASA Technical Reports Server (NTRS)
Roddy, D. J.; Davis, L. K.
1977-01-01
In 1968, a series of 0.5-ton and 100-ton TNT explosion experiments were conducted in granitic rock near Cedar City, Utah, as part of a basic research program on cratering and shock wave propagation. Of special interest was the formation of an important type of shock metamorphic feature, shatter cones. A description is presented of the first reported occurrence of shatter cones in high explosion trials. A background to shatter cone studies is presented and attention is given to the test program, geology and physical properties of the test medium, the observed cratering, and the formational pressures for shatter cones. The high explosion trials conducted demonstrate beyond any doubt, that shatter cones can be formed by shock wave processes during cratering and that average formational pressures in these crystalline rocks are in the 20-60 kb range.
Equation of State of Ammonium Nitrate
NASA Astrophysics Data System (ADS)
Robbins, David L.; Sheffield, Stephen A.; Dattelbaum, Dana M.; Velisavljevic, Nenad; Stahl, David B.
2009-12-01
Ammonium nitrate (AN) is a widely used fertilizer and mining explosive. AN is commonly used in ammonium nitrate-fuel oil (ANFO), which is a mixture of explosive-grade AN prills and fuel oil in a 94:6 ratio by weight. ANFO is a non-ideal explosive with measured detonation velocities around 4 km/s. The equation of state properties and known initiation behavior of neat AN are limited. We present the results of a series of gas gun-driven plate impact experiments on pressed neat ammonium nitrate at 1.72 g/cm3. No evidence of initiation was observed under shock loading to 22 GPa. High pressure x-ray diffraction experiments in diamond anvil cells provided insight into the high pressure phase behavior over the same pressure range (to 25 GPa), as well as a static isotherm at ambient temperature. From the isotherm and thermodynamic properties at ambient conditions, a preliminary unreacted equation of state (EOS) has been developed based on the Murnaghan isotherm and Helmholtz formalism [1], which compares favorably with the available experimental Hugoniot data on several densities of AN.
Reaction of Shocked but Undetonated HMX-Based Explosive
NASA Astrophysics Data System (ADS)
Taylor, P.; Salisbury, D. A.; Markland, L. S.; Winter, R. E.; Andrew, M. I.
2002-07-01
Cylindrical samples of the pressed plastic bonded HMX based explosive EDC37, backed by metal discs, were shocked through a stainless steel attenuator by an explosive donor. Reaction of the EDC37 sample was diagnosed with embedded PVDF pressure gauges and a distance to detonation for the geometry was determined. Sample length was then reduced to less than the observed detonation distance and laser interferometry was used to record the free surface velocity of the metal backing disc. The results provide data on the metal driving energy liberated by explosive which is shocked and reacting but not detonated. The results are compared with 2-D Eulerian calculations incorporating a 3-term ignition and growth reactive burn model with desensitisation. It is found that a parameter set for the reaction model which replicates the PVDF pressure profiles before reflection also gives good agreement to the metal disc velocity history at early times. The results show that an appreciable fraction of the metal driving potential of an explosive can be released without detonation being established.
Frank, A.M.; Lee, R.S.
1998-05-26
A precision flyer initiator forms a substantially spherical detonation wave in a high explosive (HE) pellet. An explosive driver, such as a detonating cord, a wire bridge circuit or a small explosive, is detonated. A flyer material is sandwiched between the explosive driver and an end of a barrel that contains an inner channel. A projectile or ``flyer`` is sheared from the flyer material by the force of the explosive driver and projected through the inner channel. The flyer than strikes the HE pellet, which is supported above a second end of the barrel by a spacer ring. A gap or shock decoupling material delays the shock wave in the barrel from predetonating the HE pellet before the flyer. A spherical detonation wave is formed in the HE pellet. Thus, a shock wave traveling through the barrel fails to reach the HE pellet before the flyer strikes the HE pellet. The precision flyer initiator can be used in mining devices, well-drilling devices and anti-tank devices. 10 figs.
A New Method for Determining the Equation of State of Aluminized Explosive
NASA Astrophysics Data System (ADS)
Zhou, Zheng-Qing; Nie, Jian-Xin; Guo, Xue-Yong; Wang, Qiu-Shi; Ou, Zhuo-Cheng; Jiao, Qing-Jie
2015-01-01
The time-dependent Jones—Wilkins—Lee equation of state (JWL-EOS) is applied to describe detonation state products for aluminized explosives. To obtain the time-dependent JWL-EOS parameters, cylinder tests and underwater explosion experiments are performed. According to the result of the wall radial velocity in cylinder tests and the shock wave pressures in underwater explosion experiments, the time-dependent JWL-EOS parameters are determined by iterating these variables in AUTODYN hydrocode simulations until the experimental values are reproduced. In addition, to verify the reliability of the derived JWL-EOS parameters, the aluminized explosive experiment is conducted in concrete. The shock wave pressures in the affected concrete bodies are measured by using manganin pressure sensors, and the rod velocity is obtained by using a high-speed camera. Simultaneously, the shock wave pressure and the rod velocity are calculated by using the derived time-dependent JWL equation of state. The calculated results are in good agreement with the experimental data.
Shock Interaction of Metal Particles in Condensed Explosive Detonation
NASA Astrophysics Data System (ADS)
Ripley, Robert; Zhang, Fan; Lien, Fue-Sang
2005-07-01
For detonation propagation in a condensed explosive with metal particles, a macro-scale physical model describing the momentum transfer between the explosive and particles has yet to be completely established. Previous 1D and 2D meso-scale modeling studies indicated that significant momentum transfer from the explosive to the particles occurs as the leading shock front crosses the particles, thus influencing the initiation and detonation structure. In this work, 3D meso-scale modeling is conducted to further study the two-phase momentum transfer during the shock diffraction and subsequent detonation in liquid nitromethane containing packed metal particles. Detonation of the condensed explosive is computed using an Arrhenius reaction model and a hybrid EOS model that combines the Mie-Gruneisen equation for reactants and the JWL equation for products. The compressible particles are modeled using the Tait EOS, where the material strength is negligible. The effect of particle packing configuration and inter-particle spacing is shown by parametric studies. Finally, a physical description of the momentum transfer is discussed.
Frank, Alan M.; Lee, Ronald S.
1998-01-01
A precision flyer initiator forms a substantially spherical detonation wave in a high explosive (HE) pellet. An explosive driver, such as a detonating cord, a wire bridge circuit or a small explosive, is detonated. A flyer material is sandwiched between the explosive driver and an end of a barrel that contains an inner channel. A projectile or "flyer" is sheared from the flyer material by the force of the explosive driver and projected through the inner channel. The flyer than strikes the HE pellet, which is supported above a second end of the barrel by a spacer ring. A gap or shock decoupling material delays the shock wave in the barrel from predetonating the HE pellet before the flyer. A spherical detonation wave is formed in the HE pellet. Thus, a shock wave traveling through the barrel fails to reach the HE pellet before the flyer strikes the HE pellet. The precision flyer initiator can be used in mining devices, well-drilling devices and anti-tank devices.
THE THREE-DIMENSIONAL EVOLUTION TO CORE COLLAPSE OF A MASSIVE STAR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Couch, Sean M.; Chatzopoulos, Emmanouil; Arnett, W. David
2015-07-20
We present the first three-dimensional (3D) simulation of the final minutes of iron core growth in a massive star, up to and including the point of core gravitational instability and collapse. We capture the development of strong convection driven by violent Si burning in the shell surrounding the iron core. This convective burning builds the iron core to its critical mass and collapse ensues, driven by electron capture and photodisintegration. The non-spherical structure and motion generated by 3D convection is substantial at the point of collapse, with convective speeds of several hundreds of km s{sup −1}. We examine the impactmore » of such physically realistic 3D initial conditions on the core-collapse supernova mechanism using 3D simulations including multispecies neutrino leakage and find that the enhanced post-shock turbulence resulting from 3D progenitor structure aids successful explosions. We conclude that non-spherical progenitor structure should not be ignored, and should have a significant and favorable impact on the likelihood for neutrino-driven explosions. In order to make simulating the 3D collapse of an iron core feasible, we were forced to make approximations to the nuclear network making this effort only a first step toward accurate, self-consistent 3D stellar evolution models of the end states of massive stars.« less
Donor free radical explosive composition
Walker, Franklin E. [15 Way Points Rd., Danville, CA 94526; Wasley, Richard J. [4290 Colgate Way, Livermore, CA 94550
1980-04-01
An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1500 and 10,000 meters per second and a minor amount of a donor additive comprising an organic compound or mixture of organic compounds capable of releasing low molecular weight free radicals or ions under mechanical or electrical shock conditions and which is not an explosive, or an inorganic compound or mixture of inorganic compounds capable of releasing low molecular weight free radicals or ions under mechanical or electrical shock conditions and selected from ammonium or alkali metal persulfates.
On the Violence of High Explosive Reactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarver, C M; Chidester, S K
High explosive reactions can be caused by three general energy deposition processes: impact ignition by frictional and/or shear heating; bulk thermal heating; and shock compression. The violence of the subsequent reaction varies from benign slow combustion to catastrophic detonation of the entire charge. The degree of violence depends on many variables, including the rate of energy delivery, the physical and chemical properties of the explosive, and the strength of the confinement surrounding the explosive charge. The current state of experimental and computer modeling research on the violence of impact, thermal, and shock-induced reactions is reviewed.
2000-08-01
ERDC/SL ; TR-00-4) Includes bibliographic references. 1. Underwater explosions - Testing. 2. Shock waves. 3. Air curtains. 4. Wilmington, (N.C...water is the placement of air curtains or bubble screens around the underwater explosive source. Bubble screens are generated by pumping air into a...Geomechanics and Explosion Effects Division (GEED), Structures Laboratory (SL), Waterways Experiment Station (WES), U. S. Army Engineer Research and
NASA Technical Reports Server (NTRS)
Murr, L. E.; Niou, C. S.; Pradhan-Advani, M.
1991-01-01
While it is now well established that copper-oxide-based power, or virtually any other ceramic superconductor powder, can be consolidated and encapsulated within a metal matrix by explosive consolidation, the erratic superconductivity following fabrication has posed a major problem for bulk applications. The nature of this behavior was found to arise from microstructural damage created in the shock wave front, and the residual degradation in superconductivity was demonstrated to be directly related to the peak shock pressure. The explosively fabricated or shock loaded YBa2Cu3Ox examples exhibit drastically altered rho (or R) - T curves. The deterioration in superconductivity is even more noticeable in the measurement of ac magnetic susceptibility and flux exclusion or shielding fraction which is also reduced in proportion to increasing peak shock pressure. The high frequency surface resistance (in the GHz range) is also correspondingly compromised in explosively fabricated, bulk metal-matrix composites based on YBa2Cu3O7. Transmission electron microscopy (including lattice imaging techniques) is being applied in an effort to elucidate the fundamental (microstructural) nature of the shock-induced degradation of superconductivity and normal state conductivity. One focus of TEM observations has assumed that oxygen displaced from b-chains rather than oxygen-vacancy disorder in the basal plane of oxygen deficient YBa2Cu3Ox may be a prime mechanism. Shock-wave displaced oxygen may also be locked into new positions or interstitial clusters or chemically bound to displaced metal (possibly copper) atoms to form precipitates, or such displacements may cause the equivalent of local lattice cell changes as a result of stoichiometric changes. While the shock-induced suppression of T(sub c) is not desirable in the explosive fabrication of bulk metal-matrix superconductors, it may be turned into an advantage if the atomic-scale distortion can be understood and controlled as local flux pinning sites.
NASA Technical Reports Server (NTRS)
Murr, L. E.; Niou, C. S.; Pradhan, M.; Schoenlein, L. H.
1990-01-01
While it is now well established that copper-oxide-based powder, or virtually any other ceramic superconductor powder, can be consolidated and encapsulated within a metal matrix by explosive consolidation, the erratic superconductivity following fabrication has posed a major problem for bulk applications. The nature of this behavior was found to arise from microstructural damage created in the shock wave front, and the residual degradation in superconductivity was demonstrated to be directly related to the peak shock pressure. The explosively fabricated or shock loaded YBa2Cu3Ox examples exhibit drastically altered rho (or R) - T curves. The deterioration in superconductivity is even more noticeable in the measurement of ac magnetic susceptibility and flux exclusion or shielding fraction which is also reduced in proportion to increasing peak shock pressure. The high-frequency surface resistance (in the GHz range) is also correspondingly compromised in explosively fabricated, bulk metal-matrix composites based on YBa2Cu3O7. Transmission electron microscopy (including lattice imaging techniques) is being applied in an effort to elucidate the fundamental (microstructural) nature of the shock-induced degradation of superconductivity and normal state conductivity. One focus of TEM observations has assumed that oxygen displaced from b-chains rather than oxygen-vacancy disorder in the basal plane of oxygen deficient YBa2Cu3Ox may be a prime mechanism. Shock-wave displaced oxygen may also be locked into new positions or interstitial clusters or chemically bound to displaced metal (possibly copper) atoms to form precipitates, or such displacements may cause the equivalent of local lattice cell changes as a result of stoichiometric changes. While the shock-induced suppression of T(sub c) is not desirable in the explosive fabrication of bulk metal-matrix superconductors, it may be turned into an advantage if the atomic-scale distortion can be understood and controlled as local flux pinning sites.
Supernova shock breakout through a wind
NASA Astrophysics Data System (ADS)
Balberg, Shmuel; Loeb, Abraham
2011-06-01
The breakout of a supernova shock wave through the progenitor star's outer envelope is expected to appear as an X-ray flash. However, if the supernova explodes inside an optically thick wind, the breakout flash is delayed. We present a simple model for estimating the conditions at shock breakout in a wind based on the general observable quantities in the X-ray flash light curve; the total energy EX, and the diffusion time after the peak, tdiff. We base the derivation on the self-similar solution for the forward-reverse shock structure expected for an ejecta plowing through a pre-existing wind at large distances from the progenitor's surface. We find simple quantitative relations for the shock radius and velocity at breakout. By relating the ejecta density profile to the pre-explosion structure of the progenitor, the model can also be extended to constrain the combination of explosion energy and ejecta mass. For the observed case of XRO08109/SN2008D, our model provides reasonable constraints on the breakout radius, explosion energy and ejecta mass, and predicts a high shock velocity which naturally accounts for the observed non-thermal spectrum.
Spherical shock due to point explosion with varying energy
NASA Astrophysics Data System (ADS)
Singh, J. B.; Srivastava, S. K.
1983-05-01
The motion of a perfect gas behind a weak or strong spherical point-explosion shock wave in a nonuniform rest atmosphere is investigated analytically for the case of variable flow energy. The self-similar solutions derived are also adaptable to a uniform expanding piston. The solution is applied to the isothermal case, and the results of numerical integration are presented in graphs showing the density, velocity, and pressure distributions for different values of delta. The findings are considered significant for investigations of sonic booms, laser production of plasmas, high-altitude nuclear detonations, supernova explosions, and the sudden expansion of the solar corona, and for the laboratory production of high temperatures using shock waves.
Numerical Simulation of Detonation in Condensed Phase Explosives
1998-08-01
34Numerical modelling of shocks in solids with elastic-plastic conditions", Shock Waves, 3: 55-66. 22. Jones, D.A., Oran, E.S. and Guirguis , R. (1990). "A...China Lake, CA 93555-6001, preprint. 55. P.J. Miller , P.J. and G.T. Sutherland, G.T. (1996) Reaction Rate Modelling of PBXN- 110, Shock Compression...report describes the development of a two-dimensional multi-material Eulerian hydrocode to model the effects of detonating condensed phase explosives on
Shock-turbulence interaction in core-collapse supernovae
NASA Astrophysics Data System (ADS)
Abdikamalov, Ernazar; Zhaksylykov, Azamat; Radice, David; Berdibek, Shapagat
2016-10-01
Nuclear shell burning in the final stages of the lives of massive stars is accompanied by strong turbulent convection. The resulting fluctuations aid supernova explosion by amplifying the non-radial flow in the post-shock region. In this work, we investigate the physical mechanism behind this amplification using a linear perturbation theory. We model the shock wave as a one-dimensional planar discontinuity and consider its interaction with vorticity and entropy perturbations in the upstream flow. We find that, as the perturbations cross the shock, their total turbulent kinetic energy is amplified by a factor of ˜2, while the average linear size of turbulent eddies decreases by about the same factor. These values are not sensitive to the parameters of the upstream turbulence and the nuclear dissociation efficiency at the shock. Finally, we discuss the implication of our results for the supernova explosion mechanism. We show that the upstream perturbations can decrease the critical neutrino luminosity for producing explosion by several per cent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urtiew, P A; Forbes, J W; Tarver, C M
LX-04 is a widely used HMX-based plastic bonded explosive, which contains 85 weight % HMX and 15 weight % Viton binder. The sensitivity of LX-04 to a single stimulus such as heat, impact, and shock has been previously studied. However, hazard scenarios can involve multiple stimuli, such as heating to temperatures close to thermal explosion conditions followed by fragment impact, producing a shock in the hot explosive. The sensitivity of HMX at elevated temperatures is further complicated by the beta to delta solid-state phase transition, which occurs at approximately 165 C. This paper presents the results of shock initiation experimentsmore » conducted with LX-04 preheated to 190 C, as well as density measurements and small scale safety test results of the {delta} phase HMX at room temperature. This work shows that LX-04 at 190 C is more shock sensitive than LX-04 at 150 C or 170 C due to the volume increase during the {beta} to {delta} solid phase transition, which creates more hot spots, and the faster growth of reaction during shock compression.« less
Nanotwin Formation in High-Manganese Austenitic Steels Under Explosive Shock Loading
NASA Astrophysics Data System (ADS)
Canadinc, D.; Uzer, B.; Elmadagli, M.; Guner, F.
2018-04-01
The micro-deformation mechanisms active in a high-manganese austenitic steel were investigated upon explosive shock loading. Single system of nanotwins forming within primary twins were shown to govern the deformation despite the elevated temperatures attained during testing. The benefits of nanotwin formation for potential armor materials were demonstrated.
Studying multiply shocked states in HMX and TATB based explosives with a gas gun ring up geometry
NASA Astrophysics Data System (ADS)
Ferguson, James; Finnegan, Simon; Millett, Jeremy; Goff, Michael
2017-06-01
A series of ring up shots investigating partially reacted and multiply shocked states in both HMX and TATB based explosives are reported on. Results of experiments using PCTFE and LiF in place of the explosives are also described. The experiments were performed using 50 mm diameter bore and 70 mm diameter bore single stage gas guns. By locating the target between a high impedance copper flyer and sapphire window, shocks of increasing magnitude are reflected into the target at each interface. The particle velocity at the target-window interface was measured using multiple points of HetV reflected from an 800 nm layer of gold sputtered onto the sapphire. The stress state at the target-flyer interface were observed using manganin gauges. A range of different input pressures were investigated, these were picked to either allow a comparison to double shock and particle velocity work, or to provide the maximum number of rings within the one dimensional time. For the inert shots input pressures matched the explosive shots.
NASA Astrophysics Data System (ADS)
Gustavsen, R. L.; Aslam, T. D.; Bartram, B. D.; Hollowell, B. C.
2014-05-01
A series of two-stage gus-gun driven plate impact experiments on PBX 9502 (95 wt.% tri-amino-trinitro-benzene, 5 wt.% Kel-F800 plastic binder) was completed in the 28-34 GPa pressure range. This is just above the Chapman-Jouguet state of ≈ 28 GPa. The experiments consisted of a thick oxygen free high conductivity copper (OFHC Cu) flyer plate impacting a PBX 9502 sample backed by a Lithium Fluoride (LiF) window. Photonic Doppler Velocimetry (PDV) was used to measure velocity histories (wave profiles) at the PBX 9502/LiF interface. Shock transit times and sample thicknesses were converted to shock velocities, Us. Particle velocities, up, were calculated by way of impedance matching. Lastly, the measured wave profiles were compared with numerical simulations of the experiments using the Wescott-Stewart-Davis reactive-burn model.
Research Performance Progress Report: Diverging Supernova Explosion Experiments on NIF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plewa, Tomasz
2016-10-25
The aim of this project was to design a series of blast-wave driven Rayleigh-Taylor (RT) experiments on the National Ignition Facility (NIF). The experiments of this kind are relevant to mixing in core-collapse supernovae (ccSNe) and have the potential to address previously unanswered questions in high-energy density physics (HEDP) and astrophysics. The unmatched laser power of the NIF laser offers a unique chance to observe and study “new physics” like the mass extensions observed in HEDP RT experiments performed on the Omega laser [1], which might be linked to self-generated magnetic fields [2] and so far could not be reproducedmore » by numerical simulations. Moreover, NIF is currently the only facility that offers the possibility to execute a diverging RT experiment, which would allow to observe processes such as inter-shell penetration via turbulent mixing and shock-proximity effects (distortion of the shock by RT spikes).« less
Explosive fluid transmitted shock method for mining deeply buried coal
Archibald, Paul B.
1976-06-22
A method for recovering coal from deeply buried deposits comprising drilling a hole down into a coal seam, filling the hole with water, and periodically detonating an explosive charge at the bottom of the water-filled hole. The water transmits the explosive shock wave to the face of the coal seam, thereby fracturing and dislodging the coal. The resulting suspension of loose coal in water is then pumped to the surface where the coal is recovered and the water is recycled to the mining operation.
Explosive compaction of aluminum oxide modified by multiwall carbon nanotubes
NASA Astrophysics Data System (ADS)
Buzyurkin, A. E.; Kraus, E. I.; Lukyanov, Ya L.
2018-04-01
This paper presents experiments and numerical research on explosive compaction of aluminum oxide powder modified by multiwall carbon nanotubes (MWCNT) and modeling of the stress state behind the shock front at shock loading. The aim of this study was to obtain a durable low-porosity compact sample. The explosive compaction technology is used in this problem because the aluminum oxide is an extremely hard and refractory material. Therefore, its compaction by traditional methods requires special equipment and considerable expenses.
The development of neutrino-driven convection in core-collapse supernovae: 2D vs 3D
NASA Astrophysics Data System (ADS)
Kazeroni, R.; Krueger, B. K.; Guilet, J.; Foglizzo, T.
2017-12-01
A toy model is used to study the non-linear conditions for the development of neutrino-driven convection in the post-shock region of core-collapse supernovae. Our numerical simulations show that a buoyant non-linear perturbation is able to trigger self-sustained convection only in cases where convection is not linearly stabilized by advection. Several arguments proposed to interpret the impact of the dimensionality on global core-collapse supernova simulations are discussed in the light of our model. The influence of the numerical resolution is also addressed. In 3D a strong mixing to small scales induces an increase of the neutrino heating efficiency in a runaway process. This phenomenon is absent in 2D and this may indicate that the tridimensional nature of the hydrodynamics could foster explosions.
Generalized Pseudo-Reaction Zone Model for Non-Ideal Explosives
NASA Astrophysics Data System (ADS)
Wescott, B. L.
2007-12-01
The pseudo-reaction zone model was proposed to improve engineering scale simulations with high explosives that have a slow reaction component. In this work an extension of the pseudo-reaction zone model is developed for non-ideal explosives that propagate well below the steady-planar Chapman-Jouguet velocity. A programmed burn method utilizing Detonation Shock Dynamics (DSD) and a detonation velocity dependent pseudo-reaction rate has been developed for non-ideal explosives and applied to the explosive mixture of ammonium nitrate and fuel oil (ANFO). The pseudo-reaction rate is calibrated to the experimentally obtained normal detonation velocity—shock curvature relation. Cylinder test simulations predict the proper expansion to within 1% even though significant reaction occurs as the cylinder expands.
Ground Shock Effects from Accidental Explosions
1976-11-01
1,200 P0 A = V P cp 8 Horizontal Dh = Dv tannin " 1 (cp/U)] Vh = Vv tan [sin" 1 (cp/U)] \\ - \\ tanfainŕ (cp/U)] For tan sin (c /U...explosive are not included in the present analysis . This effect will limit the credibility of the direct- induced ground shock predictions, but if the... analysis . Dr. D. R. Richmond of Lovelace Foundation provided data on human shock tolerances. 26 REFERENCES 1. "Structures to Resist the Effects of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdikamalov, Ernazar; Ott, Christian D.; Radice, David
2015-07-20
We conduct a series of numerical experiments into the nature of three-dimensional (3D) hydrodynamics in the postbounce stalled-shock phase of core-collapse supernovae using 3D general-relativistic hydrodynamic simulations of a 27 M{sub ⊙} progenitor star with a neutrino leakage/heating scheme. We vary the strength of neutrino heating and find three cases of 3D dynamics: (1) neutrino-driven convection, (2) initially neutrino-driven convection and subsequent development of the standing accretion shock instability (SASI), and (3) SASI-dominated evolution. This confirms previous 3D results of Hanke et al. and Couch and Connor. We carry out simulations with resolutions differing by up to a factor ofmore » ∼4 and demonstrate that low resolution is artificially favorable for explosion in the 3D convection-dominated case since it decreases the efficiency of energy transport to small scales. Low resolution results in higher radial convective fluxes of energy and enthalpy, more fully buoyant mass, and stronger neutrino heating. In the SASI-dominated case, lower resolution damps SASI oscillations. In the convection-dominated case, a quasi-stationary angular kinetic energy spectrum E(ℓ) develops in the heating layer. Like other 3D studies, we find E(ℓ) ∝ℓ{sup −1} in the “inertial range,” while theory and local simulations argue for E(ℓ) ∝ ℓ{sup −5/3}. We argue that current 3D simulations do not resolve the inertial range of turbulence and are affected by numerical viscosity up to the energy-containing scale, creating a “bottleneck” that prevents an efficient turbulent cascade.« less
Creation of a Data Base on Energetic Materials
1987-08-10
Examples of booster explosives are Tetryl, RDX , and HMX . Examples of bursting explosives are Amatols, TNT, Compositions A, B, & C, and Picatrol. Within...Test Thermal Shock Resistance Glass Transition Temperature Toxicity Grain Size Viscosity Hardness Volatility Heat Capacity Water Resistance Heat of...Tensile Strength Flammability Thermal Conductivity Flexural Strength Thermal Expansion Coefficient Gap Test Thermal Shock Resistance Glass Transition
Aspherical Supernovae and Oblique Shock Breakout
NASA Astrophysics Data System (ADS)
Afsariardchi, Niloufar; Matzner, Christopher D.
2017-02-01
In an aspherical supernova explosion, shock emergence is not simultaneous and non-radial flows develop near the stellar surface. Oblique shock breakouts tend to be easily developed in compact progenitors like stripped-envelop core collapse supernovae. According to Matzner et al. (2013), non-spherical explosions develop non-radial flows that alters the observable emission and radiation of a supernova explosion. These flows can limit ejecta speed, change the distribution of matter and heat of the ejecta, suppress the breakout flash, and most importantly engender collisions outside the star. We construct a global numerical FLASH hydrodynamic simulation in a two dimensional spherical coordinate, focusing on the non-relativistic, adiabatic limit in a polytropic envelope to see how these fundamental differences affect the early light curve of core-collapse SNe.
NASA Astrophysics Data System (ADS)
Chakravarthy, Sunada; Gonthier, Keith A.
2016-07-01
Variations in the microstructure of granular explosives (i.e., particle packing density, size, shape, and composition) can affect their shock sensitivity by altering thermomechanical fields at the particle-scale during pore collapse within shocks. If the deformation rate is fast, hot-spots can form, ignite, and interact, resulting in burn at the macro-scale. In this study, a two-dimensional finite and discrete element technique is used to simulate and examine shock-induced dissipation and hot-spot formation within low density explosives (68%-84% theoretical maximum density (TMD)) consisting of large ensembles of HMX (C4H8N8O8) and aluminum (Al) particles (size ˜ 60 -360 μm). Emphasis is placed on identifying how the inclusion of Al influences effective shock dissipation and hot-spot fields relative to equivalent ensembles of neat/pure HMX for shocks that are sufficiently strong to eliminate porosity. Spatially distributed hot-spot fields are characterized by their number density and area fraction enabling their dynamics to be described in terms of nucleation, growth, and agglomeration-dominated phases with increasing shock strength. For fixed shock particle speed, predictions indicate that decreasing packing density enhances shock dissipation and hot-spot formation, and that the inclusion of Al increases dissipation relative to neat HMX by pressure enhanced compaction resulting in fewer but larger HMX hot-spots. Ensembles having bimodal particle sizes are shown to significantly affect hot-spot dynamics by altering the spatial distribution of hot-spots behind shocks.
Measurement of Afterburning Effect of Underoxidized Explosives by Underwater Explosion Method
NASA Astrophysics Data System (ADS)
Cao, Wei; He, Zhongqi; Chen, Wanghua
2015-04-01
The afterburning effect of TNT and a desensitized hexogen RDX-Al explosive was studied in a defined gas volume under water. A double-layer container (DLC) filled with different gases (air, oxygen, and nitrogen) was used to control and distinguish the afterburning effect of explosives. After the charges in the DLC were initiated under water, the shock wave signals were collected and analyzed. It is shown that shock wave peak pressures are duly in compliance with explosion similarity law, pressure, and impulse histories for explosions in oxygen and air are greater than those recorded for explosions in nitrogen due to the afterburing reaction. Moreover, the afterburning energy was calculated. Results show that even though there is excess oxygen in the gas volume, the afterburning energy may not reach the theoretically maximum value. This result is different from that in confined explosion, where the presence of excess oxygen in the compressed gas filling a bomb leads to complete combustion of the detonation products.
Performance and Shock Sensitivity Evaluations of Reduced Sensitivity Explosives
NASA Astrophysics Data System (ADS)
Bowden, Patrick; Tappan, Bryce; Schmitt, Matthew; Lichthardt, Joseph; Hill, Larry
2017-06-01
Making high explosives that possess insensitivity on par with TATB-based plastic bonded explosives (PBXs), while outperforming them, has proven to be a difficult challenge. Many molecules that have challenged TATB have fallen short in either small-scale sensitivity (impact, friction), thermal stability, or possessing a shock sensitivity that is either too high or too low. Recently, an alternative approach to single-molecule-based PBXs has been blending and/or co-crystallizing explosive molecules to address shortcomings of individual components. With this approach in mind, formulations have been prepared containing 1,1-diamino-2,2-dinitroethene (DADNE or FOX-7) or 3,3'-diamino-4,4'-azoxyfurazan (DAAF) with 3-nitro-1,2,4-triazole-5-one (NTO). Detailed characterization of these mixtures has been described in a concurrent study. Here we focus on in depth performance metrics such as cylinder wall expansion and CJ pressure (via free surface velocity) and shock sensitivity, by small-scale gap-testing, were investigated as a function of weight percentages of the components. Results will be contrasted with known insensitive high explosives.
The Numerical Simulation of the Shock Wave of Coal Gas Explosions in Gas Pipe*
NASA Astrophysics Data System (ADS)
Chen, Zhenxing; Hou, Kepeng; Chen, Longwei
2018-03-01
For the problem of large deformation and vortex, the method of Euler and Lagrange has both advantage and disadvantage. In this paper we adopt special fuzzy interface method(volume of fluid). Gas satisfies the conditions of conservation equations of mass, momentum, and energy. Based on explosion and three-dimension fluid dynamics theory, using unsteady, compressible, inviscid hydrodynamic equations and state equations, this paper considers pressure gradient’s effects to velocity, mass and energy in Lagrange steps by the finite difference method. To minimize transport errors of material, energy and volume in Finite Difference mesh, it also considers material transport in Euler steps. Programmed with Fortran PowerStation 4.0 and visualized with the software designed independently, we design the numerical simulation of gas explosion with specific pipeline structure, check the key points of the pressure change in the flow field, reproduce the gas explosion in pipeline of shock wave propagation, from the initial development, flame and accelerate the process of shock wave. This offers beneficial reference and experience to coal gas explosion accidents or safety precautions.
NASA Astrophysics Data System (ADS)
Baudin, G.; Roudot, M.; Genetier, M.; Mateille, P.; Lefrançois, A.
2014-05-01
HMX, RDX and NTO based cast-cured plastic bounded explosive (PBX) are widely used in insensitive ammunitions. Designing modern warheads needs robust and reliable models to compute shock ignition and detonation propagation inside PBX. Comparing to a pressed PBX, a cast-cured PBX is not porous and the hot-spots are mainly located at the grain-binder interface leading to a different burning behavior during shock-to-detonation transition. Here, we review the shock-to-detonation transition (SDT) and its modeling for cast-cured PBX containing HMX, RDX and NTO. Future direction is given in conclusion.
Rigid polyurethane foam as an efficient material for shock wave attenuation
NASA Astrophysics Data System (ADS)
Komissarov, P. V.; Borisov, A. A.; Sokolov, G. N.; Lavrov, V. V.
2016-09-01
A new method for reducing parameters of blast waves generated by explosions of HE charges on ground is presented. Most of the traditional techniques reduce the wave parameters at a certain distance from the charge, i.e. as a matter of fact the damping device interacts with a completely formed shock wave. The proposed approach is to use rigid polyurethane foam coating immediately the explosive charge. A distributed structure of such a foam block that provides most efficient shock wave attenuation is suggested. Results of experimental shock wave investigations recorded in tests in which HE charges have been exploded with damping devices and without it are compared.
Ultrafast Shock Compression Hugoniot Data of beta-CL-20 and TATB Thin Films
NASA Astrophysics Data System (ADS)
Zaug, Joseph; Armstrong, Michael; Grivickas, Paulius; Tappan, Alexander; Kohl, Ian; Rodriguez, Mark; Knepper, Robert; Crowhurst, Jonathan; Stavrou, Elissaios; Bastea, Sorin
2017-06-01
The shock induced initiation threshold of two energetic materials, CL-20 and TATB are remarkably different; CL-20 is a relatively shock sensitive energetic material and TATB is considered an insensitive high explosive (IHE). Here we report ultrafast laser-based shockwave hydrodynamic data on the 100 ps timescale with 10 ps time resolution to further develop density dependent unreacted shock Hugoniot equations of state (UEOS) and to elucidate ultrafast timescale shock initiation processes for these two vastly different HEs. Thin film samples were made by vacuum thermal evaporation of the explosive on a deposited aluminum ablator layer. The deposited explosives were characterized by scanning electron microscopy, surface profilometry, and x-ray diffraction. Our preliminary UEOS results (up range of 1.3 - 1.8 km/s) from shock compressed beta-CL-20 agree reasonably well with extrapolated pseudo-velocities computed from epsilon-CL-20 isothermal diamond-anvil cell EOS measurements. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporati.
Multidimensional neutrino-transport simulations of the core-collapse supernova central engine
NASA Astrophysics Data System (ADS)
O'Connor, Evan; Couch, Sean
2017-01-01
Core-collapse supernovae (CCSNe) mark the explosive death of a massive star. The explosion itself is triggered by the collapse of the iron core that forms near the end of a massive star's life. The core collapses to nuclear densities where the stiff nuclear equation of state halts the collapse and leads to the formation of the supernova shock. In many cases, this shock will eventually propagate throughout the entire star and produces a bright optical display. However, the path from shock formation to explosion has proven difficult to recreate in simulations. Soon after the shock forms, its outward propagation is stagnated and must be revived in order for the CCSNe to be successful. The leading theory for the mechanism that reenergizes the shock is the deposition of energy by neutrinos. In 1D simulations this mechanism fails. However, there is growing evidence that in 2D and 3D, hydrodynamic instabilities can assist the neutrino heating in reviving the shock. In this talk, I will present new multi-D neutrino-radiation-hydrodynamic simulations of CCSNe performed with the FLASH hydrodynamics package. I will discuss the efficacy of neutrino heating in our simulations and show the impact of the multi-D hydrodynamic instabilities.
Evaluation of XHVRB for Capturing Explosive Shock Desensitization
NASA Astrophysics Data System (ADS)
Tuttle, Leah; Schmitt, Robert; Kittell, Dave; Harstad, Eric
2017-06-01
Explosive shock desensitization phenomena have been recognized for some time. It has been demonstrated that pressure-based reactive flow models do not adequately capture the basic nature of the explosive behavior. Historically, replacing the local pressure with a shock captured pressure has dramatically improved the numerical modeling approaches. Models based upon shock pressure or functions of entropy have recently been developed. A pseudo-entropy based formulation using the History Variable Reactive Burn model, as proposed by Starkenberg, was implemented into the Eulerian shock physics code CTH. Improvements in the shock capturing algorithm were made. The model is demonstrated to reproduce single shock behavior consistent with published pop plot data. It is also demonstrated to capture a desensitization effect based on available literature data, and to qualitatively capture dead zones from desensitization in 2D corner turning experiments. This models shows promise for use in modeling and simulation problems that are relevant to the desensitization phenomena. Issues are identified with the current implementation and future work is proposed for improving and expanding model capabilities. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ritter, Boyd
Insensitive high explosives (IHEs) based on 1,3,5-triamino 2,4,6-trinitro-benzene (TATB) are the IHEs of choice for use in nuclear warheads over conventional high explosives when safety is the only consideration, because they are very insensitive to thermal or mechanical initiation stimuli. It is this inherent insensitivity to high temperatures, shock, and impact, which provides detonation design challenges when designing TATB explosive systems while at the same time providing a significant level of protection against accidental initiation. Although classified as IHE, over the past few years the focus on explosive safety has demonstrated that the shock sensitivity of TATB is influenced withmore » respect to temperature. A number of studies have been performed on TATB and TATB formulations, plastic bonded explosives (PBX) 9502, and LX-17-01 (LX-17), which demonstrates the increase in shock sensitivity of the explosive after it has been preheated or thermally cycled over various temperature ranges. Many studies suggest the change in sensitivity is partly due to the decomposition rates of the temperature elevated TATB. Others point to the coefficient of thermal expansion, the crystalline structures of TATB and/or the combination of all factors, which create voids which can become active hot spots. During thermal cycling, TATB is known to undergo an irreversible increase in specific volume called ratchet growth. This increase in specific volume correlates to a decrease in density. This decrease in density and increase in volume, demonstrate the creations of additional void spaces which could serve as potential new initiation hot spots thus, increasing the overall sensitivity of the HE. This literature review evaluates the published works to understand why the shock sensitivity of TATB-based plastic bonded explosives (PBXs) changes with temperature.« less
Influence of exothermic chemical reactions on laser-induced shock waves.
Gottfried, Jennifer L
2014-10-21
Differences in the excitation of non-energetic and energetic residues with a 900 mJ, 6 ns laser pulse (1064 nm) have been investigated. Emission from the laser-induced plasma of energetic materials (e.g. triaminotrinitrobenzene [TATB], cyclotrimethylene trinitramine [RDX], and hexanitrohexaazaisowurtzitane [CL-20]) is significantly reduced compared to non-energetic materials (e.g. sugar, melamine, and l-glutamine). Expansion of the resulting laser-induced shock wave into the air above the sample surface was imaged on a microsecond timescale with a high-speed camera recording multiple frames from each laser shot; the excitation of energetic materials produces larger heat-affected zones in the surrounding atmosphere (facilitating deflagration of particles ejected from the sample surface), results in the formation of additional shock fronts, and generates faster external shock front velocities (>750 m s(-1)) compared to non-energetic materials (550-600 m s(-1)). Non-explosive materials that undergo exothermic chemical reactions in air at high temperatures such as ammonium nitrate and magnesium sulfate produce shock velocities which exceed those of the inert materials but are less than those generated by the exothermic reactions of explosive materials (650-700 m s(-1)). The most powerful explosives produced the highest shock velocities. A comparison to several existing shock models demonstrated that no single model describes the shock propagation for both non-energetic and energetic materials. The influence of the exothermic chemical reactions initiated by the pulsed laser on the velocity of the laser-induced shock waves has thus been demonstrated for the first time.
Numerical Simulation of Blast Action on Civil Structures in Urban Environment
NASA Astrophysics Data System (ADS)
Valger, Svetlana A.; Fedorova, Natalya N.; Fedorov, Alexander V.
2017-10-01
Nowadays, a lot of industrial accidents accompanied by explosions are happening throughout the world. Also, increase in the number of terrorist acts committed by means of explosions is observed. For improving safety of buildings and structures it is necessary to raise their resistance to explosive effects, as well as to be able to predict degree of potential damage upon explosive loads of various intensities. One of the principal goals in designing the structure resistant to explosive effects is to determine the dynamic response of structures to the impact of the blast wave. To this end, the transient pressure loads on the walls of the civil engineering structures are to be determined. The simulation of explosion is highly complicated, involving an explosion causing the shock wave propagation in air and then interaction with a structure. The engineering-level techniques permit one to estimate an explosive shock impact only for isolated buildings. The complexity of the building, the presence of nearby structures and the surrounding environment cannot be taken into account. Advanced computer aid engineering (CAE) software techniques combined with the latest methods of discrete three-dimensional city modelling permits one to simulate and analyse the effects of explosions in urban areas with a precision which previously was not possible. In the paper, the simulation results are presented of shock wave forming due to a spherical explosive charge and its propagation in the vicinity of geometrical configuration imitating an urban environment. The numerical simulation of a flow in the vicinity of prisms of different cross-sections and heights located on a flat plate was performed. The calculations are carried out in a three-dimensional non-viscous formulation using ANSYS software. On a basis of simulation results, a complex wave structures were analysed, and all the peculiarities of flows and pressure history records on building walls were described and explained. The possibility of a correct description of the non-stationary wave flow in the vicinity of the complex of obstacles is demonstrated. The results are compared with the experimental data on the pressure distribution in gauges located on the prism walls. The estimation of shock wave exposure intensity was performed to different objects.
Investigating ground effects on mixing and afterburning during a TNT explosion
NASA Astrophysics Data System (ADS)
Fedina, E.; Fureby, C.
2013-05-01
In this paper, the unconfined and semi-confined condensed phase explosions of TNT will be studied using large eddy simulations based on the unsteady, compressible, reacting, multi-species Navier-Stokes equations to gain further understanding of the physical processes involved in a condensed phase explosion and the effect of confinement on the physical processes involved. The analysis of the mixing and afterburning of TNT explosions in free air (unconfined) and near the ground (semi-confined) indicates that the combustion region of detonation products and air is determined by the vorticity patterns, which are induced by the Richtmeyer-Meshkov instabilities that arise during the explosion. When the explosive is detonated in the vicinity of a surface, the surface affects the shock propagation by creating complex shock systems, thereby changing the orientation of the vorticity, giving the afterburning a mushroom shape, and increasing performance of an explosive charge by prolonging the existence of the mixing layer and thereby the afterburning.
Liquid explosions induced by X-ray laser pulses
Stan, Claudiu A.; Milathianaki, Despina; Laksmono, Hartawan; ...
2016-05-23
Explosions are spectacular and intriguing phenomena that expose the dynamics of matter under extreme conditions. We investigated, using time-resolved imaging, explosions induced by ultraintense X-ray laser pulses in water drops and jets. Our observations revealed an explosive vaporization followed by high-velocity interacting flows of liquid and vapour, and by the generation of shock trains in the liquid jets. These flows are different from those previously observed in laser ablation, owing to a simpler spatial pattern of X-ray absorption. We show that the explosion dynamics in our experiments is consistent with a redistribution of absorbed energy, mediated by a pressure ormore » shock wave in the liquid, and we model the effects of explosions, including their adverse impact on X-ray laser experiments. As a result, X-ray laser explosions have predictable dynamics that may prove useful for controlling the state of pure liquids over broad energy scales and timescales, and for triggering pressure-sensitive molecular dynamics in solutions.« less
NASA Astrophysics Data System (ADS)
Buttler, William
2013-06-01
We present the development of an explosively driven physics tool to generate two mostly uniaxial shockwaves. The tool is being used to extend single shockwave ejecta models to a subsequent shockwave event separated by a time interval on the order of a few microseconds. We explore the possibility of varying the amplitude of both the first and second shockwaves, and we apply the tool in experimental geometries on Sn with a surface roughness of Ra = 0 . 8 μ m. We then evaluate the tool further at the Los Alamos National Laboratory Proton Radiography (pRad) Facility in an application to Sn with larger scale perturbations of wavelength 550 μ m, and various amplitudes that gave wave-number amplitude products of η0 2 π / λ = { 3 / 4 , 1 / 2 , 1 / 4 , 1 / 8 } , where the perturbation amplitude is η0, and the wave-number k = 2 π / λ . The pRad data and velocimetry imply it should be possible to develop a second shock ejecta model based on unstable Richtmyer-Meshkov physics. In collaboration with David Oro, Fesseha Mariam, Alexander Saunders, Malcolm Andrews, Frank Cherne, James Hammerberg. Robert Hixson, Christopher Morris, Russell Olson, Dean Preston, Joseph Stone, Dale Tupa, and Wendy Vogan-McNeil, Los Alamos National Laboratory,
NASA Astrophysics Data System (ADS)
Andrushchenko, V. A.; Murashkin, I. V.; Shevelev, Yu. D.
2016-06-01
Within the investigation of various aspects of asteroid and comet danger and, in particular, the explosion of several fragments of meteoroids in the atmosphere above the Earth surface, the toy problem about four point explosions in the case of their special arrangement above the underlying surface is numerically solved. Complex interactions of primary and secondary shock waves between themselves, with the hard surface, and with tangential discontinuities are examined. The structure of flow inside gas regions disturbed by the explosions—the occurrence of eddy structures in them and the influence of reflected shocks waves on them—are investigated. The tendency of the external wave fronts of each explosion to form a unified front and the tendency of their internal hot domains to merge into a joined configuration (where the second process proceeds a little later than the first one) is revealed. This unified front and joined configuration are qualitatively identical to the external internal structure for the solitary explosion. The specially arranged explosions are chosen because the effects of multiple diffraction, interference, and, the main thing, cumulation of spherical waves are manifested more clearly in this caseTwo variants with different altitude of the explosions above the surface are calculated.
Electromagnetic field effects in explosives
NASA Astrophysics Data System (ADS)
Tasker, Douglas
2009-06-01
Present and previous research on the effects of electromagnetic fields on the initiation and detonation of explosives and the electromagnetic properties of explosives are reviewed. Among the topics related to detonating explosives are: measurements of conductivity; enhancement of performance; and control of initiation and growth of reaction. Hayes...()^1 showed a strong correlation of peak electrical conductivity with carbon content of the detonation products. Ershov.......^2 linked detailed electrical conductivity measurements with reaction kinetics and this work was extended to enhance detonation performance electrically;...^3 for this, electrical power densities of the order of 100 TW/m^2 of explosive surface normal to the detonation front were required. However, small electrical powers are required to affect the initiation and growth of reaction.......^4,5 A continuation of this work will be reported. LA-UR 09-00873 .^1 B. Hayes, Procs. of 4th Symposium (International) on Detonation (1965), p. 595. ^2 A. Ershov, P. Zubkov, and L. Luk'yanchikov, Combustion, Explosion, and Shock Waves 10, 776-782 (1974). ^3 M. Cowperthwaite, Procs. 9th Detonation Symposium (1989), p. 388-395. ^4 M. A. Cook and T. Z. Gwyther, ``Influence of Electric Fields on Shock to Detonation Transition,'' (1965). ^5 D. Salisbury, R. Winter, and L. Biddle, Procs. of the APS Topical Conference on Shock Compression of Condensed Matter (2005) p. 1010-1013.
Li, Yan; Jiang, Chunlan; Wang, Zaicheng; Luo, Puguang
2016-01-01
Metal/fluoropolymer composites represent a new category of energetic structural materials that release energy through exothermic chemical reactions initiated under shock loading conditions. This paper describes an experiment designed to study the reaction characteristics of energetic materials with low porosity under explosive loading. Three PTFE (polytetrafluoroethylene)/Ti/W mixtures with different W contents are processed through pressing and sintering. An inert PTFE/W mixture without reactive Ti particles is also prepared to serve as a reference. Shock-induced chemical reactions are recorded by high-speed video through a narrow observation window. Related shock parameters are calculated based on experimental data, and differences in energy release are discussed. The results show that the reaction propagation of PTFE/Ti/W energetic materials with low porosity under explosive loading is not self-sustained. As propagation distance increases, the energy release gradually decreases. In addition, reaction failure distance in PTFE/Ti/W composites is inversely proportional to the W content. Porosity increased the failure distance due to higher shock temperature. PMID:28774056
A systematic study of the explosion energy issue in core collapse supernova theory
NASA Astrophysics Data System (ADS)
Yamamoto, Yu
2016-06-01
Massive stars with main sequence masses greater than 8 solar mass (Msun) the main target of CCSNe researches. According to initial mass function (IMF) they occupy about 15As a matter of fact, supernova theorists have failed to reproduce this energetic stellar explosion for about a half century because micro and macro physics are highly complex and are mutual influenced. The theoretical investigation of the explosion mechanism is based on numerical simulations, which will ultimately require computational sources of exsa scales. With recent remarkable developments both in hardware and software, however, more realistic physics are incorporated and research group are beginning to overcome the difficulties, reporting successful explosions in their numerical models. The successful is still partial, unfortunately, since in the most of the cases the explosion energy hardly reaches the typical value (10^51erg). What is worse other groups found no explosion for almost same setups. The robust explosion mechanism has not yet been ascertained and is still a remaining issue. The purpose of this paper is to study how far our understanding of "neutrino heating mechanism", the current paradigm, has reached, or put another way, to expose what kind of physics are still missing to explain observations , such as explosion energy and nickel mass. As already remarked the physics in CCSNe are quite complicated with extremely high Reynolds number, highly uncertain equation of state (EOS) at supra-nuclear densities, copious neutrinos not in thermal nor chemical equilibrium with matter normally. I believe that it is justified to devote a somewhat large number of pages to the introduction. It will be also helpful for understanding the motivation of this paper. Starting with evidence from supernova light curves I will then move to the basics idea of neutrino heating mechanism and summarize some recent developments in various micro and macro physics. Key factors in the theory of massive-star evolutions are also illuminated in the introduction. Other important ingredients that are not directly related with the thesis, such as numerical treatments of neutrino transport, are given in appendices. To find the missing pieces of the current CCSNe theory, I employed an experimental way instead of running "realistic" simulations. In fact, I conducted experimental computations systematically so as to reveal (1) what is the necessary condition of the canonical explosion energy (2) what is the dominant contribution to the explosion energy (3) when the explosion energy is settled to the final value, and, finally, (4) features in pre-explosion structure of the progenitor are critical for the explosion energy. In this paper I paid particular attention to nuclear energies released in association with the production of various elements up to A 56, which are likely to contribute to the energetics of CCSNe. I performed multi-dimension hydrodynamic simulations that can also handle the evolution of elements in both nuclear statistical equilibrium (NSE) and non-equilibrium, taking particular care of transition from one to the other. We take a multi-step strategy: collapse, shock revival and the subsequent evolution until the settlement of explosion energy are treated separately and consecutively; the collapse phase is calculated under spherical symmetry to obtain mass accretion histories for different progenitors; in so doing, the inner part of the core is removed and replaced with the artificial inner boundary; the second phase treats shock revival; we construct steady accretion flows through the stalled shock wave on to the proto neutron star; using these configurations as initial conditions for 1D and 2D simulations, we determine the critical neutrino luminosities for shock revival; the evolutions that follow the shock revival are computed in the last phase, with the mass accretion histories obtained in the first phase being taken into account. In the first of two studies done for the thesis we used a single progenitor of 15Msun provided by a realistic stellar evolution calculation and studied the post-shock revival evolutions, changing the time of shock revival. We run seven 1D and five 2D models. In the second exploration, on the other hand, we pay attention to the progenitor dependence of the dynamics. Instead of using progenitor models from realistic stellar evolution calculations, I construct six pre-collapse models with different masses of Fe core and Si+S layer assuming entropy and electron fraction distributions and varying rather arbitrarily the parameters included. Unlike in the first study, we did not specify the shock revival time explicitly but gave the neutrino luminosity in this study. The explosion energy and nickel mass are calculated for eighteen 1D and eight 2D models, respectively. The two studies demonstrate that early explosions are necessary for strong explosions. It is also found that nuclear recombination energy is a major contributor to the explosion energy which is settled to the final value in 500ms whereas the nickel mass needs much longer times to reach the final value, particularly in 2D. Since the nickel tends to be overproduced in early explosions, enhanced fallbacks in multi-dimensional hydrodynamics seem to be crucial to reproduce the observed values of nickel mass and explosion energy simultaneously. As for the progenitor dependence, we found that light cores with relatively high entropies seem to be favorable for reproducing the canonical explosion by the neutrino heating mechanism. It is interesting that the explosion energy is strongly correlated with the mass accretion rate at shock revival regardless of the spatial dimensions.
Proton radiography measurements of ejecta structure in shocked Sn
NASA Astrophysics Data System (ADS)
Hammerberg, J. E.; Buttler, W. T.; Llobet, A.; Morris, C.
We have performed ejecta measurements at the Los Alamos proton radiography facility on 7 mm thick 50 mm diameter Sn samples driven with a PBX9501 high explosive. The surface of the Sn, in contact with He gas at an initial pressure of 7 atmospheres, was machined to have 3 concentric sinusoidal features with a wavelength of λ = 2mm in the radial direction and amplitude h0 = 0.159mm (kh0 = 2 πh0/ λ = 0.5). The shock pressure was 27 GPa. 28 images were obtained between 0 and 14 μs from the time of shock breakout at 500 ns intervals. The Abel inverted density profiles evolve to a self-similar density distribution that depends on a scaling variable z/vst where vs is the spike tip velocity, z is the distance from the free surface and t is the time after shock breakout. Both the density profiles and the time dependence of the mass per unit area in the evolving spikes are in good agreement with a Richtmyer-Meshkov instability based model for ejecta production and evolution. This work was performed under the auspices of the U.S. Dept. of Energy under contract DE-AC52-06NA25396. The support of the LANL ASC- PEM and Science Campaign 2 programs is gratefully acknowledged.
NASA Astrophysics Data System (ADS)
Mataradze, Edgar; Chikhradze, Nikoloz; Bochorishvili, Nika; Akhvlediani, Irakli; Tatishvili, Dimitri
2017-12-01
Explosion protection technologies are based on the formation of a shock wave mitigation barrier between the protection site and the explosion site. Contemporary protective systems use water mist as an extinguishing barrier. To achieve high effectiveness of the protective system, proper selection of water mist characteristics is important. The main factors defining shock wave attenuation in water mist include droplet size distribution, water concentration in the mist, droplet velocity and geometric properties of mist. This paper examines the process of attenuation of shock waves in mist with droplets ranging from 25 to 400 microns under different conditions of water mist location. Experiments were conducted at the Mining Institute with the use of a shock tube to study the processes of explosion suppression by a water mist barrier. The shock tube consists of a blast chamber, a tube, a system for the dosed supply of water, sensors, data recording equipment, and a process control module. Shock wave overpressure reduction coefficient was studied in the shock tube under two different locations of water mist: a) when water mist is created in direct contact with blast chamber and b) the blast chamber and the mist are separated by air space. It is established that in conditions when the air space distance between the blast chamber and the mist is 1 meter, overpressure reduction coefficient is 1.5-1.6 times higher than in conditions when water mist is created in direct contact with blast chamber.
Photographic laboratory studies of explosions.
NASA Technical Reports Server (NTRS)
Kamel, M. M.; Oppenheim, A. K.
1973-01-01
Description of a series of cinematographic studies of explosions made with a high-speed rotating-mirror streak camera which uses a high-frequency stroboscopic ruby laser as the light source. The results obtained mainly concern explosions initiated by focused laser irradiation from a pulsed neodymium laser in a detonating gas consisting essentially of an equimolar mixture of acetylene and oxygen at an initial pressure of 100 torr at room temperature. Among the most significant observations were observations of a spherical blast wave preceded by a Chapman-Jouguet detonation which is stabilized immediately after initiation, the merging of a spherical flame with a shock front of the blast wave in which the flame is propagating, the division of a spherical detonation front into a shock wave and flame, and the generation of shock waves by a network of spherical flames.
Numerical computation of Pop plot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menikoff, Ralph
The Pop plot — distance-of-run to detonation versus initial shock pressure — is a key characterization of shock initiation in a heterogeneous explosive. Reactive burn models for high explosives (HE) must reproduce the experimental Pop plot to have any chance of accurately predicting shock initiation phenomena. This report describes a methodology for automating the computation of a Pop plot for a specific explosive with a given HE model. Illustrative examples of the computation are shown for PBX 9502 with three burn models (SURF, WSD and Forest Fire) utilizing the xRage code, which is the Eulerian ASC hydrocode at LANL. Comparisonmore » of the numerical and experimental Pop plot can be the basis for a validation test or as an aid in calibrating the burn rate of an HE model. Issues with calibration are discussed.« less
Performance Assessment of Passive Hearing Protection Devices
2014-10-24
ear ................................................ 9 Figure 11. Schematic of the set-up of the explosive charge for the creation of a shock wave...10 Table 1: Type and mass of explosive and distance between ATF and explosive for different peak pressure levels and A-durations...OF TABLES Table 1: Type and mass of explosive and distance between ATF and explosive for different peak pressure levels and A-durations
High-explosive driven crowbar switch
Dike, Robert S.; Kewish, Jr., Ralph W.
1976-01-13
The disclosure relates to a compact explosive driven switch for use as a low resistance, low inductance crowbar switch. A high-explosive charge extrudes a deformable conductive metallic plate through a polyethylene insulating layer to achieve a hard current contact with a supportive annular conductor.
Shock Initiation of Secondary Explosives by MicroSlapper
NASA Astrophysics Data System (ADS)
Mendes, Ricardo; Campos, Jose; Plaksin, Igor; Ribeiro, Jose
2001-06-01
Using the well known Exploding Foil Initiator (EFI) also called slapper detonator the shock to Detonation Wave (DW) transition in a low dense secondary explosive like PETN and RDX is presented in this study. The EFI formed by a capacitor with capacity up to 0.2μF charged until 3kV was used to burst copper bridges with 0.3x0.3mm and 0.4x0.3mm with 5μm of thickness, and to accelerate Kapton flyer plates with 25μm of thickness until 5mm/μs. The process of Shock to Detonation Transition (SDT) in explosive samples with 5mm of diameter by 10mm of height was characterized by an optical method based on 64 optical fibbers ribbon (250mm of diameter each fibber) connected to a fast electronic streak camera. The obtained results, (x,t) diagrams, with 1ns resolution, show continuously the shock to detonation transition regime and allowed the evaluation of the detonation velocity and the detonation wave front curvature. In that regime DW propagation presents the oscillations in detonation velocity. The results also show the influence of the flyer plate velocity and the initial density of the explosive sample in the process of SDT and front oscillations.
On the shock response of PCTFE (Kel-F 81¯)
NASA Astrophysics Data System (ADS)
Wood, D. C.; Appleby-Thomas, G. J.; Fitzmaurice, B. C.; Hameed, A.; Millett, J. C. F.; Hazell, P. J.
2017-01-01
The polymeric material PCTFE (Kel-F 81®) has found a useful niche in explosive research due to its use not only an explosive binder but also as a explosive simulant. Knowledge of shock propagation in explosives is of paramount importance primarily from a safety perspective both in terms of reaction to a designed stimulus and to off-normal (accident) events. To this end, as part of a more general investigation into the relationship between polymeric structure and high strain-rate response, the dynamic response of PCFTE (more commonly known as Kel-F 81®) has been investigated via a series of plate-impact experiments. Using this technique both the shock and release behaviour of PCTFE have been investigated. The data obtained for the shock response agreed with previously obtained data from the literature. Deviation from the Hugoniot was seen in the pressure-particle velocity plane, a response attributed here to material strength. With regards to the behaviour of the release Hugoniot, a two-tiered response was observed. Initially a tensile elastic wave with an approximate velocity of 3.00 mm μs-1 was noted until a particle velocity of 0.36 mm μs-1. After this initial region a linear release Hugoniot was apparent, a response comparable to behaviour seen in other polymers.
NASA Astrophysics Data System (ADS)
Takayama, Kazuyoshi
Various papers on shock waves are presented. The general topics addressed include: shock wave structure, propagation, and interaction; shock wave reflection, diffraction, refraction, and focusing; shock waves in condensed matter; shock waves in dusty gases and multiphase media; hypersonic flows and shock waves; chemical processes and related combustion phenomena; explosions, blast waves, and laser initiation of shock waves; shock tube technology and instrumentation; CFD of shock wave phenomena; medical applications and biological effects; industrial applications.
Detonation initiation of heterogeneous melt-cast high explosives
NASA Astrophysics Data System (ADS)
Chuzeville, V.; Baudin, G.; Lefrançois, A.; Genetier, M.; Barbarin, Y.; Jacquet, L.; Lhopitault, J.-L.; Peix, J.; Boulanger, R.; Catoire, L.
2017-01-01
2,4,6-trinitrotoluene (TNT) is widely used in conventional and insensitive munitions as a fusible binder, commonly melt-cast with other explosives such as 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) or 3-nitro-1,2,4-triazol-one (NTO). In this paper, we study the shock-to-detonation transition phenomenon in two melt-cast high explosives (HE). We have performed plate impact tests on wedge samples to measure run-distance and time-to-detonation in order to establish the Pop-plot relation for several melt-cast HE. Highlighting the existence of the single curve buildup, we propose a two phase model based on a Zeldovich, Von-Neumann, Döring (ZND) approach where the deflagration fronts grow from the explosive grain boundaries. Knowing the grain size distribution, we calculate the deflagration velocities of the explosive charges as a function of shock pressure and explore the possible grain fragmentation.
NASA Astrophysics Data System (ADS)
McGrane, Shawn D.; Aslam, Tariq D.; Pierce, Timothy H.; Hare, Steven J.; Byers, Mark E.
2018-01-01
Raman spectra and velocimetry of shocked PBX 9502 (plastic bonded explosive composed of 95% triaminotrinitrobenzene (TATB) and 5% 3M Company Kel F-800 polymer binder) are reported with the Stokes/anti-Stokes ratio used to determine temperature after the shock reflects from a lithium fluoride window. Final pressures up to 14.5 GPa were tested, but the pressure induced absorption of TATB caused the Raman signal to decrease exponentially with pressure. The reflected shock temperature could be determined to 7 GPa, with an average increase of 14.9 K/GPa. Suggestions to adapt the technique to permit thermometry at higher temperatures are discussed, as are comparisons to a recently proposed equation of state for PBX 9502.
An Experimental Study of Corner Turning in a Granular Ammonium Nitrate Based Explosive
NASA Astrophysics Data System (ADS)
Sorber, S.; Taylor, P.; Burns, M.
2007-12-01
A novel experimental geometry has been designed to perform controlled studies of corner turning in a "tap density" granular explosive. It enables the study of corner turning and detonation properties with high speed framing camera, piezo probes and ionisation probes. The basic geometry consists of a large diameter PMMA cylinder filled with the granular explosive and is initiated on axis from below by a smaller diameter cylinder of granular explosive or a booster charge. Four experiments were performed on a granular Ammonium Nitrate based non-ideal explosive (NIE). Two experiments were initiated directly with the PE4 booster and two were initiated from a train including a booster charge and a 1″ diameter copper cylinder containing the same NIE. Experimental data from the four experiments was reproducible and the observed detonation and shock waves showed good 2-D symmetry. Detonation phase velocity on the vertical side of the main container was observed and both shock and detonation velocities were observed in the corner turning region along the base of the main container. Analysis of the data shows that the booster-initiated geometries with a higher input shock pressure into the granular explosive gave earlier detonation arrival at the lowest probes on the container side. The corner turning data is compared to a hydrocode calculation using a simple JWL++ reactive burn model.
Characteristics of exploding metal wires in water with three discharge types
NASA Astrophysics Data System (ADS)
Han, Ruoyu; Wu, Jiawei; Zhou, Haibin; Ding, Weidong; Qiu, Aici; Clayson, Thomas; Wang, Yanan; Ren, Hang
2017-07-01
This paper presents the characteristics of underwater electrical wire explosion (UEWE) with three discharge types, namely, Type-A, Type-B, and Type-C. Experiments were carried out with copper and tungsten wires (4 cm long and 50-300 μm in diameter) driven by a microsecond time-scale pulsed current source with 500 J stored energy. A time-integrated spectrometer and a photodiode were used to measure the optical emission of UEWE. A Polyvinylidene Fluoride probe was adopted to record the pressure waveforms. Experimental results indicate that from Type-A to Type-C, more energy deposits prior to the voltage peak and the first peak power increases drastically. This variation of energy deposition influences the optical emission and shock wave generation process. Specifically, the light intensity decreases by more than 90% and the peak of continuous spectra moves from ˜400 nm to ˜700 nm. In addition, the peak pressure of the first shock wave increases from ˜2 MPa to more than 7.5 MPa.
NASA Astrophysics Data System (ADS)
Evans, William J.; Yoo, Choong-Shik; Lee, Geun Woo; Cynn, Hyunchae; Lipp, Magnus J.; Visbeck, Ken
2007-07-01
We have developed a unique device, a dynamic diamond anvil cell (dDAC), which repetitively applies a time-dependent load/pressure profile to a sample. This capability allows studies of the kinetics of phase transitions and metastable phases at compression (strain) rates of up to 500GPa/s (˜0.16s-1 for a metal). Our approach adapts electromechanical piezoelectric actuators to a conventional diamond anvil cell design, which enables precise specification and control of a time-dependent applied load/pressure. Existing DAC instrumentation and experimental techniques are easily adapted to the dDAC to measure the properties of a sample under the varying load/pressure conditions. This capability addresses the sparsely studied regime of dynamic phenomena between static research (diamond anvil cells and large volume presses) and dynamic shock-driven experiments (gas guns, explosive, and laser shock). We present an overview of a variety of experimental measurements that can be made with this device.
Solar radio bursts as a tool for space weather forecasting
NASA Astrophysics Data System (ADS)
Klein, Karl-Ludwig; Matamoros, Carolina Salas; Zucca, Pietro
2018-01-01
The solar corona and its activity induce disturbances that may affect the space environment of the Earth. Noticeable disturbances come from coronal mass ejections (CMEs), which are large-scale ejections of plasma and magnetic fields from the solar corona, and solar energetic particles (SEPs). These particles are accelerated during the explosive variation of the coronal magnetic field or at the shock wave driven by a fast CME. In this contribution, it is illustrated how full Sun microwave observations can lead to (1) an estimate of CME speeds and of the arrival time of the CME at the Earth, (2) the prediction of SEP events attaining the Earth. xml:lang="fr"
Simulating Small-Scale Experiments of In-Tunnel Airblast Using STUN and ALE3D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neuscamman, Stephanie; Glenn, Lewis; Schebler, Gregory
2011-09-12
This report details continuing validation efforts for the Sphere and Tunnel (STUN) and ALE3D codes. STUN has been validated previously for blast propagation through tunnels using several sets of experimental data with varying charge sizes and tunnel configurations, including the MARVEL nuclear driven shock tube experiment (Glenn, 2001). The DHS-funded STUNTool version is compared to experimental data and the LLNL ALE3D hydrocode. In this particular study, we compare the performance of the STUN and ALE3D codes in modeling an in-tunnel airblast to experimental results obtained by Lunderman and Ohrt in a series of small-scale high explosive experiments (1997).
A hybrid numerical fluid dynamics code for resistive magnetohydrodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Jeffrey
2006-04-01
Spasmos is a computational fluid dynamics code that uses two numerical methods to solve the equations of resistive magnetohydrodynamic (MHD) flows in compressible, inviscid, conducting media[1]. The code is implemented as a set of libraries for the Python programming language[2]. It represents conducting and non-conducting gases and materials with uncomplicated (analytic) equations of state. It supports calculations in 1D, 2D, and 3D geometry, though only the 1D configuation has received significant testing to date. Because it uses the Python interpreter as a front end, users can easily write test programs to model systems with a variety of different numerical andmore » physical parameters. Currently, the code includes 1D test programs for hydrodynamics (linear acoustic waves, the Sod weak shock[3], the Noh strong shock[4], the Sedov explosion[5], magnetic diffusion (decay of a magnetic pulse[6], a driven oscillatory "wine-cellar" problem[7], magnetic equilibrium), and magnetohydrodynamics (an advected magnetic pulse[8], linear MHD waves, a magnetized shock tube[9]). Spasmos current runs only in a serial configuration. In the future, it will use MPI for parallel computation.« less
Shock Initiated Reactions of Reactive Multiphase Blast Explosives
NASA Astrophysics Data System (ADS)
Wilson, Dennis; Granier, John; Johnson, Richard; Littrell, Donald
2015-06-01
This paper describes a new class of reactive multiphase blast explosives (RMBX) and characterization of their blast characteristics. These RMBXs are non-ideal explosive compositions of perfluoropolyether (PFPE), nano aluminum, and a micron-size high-density reactive metal - Tantalum, Zirconium, or Zinc in mass loadings of 66 to 83 percent. Unlike high explosives, these PFPE-metal compositions release energy via a fast self-oxidized combustion wave (rather than a true self-sustaining detonation) that is shock dependent, and can be overdriven to control energy release rate. The term ``reactive multiphase blast'' refers to the post-dispersion blast behavior: multiphase in that there are a gas phase that imparts pressure and a solid (particulate) phase that imparts momentum; and reactive in that the hot metal particles react with atmospheric oxygen and the explosive gas products to give an extended pressure pulse. The RMBX formulations were tested in two spherical core-shell geometries - an RMBX shell exploded by a high explosive core, and an RMBX core imploded by a high explosive shell. The fireball and blast characteristics were compared to a C-4 baseline charge.
Quick reproduction of blast-wave flow-field properties of nuclear, TNT, and ANFO explosions
NASA Astrophysics Data System (ADS)
Groth, C. P. T.
1986-04-01
In many instances, extensive blast-wave flow-field properties are required in gasdynamics research studies of blast-wave loading and structure response, and in evaluating the effects of explosions on their environment. This report provides a very useful computer code, which can be used in conjunction with the DNA Nuclear Blast Standard subroutines and code, to quickly reconstruct complete and fairly accurate blast-wave data for almost any free-air (spherical) and surface-burst (hemispherical) nuclear, trinitrotoluene (TNT), or ammonium nitrate-fuel oil (ANFO) explosion. This code is capable of computing all of the main flow properties as functions of radius and time, as well as providing additional information regarding air viscosity, reflected shock-wave properties, and the initial decay of the flow properties just behind the shock front. Both spatial and temporal distributions of the major blast-wave flow properties are also made readily available. Finally, provisions are also included in the code to provide additional information regarding the peak or shock-front flow properties over a range of radii, for a specific explosion of interest.
Shock induced shear strength in an HMX based plastic bonded explosive
NASA Astrophysics Data System (ADS)
Millett, J. C. F.; Taylor, P.; Appleby-Thomas, G.
2017-01-01
The shock induced mechanical response of an HMX based plastic bonded explosive (PBX) has been investigated in terms of the shear strength. Results show that shear strength increases with impact stress. However comparison with the calculated elastic response of both the PBX and pure HMX suggests that the overall mechanical response is controlled by the HMX crystals, with the near liquid like nature of the binder phase having a minimal contribution.
Shock sensing dual mode warhead
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shamblen, M.; Walchak, M.T.; Richmond, L.
1980-12-31
A shock sensing dual mode warhead is provided for use against both soft and hard targets and is capable of sensing which type of target has been struck. The warhead comprises a casing made of a ductile material containing an explosive charge and a fuze assembly. The ductile warhead casing will mushroom upon striking a hard target while still confining the explosive. Proper ductility and confinement are necessary for fuze shock sensing. The fuze assembly contains a pair of parallel firing trains, one initiated only by dynamic pressure caused high impact deceleration and one initiated by low impact deceleration. Themore » firing train actuated by high impact deceleration senses dynamic pressure transmitted, during deformation of the warhead, through the explosive filler which is employed as a fuzing signature. The firing train actuated by low impact deceleration contains a pyrotechnic delay to allow penetration of soft targets.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yanuka, D.; Zinowits, H. E.; Krasik, Ya. E.
The results of experiments and numerical simulations of a shock wave propagating between either conical or parabolic bounding walls are presented. The shock wave was generated by a microsecond timescale underwater electrical explosion of a cylindrical wire array supplied by a current pulse having an amplitude of ∼230 kA and a rise time of ∼1 μs. It is shown that with the same energy density deposition into the exploding wire array, the shock wave converges faster between parabolic walls, and as a result, the pressure in the vicinity of convergence is ∼2.3 times higher than in the case of conical walls. Themore » results obtained are compared to those of earlier experiments [Antonov et al., Appl. Phys. Lett. 102, 124104 (2013)] with explosions of spherical wire arrays. It is shown that at a distance of ∼400 μm from the implosion origin the pressure obtained in the current experiments is higher than for the case of spherical wire arrays.« less
Shock Initiation Experiments with Ignition and Growth Modeling on the HMX-Based Explosive LX-14
NASA Astrophysics Data System (ADS)
Vandersall, Kevin S.; Dehaven, Martin R.; Strickland, Shawn L.; Tarver, Craig M.; Springer, H. Keo; Cowan, Matt R.
2017-06-01
Shock initiation experiments on the HMX-based explosive LX-14 were performed to obtain in-situ pressure gauge data, characterize the run-distance-to-detonation behavior, and provide a basis for Ignition and Growth reactive flow modeling. A 101 mm diameter gas gun was utilized to initiate the explosive charges with manganin piezoresistive pressure gauge packages placed between sample disks pressed to different densities ( 1.57 or 1.83 g/cm3 that corresponds to 85 or 99% of theoretical maximum density (TMD), respectively). The shock sensitivity was found to increase with decreasing density as expected. Ignition and Growth model parameters were derived that yielded reasonable agreement with the experimental data at both initial densities. The shock sensitivity at the tested densities will be compared to prior work published on other HMX-based formulations. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work was funded in part by the Joint DoD-DOE Munitions Program.
An explanation of the formation of the peculiar periphery of Tycho's supernova remnant
NASA Astrophysics Data System (ADS)
Fang, Jun; Yu, Huan; Zhang, Li
2018-02-01
Tycho's supernova remnant (SNR) has a periphery that clearly deviates from a spherical shape, based on X-ray and radio observations. The forward shock from the south-east to the north of the remnant has a deformed outline with a depression in the east, although in the west it is generally round and smooth. Moreover, at some locations in the shell, the supernova ejecta is located close to the forward shock, resulting in protrusions. Using 3D hydrodynamical simulations, we studied the dynamical evolution of the supernova ejecta in an inhomogeneous medium and the formation process of the profile of the forward shock. In order to reproduce the peculiar periphery of the remnant, we propose a model in which the supernova ejecta has evolved in a cavity blown by a latitude-dependent outflow. The results indicate that the depression to the east and the protrusion to the south-east on the observed periphery of the remnant can be generally reproduced if we assume a wind bubble driven by an anisotropic wind with a mass-loss rate of ˜10-7 M⊙ yr-1, a pole velocity of ˜100 km s-1, a duration of ˜105 yr prior to the supernova explosion, and a spatial velocity of ˜30 km s-1 of the progenitor with respect to the circumstellar medium. In conclusion, an explanation of the peculiar shape of the periphery of Tycho's SNR is that the supernova ejecta evolved in the cavity driven by a latitude-dependent wind.
Study made to establish parameters and limitations of explosive welding
NASA Technical Reports Server (NTRS)
Polhemus, F. C.
1967-01-01
It is theorized that metal jetting must be present for welding to occur, therefore an explosive weld interface may indicate the relation between the metal jet velocity and shock wave velocity in welding. Parameters for effecting explosive welding in patches of 3 or 4 inches in diameter were established, and found applicable to explosive welding of patches of various sizes.
The Air Blast Wave from a Nuclear Explosion
NASA Astrophysics Data System (ADS)
Reines, Frederick
The sudden, large scale release of energy in the explosion of a nuclear bomb in air gives rise, in addition to nuclear emanations such as neutrons and gamma rays, to an extremely hot, rapidly expanding mass of air.** The rapidly expanding air mass has an initial temperature in the vicinity of a few hundred thousand degrees and for this reason it glows in its early stages with an intensity of many suns. It is important that the energy density in this initial "ball of fire" is of the order of 3 × 103 times that found in a detonating piece of TNT and hence that the initial stages of the large scale air motion produced by a nuclear explosion has no counterpart in an ordinary. H. E. explosion. Further, the relatively low temperatures ˜2,000°C associated with the initial stages of an H. E. detonation implies that the thermal radiation which it emits is a relatively insignificant fraction of the total energy involves. This point is made more striking when it is remembered that the thermal energy emitted by a hot object varies directly with the temperature in the Rayleigh Jeans region appropriate to the present discussion. The expansion of the air mass heated by the nuclear reaction produces, in qualitatively the same manner as in an H.E. explosion or the bursting of a high pressure balloon, an intense sharp pressure pulse, a shock wave, in the atmosphere. As the pressure pulse spreads outward it weakens due to the combined effects of divergence and the thermodynamically irreversible nature of the shock wave. The air comprising such a pressure pulse or blast wave moves first radially outward and then back towards the center as the blast wave passes. Since a permanent outward displacement of an infinite mass of air would require unlimited energy, the net outward displacement of the air distant from an explosion must approach zero with increasing distance. As the distance from the explosion is diminished the net outward displacement due to irreversible shock heating of the air increases and in the limit of small distances and increasingly strong shocks the net outward displacement of the shocked air is equal to the maximum outward displacement. These statements are applicable for short times of the order of seconds following the explosion since the heated air l behind by the shock wave will rise. The pressures and air mass motions associated with the rise of the atomic cloud are relatively unimportant in the free air pressure ranges from 2-15 psi for bomb yields under 100 kilotons (KT)…
An Improved Shock Model for Bare and Covered Explosives
NASA Astrophysics Data System (ADS)
Scholtes, Gert; Bouma, Richard
2017-06-01
TNO developed a toolbox to estimate the probability of a violent event on a ship or other platform, when the munition bunker is hit by e.g. a bullet or fragment from a missile attack. To obtain the proper statistical output, several millions of calculations are needed to obtain a reliable estimate. Because millions of different scenarios have to be calculated, hydrocode calculations cannot be used for this type of application, but a fast and good engineering solutions is needed. At this moment the Haskins and Cook-model is used for this purpose. To obtain a better estimate for covered explosives and munitions, TNO has developed a new model which is a combination of the shock wave model at high pressure, as described by Haskins and Cook, in combination with the expanding shock wave model of Green. This combined model gives a better fit with the experimental values for explosives response calculations, using the same critical energy fluence values for covered as well as for bare explosives. In this paper the theory is explained and results of the calculations for several bare and covered explosives will be presented. To show this, the results will be compared with the experimental values from literature for composition B, Composition B-3 and PBX-9404.
Modeling deflagration waves out of hot spots
NASA Astrophysics Data System (ADS)
Partom, Yehuda
2017-01-01
It is widely accepted that shock initiation and detonation of heterogeneous explosives comes about by a two-step process known as ignition and growth. In the first step a shock sweeping through an explosive cell (control volume) creates hot spots that become ignition sites. In the second step, deflagration waves (or burn waves) propagate out of those hot spots and transform the reactant in the cell into reaction products. The macroscopic (or average) reaction rate of the reactant in the cell depends on the speed of those deflagration waves and on the average distance between neighboring hot spots. Here we simulate the propagation of deflagration waves out of hot spots on the mesoscale in axial symmetry using a 2D hydrocode, to which we add heat conduction and bulk reaction. The propagation speed of the deflagration waves may depend on both pressure and temperature. It depends on pressure for quasistatic loading near ambient temperature, and on temperature at high temperatures resulting from shock loading. From the simulation we obtain deflagration fronts emanating out of the hot spots. For 8 to 13 GPa shocks, the emanating fronts propagate as deflagration waves to consume the explosive between hot spots. For higher shock levels deflagration waves may interact with the sweeping shock to become detonation waves on the mesoscale. From the simulation results we extract average deflagration wave speeds.
Explosively pumped laser light
Piltch, Martin S.; Michelotti, Roy A.
1991-01-01
A single shot laser pumped by detonation of an explosive in a shell casing. The shock wave from detonation of the explosive causes a rare gas to luminesce. The high intensity light from the gas enters a lasing medium, which thereafter outputs a pulse of laser light to disable optical sensors and personnel.
Dynamics of explosively imploded pressurized tubes
NASA Astrophysics Data System (ADS)
Szirti, Daniel; Loiseau, Jason; Higgins, Andrew; Tanguay, Vincent
2011-04-01
The detonation of an explosive layer surrounding a pressurized thin-walled tube causes the formation of a virtual piston that drives a precursor shock wave ahead of the detonation, generating very high temperatures and pressures in the gas contained within the tube. Such a device can be used as the driver for a high energy density shock tube or hypervelocity gas gun. The dynamics of the precursor shock wave were investigated for different tube sizes and initial fill pressures. Shock velocity and standoff distance were found to decrease with increasing fill pressure, mainly due to radial expansion of the tube. Adding a tamper can reduce this effect, but may increase jetting. A simple analytical model based on acoustic wave interactions was developed to calculate pump tube expansion and the resulting effect on the shock velocity and standoff distance. Results from this model agree quite well with experimental data.
Numerical simulation of the fluid-structure interaction between air blast waves and soil structure
NASA Astrophysics Data System (ADS)
Umar, S.; Risby, M. S.; Albert, A. Luthfi; Norazman, M.; Ariffin, I.; Alias, Y. Muhamad
2014-03-01
Normally, an explosion threat on free field especially from high explosives is very dangerous due to the ground shocks generated that have high impulsive load. Nowadays, explosion threats do not only occur in the battlefield, but also in industries and urban areas. In industries such as oil and gas, explosion threats may occur on logistic transportation, maintenance, production, and distribution pipeline that are located underground to supply crude oil. Therefore, the appropriate blast resistances are a priority requirement that can be obtained through an assessment on the structural response, material strength and impact pattern of material due to ground shock. A highly impulsive load from ground shocks is a dynamic load due to its loading time which is faster than ground response time. Of late, almost all blast studies consider and analyze the ground shock in the fluid-structure interaction (FSI) because of its influence on the propagation and interaction of ground shock. Furthermore, analysis in the FSI integrates action of ground shock and reaction of ground on calculations of velocity, pressure and force. Therefore, this integration of the FSI has the capability to deliver the ground shock analysis on simulation to be closer to experimental investigation results. In this study, the FSI was implemented on AUTODYN computer code by using Euler-Godunov and the arbitrary Lagrangian-Eulerian (ALE). Euler-Godunov has the capability to deliver a structural computation on a 3D analysis, while ALE delivers an arbitrary calculation that is appropriate for a FSI analysis. In addition, ALE scheme delivers fine approach on little deformation analysis with an arbitrary motion, while the Euler-Godunov scheme delivers fine approach on a large deformation analysis. An integrated scheme based on Euler-Godunov and the arbitrary Lagrangian-Eulerian allows us to analyze the blast propagation waves and structural interaction simultaneously.
Explosive composition with group VIII metal nitroso halide getter
Walker, Franklin E.; Wasley, Richard J.
1982-01-01
An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1,500 and 10,000 meters per second and a minor amount of a getter additive comprising a non-explosive compound or mixture of non-explosive compounds capable of chemically reacting with free radicals or ions under shock initiation conditions of 2,000 calories/cm.sup.2 or less of energy fluence.
Explosive composition with group VIII metal nitroso halide getter
Walker, F.E.; Wasley, R.J.
1982-06-22
An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1,500 and 10,000 meters per second and a minor amount of a getter additive comprising a non-explosive compound or mixture of non-explosive compounds capable of chemically reacting with free radicals or ions under shock initiation conditions of 2,000 calories/cm[sup 2] or less of energy fluence.
Plasma Radiation and Acceleration Effectiveness of CME-driven Shocks
NASA Astrophysics Data System (ADS)
Gopalswamy, N.; Schmidt, J. M.
2008-05-01
CME-driven shocks are effective radio radiation generators and accelerators for Solar Energetic Particles (SEPs). We present simulated 3 D time-dependent radio maps of second order plasma radiation generated by CME- driven shocks. The CME with its shock is simulated with the 3 D BATS-R-US CME model developed at the University of Michigan. The radiation is simulated using a kinetic plasma model that includes shock drift acceleration of electrons and stochastic growth theory of Langmuir waves. We find that in a realistic 3 D environment of magnetic field and solar wind outflow of the Sun the CME-driven shock shows a detailed spatial structure of the density, which is responsible for the fine structure of type II radio bursts. We also show realistic 3 D reconstructions of the magnetic cloud field of the CME, which is accelerated outward by magnetic buoyancy forces in the diverging magnetic field of the Sun. The CME-driven shock is reconstructed by tomography using the maximum jump in the gradient of the entropy. In the vicinity of the shock we determine the Alfven speed of the plasma. This speed profile controls how steep the shock can grow and how stable the shock remains while propagating away from the Sun. Only a steep shock can provide for an effective particle acceleration.
Plasma radiation and acceleration effectiveness of CME-driven shocks
NASA Astrophysics Data System (ADS)
Schmidt, Joachim
CME-driven shocks are effective radio radiation generators and accelerators for Solar Energetic Particles (SEPs). We present simulated 3 D time-dependent radio maps of second order plasma radiation generated by CME-driven shocks. The CME with its shock is simulated with the 3 D BATS-R-US CME model developed at the University of Michigan. The radiation is simulated using a kinetic plasma model that includes shock drift acceleration of electrons and stochastic growth theory of Langmuir waves. We find that in a realistic 3 D environment of magnetic field and solar wind outflow of the Sun the CME-driven shock shows a detailed spatial structure of the density, which is responsible for the fine structure of type II radio bursts. We also show realistic 3 D reconstructions of the magnetic cloud field of the CME, which is accelerated outward by magnetic buoyancy forces in the diverging magnetic field of the Sun. The CME-driven shock is reconstructed by tomography using the maximum jump in the gradient of the entropy. In the vicinity of the shock we determine the Alfven speed of the plasma. This speed profile controls how steep the shock can grow and how stable the shock remains while propagating away from the Sun. Only a steep shock can provide for an effective particle acceleration.
Nitrogen-rich heterocycles as reactivity retardants in shocked insensitive explosives.
Manaa, M Riad; Reed, Evan J; Fried, Laurence E; Goldman, Nir
2009-04-22
We report the first quantum-based multiscale simulations to study the reactivity of shocked perfect crystals of the insensitive energetic material triaminotrinitrobenzene (TATB). Tracking chemical transformations of TATB experiencing overdriven shock speeds of 9 km/s for up to 0.43 ns and 10 km/s for up to 0.2 ns reveal high concentrations of nitrogen-rich heterocyclic clusters. Further reactivity of TATB toward the final decomposition products of fluid N(2) and solid carbon is inhibited due to the formation of these heterocycles. Our results thus suggest a new mechanism for carbon-rich explosive materials that precedes the slow diffusion-limited process of forming the bulk solid from carbon clusters and provide fundamental insight at the atomistic level into the long reaction zone of shocked TATB.
Spallation reactions in shock waves at supernova explosions and related problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ustinova, G. K., E-mail: ustinova@dubna.net.ru
2013-05-15
The isotopic anomalies of some extinct radionuclides testify to the outburst of a nearby supernova just before the collapse of the protosolar nebula, and to the fact that the supernova was Sn Ia, i.e. the carbon-detonation supernova. A key role of spallation reactions in the formation of isotopic anomalies in the primordial matter of the Solar System is revealed. It is conditioned by the diffusive acceleration of particles in the explosive shock waves, which leads to the amplification of rigidity of the energy spectrum of particles and its enrichment with heavier ions. The quantitative calculations of such isotopic anomalies ofmore » many elements are presented. It is well-grounded that the anomalous Xe-HL in meteoritic nanodiamonds was formed simultaneously with nanodiamonds themselves during the shock wave propagation at the Sn Ia explosion. The possible effects of shock wave fractionation of noble gases in the atmosphere of planets are considered. The origin of light elements Li, Be and B in spallation reactions, predicted by Fowler in the middle of the last century, is argued. All the investigated isotopic anomalies give the evidence for the extremely high magnetohydrodynamics (MHD) conditions at the initial stage of free expansion of the explosive shock wave from Sn Ia, which can be essential in solution of the problem of origin of cosmic rays. The specific iron-enriched matter of Sn Ia and its MHD-separation in turbulent processes must be taking into account in the models of origin of the Solar System.« less
Dependence of the aftershock flow on the main shock magnitude
NASA Astrophysics Data System (ADS)
Guglielmi, A. V.; Zavyalov, A. D.; Zotov, O. D.; Lavrov, I. P.
2017-01-01
Previously, we predicted and then observed in practice the property of aftershocks which consists in the statistically regular clustering of events in time during the first hours after the main shock. The characteristic quasi-period of clustering is three hours. This property is associated with the cumulative action of the surface waves converging to the epicenter, whereas the quasi-period is mainly determined by the time delay of the round-the-world seismic echo. The quasi-period varies from case to case. In the attempt to find the cause of this variability, we have statistically explored the probable dependence of quasi-period on the magnitude of the main shock. In this paper, we present the corresponding result of analyzing global seismicity from the USGS/NEIC earthquake catalog. We succeeded in finding a significant reduction in the quasiperiod of the strong earthquakes clustering with growth in the magnitude of the main shock. We suggest the interpretation of this regularity from the standpoint of the phenomenological theory of explosive instability. It is noted that the phenomenon of explosive instability is fairly common in the geophysical media. The examples of explosive instability in the radiation belt and magnetospheric tail are presented. The search for the parallels in the evolution of explosive instability in the lithosphere and magnetosphere of the Earth will enrich both the physics of the earthquakes and physics of the magnetospheric pulsations.
Optically detonated explosive device
NASA Technical Reports Server (NTRS)
Yang, L. C.; Menichelli, V. J. (Inventor)
1974-01-01
A technique and apparatus for optically detonating insensitive high explosives, is disclosed. An explosive device is formed by containing high explosive material in a house having a transparent window. A thin metallic film is provided on the interior surface of the window and maintained in contact with the high explosive. A laser pulse provided by a Q-switched laser is focussed on the window to vaporize the metallic film and thereby create a shock wave which detonates the high explosive. Explosive devices may be concurrently or sequentially detonated by employing a fiber optic bundle to transmit the laser pulse to each of the several individual explosive devices.
Free radical explosive composition
Walker, Franklin E.; Wasley, Richard J.
1979-01-01
An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1500 and 10,000 meters per second and a minor amount of a getter additive comprising a compound or mixture of compounds capable of capturing or deactivating free radicals or ions under mechanical or electrical shock conditions and which is not an explosive. Exemplary getter additives are isocyanates, olefins and iodine.
Neutron-star–black-hole binaries produced by binary-driven hypernovae
Fryer, Chris L.; Oliveira, F. G.; Rueda, Jorge A.; ...
2015-12-04
Here, binary-driven hypernovae (BdHNe) within the induced gravitational collapse paradigm have been introduced to explain energetic (E iso ≳10 52 erg), long gamma-ray bursts (GRBs) associated with type Ic supernovae (SNe). The progenitor is a tight binary composed of a carbon-oxygen (CO) core and a neutron-star (NS) companion, a subclass of the newly proposed “ultrastripped” binaries. The CO-NS short-period orbit causes the NS to accrete appreciable matter from the SN ejecta when the CO core collapses, ultimately causing it to collapse to a black hole (BH) and producing a GRB. These tight binaries evolve through the SN explosion very differentlymore » than compact binaries studied in population synthesis calculations. First, the hypercritical accretion onto the NS companion alters both the mass and the momentum of the binary. Second, because the explosion time scale is on par with the orbital period, the mass ejection cannot be assumed to be instantaneous. This dramatically affects the post-SN fate of the binary. Finally, the bow shock created as the accreting NS plows through the SN ejecta transfers angular momentum, braking the orbit. These systems remain bound even if a large fraction of the binary mass is lost in the explosion (well above the canonical 50% limit), and even large kicks are unlikely to unbind the system. Indeed, BdHNe produce a new family of NS-BH binaries unaccounted for in current population synthesis analyses and, although they may be rare, the fact that nearly 100% remain bound implies that they may play an important role in the compact merger rate, important for gravitational waves that, in turn, can produce a new class of ultrashort GRBs.« less
Neutron-Star-Black-Hole Binaries Produced by Binary-Driven Hypernovae.
Fryer, Chris L; Oliveira, F G; Rueda, J A; Ruffini, R
2015-12-04
Binary-driven hypernovae (BdHNe) within the induced gravitational collapse paradigm have been introduced to explain energetic (E_{iso}≳10^{52} erg), long gamma-ray bursts (GRBs) associated with type Ic supernovae (SNe). The progenitor is a tight binary composed of a carbon-oxygen (CO) core and a neutron-star (NS) companion, a subclass of the newly proposed "ultrastripped" binaries. The CO-NS short-period orbit causes the NS to accrete appreciable matter from the SN ejecta when the CO core collapses, ultimately causing it to collapse to a black hole (BH) and producing a GRB. These tight binaries evolve through the SN explosion very differently than compact binaries studied in population synthesis calculations. First, the hypercritical accretion onto the NS companion alters both the mass and the momentum of the binary. Second, because the explosion time scale is on par with the orbital period, the mass ejection cannot be assumed to be instantaneous. This dramatically affects the post-SN fate of the binary. Finally, the bow shock created as the accreting NS plows through the SN ejecta transfers angular momentum, braking the orbit. These systems remain bound even if a large fraction of the binary mass is lost in the explosion (well above the canonical 50% limit), and even large kicks are unlikely to unbind the system. Indeed, BdHNe produce a new family of NS-BH binaries unaccounted for in current population synthesis analyses and, although they may be rare, the fact that nearly 100% remain bound implies that they may play an important role in the compact merger rate, important for gravitational waves that, in turn, can produce a new class of ultrashort GRBs.
Neutron-Star-Black-Hole Binaries Produced by Binary-Driven Hypernovae
NASA Astrophysics Data System (ADS)
Fryer, Chris L.; Oliveira, F. G.; Rueda, J. A.; Ruffini, R.
2015-12-01
Binary-driven hypernovae (BdHNe) within the induced gravitational collapse paradigm have been introduced to explain energetic (Eiso≳1052 erg ), long gamma-ray bursts (GRBs) associated with type Ic supernovae (SNe). The progenitor is a tight binary composed of a carbon-oxygen (CO) core and a neutron-star (NS) companion, a subclass of the newly proposed "ultrastripped" binaries. The CO-NS short-period orbit causes the NS to accrete appreciable matter from the SN ejecta when the CO core collapses, ultimately causing it to collapse to a black hole (BH) and producing a GRB. These tight binaries evolve through the SN explosion very differently than compact binaries studied in population synthesis calculations. First, the hypercritical accretion onto the NS companion alters both the mass and the momentum of the binary. Second, because the explosion time scale is on par with the orbital period, the mass ejection cannot be assumed to be instantaneous. This dramatically affects the post-SN fate of the binary. Finally, the bow shock created as the accreting NS plows through the SN ejecta transfers angular momentum, braking the orbit. These systems remain bound even if a large fraction of the binary mass is lost in the explosion (well above the canonical 50% limit), and even large kicks are unlikely to unbind the system. Indeed, BdHNe produce a new family of NS-BH binaries unaccounted for in current population synthesis analyses and, although they may be rare, the fact that nearly 100% remain bound implies that they may play an important role in the compact merger rate, important for gravitational waves that, in turn, can produce a new class of ultrashort GRBs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menikoff, Ralph
2016-01-11
SURF and its extension SURFplus are reactive burn models aimed at shock initiation and propagation of detonation waves in high explosives. A distinctive feature of these models is that the burn rate depends on the lead shock pressure. A key part of the models is an algorithm to detect the lead shock. Typically, shock capturing hydro algorithms have small oscillations behind a shock. Here we investigate how well the shock detection algorithm works for a nearly steady propagating detonation wave in one-dimension using the Eulerian xRage code.
Explosives for Lunar Seismic Profiling Experiment (LSPE)
NASA Technical Reports Server (NTRS)
1973-01-01
Explosive charges of various sizes were investigated for use in lunar seismic studies. Program logistics, and the specifications for procurement of bulk explosives are described. The differential analysis, thermal properties, and detonation velocity measurements on HNS/Teflon 7C 90/10 are reported along with the field tests of the hardware. It is concluded that nearly all large explosive charges crack after fabrication, from aging or thermal shock. The cracks do not affect the safety, or reliability of the explosives.
Shock initiated reactions of reactive multi-phase blast explosives
NASA Astrophysics Data System (ADS)
Wilson, Dennis; Granier, John; Johnson, Richard; Littrell, Donald
2017-01-01
This paper describes a new class of non-ideal explosive compositions made of perfluoropolyether (PFPE), nanoaluminum, and a micron-size, high mass density, reactive metal. Unlike high explosives, these compositions release energy via a fast self-oxidized combustion wave rather than a true self-sustaining detonation. Their reaction rates are shock dependent and they can be overdriven to change their energy release rate. These compositions are fuel rich and have an extended aerobic energy release phase. The term "reactive multiphase blast" refers to the post-dispersion blast behavior: multiphase in that there are a gas phase that imparts pressure and a solid (particulate) phase that imparts energy and momentum [1]; and reactive in that the hot metal particles react with atmospheric oxygen and the explosive gas products to give an extended pressure pulse. Tantalum-based RMBX formulations were tested in two spherical core-shell configurations - an RMBX shell exploded by a high explosive core, and an RMBX core imploded by a high explosive shell. The fireball and blast characteristics were compared to a C-4 baseline charge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeager, John D.; Bowden, Patrick R.; Guildenbecher, Daniel R.
The fragment impact response of two plastic-bonded explosive (PBX) formulations was studied using explosively driven aluminum fragments. A generic aluminum-capped detonator generated sub-mm aluminum particles moving at hypersonic velocities. The ability of these fragments to initiate reaction or otherwise damage two PBX materials was assessed using go/no-go experiments at standoff distances of up to 160 mm. Lower density PBX 9407 (RDX-based) was initiable at up to 115 mm, while higher density PBX 9501 (HMX-based) was only initiable at up to 6 mm. Several techniques were used to characterize the size, distribution, and velocity of the particles. Witness plate materials, includingmore » copper and polycarbonate, and backlit high speed video were used to characterize the distribution of particles, finding that the aluminum cap did not fragment homogeneously but rather with larger particles in a ring surrounding finer particles. Finally, precise digital holography experiments were conducted to measure the three-dimensional shape and size of the fastest-moving fragments, which ranged between 100 and 700 μm and traveled between 2.2 and 3.2 km/s. Crucially, these experiments showed variability in the fragmentation in terms of the number of fragments at the leading edge of the fragment field, indicating that both single and multiple shock impacts could be imparted to the target material. As a result, these types of data are critical for safety experiments and hydrocode simulations to quantify shock-to-detonation transition mechanisms and the associated risk-margins for these materials.« less
NASA Astrophysics Data System (ADS)
Yanju, Wei; Jingyu, Wang; Chongwei, An; Hequn, Li; Xiaomu, Wen; Binshuo, Yu
2017-01-01
With ε-2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) and glycidyl azide polymer (GAP) as the solid filler and binder, respectively, GAP/CL-20-based compound explosives were designed and prepared. Using micro injection charge technology, the compound explosives were packed into small grooves to explore their application in a small-sized initiation network. The detonation reliability, detonation velocity, mechanical sensitivity, shock sensitivity, and brisance of the explosive were measured and analyzed. The results show that when the solid content of CL-20 is 82 wt%, the explosive charged in the groove has a smooth surface from a macroscopic view. From a microscopic view, a coarse surface is bonded with many CL-20 particles by GAP binder. The GAP/CL-20-based explosive charge successfully generates detonation waves in a groove larger than 0.6 mm × 0.6 mm. When the charge density in the groove is 1.68 g.cm-3 (90% theoretical maximum density), the detonation velocity reaches 7,290 m.s-1. Moreover, this kind of explosive is characterized by low impact and shock sensitivity.
Scaled experiments of explosions in cavities
Grun, J.; Cranch, G. A.; Lunsford, R.; ...
2016-05-11
Consequences of an explosion inside an air-filled cavity under the earth's surface are partly duplicated in a laboratory experiment on spatial scales 1000 smaller. The experiment measures shock pressures coupled into a block of material by an explosion inside a gas-filled cavity therein. The explosion is generated by suddenly heating a thin foil that is located near the cavity center with a short laser pulse, which turns the foil into expanding plasma, most of whose energy drives a blast wave in the cavity gas. Variables in the experiment are the cavity radius and explosion energy. Measurements and GEODYN code simulationsmore » show that shock pressuresmeasured in the block exhibit a weak dependence on scaled cavity radius up to ~25 m/kt 1/3, above which they decrease rapidly. Possible mechanisms giving rise to this behavior are described. As a result, the applicability of this work to validating codes used to simulate full-scale cavityexplosions is discussed.« less
Laser-Induced Plasma Chemistry of the Explosive RDX with Various Metallic Nanoparticles
2013-04-01
mixtures is crucial. In a recent study, Song et al . investigated the formation of C and AlO in an aluminized-cyclotrimethylenetrinitra- mine (RDX) shock...being sampled in the plasma), the C2 and AlO increased on all substrates (Fig. 7). This result is confirmed by the conclusions of Song et al . [5...in C2 emission resulting from an increase in Al powder additive, as confirmed by the observations of Song et al . [5] in a shock tube explosion. The
Wireless device for activation of an underground shock wave absorber
NASA Astrophysics Data System (ADS)
Chikhradze, M.; Akhvlediani, I.; Bochorishvili, N.; Mataradze, E.
2011-10-01
The paper describes the mechanism and design of the wireless device for activation of energy absorber for localization of blast energy in underground openings. The statistics shows that the greatest share of accidents with fatal results associate with explosions in coal mines due to aero-methane and/or air-coal media explosion. The other significant problem is terrorist or accidental explosions in underground structures. At present there are different protective systems to reduce the blast energy. One of the main parts of protective Systems is blast Identification and Registration Module. The works conducted at G. Tsulukidze Mining Institute of Georgia enabled to construct the wireless system of explosion detection and mitigation of shock waves. The system is based on the constant control on overpressure. The experimental research continues to fulfill the system based on both threats, on the constant control on overpressure and flame parameters, especially in underground structures and coal mines. Reaching the threshold value of any of those parameters, the system immediately starts the activation. The absorber contains a pyrotechnic device ensuring the discharge of dispersed water. The operational parameters of wireless device and activation mechanisms of pyrotechnic element of shock wave absorber are discussed in the paper.
The shock Hugoniot of liquid hydrazine in the pressure range of 3.1 to 21.4 GPa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, B.O.; Persson, P-A.
1996-10-01
Impedance matching was used; the technique was similar to Richard Dick`s. Shock pressures were produced using a plane wave explosive driver with different explosives and different reference materials against liq. hydrazine. Velocity of shock wave in the liquid and free surface velocity of the reference material were measured using different pin contact techniques. The experimental Hugoniot appears smooth, with no indication of a phase change. The shock Hugoniot of liq. hydrazine was compared against 3 other liquid Hugoniots (liq. NH3, water, CCl4) and is closest to that for water and in between NH3 and CCl4. The hydrazine Hugoniot was alsomore » compared to the ``Universal`` Hugoniot for liquids. This universal Hugoniot is not a good approximation for the liq. hydrazine in this pressure range.« less
Probing SEP Acceleration Processes With Near-relativistic Electrons
NASA Astrophysics Data System (ADS)
Haggerty, Dennis K.; Roelof, Edmond C.
2009-11-01
Processes in the solar corona are prodigious accelerators of near-relativistic electrons. Only a small fraction of these electrons escape the low corona, yet they are by far the most abundant species observed in Solar Energetic Particle events. These beam-like energetic electron events are sometimes time-associated with coronal mass ejections from the western solar hemisphere. However, a significant number of events are observed without any apparent association with a transient event. The relationship between solar energetic particle events, coronal mass ejections, and near-relativistic electron events are better ordered when we classify the intensity time profiles during the duration of the beam-like anisotropies into three broad categories: 1) Spikes (rapid and equal rise and decay) 2) Pulses (rapid rise, slower decay) and 3) Ramps (rapid rise followed by a plateau). We report on the results of a study that is based on our catalog (covering nearly the complete Solar Cycle 23) of 216 near-relativistic electron events and their association with: solar electromagnetic emissions, shocks driven by coronal mass ejections, models of the coronal magnetic fields and energetic protons. We conclude that electron events with time-intensity profiles of Spikes and Pulses are associated with explosive events in the low corona while events with time-intensity profiles of Ramps are associated with the injection/acceleration process of the CME driven shock.
An Experimental study of Corner Turning in a Granular Ammonium Nitrate Based Explosive
NASA Astrophysics Data System (ADS)
Sorber, Susan; Taylor, Peter
2007-06-01
A novel experimental geometry has been designed to perform controlled studies of corner turning in a ``tap density'' granular explosive. It enables the study of corner turning and detonation properties with high speed framing camera, piezo probes and ionization probes. The basic geometry consists of a large diameter PMMA cylinder filled with the granular explosive which is initiated on axis from below by a smaller diameter cylinder of the same explosive or a booster charge. Four experiments have been performed on a granular Ammonium Nitrate based non ideal explosive (NIE). Two experiments were initiated directly from a PE4 booster charge and two were initiated from a train including a booster charge and a 1'' diameter Copper cylinder containing the same NIE. Data from the four experiments was reproducible and observed detonation and shock waves showed good 2-D symmetry. Detonation phase velocity on the vertical side of the main container was observed and both shock and detonation velocities were observed in the corner turning region along the base of the main container. Analysis of the data shows that the booster initiated geometries with a higher input shock pressure into the NIE gave earlier detonation arrival at the lowest probes on the container side. The corner turning data is compared to a hydrocode calculation using a simple JWL++ reactive burn model.
Using the Richtmyer-Meshkov flow to infer the strength of LY-12 aluminum at extreme conditions
NASA Astrophysics Data System (ADS)
Yin, Jianwei; Pan, Hao; Peng, Jiangxiang; Wu, Zihui; Yu, Yuying; Hu, Xiaomian
2017-06-01
An improved analytical model of the Richtmyer-Meshkov (RM) flow in the elastoplastic materials is presented in this paper. This model describes the stabilization by yield strength (Y) effect on the RM flow in solids and linear relationships between initial configurations of perturbation and the growth. Then we make use of the model to analysis the explosion driven RM flow experiments with solid LY12 and test our model by comparing the predicted Y of existing strength models. Finally, we perform a plate impact experiment with solid LY12 aluminium alloy to validate our model and infer Y is about 1.23 GPa for a 28 GPa shock and a strain rate of 7.5 ×106 .
NASA Astrophysics Data System (ADS)
Grilli, Nicolo; Dandekar, Akshay; Koslowski, Marisol
2017-06-01
The development of high explosive materials requires constitutive models that are able to predict the influence of microstructure and loading conditions on shock sensitivity. In this work a model at the continuum-scale for the polymer-bonded explosive constituted of β-HMX particles embedded in a Sylgard matrix is developed. It includes a Murnaghan equation of state, a crystal plasticity model, based on power-law slip rate and hardening, and a phase field damage model based on crack regularization. The temperature increase due to chemical reactions is introduced by a heat source term, which is validated using results from reactive molecular dynamics simulations. An initial damage field representing pre-existing voids and cracks is used in the simulations to understand the effect of these inhomogeneities on the damage propagation and shock sensitivity. We show the predictions of the crystal plasticity model and the effect of the HMX crystal orientation on the shock initiation and on the dissipated plastic work and damage propagation. The simulation results are validated with ultra-fast dynamic transmission electron microscopy experiments and x-ray experiments carried out at Purdue University. Membership Pending.
Modeling the binary circumstellar medium of Type IIb/L/n supernova progenitors
NASA Astrophysics Data System (ADS)
Kolb, Christopher; Blondin, John; Borkowski, Kazik; Reynolds, Stephen
2018-01-01
Circumstellar interaction in close binary systems can produce a highly asymmetric environment, particularly for systems with a mass outflow velocity comparable to the binary orbital speed. This asymmetric circumstellar medium (CSM) becomes visible after a supernova explosion, when SN radiation illuminates the gas and when SN ejecta collide with the CSM. We aim to better understand the development of this asymmetric CSM, particularly for binary systems containing a red supergiant progenitor, and to study its impact on supernova morphology. To achieve this, we model the asymmetric wind and subsequent supernova explosion in full 3D hydrodynamics using the shock-capturing hydro code VH-1 on a spherical yin-yang grid. Wind interaction is computed in a frame co-rotating with the binary system, and gas is accelerated using a radiation pressure-driven wind model where optical depth of the radiative force is dependent on azimuthally-averaged gas density. We present characterization of our asymmetric wind density distribution model by fitting a polar-to-equatorial density contrast function to free parameters such as binary separation distance, primary mass loss rate, and binary mass ratio.
A novel assembly used for hot-shock consolidation
NASA Astrophysics Data System (ADS)
Chen, Pengwan; Zhou, Qiang; State Key Laboratory of Explosion Science and Technique Team
2013-06-01
A novel assembly characterized by an automatic set-up was developed for hot-shock consolidations of powders. The under-water shock wave and the high-temperature preheating, which are considered as two effective ways to eliminate cracks, were combined in the system. In this work, a SHS reaction mixture was used as chemical furnace to preheat the precursor powder, and the water column as well as the explosive attached to it was detached from the furnace by a solenoid valve fixed on the slide guide. When the precursor powders was preheated to the designed temperature, the solenoid valve was switched on, then the water column and the explosive slid down along the slide guide by gravity. At the moment the water container contacted with the lower part, the explosive was initiated, and the generated shock wave propagated through the water column to compact the powders. So the explosive and water column can be kept cool during the preheating process. The intensity of shock wave loading can be adjusted by changing the heights of water column. And the preheating temperature is controlled in the range of 700 ~1300 °C by changing the mass of the SHS mixture. In this work, pure tungsten powders and tungsten-copper mixture were separately compacted using this new assembly. The pure tungsten powder with a grain size of 2 μm were compacted to high density (96%T.D.) at 1300 °C, and the 90W-10Cu (wt pct) mixtures were compacted to nearly theoretical density at 1000 °C. The results showed that both samples were free of cracks. The consolidated specimens were then characterized by SEM analysis and micro-hardness testing.
A novel assembly used for hot-shock consolidation
NASA Astrophysics Data System (ADS)
Chen, P.; Zhou, Q.
2014-05-01
A novel assembly was developed for hot-shock consolidations of powders. The under-water shock wave and the high-temperature preheating, which are considered as two effective ways to eliminate cracks, were combined in the system. In this work, a SHS (self-propagating high-temperature synthesis) reaction mixture was used as chemical furnace to preheat the precursor powder, and the water column as well as the explosive attached to it was detached from the furnace by a solenoid valve fixed on the slide guide. When the precursor powders were preheated to the designed temperature, the solenoid valve was switched on, and then the water column and the explosive slid down along the slide guide by gravity. At the moment the water container contacted with the lower part, the explosive was initiated, and the generated shock wave propagated through the water column to compact the powders. So the explosive and water column can be kept cool during the preheating process. The intensity of shock wave loading can be adjusted by changing the heights of water column. And the preheating temperature is controlled in the range of 700~1300 °C by changing the mass of the SHS mixture. In this work, pure tungsten powders and tungsten-copper mixture were separately compacted using this new assembly. The pure tungsten powder with a grain size of 2 μm were compacted to high density (96 %T.D.) at 1300 °C, and the 90W-10Cu (wt pct) mixtures were compacted to 95.3 %T.D. at 970 °C. The results showed that both samples were free of cracks. The consolidated specimens were then characterized using SEM analysis and micro-hardness testing.
NASA Astrophysics Data System (ADS)
Di Labbio, G.; Kiyanda, C. B.; Mi, X.; Higgins, A. J.; Nikiforakis, N.; Ng, H. D.
2016-06-01
In this study, the applicability of the Chapman-Jouguet (CJ) criterion is tested numerically for heterogeneous explosive media using a simple detonation analog. The analog system consists of a reactive Burgers' equation coupled with an Arrhenius type reaction wave, and the heterogeneity of the explosive media is mimicked using a discrete energy source approach. The governing equation is solved using a second order, finite-volume approach and the average propagation velocity of the discrete detonation is determined by tracking the leading shock front. Consistent with previous studies, the averaged velocity of the leading shock front from the unsteady numerical simulations is also found to be in good agreement with the velocity of a CJ detonation in a uniform medium wherein the energy source is spatially homogenized. These simulations have thus implications for whether the CJ criterion is valid to predict the detonation velocity in heterogeneous explosive media.
Picosecond Vibrational Spectroscopy of Shocked Energetic Materials
NASA Astrophysics Data System (ADS)
Franken, Jens; Hare, David; Hambir, Selezion; Tas, Guray; Dlott, Dana
1997-07-01
We present a new technique which allows the study of the properties of shock compressed energetic materials via vibrational spectroscopy with a time resolution on the order of 25 ps. Shock waves are generated using a near-IR laser at a repetition rate of 80 shocks per second. Shock pressures up to 5 GPa are obtained; shock risetimes are as short as 25 ps. This technique enables us to estimate shock pressures and temperatures as well as to monitor shock induced chemistry. The shock effects are probed by ps coherent anti-Stokes Raman spectroscopy (CARS). The sample consists of four layers, a glass plate, a thin polycrystalline layer of an energetic material, a buffer layer and the shock generating layer. The latter is composed of a polymer, a near-IR absorbing dye and a high explosive (RDX) as a pressure booster. The main purpose of the buffer layer, which consists of an inert polymer, is to delay the arrival of the shock wave at the sample by more than 1 ns until after the shock generating layer has ablated away. High quality, high resolution (1 cm-1) low-background vibrational spectra could be obtained. So far this technique has been applied to rather insensitive high explosives such as TATB and NTO. In the upcoming months we are hoping to actually observe chemistry in real time by shocking more sensitive materials. This work was supported by the NSF, the ARO and the AFOSR
The Incredibly Long-Lived SN 2005ip
NASA Astrophysics Data System (ADS)
Fox, Ori
2016-10-01
Type IIn supernovae (SNe IIn) are defined by their relatively narrow spectral line features associated with a dense circumstellar medium (CSM) formed by the progenitor star. The nature of the progenitor and mass loss remains relatively unknown. Shock interaction with the dense CSM can often result in significant UV emission for several years post-explosion, thereby probing the CSM characteristics, progenitor mass loss history and, ultimately, the progenitor itself. The Type IIn SN 2005ip proves to be one of the most interesting and well-studied targets within this subclass. Compared to all other supernovae, SN 2005ip is the most luminous for its age. Now more than 11 years post-explosion, the SN has released >10^51 erg throughout its lifetime as the forward shock continues to collide with a dense CSM. Here we propose HST/STIS-MAMA UV observations of SN 2005ip to investigate the massive CSM. When accounting for the shock travel time, these observations will probe material lost from the progenitor more than 1000 years prior to the explosion. We already have a single HST/STIS spectrum of SN 2005ip from 2014, which was obtained while the shock was still within a higher mass regime. With just 5 orbits, a second spectrum will allow us to directly trace the evolution of the CSM and produce new constraints on the pre-SN mass-loss history. Coinciding with Cycle 24's UV Initiative, this program offers new insight regarding both the progenitor and explosion characteristics of the SN IIn subclass.
Microenergetic Shock Initiation Studies on Deposited Films of PETN
NASA Astrophysics Data System (ADS)
Tappan, Alexander S.; Wixom, Ryan R.; Trott, Wayne M.; Long, Gregory T.; Knepper, Robert; Brundage, Aaron L.; Jones, David A.
2009-06-01
Films of the high explosive PETN (pentaerythritol tetranitrate) up to 500-μm thick have been deposited through physical vapor deposition, with the intent of creating well-defined samples for shock-initiation studies. PETN films were characterized with surface profilometry, scanning electron microscopy, x-ray diffraction, and focused ion beam nanotomography. These high-density films were subjected to strong shocks in both the in-plane and out-of-plane orientations. Initiation behavior was monitored with high-speed framing and streak camera photography. Direct initiation with a donor explosive (either RDX with binder, or CL-20 with binder) was possible in both orientations, but with the addition of a thin aluminum buffer plate (in-plane configuration only), initiation proved to be difficult due to the attenuated shock and the high density of the PETN films. Mesoscale models of microenergetic samples were created using the shock physics code CTH and compared with experimental results. The results of these experiments will be discussed in the context of small sample geometry, deposited film morphology, and density.
Nitromethane ignition observed with embedded PDV optical fibers
NASA Astrophysics Data System (ADS)
Mercier, P.; Bénier, J.; Frugier, P. A.; Debruyne, M.; Crouzet, B.
For a long time, the nitromethane (NM) ignition has been observed with different means such as high-speed cameras, VISAR or optical pyrometry diagnostics. By 2000, David Goosmann (LLNL) studied solid high-explosive detonation and shock loaded metal plates by measuring velocity (Fabry-Pérot interferometry) in embedded optical fibers. For six years Photonic Doppler Velocimetry (PDV) has become a major tool to better understand the phenomena occurring in shock physics experiments. In 2006, we began to use in turn this technique and studied shock-to-detonation transition in NM. Different kinds of bare optical fibers were set in the liquid; they provided two types of velocity information; those coming from phenomena located in front of the fibers (interface velocity, shock waves, overdriven detonation wave) and those due to phenomena environing the fibers (shock or detonation waves). We achieved several shots; devices were composed of a high explosive plane wave generator ended by a metal barrier followed by a cylindrical vessel containing NM. We present results.
NASA Astrophysics Data System (ADS)
Hufner, D. R.; Augustine, M. R.
2018-05-01
A novel experimental method was developed to simulate underwater explosion pressure pulses within a laboratory environment. An impact-based experimental apparatus was constructed; capable of generating pressure pulses with basic character similar to underwater explosions, while also allowing the pulse to be tuned to different intensities. Having the capability to vary the shock impulse was considered essential to producing various levels of shock-induced damage without the need to modify the fixture. The experimental apparatus and test method are considered ideal for investigating the shock response of composite material systems and/or experimental validation of new material models. One such test program is presented herein, in which a series of E-glass/Vinylester laminates were subjected to a range of shock pulses that induced varying degrees of damage. Analysis-test correlations were performed using a rate-dependent constitutive model capable of representing anisotropic damage and ultimate yarn failure. Agreement between analytical predictions and experimental results was considered acceptable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antonov, O.; Efimov, S.; Gurovich, V. Tz.
The results of visible spectroscopy of the plasma formed inside a copper capillary placed at the equatorial plane of an underwater electrically exploded spherical wire array (30 mm in diameter; 40 wires, each of 100 μm in diameter) are reported. In the experiments, a pulsed power generator with current amplitude of ∼300 kA and rise time of ∼1.1 μs was used to produce wire array explosion accompanied by the formation of a converging strong shock wave. The data obtained support the assumption of uniformity of the shock wave along the main path of its convergence. The spectroscopic measurements show that this rather simple methodmore » of formation of a converging strong shock wave can be used successfully for studying the shock wave's interaction with matter and the evaporation processes of atoms from a target.« less
On A Problem Of Propagation Of Shock Waves Generated By Explosive Volcanic Eruptions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gusev, V. A.; Sobissevitch, A. L.
2008-06-24
Interdisciplinary study of flows of matter and energy in geospheres has become one of the most significant advances in Earth sciences. It is carried out by means of direct quantitative estimations based on detailed analysis of geological and geophysical observations and experimental data. The actual contribution is the interdisciplinary study of nonlinear acoustics and physical volcanology dedicated to shock wave propagation in a viscous and inhomogeneous medium. The equations governing evolution of shock waves with an arbitrary initial profile and an arbitrary cross-section of a beam are obtained. For the case of low viscous medium, the asymptotic solution meant tomore » calculate a profile of a shock wave in an arbitrary point has been derived. The analytical solution of the problem on propagation of shock pulses from atmosphere into a two-phase fluid-saturated geophysical medium is analysed. Quantitative estimations were carried out with respect to experimental results obtained in the course of real explosive volcanic eruptions.« less
Color temperature measurement in laser-driven shock waves
NASA Astrophysics Data System (ADS)
Hall, T. A.; Benuzzi, A.; Batani, D.; Beretta, D.; Bossi, S.; Faral, B.; Koenig, M.; Krishnan, J.; Löautwer, Th.; Mahdieh, M.
1997-06-01
A simultaneous measurement of color temperature and shock velocity in laser-driven shocks is presented. The color temperature was measured from the target rear side emissivity, and the shock velocity by using stepped targets. A very good planarity of the shock was ensured by the phase zone plate smoothing technique. A simple model of the shock luminosity has been developed in order to estimate the shock temperature from the experimental rear side emissivity. Results have been compared to temperatures obtained from the shock velocity for a material of a known equation of state.
A combustion driven shock tunnel to complement the free piston shock tunnel T5 at GALCIT
NASA Technical Reports Server (NTRS)
Belanger, Jacques; Hornung, Hans G.
1992-01-01
A combustion driven shock tunnel was designed and built at GALCIT to supply the hypersonic facility T5 with 'hot' hydrogen for mixing and combustion experiments. This system was chosen over other options for better flexibility and for safety reasons. The shock tunnel is described and the overall efficiency of the system is discussed. The biggest challenge in the design was to synchronize the combustion driven shock tunnel with T5. To do so, the main diaphragm of the combustion driven shock tunnel is locally melted by an electrical discharge. This local melting is rapidly followed by the complete collapse of the diaphragm in a very repeatable way. A first set of experiments on supersonic hydrogen transverse jets over a flat plate have just been completed with the system and some of the preliminary results are presented.
Revisiting first type self-similar solutions of explosions containing ultrarelativistic shocks
NASA Astrophysics Data System (ADS)
Tian, Jun
2018-05-01
We revisit the first type self-similar solutions for ultrarelativistic shock waves produced by explosions propagating into cold external medium whose density profile decreases with radius as ρ ∝ r-k. The first-type solutions proposed by Blandford and McKee (hereafter BM solution) conforms to the global conservation of energy and applies when k < 4. They have been found to be invalid when k > 17/4 because of the divergence of total energy contained in the shocked fluids. So far no attention has been paid to the particle number. We use the BM solution to calculate the total particle number traversed by the shock and find that it diverges when k > 3. This is inconsistent with the finite particles in the surrounding medium. We propose a possible solution when k > 3 based on the conservation of particle number and discuss its implication for the second-type solutions.
Spatially Resolved Hard X-ray Emission in the Central 5 kpc of the Galaxy Merger NGC 6240
NASA Astrophysics Data System (ADS)
Wang, Junfeng; Nardini, E.; Fabbiano, G.; Karovska, M.; Elvis, M.; Pellegrini, S.; Max, C. E.; Risaliti, G.; U, V.; Zezas, A.
2013-04-01
We have obtained a deep, sub-arcsecond resolution X-ray image of the nuclear region of the luminous galaxy merger NGC 6240 with Chandra, which resolves the X-ray emission from the pair of active nuclei and the diffuse hot gas in great detail. We detect extended hard X-ray emission from 70 million K hot gas over a spatial scale of 5 kpc, indicating the presence of fast shocks with velocity of 2200 km/s. For the first time we obtain spatial distribution of this highly ionized gas emitting FeXXV and find that it shows a remarkable correspondence to the large scale morphology of H_2(1-0) S(1) line emission and Hα filaments. Propagation of fast shocks originated in the starburst driven wind into the ambient dense gas can account for this morphological correspondence. Both the energetics and the iron mass in the hot gas are consistent with the expected injection from the supernovae explosion during the starburst that is commensurate with its high star formation rate.
A link between prompt optical and prompt gamma-ray emission in gamma-ray bursts.
Vestrand, W T; Wozniak, P R; Wren, J A; Fenimore, E E; Sakamoto, T; White, R R; Casperson, D; Davis, H; Evans, S; Galassi, M; McGowan, K E; Schier, J A; Asa, J W; Barthelmy, S D; Cummings, J R; Gehrels, N; Hullinger, D; Krimm, H A; Markwardt, C B; McLean, K; Palmer, D; Parsons, A; Tueller, J
2005-05-12
The prompt optical emission that arrives with the gamma-rays from a cosmic gamma-ray burst (GRB) is a signature of the engine powering the burst, the properties of the ultra-relativistic ejecta of the explosion, and the ejecta's interactions with the surroundings. Until now, only GRB 990123 had been detected at optical wavelengths during the burst phase. Its prompt optical emission was variable and uncorrelated with the prompt gamma-ray emission, suggesting that the optical emission was generated by a reverse shock arising from the ejecta's collision with surrounding material. Here we report prompt optical emission from GRB 041219a. It is variable and correlated with the prompt gamma-rays, indicating a common origin for the optical light and the gamma-rays. Within the context of the standard fireball model of GRBs, we attribute this new optical component to internal shocks driven into the burst ejecta by variations of the inner engine. The correlated optical emission is a direct probe of the jet isolated from the medium. The timing of the uncorrelated optical emission is strongly dependent on the nature of the medium.
Experimental investigation of nozzle/plume aerodynamics at hypersonic speeds
NASA Technical Reports Server (NTRS)
Bogdanoff, David W.; Cambier, Jean-Luc; Papadopoulos, Perikles
1994-01-01
Much of the work involved the Ames 16-Inch Shock Tunnel facility. The facility was reactivated and upgraded, a data acquisition system was configured and upgraded several times, several facility calibrations were performed and test entries with a wedge model with hydrogen injection and a full scramjet combustor model, with hydrogen injection, were performed. Extensive CFD modeling of the flow in the facility was done. This includes modeling of the unsteady flow in the driver and driven tubes and steady flow modeling of the nozzle flow. Other modeling efforts include simulations of non-equilibrium flows and turbulence, plasmas, light gas guns and the use of non-ideal gas equations of state. New experimental techniques to improve the performance of gas guns, shock tubes and tunnels and scramjet combustors were conceived and studied computationally. Ways to improve scramjet engine performance using steady and pulsed detonation waves were also studied computationally. A number of studies were performed on the operation of the ram accelerator, including investigations of in-tube gasdynamic heating and the use of high explosives to raise the velocity capability of the device.
Nanoscience for Insensitive Munitions Development (Briefing Charts)
2008-12-03
reactive material Ni/Al Hypervelocity collisions of ND Melting of nitromethane Shocked energetic materials Self-sustained detonation of model explosive ...deformation by compressing, stretching or twisting the bond. First Observed by Bridgeman as Explosion of Common Substances Subjected to Pressure and Shear...in Energetic Materials as New Means for Designing Nonconventional High Explosives : An analysis of Soviet Research, Tech Report 1991. A. M
75 FR 3160 - Commerce in Explosives-Storage of Shock Tube With Detonators (2005R-3P)
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-20
..., Firearms, and Explosives, U.S. Department of Justice, 99 New York Avenue, NE., Washington, DC 20226... separate magazines for each explosive product. ATF estimates the average cost for a new type 4 magazine (4... Reading Room, Room 1E-063, 99 New York Avenue, NE., Washington, DC 20226; telephone: (202) 648-7080...
Background-Oriented Schlieren for Large-Scale and High-Speed Aerodynamic Phenomena
NASA Technical Reports Server (NTRS)
Mizukaki, Toshiharu; Borg, Stephen; Danehy, Paul M.; Murman, Scott M.; Matsumura, Tomoharu; Wakabayashi, Kunihiko; Nakayama, Yoshio
2015-01-01
Visualization of the flow field around a generic re-entry capsule in subsonic flow and shock wave visualization with cylindrical explosives have been conducted to demonstrate sensitivity and applicability of background-oriented schlieren (BOS) for field experiments. The wind tunnel experiment suggests that BOS with a fine-pixel imaging device has a density change detection sensitivity on the order of 10(sup -5) in subsonic flow. In a laboratory setup, the structure of the shock waves generated by explosives have been successfully reconstructed by a computed tomography method combined with BOS.
The Role of Shocks in the Appearance and Aftermath of Stellar Mergers and Type IIn Supernovae
NASA Astrophysics Data System (ADS)
Metzger, Brian
2017-08-01
HST has played a crucial role in elucidating the environments, progenitors, explosions, and late-time behavior of Type IIn supernovae (SNe) and binary star mergers (also known as common envelope events). Although shock interaction plays a dominant role in the dynamics and appearance of these events, the details of this process and the nature of the mass loss leading up to the core collapse or dynamical stage of the merger, remain poorly understood. Mounting evidence suggests that the pre-explosion mass loss geometry is a disk or equatorially-concentrated outflow. We will perform the first multi-dimensional radiation hydrodynamical simulations of the shock interaction between the fast ejecta from the SN explosion/dynamical merger and a slower equatorially-focused outflow representing the earlier phase of mass loss. Our calculations will quantify the geometry of the ejecta and make detailed predictions for the shock-powered emission. In combination with an analytic model to be developed in parallel, we will translate the light curves and spectral information on a large sample of IIn SNe and stellar mergers into probes of their mass loss history. We will address whether the combination of hydrogen recombination and shock-powered emission can explain the common double-peaked nature of the light curves of stellar mergers. By accounting self-consistently for the role of radiative shock compression on the ejecta density structure, and thus on the global geometry and microphysical properties of dust grains formed, we will also address the late-time appearance of IIn SNe and stellar mergers observed by HST and JWST.
NASA Astrophysics Data System (ADS)
Romo, Cynthia Paulinne
High speed digital video images of encased and uncased large-scale explosions of Ammonium Nitrate Fuel Oil (ANFO), and Composition C-4 (C-4) at different masses were analyzed using the background oriented schlieren visualization technique. The encased explosions for ANFO and C-4 took place in the form of car bombs and pipe bombs respectively. The data obtained from the video footage were used to produce shock wave radius vs time profiles, as well as Mach number vs shock wave position profiles. The experimentally measured shock wave data for each explosive material were scaled using Sachs' scaling laws to a 1 kilogram charge at normal temperature and pressure. The results of C-4 were compared to literature, while the results of scaled ANFO were compared to each other, and to the results obtained during the uncased detonations. The comparison between the scaled profiles gathered from the encased and uncased detonations resulted in the identification of the relative amount of energy lost due to the fragmentation of the case. The C-4 profiles were compared to those obtained from computational simulations performed via CTH. The C-4 results showed an agreement in the data reported in literature and that obtained using the background-oriented schlieren (BOS) technique, as well as a good overall agreement with the profiles obtained computationally.
NASA Astrophysics Data System (ADS)
Nakagawa, A.; Ohtani, K.; Arafune, T.; Washio, T.; Iwasaki, M.; Endo, T.; Ogawa, Y.; Kumabe, T.; Takayama, K.; Tominaga, T.
1. Investigation of shock wave-induced phenomenon: blast-induced traumatic brain injury Blast wave (BW) is generated by explosion and is comprised of lead shock wave (SE) followed by subsequent supersonic flow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, George Thompson III; Hull, Lawrence Mark; Livescu, Veronica
Widespread research over the past five decades has provided a wealth of experimental data and insight concerning the shock hardening, damage evolution, and the spallation response of materials subjected to square-topped shock-wave loading profiles. However, fewer quantitative studies have been conducted on the effect of direct, in-contact, high explosive (HE)-driven Taylor wave (unsupported shocks) loading on the shock hardening, damage evolution, or spallation response of materials. Systematic studies quantifying the effect of sweeping-detonation wave loading are yet sparser. In this study, the damage evolution and spallation response of Ta is shown to be critically dependent on the peak shock stress,more » the geometry of the sample (flat or curved plate geometry), and the shock obliquity during sweeping-detonation-wave shock loading. Sweepingwave loading in the flat-plate geometry is observed to: a) yield a lower spall strength than previously documented for 1-D supported-shock-wave loading, b) exhibit increased shock hardening as a function of increasing obliquity, and c) lead to an increased incidence of deformation twin formation with increasing shock obliquity. Sweeping-wave loading of a 10 cm radius curved Ta plate is observed to: a) lead to an increase in the shear stress as a function of increasing obliquity, b) display a more developed level of damage evolution, extensive voids and coalescence, and lower spall strength with obliquity in the curved plate than seen in the flat-plate sweeping-detonation wave loading for an equivalent HE loading, and c) no increased propensity for deformation twin formation with increasing obliquity as seen in the flat-plate geometry. The overall observations comparing and contrasting the flat versus curved sweeping-wave spall experiments with 1D loaded spallation behavior suggests a coupled influence of obliquity and geometry on dynamic shock-induced damage evolution and spall strength. Coupled experimental and modeling research to quantify the combined effects of sweeping-wave loading with increasingly complex sample geometries on the shockwave response of materials is clearly crucial to providing the basis for developing and thereafter validation of predictive modeling capability.« less
Proton radiography measurements and models of ejecta structure in shocked Sn
NASA Astrophysics Data System (ADS)
Hammerberg, J. E.; Buttler, W. T.; Llobet, A.; Morris, C.; Goett, J.; Manzanares, R.; Saunders, A.; Schmidt, D.; Tainter, A.; Vogan-McNeil, W.; Wilde, C.
2017-06-01
We discuss experimental validation of ejecta source mass and velocity models using proton radiography. We have performed ejecta measurements at the Los Alamos proton radiography facility on 7 mm thick 81 mm diameter Sn samples driven with a plane-wave high explosive lens (PBX9501 + TNT). The surface of the Sn, in contact with He gas at an initial pressure of 7 atmospheres, was machined to have 4 concentric sinusoidal features with a wavelength of λ = 2 mm in the radial direction and amplitude h0 = 0.159 mm (kh0 = 2 πh0 / λ = 0.5). The shock pressure was 27 GPa. 42 images were obtained between 0 and 14 μs from the time of shock breakout at 275 and 400 ns intervals. The Abel inverted density profiles evolve to a self-similar density distribution that depends on a scaling variable z /vs t where vs is the spike tip velocity, z is the distance from the free surface and t is the time after shock breakout. Both the density profiles and the time dependence of the mass per unit area in the evolving spikes are in good agreement with a Richtmyer-Meshkov instability based model for ejecta production and evolution. This work was performed under the auspices of the U.S. Dept. of Energy under contract DE-AC52-06NA25396. The support of the LANL ASC-PEM and Science Campaign 2 programs is gratefully acknowledged.
Order Amidst Chaos of Star's Explosion
NASA Technical Reports Server (NTRS)
2006-01-01
[figure removed for brevity, see original site] Click on the image for movie of Order Amidst Chaos of Star's Explosion This artist's animation shows the explosion of a massive star, the remains of which are named Cassiopeia A. NASA's Spitzer Space Telescope found evidence that the star exploded with some degree of order, preserving chunks of its onion-like layers as it blasted apart. Cassiopeia A is what is known as a supernova remnant. The original star, about 15 to 20 times more massive than our sun, died in a cataclysmic 'supernova' explosion viewable from Earth about 340 years ago. The remnant is located 10,000 light-years away in the constellation Cassiopeia. The movie begins by showing the star before it died, when its layers of elements (shown in different colors) were stacked neatly, with the heaviest at the core and the lightest at the top. The star is then shown blasting to smithereens. Spitzer found evidence that the star's original layers were preserved, flinging outward in all directions, but not at the same speeds. In other words, some chunks of the star sped outward faster than others, as illustrated by the animation. The movie ends with an actual picture of Cassiopeia A taken by Spitzer. The colored layers containing different elements are seen next to each other because they traveled at different speeds. The infrared observatory was able to see the tossed-out layers because they light up upon ramming into a 'reverse' shock wave created in the aftermath of the explosion. When a massive star explodes, it creates two types of shock waves. The forward shock wave darts out quickest, and, in the case of Cassiopeia A, is now traveling at supersonic speeds up to 7,500 kilometers per second (4,600 miles/second). The reverse shock wave is produced when the forward shock wave slams into a shell of surrounding material expelled before the star died. It tags along behind the forward shock wave at slightly slower speeds. Chunks of the star that were thrown out fastest hit the shock wave sooner and have had more time to heat up to scorching temperatures previously detected by X-ray and visible-light telescopes. Chunks of the star that lagged behind hit the shock wave later, so they are cooler and radiate infrared light that was not seen until Spitzer came along. These lagging chunks are seen in false colors in the Spitzer picture of Cassiopeia A. They are made up of gas and dust containing neon, oxygen and aluminum -- elements from the middle layers of the original star.Ignition criterion for heterogeneous energetic materials based on hotspot size-temperature threshold
NASA Astrophysics Data System (ADS)
Barua, A.; Kim, S.; Horie, Y.; Zhou, M.
2013-02-01
A criterion for the ignition of granular explosives (GXs) and polymer-bonded explosives (PBXs) under shock and non-shock loading is developed. The formulation is based on integration of a quantification of the distributions of the sizes and locations of hotspots in loading events using a cohesive finite element method (CFEM) developed recently and the characterization by Tarver et al. [C. M. Tarver et al., "Critical conditions for impact- and shock-induced hot spots in solid explosives," J. Phys. Chem. 100, 5794-5799 (1996)] of the critical size-temperature threshold of hotspots required for chemical ignition of solid explosives. The criterion, along with the CFEM capability to quantify the thermal-mechanical behavior of GXs and PBXs, allows the critical impact velocity for ignition, time to ignition, and critical input energy at ignition to be determined as functions of material composition, microstructure, and loading conditions. The applicability of the relation between the critical input energy (E) and impact velocity of James [H. R. James, "An extension to the critical energy criterion used to predict shock initiation thresholds," Propellants, Explos., Pyrotech. 21, 8-13 (1996)] for shock loading is examined, leading to a modified interpretation, which is sensitive to microstructure and loading condition. As an application, numerical studies are undertaken to evaluate the ignition threshold of granular high melting point eXplosive, octahydro-1,3,5,7-tetranitro-1,2,3,5-tetrazocine (HMX) and HMX/Estane PBX under loading with impact velocities up to 350 ms-1 and strain rates up to 105 s-1. Results show that, for the GX, the time to criticality (tc) is strongly influenced by initial porosity, but is insensitive to grain size. Analyses also lead to a quantification of the differences between the responses of the GXs and PBXs in terms of critical impact velocity for ignition, time to ignition, and critical input energy at ignition. Since the framework permits explicit tracking of the influences of microstructure, loading, and mechanical constraints, the calculations also show the effects of stress wave reflection and confinement condition on the ignition behaviors of GXs and PBXs.
ERIC Educational Resources Information Center
Sartori, Leo
1983-01-01
Fundamental principles governing nuclear explosions and their effects are discussed, including three components of a nuclear explosion (thermal radiation, shock wave, nuclear radiation). Describes how effects of these components depend on the weapon's yield, its height of burst, and distance of detonation point. Includes effects of three…
Equation of state, initiation, and detonation of pure ammonium nitrate
NASA Astrophysics Data System (ADS)
Robbins, D. L.; Sheffield, S. A.; Dattelbaum, D. M.; Velisavljevic, N.; Stahl, D. B.
2009-06-01
Ammonium nitrate (AN) is a widely used fertilizer and mining explosive throughout the world. One of the more common explosives using AN is called ANFO, a mixture of AN prills and fuel oil in a 94:6 ratio by weight. The AN prills are specially made to absorb the fuel oil, forming a mixture that reacts under shock loading through a diffusion-controlled process, resulting in a non-ideal explosive with detonation velocities around 4 km/s. While there are a number of studies on ANFO, there are only a few studies relating to the equation of state (EOS) and detonation properties of pure AN - resulting mainly from studies of accidents that have occurred during transportation of large quantities of AN. We present the results of a series of gas gun-driven plate impact experiments on pressed AN ranging in density from 1.72 to 0.9 g/cm^3. Several of the high density experiments were performed in front surface impact geometry, in which pressed AN disks were built into the projectile front and impacted onto LiF windows. Additional experiments at low density have been done in ``half cell'' multiple magnetic gauge gun experiments. From this work a complete unreacted EOS has been developed, as well as some initiation and detonation information. Additional high pressure x-ray diffraction experiments in diamond anvil cells have provided a static isotherm for AN.
Synthesis, Chemical and Physical Characterization of TKX-50
NASA Astrophysics Data System (ADS)
Klapoetke, Thomas
2015-06-01
TKX-50 (bis(hydroxylammonium) 5,5'-bis(tetrazolate-1 N-oxide)) is one of the most promising ionic salts as a possible replacement for RDX. The thermal behavior of TKX-50 (bis(hydroxylammonium) 5,5'-(tetrazolate-1 N-oxide)) and the kinetics of its thermal decomposition were studied using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The calculated results of the detonation parameters and equations of state for the detonation products (EOS DP) of explosive materials TKX-50 and MAD-X1 and several of their derivatives were obtained using the computer program EXPLO5 V.6.01. These values were also calculated for standard explosive materials which are commonly used such as TNT, PETN, RDX, HMX as well as for the more powerful explosive material CL-20 to allow comparisons to be made. The determination of the detonation parameters and EOS DP was conducted both for explosive materials having the maximum crystalline density and for porous right up to 50% in volume materials. The influence of the content of plastic binder polyisobutylene used (up to 20% in volume) on all of the investigated properties was also examined. Calculated results on shock wave loading of different inert barriers in a wide range of their dynamic properties under explosion on their surfaces of concrete size charges of different explosive materials in various initial states were obtained with the use of the one-dimensional computer hydrocode EP. Barriers due to materials such as polystyrene, textolite, magnesium, aluminum, zinc, copper, tantalum or tungsten were examined (Fig. 1). Initial values of pressure and other parameters of loading on the interface explosive-barrier were determined in the process of conducted calculations. Phenomena of propagation and attenuation of shock waves in barrier materials were considered too for all possible situations. From these calculations, an essentially complete overview of the explosion properties and characteristics of shock wave action onto barriers was obtained for several new and also for several standard explosive materials as a comparison. Work done in collaboration with Golubev/Fischer/Stierstorfer/Bohanek/Dobrilovic.
NASA Astrophysics Data System (ADS)
Hovey, Luke
2016-05-01
Supernova remnants are the lasting interactions of shock waves that develop in the wake of supernovae. These remnants, especially those in our galaxy and our companion galaxies, allow us to study supernovae for thousands of years after the initial stellar explosions. Remnants that are formed from Ia supernovae, which are the explosions and complete annihilation of white dwarf stars, are of particular interest due to the explosions' value as standard candles in cosmological studies. The shock waves in these young supernova remnants offer an unparalleled look into the physical processes that take place there, especially since these shocks are often simpler to study than shocks with strong radiative components that are present in remnants that are formed from the core-collapse supernovae of massive stars. I will detail the work of my kinematic study of the second youngest remnant in the Large Magellanic Cloud, 0509--67.5, which has been confirmed to be the result of a Ia supernova. Chapter 2 details the proper motion measurements made on the forward shock of this remnant, which has led to many key results. I was able to use the results of ii the global shock speed in the remnant to measure the density of neutral hydrogen in the ambient medium into which these shocks expand. In addition, I use the measurements of the shock speed for select portions of the forward shock to search for signatures of efficient cosmic-ray acceleration. Hydrodynamic simulations are then employed to constrain the age and ambient medium density of 0509--67.5, as well as to place limits on the compression factor at the immediate location of the blast wave. Chapter 3 uses the proper motion results from chapter 2 to determine possible asymmetries in the expansion of the remnant for the eastern and western limbs. These measurements are then used as constraints in hydrodynamic simulations to assess the possible dynamical offset of the explosion site compared to the geometric center of 0509?67.5 that we observe today. I find a continuum of possible offsets, which are sensitive to assumptions that are made about the evolutionary history of the remnant, and use the uncertainties in these calculations to determine the area in which to search for a leftover progenitor companion star in the event that the explosion resulted from a single-degenerate system. The stars within this search area are explored with a multi-band photometric study, wherein we determine the mass ranges for these candidates. Chapter four concludes this thesis, recapping the main results from chapters 2 and 3, and highlights the future projects I will carry out that are motivated by my findings in this comprehensive study of the supernova remnant 0509--67.5.
Super- and sub-critical regions in shocks driven by radio-loud and radio-quiet CMEs
Bemporad, Alessandro; Mancuso, Salvatore
2012-01-01
White-light coronagraphic images of Coronal Mass Ejections (CMEs) observed by SOHO/LASCO C2 have been used to estimate the density jump along the whole front of two CME-driven shocks. The two events are different in that the first one was a “radio-loud” fast CME, while the second one was a “radio quiet” slow CME. From the compression ratios inferred along the shock fronts, we estimated the Alfvén Mach numbers for the general case of an oblique shock. It turns out that the “radio-loud” CME shock is initially super-critical around the shock center, while later on the whole shock becomes sub-critical. On the contrary, the shock associated with the “radio-quiet” CME is sub-critical at all times. This suggests that CME-driven shocks could be efficient particle accelerators at the shock nose only at the initiation phases of the event, if and when the shock is super-critical, while at later times they lose their energy and the capability to accelerate high energetic particles. PMID:25685431
Conventional Weapons Underwater Explosions
1988-12-01
Nitromethane," UCRL 52903, December 1980. 22 I >I I 20 0--0 AIcN 23 0 I0 0 0 c W * ’S * / 0 o ---. 0 / nEil~ 24 Unreacted explosive Shock front t t...1976. 57 7. B. M. Dobratz LLNL Explosives Handbook - Properties of Explosives and Ex- plosive Simulants, UCRL -52997, March 1981. 8. M. H. Rice and J...Canada (403) 549- 3701 Ext. 4787 39. Joel C. W. Rogers Dept. of Mathemantics Polytechnic University 333 Jay Street Brooklyn, NY 11201 (718) 260-3501 40
GDP: A new source for shallow high-resolution seismic exploration
NASA Astrophysics Data System (ADS)
Rashed, Mohamed A.
2009-06-01
Gas-Driven Piston (GDP) is a new source for shallow seismic exploration. This source works by igniting a small amount of gas inside a closed chamber connected to a vertical steel cylinder. The gas explosion drives a steel piston, mounted inside the cylinder, downward so that the piston's thick head hits a steel base at the end of the cylinder generating a strong shock wave into the ground. Experimental field tests conducted near Ismailia, Egypt, prove that the portable, inexpensive and environmentally benign GDP generates stronger seismic waves than the sledgehammer that is commonly used in shallow seismic exploration. Tests also show that GDP is a highly repeatable and controllable and that its seismic waves contain a good amount of high frequencies which makes the GDP an excellent source for shallow seismic exploration.
Generation of extreme state of water by spherical wire array underwater electrical explosion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antonov, O.; Gilburd, L.; Efimov, S.
2012-10-15
The results of the first experiments on the underwater electrical explosion of a spherical wire array generating a converging strong shock wave are reported. Using a moderate pulse power generator with a stored energy of {<=}6 kJ and discharge current of {<=}500 kA with a rise-time of {approx}300 ns, explosions of Cu and Al wire arrays of different diameters and with a different number and diameter of wires were tested. Electrical, optical, and destruction diagnostics were used to determine the energy deposited into the array, the time-of-flight of the shock wave to the origin of the implosion, and the parametersmore » of water at that location. The experimental and numerical simulation results indicate that the convergence of the shock wave leads to the formation of an extreme state of water in the vicinity of the implosion origin that is characterized by pressure, temperature, and compression factors of (2 {+-} 0.2) Multiplication-Sign 10{sup 12} Pa, 8 {+-} 0.5 eV, and 7 {+-} 0.5, respectively.« less
Shock temperature dependent rate law for plastic bonded explosives
NASA Astrophysics Data System (ADS)
Aslam, Tariq D.
2018-04-01
A reactive flow model for the tri-amino-tri-nitro-benzene (TATB) based plastic bonded explosive PBX 9502 (95% TATB, 5% polymeric binder Kel-F 800) is presented. This newly devised model is based primarily on the shock temperature of the material, along with local pressure, and accurately models a broader range of detonation and initiation scenarios. Specifically, sensitivity changes to the initial explosive temperature are accounted for naturally and with a single set of parameters. The equation of state forms for the reactants and products, as well as the thermodynamic closure of pressure and temperature equilibration, are carried over from the Wescott-Stewart-Davis (WSD) model [Wescott et al., J. Appl. Phys. 98, 053514 (2005) and "Modeling detonation diffraction and dead zones in PBX-9502," in Proceedings of the Thirteenth International Detonation Symposium (2006)]. This newly devised model, with Arrhenius state dependence on the shock temperature, based on the WSD equation of states, is denoted by AWSD. Modifying an existing implementation of the WSD model to the AWSD model in a hydrocode is a rather straightforward procedure.
Tenderizing Meat with Explosives
NASA Astrophysics Data System (ADS)
Gustavson, Paul K.; Lee, Richard J.; Chambers, George P.; Solomon, Morse B.; Berry, Brad W.
2001-06-01
Investigators at the Food Technology and Safety Laboratory have had success tenderizing meat by explosively shock loading samples submerged in water. This technique, referred to as the Hydrodynamic Pressure (HDP) Process, is being developed to improve the efficiency and reproducibility of the beef tenderization processing over conventional aging techniques. Once optimized, the process should overcome variability in tenderization currently plaguing the beef industry. Additional benefits include marketing lower quality grades of meat, which have not been commercially viable due to a low propensity to tenderization. The simplest and most successful arrangement of these tests has meat samples (50 to 75 mm thick) placed on a steel plate at the bottom of a plastic water vessel. Reported here are tests which were instrumented by Indian Head investigators. Carbon-composite resistor-gauges were used to quantify the shock profile delivered to the surface of the meat. PVDF and resistor gauges (used later in lieu of PVDF) provided data on the pressure-time history at the meat/steel interface. Resulting changes in tenderization were correlated with increasing shock duration, which were provided by various explosives.
The Strongest 40 keV Electron Acceleration By ICME-driven Shocks At 1 AU
NASA Astrophysics Data System (ADS)
Yang, L.; Wang, L.; Li, G.; Wimmer-Schweingruber, R. F.; He, J.; Tu, C. Y.; Bale, S. D.
2017-12-01
Here we present a comprehensive case study of the in situ electron acceleration at the two ICME-driven shocks observed by WIND/3DP on February 11, 2000 and July 22, 2004. For the 11 February 2000 shock (the 22 July 2004 shock), the shocked electrons in the downstream show significant flux enhancements over the ambient solar wind electrons at energies up to 40 keV (66 keV) with a 6.0 times (1.9 times) ehancment at 40 keV, the strongest among all the quasi-perpendicular (quasi-parallel) ICME-driven shocks observed by the WIND spacecraft at 1 AU from 1995 through 2014. We find that in both shocks, the shocked electron fluxes at 0.5-40 keV fit well to a double power-law spectrum, J ˜ E-β, bending up at ˜2 keV. In the downstream, these shocked electrons show stronger fluxes in the anti-sunward direction, but their enhancement over the ambient fluxes peaks near 90° pitch angle (PA). For the 11 February 2000 shock, the electron spectral index, β, appears to not vary with the electron PA, while for the 22 July 2004 shock, β roughly decreases from the anti-sunward PA direction to the sunward PA direction. All of these spectral indexes are strongly larger than the theoretical prediction of diffusive shock acceleration. At energies above (below) 2 keV, however, the shocked electron β is similar to the solar wind superhalo (halo) electrons observed at quiet times. These results suggest that the electron acceleration at the ICME-driven shocks at 1 AU may favor the shock drift acceleration, and the superthermal electrons accelerated by the interplanetary shocks may contribute to the formation of the halo and superhalo electron populations in the solar wind.
Weibel instability mediated collisionless shocks using intense laser-driven plasmas
NASA Astrophysics Data System (ADS)
Palaniyappan, Sasi; Huang, Chengkun; Gautier, Donald; Fernandez, Juan; Ma, Wenjun; Schreiber, Jorg; LANL Collaboration; LMU Team
2016-10-01
The origin of cosmic rays remains a long-standing challenge in astrophysics and continues to fascinate physicists. It is believed that ``collisionless shocks'' - where the particle Coulomb mean free path is much larger that the shock transition - are a dominant source of energetic cosmic rays. These shocks are ubiquitous in astrophysical environments such as gamma-ray bursts, supernova remnants, pulsar wind nebula and coronal mass ejections from the sun. Several spacecraft observations have revealed acceleration of charged particles, mostly electrons, to very high energies with in the shock front. There is now also clear observational evidence that supernova remnant shocks accelerate both protons and electrons. The understanding of the microphysics behind collisionless shocks and their particle acceleration is tightly related with nonlinear basic plasma processes and remains a grand challenge. In this poster, we will present results from recent experiments at the LANL Trident laser facility studying collisionless shocks using intense ps laser (80J, 650 fs - peak intensity of 1020 W/cm2) driven near-critical plasmas using carbon nanotube foam targets. A second short pulse laser driven protons from few microns thick aluminum foil is used to image the laser-driven plasma.
In-Situ Silver Acetylide Silver Nitrate Explosive Deposition Measurements Using X-Ray Fluorescence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Covert, Timothy Todd
2014-09-01
The Light Initiated High Explosive facility utilized a spray deposited coating of silver acetylide - silver nitrate explosive to impart a mechanical shock into targets of interest. A diagnostic was required to measure the explosive deposition in - situ. An X - ray fluorescence spectrometer was deployed at the facility. A measurement methodology was developed to measure the explosive quantity with sufficient accuracy. Through the use of a tin reference material under the silver based explosive, a field calibration relationship has been developed with a standard deviation of 3.2 % . The effect of the inserted tin material into themore » experiment configuration has been explored.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhongyu; Shao, Lin, E-mail: lshao@tamu.edu; Chen, Di
Strong electronic stopping power of swift ions in a semiconducting or insulating substrate can lead to localized electron stripping. The subsequent repulsive interactions among charged target atoms can cause Coulomb explosion. Using molecular dynamics simulation, we simulate Coulomb explosion in silicon by introducing an ionization pulse lasting for different periods, and at different substrate temperatures. We find that the longer the pulse period, the larger the melting radius. The observation can be explained by a critical energy density model assuming that melting required thermal energy density is a constant value and the total thermal energy gained from Coulomb explosion ismore » linearly proportional to the ionization period. Our studies also show that melting radius is larger at higher substrate temperatures. The temperature effect is explained due to a longer structural relaxation above the melting temperature at original ionization boundary due to lower heat dissipation rates. Furthermore, simulations show the formation of shock waves, created due to the compression from the melting core.« less
Compaction shock dissipation in low density granular explosive
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Pratap T.; Gonthier, Keith A., E-mail: gonthier@me.lsu.edu; Chakravarthy, Sunada
The microstructure of granular explosives can affect dissipative heating within compaction shocks that can trigger combustion and initiate detonation. Because initiation occurs over distances that are much larger than the mean particle size, homogenized (macroscale) theories are often used to describe local thermodynamic states within and behind shocks that are regarded as the average manifestation of thermodynamic fields at the particle scale. In this paper, mesoscale modeling and simulation are used to examine how the initial packing density of granular HMX (C{sub 4}H{sub 8}N{sub 8}O{sub 8}) C{sub 4}H{sub 8}N{sub 8}O{sub 8} having a narrow particle size distribution influences dissipation withinmore » resolved, planar compaction shocks. The model tracks the evolution of thermomechanical fields within large ensembles of particles due to pore collapse. Effective shock profiles, obtained by averaging mesoscale fields over space and time, are compared with those given by an independent macroscale compaction theory that predicts the variation in effective thermomechanical fields within shocks due to an imbalance between the solid pressure and a configurational stress. Reducing packing density is shown to reduce the dissipation rate within shocks but increase the integrated dissipated work over shock rise times, which is indicative of enhanced sensitivity. In all cases, dissipated work is related to shock pressure by a density-dependent power law, and shock rise time is related to pressure by a power law having an exponent of negative one.« less
Impact of surface energy on the shock properties of granular explosives.
Bidault, X; Pineau, N
2018-01-21
This paper presents the first part of a two-fold molecular dynamics study of the impact of the granularity on the shock properties of high explosives. Recent experimental studies show that the granularity can have a substantial impact on the properties of detonation products {i.e., variations in the size distributions of detonation nanodiamonds [V. Pichot et al., Sci. Rep. 3, 2159 (2013)]}. These variations can have two origins: the surface energy, which is a priori enhanced from micro- to nano-scale, and the porosity induced by the granular structure. In this first report, we study the impact of the surface-energy contribution on the inert shock compression of TATB, TNT, α-RDX, and β-HMX nano-grains (triaminotrinitrobenzene, trinitrotoluene, hexogen and octogen, respectively). We compute the radius-dependent surface energy and combine it with an ab initio-based equation of state in order to obtain the resulting shock properties through the Rankine-Hugoniot relations. We find that the enhancement of the surface energy results in a moderate overheating under shock compression. This contribution is minor with respect to porosity, when compared to a simple macroscopic model. This result motivates further atomistic studies on the impact of nanoporosity networks on the shock properties.
Shock Desensitization Effect in the STANAG 4363 Confined Explosive Component Water Gap Test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lefrancois, A S; Lee, R S; Tarver, C M
2006-06-07
The Explosive Component Water Gap Test (ECWGT) in the Stanag 4363 has been recently investigated to assess the shock sensitivity of lead and booster components having a diameter less than 5 mm. For that purpose, Pentaerythritol Tetranitrate (PETN) based pellets having a height and diameter of 3 mm have been confined by a steel annulus of wall thickness 1-3.5 mm and with the same height as the pellet. 1-mm wall thickness makes the component more sensitive (larger gap). As the wall thickness is increased to 2-mm, the gap increases a lesser amount, but when the wall thickness is increased tomore » 3.5-mm a decrease in sensitivity is observed (smaller gap). This decrease of the water gap has been reproduced experimentally by many nations. Numerical simulations using Ignition and Growth model have been performed in this paper and have reproduced the experimental results for the steel confinement up to 2 mm thick and aluminum confinement. A stronger re-shock following the first input shock from the water is focusing on the axis due to the confinement. The double shock configuration is well-known to lead in some cases to shock desensitization.« less
Impact of surface energy on the shock properties of granular explosives
NASA Astrophysics Data System (ADS)
Bidault, X.; Pineau, N.
2018-01-01
This paper presents the first part of a two-fold molecular dynamics study of the impact of the granularity on the shock properties of high explosives. Recent experimental studies show that the granularity can have a substantial impact on the properties of detonation products {i.e., variations in the size distributions of detonation nanodiamonds [V. Pichot et al., Sci. Rep. 3, 2159 (2013)]}. These variations can have two origins: the surface energy, which is a priori enhanced from micro- to nano-scale, and the porosity induced by the granular structure. In this first report, we study the impact of the surface-energy contribution on the inert shock compression of TATB, TNT, α-RDX, and β-HMX nano-grains (triaminotrinitrobenzene, trinitrotoluene, hexogen and octogen, respectively). We compute the radius-dependent surface energy and combine it with an ab initio-based equation of state in order to obtain the resulting shock properties through the Rankine-Hugoniot relations. We find that the enhancement of the surface energy results in a moderate overheating under shock compression. This contribution is minor with respect to porosity, when compared to a simple macroscopic model. This result motivates further atomistic studies on the impact of nanoporosity networks on the shock properties.
Picosecond time scale dynamics of short pulse laser-driven shocks in tin
NASA Astrophysics Data System (ADS)
Grigsby, W.; Bowes, B. T.; Dalton, D. A.; Bernstein, A. C.; Bless, S.; Downer, M. C.; Taleff, E.; Colvin, J.; Ditmire, T.
2009-05-01
The dynamics of high strain rate shock waves driven by a subnanosecond laser pulse in thin tin slabs have been investigated. These shocks, with pressure up to 1 Mbar, have been diagnosed with an 800 nm wavelength ultrafast laser pulse in a pump-probe configuration, which measured reflectivity and two-dimensional interferometry of the expanding rear surface. Time-resolved rear surface expansion data suggest that we reached pressures necessary to shock melt tin upon compression. Reflectivity measurements, however, show an anomalously high drop in the tin reflectivity for free standing foils, which can be attributed to microparticle formation at the back surface when the laser-driven shock releases.
Shock Initiation Behavior of PBXN-9 Determined by Gas Gun Experiments
NASA Astrophysics Data System (ADS)
Sanchez, N. J.; Gustavsen, R. L.; Hooks, D. E.
2009-12-01
The shock to detonation transition was evaluated in the HMX based explosive PBXN-9 by a series of light-gas gun experiments. PBXN-9 consists of 92 wt% HMX, 2wt% Hycar 4054 & 6 wt&percent; dioctyl adipate with a density of 1.75 g/cm3 and 0.8&% voids. The experiments were designed to understand the specifics of wave evolution and the run distance to detonation as a function of input shock pressure. These experiments were conducted on gas guns in order to vary the input shock pressure accurately. The primary diagnostics were embedded magnetic gauges, which are based on Faraday's law of induction, and Photon Doppler Velocimetry (PDV). The run distance to detonation vs. shock pressure, or "Pop plot," was redefined as log(X) = 2.14-1.82 log (P), which is substantially different than previous data. The Hugoniot was refined as Us = 2.32+2.211 Up. This data will be useful for the development of predictive models for the safety and performance of PBXN-9 along with providing increased understanding of HMX based explosives in varying formulations.
Shock initiation behavior of PBXN-9 determined by gas gun experiments
NASA Astrophysics Data System (ADS)
Sanchez, Nathaniel; Gustavsen, Richard; Hooks, Daniel
2009-06-01
The shock to detonation transition was evaluated in the HMX based explosive PBXN-9 by a series of light-gas gun experiments. PBXN-9 consists of 92 wt% HMX, 2wt% Hycar 4054 & 6 wt% dioctyl adipate with a density of 1.75 g/cm^3 and 0.8% voids. The experiments were designed to understand the specifics of wave evolution and the run distance to detonation as a function of input shock pressure. These experiments were conducted on gas guns in order to vary the input shock pressure accurately. The primary diagnostics are embedded magnetic gauges which are based on Faraday's law of induction along with photon Doppler velocimetry (PDV). The run distance to detonation vs. shock pressure, or ``Pop plot,'' was redefined as log (X*) = 2.14 -- 1.82 log (P), which is substantially different than previous data. The Hugoniot was refined as Us = 2.32 + 2.21 Up. This data will be useful for the development of predictive models for the safety and performance of PBXN-9 in addition to providing an increased understanding of HMX based explosives in varying formulations.
Collapsing cavities in reactive and nonreactive media
NASA Astrophysics Data System (ADS)
Bourne, Neil K.; Field, John E.
1991-04-01
This paper presents results of a high-speed photographic study of cavities collapsed asymmetrically by shocks of strengths in the range 0.26 GPa to 3.5 GPa. Two-dimensional collapses of cavity configurations punched into a 12% by weight gelatine in water sheet, and an ammonium nitrate/sodium nitrate (AN/SN) emulsion explosive were photographed using schlieren optics. The single cavity collapses were characterized by the velocity of the liquid jet formed by the upstream wall as it was accelerated by the shock and by the time taken for the cavity to collapse. The shock pressure did not qualitatively affect the collapse behaviour but jet velocities were found to exceed incident shock velocities at higher pressures. The more violent collapses induced light emission from the compressed gas in the cavity. When an array of cavities collapsed, a wave, characterized by the particle velocity in the medium, the cavity diameter and the inter-cavity spacing, was found to run through the array. When such an array was created within an emulsion explosive, ignition of the reactive matrix occurred ahead of the collapse wave when the incident shock was strong.
Simulation of Deformation, Momentum and Energy Coupling Particles Deformed by Intense Shocks
NASA Astrophysics Data System (ADS)
Lieberthal, B.; Stewart, D. S.; Bdzil, J. B.; Najjar, F. M.; Balachandar, S.; Ling, Y.
2011-11-01
Modern energetic materials have embedded solids and inerts in an explosive matrix. A detonation in condensed phase materials, generates intense shocks that deform particles as the incident shock diffracts around them. The post-shock flow generates a wake behind the particle that is influenced by the shape changes of the particle. The gasdynamic flow in the explosive products and its interaction with the deformation of the particle must be treated simultaneously. Direct numerical simulations are carried out that vary the particle-to-surrounding density and impedance ratios to consider heavier and lighter particle. The vorticity deposited on the interface due to shock interaction with the particle, the resulting particle deformation and the net momentum and energy transferred to the particle, on the acoustic and longer viscous time scale are considered. The LLNL multi-physics hydrodynamic code ALE3D is used to carry out the simulations. BL, DSS and JBB supported by AFRL/RW AF FA8651-10-1-0004 & DTRA, HDTRA1-10-1-0020 Off Campus. FMN's work supported by the U.S. DOE/ LLNL, Contract DE-AC52-07NA27344. LLNL-ABS-491794.
Self-similar dynamic converging shocks - I. An isothermal gas sphere with self-gravity
NASA Astrophysics Data System (ADS)
Lou, Yu-Qing; Shi, Chun-Hui
2014-07-01
We explore novel self-similar dynamic evolution of converging spherical shocks in a self-gravitating isothermal gas under conceivable astrophysical situations. The construction of such converging shocks involves a time-reversal operation on feasible flow profiles in self-similar expansion with a proper care for the increasing direction of the specific entropy. Pioneered by Guderley since 1942 but without self-gravity so far, self-similar converging shocks are important for implosion processes in aerodynamics, combustion, and inertial fusion. Self-gravity necessarily plays a key role for grossly spherical structures in very broad contexts of astrophysics and cosmology, such as planets, stars, molecular clouds (cores), compact objects, planetary nebulae, supernovae, gamma-ray bursts, supernova remnants, globular clusters, galactic bulges, elliptical galaxies, clusters of galaxies as well as relatively hollow cavity or bubble structures on diverse spatial and temporal scales. Large-scale dynamic flows associated with such quasi-spherical systems (including collapses, accretions, fall-backs, winds and outflows, explosions, etc.) in their initiation, formation, and evolution are likely encounter converging spherical shocks at times. Our formalism lays an important theoretical basis for pertinent astrophysical and cosmological applications of various converging shock solutions and for developing and calibrating numerical codes. As examples, we describe converging shock triggered star formation, supernova explosions, and void collapses.
3D Simulations of Supernova Remnants from Type Ia Supernova Models
NASA Astrophysics Data System (ADS)
Johnson, Heather; Reynolds, S. P.; Frohlich, C.; Blondin, J. M.
2014-01-01
Type Ia supernovae (SNe) originate from thermonuclear explosions of white dwarfs. A great deal is still unknown about the explosion mechanisms, particularly the degree of asymmetry. However, Type Ia supernova remnants (SNRs) can bear the imprint of asymmetry long after the explosion. A SNR of interest is G1.9+0.3, the youngest Galactic SNR, which demonstrates an unusual spatial distribution of elements in the ejecta. While its X-ray spectrum is dominated by synchrotron emission, spectral lines of highly ionized Si, S, and Fe are seen in a few locations, with Fe near the edge of the remnant and with strongly varying Fe/Si ratios. An asymmetric explosion within the white dwarf progenitor may be necessary to explain these unusual features of G1.9+0.3, in particular the shocked Fe at large radii. We use the VH-1 hydrodynamics code to evolve initial Type Ia explosion models in 1, 2, and 3 dimensions at an age of 100 seconds provided by other researchers to study asymmetry, the ignition properties, and the nucleosynthesis resulting from these explosions. We follow the evolution of these models interacting with a uniform external medium to a few hundred years in age. We find the abundance and location of ejecta elements from our models to be inconsistent with the observations of G1.9+0.3; while our models show asymmetric element distributions, we find no tendency for iron-group elements to be found beyond intermediate-mass elements, or for significant iron to be reverse-shocked at all at the age of G1.9+0.3. We compare the amounts of shocked iron-group and intermediate-mass elements as a function of time in the different models. Some new kind of explosion asymmetry may be required to explain G1.9+0.3. This work was performed as part of NC State University's Undergraduate Research in Computational Astrophysics (URCA) program, an REU program supported by the National Science Foundation through award AST-1032736.
Experimental model of the role of cracks in the mechanism of explosive eruption of St. Helens-80
NASA Astrophysics Data System (ADS)
Kedrinskii, V. K.; Skulkin, A. A.
2017-07-01
A unique mini model of explosive volcano eruption through a formed system of cracks is developed. The process of crack formation and development is simulated by electric explosion of a conductor in a plate of optically transparent organic glass submerged into water. The explosion of a wire aligned with a through hole in the plate generates shock-wave loading along the plate and forms cracks. The fundamental role of high velocity flow in crack wedging by a high power hydrodynamic flow of a pulsating explosion cavity has been demonstrated.
Multi-dimensional simulations of the expanding supernova remnant of SN 1987A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potter, T. M.; Staveley-Smith, L.; Reville, B.
The expanding remnant from SN 1987A is an excellent laboratory for investigating the physics of supernovae explosions. There is still a large number of outstanding questions, such as the reason for the asymmetric radio morphology, the structure of the pre-supernova environment, and the efficiency of particle acceleration at the supernova shock. We explore these questions using three-dimensional simulations of the expanding remnant between days 820 and 10,000 after the supernova. We combine a hydrodynamical simulation with semi-analytic treatments of diffusive shock acceleration and magnetic field amplification to derive radio emission as part of an inverse problem. Simulations show that anmore » asymmetric explosion, combined with magnetic field amplification at the expanding shock, is able to replicate the persistent one-sided radio morphology of the remnant. We use an asymmetric Truelove and McKee progenitor with an envelope mass of 10 M {sub ☉} and an energy of 1.5 × 10{sup 44} J. A termination shock in the progenitor's stellar wind at a distance of 0.''43-0.''51 provides a good fit to the turn on of radio emission around day 1200. For the H II region, a minimum distance of 0.''63 ± 0.''01 and maximum particle number density of (7.11 ± 1.78) × 10{sup 7} m{sup –3} produces a good fit to the evolving average radius and velocity of the expanding shocks from day 2000 to day 7000 after explosion. The model predicts a noticeable reduction, and possibly a temporary reversal, in the asymmetric radio morphology of the remnant after day 7000, when the forward shock left the eastern lobe of the equatorial ring.« less
Effects of high shock pressures and pore morphology on hot spot mechanisms in HMX
NASA Astrophysics Data System (ADS)
Springer, H. K.; Tarver, C. M.; Bastea, S.
2017-01-01
The shock initiation and detonation behavior of heterogeneous solid explosives is governed by its microstructure and reactive properties. New additive manufacturing techniques offer unprecedented control of explosive microstructures previously impossible, enabling us to develop novel explosives with tailored shock sensitivity and detonation properties. Since microstructure-performance relationships are not well established for explosives, there is little material design guidance for these manufacturing techniques. In this study, we explore the effects of high shock pressures (15-38 GPa) with long shock durations and different pore morphologies on hot spot mechanisms in HMX. HMX is chosen as the model material because we have experimental data on many of the chemical-thermal-mechanical properties required for pore collapse simulations. Our simulations are performed using the multi-physics arbitrary Lagrangian Eulerian finite element hydrocode, ALE3D, with Cheetah-based models for the unreacted and the product equation-of-states. We use a temperature-dependent specific heat with the unreacted equation-of-state and a temperature-dependent viscosity model to ensure accurate shock temperatures for subsequent chemistry. The Lindemann Law model is used for shock melting in HMX. In contrast to previous pore collapse studies at lower shock pressures (≤10 GPa) in HMX and shorter post-collapse burning times, our calculations show that shock melting occurs above 15 GPa due to higher bulk heating and a prominent elongated ("jet-like") hot spot region forms at later times. The combination of the elongated, post-collapse hot spot region and the higher bulk heating with increasing pressure dramatically increases the growth rate of reaction. Our calculations show that the reaction rate, dF/dt, increases with increasing shock pressure. We decompose the reaction rate into ignition ((dF/dt)ig) and growth ((dF/dt)gr) phases to better analyze our results. We define the ignition phase to primarily include pore collapse and growth phase to primarily include post-collapse grain burning. We are able to track late-time, post-collapse burning due to the unique loading conditions employed in these calculations. We find that (dF/dt)gr > (dF/dt)ig for all pressures considered. (dF/dt)gr changes more significantly from 25 to 38 GPa (from 0.05/µs to >10-100/µs) than from 15 to 25 GPa (from 0.005/µs to 0.05/µs). There is a three order-of-magnitude difference in the reaction from 15 to 38 GPa just after pore collapse. This is qualitatively consistent with fitting the (macroscopic) Ignition and Growth model to high pressure shock initiation data, where much larger reaction fractions are needed to capture the early stages of reaction. Calculated burn rates demonstrate better agreement with data at intermediate times in the growth phase for 15 to 25 GPa and late times for 30 GPa then at any time in the growth phase for 38 GPa. Our calculations are much higher than burn rate data at the earliest times in the growth phase for all pressures, which may reflect the higher localized pressures and temperatures just after pore collapse in the ignition phase. Our calculations with spherical, conical, and elliptical pores show that the influence of morphology on reaction rate is pressure dependent and the most influential pore shapes at lower pressures aren't the same at higher pressures in the regime studied. Altogether these studies provide the basis for developing microstructure-aware models that can be used to design new explosives with optimal performance-safety characteristics. Such models can be used to guide additive manufacturing of explosives and fully exploit their disruptive nature.
Application of NASTRAN/COSMIC in the analysis of ship structures to underwater explosion shock
NASA Technical Reports Server (NTRS)
Fallon, D. J.; Costanzo, F. A.; Handleton, R. T.; Camp, G. C.; Smith, D. C.
1987-01-01
The application of NASTRAN/COSMIC in predicting the transient motion of ship structures to underwater, non-contact explosions is discussed. Examples illustrate the finite element models, mathematical formulations of loading functions and, where available, comparisons between analytical and experimental results.
2013-07-01
composition C-4 (C4), a polymer-bonded explosive (PBXN-109), and nitromethane (NM). Each charge diameter (CD) is assumed to be 17.46 cm (equivalent to a 10-lb... explosive detonates, the rapid expansion of reaction gases generates a shock wave that propagates into the surrounding medium. The pressure history at a...spherical explosive charge suspended in air. A comparison of the results obtained using CTH are made to ones generated using the Friedlander
Initiation of Detonation in Multiple Shock-Compressed Liquid Explosives
NASA Astrophysics Data System (ADS)
Yoshinaka, A. C.; Zhang, F.; Petel, O. E.; Higgins, A. J.
2006-07-01
Initiation and resulting propagation of detonation via multiple shock reverberations between two high impedance plates has been investigated in amine-sensitized nitromethane. Experiments were designed so that the first reflected shock strength was below the critical value for initiation found previously. Luminosity combined with a distinct pressure hump indicated onset of reaction and successful initiation after double or triple shock reflection off the bottom plate. Final temperature estimates for double or triple shock reflection immediately before initiation lie between 700-720 K, consistent with those found previously for both incident and singly reflected shock initiation.
Test Operations Procedure (TOP) 10-2-400 Open End Compressed Gas Driven Shock Tube
gas-driven shock tube. Procedures are provided for instrumentation, test item positioning, estimation of key test parameters, operation of the shock...tube, data collection, and reporting. The procedures in this document are based on the use of helium gas and Mylar film diaphragms.
Experimental Plans for Subsystems of a Shock Wave Driven Gas Core Reactor
NASA Technical Reports Server (NTRS)
Kazeminezhad, F.; Anghai, S.
2008-01-01
This Contractor Report proposes a number of plans for experiments on subsystems of a shock wave driven pulsed magnetic induction gas core reactor (PMI-GCR, or PMD-GCR pulsed magnet driven gas core reactor). Computer models of shock generation and collision in a large-scale PMI-GCR shock tube have been performed. Based upon the simulation results a number of issues arose that can only be addressed adequately by capturing experimental data on high pressure (approx.1 atmosphere or greater) partial plasma shock wave effects in large bore shock tubes ( 10 cm radius). There are three main subsystems that are of immediate interest (for appraisal of the concept viability). These are (1) the shock generation in a high pressure gas using either a plasma thruster or pulsed high magnetic field, (2) collision of MHD or gas dynamic shocks, their interaction time, and collision pile-up region thickness, and (3) magnetic flux compression power generation (not included here).
NASA Astrophysics Data System (ADS)
Gambino, James; Tarver, Craig; Springer, H. Keo; White, Bradley; Fried, Laurence
2017-06-01
We present a novel method for optimizing parameters of the Ignition and Growth reactive flow (I&G) model for high explosives. The I&G model can yield accurate predictions of experimental observations. However, calibrating the model is a time-consuming task especially with multiple experiments. In this study, we couple the differential evolution global optimization algorithm to simulations of shock initiation experiments in the multi-physics code ALE3D. We develop parameter sets for HMX based explosives LX-07 and LX-10. The optimization finds the I&G model parameters that globally minimize the difference between calculated and experimental shock time of arrival at embedded pressure gauges. This work was performed under the auspices of the U.S. DOE by LLNL under contract DE-AC52-07NA27344. LLNS, LLC LLNL-ABS- 724898.
Shock initiation of nitromethane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, C.S.; Holmes, N.C.
1993-12-31
The shock initiation processes of nitromethane have been examined by using a fast time-resolved emission spectroscopy at a two-stage gas gun. a broad, but strong emission has been observed in a spectral range between 350 and 700 nm from shocked nitromethane above 9 GPa. The temporal profile suggests that shocked nitromethane detonates through three characteristic periods, namely an induction period, a hock initiation period, and a thermal explosion period. This paper discusses temporal and chemical characteristics of these periods and present the temperature of the shock-detonating nitromethane at pressures between 9 and 15 GPa.
Seismic Observation of the 26 March 2010 Sinking of the South Korean Naval Vessel Cheonanham
NASA Astrophysics Data System (ADS)
Rhee, S.; Hong, T.
2011-12-01
A South Korean naval vessel, Cheonanham, sank at ~2.5 km southwest from Bakryeong Island (37.929°N, 124.601°E) in 21:22 local time (12:22 UTC) on 26 March 2010. Only 58 people out of the 104 crew members were rescued from the incident, and the other 46 sailors were dead or missing in the incident. Three plausible causes of the sinking were raised: (1) striking by an explosive source (torpedo or mine), (2) shear breakage due to strain accumulation by fatigue, and (3) collision with a sunken rock. The incident was recorded as an M1.5 event at local seismic stations. We analyze local seismic records and investigate the source properties. The event location is determined not only by a usual location method, but also using low-frequency horizontal polarization analysis. The determined event location agrees with the reported sinking location. The S-wave amplitudes are found to be comparable to the P-wave amplitudes. Seismic waves coupled from shock waves are observed, which allows us to constrain the epicentral distance and explosion-source feature. The coupled shock waves have a dominant frequency of ~32 Hz. The shock waves and high P/S amplitude ratios suggest an underwater explosion that is responsible for the vessel sinking. The spectral contents of P waves allows us to constrain the source depth in the water. We infer the depth of the explosion in the sea by comparing the observed spectra with synthetic spectra. We compare the seismic features with those from nuclear explosions.
NASA Astrophysics Data System (ADS)
Monfared, S. K.; Oró, D. M.; Grover, M.; Hammerberg, J. E.; LaLone, B. M.; Pack, C. L.; Schauer, M. M.; Stevens, G. D.; Stone, J. B.; Turley, W. D.; Buttler, W. T.
2014-08-01
We have assembled together our ejecta measurements from explosively shocked tin acquired over a period of about ten years. The tin was cast at 0.99995 purity, and all of the tin targets or samples were shocked to loading pressures of about 27 GPa, allowing meaningful comparisons. The collected data are markedly consistent, and because the total ejected mass scales linearly with the perturbations amplitudes they can be used to estimate how much total Sn mass will be ejected from explosively shocked Sn, at similar loading pressures, based on the surface perturbation parameters of wavelength and amplitude. Most of the data were collected from periodic isosceles shapes that approximate sinusoidal perturbations. Importantly, however, we find that not all periodic perturbations behave similarly. For example, we observed that sawtooth (right triangular) perturbations eject more mass than an isosceles perturbation of similar depth and wavelength, demonstrating that masses ejected from irregular shaped perturbations cannot be normalized to the cross-sectional areas of the perturbations.
Shock Initiation of Thermally Expanded TATB
NASA Astrophysics Data System (ADS)
Mulford, Roberta; Swift, Damian
2011-06-01
The plastic-bonded explosive PBX-9502 undergoes unusual hysteretic thermal expansion, or ``ratchet growth'' as a consequence of the uniaxial thermal expansion of the graphitic structure of the major component, TATB explosive. Upon thermal cycling, the density of the material can be reduced by as much as 9%, resulting in a distinct increase in the shock sensitivity of the solid. Run distances to detonation have been measured in thermally expanded samples of PBX-9502, using embedded particle velocity gauges and shock tracker gauges. Uniaxial shocks were generated using a light gas gun, to provide a repeatable stimulus for initiation of detonation. We have applied a porosity model to adjust standard Pop plot data to the reduced density of our samples, to investigate whether the sensitivity of the PBX 9502 increases ideally with the decreasing density, or whether the microscopically non-uniform expansion that occurs during ``ratchet growth'' leads to abnormal sensitivity, possibly as a result of cracking or debonding from the binder, as observed in micrographs of the sample.
Characterizing detonator output using dynamic witness plates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, Michael John; Adrian, Ronald J
2009-01-01
A sub-microsecond, time-resolved micro-particle-image velocimetry (PIV) system is developed to investigate the output of explosive detonators. Detonator output is directed into a transparent solid that serves as a dynamic witness plate and instantaneous shock and material velocities are measured in a two-dimensional plane cutting through the shock wave as it propagates through the solid. For the case of unloaded initiators (e.g. exploding bridge wires, exploding foil initiators, etc.) the witness plate serves as a surrogate for the explosive material that would normally be detonated. The velocity-field measurements quantify the velocity of the shocked material and visualize the geometry of themore » shocked region. Furthermore, the time-evolution of the velocity-field can be measured at intervals as small as 10 ns using the PIV system. Current experimental results of unloaded exploding bridge wire output in polydimethylsiloxane (PDMS) witness plates demonstrate 20 MHz velocity-field sampling just 300 ns after initiation of the wire.« less
A study of phase explosion of metal using high power Nd:YAG laser ablation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoh, Jack J.; Lee, H. H.; Choi, J. H.
2007-12-12
The interaction of high-power pulsed-laser beam with metal targets in air from 1.06 {mu}m, 5 ns, 3 J/pulse max, Nd:YAG pulsed laser is investigated together with hydrodynamic theories of laser-supported detonation (LSD) wave and multi-material reactive Euler equations. The high speed blast wave generated by the laser ablation of metal reaches maximum velocity of several thousand meters per second. The apparently similar flow conditions to those of reactive shock wave allow one to apply the equations of motion for energetic materials and to understand the explosive behavior of metal vaporization upon laser ablation. The characteristic time at which planar tomore » spherical wave transition occurs is confirmed at low (20 mJ/pulse) to higher (200 mJ/pulse) beam intensities. The flow structure behind the leading shock wave during the early planar shock state is confirmed by the high-resolution multi-material hydrocode originally developed for shock compression of condensed matter.« less
Shock Response and Explosive Launch of Compacted Reactive Material
NASA Astrophysics Data System (ADS)
Molitoris, John; Gash, Alexander; Garza, Raul; Gagliardi, Franco; Tringe, Joseph; Batteux, Jan; Souers, P.; HEAF Team
2013-06-01
We have performed a series of experiments investigating the detailed dynamic response of compacted reactive material to shock and blast. Here a granular reactive formulation (Fe2O3/Al based thermite) was pressed into a solid cylinder of material and mated to a high-explosive charge of the same diameter. Detonation of the charge transmitted a shock wave to the thermite cylinder and imparted momentum launching it in the direction of the detonation. High-resolution time sequence radiography was used to image the dynamic response of the thermite. This technique allowed a detailed investigation of material deformation in addition to changes in the internal structure and indications of reactivity. The effect of variations in the initial density of the pressed thermite was also examined. We find that these pressed thermites behave much like solid metals during shock transit, then respond much differently. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Modelling shock to detonation transition in PETN using HERMES and CREST
NASA Astrophysics Data System (ADS)
Maheswaran, Mary-Ann; Curtis, John; Reaugh, Jack
2013-06-01
The High Explosive Response to MEchanical Stimulus (HERMES) model has been developed to address High Explosive Violent Response (HEVR). It is a material model for use in the both the LS-DYNA finite element and ALE3D hydrocodes that enables the modelling of both shock to detonation (SDT) and deflagration to detonation (DDT) transition. As part of its ongoing development and application, model parameters for the explosive PETN were found by using experimental data for PETN at different densities. PETN was selected because of the availability of both SDT and DDT data. To model SDT and DDT, HERMES uses a subset of the CREST reactive burn model with the Mie-Gruneisen equation of state (EOS) for the unreacted explosive and a look-up table for the gas EOS as generated by Cheetah. The unreacted EOS parameters were found first by calculating the principal isentrope of unreacted PETN at TMD from PETN shock Hugoniot data. Then Pop-plot data for PETN was used to fit the CREST parameters at each density. The resulting new PETN HERMES material model provides a platform for further investigations of SDT and DDT in low density PETN powder. JER's activity was performed under the auspices of the US DOE by LLNL under Contract DE-AC52-07NA27344, and partially funded by the Joint US DoD/DOE Munitions Technology Development Program.
Theory of the corrugation instability of a piston-driven shock wave.
Bates, J W
2015-01-01
We analyze the two-dimensional stability of a shock wave driven by a steadily moving corrugated piston in an inviscid fluid with an arbitrary equation of state. For h≤-1 or h>h(c), where h is the D'yakov parameter and h(c) is the Kontorovich limit, we find that small perturbations on the shock front are unstable and grow--at first quadratically and later linearly--with time. Such instabilities are associated with nonequilibrium fluid states and imply a nonunique solution to the hydrodynamic equations. The above criteria are consistent with instability limits observed in shock-tube experiments involving ionizing and dissociating gases and may have important implications for driven shocks in laser-fusion, astrophysical, and/or detonation studies.
Down-Bore Two-Laser Heterodyne Velocimetry of an Implosion-Driven Hypervelocity Launcher
NASA Astrophysics Data System (ADS)
Hildebrand, Myles; Huneault, Justin; Loiseau, Jason; Higgins, Andrew J.
2015-06-01
The implosion-driven launcher uses explosives to shock-compress helium, driving well-characterized projectiles to velocities exceeding 10 km/s. The masses of projectiles range between 0.1 - 10 g, and the design shows excellent scalability, reaching similar velocities across different projectile sizes. In the past, velocity measurements have been limited to muzzle velocity obtained via a high-speed videography upon the projectile exiting the launch tube. Recently, Photonic Doppler Velocimetry (PDV) has demonstrated the ability to continuously measure in-bore velocity, even in the presence of significant blow-by of high temperature helium propellant past the projectile. While a single-laser PDV is limited to approximately 8 km/s, a two-laser PDV system is developed that uses two lasers operating near 1550 nm to provide velocity measurement capabilities up to 16 km/s. The two laser PDV system is used to obtain a continuous velocity history of the projectile throughout the entire launch cycle. These continuous velocity data are used to validate models of the launcher cycle and compare different advanced concepts aimed at increasing the projectile velocity to well beyond 10 km/s.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Short, Mark; Quirk, James J; Kiyanda, Charles B
2010-01-01
Non-ideal high explosives are typically porous, low-density materials with a low detonation velocity (3--5 km/s) and long detonation reaction zone ({approx} cms). As a result, the interaction of a non-ideal high explosive with an inert confiner can be markedly different than for a conventional high explosive. Issues arise, for example, with light stiff confiners where the confiner can drive the high explosive (HE) through a Prandtl-Meyer fan at the HE/confiner interface rather than the HE driving the confiner. For a non-ideal high explosive confined by a high sound speed inert such that the detonation velocity is lower than the inertmore » sound speed, the flow is subsonic and thus shockless in the confiner. In such cases, the standard detonation shock dynamics methodology, which requires a positive edge-angle be specified at the HE/confiner interface in order that the detonation shape be divergent, cannot be directly utilized. In order to study how detonation shock dynamics can be utilized in such cases, numerical simulations of the detonation of ammonium nitrate-fuel oil (ANFO) confined by aluminum 6061 are conducted.« less
DUSTY EXPLOSIONS FROM DUSTY PROGENITORS: THE PHYSICS OF SN 2008S AND THE 2008 NGC 300-OT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kochanek, C. S.
2011-11-01
SN 2008S and the 2008 NGC 300-OT were explosive transients of stars self-obscured by very dense, dusty stellar winds. An explosive transient with an unobserved shock breakout luminosity of order 10{sup 10} L{sub sun} is required to render the transients little obscured and visible in the optical at their peaks. Such a large breakout luminosity then implies that the progenitor stars were cool, red supergiants, most probably {approx}9 M{sub sun} extreme asymptotic giant branch stars. As the shocks generated by the explosions propagate outward through the dense wind, they produce a shock luminosity in soft X-rays that powers the long-livedmore » luminosity of the transients. Unlike typical cases of transients exploding into a surrounding circumstellar medium, the progenitor winds in these systems are optically thick to soft X-rays, easily absorb radio emission, and rapidly reform dust destroyed by the peak luminosity of the transients. As a result, X-rays are absorbed by the gas and the energy is ultimately radiated by the reformed dust. Three years post-peak, both systems are still significantly more luminous than their progenitor stars, but they are again fully shrouded by the reformed dust and only visible in the mid-IR. The high luminosity and heavy obscuration may make it difficult to determine the survival of the progenitor stars for {approx}10 years. However, our model indicates that SN 2008S, but not the NGC 300-OT, should now be a detectable X-ray source. SN 2008S has a higher estimated shock velocity and a lower density wind, so the X-rays begin to escape at a much earlier phase.« less
Two examples of industrial applications of shock physics research
NASA Astrophysics Data System (ADS)
Sanai, Mohsen
1996-05-01
An in-depth understanding of shock physics phenomena has led to many industrial applications. Two recent applications discussed in this paper are a method for assessing explosion safety in industrial plants and a bomb-resistant luggage container for widebody aircraft. Our explosion safety assessment is based on frequent use of computer simulation of postulated accidents to model in detail the detonation of energetic materials, the formation and propagation of the resulting airblast, and the projection of fragments of known material and mass. Using a general load-damage analysis technique referred to as the pressure-impulse (PI) method, we have developed a PC-based computer algorithm that includes a continually expanding library of PI load and damage curves, which can predict and graphically display common structural damage modes and the response of humans to postulated explosion accidents. A second commercial application of shock physics discussed here is a bomb-resistant luggage container for widebody aircraft that can protect the aircraft from a terrorist bomb hidden inside the luggage. This hardened luggage container (HLC) relies on blast management and debris containment provided by a flexible flow-through blanket woven from threads made with a strong lightweight material, such as Spectra or Kevlar. This mitigation blanket forms a continuous and seamless shell around the sides of the luggage container that are parallel to the aircraft axis, leaving the two ends of the container unprotected. When an explosion occurs, the mitigation blanket expands into a nearly circular shell that contains the flying debris while directing the flow into the adjacent containers. The HLC concept has been demonstrated through full-scale experiments conducted at SRI. We believe that these two examples represent a broad class of potential industrial hazard applications of the experimental, analytical, and computational tools possessed by the shock physics community.
NASA Astrophysics Data System (ADS)
Müller, Bernhard; Janka, Hans-Thomas; Marek, Andreas
2013-03-01
We present a detailed theoretical analysis of the gravitational wave (GW) signal of the post-bounce evolution of core-collapse supernovae (SNe), employing for the first time relativistic, two-dimensional explosion models with multi-group, three-flavor neutrino transport based on the ray-by-ray-plus approximation. The waveforms reflect the accelerated mass motions associated with the characteristic evolutionary stages that were also identified in previous works: a quasi-periodic modulation by prompt post-shock convection is followed by a phase of relative quiescence before growing amplitudes signal violent hydrodynamical activity due to convection and the standing accretion shock instability during the accretion period of the stalled shock. Finally, a high-frequency, low-amplitude variation from proto-neutron star (PNS) convection below the neutrinosphere appears superimposed on the low-frequency trend associated with the aspherical expansion of the SN shock after the onset of the explosion. Relativistic effects in combination with detailed neutrino transport are shown to be essential for quantitative predictions of the GW frequency evolution and energy spectrum, because they determine the structure of the PNS surface layer and its characteristic g-mode frequency. Burst-like high-frequency activity phases, correlated with sudden luminosity increase and spectral hardening of electron (anti-)neutrino emission for some 10 ms, are discovered as new features after the onset of the explosion. They correspond to intermittent episodes of anisotropic accretion by the PNS in the case of fallback SNe. We find stronger signals for more massive progenitors with large accretion rates. The typical frequencies are higher for massive PNSs, though the time-integrated spectrum also strongly depends on the model dynamics.
Studies of ion kinetic effects in OMEGA shock-driven implosions using fusion burn imaging
NASA Astrophysics Data System (ADS)
Rosenberg, M. J.; Seguin, F. H.; Rinderknecht, H. G.; Sio, H.; Zylstra, A. B.; Gatu Johnson, M.; Frenje, J. A.; Li, C. K.; Petrasso, R. D.; Amendt, P. A.; Wilks, S. C.; Zimmerman, G.; Hoffman, N. M.; Kagan, G.; Molvig, K.; Glebov, V. Yu.; Stoeckl, C.; Marshall, F. J.; Seka, W.; Delettrez, J. A.; Sangster, T. C.; Betti, R.; Meyerhofer, D. D.; Atzeni, S.; Nikroo, A.
2014-10-01
Ion kinetic effects have been inferred in a series of shock-driven implosions at OMEGA from an increasing yield discrepancy between observations and hydrodynamic simulations as the ion-ion mean free path increases. To more precisely identify the nature and impact of ion kinetic effects, spatial burn profile measurements of DD and D3He reactions in these D3He-filled shock-driven implosions are presented and contrasted to both purely hydrodynamic models and models that include ion kinetic effects. It is shown that in implosions where the ion mean free path is equal to or greater than the size of the fuel region, purely hydrodynamic models fail to capture the observed burn profiles, while a model that includes ion diffusion is able to recover the observed burn profile shape. These results further elucidate the ion kinetic mechanisms that are present under long mean-free-path conditions after shock convergence in both shock-driven and ablatively-driven implosions. This work was supported in part by the U.S. DOE, NLUF, LLE, and LLNL.
Weibel instability mediated collisionless shocks using intense laser-driven plasmas
NASA Astrophysics Data System (ADS)
Palaniyappan, Sasikumar; Fiuza, Federico; Huang, Chengkun; Gautier, Donald; Ma, Wenjun; Schreiber, Jorg; Raymer, Abel; Fernandez, Juan; Shimada, Tom; Johnson, Randall
2017-10-01
The origin of cosmic rays remains a long-standing challenge in astrophysics and continues to fascinate physicists. It is believed that ``collisionless shocks'' - where the particle Coulomb mean free path is much larger that the shock transition - are a dominant source of energetic cosmic rays. These shocks are ubiquitous in astrophysical environments such as gamma-ray bursts, supernova remnants, pulsar wind nebula and coronal mass ejections from the sun. A particular type of electromagnetic plasma instability known as Weibel instability is believed to be the dominant mechanism behind the formation of these collisionless shocks in the cosmos. The understanding of the microphysics behind collisionless shocks and their particle acceleration is tightly related with nonlinear basic plasma processes and remains a grand challenge. In this poster, we will present results from recent experiments at the LANL Trident laser facility studying collisionless shocks using intense ps laser (80J, 650 fs - peak intensity of 1020 W/cm2) driven near-critical plasmas using carbon nanotube foam targets. A second short pulse laser driven protons from few microns thick gold foil is used to radiograph the main laser-driven plasma. Work supported by the LDRD program at LANL.
NASA Astrophysics Data System (ADS)
Treanor, C. E.; Hall, J. G.
1982-10-01
The present conference on shock tubes and waves considers shock tube drivers, luminous shock tubes, shock tube temperature and pressure measurement, shock front distortion in real gases, nonlinear standing waves, transonic flow shock wave turbulent boundary interactions, wall roughness effects on reflected shock bifurcation, argon thermal conductivity, pattern generation in gaseous detonations, cylindrical resonators, shock tunnel-produced high gain lasers, fluid dynamic aspects of laser-metal interaction, and the ionization of argon gas behind reflected shock waves. Also discussed are the ionization relaxation of shock-heated plasmas and gases, discharge flow/shock tube studies of singlet oxygen, rotational and vibrational relaxation, chemiluminescence thermal and shock wave decomposition of hydrogen cyanide and hydrogen azide, shock wave structure in gas-particle mixtures at low Mach numbers, binary nucleation in a Ludwieg tube, shock liquefaction experiments, pipeline explosions, the shock wave ignition of pulverized coal, and shock-initiated methane combustion.
Shock initiation of explosives: Temperature spikes and growth spurts
NASA Astrophysics Data System (ADS)
Bassett, Will P.; Dlott, Dana D.
2016-08-01
When energetic materials are subjected to high-velocity impacts, the first steps in the shock-to-detonation transition are the creation, ignition, and growth of hot spots. We used 1-3.2 km s-1 laser-launched flyer plates to impact powdered octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine, a powerful explosive, and monitored hundreds of emission bursts with an apparatus that determined temperature and emissivity at all times. The time-dependent volume fraction of hot spots was determined by measuring the time-dependent emissivity. After the shock, most hot spots extinguished, but the survivors smoldered for hundreds of nanoseconds until their temperatures spiked, causing a hot spot growth spurt. Depending on the impact duration, the growth spurts could be as fast as 300 ns and as slow as 13 μs.
Ionospheric research opportunity
NASA Astrophysics Data System (ADS)
Rickel, Dwight
1985-05-01
Ground-based explosions have been exploited successfully in the past as a relatively controlled source for producing ionospheric disturbances. On June 25, the Defense Nuclear Agency will conduct a high explosives test on the northern section of the White Sands Missile Range. Approximately 4,800 tons of ammonium nitrate and fuel oil (ANFO) will be detonated at ground level, producing an acoustic shock wave with a surface pressure change of approximately 20 mbar at a 6 km range. This shock front will have sufficient strength to propagate into the ionosphere with at least a 10% change in the ambient pressure across the disturbance front in the lower F region. Such an ionospheric perturbation will give ionospheric researchers an excellent opportunity to investigate acoustic propagation at ionospheric heights, shock dissipation effect, the ion-neutral coupling process, acoustic-gravity wave (traveling ionospheric disturbance) generation mechanisms, and associated RF phenomena.
Chen, Zhigang; Tao, Zhengxu; Cong, Shan; Hou, Junyu; Zhang, Dengsong; Geng, Fengxia; Zhao, Zhigang
2016-09-15
A simple, general and fast method called "electrochemical shock" is developed to prepare monolayered transition-metal dichalcogenide (TMD) QDs with an average size of 2-4 nm and an average thickness of 0.85 ± 0.5 nm with only about 10 min of ultrasonication. Just like nails hammered into a plate, the electrochemical shock with Al 3+ ions and the following extraction with the help of oleic acid can disintegrate bulk TMD crystals into ultrafine TMD QDs. The fast-prepared QDs are then applied to detect highly explosive molecules such as 2,4,6-trinitrophenol (TNP) with a low detection limit of 10 -6 M. Our versatile method could be broadly applicable for the fast production of ultrathin QDs of other materials with great promise for various applications.
Observation of laser-driven shock propagation by nanosecond time-resolved Raman spectroscopy
NASA Astrophysics Data System (ADS)
Yu, Guoyang; Zheng, Xianxu; Song, Yunfei; Zeng, Yangyang; Guo, Wencan; Zhao, Jun; Yang, Yanqiang
2015-01-01
An improved nanosecond time-resolved Raman spectroscopy is performed to observe laser-driven shock propagation in the anthracene/epoxy glue layer. The digital delay instead of optical delay line is introduced for sake of unlimited time range of detection, which enables the ability to observe both shock loading and shock unloading that always lasts several hundred nanoseconds. In this experiment, the peak pressure of shock wave, the pressure distribution, and the position of shock front in gauge layer were determined by fitting Raman spectra of anthracene using the Raman peak shift simulation. And, the velocity of shock wave was calculated by the time-dependent position of shock front.
NASA Astrophysics Data System (ADS)
Gómez, Leopoldo R.; Turner, Ari M.; van Hecke, Martin; Vitelli, Vincenzo
2012-02-01
Nonlinear sound is an extreme phenomenon typically observed in solids after violent explosions. But granular media are different. Right when they jam, these fragile and disordered solids exhibit a vanishing rigidity and sound speed, so that even tiny mechanical perturbations form supersonic shocks. Here, we perform simulations in which two-dimensional jammed granular packings are dynamically compressed and demonstrate that the elementary excitations are strongly nonlinear shocks, rather than ordinary phonons. We capture the full dependence of the shock speed on pressure and impact intensity by a surprisingly simple analytical model.
Oxy-acetylene driven laboratory scale shock tubes for studying blast wave effects
NASA Astrophysics Data System (ADS)
Courtney, Amy C.; Andrusiv, Lubov P.; Courtney, Michael W.
2012-04-01
This paper describes the development and characterization of modular, oxy-acetylene driven laboratory scale shock tubes. Such tools are needed to produce realistic blast waves in a laboratory setting. The pressure-time profiles measured at 1 MHz using high-speed piezoelectric pressure sensors have relevant durations and show a true shock front and exponential decay characteristic of free-field blast waves. Descriptions are included for shock tube diameters of 27-79 mm. A range of peak pressures from 204 kPa to 1187 kPa (with 0.5-5.6% standard error of the mean) were produced by selection of the driver section diameter and distance from the shock tube opening. The peak pressures varied predictably with distance from the shock tube opening while maintaining both a true blast wave profile and relevant pulse duration for distances up to about one diameter from the shock tube opening. This shock tube design provides a more realistic blast profile than current compression-driven shock tubes, and it does not have a large jet effect. In addition, operation does not require specialized personnel or facilities like most blast-driven shock tubes, which reduces operating costs and effort and permits greater throughput and accessibility. It is expected to be useful in assessing the response of various sensors to shock wave loading; assessing the reflection, transmission, and absorption properties of candidate armor materials; assessing material properties at high rates of loading; assessing the response of biological materials to shock wave exposure; and providing a means to validate numerical models of the interaction of shock waves with structures. All of these activities have been difficult to pursue in a laboratory setting due in part to lack of appropriate means to produce a realistic blast loading profile.
NASA Astrophysics Data System (ADS)
Han, Ruoyu; Zhou, Haibin; Wu, Jiawei; Clayson, Thomas; Ren, Hang; Wu, Jian; Zhang, Yongmin; Qiu, Aici
2017-06-01
This paper studies pressure waves generated by exploding a copper wire in a water medium, demonstrating the significant contribution of the vaporization process to the formation of shock waves. A test platform including a pulsed current source, wire load, chamber, and diagnostic system was developed to study the shock wave and optical emission characteristics during the explosion process. In the experiment, a total of 500 J was discharged through a copper wire load 0.2 mm in diameter and 4 cm in length. A water gap was installed adjacent to the load so that the current was diverted away from the load after breakdown occurred across the water gap. This allows the electrical energy injection into the load to be interrupted at different times and at different stages of the wire explosion process. Experimental results indicate that when the load was bypassed before the beginning of the vaporization phase, the measured peak pressure was less than 2.5 MPa. By contrast, the peak pressure increased significantly to over 6.5 MPa when the water gap broke down after the beginning of the vaporization phase. It was also found that when bypassing the load after the voltage peak, similar shock waves were produced to those from a non-bypassed load. However, the total optical emission of these bypassed loads was at least an order of magnitude smaller. These results clearly demonstrate that the vaporization process is vital to the formation of shock waves and the energy deposited after the voltage collapse may only have a limited effect.
1975-06-01
Explosive forces are completely through undisturbed air where appreciable dominant and the plate is rotated through an aerodynamic forces retard its...are relatively of the explosive system drops rapidly with dense compared to air , do produce sufficient flyer thickness, little is gained by increasing...impulsive loadings generated by a fuel air explosive . A membrane model based on a total plastic strain energy function, a rigid strain hardening
Swedish Defence Research Abstracts 82/83-3 (Froe Foersvars Forsknings Referat 82/83-3)
1983-12-01
A PROTECTION - ATOMIC A3 Effects of nuclear explosions , and protective measures (I 13) Radioactive fallout from nuclear weapons. A review of airborne...AND WEAPON TECHNOLOGY DI Technology of explosives (119) Boron-containing fuel-rich HTPB propellants. Manufacturing, burning experiments and specific...technology (122) TRYCK. A command procedure for presenting the param.ters of the shock wave •.:’. from detonating high- explosive charges D8 System studies (123
2017-05-31
SUBJECT TERMS nonlinear finite element calculations, nuclear explosion monitoring, topography 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...3D North Korea calculations........ Figure 6. The CRAM 3D finite element outer grid (left) is rectangular......................... Figure 7. Stress...Figure 6. The CRAM 3D finite element outer grid (left) is rectangular. The inner grid (center) is shaped to match the shape of the explosion shock wave
Conditions for shock revival by neutrino heating in core-collapse supernovae
NASA Astrophysics Data System (ADS)
Janka, H.-Th.
2001-03-01
Energy deposition by neutrinos can rejuvenate the stalled bounce shock and can provide the energy for the supernova explosion of a massive star. This neutrino-heating mechanism, though investigated by numerical simulations and analytic studies, is not finally accepted or proven as the trigger of the explosion. Part of the problem is that different groups have obtained seemingly discrepant results, and the complexity of the hydrodynamic models often hampers a clear and simple interpretation of the results. This demands a deeper theoretical understanding of the requirements of a successful shock revival. A toy model is developed here for discussing the neutrino heating phase analytically. The neutron star atmosphere between the neutrinosphere and the supernova shock can well be considered to be in hydrostatic equilibrium, with a layer of net neutrino cooling below the gain radius and a layer of net neutrino heating above. Since the mass infall rate to the shock is in general different from the rate at which gas is advected into the neutron star, the mass in the gain layer varies with time. Moreover, the gain layer receives additional energy input by neutrinos emitted from the neutrinosphere and the cooling layer. Therefore the determination of the shock evolution requires a time-dependent treatment. To this end the hydrodynamical equations of continuity and energy are integrated over the volume of the gain layer to obtain conservation laws for the total mass and energy in this layer. The radius and velocity of the supernova shock can then be calculated from global properties of the gain layer as solutions of an initial value problem, which expresses the fact that the behavior of the shock is controlled by the cumulative effects of neutrino heating and mass accumulation in the gain layer. The described toy model produces steady-state accretion and mass outflow from the nascent neutron star as special cases. The approach is useful to illuminate the conditions that can lead to delayed explosions and in this sense supplements detailed numerical simulations. On grounds of the model developed here, a criterion is derived for the requirements of shock revival. It confirms the existence of a minimum neutrino luminosity that is needed for shock expansion, but also demonstrates the importance of a sufficiently large mass infall rate to the shock. If the neutrinospheric luminosity or accretion rate by the shock are too low, the shock is weakened because the gain layer loses more mass than is resupplied by inflow. On the other hand, very high infall rates damp the shock expansion and above some threshold, the development of positive total energy in the neutrino-heating layer is prevented. Time-dependent solutions for the evolution of the gain layer show that the total specific energy transferred to nucleons by neutrinos is limited by about 1052 erg Msun-1 ( ~ 5 MeV per nucleon). This excludes the possibility of very energetic explosions by the neutrino-heating mechanism, because the typical mass in the gain layer is about 0.1 Msun and does not exceed a few tenths of a solar mass. The toy model also allows for a crude discussion of the global effects of convective energy transport in the neutrino-heating layer. Transfer of energy from the region of maximum heating to radii closer behind the shock mainly reduces the loss of energy by the inward flow of neutrino-heated matter through the gain radius.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wongwathanarat, Annop; Janka, Hans-Thomas; Müller, Ewald
The spatial and velocity distributions of nuclear species synthesized in the innermost regions of core-collapse supernovae can yield important clues about explosion asymmetries and the operation of the still disputed explosion mechanism. Recent observations of radioactive {sup 44}Ti with high-energy satellite telescopes ( Nuclear Spectroscopic Telescope Array [ NuSTAR ], INTEGRAL ) have measured gamma-ray line details, which provide direct evidence of large-scale explosion asymmetries in SN 1987A and in Cassiopeia A (Cas A) even by mapping of the spatial brightness distribution ( NuSTAR ). Here we discuss a 3D simulation of a neutrino-driven explosion, using a parameterized neutrino engine,more » whose {sup 44}Ti distribution is mostly concentrated in one hemisphere pointing opposite to the neutron star (NS) kick velocity. Both exhibit intriguing resemblance to the observed morphology of the Cas A remnant, although neither the progenitor nor the explosion was fine-tuned for a perfect match. Our results demonstrate that the asymmetries observed in this remnant can, in principle, be accounted for by a neutrino-driven explosion, and that the high {sup 44}Ti abundance in Cas A may be explained without invoking rapid rotation or a jet-driven explosion, because neutrino-driven explosions generically eject large amounts of high-entropy matter. The recoil acceleration of the NS is connected to mass ejection asymmetries and is opposite to the direction of the stronger explosion, fully compatible with the gravitational tugboat mechanism. Our results also imply that Cas A and SN 1987A could possess similarly “one-sided” Ti and Fe asymmetries, with the difference that Cas A is viewed from a direction with large inclination angle to the NS motion, whereas the NS in SN 1987A should have a dominant velocity component pointing toward us.« less
Characterization of Detonation Products of RSI-007 Explosive
NASA Astrophysics Data System (ADS)
Ager, Timothy; Neel, Christopher; Chhabildas, Lalit
2011-06-01
PDV and VISAR have been employed to characterize the detonation products of a production quality RSI-007 explosive. The explosive was part of an exploding foil initiator (EFI) detonator assembly in which the explosive was contained within a Kovar (Fe-Ni-Co alloy) cup. The free surface of the Kovar serves as the witness plate for the interferometry measurements. Detailed shock reverberations are recorded on the witness plate and the isentropic release path of the explosive is inferred though the velocity history. Two separate window materials are bonded to the Kovar cup in subsequent experiments and are used to further determine the release state in different pressure regimes. Presenter
Characterization of detonation products of RSI-007 explosive
NASA Astrophysics Data System (ADS)
Ager, Timothy; Neel, Christopher; Breaux, Bradley; Vineski, Christopher; Welle, Eric; Lambert, David; Chhabildas, Lalit
2012-03-01
PDV and VISAR have been employed to characterize the detonation products of a high-purity CL-20 based explosive. The explosive was part of an exploding foil initiator (EFI) detonator assembly in which the explosive was contained within a Kovar (Fe-Ni-Co alloy) cup. The back surface of the Kovar serves as the witness plate for interferometry measurements. Detailed reverberations corresponding to shock arrival and release are recorded on the witness plate and the isentropic release path of the explosive is inferred though the velocity history. Two separate window materials are bonded to the Kovar cup in subsequent experiments and are used to further refine the release states.
29 CFR 1926.902 - Surface transportation of explosives.
Code of Federal Regulations, 2010 CFR
2010-07-01
... electric) shall not be transported in the same vehicle with other explosives. (e) Vehicles used for... prevent contact with containers of explosives. (h) Every motor vehicle or conveyance used for transporting... Carriers. (b) Motor vehicles or conveyances transporting explosives shall only be driven by, and be in the...
Transit Time and Normal Orientation of ICME-driven Shocks
NASA Astrophysics Data System (ADS)
Case, A. W.; Spence, H.; Owens, M.; Riley, P.; Linker, J.; Odstrcil, D.
2006-12-01
Interplanetary Coronal Mass Ejections (ICMEs) can drive shocks that accelerate particles to great energies. It is important to understand the acceleration, transport, and spectra of these particles in order to quantify this fundamental physical process operating throughout the cosmos. This understanding also helps to better protect astronauts and spacecraft in upcoming missions. We show that the ambient solar wind is crucial in determining characteristics of ICME-driven shocks, which in turn affect energetic particle production. We use a coupled 3-D MHD code of the corona and heliosphere to simulate ICME propagation from 30 solar radii to 1AU. ICMEs of different velocities are injected into a realistic solar wind to determine how the initial speed affects the shape and deceleration of the ICME-driven shock. We use shock transit time and shock normal orientation to quantify these dependencies. We also inject identical ICMEs into different ambient solar winds to quantify the effective drag force on an ICME.
NASA Astrophysics Data System (ADS)
Robinson, I. M.; Simnett, G. M.
2005-07-01
We examine the solar energetic particle event following solar activity from 14, 15 April 2001 which includes a "bump-on-the-tail" in the proton energy spectra at 0.99 AU from the Sun. We find this population was generated by a CME-driven shock which arrived at 0.99 AU around midnight 18 April. As such this population represents an excellent opportunity to study in isolation, the effects of proton acceleration by the shock. The peak energy of the bump-on-the-tail evolves to progressively lower energies as the shock approaches the observing spacecraft at the inner Lagrange point. Focusing on the evolution of this peak energy we demonstrate a technique which transforms these in-situ spectral observations into a frame of reference co-moving with the shock whilst making allowance for the effects of pitch angle scattering and focusing. The results of this transform suggest the bump-on-the-tail population was not driven by the 15 April activity but was generated or at least modulated by a CME-driven shock which left the Sun on 14 April. The existence of a bump-on-the-tail population is predicted by models in Rice et al. (2003) and Li et al. (2003) which we compare with observations and the results of our analysis in the context of both the 14 April and 15 April CMEs. We find an origin of the bump-on-the-tail at the 14 April CME-driven shock provides better agreement with these modelled predictions although some discrepancy exists as to the shock's ability to accelerate 100 MeV protons. Keywords. Solar physics, astrophysics and astronomy (Energetic particles; Flares and mass ejections) Space plasma physics (Transport processes)
Wedge Experiment Modeling and Simulation for Reactive Flow Model Calibration
NASA Astrophysics Data System (ADS)
Maestas, Joseph T.; Dorgan, Robert J.; Sutherland, Gerrit T.
2017-06-01
Wedge experiments are a typical method for generating pop-plot data (run-to-detonation distance versus input shock pressure), which is used to assess an explosive material's initiation behavior. Such data can be utilized to calibrate reactive flow models by running hydrocode simulations and successively tweaking model parameters until a match between experiment is achieved. Typical simulations are performed in 1D and typically use a flyer impact to achieve the prescribed shock loading pressure. In this effort, a wedge experiment performed at the Army Research Lab (ARL) was modeled using CTH (SNL hydrocode) in 1D, 2D, and 3D space in order to determine if there was any justification in using simplified models. A simulation was also performed using the BCAT code (CTH companion tool) that assumes a plate impact shock loading. Results from the simulations were compared to experimental data and show that the shock imparted into an explosive specimen is accurately captured with 2D and 3D simulations, but changes significantly in 1D space and with the BCAT tool. The difference in shock profile is shown to only affect numerical predictions for large run distances. This is attributed to incorrectly capturing the energy fluence for detonation waves versus flat shock loading. Portions of this work were funded through the Joint Insensitive Munitions Technology Program.
NASA Technical Reports Server (NTRS)
Lucy, M. H.; Buehrle, R. D.; Woolley, J. P.
1996-01-01
Functional shock, safety, overall system costs, and emergence of new technologies, have raised concerns regarding continued use of pyrotechnics on spacecraft. NASA Headquarters-Office of Chief Engineer requested Langley Research Center (LaRC) study pyrotechnic alternatives using non-explosive actuators (NEA's), and LARC participated with Lockheed Martin Missile and Space Co. (LMMSC)-Sunnyvale, CA in objectively evaluating applicability of some NEA mechanisms to reduce small spacecraft and booster separation event shock. Comparative tests were conducted on a structural simulator using five different separation nut mechanisms, consisting of three pyrotechnics from OEA-Aerospace and Hi-Shear Technology and two NEA's from G&H Technology and Lockheed Martin Astronautics (LMA)-Denver, CO. Multiple actuations were performed with preloads up to 7000 pounds, 7000 being the comparison standard. All devices except LMA's NEA rotary flywheel-nut concept were available units with no added provisions to attenuate shock. Accelerometer measurements were recorded, reviewed, processed into Shock Response Spectra (SRS), and comparisons performed. For the standard preload, pyrotechnics produced the most severe and the G&H NEA the least severe functional shock levels. Comparing all results, the LMA concept produced the lowest levels, with preload limited to approximately 4200 pounds. Testing this concept over a range of 3000 to 4200 pounds indicated no effect of preload on shock response levels. This report presents data from these tests and the comparative results.
BOW SHOCK FRAGMENTATION DRIVEN BY A THERMAL INSTABILITY IN LABORATORY ASTROPHYSICS EXPERIMENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki-Vidal, F.; Lebedev, S. V.; Pickworth, L. A.
The role of radiative cooling during the evolution of a bow shock was studied in laboratory-astrophysics experiments that are scalable to bow shocks present in jets from young stellar objects. The laboratory bow shock is formed during the collision of two counterstreaming, supersonic plasma jets produced by an opposing pair of radial foil Z-pinches driven by the current pulse from the MAGPIE pulsed-power generator. The jets have different flow velocities in the laboratory frame, and the experiments are driven over many times the characteristic cooling timescale. The initially smooth bow shock rapidly develops small-scale nonuniformities over temporal and spatial scalesmore » that are consistent with a thermal instability triggered by strong radiative cooling in the shock. The growth of these perturbations eventually results in a global fragmentation of the bow shock front. The formation of a thermal instability is supported by analysis of the plasma cooling function calculated for the experimental conditions with the radiative packages ABAKO/RAPCAL.« less
On the generation of magnetized collisionless shocks in the large plasma device
NASA Astrophysics Data System (ADS)
Schaeffer, D. B.; Winske, D.; Larson, D. J.; Cowee, M. M.; Constantin, C. G.; Bondarenko, A. S.; Clark, S. E.; Niemann, C.
2017-04-01
Collisionless shocks are common phenomena in space and astrophysical systems, and in many cases, the shocks can be modeled as the result of the expansion of a magnetic piston though a magnetized ambient plasma. Only recently, however, have laser facilities and diagnostic capabilities evolved sufficiently to allow the detailed study in the laboratory of the microphysics of piston-driven shocks. We review experiments on collisionless shocks driven by a laser-produced magnetic piston undertaken with the Phoenix laser laboratory and the Large Plasma Device at the University of California, Los Angeles. The experiments span a large parameter space in laser energy, background magnetic field, and ambient plasma properties that allow us to probe the physics of piston-ambient energy coupling, the launching of magnetosonic solitons, and the formation of subcritical shocks. The results indicate that piston-driven magnetized collisionless shocks in the laboratory can be characterized with a small set of dimensionless formation parameters that place the formation process in an organized and predictive framework.
On the generation of magnetized collisionless shocks in the large plasma device
Schaeffer, D. B.; Winske, D.; Larson, D. J.; ...
2017-03-22
Collisionless shocks are common phenomena in space and astrophysical systems, and in many cases, the shocks can be modeled as the result of the expansion of a magnetic piston though a magnetized ambient plasma. Only recently, however, have laser facilities and diagnostic capabilities evolved sufficiently to allow the detailed study in the laboratory of the microphysics of piston-driven shocks. We review experiments on collisionless shocks driven by a laser-produced magnetic piston undertaken with the Phoenix laser laboratory and the Large Plasma Device at the University of California, Los Angeles. The experiments span a large parameter space in laser energy, backgroundmore » magnetic field, and ambient plasma properties that allow us to probe the physics of piston-ambient energy coupling, the launching of magnetosonic solitons, and the formation of subcritical shocks. Here, the results indicate that piston-driven magnetized collisionless shocks in the laboratory can be characterized with a small set of dimensionless formation parameters that place the formation process in an organized and predictive framework.« less
Near-Source Mechanism for Creating Shear Content from Buried Explosions
NASA Astrophysics Data System (ADS)
Steedman, D. W.; Bradley, C. R.
2017-12-01
The Source Physics Experiment (SPE) has the goal of developing a greater understanding of explosion phenomenology at various spatial scales, from near-source to the far-field. SPE Phase I accomplished a series of six chemical explosive tests of varying scaled depth of burial within a borehole in granite. The testbed included an extensive array of triaxial accelerometers. Velocity traces derived from these accelerometers allow for detailed study of the shock environment close in to the explosion. A specific goal of SPE is to identify various mechanisms for generating shear within the propagation environment and how this might be informative on the identification of explosive events that otherwise fail historic compression wave energy/shear wave energy (P/S) event discrimination. One of these sources was hypothesized to derive from slippage along joint sets near to the source. Velocity traces from SPE Phase I events indicate that motion tangential to a theoretically spherical shock wave are initially quiescent after shock arrival. But this period of quiescence is followed by a sudden increase in amplitude that consistently occurs just after the peak of the radial velocity (i.e., onset of shock unloading). The likelihood of occurrence of this response is related to yield-scaled depth-of-burial (SDOB). We describe a mechanism where unloading facilitates dilation of closed joints accompanied by a release of shear energy stored during compression. However, occurrence of this mechanism relies on relative amplitudes between the shock loading caused at a point and the in situ stress: at too large a SDOB the stored energy is insufficient to overcome the combination of the overburden stress and traction on the joint. On the other hand, too small of a SDOB provides that the in situ stress is insufficient to keep joints from storing stress, thus overriding the release mechanism and mitigating rupture-like slippage. We develop a notional relationship between SPE Phase I SDOB and the likelihood of shear release. We then compare this to the six recorded DPRK events in terms of where these events fall in relation to the accepted mb:MS discriminant using estimated SDOB values for those events. To first order SPE SDOBs resulting in shear release appear to map to estimated DPRK SDOBs which display excessive shear magnitude. LA-UR-17-29528.
Shock initiation of nitromethane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, C.S.; Holmes, N.C.
1994-07-10
The shock initiation processes of nitromethane have been examined by using a fast time-resolved emission spectroscopy at a two-stage gas gun. A broad, but strong emission has been observed in a spectral range between 350 nm and 700 nm from the shocked nitromethane above 9 GPa. The temporal profile suggests that the shocked nitromethane detonates through three characteristic periods, namely an induction period, a shock initiation period, and a thermal explosion period. In this paper we will discuss the temporal and chemical characteristics of these periods and present the temperature of the shock-detonating nitromethane at pressures between 9 and 15more » GPa. [copyright]American Institute of Physics« less
Printable sensors for explosive detonation
NASA Astrophysics Data System (ADS)
Griffith, Matthew J.; Cooling, Nathan A.; Elkington, Daniel C.; Muller, Elmar; Belcher, Warwick J.; Dastoor, Paul C.
2014-10-01
Here, we report the development of an organic thin film transistor (OTFT) based on printable solution processed polymers and employing a quantum tunnelling composite material as a sensor to convert the pressure wave output from detonation transmission tubing (shock tube) into an inherently amplified electronic signal for explosives initiation. The organic electronic detector allows detection of the signal in a low voltage operating range, an essential feature for sites employing live ordinances that is not provided by conventional electronic devices. We show that a 30-fold change in detector response is possible using the presented detector assembly. Degradation of the OTFT response with both time and repeated voltage scans was characterised, and device lifetime is shown to be consistent with the requirements for on-site printing and usage. The integration of a low cost organic electronic detector with inexpensive shock tube transmission fuse presents attractive avenues for the development of cheap and simple assemblies for precisely timed initiation of explosive chains.
HUFF, a One-Dimensional Hydrodynamics Code for Strong Shocks
1978-12-01
results for two sample problems. The first problem discussed is a one-kiloton nuclear burst in infinite sea level air. The second problem is the one...of HUFF as an effective first order hydro- dynamic computer code. 1 KT Explosion The one-kiloton nuclear explosion in infinite sea level air was
Blast waves and how they interact with structures.
Cullis, I G
2001-02-01
The paper defines and describes blast waves, their interaction with a structure and its subsequent response. Explosions generate blast waves, which need not be due to explosives. A blast wave consists of two parts: a shock wave and a blast wind. The paper explains how shock waves are formed and their basic properties. The physics of blast waves is non-linear and therefore non-intuitive. To understand how an explosion generates a blast wave a numerical modelling computer code, called a hydrocode has to be employed. This is briefly explained and the cAst Eulerian hydrocode is used to illustrate the formation and propagation of the blast wave generated by a 1 kg sphere of TNT explosive detonated 1 m above the ground. The paper concludes with a discussion of the response of a structure to a blast wave and shows that this response is governed by the structures natural frequency of vibration compared to the duration of the blast wave. The basic concepts introduced are illustrated in a second simulation that introduces two structures into the blast field of the TNT charge.
A full scale hydrodynamic simulation of pyrotechnic combustion
NASA Astrophysics Data System (ADS)
Kim, Bohoon; Jang, Seung-Gyo; Yoh, Jack
2017-06-01
A full scale hydrodynamic simulation that requires an accurate reproduction of shock-induced detonation was conducted for design of an energetic component system. A series of small scale gap tests and detailed hydrodynamic simulations were used to validate the reactive flow model for predicting the shock propagation in a train configuration and to quantify the shock sensitivity of the energetic materials. The energetic component system is composed of four main components, namely a donor unit (HNS + HMX), a bulkhead (STS), an acceptor explosive (RDX), and a propellant (BKNO3) for gas generation. The pressurized gases generated from the burning propellant were purged into a 10 cc release chamber for study of the inherent oscillatory flow induced by the interferences between shock and rarefaction waves. The pressure fluctuations measured from experiment and calculation were investigated to further validate the peculiar peak at specific characteristic frequency (ωc = 8.3 kHz). In this paper, a step-by-step numerical description of detonation of high explosive components, deflagration of propellant component, and deformation of metal component is given in order to facilitate the proper implementation of the outlined formulation into a shock physics code for a full scale hydrodynamic simulation of the energetic component system.
Determination of JWL Parameters for Non-Ideal Explosive
NASA Astrophysics Data System (ADS)
Hamashima, H.; Kato, Y.; Itoh, S.
2004-07-01
JWL equation of state is widely used in numerical simulation of detonation phenomena. JWL parameters are determined by cylinder test. Detonation characteristics of non-ideal explosive depend strongly on confinement, and JWL parameters determined by cylinder test do not represent the state of detonation products in many applications. We developed a method to determine JWL parameters from the underwater explosion test. JWL parameters were determined through a method of characteristics applied to the configuration of the underwater shock waves of cylindrical explosives. The numerical results obtained using JWL parameters determined by the underwater explosion test and those obtained using JWL parameters determined by cylinder test were compared with experimental results for typical non-ideal explosive; emulsion explosive. Good agreement was confirmed between the results obtained using JWL parameters determined by the underwater explosion test and experimental results.
Shock melting and vaporization of metals.
NASA Technical Reports Server (NTRS)
Ahrens, T. J.
1972-01-01
The effect of initial porosity on shock induction of melting and vaporization is investigated for Ba, Sr, Li, Fe, Al, U, and Th. For the less compressible of these metals, it is found that for a given strong shock-generation system (explosive in contact, or flyer-plate impact) an optimum initial specific volume exists such that the total entropy production, and hence the amount of metal liquid or vapor, is a maximum. Initial volumes from 1.4 to 2.0 times crystal volumes, depending on the metal sample and shock-inducing system, will result in optimum post-shock entropies.
Interacting Supernovae: Types IIn and Ibn
NASA Astrophysics Data System (ADS)
Smith, Nathan
Supernovae that show evidence of strong shock interaction between their ejecta and pre-existing slower circumstellar material (CSM) constitute an interesting, diverse, and still poorly understood category of explosive transients. The chief reason they are extremely interesting is because they tell us that in a subset of stellar deaths, the progenitor star becomes wildly unstable in the years, decades, or centuries before explosion. This is something that has not been included in standard stellar evolution models but may significantly change the end product and yield of that evolution and complicates our attempts to map SNe to their progenitors. Another reason they are interesting is because CSM interaction is an efficient engine for making bright transients, allowing superluminous transients to arise from normal SN explosion energy, and transients of normal supernova luminosity to arise from sub-energetic explosions or low radioactivity yield. CSM interaction shrouds the fast ejecta in bright shock emission, obscuring our view of the underlying explosion, and the radiation hydrodynamics is challenging to model. The CSM interaction may also be highly nonspherical, perhaps linked to binary interaction in the progenitor system. In some cases, these complications make it difficult to tell the difference between a core-collapse and thermonuclear explosion or to discern between a nonterminal eruption, failed supernova, or weak supernova. Efforts to uncover the physical parameters of individual events and connections to progenitor stars make this a rapidly evolving topic that challenges paradigms of stellar evolution.
Shock Initiation of Explosives - High Temperature Hot Spots Explained
NASA Astrophysics Data System (ADS)
Bassett, Will
2017-06-01
The pore-collapse mechanism for hot spot creation is currently one of the most intensely studied subjects in the initiation of energetic materials. In the present study, we use 1.5 - 3.5 km s-1 laser-driven flyer plates to impact microgram charges of both polymer-bound and pure pentaerythritol tetranitrate (PETN) while recording the temperature and spatially-averaged emissivity with a high-speed optical pyrometer. The 32-color pyrometer has nanosecond time resolution and a high dynamic range with sensitivity to temperatures from 7000 to 2000 K. Hot spot temperatures of 4000 K at impact are observed in the polymer-bound explosive charges where an elastomeric binder is used to fill void spaces. In pure PETN and more heterogeneous polymer-bound charges, in which significant void space is present, hot spot temperatures of 6000 K are observed, similar to previous reports with significant porosity. We attribute these high temperatures to gas-phase products formed in-situ being compressed under the driving shock. Experiments performed under various gas environments (air, butane, etc.) showed a strong influence on observed temperature upon impact. Control experiments where the PETN in the polymer-bound charges were replaced with sucrose and silica reinforce the result that hot spots are a result of in-situ gas formation from decomposition of organic molecules. US Air Force Office of Scientific Research awards FA9550-14-1-0142 and FA9550-16-1-0042; US Army Research Office award W911NF-13-1-0217; Defense Threat Reduction Agency award HDTRA1-12-1-0011. In collaboration with: Belinda Pacheco and Dana Dlott, University of Illinois at Urbana Champaign.
Radio Observations as a Tool to Investigate Shocks and Asymmetries in Accreting White Dwarf Binaries
NASA Astrophysics Data System (ADS)
Weston, Jennifer Helen Seng; E-Nova Project
2017-01-01
In this dissertation, I use radio observations with the Karl G. Jansky Very Large Array (VLA) to reveal that colliding flows within the ejecta from nova explosions can lead to shocks that accelerate particles and produce radio synchrotron emission. In both novae V1723 Aql and V5589 Sgr, radio emission within the first one to two months deviated strongly from the classic thermal model for radio emission from novae. Three years of radio observations of V1723 Aql show that multiple outflows from the system collided to create non-thermal shocks with a brightness temperature of >106 K. After these shocks faded, the radio light curve became roughly consistent with an expanding thermal shell. However, resolved images of V1723 Aql show elongated material that apparently rotates its major axis over the course of 15 months. In the case of nova V5589 Sgr, I show that the early radio emission is dominated by a shock-powered non-thermal flare that produces strong (kTx > 33 keV) X-rays. These findings have important implications for understanding how normal novae generate GeV gamma-rays.Additionally, I present VLA observations of the symbiotic star CH Cyg and two small surveys of symbiotic binaries. Radio observations of CH Cyg tie the ejection of a collimated jet to a change of state in the accretion disk, strengthening the link between bipolar outflows from accreting white dwarfs and other types of accreting compact objects. Next, I use a survey of eleven accretion-driven symbiotic binaries to determine that the radio brightness of a symbiotic system could potentially be used as an indicator of whether it is powered predominantly by shell burning on the surface of the white dwarf or by accretion. This survey also produces the first radio detections of seven of the target systems. In the second survey of seventeen symbiotic binaries, I spatially resolve extended radio emission in several systems for the first time. The results from these surveys provide some support for the model of radio emission where the red giant wind is photoionized by the white dwarf, and suggest that there may be a greater population of radio faint, accretion driven symbiotic systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Müller, Bernhard; Janka, Hans-Thomas, E-mail: bernhard.mueller@monash.edu, E-mail: bjmuellr@mpa-garching.mpg.de, E-mail: thj@mpa-garching.mpg.de
Considering six general relativistic, two-dimensional (2D) supernova (SN) explosion models of progenitor stars between 8.1 and 27 M {sub ☉}, we systematically analyze the properties of the neutrino emission from core collapse and bounce to the post-explosion phase. The models were computed with the VERTEX-COCONUT code, using three-flavor, energy-dependent neutrino transport in the ray-by-ray-plus approximation. Our results confirm the close similarity of the mean energies, (E), of ν-bar {sub e} and heavy-lepton neutrinos and even their crossing during the accretion phase for stars with M ≳ 10 M {sub ☉} as observed in previous 1D and 2D simulations with state-of-the-artmore » neutrino transport. We establish a roughly linear scaling of 〈E{sub ν-bar{sub e}}〉 with the proto-neutron star (PNS) mass, which holds in time as well as for different progenitors. Convection inside the PNS affects the neutrino emission on the 10%-20% level, and accretion continuing beyond the onset of the explosion prevents the abrupt drop of the neutrino luminosities seen in artificially exploded 1D models. We demonstrate that a wavelet-based time-frequency analysis of SN neutrino signals in IceCube will offer sensitive diagnostics for the SN core dynamics up to at least ∼10 kpc distance. Strong, narrow-band signal modulations indicate quasi-periodic shock sloshing motions due to the standing accretion shock instability (SASI), and the frequency evolution of such 'SASI neutrino chirps' reveals shock expansion or contraction. The onset of the explosion is accompanied by a shift of the modulation frequency below 40-50 Hz, and post-explosion, episodic accretion downflows will be signaled by activity intervals stretching over an extended frequency range in the wavelet spectrogram.« less
NASA Astrophysics Data System (ADS)
Lario, D.; Roelof, E. C.; Decker, R. B.
2014-05-01
Multi-spacecraft observations of solar energetic particle (SEP) events allow us to estimate the longitudinal distributions of SEP peak intensities. By fitting a Gaussian functional form to the ensemble of SEP peak intensities measured by two or more spacecraft as a function of the longitudinal distance between the associated parent solar flare and the footpoint labels of the magnetic field lines connecting each spacecraft with the Sun, we found that such distributions are not centered at nominal well-connected flare longitudes but slightly offset to the west of the associated flare (Lario et al. 2006, 2013). We offer an interpretation of this result in terms of long-lived particle injection from shocks driven by the associated coronal mass ejections (CMEs). By assuming that (i) CME-driven shocks are centered on the longitude of the associated solar flare, (ii) the injection of shock accelerated particles maximizes at the nose of the shock which propagates radially outward from the Sun, and (iii) SEP particle injection from the shock starts at a certain distance above the solar surface, we infer an average radial distance where shocks are located when peak intensities in the prompt component of the SEP events are observed. We estimate the heliocentric distance of the CME-driven shock when particle injection from the shock maximizes and conclude that the injection of ˜20 MeV protons and near-relativistic electrons maximizes well inside ˜0.2 AU.
Thermally driven advection for radioxenon transport from an underground nuclear explosion
NASA Astrophysics Data System (ADS)
Sun, Yunwei; Carrigan, Charles R.
2016-05-01
Barometric pumping is a ubiquitous process resulting in migration of gases in the subsurface that has been studied as the primary mechanism for noble gas transport from an underground nuclear explosion (UNE). However, at early times following a UNE, advection driven by explosion residual heat is relevant to noble gas transport. A rigorous measure is needed for demonstrating how, when, and where advection is important. In this paper three physical processes of uncertain magnitude (oscillatory advection, matrix diffusion, and thermally driven advection) are parameterized by using boundary conditions, system properties, and source term strength. Sobol' sensitivity analysis is conducted to evaluate the importance of all physical processes influencing the xenon signals. This study indicates that thermally driven advection plays a more important role in producing xenon signals than oscillatory advection and matrix diffusion at early times following a UNE, and xenon isotopic ratios are observed to have both time and spatial dependence.
Multiphysics Simulations of Hot-Spot Initiation in Shocked Insensitive High-Explosive
NASA Astrophysics Data System (ADS)
Najjar, Fady; Howard, W. M.; Fried, L. E.
2010-11-01
Solid plastic-bonded high-explosive materials consist of crystals with micron-sized pores embedded. Under mechanical or thermal insults, these voids increase the ease of shock initiation by generating high-temperature regions during their collapse that might lead to ignition. Understanding the mechanisms of hot-spot initiation has significant research interest due to safety, reliability and development of new insensitive munitions. Multi-dimensional high-resolution meso-scale simulations are performed using the multiphysics software, ALE3D, to understand the hot-spot initiation. The Cheetah code is coupled to ALE3D, creating multi-dimensional sparse tables for the HE properties. The reaction rates were obtained from MD Quantum computations. Our current predictions showcase several interesting features regarding hot spot dynamics including the formation of a "secondary" jet. We will discuss the results obtained with hydro-thermo-chemical processes leading to ignition growth for various pore sizes and different shock pressures.
Characteristics and measurement of supersonic projectile shock waves by a 32-microphone ring array
NASA Astrophysics Data System (ADS)
Chang, Ho; Wu, Yan-Chyuan; Tsung, Tsing-Tshih
2011-08-01
This paper discusses about the characteristics of supersonic projectile shock wave in muzzle region during firing of high explosive anti-tank (HEAT) and high explosive (HE) projectiles. HEAT projectiles are fired horizontally at a muzzle velocity of Mach 3.5 from a medium caliber tank gun equipped with a newly designed multi-perforated muzzle brake, whereas HE projectiles are fired at elevation angles at a muzzle velocity of Mach 2 from a large caliber howitzer equipped with a newly designed double-baffle muzzle brake. In the near field, pressure signatures of the N-wave generated from projectiles are measured by 32-microphone ring array wrapped by cotton sheath. Records measured by the microphone array are used to demonstrate several key characteristics of the shock wave of supersonic projectile. All measurements made in this study can be a significant reference for developing guns, tanks, or the chassis of fighting vehicles.
Characteristics and measurement of supersonic projectile shock waves by a 32-microphone ring array.
Chang, Ho; Wu, Yan-Chyuan; Tsung, Tsing-Tshih
2011-08-01
This paper discusses about the characteristics of supersonic projectile shock wave in muzzle region during firing of high explosive anti-tank (HEAT) and high explosive (HE) projectiles. HEAT projectiles are fired horizontally at a muzzle velocity of Mach 3.5 from a medium caliber tank gun equipped with a newly designed multi-perforated muzzle brake, whereas HE projectiles are fired at elevation angles at a muzzle velocity of Mach 2 from a large caliber howitzer equipped with a newly designed double-baffle muzzle brake. In the near field, pressure signatures of the N-wave generated from projectiles are measured by 32-microphone ring array wrapped by cotton sheath. Records measured by the microphone array are used to demonstrate several key characteristics of the shock wave of supersonic projectile. All measurements made in this study can be a significant reference for developing guns, tanks, or the chassis of fighting vehicles.
Lithium niobate explosion monitor
Bundy, Charles H.; Graham, Robert A.; Kuehn, Stephen F.; Precit, Richard R.; Rogers, Michael S.
1990-01-01
Monitoring explosive devices is accomplished with a substantially z-cut lithium niobate crystal in abutment with the explosive device. Upon impact by a shock wave from detonation of the explosive device, the crystal emits a current pulse prior to destruction of the crystal. The current pulse is detected by a current viewing transformer and recorded as a function of time in nanoseconds. In order to self-check the crystal, the crystal has a chromium film resistor deposited thereon which may be heated by a current pulse prior to detonation. This generates a charge which is detected by a charge amplifier.
Lithium niobate explosion monitor
Bundy, C.H.; Graham, R.A.; Kuehn, S.F.; Precit, R.R.; Rogers, M.S.
1990-01-09
Monitoring explosive devices is accomplished with a substantially z-cut lithium niobate crystal in abutment with the explosive device. Upon impact by a shock wave from detonation of the explosive device, the crystal emits a current pulse prior to destruction of the crystal. The current pulse is detected by a current viewing transformer and recorded as a function of time in nanoseconds. In order to self-check the crystal, the crystal has a chromium film resistor deposited thereon which may be heated by a current pulse prior to detonation. This generates a charge which is detected by a charge amplifier. 8 figs.
Modeling Particle Acceleration and Transport at a 2-D CME-Driven Shock
NASA Astrophysics Data System (ADS)
Hu, Junxiang; Li, Gang; Ao, Xianzhi; Zank, Gary P.; Verkhoglyadova, Olga
2017-11-01
We extend our earlier Particle Acceleration and Transport in the Heliosphere (PATH) model to study particle acceleration and transport at a coronal mass ejection (CME)-driven shock. We model the propagation of a CME-driven shock in the ecliptic plane using the ZEUS-3D code from 20 solar radii to 2 AU. As in the previous PATH model, the initiation of the CME-driven shock is simplified and modeled as a disturbance at the inner boundary. Different from the earlier PATH model, the disturbance is now longitudinally dependent. Particles are accelerated at the 2-D shock via the diffusive shock acceleration mechanism. The acceleration depends on both the parallel and perpendicular diffusion coefficients κ|| and κ⊥ and is therefore shock-obliquity dependent. Following the procedure used in Li, Shalchi, et al. (k href="#jgra53857-bib-0045"/>), we obtain the particle injection energy, the maximum energy, and the accelerated particle spectra at the shock front. Once accelerated, particles diffuse and convect in the shock complex. The diffusion and convection of these particles are treated using a refined 2-D shell model in an approach similar to Zank et al. (k href="#jgra53857-bib-0089"/>). When particles escape from the shock, they propagate along and across the interplanetary magnetic field. The propagation is modeled using a focused transport equation with the addition of perpendicular diffusion. We solve the transport equation using a backward stochastic differential equation method where adiabatic cooling, focusing, pitch angle scattering, and cross-field diffusion effects are all included. Time intensity profiles and instantaneous particle spectra as well as particle pitch angle distributions are shown for two example CME shocks.
Strain Rate Dependant Material Model for Orthotropic Metals
NASA Astrophysics Data System (ADS)
Vignjevic, Rade
2016-08-01
In manufacturing processes anisotropic metals are often exposed to the loading with high strain rates in the range from 102 s-1 to 106 s-1 (e.g. stamping, cold spraying and explosive forming). These types of loading often involve generation and propagation of shock waves within the material. The material behaviour under such a complex loading needs to be accurately modelled, in order to optimise the manufacturing process and achieve appropriate properties of the manufactured component. The presented research is related to development and validation of a thermodynamically consistent physically based constitutive model for metals under high rate loading. The model is capable of modelling damage, failure and formation and propagation of shock waves in anisotropic metals. The model has two main parts: the strength part which defines the material response to shear deformation and an equation of state (EOS) which defines the material response to isotropic volumetric deformation [1]. The constitutive model was implemented into the transient nonlinear finite element code DYNA3D [2] and our in house SPH code. Limited model validation was performed by simulating a number of high velocity material characterisation and validation impact tests. The new damage model was developed in the framework of configurational continuum mechanics and irreversible thermodynamics with internal state variables. The use of the multiplicative decomposition of deformation gradient makes the model applicable to arbitrary plastic and damage deformations. To account for the physical mechanisms of failure, the concept of thermally activated damage initially proposed by Tuller and Bucher [3], Klepaczko [4] was adopted as the basis for the new damage evolution model. This makes the proposed damage/failure model compatible with the Mechanical Threshold Strength (MTS) model Follansbee and Kocks [5], 1988; Chen and Gray [6] which was used to control evolution of flow stress during plastic deformation. In addition the constitutive model is coupled with a vector shock equation of state which allows for modelling of shock wave propagation in orthotropic the material. Parameters for the new constitutive model are typically derived on the basis of the tensile tests (performed over a range of temperatures and strain rates), plate impact tests and Taylor anvil tests. The model was applied to simulate explosively driven fragmentation, blast loading and cold spraying impacts.
Spall response of annealed copper to direct explosive loading
NASA Astrophysics Data System (ADS)
Finnegan, S. G.; Burns, M. J.; Markland, L.; Goff, M.; Ferguson, J. W.
2017-01-01
Taylor wave spall experiments were conducted on annealed copper targets using direct explosive loading. The targets were mounted on the back of an explosive disc which was being used for a shock to detonation transition (SDT) test in a gas gun. This technique allows two experiments to be conducted with one piece of explosive. Explosive loading creates a high stress state within the target with a lower strain rate than an equivalent plate impact experiment, although the shock front will also have some curvature. Three shots were performed on two differently annealed batches of copper to investigate the viability of the technique and the effect of annealing on the spall response. One pair of targets was annealed at 850°C for four hours and the other target was annealed at 600°C for one hour. The free surface velocity (FSV) profiles were recorded using a Photonic Doppler Velocimetry (PDV) probe focused on the center of the target. The profiles were compared to predictions from the CREST reactive burn model. One profile recorded a significantly lower peak velocity which was attributed to the probe being located off center. Despite this, all three calculated spall strengths closely agreed and it was concluded that the technique is a viable one for loading an inert target.
Numerical simulation of a 100-ton ANFO detonation
NASA Astrophysics Data System (ADS)
Weber, P. W.; Millage, K. K.; Crepeau, J. E.; Happ, H. J.; Gitterman, Y.; Needham, C. E.
2015-03-01
This work describes the results from a US government-owned hydrocode (SHAMRC, Second-Order Hydrodynamic Automatic Mesh Refinement Code) that simulated an explosive detonation experiment with 100,000 kg of Ammonium Nitrate-Fuel Oil (ANFO) and 2,080 kg of Composition B (CompB). The explosive surface charge was nearly hemispherical and detonated in desert terrain. Two-dimensional axisymmetric (2D) and three-dimensional (3D) simulations were conducted, with the 3D model providing a more accurate representation of the experimental setup geometry. Both 2D and 3D simulations yielded overpressure and impulse waveforms that agreed qualitatively with experiment, including the capture of the secondary shock observed in the experiment. The 2D simulation predicted the primary shock arrival time correctly but secondary shock arrival time was early. The 2D-predicted impulse waveforms agreed very well with the experiment, especially at later calculation times, and prediction of the early part of the impulse waveform (associated with the initial peak) was better quantitatively for 2D compared to 3D. The 3D simulation also predicted the primary shock arrival time correctly, and secondary shock arrival times in 3D were closer to the experiment than in the 2D results. The 3D-predicted impulse waveform had better quantitative agreement than 2D for the later part of the impulse waveform. The results of this numerical study show that SHAMRC may be used reliably to predict phenomena associated with the 100-ton detonation. The ultimate fidelity of the simulations was limited by both computer time and memory. The results obtained provide good accuracy and indicate that the code is well suited to predicting the outcomes of explosive detonations.
On beyond the standard model for high explosives: challenges & obstacles to surmount
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menikoff, Ralph Ds
2009-01-01
Plastic-bonded explosives (PBX) are heterogeneous materials. Nevertheless, current explosive models treat them as homogeneous materials. To compensate, an empirically determined effective burn rate is used in place of a chemical reaction rate. A significant limitation of these models is that different burn parameters are needed for applications in different regimes; for example, shock initiation of a PBX at different initial temperatures or different initial densities. This is due to temperature fluctuations generated when a heterogeneous material is shock compressed. Localized regions of high temperatures are called hot spots. They dominate the reaction for shock initiation. The understanding of hot spotmore » generation and their subsequent evolution has been limited by the inability to measure transients on small spatial ({approx} 1 {micro}m) and small temporal ({approx} 1 ns) scales in the harsh environment of a detonation. With the advances in computing power, it is natural to try and gain an understanding of hot-spot initiation with numerical experiments based on meso-scale simulations that resolve material heterogeneities and utilize realistic chemical reaction rates. However, to capture the underlying physics correctly, such high resolution simulations will require more than fast computers with a large amount of memory. Here we discuss some of the issues that need to be addressed. These include dissipative mechanisms that generate hot spots, accurate thermal propceties for the equations of state of the reactants and products, and controlling numerical entropy error from shock impedance mismatches at material interfaces. The later can generate artificial hot spots and lead to premature reaction. Eliminating numerical hot spots is critical for shock initiation simulations due to the positive feedback between the energy release from reaction and the hydrodynamic flow.« less
Modeling The Shock Initiation of PBX-9501 in ALE3D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leininger, L; Springer, H K; Mace, J
The SMIS (Specific Munitions Impact Scenario) experimental series performed at Los Alamos National Laboratory has determined the 3-dimensional shock initiation behavior of the HMX-based heterogeneous high explosive, PBX 9501. A series of finite element impact calculations have been performed in the ALE3D [1] hydrodynamic code and compared to the SMIS results to validate the code predictions. The SMIS tests use a powder gun to shoot scaled NATO standard fragments at a cylinder of PBX 9501, which has a PMMA case and a steel impact cover. The SMIS real-world shot scenario creates a unique test-bed because many of the fragments arrivemore » at the impact plate off-center and at an angle of impact. The goal of this model validation experiments is to demonstrate the predictive capability of the Tarver-Lee Ignition and Growth (I&G) reactive flow model [2] in this fully 3-dimensional regime of Shock to Detonation Transition (SDT). The 3-dimensional Arbitrary Lagrange Eulerian hydrodynamic model in ALE3D applies the Ignition and Growth (I&G) reactive flow model with PBX 9501 parameters derived from historical 1-dimensional experimental data. The model includes the off-center and angle of impact variations seen in the experiments. Qualitatively, the ALE3D I&G calculations accurately reproduce the 'Go/No-Go' threshold of the Shock to Detonation Transition (SDT) reaction in the explosive, as well as the case expansion recorded by a high-speed optical camera. Quantitatively, the calculations show good agreement with the shock time of arrival at internal and external diagnostic pins. This exercise demonstrates the utility of the Ignition and Growth model applied in a predictive fashion for the response of heterogeneous high explosives in the SDT regime.« less
NASA Technical Reports Server (NTRS)
Johnson, J. A., III; Chen, S.; I, L.; Jones, W.; Ramaiah, R.; Santiago, J.
1979-01-01
The use of an arc driven shock tube as a technique in the study of turbulence and evidence to support a kinetic theory of turbulence are described. Topics covered include: (1) reaction rate distortion in turbulent flow; (2) turbulent bursts in a shock tube; (3) driver gas flow with fluctuations; (4) improving the Mach number capabilities of arc driver shock tubes; and (5) resonant absorption in an argon plasma at thermal equilibrium.
Laws of attenuation of axially symmetrical shock waves in shells of detonating extended charges
NASA Astrophysics Data System (ADS)
Kuzin, E. N.; Zagarskih, V. I.; Efanov, V. V.
2016-12-01
The procedure and algorithms are proposed for an experimental and computational estimate of attenuation of radial shock waves occurring in shells of detonating extended charges during glancing detonation of their ammunition (explosives). Based on results of experimental, the semiempirical dependence characterizing the attenuation law for such waves is obtained.
Explosively generated shock wave processing of metal powders by instrumented detonics
NASA Astrophysics Data System (ADS)
Sharma, A. D.; Sharma, A. K.; Thakur, N.
2013-06-01
The highest pressures generated by dynamic processes resulting either from high velocity impact or by spontaneous release of high energy rate substances in direct contact with a metal find superior applications over normal mechanical means. The special feature of explosive loading to the powder materials over traditional methods is its controlled detonation pressure which directly transmits shock energy to the materials which remain entrapped inside powder resulting into several micro-structural changes and hence improved mechanical properties. superalloy powders have been compacted nearer to the theoretical density by shock wave consolidation. In a single experimental set-up, compaction of metal powder and measurement of detonation velocity have been achieved successfully by using instrumented detonics. The thrust on the work is to obtain uniform, crack-free and fracture-less compacts of superalloys having intact crystalline structure as has been examined from FE-SEM, XRD and mechanical studies. Shock wave processing is an emerging technique and receiving much attention of the materials scientists and engineers owing to its excellent advantages over traditional metallurgical methods due to short processing time, scaleup advantage and controlled detonation pressure.
Numerical modeling of an experimental shock tube for traumatic brain injury studies
NASA Astrophysics Data System (ADS)
Phillips, Michael; Regele, Jonathan D.
2015-11-01
Unfortunately, Improvised Explosive Devices (IEDs) are encountered commonly by both civilians and military soldiers throughout the world. Over a decade of medical history suggests that traumatic brain injury (TBI) may result from exposure to the blast waves created by these explosions, even if the person does not experience any immediate injury or lose consciousness. Medical researchers study the exposure of mice and rats to blast waves created in specially designed shock tubes to understand the effect on brain tissue. A newly developed table-top shock tube with a short driver section has been developed for mice experiments to reduce the time necessary to administer the blast radiation and increase the amount of statistical information available. In this study, numerical simulations of this shock tube are performed to assess how the blast wave takes its shape. The pressure profiles obtained from the numerical results are compared with the pressure histories from the experimental pressure transducers. The results show differences in behavior from what was expected, but the blast wave may still be an effective means of studying TBI.
Influence of water conductivity on shock waves generated by underwater electrical wire explosion
NASA Astrophysics Data System (ADS)
Liu, Ben; Wang, Deguo; Guo, Yanbao
2018-01-01
The new application of electrical explosion of wire (EEW) used in petroleum industry is to enhance oil recovery (EOR). Because of the complex environment underground, the effect of underground water conductivity on EEW should be considered. This work describes the effect of water conductivities on discharge current, voltage and shock waves. It was found that the effect of water conductivity contains two parts. One is the shunt effect of saline water, which can be considered as a parallel load with the copper wire between the electrodes connected to the discharge circuit. The peak pressure of shock waves are gradually decrease with the increase of water conductivity. The other is the current loss through saline water directly to the ground ends without flowing through the electrodes. The shunt effect is the main factor affecting the wire discharge process. As the charging voltage increased, the energy loss caused by these two parts are all reduced. These indicate that increasing the charging voltage to a certain value will increase the energy efficiency to generate a more powerful shock waves in conductive water.
Modeling Propagation of Shock Waves in Metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard, W M; Molitoris, J D
2005-08-19
We present modeling results for the propagation of strong shock waves in metals. In particular, we use an arbitrary Lagrange Eulerian (ALE3D) code to model the propagation of strong pressure waves (P {approx} 300 to 400 kbars) generated with high explosives in contact with aluminum cylinders. The aluminum cylinders are assumed to be both flat-topped and have large-amplitude curved surfaces. We use 3D Lagrange mechanics. For the aluminum we use a rate-independent Steinberg-Guinan model, where the yield strength and shear modulus depend on pressure, density and temperature. The calculation of the melt temperature is based on the Lindermann law. Atmore » melt the yield strength and shear modulus is set to zero. The pressure is represented as a seven-term polynomial as a function of density. For the HMX-based high explosive, we use a JWL, with a program burn model that give the correct detonation velocity and C-J pressure (P {approx} 390 kbars). For the case of the large-amplitude curved surface, we discuss the evolving shock structure in terms of the early shock propagation experiments by Sakharov.« less
Modeling Propagation of Shock Waves in Metals
NASA Astrophysics Data System (ADS)
Howard, W. M.; Molitoris, J. D.
2006-07-01
We present modeling results for the propagation of strong shock waves in metals. In particular, we use an arbitrary Lagrange Eulerian (ALE3D) code to model the propagation of strong pressure waves (P ˜ 300 to 400 kbars) generated with high explosives in contact with aluminum cylinders. The aluminum cylinders are assumed to be both flat-topped and have large-amplitude curved surfaces. We use 3D Lagrange mechanics. For the aluminum we use a rate-independent Steinberg-Guinan model, where the yield strength and shear modulus depend on pressure, density and temperature. The calculation of the melt temperature is based on the Lindermann law. At melt the yield strength and shear modulus is set to zero. The pressure is represented as a seven-term polynomial as a function of density. For the HMX-based high explosive, we use a JWL, with a program burn model that give the correct detonation velocity and C-J pressure (P ˜ 390 kbars). For the case of the large-amplitude curved surface, we discuss the evolving shock structure in terms of the early shock propagation experiments by Sakharov.
1983-03-31
SHOCK SIMULATION 1659 - Amonium nitrate first prepared by Glauber 1867 - Swedish patent granted to Ohlsson and Norrbein for use of ammonium nitrate ...neceessay aqd identify by block number) Ammonium Nitrate -Fuel Oil Aiiblast - . ANFO . Craters High Explosives Explosive Charge Construction * Nuclear...utilizatilon of ANFO for future W FJOAMw. 1473- EDIT00 or INOW ,Sois 0"LTZ"" DO t 473 UNCLASSIFIED SECUM"TY CLASSIFfCATIOl# OF THIS PAGEI(Whonf D Ia LI L
NASA Astrophysics Data System (ADS)
Xiong, Ming; Zheng, Huinan; Wu, S. T.; Wang, Yuming; Wang, Shui
2007-11-01
Numerical studies of the interplanetary "multiple magnetic clouds (Multi-MC)" are performed by a 2.5-dimensional ideal magnetohydrodynamic (MHD) model in the heliospheric meridional plane. Both slow MC1 and fast MC2 are initially emerged along the heliospheric equator, one after another with different time intervals. The coupling of two MCs could be considered as the comprehensive interaction between two systems, each comprising of an MC body and its driven shock. The MC2-driven shock and MC2 body are successively involved into interaction with MC1 body. The momentum is transferred from MC2 to MC1. After the passage of MC2-driven shock front, magnetic field lines in MC1 medium previously compressed by MC2-driven shock are prevented from being restored by the MC2 body pushing. MC1 body undergoes the most violent compression from the ambient solar wind ahead, continuous penetration of MC2-driven shock through MC1 body, and persistent pushing of MC2 body at MC1 tail boundary. As the evolution proceeds, the MC1 body suffers from larger and larger compression, and its original vulnerable magnetic elasticity becomes stiffer and stiffer. So there exists a maximum compressibility of Multi-MC when the accumulated elasticity can balance the external compression. This cutoff limit of compressibility mainly decides the maximally available geoeffectiveness of Multi-MC because the geoeffectiveness enhancement of MCs interacting is ascribed to the compression. Particularly, the greatest geoeffectiveness is excited among all combinations of each MC helicity, if magnetic field lines in the interacting region of Multi-MC are all southward. Multi-MC completes its final evolutionary stage when the MC2-driven shock is merged with MC1-driven shock into a stronger compound shock. With respect to Multi-MC geoeffectiveness, the evolution stage is a dominant factor, whereas the collision intensity is a subordinate one. The magnetic elasticity, magnetic helicity of each MC, and compression between each other are the key physical factors for the formation, propagation, evolution, and resulting geoeffectiveness of interplanetary Multi-MC.
Oil in the Water, Fire in the Sky: Responding to Technological/Environmental Disasters
ERIC Educational Resources Information Center
Lazarus, Philip J.; Sulkowski, Michael L.
2010-01-01
On April 20, 2010, a massive explosion killed 11 workers on the Deepwater Horizon oil rig. Survivors of this explosion recounted terrifying near-death experiences and mourned the loss of coworkers and friends who had perished. Shock and grief spread through small coastal communities composed mostly of fishers and oil workers. However, this was…
NASA Astrophysics Data System (ADS)
Gojani, A. B.; Ohtani, K.; Takayama, K.; Hosseini, S. H. R.
2016-01-01
This paper reports a result of experiments for the determination of reliable shock Hugoniot curves of liquids, in particular, at relatively low pressure region, which are needed to perform precise numerical simulations of shock wave/tissue interaction prior to the development of shock wave related therapeutic devices. Underwater shock waves were generated by explosions of laser ignited 10 mg silver azide pellets, which were temporally and spatially well controlled. Measuring temporal variation of shock velocities and over-pressures in caster oil, aqueous solutions of sodium chloride, sucrose and gelatin with various concentrations, we succeeded to determine shock Hugoniot curves of these liquids and hence parameters describing Tait type equations of state.
Influence of Shockwave Profile on Ejection of Micron-Scale Material From Shocked Tin Surfaces
NASA Astrophysics Data System (ADS)
Zellner, Michael; Hammerberg, Jim; Hixson, Robert; Olson, Russel; Rigg, Paulo; Stevens, Gerald; Turley, William; Buttler, William
2008-03-01
This effort investigates the relation between shock-pulse shape and the amount of micron-scale fragments ejected (ejecta) upon shock release at the metal/vacuum interface of shocked Sn targets. Two shock-pulse shapes are considered: a supported shock created by impacting a Sn target with a sabot that was accelerated using a powder gun; and an unsupported or triangular-shaped Taylor shockwave, created by detonation of high explosive that was press-fit to the front-side of the Sn target. Ejecta production at the back-side or free-side of the Sn coupons were characterized through use of piezoelectric pins, Asay foil, optical shadowgraphy, and X-ray attenuation.
NASA Astrophysics Data System (ADS)
Olano, C. A.
2009-11-01
Context: Using certain simplifications, Kompaneets derived a partial differential equation that states the local geometrical and kinematical conditions that each surface element of a shock wave, created by a point blast in a stratified gaseous medium, must satisfy. Kompaneets could solve his equation analytically for the case of a wave propagating in an exponentially stratified medium, obtaining the form of the shock front at progressive evolutionary stages. Complete analytical solutions of the Kompaneets equation for shock wave motion in further plane-parallel stratified media were not found, except for radially stratified media. Aims: We aim to analytically solve the Kompaneets equation for the motion of a shock wave in different plane-parallel stratified media that can reflect a wide variety of astrophysical contexts. We were particularly interested in solving the Kompaneets equation for a strong explosion in the interstellar medium of the Galactic disk, in which, due to intense winds and explosions of stars, gigantic gaseous structures known as superbubbles and supershells are formed. Methods: Using the Kompaneets approximation, we derived a pair of equations that we call adapted Kompaneets equations, that govern the propagation of a shock wave in a stratified medium and that permit us to obtain solutions in parametric form. The solutions provided by the system of adapted Kompaneets equations are equivalent to those of the Kompaneets equation. We solved the adapted Kompaneets equations for shock wave propagation in a generic stratified medium by means of a power-series method. Results: Using the series solution for a shock wave in a generic medium, we obtained the series solutions for four specific media whose respective density distributions in the direction perpendicular to the stratification plane are of an exponential, power-law type (one with exponent k=-1 and the other with k =-2) and a quadratic hyperbolic-secant. From these series solutions, we deduced exact solutions for the four media in terms of elemental functions. The exact solution for shock wave propagation in a medium of quadratic hyperbolic-secant density distribution is very appropriate to describe the growth of superbubbles in the Galactic disk. Member of the Carrera del Investigador Científico del CONICET, Argentina.
Brown, Kathryn E; McGrane, Shawn D; Bolme, Cynthia A; Moore, David S
2014-04-10
Initiation of the shock driven chemical reactions and detonation of nitromethane (NM) can be sensitized by the addition of a weak base; however, the chemical mechanism by which sensitization occurs remains unclear. We investigated the shock driven chemical reaction in NM and in NM sensitized with diethylenetriamine (DETA), using a sustained 300 ps shock driven by a chirped Ti:sapphire laser. We measured the solutions' visible transient absorption spectra and measured interface particle and shock velocities of the nitromethane solutions using ultrafast dynamic ellipsometry. We found there to be a volume-increasing reaction that takes place around interface particle velocity up = 2.4 km/s and up = 2.2 km/s for neat NM and NM with 5% DETA, respectively. The rate at which transient absorption increases is similar in all mixtures, but with decreasing induction times for solutions with increasing DETA concentrations. This result supports the hypothesis that the chemical reaction mechanisms for shocked NM and NM with DETA are the same. Data from shocked NM are compared to literature experimental and theoretical data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaeffer, D. B.; Winske, D.; Larson, D. J.
Collisionless shocks are common phenomena in space and astrophysical systems, and in many cases, the shocks can be modeled as the result of the expansion of a magnetic piston though a magnetized ambient plasma. Only recently, however, have laser facilities and diagnostic capabilities evolved sufficiently to allow the detailed study in the laboratory of the microphysics of piston-driven shocks. We review experiments on collisionless shocks driven by a laser-produced magnetic piston undertaken with the Phoenix laser laboratory and the Large Plasma Device at the University of California, Los Angeles. The experiments span a large parameter space in laser energy, backgroundmore » magnetic field, and ambient plasma properties that allow us to probe the physics of piston-ambient energy coupling, the launching of magnetosonic solitons, and the formation of subcritical shocks. Here, the results indicate that piston-driven magnetized collisionless shocks in the laboratory can be characterized with a small set of dimensionless formation parameters that place the formation process in an organized and predictive framework.« less
Dynamics of Laser-Driven Shock Waves in Solid Targets
NASA Astrophysics Data System (ADS)
Aglitskiy, Y.; Karasik, M.; Velikovich, A. L.; Serlin, V.; Weaver, J.; Schmitt, A. J.; Obenschain, S. P.; Grun, J.; Metzler, N.; Zalesak, S. T.; Gardner, J. H.; Oh, J.; Harding, E. C.
2009-11-01
Accurate shock timing is a key issue of both indirect- and direct-drive laser fusions. The experiments on the Nike laser at NRL presented here were made possible by improvements in the imaging capability of our monochromatic x-ray diagnostics based on Bragg reflection from spherically curved crystals. Side-on imaging implemented on Nike makes it possible to observe dynamics of the shock wave and ablation front in laser-driven solid targets. We can choose to observe a sequence of 2D images or a continuous time evolution of an image resolved in one spatial dimension. A sequence of 300 ps snapshots taken using vanadium backlighter at 5.2 keV reveals propagation of a shock wave in a solid plastic target. The shape of the shock wave reflects the intensity distribution in the Nike beam. The streak records with continuous time resolution show the x-t trajectory of a laser-driven shock wave in a 10% solid density DVB foam.
Ultra high-speed x-ray imaging of laser-driven shock compression using synchrotron light
NASA Astrophysics Data System (ADS)
Olbinado, Margie P.; Cantelli, Valentina; Mathon, Olivier; Pascarelli, Sakura; Grenzer, Joerg; Pelka, Alexander; Roedel, Melanie; Prencipe, Irene; Laso Garcia, Alejandro; Helbig, Uwe; Kraus, Dominik; Schramm, Ulrich; Cowan, Tom; Scheel, Mario; Pradel, Pierre; De Resseguier, Thibaut; Rack, Alexander
2018-02-01
A high-power, nanosecond pulsed laser impacting the surface of a material can generate an ablation plasma that drives a shock wave into it; while in situ x-ray imaging can provide a time-resolved probe of the shock-induced material behaviour on macroscopic length scales. Here, we report on an investigation into laser-driven shock compression of a polyurethane foam and a graphite rod by means of single-pulse synchrotron x-ray phase-contrast imaging with MHz frame rate. A 6 J, 10 ns pulsed laser was used to generate shock compression. Physical processes governing the laser-induced dynamic response such as elastic compression, compaction, pore collapse, fracture, and fragmentation have been imaged; and the advantage of exploiting the partial spatial coherence of a synchrotron source for studying low-density, carbon-based materials is emphasized. The successful combination of a high-energy laser and ultra high-speed x-ray imaging using synchrotron light demonstrates the potentiality of accessing complementary information from scientific studies of laser-driven shock compression.
Computational study of 3-D hot-spot initiation in shocked insensitive high-explosive
NASA Astrophysics Data System (ADS)
Najjar, F. M.; Howard, W. M.; Fried, L. E.; Manaa, M. R.; Nichols, A., III; Levesque, G.
2012-03-01
High-explosive (HE) material consists of large-sized grains with micron-sized embedded impurities and pores. Under various mechanical/thermal insults, these pores collapse generating hightemperature regions leading to ignition. A hydrodynamic study has been performed to investigate the mechanisms of pore collapse and hot spot initiation in TATB crystals, employing a multiphysics code, ALE3D, coupled to the chemistry module, Cheetah. This computational study includes reactive dynamics. Two-dimensional high-resolution large-scale meso-scale simulations have been performed. The parameter space is systematically studied by considering various shock strengths, pore diameters and multiple pore configurations. Preliminary 3-D simulations are undertaken to quantify the 3-D dynamics.
Smalyuk, V. A.; Robey, H. F.; Döppner, T.; ...
2015-08-27
Radiation-driven, layered deuterium-tritium plastic capsule implosions were carried out using a new, 3-shock “adiabat-shaped” drive on the National Ignition Facility. The purpose of adiabat shaping is to use a stronger first shock, reducing hydrodynamic instability growth in the ablator. The shock can decay before reaching the deuterium-tritium fuel leaving it on a low adiabat and allowing higher fuel compression. The fuel areal density was improved by ~25% with this new drive compared to similar “high-foot” implosions, while neutron yield was improved by more than 4 times, compared to “low-foot” implosions driven at the same compression and implosion velocity.
Interaction of Energetic Particles with Discontinuities Upstream of Strong Shocks
NASA Astrophysics Data System (ADS)
Malkov, Mikhail; Diamond, Patrick
2008-11-01
Acceleration of particles in strong astrophysical shocks is known to be accompanied and promoted by a number of instabilities which are driven by the particles themselves. One of them is an acoustic (also known as Drury's) instability driven by the pressure gradient of accelerated particles upstream. The generated sound waves naturally steepen into shocks thus forming a shocktrain. Similar magnetoacoustic or Alfven type structures may be driven by pick-up ions, for example. We consider the solutions of kinetic equation for accelerated particles within the shocktrain. The accelerated particles are assumed to be coupled to the flow by an intensive pitch-angle scattering on the self-generated Alfven waves. The implications for acceleration and confinement of cosmic rays in this shock environment will be discussed.
Comparing Shock geometry from MHD simulation to that from the Q/A-scaling analysis
NASA Astrophysics Data System (ADS)
Li, G.; Zhao, L.; Jin, M.
2017-12-01
In large SEP events, ions can be accelerated at CME-driven shocks to very high energies. Spectra of heavy ions in many large SEP events show features such as roll-overs or spectral breaks. In some events when the spectra are plotted in energy/nucleon they can be shifted relatively to each other so that the spectra align. The amount of shift is charge-to-mass ratio (Q/A) dependent and varies from event to event. In the work of Li et al. (2009), the Q/A dependences of the scaling is related to shock geometry when the CME-driven shock is close to the Sun. For events where multiple in-situ spacecraft observations exist, one may expect that different spacecraft are connected to different portions of the CME-driven shock that have different shock geometries, therefore yielding different Q/A dependence. At the same time, shock geometry can be also obtained from MHD simulations. This means we can compare shock geometry from two completely different approaches: one from MHD simulation and the other from in-situ spectral fitting. In this work, we examine this comparison for selected events.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrmann, W.; von Laven, G.M.; Parker, T.
1993-09-01
The Bibliographic Retrieval System (BARS) is a data base management system specially designed to retrieve bibliographic references. Two databases are available, (i) the Sandia Shock Compression (SSC) database which contains over 5700 references to the literature related to stress waves in solids and their applications, and (ii) the Shock Physics Index (SPHINX) which includes over 8000 further references to stress waves in solids, material properties at intermediate and low rates, ballistic and hypervelocity impact, and explosive or shock fabrication methods. There is some overlap in the information in the two data bases.
Embedded optical fibers for PDV measurements in shock-loaded, light and heavy water
NASA Astrophysics Data System (ADS)
Mercier, Patrick; Benier, Jacky; Frugier, Pierre-Antoine; Debruyne, Michel; Bolis, Cyril
2011-06-01
In order to study the shock-detonation transition, it is necessary to characterize the shock loading of a high explosive plane wave generator into a nitromethane cell. To eliminate the reactive behaviour, we replace the nitromethane by an inert liquid compound. Light water has been first employed; eventually heavy water has been chosen for its better infrared spectral properties. We present the PDV results of different submerged embedded optical fibers which sense the medium with two different approaches: a non-intrusive optical observation of phenomena coming in front of them (interface, shock wave) followed by the mechanical interaction with the shock wave.
Shock-treated Lunar Soil Simulant: Preliminary Assessment as a Construction Material
NASA Technical Reports Server (NTRS)
Boslough, Mark B.; Bernold, Leonhard E.; Horie, Yasuyuki
1992-01-01
In an effort to examine the feasibility of applying dynamic compaction techniques to fabricate construction materials from lunar regolith, preliminary explosive shock-loading experiments on lunar soil simulants were carried out. Analysis of our shock-treated samples suggests that binding additives, such as metallic aluminum powder, may provide the necessary characteristics to fabricate a strong and durable building material (lunar adobe) that takes advantage of a cheap base material available in abundance: lunar regolith.
Hugoniot and properties of diesel fuel used in ANFO
NASA Astrophysics Data System (ADS)
Robbins, David L.; Sheffield, S. A.; Dattelbaum, Dana M.; Stahl, David B.
2012-03-01
One of the more common ammonium nitrate(AN)-based explosives is ANFO, which is a mixture of AN prills and diesel fuel oil (FO) in a 94:6 ratio by weight. Since there are no available shock data on FO, a series of shock compression experiments have been completed using a two-stage light gas gun with a sealed liquid target cell. The FO studied was diesel #2 which has been used in a number of ANFO explosive shots. Density and sound speed data were measured and used to predict and compare the data to a universal liquid Hugoniot (ULH). In-situ magnetic gauges in the target cell were used to measure the particle velocity, shock velocity, and shock wave profiles. Projectile impact velocities ranged from 1.5 to 3.2 km/s, generating input pressures to the FO between 3 and 17 GPa (depending on the impactor material being used). No shock-induced reaction was observed in the FO in any of the experiments. Since the ULH was found to slightly under predict the FO Hugoniot states, a linear Hugoniot was fit to the data - Us = 1.775 + 1.725 up - in mm/μs. A Helmholtz EOS based on the Murnaghan isotherm was developed so the temperature on the Hugoniot could be estimated. At 12 GPa the shock temperature is expected to be 1500K.
NASA Astrophysics Data System (ADS)
Badziak, J.; Kucharik, M.; Liska, R.
2018-02-01
The generation of high-pressure shocks in the newly proposed collider in which the projectile impacting a solid target is driven by the laser-induced cavity pressure acceleration (LICPA) mechanism is investigated using two-dimensional hydrodynamic simulations. The dependence of parameters of the shock generated in the target by the impact of a gold projectile on the impacted target material and the laser driver energy is examined. It is found that both in case of low-density (CH, Al) and high-density (Au, Cu) solid targets the shock pressures in the sub-Gbar range can be produced in the LICPA-driven collider with the laser energy of only a few hundreds of joules, and the laser-to-shock energy conversion efficiency can reach values of 10 - 20 %, by an order of magnitude higher than the conversion efficiencies achieved with other laser-based methods used so far.
NASA Astrophysics Data System (ADS)
Baudin, Gerard; Roudot, Marie; Genetier, Marc
2013-06-01
Composite HMX and NTO based high explosives (HE) are widely used in ammunitions. Designing modern warheads needs robust and reliable models to compute shock ignition and detonation propagation inside HE. Comparing to a pressed HE, a composite HE is not porous and the hot-spots are mainly located at the grain - binder interface leading to a different behavior during shock-to-detonation transition. An investigation of how shock-to-detonation transition occurs inside composite HE containing RDX and NTO is proposed in this lecture. Two composite HE have been studied. The first one is HMX - HTPB 82:18. The second one is HMX - NTO - HTPB 12:72:16. These HE have been submitted to plane sustained shock waves at different pressure levels using a laboratory powder gun. Pressure signals are measured using manganin gauges inserted at several distances inside HE. The corresponding run-distances to detonation are determined using wedge test experiments where the plate impact is performed using a powder gun. Both HE exhibit a single detonation buildup curve in the distance - time diagram of shock-to-detonation transition. This feature seems a common shock-to-detonation behavior for composite HE without porosity. This behavior is also confirmed for a RDX - HTPB 85:15 based composite HE. Such a behavior is exploited to determine the heterogeneous reaction rate versus the shock pressure using a method based on the Cauchy-Riemann problem inversion. The reaction rate laws obtained allow to compute both run-distance to detonation and pressure signals.
Atomistic Simulations of Chemical Reactivity of TATB Under Thermal and Shock Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manaa, M R; Reed, E J; Fried, L E
2009-09-23
The study of chemical transformations that occur at the reactive shock front of energetic materials provides important information for the development of predictive models at the grain-and continuum scales. A major shortcoming of current high explosives models is the lack of chemical kinetics data of the reacting explosive in the high pressure and temperature regimes. In the absence of experimental data, long-time scale atomistic molecular dynamics simulations with reactive chemistry become a viable recourse to provide an insight into the decomposition mechanism of explosives, and to obtain effective reaction rate laws. These rates can then be incorporated into thermo-chemical-hydro codesmore » (such as Cheetah linked to ALE3D) for accurate description of the grain and macro scales dynamics of reacting explosives. In this talk, I will present quantum simulations of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) crystals under thermal decomposition (high density and temperature) and shock compression conditions. This is the first time that condensed phase quantum methods have been used to study the chemistry of insensitive high explosives. We used the quantum-based, self-consistent charge density functional tight binding method (SCC{_}DFTB) to calculate the interatomic forces for reliable predictions of chemical reactions, and to examine electronic properties at detonation conditions for a relatively long time-scale on the order of several hundreds of picoseconds. For thermal decomposition of TATB, we conducted constant volume-temperature simulations, ranging from 0.35 to 2 nanoseconds, at {rho} = 2.87 g/cm{sup 3} at T = 3500, 3000, 2500, and 1500 K, and {rho} = 2.9 g/cm{sup 3} and 2.72 g/cm{sup 3}, at T = 3000 K. We also simulated crystal TATB's reactivity under steady overdriven shock compression using the multi-scale shock technique. We conducted shock simulations with specified shock speeds of 8, 9, and 10 km/s for up to 0.43 ns duration, enabling us to track the reactivity of TATB well into the formation of several stable gas products, such as H{sub 2}O, N{sub 2}, and CO{sub 2}. Although complex chemical transformations are occurring continuously in the dynamical, high temperature, reactive environment of our simulations, a simple overall scheme for the decomposition of TATB emerges: Water is the earliest decomposition products to form, followed by a polymerization (or condensation) process in which several TATB remaining fragments are joined together, initiating the early step in the formation of high-nitrogen clusters, along with stable products such as N{sub 2} and CO{sub 2}. Remarkably, these clusters with high concentration of carbon and nitrogen (and little oxygen) remain dynamically stable for the remaining period of the simulations. Our simulations, thus, reveal a hitherto unidentified region of high concentrations of nitrogen-rich heterocyclic clusters in reacting TATB, whose persistence impede further reactivity towards final products of fluid N{sub 2} and solid carbon. These simulations also predict significant populations of charged species such as NCO{sup -}, H{sup +}, OH{sup -}, H{sub 3}O{sup +}, and O{sup -2}, the first such observation in a reacting explosive. Finally, A reduced four steps, global reaction mechanism with Arrhenius kinetic rates for the decomposition of TATB, along with comparative Cheetah decomposition kinetics at various temperatures has been constructed and will be discussed.« less
NASA Astrophysics Data System (ADS)
Thakur, Siddharth; Neal, Chris; Mehta, Yash; Sridharan, Prasanth; Jackson, Thomas; Balachandar, S.
2017-01-01
Micrsoscale simulations are being conducted for developing point-particle and other related models that are needed for the mesoscale and macroscale simulations of explosive dispersal of particles. These particle models are required to compute (a) instantaneous aerodynamic force on the particle and (b) instantaneous net heat transfer between the particle and the surrounding. A strategy for a sequence of microscale simulations has been devised that allows systematic development of the hybrid surrogate models that are applicable at conditions representative of the explosive dispersal application. The ongoing microscale simulations seek to examine particle force dependence on: (a) Mach number, (b) Reynolds number, and (c) volume fraction (different particle arrangements such as cubic, face-centered cubic (FCC), body-centered cubic (BCC) and random). Future plans include investigation of sequences of fully-resolved microscale simulations consisting of an array of particles subjected to more realistic time-dependent flows that progressively better approximate the actual problem of explosive dispersal. Additionally, effects of particle shape, size, and number in simulation as well as the transient particle deformation dependence on various parameters including: (a) particle material, (b) medium material, (c) multiple particles, (d) incoming shock pressure and speed, (e) medium to particle impedance ratio, (f) particle shape and orientation to shock, etc. are being investigated.
NASA Astrophysics Data System (ADS)
Gonor, Alexander; Hooton, Irene
2006-07-01
Impact of a rigid projectile (impactor), against a metal target and a condensed explosive surface considered as the important process accompanying the normal entry of a rigid projectile into a target, was overlooked in the preceding studies. Within the framework of accurate shock wave theory, the flow-field, behind the shock wave attached to the perimeter of the adjoined surface, was defined. An important result is the peak pressure rises at points along the target surface away from the stagnation point. The maximum values of the peak pressure are 2.2 to 3.2 times higher for the metallic and soft targets (nitromethane, PBX 9502), than peak pressure values at the stagnation point. This effect changes the commonly held notion that the maximum peak pressure is reached at the projectile stagnation point. In the present study the interaction of a spherical decaying blast wave, caused by an underwater explosion, with a piece-wise plane target, having corner configurations, is investigated. The numerical calculation results in the determination of the vulnerable spots on the target, where the maximum peak overpressure surpassed that for the head-on shock wave reflection by a factor of 4.
Prediction of the explosion effect of aluminized explosives
NASA Astrophysics Data System (ADS)
Zhang, Qi; Xiang, Cong; Liang, HuiMin
2013-05-01
We present an approach to predict the explosion load for aluminized explosives using a numerical calculation. A code to calculate the species of detonation products of high energy ingredients and those of the secondary reaction of aluminum and the detonation products, velocity of detonation, pressure, temperature and JWL parameters of aluminized explosives has been developed in this study. Through numerical calculations carried out with this code, the predicted JWL parameters for aluminized explosives have been compared with those measured by the cylinder test. The predicted JWL parameters with this code agree with those measured by the cylinder test. Furthermore, the load of explosion for the aluminized explosive was calculated using the numerical simulation by using the JWL equation of state. The loads of explosion for the aluminized explosive obtained using the predicted JWL parameters have been compared with those using the measured JWL parameters. Both of them are almost the same. The numerical results using the predicted JWL parameters show that the explosion air shock wave is the strongest when the mass fraction of aluminum powder in the explosive mixtures is 30%. This result agrees with the empirical data.
Shock waves in molecular solids: ultrafast vibrational spectroscopy of the first nanosecond
NASA Astrophysics Data System (ADS)
Franken, J.; Hambir, S. A.; Hare, D. E.; Dlott, D. D.
A novel technique which uses a microfabricated shock target array assembly is described, where the passage of a shock front through a thin (0.5μm) polycrystalline layer and the subsequent unloading process is monitored in real time with ultrafast coherent Raman spectroscopy. Using a high repetition rate laser shock generation technique, high resolution, coherent Raman spectra are obtained in shocked anthracene and in a high explosive material, NTO, with time resolution of 50 ps. Spectroscopic measurements are presented which yield the shock pressure (up to 5 GPa), the shock velocity ( 4 km/s), the shock front risetime (tr < 25 ps), and the temperature ( 400°C). A brief discussion is presented, how this new technique can be used to determine the Hugoniot, the equation of state, the entropy increase across the shock front, and monitor shock induced chemical reactions in real time.
Shock wave facilities at Pulter Laboratory of SRI international
NASA Astrophysics Data System (ADS)
Murri, W. J.
1982-04-01
Shock wave research in the Poulter Laboratory covers two broad areas: dynamic material response and dynamic structural response. Workers in both areas use common facilities. The Laboratory has several guns and the facilities to perform various types of high explosive loading experiments. The use of these facilities and experimental techniques is illustrated with examples from research projects.
Gottfried, Jennifer L; Bukowski, Eric J
2017-01-20
A focused, nanosecond-pulsed laser has been used to ablate, atomize, ionize, and excite milligram quantities of metal-doped energetic materials that undergo exothermic reactions in the laser-induced plasma. The subsequent shock wave expansion in the air above the sample has been monitored using high-speed schlieren imaging in a recently developed technique, laser-induced air shock from energetic materials (LASEM). The method enables the estimation of detonation velocities based on the measured laser-induced air-shock velocities and has previously been demonstrated for organic military explosives. Here, the LASEM technique has been extended to explosive formulations with metal additives. A comparison of the measured laser-induced air-shock velocities for TNT, RDX, DNTF, and LLM-172 doped with Al or B to the detonation velocities predicted by the thermochemical code CHEETAH for inert or active metal participation demonstrates that LASEM has potential for predicting the early time (<10 μs) participation of metal additives in detonation events. The LASEM results show that while Al is mostly inert at early times in the detonation event (confirmed from large-scale detonation testing), B is active-and reducing the amount of hydrogen present during the early chemical reactions increases the resulting estimated detonation velocities.
Explosive-induced shock damage in copper and recompression of the damaged region
Turley, William D.; Stevens, Gerald D.; Hixson, Robert Stewart; ...
2016-08-31
Here, we have studied the dynamic spall process for copper samples in contact with detonating low-performance explosives. When a triangular shaped shock wave from detonation moves through a sample and reflects from the free surface, tension develops immediately, one or more damaged layers can form, and a spall scab can separate from the sample and move ahead of the remaining target material. For dynamic experiments, we used time-resolved velocimetry and x-ray radiography. Soft-recovered samples were analyzed using optical imaging and microscopy. Computer simulations were used to guide experiment design. We observe that for some target thicknesses the spall scab continuesmore » to run ahead of the rest of the sample, but for thinner samples, the detonation product gases accelerate the sample enough for it to impact the spall scab several microseconds or more after the initial damage formation. Our data also show signatures in the form of a late-time reshock in the time-resolved data, which support this computational prediction. A primary goal of this research was to study the wave interactions and damage processes for explosives-loaded copper and to look for evidence of this postulated recompression event. We found both experimentally and computationally that we could tailor the magnitude of the initial and recompression shocks by varying the explosive drive and the copper sample thickness; thin samples had a large recompression after spall, whereas thick samples did not recompress at all. Samples that did not recompress had spall scabs that completely separated from the sample, whereas samples with recompression remained intact. This suggests that the hypothesized recompression process closes voids in the damage layer or otherwise halts the spall formation process. This is a somewhat surprising and, in some ways controversial, result, and the one that warrants further research in the shock compression community.« less
Explosive-induced shock damage in copper and recompression of the damaged region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turley, William D.; Stevens, Gerald D.; Hixson, Robert Stewart
Here, we have studied the dynamic spall process for copper samples in contact with detonating low-performance explosives. When a triangular shaped shock wave from detonation moves through a sample and reflects from the free surface, tension develops immediately, one or more damaged layers can form, and a spall scab can separate from the sample and move ahead of the remaining target material. For dynamic experiments, we used time-resolved velocimetry and x-ray radiography. Soft-recovered samples were analyzed using optical imaging and microscopy. Computer simulations were used to guide experiment design. We observe that for some target thicknesses the spall scab continuesmore » to run ahead of the rest of the sample, but for thinner samples, the detonation product gases accelerate the sample enough for it to impact the spall scab several microseconds or more after the initial damage formation. Our data also show signatures in the form of a late-time reshock in the time-resolved data, which support this computational prediction. A primary goal of this research was to study the wave interactions and damage processes for explosives-loaded copper and to look for evidence of this postulated recompression event. We found both experimentally and computationally that we could tailor the magnitude of the initial and recompression shocks by varying the explosive drive and the copper sample thickness; thin samples had a large recompression after spall, whereas thick samples did not recompress at all. Samples that did not recompress had spall scabs that completely separated from the sample, whereas samples with recompression remained intact. This suggests that the hypothesized recompression process closes voids in the damage layer or otherwise halts the spall formation process. This is a somewhat surprising and, in some ways controversial, result, and the one that warrants further research in the shock compression community.« less
Explosive-induced shock damage in copper and recompression of the damaged region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turley, W. D., E-mail: turleywd@nv.doe.gov; Stevens, G. D.; La Lone, B. M.
We have studied the dynamic spall process for copper samples in contact with detonating low-performance explosives. When a triangular shaped shock wave from detonation moves through a sample and reflects from the free surface, tension develops immediately, one or more damaged layers can form, and a spall scab can separate from the sample and move ahead of the remaining target material. For dynamic experiments, we used time-resolved velocimetry and x-ray radiography. Soft-recovered samples were analyzed using optical imaging and microscopy. Computer simulations were used to guide experiment design. We observe that for some target thicknesses the spall scab continues tomore » run ahead of the rest of the sample, but for thinner samples, the detonation product gases accelerate the sample enough for it to impact the spall scab several microseconds or more after the initial damage formation. Our data also show signatures in the form of a late-time reshock in the time-resolved data, which support this computational prediction. A primary goal of this research was to study the wave interactions and damage processes for explosives-loaded copper and to look for evidence of this postulated recompression event. We found both experimentally and computationally that we could tailor the magnitude of the initial and recompression shocks by varying the explosive drive and the copper sample thickness; thin samples had a large recompression after spall, whereas thick samples did not recompress at all. Samples that did not recompress had spall scabs that completely separated from the sample, whereas samples with recompression remained intact. This suggests that the hypothesized recompression process closes voids in the damage layer or otherwise halts the spall formation process. This is a somewhat surprising and, in some ways controversial, result, and the one that warrants further research in the shock compression community.« less
Yield strength of Cu and an engineered material of Cu with 1% Pb
NASA Astrophysics Data System (ADS)
Buttler, William; Gray, George, III; Fensin, Saryu; Grover, Mike; Stevens, Gerald; Stone, Joseph; Turley, William
2015-06-01
To study the effects of engineered elastic-plastic yield on the mass-ejection from shocked materials we fielded explosively driven Cu and CuPb experiments. The Cu and CuPb experiments fielded fully annealed disks in contact with PBX 9501; the CuPb was extruded with 1% Pb that aggregates at the Cu grain boundaries. The elastic-plastic yield strength is explored as a difference of ejecta production of CuPb versus Cu, where the ejecta production of solid materials ties directly to the surface perturbation geometries of wavelengths (fixed at 65 μm) and amplitudes (which were varied). We observed that the Cu performs as expected, with ejecta turning on at the previously observed yield threshold, but the CuPb ejects mass in much larger quantities, at much lower wavenumber (k = 2 π/ λ) amplitude (h) products (kh), implying a reduced elastic-plastic yield stress of the engineered material, CuPb.
A two-phase micromorphic model for compressible granular materials
NASA Astrophysics Data System (ADS)
Paolucci, Samuel; Li, Weiming; Powers, Joseph
2009-11-01
We introduce a new two-phase continuum model for compressible granular material based on micromorphic theory and treat it as a two-phase mixture with inner structure. By taking an appropriate number of moments of the local micro scale balance equations, the average phase balance equations result from a systematic averaging procedure. In addition to equations for mass, momentum and energy, the balance equations also include evolution equations for microinertia and microspin tensors. The latter equations combine to yield a general form of a compaction equation when the material is assumed to be isotropic. When non-linear and inertial effects are neglected, the generalized compaction equation reduces to that originally proposed by Bear and Nunziato. We use the generalized compaction equation to numerically model a mixture of granular high explosive and interstitial gas. One-dimensional shock tube and piston-driven solutions are presented and compared with experimental results and other known solutions.
VLBI of supernovae and gamma-ray bursts
NASA Astrophysics Data System (ADS)
Bartel, N.; Karimi, B.; Bietenholz, M. F.
2017-04-01
Supernovae and gamma-ray bursts (GRBs) are among the brightest events in the universe. Excluding Type Ia supernovae and short GRBs, they are the result of the core collapse of a massive star with material being ejectedwith speeds of several 1000 km/s to nearly the speed of light, and with a neutron star or a black hole left over as the compact remnant of the explosion. Synchrotron radiation in the radio is generated in a shell when the ejecta interact with the surrounding medium and possibly also in the central region near the compact remnant itself. VLBI has allowed resolving some of these sources and monitoring their expansion in detail, thereby revealing characteristics of the dying star, the explosion, the expanding shock front, and the expected compact remnant. We report on updates of some of the most interesting results that have been obtained with VLBI so far. Movies of supernovae are available from our website. They show the evolution from shortly after the explosion to decades thereafter, in one case revealing an emerging compact central source, which may be associated with shock interaction near the explosion center or with the stellar corpse itself, a neutron star or a black hole.
Studying astrophysical particle acceleration with laser-driven plasmas
NASA Astrophysics Data System (ADS)
Fiuza, Frederico
2016-10-01
The acceleration of non-thermal particles in plasmas is critical for our understanding of explosive astrophysical phenomena, from solar flares to gamma ray bursts. Particle acceleration is thought to be mediated by collisionless shocks and magnetic reconnection. The microphysics underlying these processes and their ability to efficiently convert flow and magnetic energy into non-thermal particles, however, is not yet fully understood. By performing for the first time ab initio 3D particle-in-cell simulations of the interaction of both magnetized and unmagnetized laser-driven plasmas, it is now possible to identify the optimal parameters for the study of particle acceleration in the laboratory relevant to astrophysical scenarios. It is predicted for the Omega and NIF laser conditions that significant non-thermal acceleration can occur during magnetic reconnection of laser-driven magnetized plasmas. Electrons are accelerated by the electric field near the X-points and trapped in contracting magnetic islands. This leads to a power-law tail extending to nearly a hundred times the thermal energy of the plasma and that contains a large fraction of the magnetic energy. The study of unmagnetized interpenetrating plasmas also reveals the possibility of forming collisionless shocks mediated by the Weibel instability on NIF. Under such conditions, both electrons and ions can be energized by scattering out of the Weibel-mediated turbulence. This also leads to power-law spectra that can be detected experimentally. The resulting experimental requirements to probe the microphysics of plasma particle acceleration will be discussed, paving the way for the first experiments of these important processes in the laboratory. As a result of these simulations and theoretical analysis, there are new experiments being planned on the Omega, NIF, and LCLS laser facilities to test these theoretical predictions. This work was supported by the SLAC LDRD program and DOE Office of Science, Fusion Energy Science (FWP 100182).
NASA Astrophysics Data System (ADS)
Renslow, Peter John
A small-scale characterization test utilizing microwave interferometry was developed to dynamically measure detonation and run to detonation distance in explosives. The technique was demonstrated by conducting two experimental series on the well-characterized explosive triaminotrinitrobenzene (TATB). In the first experiment series, the detonation velocity was observed at varying porosity. The velocity during TATB detonation matched well with predictions made using CHEETAH and an empirical relation from the Los Alamos National Laboratory (LANL). The microwave interferometer also captured unsteady propagation of the reaction when a low density charge was near the failure diameter. In the second experiment series, Pop-plots were produced using data obtained from shock initiation of the TATB through a polymethyl methacrylate (PMMA) attenuator. The results compared well to wedge test data from LANL despite the microwave interferometer test being of substantially smaller scale. The results showed the test method is attractive for rapid characterization of new and improvised explosive materials.
Using Schlieren Visualization to Track Detonator Performance
NASA Astrophysics Data System (ADS)
Clarke, S. A.; Bolme, C. A.; Murphy, M. J.; Landon, C. D.; Mason, T. A.; Adrian, R. J.; Akinci, A. A.; Martinez, M. E.; Thomas, K. A.
2007-12-01
Several experiments will be presented that are part of a phased plan to understand the evolution of detonation in a detonator from initiation shock through run to detonation, to full detonation, to transition, to booster and booster detonation. High-speed multiframe schlieren imagery has been used to study several explosive initiation events, such as exploding bridgewires (EBWs), exploding foil initiators (EFIs or "slappers"), direct optical initiation (DOI), and electrostatic discharge. Additionally, a series of tests has been performed on "cut-back" detonators with varying initial pressing heights. We have also used this diagnostic to visualize a range of EBW, EFI, and DOI full-up detonators. Future applications to other explosive events, such as boosters and insensitive high explosives booster evaluation, will be discussed. The EPIC finite element code has been used to analyze the shock fronts from the schlieren images to solve iteratively for consistent boundary or initial conditions to determine the temporal-spatial pressure profile across the output face of the detonator.
Initial conditions and modeling for simulations of shock driven turbulent material mixing
Grinstein, Fernando F.
2016-11-17
Here, we focus on the simulation of shock-driven material mixing driven by flow instabilities and initial conditions (IC). Beyond complex multi-scale resolution issues of shocks and variable density turbulence, me must address the equally difficult problem of predicting flow transition promoted by energy deposited at the material interfacial layer during the shock interface interactions. Transition involves unsteady large-scale coherent-structure dynamics capturable by a large eddy simulation (LES) strategy, but not by an unsteady Reynolds-Averaged Navier–Stokes (URANS) approach based on developed equilibrium turbulence assumptions and single-point-closure modeling. On the engineering end of computations, such URANS with reduced 1D/2D dimensionality and coarsermore » grids, tend to be preferred for faster turnaround in full-scale configurations.« less
Dynamic high pressure process for fabricating superconducting and permanent magnetic materials
Nellis, William J.; Geballe, Theodore H.; Maple, M. Brian
1990-01-01
Shock wave formation of thin layers of materials with improved superconducting and permanent magnetic properties and improved microstructures. The material fabrication system includes a sandwiched structure including a powder material placed between two solid members to enable explosive shock consolidation. The two solid members are precooled to about 80.degree.-100.degree. K. to reduce the residual temperatures attained as a result of the shock wave treatment, and thereby increase the quench rate of the consolidated powder.
Monte Carlo study of neutrino acceleration in supernova shocks
NASA Technical Reports Server (NTRS)
Kazanas, D.; Ellison, D. C.
1981-01-01
The first order Fermi acceleration mechanism of cosmic rays in shocks may be at work for neutrinos in supernova shocks when the latter are at densities greater than 10 to the 13th g/cu cm, at which the core material is opaque to neutrinos. A Monte Carlo approach to study this effect is employed, and the emerging neutrino power law spectra are presented. The increased energy acquired by the neutrinos may facilitate their detection in supernova explosions and provide information about the physics of collapse.
Dynamic high pressure process for fabricating superconducting and permanent magnetic materials
Nellis, W.J.; Geballe, T.H.; Maple, M.B.
1990-03-13
Shock wave formation of thin layers of materials with improved superconducting and permanent magnetic properties and improved microstructures is disclosed. The material fabrication system includes a sandwiched structure including a powder material placed between two solid members to enable explosive shock consolidation. The two solid members are precooled to about 80--100 K to reduce the residual temperatures attained as a result of the shock wave treatment, and thereby increase the quench rate of the consolidated powder. 9 figs.
Down-bore two-laser heterodyne velocimetry of an implosion-driven hypervelocity launcher
NASA Astrophysics Data System (ADS)
Hildebrand, Myles; Huneault, Justin; Loiseau, Jason; Higgins, Andrew J.
2017-01-01
The implosion-driven launcher uses explosives to shock-compress helium, driving well-characterized projectiles to velocities exceeding 10 km/s. The masses of projectiles range between 0.1 - 15 g, and the design shows excellent scalability, reaching similar velocities across different projectile sizes. In the past, velocity measurements have been limited to muzzle velocity obtained via a high-speed videography upon the projectile exiting the launch tube. Recently, Photon Doppler Velocimetry (PDV) has demonstrated the ability to continuously measure in-bore velocity, even in the presence of significant blow-by of high temperature helium propellant past the projectile. While a single laser system sampled at 40 GS/s with a 13 GHz detector/scope bandwidth is limited to 8 km/s, a two-laser PDV system is developed that uses two lasers operating near 1550 nm to provide velocity measurement capabilities up to 16 km/s with the same bandwidth and sampling rate. The two-laser PDV system is used to obtain a continuous velocity history of the projectile throughout the entire launch cycle. These internal ballistics trajectories are used to compare different advanced concepts aimed at increasing the projectile velocity to well beyond 10 km/s.
Effects of Shock-Breakout Pressure on Ejection of Micron-Scale Material from Shocked Tin Surfaces
NASA Astrophysics Data System (ADS)
Zellner, Michael; Hammerberg, James; Hixson, Robert; Morley, Kevin; Obst, Andrew; Olson, Russell; Payton, Jeremy; Rigg, Paulo; Buttler, William; Grover, Michael; Iverson, Adam; Macrum, Gregory; Stevens, Gerald; Turley, William; Veeser, Lynn; Routley, Nathan
2007-06-01
Los Alamos National Lab (LANL) is actively engaged in the development of a model to predict the formation of micron-scale fragments ejected (ejecta) from shocked metal surfaces. The LANL ejecta model considers that the amount of ejecta is mainly related to the material's phase on shock release at the free-surface. This effort investigates the relation between ejecta production and shock-breakout pressure for Sn shocked with high explosives to pressures near the solid-on-release/partial-liquid-on-release phase transition region. We found that the amount of ejecta produced for shock-breakout pressures that resulted in partial-liquid-on-release increased significantly compared to that which resulted in solid-on-release. Additionally, we found that the amount of ejecta remained relatively constant within the partial-liquid-on-release, regardless of shock-breakout pressure.
Simulations of Supernova Shock Breakout
NASA Astrophysics Data System (ADS)
Frey, Lucille; Fryer, C. L.; Hungerford, A. L.
2009-01-01
Massive stars at the end of their lives release huge amounts of energy in supernova explosions which can be detected across cosmological distances. Even if prior observations exist, such distances make supernova progenitors difficult to identify. Very early observations of supernovae give us a rare view of these short-lived stars immediately before core collapse. Several recently observed X-ray and UV bursts associated with supernova have been interpreted as shock breakout observations. When the radiation-dominated shock wave from core collapse approaches the stellar surface, the optical depth of the plasma ahead of the shock decreases until the radiation can escape in a burst. If a dense wind is present, the shock breaks out beyond the stellar surface. Occurring days or weeks before the optical light from radioactive decay peaks, shock breakout radiation can be used to determine the radius of the progenitor star or its recent mass loss history. Whether the durations and spectra of the observed X-ray and UV bursts match those expected for shock breakout is currently being debated. A similar phenomenon would occur when the shockwave interacts with gas shells such as those ejected by luminous blue variable outbursts. Full radiation-hydrodynamics calculations are necessary to reproduce the behavior of the radiation-dominated shock and shock breakout. We use a radiation-hydrodynamics code with adaptive mesh refinement to follow the motion of the shock wave with high resolution. We run a suite of one dimensional simulations using binary and single progenitors with a range of mass loss histories, wind velocities and explosion energies. These simulations will better constrain the properties of the progenitor star and its environment that can be derived from shock breakout observations. This work was funded in part under the auspices of the U.S. Dept. of Energy, and supported by its contract W-7405-ENG-36 to Los Alamos National Laboratory.
Late-time X-rays to map the Zoo of Engine-driven Stellar Explosions
NASA Astrophysics Data System (ADS)
Margutti, Raffaella
2017-09-01
We propose a continuation of our effort to monitor nearby long GRBs (z <=0.3) with Chandra. Our synergistic multi-wavelength program (radio, optical, Swift and proposed Chandra) is designed to extract the true energy of these explosions and to reveal the activity of their central engines. This effort allows us to: (i) investigate whether sub-energetic GRBs share the same explosion mechanisms and central engines as ordinary GRBs; (ii) investigate what essential physical property enables only a small fraction of supernovae to harbor a relativistic outflow; (iii) understand if jet-driven explosions are common in all SNe. These objectives are only possible by expanding the current small sample of well-observed local GRBs and by drawing comparisons with cosmological GRBs and common SNe.
Asymmetries in Core Collapse Supernovae Revealed by Maps of Radioactive Titanium
NASA Technical Reports Server (NTRS)
Grefenstette, B. W.; Harrison, F. A.; Boggs, S. E.; Reynolds, S. P.; Fryer, C. L.; Madsen, K. K.; Wik, D. R.; Zoglauer, A.; Ellinger, C. I.; Alexander, D. M.;
2014-01-01
Asymmetry is required by most numerical simulations of stellar core collapse explosions, however the nature differs significantly among models. The spatial distribution of radioactive Ti-44, synthesized in an exploding star near the boundary between material falling back onto the collapsing core and that ejected into the surrounding medium, directly probes the explosion1asymmetries. Cassiopeia A is a young, nearby, core-collapse remnant from which Ti-44 emission has previously been detected, but not imaged. Asymmetries in the explosion have been indirectly inferred from a high ratio of observed Ti-44 emission to that estimated from (56)Ni9, from optical light echoes, and by jet-like features seen in the X-ray and optical ejecta. Here we report on the spatial maps and spectral properties of Ti-44 in Cassiopeia A. We find the Ti-44 to be distributed non-uniformly in the un-shocked interior of the remnant. This may explain the unexpected lack of correlation between the Ti-44 and iron X-ray emission, the latter only being visible in shock heated material. The observed spatial distribution rules out symmetric explosions even with a high level of convective mixing, as well as highly asymmetric bipolar explosions resulting from a fast rotating progenitor. Instead, these observations provide strong evidence for the development of low-mode convective instabilities in core-collapse supernovae.
Rock Directed Breaking Under the Impulse Load
NASA Astrophysics Data System (ADS)
Khomeriki, Sergo; Mataradze, Edgar; Chikhradze, Nikoloz; Losaberidze, Marine; Khomeriki, Davit; Shatberashvili, Grigol
2016-10-01
In the work the problem of directed chipping of facing stone material by means of managing of explosion process is considered. The technology of the mining of decorative stone by the use of explosion energy means the very rapid transfer of potential energy of elastic deformations to kinetic energy. As a result, the explosion impulse, in the expanse of the inertia of rock massive, does not cause the increase of existing cracks. In the course of explosion, the shock wave is propagated by ultrasonic velocity and in this case the medium parameters (pressure, density, temperature, velocity) increase in spurts. In spite of this fact the all three conservation laws of mechanics remain valid on basis of three laws the equations are derived by which the parameters of shock wave may be defined by means of the rock physical-mechanical properties. The load on the body volume at breaking under explosion acts over very small period of the time. Therefore, stressed-deformed state of the rock was studied when the impulse load acts on the boundary. It was considered that the mining of the blocks of facing stone is performed from the hard rocks. This means that the breaking proceeds in the zone of elastic deformation. In the conditions of mentioned assumptions, the expression of the stress tensor and displacement of vector components initiated by stressed-deformed state in the rock are written.
Thermodynamic Model of Aluminum Combustion in SDF Explosions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhl, . L
2006-06-19
Thermodynamic states encountered during combustion of Aluminum powder in Shock-Dispersed-Fuel (SDF) explosions were analyzed with the Cheetah code. Results are displayed in the Le Chatelier diagram: the locus of states of specific internal energy versus temperature. Accuracy of the results was confirmed by comparing the fuel and products curves with the heats of detonation and combustion, and species composition as measured in bomb calorimeter experiments. Results were fit with analytic functions u = f(T) suitable for specifying the thermodynamic properties required for gas-dynamic models of combustion in explosions.