Sample records for explosive loading osobennosti

  1. 29 CFR 1926.905 - Loading of explosives or blasting agents.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Loading of explosives or blasting agents. 1926.905 Section... Explosives § 1926.905 Loading of explosives or blasting agents. (a) Procedures that permit safe and efficient... have contained explosives or blasting agents. (g) No explosives or blasting agents shall be left...

  2. Investigation of charge weight and shock factor effect on non-linear transient structural response of rectangular plates subjected to underwater explosion (UNDEX) shock loading

    NASA Astrophysics Data System (ADS)

    Demir, Ozgur; Sahin, Abdurrahman; Yilmaz, Tamer

    2012-09-01

    Underwater explosion induced shock loads are capable of causing considerable structural damage. Investigations of the underwater explosion (UNDEX) effects on structures have seen continuous developments because of security risks. Most of the earlier experimental investigations were performed by military since the World War I. Subsequently; Cole [1] established mathematical relations for modeling underwater explosion shock loading, which were the outcome of many experimental investigations This study predicts and establishes the transient responses of a panel structure to underwater explosion shock loads using non-linear finite element code Ls-Dyna. Accordingly, in this study a new MATLAB code has been developed for predicting shock loading profile for different weight of explosive and different shock factors. Numerical analysis was performed for various test conditions and results are compared with Ramajeyathilagam's experimental study [8].

  3. Prediction of the explosion effect of aluminized explosives

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Xiang, Cong; Liang, HuiMin

    2013-05-01

    We present an approach to predict the explosion load for aluminized explosives using a numerical calculation. A code to calculate the species of detonation products of high energy ingredients and those of the secondary reaction of aluminum and the detonation products, velocity of detonation, pressure, temperature and JWL parameters of aluminized explosives has been developed in this study. Through numerical calculations carried out with this code, the predicted JWL parameters for aluminized explosives have been compared with those measured by the cylinder test. The predicted JWL parameters with this code agree with those measured by the cylinder test. Furthermore, the load of explosion for the aluminized explosive was calculated using the numerical simulation by using the JWL equation of state. The loads of explosion for the aluminized explosive obtained using the predicted JWL parameters have been compared with those using the measured JWL parameters. Both of them are almost the same. The numerical results using the predicted JWL parameters show that the explosion air shock wave is the strongest when the mass fraction of aluminum powder in the explosive mixtures is 30%. This result agrees with the empirical data.

  4. Dynamic strength of cylindrical fiber-glass shells and basalt plastic shells under multiple explosive loading

    NASA Astrophysics Data System (ADS)

    Syrunin, M. A.; Fedorenko, A. G.

    2006-08-01

    We have shown experimentally that, for cylindrical shells made of oriented fiberglass platic and basalt plastic there exists a critical level of deformations, at which a structure sustains a given number of explosions from the inside. The magnitude of critical deformation for cylindrical fiberglass shells depends linearly on the logarithm of the number of loads that cause failure. For a given type of fiberglass, there is a limiting level of explosive action, at which the number of loads that do not lead to failure can be sufficiently large (more than ˜ 102). This level is attained under loads, which are an order of magnitude lower than the limiting loads under a single explosive action. Basalt plastic shells can be repeatedly used even at the loads, which cause deformation by ˜ 30-50% lower than the safe value ˜ 3.3.5% at single loading.

  5. Study on loading coefficient in steam explosion process of corn stalk.

    PubMed

    Sui, Wenjie; Chen, Hongzhang

    2015-03-01

    The object of this work was to evaluate the effect of loading coefficient on steam explosion process and efficacy of corn stalk. Loading coefficient's relation with loading pattern and material property was first revealed, then its effect on transfer process and pretreatment efficacy of steam explosion was assessed by established models and enzymatic hydrolysis tests, respectively, in order to propose its optimization strategy for improving the process economy. Results showed that loading coefficient was mainly determined by loading pattern, moisture content and chip size. Both compact loading pattern and low moisture content improved the energy efficiency of steam explosion pretreatment and overall sugar yield of pretreated materials, indicating that they are desirable to improve the process economy. Pretreatment of small chip size showed opposite effects in pretreatment energy efficiency and enzymatic hydrolysis performance, thus its optimization should be balanced in investigated aspects according to further techno-economical evaluation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. The behavior limestone under explosive load

    NASA Astrophysics Data System (ADS)

    Orlov, M. Yu; Orlova, Yu N.; Bogomolov, G. N.

    2016-11-01

    Limestone behavior under explosive loading was investigated. The behavior of the limestone by the action of the three types of explosives, including granular, ammonite and emulsion explosives was studied in detail. The shape and diameter of the explosion craters were obtained. The observed fragments after the blast have been classified as large, medium and small fragments. Three full-scale experiments were carried out. The research results can be used as a qualitative test for the approbation of numerical methods.

  7. 30 CFR 56.6602 - Static electricity dissipation during loading.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Static electricity dissipation during loading... Explosives Extraneous Electricity § 56.6602 Static electricity dissipation during loading. When explosive material is loaded pneumatically into a blasthole in a manner that generates a static electricity hazard...

  8. 30 CFR 56.6602 - Static electricity dissipation during loading.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Static electricity dissipation during loading... Explosives Extraneous Electricity § 56.6602 Static electricity dissipation during loading. When explosive material is loaded pneumatically into a blasthole in a manner that generates a static electricity hazard...

  9. 30 CFR 56.6602 - Static electricity dissipation during loading.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Static electricity dissipation during loading... Explosives Extraneous Electricity § 56.6602 Static electricity dissipation during loading. When explosive material is loaded pneumatically into a blasthole in a manner that generates a static electricity hazard...

  10. 30 CFR 56.6602 - Static electricity dissipation during loading.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Static electricity dissipation during loading... Explosives Extraneous Electricity § 56.6602 Static electricity dissipation during loading. When explosive material is loaded pneumatically into a blasthole in a manner that generates a static electricity hazard...

  11. 30 CFR 56.6602 - Static electricity dissipation during loading.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Static electricity dissipation during loading... Explosives Extraneous Electricity § 56.6602 Static electricity dissipation during loading. When explosive material is loaded pneumatically into a blasthole in a manner that generates a static electricity hazard...

  12. Research on the analytical method about influence of gas leakage and explosion on subway

    NASA Astrophysics Data System (ADS)

    Ji, Wendong; Yang, Ligong; Chen, Lin

    2018-05-01

    With the construction and development of city subway, the cross impact of underground rail transit and gas pipe network is becoming more and more serious, but there is no analytical method for the impact of gas explosions on the subway. According to this paper, the gas leakage is equivalent to the TNT explosion equivalent, based on which, the calculation of the explosive impact load is carried out. On the basis of the concrete manifestation of gas explosion, it is more convenient to carry out the subsequent calculation by equivalently treating the explosive impact load as a uniform load within a certain range. The overlying soil of the subway station has played a protective role for the subway, making the displacement of the subway structure in the explosion process significantly reduced. The analysis on the actual case shows that this method can be successfully applied to the quantitative analysis of such accidents.

  13. Surface Instabilities From Buried Explosives

    DTIC Science & Technology

    2009-07-21

    interface between soil and air during buried explosions. The purpose of understanding this instability is to determine its effect on local vehicle loading...Except when the target is on the surface, e.g., a tank track, the most important loading mechanism from a buried charge is the impact of soil propelled...rising soil and the air. This unstable 15. SUBJECT TERMS Buried Explosions, Richtmyer-Meshkov Instability, Target Loading, Jetting, 16 SECURITY

  14. 30 CFR 57.6307 - Drill stem loading.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drill stem loading. 57.6307 Section 57.6307... Transportation-Surface and Underground § 57.6307 Drill stem loading. Explosive material shall not be loaded into blastholes with drill stem equipment or other devices that could be extracted while containing explosive...

  15. 30 CFR 57.6307 - Drill stem loading.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drill stem loading. 57.6307 Section 57.6307... Transportation-Surface and Underground § 57.6307 Drill stem loading. Explosive material shall not be loaded into blastholes with drill stem equipment or other devices that could be extracted while containing explosive...

  16. 30 CFR 57.6307 - Drill stem loading.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drill stem loading. 57.6307 Section 57.6307... Transportation-Surface and Underground § 57.6307 Drill stem loading. Explosive material shall not be loaded into blastholes with drill stem equipment or other devices that could be extracted while containing explosive...

  17. 30 CFR 57.6307 - Drill stem loading.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drill stem loading. 57.6307 Section 57.6307... Transportation-Surface and Underground § 57.6307 Drill stem loading. Explosive material shall not be loaded into blastholes with drill stem equipment or other devices that could be extracted while containing explosive...

  18. 30 CFR 57.6307 - Drill stem loading.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drill stem loading. 57.6307 Section 57.6307... Transportation-Surface and Underground § 57.6307 Drill stem loading. Explosive material shall not be loaded into blastholes with drill stem equipment or other devices that could be extracted while containing explosive...

  19. 29 CFR 1926.905 - Loading of explosives or blasting agents.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... have contained explosives or blasting agents. (g) No explosives or blasting agents shall be left... no drilling within 50 feet of the hole. (l) When loading a long line of holes with more than one... be left unattended or unprotected. (t) The blaster shall keep an accurate, up-to-date record of...

  20. 29 CFR 1926.905 - Loading of explosives or blasting agents.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... have contained explosives or blasting agents. (g) No explosives or blasting agents shall be left... no drilling within 50 feet of the hole. (l) When loading a long line of holes with more than one... be left unattended or unprotected. (t) The blaster shall keep an accurate, up-to-date record of...

  1. 29 CFR 1926.905 - Loading of explosives or blasting agents.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... have contained explosives or blasting agents. (g) No explosives or blasting agents shall be left... no drilling within 50 feet of the hole. (l) When loading a long line of holes with more than one... be left unattended or unprotected. (t) The blaster shall keep an accurate, up-to-date record of...

  2. 29 CFR 1926.905 - Loading of explosives or blasting agents.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... have contained explosives or blasting agents. (g) No explosives or blasting agents shall be left... no drilling within 50 feet of the hole. (l) When loading a long line of holes with more than one... be left unattended or unprotected. (t) The blaster shall keep an accurate, up-to-date record of...

  3. Unknown loads affect force production capacity in early phases of bench press throws.

    PubMed

    Hernández Davó, J L; Sabido Solana, R; Sarabia Marínm, J M; Sánchez Martos, Á; Moya Ramón, M

    2015-10-01

    Explosive strength training aims to improve force generation in early phases of movement due to its importance in sport performance. The present study examined the influence of lack of knowledge about the load lifted in explosive parameters during bench press throws. Thirteen healthy young men (22.8±2.0 years) participated in the study. Participants performed bench press throws with three different loads (30, 50 and 70% of 1 repetition maximum) in two different conditions (known and unknown loads). In unknown condition, loads were changed within sets in each repetition and participants did not know the load, whereas in known condition the load did not change within sets and participants had knowledge about the load lifted. Results of repeated-measures ANOVA revealed that unknown conditions involves higher power in the first 30, 50, 100 and 150 ms with the three loads, higher values of ratio of force development in those first instants, and differences in time to reach maximal rate of force development with 50 and 70% of 1 repetition maximum. This study showed that unknown conditions elicit higher values of explosive parameters in early phases of bench press throws, thereby this kind of methodology could be considered in explosive strength training.

  4. Manual for the prediction of blast and fragment loadings on structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-11-01

    The purpose of this manual is to provide Architect-Engineer (AE) firms guidance for the prediction of air blast, ground shock and fragment loadings on structures as a result of accidental explosions in or near these structures. Information in this manual is the result of an extensive literature survey and data gathering effort, supplemented by some original analytical studies on various aspects of blast phenomena. Many prediction equations and graphs are presented, accompanied by numerous example problems illustrating their use. The manual is complementary to existing structural design manuals and is intended to reflect the current state-of-the-art in prediction of blastmore » and fragment loads for accidental explosions of high explosives at the Pantex Plant. In some instances, particularly for explosions within blast-resistant structures of complex geometry, rational estimation of these loads is beyond the current state-of-the-art.« less

  5. Comparing CTH Simulations and Experiments on Explosively Loaded Rings

    NASA Astrophysics Data System (ADS)

    Braithwaite, C. H.; Aydelotte, B.; Thadhani, N. N.; Williamson, D. M.

    2011-06-01

    A series of experiments were conducted on explosively loaded rings for the purpose of studying fragmentation. In addition to the collection of fragments for analysis, the radial velocity of the expanding ring was measured with PDV and the arrangement was imaged using a high speed camera. Both the ring material and the material used as the explosive container were altered and the results compared with simulations performed in CTH. Good agreement was found between the simulations and the experiments. The maximum radial velocity attained was approximately 450 m/s, which was achieved through loading with a 5g PETN based charge.

  6. Multichannel Discriminative Detection of Explosive Vapors with an Array of Nanofibrous Membranes Loaded with Quantum Dots.

    PubMed

    Wu, Zhaofeng; Duan, Haiming; Li, Zhijun; Guo, Jixi; Zhong, Furu; Cao, Yali; Jia, Dianzeng

    2017-11-20

    The multichannel fluorescent sensor array based on nanofibrous membranes loaded with ZnS quantum dots (QDs) was created and demonstrated for the discriminative detection of explosives. The synergistic effect of the high surface-to-volume ratio of QDs, the good permeability of nanofibrous membranes and the differential response introduced by surface ligands was played by constructing the sensing array using nanofibrous membranes loaded with ZnS QDs featuring several surface ligands. Interestingly, although the fluorescence quenching of the nanofibrous membranes is not linearly related to the exposure time, the fingerprint of each explosive at different times is very similar in shape, and the fingerprints of the three explosives show different shapes. Three saturated vapors of nitroaromatic explosives could be reliably detected and discriminated by the array at room temperature. This work is the first step toward devising a monitoring system for explosives in the field of public security and defense. It could, for example, be coupled with the technology of image recognition and large data analysis for a rapid diagnostic test of explosives. This work further highlights the power of differential, multichannel arrays for the rapid and discriminative detection of a wide range of chemicals.

  7. Multichannel Discriminative Detection of Explosive Vapors with an Array of Nanofibrous Membranes Loaded with Quantum Dots

    PubMed Central

    Wu, Zhaofeng; Duan, Haiming; Li, Zhijun; Guo, Jixi; Zhong, Furu; Cao, Yali; Jia, Dianzeng

    2017-01-01

    The multichannel fluorescent sensor array based on nanofibrous membranes loaded with ZnS quantum dots (QDs) was created and demonstrated for the discriminative detection of explosives. The synergistic effect of the high surface-to-volume ratio of QDs, the good permeability of nanofibrous membranes and the differential response introduced by surface ligands was played by constructing the sensing array using nanofibrous membranes loaded with ZnS QDs featuring several surface ligands. Interestingly, although the fluorescence quenching of the nanofibrous membranes is not linearly related to the exposure time, the fingerprint of each explosive at different times is very similar in shape, and the fingerprints of the three explosives show different shapes. Three saturated vapors of nitroaromatic explosives could be reliably detected and discriminated by the array at room temperature. This work is the first step toward devising a monitoring system for explosives in the field of public security and defense. It could, for example, be coupled with the technology of image recognition and large data analysis for a rapid diagnostic test of explosives. This work further highlights the power of differential, multichannel arrays for the rapid and discriminative detection of a wide range of chemicals. PMID:29156627

  8. Encyclopedia of Explosives and Related Items. Volume 8

    DTIC Science & Technology

    1978-01-01

    up", becoming hard and making Alcohol(b), % 20 ± 2 19 ± 2 a reliable joint . Shellac is used to coat cavities Shellac(c) % 18±2 - to be loaded with...P 380 Effect of Loading Pressure on Initiator Sensitivity ...................... P 382 Stab Primer Data...Injection Loading Operation Schematic .............................. P 64 Continuous Explosive Column for Use with Zuni Weapon ................... P 64

  9. The Shock and Vibration Bulletin. Part 4. Impact, Packaging and Shipping, Blast and Impulsive Loading

    DTIC Science & Technology

    1975-06-01

    Explosive forces are completely through undisturbed air where appreciable dominant and the plate is rotated through an aerodynamic forces retard its...are relatively of the explosive system drops rapidly with dense compared to air , do produce sufficient flyer thickness, little is gained by increasing...impulsive loadings generated by a fuel air explosive . A membrane model based on a total plastic strain energy function, a rigid strain hardening

  10. Effect of load carriage on performance of an explosive, anaerobic military task.

    PubMed

    Treloar, Alison K Laing; Billing, Daniel C

    2011-09-01

    This study examined the effects of load carriage on performance of an explosive, anaerobic military task. A task-specific assessment requiring five 30-m timed sprints was developed to address this question. Seventeen soldiers (female = 5, male = 12) volunteered to undergo the test under two experimental conditions: unloaded (combat uniform and boots) and loaded (unloaded plus 21.6 kg fighting load, comprising webbing, weapon, helmet, and combat body armor). When loaded, there was a significant increase in the mean 30-m sprint time compared to unloaded (8.2 +/- 1.4 seconds vs. 6.2 +/- 0.8 seconds; p < 0.01). Of the total increase in mean sprint time, 51.7% occurred within the first 5 m. Female sprint times were affected to a larger extent than male (36% vs. 29%, respectively) as a result of the increased load. Fighting load significantly affected soldier mobility when conducting explosive, anaerobic military tasks, particularly among females, and specific physical conditioning should be considered to minimize this effect.

  11. Comparing CTH simulations and experiments on explosively loaded rings

    NASA Astrophysics Data System (ADS)

    Braithwaite, C. H.; Aydelotte, Brady; Collins, Adam; Thadhani, Naresh; Williamson, David Martin

    2012-03-01

    A series of experiments were conducted on explosively loaded metallic rings for the purpose of studying fragmentation. In addition to the collection of fragments for analysis, the radial velocity of the expanding ring was measured with photon Doppler velocimetry (PDV) and the arrangement was imaged using high speed photography. Both the ring material and the material used as the explosive container were altered and the results compared with simulations performed in CTH. Good agreement was found between the simulations and the experiments. The maximum radial velocity attained was approximately 380 m/s, which was achieved through loading with a 5g PETN based charge.

  12. Modelling and Testing of Blast Effect On the Structures

    NASA Astrophysics Data System (ADS)

    Figuli, Lucia; Jangl, Štefan; Papán, Daniel

    2016-10-01

    As a blasting agent in the blasting and mining engineering, has been using one of so called new generation of explosives which offer greater flexibility in their range and application, and such explosive is ANFO. It is type of explosive consists of an oxidiser and a fuel (ammonium nitrate and fuel oil). One of such ANFO explosives which are industrially made in Slovakia is POLONIT. The explosive is a mixture of ammonium nitrate, methyl esters of higher fatty acids, vegetable oil and red dye. The paper deals with the analysis of structure subjected to the blast load created by the explosion of POLONIT charge. First part of paper is describing behaviour and characteristic of blast wave generated from the blast (detonation characteristics, physical characteristics, time-history diagram etc.) and the second part presents the behaviour of such loaded structures, because of the analysis of such dynamical loaded structure is required knowing the parameters of blast wave, its effect on structure and the tools for the solution of dynamic analysis. The real field tests of three different weight of charges and two different structures were done. The explosive POLONIT was used together with 25 g of ignition explosive PLNp10. Analytical and numerical model of blast loaded structure is compared with the results obtained from the field tests (is compared with the corresponding experimental accelerations). For the modelling structures were approximated as a one-degree system of freedom (SDOF), where the blast wave was estimated with linear decay and exponential decay using positive and negative phase of blast wave. Numerical solution of the steel beam dynamic response was performed via FEM (Finite Element Method) using standard software Visual FEA.

  13. Transient/structural analysis of a combustor under explosive loads

    NASA Technical Reports Server (NTRS)

    Gregory, Peyton B.; Holland, Anne D.

    1992-01-01

    The 8-Foot High Temperature Tunnel (HTT) at NASA Langley Research Center is a combustion-driven blow-down wind tunnel. A major potential failure mode that was considered during the combustor redesign was the possibility of a deflagration and/or detonation in the combustor. If a main burner flame-out were to occur, then unburned fuel gases could accumulate and, if reignited, an explosion could occur. An analysis has been performed to determine the safe operating limits of the combustor under transient explosive loads. The failure criteria was defined and the failure mechanisms were determined for both peak pressures and differential pressure loadings. An overview of the gas dynamics analysis was given. A finite element model was constructed to evaluate 13 transient load cases. The sensitivity of the structure to the frequency content of the transient loading was assessed. In addition, two closed form dynamic analyses were conducted to verify the finite element analysis. It was determined that the differential pressure load or thrust load was the critical load mechanism and that the nozzle is the weak link in the combustor system.

  14. 49 CFR 176.182 - Conditions for handling on board ship.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Class 1 (explosive) materials. During electrical storms, cargo operations must be halted and all hatches...) All hatches and cargo ports opening into a compartment in which Class 1 (explosive) materials are stowed must be kept closed except during loading and unloading of the compartment. After loading, hatches...

  15. 49 CFR 176.182 - Conditions for handling on board ship.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Class 1 (explosive) materials. During electrical storms, cargo operations must be halted and all hatches...) All hatches and cargo ports opening into a compartment in which Class 1 (explosive) materials are stowed must be kept closed except during loading and unloading of the compartment. After loading, hatches...

  16. 49 CFR 176.182 - Conditions for handling on board ship.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Class 1 (explosive) materials. During electrical storms, cargo operations must be halted and all hatches...) All hatches and cargo ports opening into a compartment in which Class 1 (explosive) materials are stowed must be kept closed except during loading and unloading of the compartment. After loading, hatches...

  17. 49 CFR 176.182 - Conditions for handling on board ship.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Class 1 (explosive) materials. During electrical storms, cargo operations must be halted and all hatches...) All hatches and cargo ports opening into a compartment in which Class 1 (explosive) materials are stowed must be kept closed except during loading and unloading of the compartment. After loading, hatches...

  18. Dissolution and sorption of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene (TNT) residues from detonated mineral surfaces.

    PubMed

    Jaramillo, Ashley M; Douglas, Thomas A; Walsh, Marianne E; Trainor, Thomas P

    2011-08-01

    Composition B (Comp B) is a commonly used military formulation composed of the toxic explosive compounds 2,4,6-trinitrotoluene (TNT), and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Numerous studies of the temporal fate of explosive compounds in soils, surface water and laboratory batch reactors have been conducted. However, most of these investigations relied on the application of explosive compounds to the media via aqueous addition and thus these studies do not provide information on the real world loading of explosive residues during detonation events. To address this we investigated the dissolution and sorption of TNT and RDX from Comp B residues loaded to pure mineral phases through controlled detonation. Mineral phases included nontronite, vermiculite, biotite and Ottawa sand (quartz with minor calcite). High Performance Liquid Chromatography and Attenuated Total Reflectance Fourier Transform Infrared spectroscopy were used to investigate the dissolution and sorption of TNT and RDX residues loaded onto the mineral surfaces. Detonation resulted in heterogeneous loading of TNT and RDX onto the mineral surfaces. Explosive compound residues dissolved rapidly (within 9 h) in all samples but maximum concentrations for TNT and RDX were not consistent over time due to precipitation from solution, sorption onto mineral surfaces, and/or chemical reactions between explosive compounds and mineral surfaces. We provide a conceptual model of the physical and chemical processes governing the fate of explosive compound residues in soil minerals controlled by sorption-desorption processes. Published by Elsevier Ltd.

  19. Frictional properties of single crystals HMX, RDX and PETN explosives.

    PubMed

    Wu, Y Q; Huang, F L

    2010-11-15

    The frictional properties of single crystals of cyclotetramethylene tetranitramine (HMX), cyclotrimethylene trinitramine (RDX) and pentaerythritol tetranitrate (PETN) secondary explosives are examined using a sensitive friction machine. The explosive crystals used for the measurements are at least 3.5 mm wide. The friction coefficients between crystals of the same explosive (i.e., HMX on HMX, etc.), crystals of different explosives (i.e., HMX on RDX, etc.), and each explosive and a well-polished gauge steel surface are determined. The frictional surfaces are also studied under an environmental scanning electron microscope (ESEM) to analyze surface microstructural changes under increasing loading forces. The friction coefficients vary considerably with increasing normal loading forces and are particularly sensitive to slider shapes, crystal roughness and the mechanical properties of both the slider and the sample. With increasing loading forces, most friction experiments show surface damage, consisting of grooves, debris, and nano-particles, on both the slider and sample. In some cases, a strong evidence of a localized molten state is found in the central region of the friction track. Possible mechanisms that affect the friction coefficient are discussed based on microscopic observations. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Determination of performance of non-ideal aluminized explosives.

    PubMed

    Keshavarz, Mohammad Hossein; Mofrad, Reza Teimuri; Poor, Karim Esmail; Shokrollahi, Arash; Zali, Abbas; Yousefi, Mohammad Hassan

    2006-09-01

    Non-ideal explosives can have Chapman-Jouguet (C-J) detonation pressure significantly different from those expected from existing thermodynamic computer codes, which usually allows finding the parameters of ideal detonation of individual high explosives with good accuracy. A simple method is introduced by which detonation pressure of non-ideal aluminized explosives with general formula C(a)H(b)N(c)O(d)Al(e) can be predicted only from a, b, c, d and e at any loading density without using any assumed detonation products and experimental data. Calculated detonation pressures show good agreement with experimental values with respect to computed results obtained by complicated computer code. It is shown here how loading density and atomic composition can be integrated into an empirical formula for predicting detonation pressure of proposed aluminized explosives.

  1. Spall response of annealed copper to direct explosive loading

    NASA Astrophysics Data System (ADS)

    Finnegan, S. G.; Burns, M. J.; Markland, L.; Goff, M.; Ferguson, J. W.

    2017-01-01

    Taylor wave spall experiments were conducted on annealed copper targets using direct explosive loading. The targets were mounted on the back of an explosive disc which was being used for a shock to detonation transition (SDT) test in a gas gun. This technique allows two experiments to be conducted with one piece of explosive. Explosive loading creates a high stress state within the target with a lower strain rate than an equivalent plate impact experiment, although the shock front will also have some curvature. Three shots were performed on two differently annealed batches of copper to investigate the viability of the technique and the effect of annealing on the spall response. One pair of targets was annealed at 850°C for four hours and the other target was annealed at 600°C for one hour. The free surface velocity (FSV) profiles were recorded using a Photonic Doppler Velocimetry (PDV) probe focused on the center of the target. The profiles were compared to predictions from the CREST reactive burn model. One profile recorded a significantly lower peak velocity which was attributed to the probe being located off center. Despite this, all three calculated spall strengths closely agreed and it was concluded that the technique is a viable one for loading an inert target.

  2. Nanotwin Formation in High-Manganese Austenitic Steels Under Explosive Shock Loading

    NASA Astrophysics Data System (ADS)

    Canadinc, D.; Uzer, B.; Elmadagli, M.; Guner, F.

    2018-04-01

    The micro-deformation mechanisms active in a high-manganese austenitic steel were investigated upon explosive shock loading. Single system of nanotwins forming within primary twins were shown to govern the deformation despite the elevated temperatures attained during testing. The benefits of nanotwin formation for potential armor materials were demonstrated.

  3. 49 CFR 174.101 - Loading Class 1 (explosive) materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... point on a small area of another box. (b) Explosive bombs, unfuzed projectiles, rocket ammunition and... large metal packages of incendiary bombs, each weighing 226 kg (500 pounds) or more, may be loaded in stock cars or in flat bottom gondola cars only if they are adequately braced. Boxed bombs, rocket...

  4. 49 CFR 176.108 - Supervision of Class 1 (explosive) materials during loading, unloading, handling and stowage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Supervision of Class 1 (explosive) materials during loading, unloading, handling and stowage. 176.108 Section 176.108 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS...

  5. Auxiliary Gas Loading of Explosives and Their Sensitivity to DDT (Deflagration to Detonation Transition),

    DTIC Science & Technology

    1984-06-25

    the weight mean particle sizes were:ammonium picrate (285um), TNT (325pm), RDX (200um) and tetryl (470 and 160m). The carnauba wax (125pm) and the...WORDS (enti.e n reverse side if noceemdy and bnt, ock ,by br) PBXN103 ’"mber) Gas loading RDX Expl D PBXW-108 Sensitivity 91/9 ROX/ wax Cast H-6 PBXN...porous HE for their susceptibility to undergoing DDT. Granuiar explosives studied were RDX, waxed RDX, tetryl, TNT, and Explosive D; cast HE, TNT based

  6. Structures to Resist the Effects of Accidental Explosions. Volume 2. Blast, Fragment, and Shock Loads

    DTIC Science & Technology

    1986-12-01

    IS. SUPPLEMENTARY NOTfS This report is Volume II of six volumes which will eventually be published as a tri-service design manual and was sponsored by...CLASSIFICAT ION OF THIS PAGE(When Date Entered) TABLE OF CONTENTS PAGE INTRODUCTION 2-I Purpose 1 2-2 Objective 1 2 3 Background 1 2-4 Scope of Manual ...2 2-5 Format of Manual 3 VOLUME CONTENTS 2-6 General EXPLOSION EFFECTS 2-7 Effects of Explosive Output 4 BLAST LOADS 2-8 Blast Phenomena 5 2-8.1

  7. Influence of particle size distribution on the blast pressure profile from explosives buried in saturated soils

    NASA Astrophysics Data System (ADS)

    Rigby, S. E.; Fay, S. D.; Tyas, A.; Clarke, S. D.; Reay, J. J.; Warren, J. A.; Gant, M.; Elgy, I.

    2018-05-01

    The spatial and temporal distribution of pressure and impulse from explosives buried in saturated cohesive and cohesionless soils has been measured experimentally for the first time. Ten experiments have been conducted at quarter-scale, where localised pressure loading was measured using an array of 17 Hopkinson pressure bars. The blast pressure measurements are used in conjunction with high-speed video filmed at 140,000 fps to investigate in detail the physical processes occurring at the loaded face. Two coarse cohesionless soils and one fine cohesive soil were tested: a relatively uniform sand, a well-graded sandy gravel, and a fine-grained clay. The results show that there is a single fundamental loading mechanism when explosives are detonated in saturated soil, invariant of particle size and soil cohesion. It is also shown that variability in localised loading is intrinsically linked to the particle size distribution of the surrounding soil.

  8. Development of a flyer design to perform plate impact shock-release-shock experiments on explosives

    NASA Astrophysics Data System (ADS)

    Finnegan, Simon; Ferguson, James; Millett, Jeremy; Goff, Michael

    2017-06-01

    A flyer design to generate a shock-release-shock loading history within a gas gun target was developed before being used to study the response of an HMX based explosive. The flyer consisted of two flyer plates separated by a vacuum gap. This created a rear free surface that, with correct material choice, allowed the target to release to close to ambient pressure between the initial shock and subsequent re-shock. The design was validated by impacting piezoelectric pin arrays to record the front flyer deformation. Shots were performed on PCTFE targets to record the shock states generated in an inert material prior to subjecting an HMX based explosive to the same loading. The response of the explosive to this loading history was recorded using magnetic particle velocity (PV) gauges embedded within the targets. The behavior during the run to detonation is compared with the response to sustained shocks at similar input pressures.

  9. Study on the effect of temperature rise on grain refining during fabrication of nanocrystalline copper under explosive loading

    NASA Astrophysics Data System (ADS)

    Wang, Jinxiang; Yang, Rui; Jiang, Li; Wang, Xiaoxu; Zhou, Nan

    2013-11-01

    Nanocrystalline (NC) copper was fabricated by severe plastic deformation of coarse-grained copper at a high strain rate under explosive loading. The feasibility of grain refinement under different explosive loading and the influence of overall temperature rise on grain refinement under impact compression were studied in this paper. The calculation model for the macroscopic temperature rise was established according to the adiabatic shock compression theory. The calculation model for coarse-grained copper was established by the Voronoi method and the microscopic temperature rise resulted from severe plastic deformation of grains was calculated by ANSYS/ls-dyna finite element software. The results show that it is feasible to fabricate NC copper by explosively dynamic deformation of coarse-grained copper and the average grain size of the NC copper can be controlled between 200˜400 nm. The whole temperature rise would increase with the increasing explosive thickness. Ammonium nitrate fuel oil explosive was adopted and five different thicknesses of the explosive, which are 20 mm, 25 mm, 30 mm, 35 mm, 45 mm, respectively, with the same diameter using 20 mm to the fly plate were adopted. The maximum macro and micro temperature rise is up to 532.4 K, 143.4 K, respectively, which has no great effect on grain refinement due to the whole temperature rise that is lower than grain growth temperature according to the high pressure melting theory.

  10. The Effect of Detonation Wave Incidence Angle on the Acceleration of Flyers by Explosives Heavily Laden with Inert Additives

    NASA Astrophysics Data System (ADS)

    Loiseau, Jason; Georges, William; Frost, David; Higgins, Andrew

    2015-06-01

    The incidence angle of a detonation wave is often assumed to weakly influence the terminal velocity of an explosively driven flyer. For explosives heavily loaded with dense additives, this may not be true due to differences in momentum and energy transfer between detonation products, additive particles, and the flyer. For tangential incidence the particles are first accelerated against the flyer via an expansion fan, whereas they are first accelerated by the detonation wave in the normal case. In the current study we evaluate the effect of normal versus tangential incidence on the acceleration of flyers by nitromethane heavily loaded with a variety of additives. Normal detonation was initiated via an explosively driven slapper. Flyer acceleration was measured with heterodyne laser interferometry (PDV). The influence of wave angle is evaluated by comparing the terminal velocity in the two cases (i.e., normal and grazing) for the heavily loaded mixtures. The decrement in flyer velocity correlated primarily with additive volume fraction and had a weak dependence on additive density or particle size. The Gurney energy of the heterogeneous explosive was observed to increase with flyer mass, presumably due to the timescale over which impinging particles could transfer momentum.

  11. Seismic explosive charge loader and anchor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mcreynolds, O.B.

    1981-07-14

    An improved seismic explosive charge loader and anchor for loading and anchoring explosives in cylindrical containers in bore holes is disclosed, which includes a snap in spring band shaped anchor which effectively anchors the loader in the well bore against upward movement, one aspect of the invention includes a snap lock threaded connection for securing an explosive container having interrupted threads to the loader and anchor, and the loader and anchor is constructed and arranged to maintain a detonator in place in the explosive container thereby assuring detonation of the explosive.

  12. 49 CFR 174.112 - Loading Division 1.3 materials and Division 1.2 (explosive) materials (Also see § 174.101).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... materials and Division 1.2 (explosive) materials may not be loaded, transported or stored in a rail car equipped with any type of lighted heater or open-flame device, or in a rail car equipped with any apparatus or mechanism utilizing an internal combustion engine in its operation. (b) Except as provided in...

  13. 49 CFR 174.112 - Loading Division 1.3 materials and Division 1.2 (explosive) materials (Also see § 174.101).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... materials and Division 1.2 (explosive) materials may not be loaded, transported or stored in a rail car equipped with any type of lighted heater or open-flame device, or in a rail car equipped with any apparatus or mechanism utilizing an internal combustion engine in its operation. (b) Except as provided in...

  14. 49 CFR 174.112 - Loading Division 1.3 materials and Division 1.2 (explosive) materials (Also see § 174.101).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... materials and Division 1.2 (explosive) materials may not be loaded, transported or stored in a rail car equipped with any type of lighted heater or open-flame device, or in a rail car equipped with any apparatus or mechanism utilizing an internal combustion engine in its operation. (b) Except as provided in...

  15. 49 CFR 174.112 - Loading Division 1.3 materials and Division 1.2 (explosive) materials (Also see § 174.101).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... materials and Division 1.2 (explosive) materials may not be loaded, transported or stored in a rail car equipped with any type of lighted heater or open-flame device, or in a rail car equipped with any apparatus or mechanism utilizing an internal combustion engine in its operation. (b) Except as provided in...

  16. 49 CFR 174.112 - Loading Division 1.3 materials and Division 1.2 (explosive) materials (Also see § 174.101).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... materials and Division 1.2 (explosive) materials may not be loaded, transported or stored in a rail car equipped with any type of lighted heater or open-flame device, or in a rail car equipped with any apparatus or mechanism utilizing an internal combustion engine in its operation. (b) Except as provided in...

  17. Spark-safe low-voltage detonator

    DOEpatents

    Lieberman, Morton L.

    1989-01-01

    A column of explosive in a low-voltage detonator which makes it spark-safe ncludes an organic secondary explosive charge of HMX in the form of a thin pad disposed in a bore of a housing of the detonator in an ignition region of the explosive column and adjacent to an electrical ignition device at one end of the bore. The pad of secondary charge has an axial thickness within the range of twenty to thirty percent of its diameter. The explosive column also includes a first explosive charge of CP disposed in the housing bore in the ignition region of the explosive column next to the secondary charge pad on a side opposite from the ignition device. The first CP charge is loaded under sufficient pressure, 25 to 40 kpsi, to provide mechanical confinement of the pad of secondary charge and physical coupling thereof with the ignition device. The explosive column further includes a second explosive charge of CP disposed in the housing bore in a transition region of the explosive column next to the first CP charge on a side opposite from the pad of secondary charge. The second CP charge is loaded under sufficient pressure, about 10 kpsi, to allow occurrence of DDT. The first explosive CP charge has an axial thickness within the range of twenty to thirty percent of its diameter, whereas the second explosive CP charge contains a series of increments (nominally 4) each of which has an axial thickness-to-diameter ratio of one to two.

  18. Spark-safe low-voltage detonator

    DOEpatents

    Lieberman, M.L.

    1988-07-01

    A column of explosive in a low-voltage detonator which makes it spark-safe includes an organic secondary explosive charge of HMX in the form of a thin pad disposed in a bore of a housing of the detonator in an ignition region of the explosive column and adjacent to an electrical ignition device at one end of the bore. The pad of secondary charge has an axial thickness within the range of twenty to thirty percent of its diameter. The explosive column also includes a first explosive charge of CP disposed in the housing bore in the ignition region of the explosive column next to the secondary charge pad on a side opposite from the ignition device. The first CP charge is loaded under sufficient pressure, 25 to 40 kpsi, to provide mechanical confinement of the pad of secondary charge and physical coupling thereof with the ignition device. The explosive column further includes a second explosive charge of CP disposed in the housing bore in a transition region of the explosive column next to the first CP charge on a side opposite from the pad of secondary charge. The second CP charge is loaded under sufficient pressure, about 10 kpsi, to allow occurrence of DDT. The first explosive CP charge has an axial thickness within the range of twenty to thirty percent of its diameter, whereas the second explosive CP charge contains a series of increments (nominally 4), each of which has an axial thickness-to-diameter ratio of one to two. 2 figs.

  19. Experimental Study on Reaction Characteristics of PTFE/Ti/W Energetic Materials under Explosive Loading

    PubMed Central

    Li, Yan; Jiang, Chunlan; Wang, Zaicheng; Luo, Puguang

    2016-01-01

    Metal/fluoropolymer composites represent a new category of energetic structural materials that release energy through exothermic chemical reactions initiated under shock loading conditions. This paper describes an experiment designed to study the reaction characteristics of energetic materials with low porosity under explosive loading. Three PTFE (polytetrafluoroethylene)/Ti/W mixtures with different W contents are processed through pressing and sintering. An inert PTFE/W mixture without reactive Ti particles is also prepared to serve as a reference. Shock-induced chemical reactions are recorded by high-speed video through a narrow observation window. Related shock parameters are calculated based on experimental data, and differences in energy release are discussed. The results show that the reaction propagation of PTFE/Ti/W energetic materials with low porosity under explosive loading is not self-sustained. As propagation distance increases, the energy release gradually decreases. In addition, reaction failure distance in PTFE/Ti/W composites is inversely proportional to the W content. Porosity increased the failure distance due to higher shock temperature. PMID:28774056

  20. Bonfire-safe low-voltage detonator

    DOEpatents

    Lieberman, M.L.

    1988-07-01

    A column of explosive in a low-voltage detonator which makes it bonfire-safe includes a first layer of an explosive charge of CP, or a primary explosive, and a second layer of a secondary organic explosive charge, such as PETN, which has a degradation temperature lower than the autoignition temperature of the CP or primary explosives. The first layer is composed of a pair of increments disposed in a bore of a housing of the detonator in an ignition region of the explosive column and adjacent to and in contact with an electrical ignition device at one end of the bore. The second layer is composed of a plurality of increments disposed in the housing bore in a transition region of the explosive column next to and in contact with the first layer on a side opposite from the ignition device. The first layer is loaded under a sufficient high pressure, 25 to 40 kpsi, to achieve ignition, whereas the second layer is loaded under a sufficient low pressure, about 10 kpsi, to allow occurrence of DDT. Each increment of the first and second layers has an axial length-to-diameter ratio of one-half. 2 figs.

  1. Bonfire-safe low-voltage detonator

    DOEpatents

    Lieberman, Morton L.

    1990-01-01

    A column of explosive in a low-voltage detonator which makes it bonfire-safe includes a first layer of an explosive charge of CP, or a primary explosive, and a second layer of a secondary organic explosive charge, such as PETN, which has a degradation temperature lower than the autoignition temperature of the CP or primary explosives. The first layer is composed of a pair of increments disposed in a bore of a housing of the detonator in an ignition region of the explosive column and adjacent to and in contact with an electrical ignition device at one end of the bore. The second layer is composed of a plurality of increments disposed in the housing bore in a transition region of the explosive column next to and in contact with the first layer on a side opposite from the ignition device. The first layer is loaded under a sufficient high pressure, 25 to 40 kpsi, to achieve ignition, whereas the second layer is loaded under a sufficient low pressure, about 10 kpsi, to allow occurrence of DDT. Each increment of the first and second layers has an axial length-to-diameter ratio of one-half.

  2. Explosive particle soil surface dispersion model for detonated military munitions.

    PubMed

    Hathaway, John E; Rishel, Jeremy P; Walsh, Marianne E; Walsh, Michael R; Taylor, Susan

    2015-07-01

    The accumulation of high explosive mass residue from the detonation of military munitions on training ranges is of environmental concern because of its potential to contaminate the soil, surface water, and groundwater. The US Department of Defense wants to quantify, understand, and remediate high explosive mass residue loadings that might be observed on active firing ranges. Previously, efforts using various sampling methods and techniques have resulted in limited success, due in part to the complicated dispersion pattern of the explosive particle residues upon detonation. In our efforts to simulate particle dispersal for high- and low-order explosions on hypothetical firing ranges, we use experimental particle data from detonations of munitions from a 155-mm howitzer, which are common military munitions. The mass loadings resulting from these simulations provide a previously unattained level of detail to quantify the explosive residue source-term for use in soil and water transport models. In addition, the resulting particle placements can be used to test, validate, and optimize particle sampling methods and statistical models as applied to firing ranges. Although the presented results are for a hypothetical 155-mm howitzer firing range, the method can be used for other munition types once the explosive particle characteristics are known.

  3. 30 CFR 57.6133 - Powder chests.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., operators must follow the provisions of the Institute of Makers of Explosives (IME) Safety Library... other Explosive Materials,” (May 1993), and the “Generic Loading Guide for the IME-22 Container...

  4. Analysis of the Explosive Internal Impact on the Barriers of Building Structures

    NASA Astrophysics Data System (ADS)

    Siwiński, Jarosław; Stolarski, Adam

    2017-10-01

    Work issues concern the safety of construction in relation to the hazards arising from explosion of the explosive charge located inside the building. The algorithms proposed in the paper for determining the parameters of the overpressure wave resulting from the detonation of clustered explosive charges, determine the basis for numerical simulation analyzes. Determination of the maximum value of peak pressure on the wave forehead of an internal explosion is presented on the basis of reflected wave analysis. Changeability in time of the internal explosion action describes the overpressure phase only. The analysis of the load caused by the internal explosive charge detonation was carried out under conditions of the undisturbed standard atmosphere. A load determination algorithm has been developed, taking into account the geometrical characteristics of the building barriers and the rooms as well as the parameters of environment in which the detonation occurs. The way of taking into account the influence of venting surfaces, i.e. windows, doors, ventilation ducts, on the overpressure wave parameters, was presented. Discloses a method to take into account the effect of the surface relief, i.e. windows, doors, air ducts, pressure wave parameters. Modification of the method for explosive overpressure determination presented by Cormie, Smith, Mays (2009), was proposed in the paper. This modification was developed on the basis of substitute impulse analysis for multiple overpressure pulses. In order to take into account the pressure distribution of explosive gases on the barrier surface, the method of modification the relationship for determination the changeability over time and space of the pressure of explosive gases, was presented. For this purpose, the changeability of the pressure wave angles of incidence to the barrier and the distance of the explosive charge to any point on the surface of the barrier, was taken into account. Based on the developed procedure, the overpressure changeability over time was determined for selected measurement points of the reference room. A comparative analysis of the determined loadings with experimental results and theoretical results of other authors, taken from the original work of Weerhiejm et al. (2012), was carried out.

  5. Minutes of the 23rd Eplosives Safety Seminar, volume 2

    NASA Astrophysics Data System (ADS)

    1988-08-01

    Some areas of discussion at this seminar were: Hazards and risks of the disposal of chemical munitions using a cryogenic process; Special equipment for demilitarization of lethal chemical agent filled munitions; explosive containment room (ECR) repair Johnston Atoll chemical agent disposal system; Sympathetic detonation testing; Blast loads, external and internal; Structural reponse testing of walls, doors, and valves; Underground explosion effects, external airblast; Explosives shipping, transportation safety and port licensing; Explosive safety management; Underground explosion effects, model test and soil rock effects; Chemical risk and protection of workers; and Full scale explosives storage test.

  6. 30 CFR 57.6902 - Excessive temperatures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... detonation, explosive material shall not be loaded into hot areas, such as kilns or sprung holes. (b) When blasting sulfide ores where hot holes occur that may react with explosive material in blastholes, operators...

  7. 30 CFR 57.6902 - Excessive temperatures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... detonation, explosive material shall not be loaded into hot areas, such as kilns or sprung holes. (b) When blasting sulfide ores where hot holes occur that may react with explosive material in blastholes, operators...

  8. 30 CFR 57.6902 - Excessive temperatures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... detonation, explosive material shall not be loaded into hot areas, such as kilns or sprung holes. (b) When blasting sulfide ores where hot holes occur that may react with explosive material in blastholes, operators...

  9. 30 CFR 57.6902 - Excessive temperatures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... detonation, explosive material shall not be loaded into hot areas, such as kilns or sprung holes. (b) When blasting sulfide ores where hot holes occur that may react with explosive material in blastholes, operators...

  10. 30 CFR 57.6902 - Excessive temperatures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... detonation, explosive material shall not be loaded into hot areas, such as kilns or sprung holes. (b) When blasting sulfide ores where hot holes occur that may react with explosive material in blastholes, operators...

  11. 30 CFR 75.1318 - Loading boreholes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) When loading boreholes drilled at an angle of 45 degrees or greater from the horizontal in solid rock... the borehole; and (2) The explosive cartridges shall be loaded in a manner that provides contact...

  12. Ignition criterion for heterogeneous energetic materials based on hotspot size-temperature threshold

    NASA Astrophysics Data System (ADS)

    Barua, A.; Kim, S.; Horie, Y.; Zhou, M.

    2013-02-01

    A criterion for the ignition of granular explosives (GXs) and polymer-bonded explosives (PBXs) under shock and non-shock loading is developed. The formulation is based on integration of a quantification of the distributions of the sizes and locations of hotspots in loading events using a cohesive finite element method (CFEM) developed recently and the characterization by Tarver et al. [C. M. Tarver et al., "Critical conditions for impact- and shock-induced hot spots in solid explosives," J. Phys. Chem. 100, 5794-5799 (1996)] of the critical size-temperature threshold of hotspots required for chemical ignition of solid explosives. The criterion, along with the CFEM capability to quantify the thermal-mechanical behavior of GXs and PBXs, allows the critical impact velocity for ignition, time to ignition, and critical input energy at ignition to be determined as functions of material composition, microstructure, and loading conditions. The applicability of the relation between the critical input energy (E) and impact velocity of James [H. R. James, "An extension to the critical energy criterion used to predict shock initiation thresholds," Propellants, Explos., Pyrotech. 21, 8-13 (1996)] for shock loading is examined, leading to a modified interpretation, which is sensitive to microstructure and loading condition. As an application, numerical studies are undertaken to evaluate the ignition threshold of granular high melting point eXplosive, octahydro-1,3,5,7-tetranitro-1,2,3,5-tetrazocine (HMX) and HMX/Estane PBX under loading with impact velocities up to 350 ms-1 and strain rates up to 105 s-1. Results show that, for the GX, the time to criticality (tc) is strongly influenced by initial porosity, but is insensitive to grain size. Analyses also lead to a quantification of the differences between the responses of the GXs and PBXs in terms of critical impact velocity for ignition, time to ignition, and critical input energy at ignition. Since the framework permits explicit tracking of the influences of microstructure, loading, and mechanical constraints, the calculations also show the effects of stress wave reflection and confinement condition on the ignition behaviors of GXs and PBXs.

  13. Effect of Heavy Dynamic Resistive Exercise on Acute Upper-Body Power.

    ERIC Educational Resources Information Center

    Hrysomallis, Con; Kidgell, Dawson

    2001-01-01

    Determined the influence of a heavy-load bench press on indicators of upper-body power during an explosive pushup, examining the influence of a set of 5 repetitions of 5 repetition maximum (RM) bench press preceding explosive pushups. There were no significant differences for any of the force platform data when explosive pushups were preceded by…

  14. Investigation of explosives mechanic impact sensitivity on the samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loboyko, B.G.; Alekseev, A.V.; Litvinov, B.V.

    1996-05-01

    Several results of investigation into HMX-based explosive compound sensitivity to mechanic impact on the samples are presented. Mechanic loading of samples was effected by dynamic insertion of a pin. Alternation of physical state of explosive compound on account of preliminary thermal treatment or destruction of samples increased their sensitivity considerably. {copyright} {ital 1996 American Institute of Physics.}

  15. The effect of detonation wave incidence angle on the acceleration of flyers by explosives heavily laden with inert additives

    NASA Astrophysics Data System (ADS)

    Loiseau, Jason; Georges, William; Frost, David L.; Higgins, Andrew J.

    2017-01-01

    The incidence angle of a detonation wave in a conventional high explosive influences the acceleration and terminal velocity of a metal flyer by increasing the magnitude of the material velocity imparted by the transmitted shock wave as the detonation is tilted towards normal loading. For non-ideal explosives heavily loaded with inert additives, the detonation velocity is typically subsonic relative to the flyer sound speed, leading to shockless accelerations when the detonation is grazing. Further, in a grazing detonation the particles are initially accelerated in the direction of the detonation and only gain velocity normal to the initial orientation of the flyer at later times due to aerodynamic drag as the detonation products expand. If the detonation wave in a non-ideal explosive instead strikes the flyer at normal incidence, a shock is transmitted into the flyer and the first interaction between the particle additives and the flyer occurs due to the imparted material velocity from the passage of the detonation wave. Consequently, the effect of incidence angle and additive properties may play a more prominent role in the flyer acceleration. In the present study we experimentally compared normal detonation loadings to grazing loadings using a 3-mm-thick aluminum slapper to impact-initiate a planar detonation wave in non-ideal explosive-particle admixtures, which subsequently accelerated a second 6.4-mm-thick flyer. Flyer acceleration was measured with heterodyne laser velocimetry (PDV). The explosive mixtures considered were packed beds of glass or steel particles of varying sizes saturated with sensitized nitromethane, and gelled nitromethane mixed with glass microballoons. Results showed that the primary parameter controlling changes in flyer velocity was the presence of a transmitted shock, with additive density and particle size playing only secondary roles. These results are similar to the grazing detonation experiments, however under normal loading the largest, higher density particles yielded the highest terminal flyer velocity, whereas in the grazing experiments the larger, low density particles yielded the highest terminal velocity.

  16. Modeling shock responses of plastic bonded explosives using material point method

    NASA Astrophysics Data System (ADS)

    Shang, Hailin; Zhao, Feng; Fu, Hua

    2017-01-01

    Shock responses of plastic bonded explosives are modeled using material point method as implemented in the Uintah Computational Framework. Two-dimensional simulation model was established based on the micrograph of PBX9501. Shock loading for the explosive was performed by a piston moving at a constant velocity. Unreactive simulation results indicate that under shock loading serious plastic strain appears on the boundary of HMX grains. Simultaneously, the plastic strain energy transforms to thermal energy, causing the temperature to rise rapidly on grain boundary areas. The influence of shock strength on the responses of explosive was also investigated by increasing the piston velocity. And the results show that with increasing shock strength, the distribution of plastic strain and temperature does not have significant changes, but their values increase obviously. Namely, the higher the shock strength is, the higher the temperature rise will be.

  17. Simulation of the Load-Unload Paths Experienced by Rock in the Vicinity of Buried Explosions.

    DTIC Science & Technology

    1977-12-01

    Y99QAXSB04903 H2590D. 19. KEY WORDS (Continue on revere. aide if necessary end Identify by block number) Kayenta Sandstone Strain and Stress Paths Buried...These calculations are used to define loading and unloading paths in static laboratory tests on Kayenta sandstone. The data presented hsreithus...spherical explosions in an infinite medium. The material tested in the experimental program is Kayenta sandstone. 5 STRESS PATH DETERMINATION FROM FINITE

  18. Rock Directed Breaking Under the Impulse Load

    NASA Astrophysics Data System (ADS)

    Khomeriki, Sergo; Mataradze, Edgar; Chikhradze, Nikoloz; Losaberidze, Marine; Khomeriki, Davit; Shatberashvili, Grigol

    2016-10-01

    In the work the problem of directed chipping of facing stone material by means of managing of explosion process is considered. The technology of the mining of decorative stone by the use of explosion energy means the very rapid transfer of potential energy of elastic deformations to kinetic energy. As a result, the explosion impulse, in the expanse of the inertia of rock massive, does not cause the increase of existing cracks. In the course of explosion, the shock wave is propagated by ultrasonic velocity and in this case the medium parameters (pressure, density, temperature, velocity) increase in spurts. In spite of this fact the all three conservation laws of mechanics remain valid on basis of three laws the equations are derived by which the parameters of shock wave may be defined by means of the rock physical-mechanical properties. The load on the body volume at breaking under explosion acts over very small period of the time. Therefore, stressed-deformed state of the rock was studied when the impulse load acts on the boundary. It was considered that the mining of the blocks of facing stone is performed from the hard rocks. This means that the breaking proceeds in the zone of elastic deformation. In the conditions of mentioned assumptions, the expression of the stress tensor and displacement of vector components initiated by stressed-deformed state in the rock are written.

  19. Optimizing post activation potentiation for explosive activities in competitive sports

    PubMed Central

    Gołaś, Artur; Maszczyk, Adam; Mikołajec, Kazimierz; Stastny, Petr

    2016-01-01

    Abstract Post activation potentiation (PAP) has shown improved performance during movements requiring large muscular power output following contractions under near maximal load conditions. PAP can be described as an acute enhancement of performance or an enhancement of factors determining an explosive sports activity following a preload stimulus. In practice, PAP has been achieved by complex training, which involves a combination of a heavy loaded exercise followed by a biomechanically similar explosive activity, best if specific for a particular sport discipline. The main objective of this study was to investigate the effects of PAP on performance in explosive motor activities specific for basketball, luge and athletics throws. The novel approach to the experiments included individualized recovery time (IRT) between the conditioning exercise and the explosive activity. Additionally, the research groups were homogenous and included only competitive athletes of similar age and training experience. Thirty one well trained athletes from 3 different sport disciplines participated in the study. All athletes performed a heavy loaded conditioning activity (80-130%1RM) followed by a biomechanically similar explosive exercise, during which power (W) or the rate of power development (W/s/kg) was evaluated. The results of our experiment confirmed the effectiveness of PAP with well-trained athlets during explosive motor activities such as jumping, throwing and pushing. Additionally, our research showed that eccentric supramaximal intensities (130% 1RM) can be effective in eliciting PAP in strength trained athletes. Our experiments also showed that the IRT should be individualized because athletes differ in the strength level, training experience and muscle fiber structure. In the three experiments conducted with basketball players, track and field athletes and luge athletes, the optimal IRT equaled 6 min. This justifies the need to individualize the volume and intensity of the CA, and especially the IRT, between the CA and the explosive activity. PMID:28149397

  20. Simulation Study on the Deflection Response of the 921A Steel thin plate under Explosive Impact Load

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Xiang; Chen, Fang; Han, Yan

    2018-03-01

    The Ship cabin would be subject to high-intensity shock wave load when it is attacked by anti-ship weapons, causing its side board damaged. The time course of the deflection of the thin plate made of 921A steel in different initial conditions under the impact load is researched by theoretical analysis and numerical simulation. According to the theory of elastic-plastic deformation of the thin plate, the dynamic response equation of the thin plate under the explosion impact load is established with the method of energy, and the theoretical calculation value is compared with the result from the simulation method. It proved that the theoretical calculation method has better reliability and accuracy in different boundary size.

  1. Experimental verification of the vaporization's contribution to the shock waves generated by underwater electrical wire explosion under micro-second timescale pulsed discharge

    NASA Astrophysics Data System (ADS)

    Han, Ruoyu; Zhou, Haibin; Wu, Jiawei; Clayson, Thomas; Ren, Hang; Wu, Jian; Zhang, Yongmin; Qiu, Aici

    2017-06-01

    This paper studies pressure waves generated by exploding a copper wire in a water medium, demonstrating the significant contribution of the vaporization process to the formation of shock waves. A test platform including a pulsed current source, wire load, chamber, and diagnostic system was developed to study the shock wave and optical emission characteristics during the explosion process. In the experiment, a total of 500 J was discharged through a copper wire load 0.2 mm in diameter and 4 cm in length. A water gap was installed adjacent to the load so that the current was diverted away from the load after breakdown occurred across the water gap. This allows the electrical energy injection into the load to be interrupted at different times and at different stages of the wire explosion process. Experimental results indicate that when the load was bypassed before the beginning of the vaporization phase, the measured peak pressure was less than 2.5 MPa. By contrast, the peak pressure increased significantly to over 6.5 MPa when the water gap broke down after the beginning of the vaporization phase. It was also found that when bypassing the load after the voltage peak, similar shock waves were produced to those from a non-bypassed load. However, the total optical emission of these bypassed loads was at least an order of magnitude smaller. These results clearly demonstrate that the vaporization process is vital to the formation of shock waves and the energy deposited after the voltage collapse may only have a limited effect.

  2. Experimental model of the role of cracks in the mechanism of explosive eruption of St. Helens-80

    NASA Astrophysics Data System (ADS)

    Kedrinskii, V. K.; Skulkin, A. A.

    2017-07-01

    A unique mini model of explosive volcano eruption through a formed system of cracks is developed. The process of crack formation and development is simulated by electric explosion of a conductor in a plate of optically transparent organic glass submerged into water. The explosion of a wire aligned with a through hole in the plate generates shock-wave loading along the plate and forms cracks. The fundamental role of high velocity flow in crack wedging by a high power hydrodynamic flow of a pulsating explosion cavity has been demonstrated.

  3. Utilizing CFD for Prediction of HD1.3 Pressure Loads in a Cell with Venting

    DTIC Science & Technology

    2010-07-01

    room. The gas load is a result of the heat released during the explosion and afterburning of explosives that was not consumed by the initial...Structural Systems Design Guide HNDED-CS-93-72 specifies that all HD 1.3 in a room will be summed and converted to an equivalent TNT mass (based on...the H2 and CO are shown in Table 5. The Pre- Afterburning quantities are based on the chemical equilibrium calculations performed in the AFCESI code

  4. Experimental transient and permanent deformation studies of steel-sphere-impacted or explosively-impulsed aluminum panels

    NASA Technical Reports Server (NTRS)

    Witmer, E. A.; Merlis, F.; Rodal, J. J. A.; Stagliano, T. R.

    1977-01-01

    The sheet explosive loading technique (SELT) was employed to obtain elastic-plastic, large deflection 3-d transient and/or permanent strain data on simple well defined structural specimens and materials: initially-flat 6061-T651 aluminum panels with all four sides ideally clamped via integral construction. The SELT loading technique was chosen since it is both convenient and provides "forcing function information" of small uncertainty. These data will be useful for evaluating pertinent 3-d structural response prediction methods.

  5. 30 CFR 56.6307 - Drill stem loading.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drill stem loading. 56.6307 Section 56.6307 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Drill stem loading. Explosive material shall not be loaded into blastholes with drill stem equipment or...

  6. 30 CFR 56.6307 - Drill stem loading.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drill stem loading. 56.6307 Section 56.6307 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Drill stem loading. Explosive material shall not be loaded into blastholes with drill stem equipment or...

  7. 30 CFR 56.6307 - Drill stem loading.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drill stem loading. 56.6307 Section 56.6307 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Drill stem loading. Explosive material shall not be loaded into blastholes with drill stem equipment or...

  8. 30 CFR 56.6307 - Drill stem loading.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drill stem loading. 56.6307 Section 56.6307 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Drill stem loading. Explosive material shall not be loaded into blastholes with drill stem equipment or...

  9. 30 CFR 56.6307 - Drill stem loading.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drill stem loading. 56.6307 Section 56.6307 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Drill stem loading. Explosive material shall not be loaded into blastholes with drill stem equipment or...

  10. Direct Analysis in Real Time Mass Spectrometry of Potential By-Products from Homemade Nitrate Ester Explosive Synthesis

    PubMed Central

    Sisco, Edward; Forbes, Thomas P.

    2016-01-01

    This work demonstrates the coupling of direct analysis in real time (DART) ionization with time-of-flight mass spectrometry (MS) in an off-axis configuration for the trace detection and analysis of potential partially nitrated and dimerized by-products of homemade nitrate ester explosive synthesis. Five compounds relating to the synthesis of nitroglycerin (NG) and pentaerythritol tetranitrate (PETN) were examined. Deprotonated ions and adducts with molecular oxygen, nitrite, and nitrate were observed in the mass spectral responses of these compounds. A global optimum temperature of 350 °C for the by-products investigated here, enabled single nanogram to sub nanogram trace detection. Matrix effects were examined through a series of mixtures containing one or more compounds (sugar alcohol precursors, by-products, and/or explosives) across a range of mass loadings. The explosives MS responses experienced competitive ionization in the presence of all by-products. The magnitude of this influence corresponded to both the degree of by-product nitration and the relative mass loading of the by-product to the explosive. This work provides a characterization of potential by-products from homemade nitrate ester synthesis, including matrix effects and potential challenges that might arise from the trace detection of homemade explosives (HMEs) containing impurities. Detection and understanding of HME impurities and complex mixtures may provide valuable information for the screening and sourcing of homemade nitrate ester explosives. PMID:26838397

  11. DDT Characteristics of Laser Driven Exploding Bridgewire Detonators

    NASA Astrophysics Data System (ADS)

    Welle, Eric

    2005-07-01

    The initiation and performance characteristics of Laser Exploding Bridgewire (LEBW) detonators loaded with CL-20, CP and BNCP were examined. LEBW devices, in name, as well as in function, exhibit similarities to their electrically driven counterparts with the exception that the means for energy deposition into the driving metal media results from photon absorption instead of electrical joule heating. CP and BNCP were chosen due to their well-known propensity to rapidly undergo a deflagration-to-detonation transition (DDT) and CL-20 was chosen to explore its utility as a DDT explosive. The explosive loading within the LEBW detonators were similar in nature to traditional EBW devices with regard to %TMD loading of the initial increment as well as quantity of energetic materials. Comparisons of the energy fluences required for initiation of the explosives will be discussed. Additionally, streak camera measurements will be reviewed that were conducted at what would be considered ``hard-fire'' fluence levels as well as conditions closer to the mean firing fluence levels of initiation.

  12. Explosive Loading of Metals and Related Topics

    DTIC Science & Technology

    1986-05-01

    Griffiths, "A U. K. Note on the History of Shaped Charges,• Royal Armament Research and Development Establishment Report, August 1983, presented...1925. 20. R. W. Wood, •optical and Physical Effects of High Explosives,• Proceedings of .the Royal Society (London), Vol. 157A, 1936, pp. 249-261...correctly analyzes geometric configurations in this report such as the Jelly Roll, the Dagwood and similar explosive-metal multilayer arrangements. In

  13. A Manual for the Prediction of Blast and Fragment Loadings on Structures

    DTIC Science & Technology

    1981-08-01

    H. and Amsden, A. A., "Fluid Dynamics---An Introductory 4100, Los Alamos Scientific Laboratory, University of California, New Mexico, February 1970...Navy Explosives Safety Board, "The Missile Hazard from Explosions," Technical Paper No. 2, ,December 1945 . Arvidsson, T. and Eriksson, L... Alamos Scientific Laboratory, Los Alamos , New-Mexico, June 1975. "Behavior and Utilization of Explosives in Engineering Design and Biomechda-. ical

  14. Effect of Explosion Bulge Test Parameters on the Measurement of Deformation Resistance for Steel

    DTIC Science & Technology

    2014-02-01

    UNCLASSIFIED UNCLASSIFIED Effect of Explosion Bulge Test Parameters on the Measurement of Deformation Resistance for Steel C...Measurement of Deformation Resistance for Steel Executive Summary The Explosion Bulge Test has been used for over 60 years as a standard test for...the assessment of steel toughness and deformation resistance under blast loading conditions [1-3]. However, details of the test conditions vary

  15. CFD Applications in Support of the Space Shuttle Risk Assessment

    NASA Technical Reports Server (NTRS)

    Baum, Joseph D.; Mestreau, Eric; Luo, Hong; Sharov, Dmitri; Fragola, Joseph; Loehner, Rainald; Cook, Steve (Technical Monitor)

    2000-01-01

    The paper describes a numerical study of a potential accident scenario of the space shuttle, operating at the same flight conditions as flight 51L, the Challenger accident. The interest in performing this simulation is derived by evidence that indicates that the event itself did not exert large enough blast loading on the shuttle to break it apart. Rather, the quasi-steady aerodynamic loading on the damaged, unbalance vehicle caused the break-up. Despite the enormous explosive potential of the shuttle total fuel load (both liquid and solid), the post accident explosives working group estimated the maximum energy involvement to be equivalent to about five hundreds of pounds of TNT. This understanding motivated the simulation described here. To err on the conservative side, we modeled the event as an explosion, and used the maximum energy estimate. We modeled the transient detonation of a 500 lbs spherical charge of TNT, placed at the main engine, and the resulting blast wave propagation about the complete stack. Tracking of peak pressures and impulses at hundreds of locations on the vehicle surface indicate that the blast load was insufficient to break the vehicle, hence demonstrating likely crew survivability through such an event.

  16. Evaluation of Blast Resistance of Fiber Reinforced Composite Specimens under Contact Blast Load

    NASA Astrophysics Data System (ADS)

    Janota, O.; Foglar, M.

    2017-09-01

    This paper presents results of experimental programme which took place in 2014, 2015 and 2016. Experiments were focused on the resistance of full scale concrete panels subjected to contact blast loading. Specimens were loaded by contact blast by plastic explosive. All specimens were reinforced concrete slabs made of fiber concrete. Basalt mesh and textile sheets were added to some of the experiments for creating more heterogeneous material to achieve better resistance of the specimens. Evaluation of experiments was mainly focused on the damaged area on the contact side and soffit of the specimens. Dependency of the final damage of concrete panels on the weight of explosive and concrete strength was assessed.

  17. 30 CFR 56.6202 - Vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Vehicles. 56.6202 Section 56.6202 Mineral... Vehicles. (a) Vehicles containing explosive material shall be— (1) Maintained in good condition and shall... device being used in the loading operation. (b) Vehicles containing explosives shall have— (1) No...

  18. 30 CFR 56.6202 - Vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Vehicles. 56.6202 Section 56.6202 Mineral... Vehicles. (a) Vehicles containing explosive material shall be— (1) Maintained in good condition and shall... device being used in the loading operation. (b) Vehicles containing explosives shall have— (1) No...

  19. 30 CFR 56.6202 - Vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Vehicles. 56.6202 Section 56.6202 Mineral... Vehicles. (a) Vehicles containing explosive material shall be— (1) Maintained in good condition and shall... device being used in the loading operation. (b) Vehicles containing explosives shall have— (1) No...

  20. 30 CFR 56.6202 - Vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Vehicles. 56.6202 Section 56.6202 Mineral... Vehicles. (a) Vehicles containing explosive material shall be— (1) Maintained in good condition and shall... device being used in the loading operation. (b) Vehicles containing explosives shall have— (1) No...

  1. 30 CFR 56.6202 - Vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Vehicles. 56.6202 Section 56.6202 Mineral... Vehicles. (a) Vehicles containing explosive material shall be— (1) Maintained in good condition and shall... device being used in the loading operation. (b) Vehicles containing explosives shall have— (1) No...

  2. 49 CFR 176.104 - Loading and unloading Class 1 (explosive) materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... is formed by use of an open hook may not be used in handling Class 1 (explosive) materials. (e) Only... feet) long, and 10 cm (3.9 inches) thick, and be made of woven hemp, sisal, or similar fiber, or foam...

  3. 49 CFR 176.104 - Loading and unloading Class 1 (explosive) materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... is formed by use of an open hook may not be used in handling Class 1 (explosive) materials. (e) Only... feet) long, and 10 cm (3.9 inches) thick, and be made of woven hemp, sisal, or similar fiber, or foam...

  4. 49 CFR 176.104 - Loading and unloading Class 1 (explosive) materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... is formed by use of an open hook may not be used in handling Class 1 (explosive) materials. (e) Only... feet) long, and 10 cm (3.9 inches) thick, and be made of woven hemp, sisal, or similar fiber, or foam...

  5. 49 CFR 176.104 - Loading and unloading Class 1 (explosive) materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... is formed by use of an open hook may not be used in handling Class 1 (explosive) materials. (e) Only... feet) long, and 10 cm (3.9 inches) thick, and be made of woven hemp, sisal, or similar fiber, or foam...

  6. 49 CFR 176.104 - Loading and unloading Class 1 (explosive) materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... is formed by use of an open hook may not be used in handling Class 1 (explosive) materials. (e) Only... feet) long, and 10 cm (3.9 inches) thick, and be made of woven hemp, sisal, or similar fiber, or foam...

  7. Simulations of Heterogeneous Detonations and Post Detonation Turbulent Mixing and Afterburning

    NASA Astrophysics Data System (ADS)

    Menon, Suresh; Gottiparthi, Kalyana

    2011-06-01

    Most metal-loaded explosives and thermobaric explosives exploit the afterburning of metals to maintain pressure and temperature conditions.The use of such explosives in complex environment can result in post detonation flow containing many scales of vortical motion, flow jetting and shear, as well as plume-surface interactions due to flow impingement and wall flows. In general, all these interactions can lead to highly turbulent flow fields even if the initial ambient conditions were quiescent. Thus, turbulent mixing can dominate initial mixing and impact the final afterburn. We conduct three-dimensional numerical simulations of the propagation of detonation resulting from metal-loaded (inert or reacting) explosives and analyze the afterburn process as well as the generation of multiple scales of mixing in the post detonation flow field. Impact of the detonation and post-detonation flow field on solid surface is also considered for a variety of initial conditions. Comparison with available data is carried out to demonstrate validity of the simulation method. Supported by Defense Threat Reduction Agency

  8. Minimizing masses in explosively driven two-shockwave physics applications

    NASA Astrophysics Data System (ADS)

    Buttler, William; Cherne, Frank; Furlanetto, Michael; Payton, Jeremy; Stone, Joseph; Tabaka, Leonard; Vincent, Samuel

    2015-06-01

    We have experimentally investigated different two-shockwave high-explosives (HE) physics package designs to maximize the variability of the second shockwave peak stress, while minimizing the total HE load of the physics tool. A critical requirement is to also have a large radial diameter of the second shockwave to maintain its value as an HE driven two-shockwave drive. We have previously shown that we could vary the peak-stress of the second-shockwave with a 76 mm diameter HE lens driving different composite boosters of PBX 9501 and TNT. Here we report on our results with a 56- and 50-mm diameter HE lens driving Baritol. The results indicate that the 56-mm diameter HE lens works well, as does the Baritol, giving total HE loads of about 250 mg TNT equivalent explosives.

  9. 36 CFR 327.13 - Explosives, firearms, other weapons and fireworks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... possession of loaded firearms, ammunition, loaded projectile firing devices, bows and arrows, crossbows, or... ranges; or (4) Written permission has been received from the District Commander. (b) Possession of...

  10. 36 CFR 327.13 - Explosives, firearms, other weapons and fireworks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... possession of loaded firearms, ammunition, loaded projectile firing devices, bows and arrows, crossbows, or... ranges; or (4) Written permission has been received from the District Commander. (b) Possession of...

  11. 36 CFR 327.13 - Explosives, firearms, other weapons and fireworks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... possession of loaded firearms, ammunition, loaded projectile firing devices, bows and arrows, crossbows, or... ranges; or (4) Written permission has been received from the District Commander. (b) Possession of...

  12. 36 CFR 327.13 - Explosives, firearms, other weapons and fireworks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... possession of loaded firearms, ammunition, loaded projectile firing devices, bows and arrows, crossbows, or... ranges; or (4) Written permission has been received from the District Commander. (b) Possession of...

  13. Shock Isolation Elements Testing for High Input Loadings. Volume II. Foam Shock Isolation Elements.

    DTIC Science & Technology

    SHOCK ABSORBERS ), (*GUIDED MISSILE SILOS, SHOCK ABSORBERS ), (*EXPANDED PLASTICS, (*SHOCK(MECHANICS), REDUCTION), TEST METHODS, SHOCK WAVES, STRAIN(MECHANICS), LOADS(FORCES), MATHEMATICAL MODELS, NUCLEAR EXPLOSIONS, HARDENING.

  14. 36 CFR § 327.13 - Explosives, firearms, other weapons and fireworks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... possession of loaded firearms, ammunition, loaded projectile firing devices, bows and arrows, crossbows, or... ranges; or (4) Written permission has been received from the District Commander. (b) Possession of...

  15. Application of NASTRAN/COSMIC in the analysis of ship structures to underwater explosion shock

    NASA Technical Reports Server (NTRS)

    Fallon, D. J.; Costanzo, F. A.; Handleton, R. T.; Camp, G. C.; Smith, D. C.

    1987-01-01

    The application of NASTRAN/COSMIC in predicting the transient motion of ship structures to underwater, non-contact explosions is discussed. Examples illustrate the finite element models, mathematical formulations of loading functions and, where available, comparisons between analytical and experimental results.

  16. Non-Gurney Scaling of Explosives Heavily Loaded with Dense Inert Additives

    NASA Astrophysics Data System (ADS)

    Loiseau, Jason; Higgins, Andrew; Frost, David

    2017-06-01

    For most high explosives, the ability to accelerate material to some terminal velocity scales with the ratio of material-mass to charge-mass (M/C) according to the Gurney equations. Generally, the Gurney equation for planar geometry accurately predicts the terminal velocity of the driven material until the M/C ratio is reduced to roughly 0.15 or lower; at which point gasdynamic departures from the assumptions in the model result in systematic underpredictions of the material velocity. The authors conducted a series of open-face sandwich flyer plate experiments to measure the scaling of flyer terminal velocity with M/C for a heterogeneous explosive composed of a packed bed of 280 μm steel particles saturated with amine-sensitized nitromethane (90% NM, 10% diethylenetriamine). The propulsive capability of this explosive did not scale according to a modified form of the Gurney equation. Rather, propulsive efficiency increased as the flyer plate became relatively thicker. In the present study the authors have conducted further experiments using this explosive in symmetric sandwiches as well as for normally-incident detonations initiated via a slapping foil to examine how flyer terminal velocity scales with M/C for alternative geometries and loading conditions.

  17. Direct analysis in real time mass spectrometry of potential by-products from homemade nitrate ester explosive synthesis.

    PubMed

    Sisco, Edward; Forbes, Thomas P

    2016-04-01

    This work demonstrates the coupling of direct analysis in real time (DART) ionization with time-of-flight mass spectrometry (MS) in an off-axis configuration for the trace detection and analysis of potential partially nitrated and dimerized by-products of homemade nitrate ester explosive synthesis. Five compounds relating to the synthesis of nitroglycerin (NG) and pentaerythritol tetranitrate (PETN) were examined. Deprotonated ions and adducts with molecular oxygen, nitrite, and nitrate were observed in the mass spectral responses of these compounds. A global optimum temperature of 350 °C for the by-products investigated here enabled single nanogram to sub nanogram trace detection. Matrix effects were examined through a series of mixtures containing one or more compounds (sugar alcohol precursors, by-products, and/or explosives) across a range of mass loadings. The explosives MS responses experienced competitive ionization in the presence of all by-products. The magnitude of this influence corresponded to both the degree of by-product nitration and the relative mass loading of the by-product to the explosive. This work provides a characterization of potential by-products from homemade nitrate ester synthesis, including matrix effects and potential challenges that might arise from the trace detection of homemade explosives (HMEs) containing impurities. Detection and understanding of HME impurities and complex mixtures may provide valuable information for the screening and sourcing of homemade nitrate ester explosives. Published by Elsevier B.V.

  18. Nanoplasmonic imaging of latent fingerprints with explosive RDX residues.

    PubMed

    Peng, Tianhuan; Qin, Weiwei; Wang, Kun; Shi, Jiye; Fan, Chunhai; Li, Di

    2015-09-15

    Explosive detection is a critical element in preventing terrorist attacks, especially in crowded and influential areas. It is probably more important to establish the connection of explosive loading with a carrier's personal identity. In the present work, we introduce fingerprinting as physical personal identification and develop a nondestructive nanoplasmonic method for the imaging of latent fingerprints. We further integrate the nanoplasmonic response of catalytic growth of Au NPs with NADH-mediated reduction of 1,3,5-trinitro-1,3,5-triazinane (RDX) for the quantitative analysis of RDX explosive residues in latent fingerprints. This generic nanoplasmonic strategy is expected to be used in forensic investigation to distinguish terrorists that carry explosives.

  19. Fire and explosion hazards to flora and fauna from explosives.

    PubMed

    Merrifield, R

    2000-06-30

    Deliberate or accidental initiation of explosives can produce a range of potentially damaging fire and explosion effects. Quantification of the consequences of such effects upon the surroundings, particularly on people and structures, has always been of paramount importance. Information on the effects on flora and fauna, however, is limited, with probably the weakest area lying with fragmentation of buildings and their effects on different small mammals. Information has been used here to gain an appreciation of the likely magnitude of the potential fire and explosion effects on flora and fauna. This is based on a number of broad assumptions and a variety of data sources including World War II bomb damage, experiments performed with animals 30-40 years ago, and more recent field trials on building break-up under explosive loading.

  20. Portable radiography system using a relativistic electron beam

    DOEpatents

    Hoeberling, Robert F.

    1990-01-01

    A portable radiographic generator is provided with an explosive magnetic flux compression generator producing the high voltage necessary to generate a relativistic electron beam. The relativistic electron beam is provided with target materials which generates the desired radiographic pulse. The magnetic flux compression generator may require at least two conventional explosively driven generators in series to obtain a desired output voltage of at least 1 MV. The cathode and anode configuration of the diode are selected to provide a switching action wherein a high impedance load is presented to the magnetic flux compression generator when the high voltage is being generated, and thereafter switching to a low impedance load to generate the relativistic electron beam. Magnetic flux compression generators can be explosively driven and provided in a relatively compact, portable form for use with the relativistic x-ray equipment.

  1. Portable radiography system using a relativistic electron beam

    DOEpatents

    Hoeberling, R.F.

    1987-09-22

    A portable radiographic generator is provided with an explosive magnetic flux compression generator producing the high voltage necessary to generate a relativistic electron beam. The relativistic electron beam is provided with target materials which generates the desired radiographic pulse. The magnetic flux compression generator may require at least two conventional explosively driven generators in series to obtain a desired output voltage of at least 1 MV. The cathode and anode configuration of the diode are selected to provide a switching action wherein a high impedance load is presented to the magnetic flux compression generator when the high voltage is being generated, and thereafter switching to a low impedance load to generate the relativistic electron beam. Magnetic flux compression generators can be explosively driven and provided in a relatively compact, portable form for use with the relativistic x-ray equipment. 8 figs.

  2. Investigation of failure to separate an Inconel 718 frangible nut

    NASA Technical Reports Server (NTRS)

    Hoffman, William C., III; Hohmann, Carl

    1994-01-01

    The 2.5-inch frangible nut is used in two places to attach the Space Shuttle Orbiter to the External Tank. It must be capable of sustaining structural loads and must also separate into two pieces upon command. Structural load capability is verified by proof loading each flight nut, while ability to separate is verified on a sample of a production lot. Production lots of frangible nuts beginning in 1987 experienced an inability to reliably separate using one of two redundant explosive boosters. The problems were identified in lot acceptance tests, and the cause of failure has been attributed to differences in the response of the Inconel 718. Subsequent tests performed on the frangible nuts resulted in design modifications to the nuts along with redesign of the explosive booster to reliably separate the frangible nut. The problem history along with the design modifications to both the explosive booster and frangible nut are discussed in this paper. Implications of this failure experience impact any pyrotechnic separation system involving fracture of materials with respect to design margin control and lot acceptance testing.

  3. Eigenvalue Detonation of Combined Effects Aluminized Explosives

    NASA Astrophysics Data System (ADS)

    Capellos, Christos; Baker, Ernest; Balas, Wendy; Nicolich, Steven; Stiel, Leonard

    2007-06-01

    This paper reports on the development of theory and performance for recently developed combined effects aluminized explosives. Traditional high energy explosives used for metal pushing incorporate high loading percentages of HMX or RDX, whereas blast explosives incorporate some percentage of aluminum. However, the high blast explosives produce increased blast energies, with reduced metal pushing capability due to late time aluminum reaction. Metal pushing capability refers to the early volume expansion work produced during the first few volume expansions associated with cylinder wall velocities and Gurney energies. Our Recently developed combined effects aluminized explosives (PAX-29C, PAX-30, PAX-42) are capable of achieving excellent metal pushing and high blast energies. Traditional Chapman-Jouguet detonation theory does not explain the observed detonation states achieved by these combined effects explosives. This work demonstrates, with the use of cylinder expansion data and thermochemical code calculations (JAGUAR and CHEETAH), that eigenvalue detonation theory explains the observed behavior.

  4. 49 CFR 174.101 - Loading Class 1 (explosive) materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... in a rail car equipped with any type of lighted heater or open-flame device, or electric devices... stock cars or in flat bottom gondola cars only if they are adequately braced. Boxed bombs, rocket... be loaded in closed cars, may be loaded in open-top cars or on flatcars, provided they are protected...

  5. 49 CFR 174.101 - Loading Class 1 (explosive) materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... in a rail car equipped with any type of lighted heater or open-flame device, or electric devices... stock cars or in flat bottom gondola cars only if they are adequately braced. Boxed bombs, rocket... be loaded in closed cars, may be loaded in open-top cars or on flatcars, provided they are protected...

  6. 49 CFR 174.101 - Loading Class 1 (explosive) materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... in a rail car equipped with any type of lighted heater or open-flame device, or electric devices... stock cars or in flat bottom gondola cars only if they are adequately braced. Boxed bombs, rocket... be loaded in closed cars, may be loaded in open-top cars or on flatcars, provided they are protected...

  7. 49 CFR 174.101 - Loading Class 1 (explosive) materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... in a rail car equipped with any type of lighted heater or open-flame device, or electric devices... stock cars or in flat bottom gondola cars only if they are adequately braced. Boxed bombs, rocket... be loaded in closed cars, may be loaded in open-top cars or on flatcars, provided they are protected...

  8. Explosive compaction of aluminum oxide modified by multiwall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Buzyurkin, A. E.; Kraus, E. I.; Lukyanov, Ya L.

    2018-04-01

    This paper presents experiments and numerical research on explosive compaction of aluminum oxide powder modified by multiwall carbon nanotubes (MWCNT) and modeling of the stress state behind the shock front at shock loading. The aim of this study was to obtain a durable low-porosity compact sample. The explosive compaction technology is used in this problem because the aluminum oxide is an extremely hard and refractory material. Therefore, its compaction by traditional methods requires special equipment and considerable expenses.

  9. Deflagration-to-detonation characteristics of a laser exploding bridge detonator

    NASA Astrophysics Data System (ADS)

    Welle, E. J.; Fleming, K. J.; Marley, S. K.

    2006-08-01

    Evaluation of laser initiated explosive trains has been an area of extreme interest due to the safety benefits of these systems relative to traditional electro-explosive devices. A particularly important difference is these devices are inherently less electro-static discharge (ESD) sensitive relative to traditional explosive devices due to the isolation of electrical power and associated materials from the explosive interface. This paper will report work conducted at Sandia National Laboratories' Explosive Components Facility, which evaluated the initiation and deflagration-to-detonation characteristics of a Laser Driven Exploding Bridgewire detonator. This paper will report and discuss characteristics of Laser Exploding Bridgewire devices loaded with hexanitrohexaazaisowurtzitane (CL-20) and tetraammine-cis-bis-(5-nitro-2H-tetrazolato-N2) cobalt (III) perchlorate (BNCP).

  10. Damage Detection of a Concrete Column Subject to Blast Loads Using Embedded Piezoceramic Transducers.

    PubMed

    Xu, Kai; Deng, Qingshan; Cai, Lujun; Ho, Siuchun; Song, Gangbing

    2018-04-28

    Some of the most severe structural loadings come in the form of blast loads, which may be caused by severe accidents or even terrorist activities. Most commonly after exposure to explosive forces, a structure will suffer from different degrees of damage, and even progress towards a state of collapse. Therefore, damage detection of a structure subject to explosive loads is of importance. This paper proposes a new approach to damage detection of a concrete column structure subjected to blast loads using embedded piezoceramic smart aggregates (SAs). Since the sensors are embedded in the structure, the proposed active-sensing based approach is more sensitive to internal or through cracks than surface damage. In the active sensing approach, the embedded SAs act as actuators and sensors, that can respectively generate and detect stress waves. If the stress wave propagates across a crack, the energy of the wave attenuates, and the reduction of the energy compared to the healthy baseline is indicative of a damage. With a damage index matrix constructed by signals obtained from an array of SAs, cracks caused by blast loads can be detected throughout the structure. Conventional sensing methods such as the measurement of dynamic strain and acceleration were included in the experiment. Since columns are critical elements needed to prevent structural collapse, knowledge of their integrity and damage conditions is essential for safety after exposure to blast loads. In this research, a concrete column with embedded SAs was chosen as the specimen, and a series of explosive tests were conducted on the column. Experimental results reveal that surface damages, though appear severe, cause minor changes in the damage index, and through cracks result in significant increase of the damage index, demonstrating the effectiveness of the active sensing, enabled by embedded SAs, in damage monitoring of the column under blast loads, and thus providing a reliable indication of structural integrity in the event of blast loads.

  11. Damage Detection of a Concrete Column Subject to Blast Loads Using Embedded Piezoceramic Transducers

    PubMed Central

    Deng, Qingshan; Cai, Lujun; Ho, Siuchun; Song, Gangbing

    2018-01-01

    Some of the most severe structural loadings come in the form of blast loads, which may be caused by severe accidents or even terrorist activities. Most commonly after exposure to explosive forces, a structure will suffer from different degrees of damage, and even progress towards a state of collapse. Therefore, damage detection of a structure subject to explosive loads is of importance. This paper proposes a new approach to damage detection of a concrete column structure subjected to blast loads using embedded piezoceramic smart aggregates (SAs). Since the sensors are embedded in the structure, the proposed active-sensing based approach is more sensitive to internal or through cracks than surface damage. In the active sensing approach, the embedded SAs act as actuators and sensors, that can respectively generate and detect stress waves. If the stress wave propagates across a crack, the energy of the wave attenuates, and the reduction of the energy compared to the healthy baseline is indicative of a damage. With a damage index matrix constructed by signals obtained from an array of SAs, cracks caused by blast loads can be detected throughout the structure. Conventional sensing methods such as the measurement of dynamic strain and acceleration were included in the experiment. Since columns are critical elements needed to prevent structural collapse, knowledge of their integrity and damage conditions is essential for safety after exposure to blast loads. In this research, a concrete column with embedded SAs was chosen as the specimen, and a series of explosive tests were conducted on the column. Experimental results reveal that surface damages, though appear severe, cause minor changes in the damage index, and through cracks result in significant increase of the damage index, demonstrating the effectiveness of the active sensing, enabled by embedded SAs, in damage monitoring of the column under blast loads, and thus providing a reliable indication of structural integrity in the event of blast loads. PMID:29710807

  12. Deformation and fracture of explosion-welded Ti/Al plates: A synchrotron-based study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E, J. C.; Huang, J. Y.; Bie, B. X.

    Here, explosion-welded Ti/Al plates are characterized with energy dispersive spectroscopy and x-ray computed tomography, and exhibit smooth, well-jointed, interface. We perform dynamic and quasi-static uniaxial tension experiments on Ti/Al with the loading direction either perpendicular or parallel to the Ti/Al interface, using a mini split Hopkinson tension bar and a material testing system in conjunction with time-resolved synchrotron x-ray imaging. X-ray imaging and strain-field mapping reveal different deformation mechanisms responsible for anisotropic bulk-scale responses, including yield strength, ductility and rate sensitivity. Deformation and fracture are achieved predominantly in Al layer for perpendicular loading, but both Ti and Al layers asmore » well as the interface play a role for parallel loading. The rate sensitivity of Ti/Al follows those of the constituent metals. For perpendicular loading, single deformation band develops in Al layer under quasi-static loading, while multiple deformation bands nucleate simultaneously under dynamic loading, leading to a higher dynamic fracture strain. For parallel loading, the interface impedes the growth of deformation and results in increased ductility of Ti/Al under quasi-static loading, while interface fracture occurs under dynamic loading due to the disparity in Poisson's contraction.« less

  13. Deformation and fracture of explosion-welded Ti/Al plates: A synchrotron-based study

    DOE PAGES

    E, J. C.; Huang, J. Y.; Bie, B. X.; ...

    2016-08-02

    Here, explosion-welded Ti/Al plates are characterized with energy dispersive spectroscopy and x-ray computed tomography, and exhibit smooth, well-jointed, interface. We perform dynamic and quasi-static uniaxial tension experiments on Ti/Al with the loading direction either perpendicular or parallel to the Ti/Al interface, using a mini split Hopkinson tension bar and a material testing system in conjunction with time-resolved synchrotron x-ray imaging. X-ray imaging and strain-field mapping reveal different deformation mechanisms responsible for anisotropic bulk-scale responses, including yield strength, ductility and rate sensitivity. Deformation and fracture are achieved predominantly in Al layer for perpendicular loading, but both Ti and Al layers asmore » well as the interface play a role for parallel loading. The rate sensitivity of Ti/Al follows those of the constituent metals. For perpendicular loading, single deformation band develops in Al layer under quasi-static loading, while multiple deformation bands nucleate simultaneously under dynamic loading, leading to a higher dynamic fracture strain. For parallel loading, the interface impedes the growth of deformation and results in increased ductility of Ti/Al under quasi-static loading, while interface fracture occurs under dynamic loading due to the disparity in Poisson's contraction.« less

  14. Metal explosion chambers: designing, manufacturing, application

    NASA Astrophysics Data System (ADS)

    Stoyanovskii, O. I.; Zlobin, B. S.; Shtertser, A. A.; Meshcheryakov, Y. P.

    2017-10-01

    Designing of explosion chambers is based on research investigations of the chamber body stress-strain state, which is determined by numerical computation and experimentally by the strain gage technique. Studies show that chamber bottoms are the most loaded elements, and maximal stresses arise in chamber poles. Increasing the shell thickness around poles by welding-in an insert is a simple and saving way to solve this problem. There are structural solutions, enabling reliable hermetic closure and preventing leakage of detonation products from the chamber. Explosion chambers are employed in scientific research and in different industrial applications: explosive welding and hardening, synthesis of new materials, disposal of expired ammunition, and etc.

  15. Next Generation Loading System for Detonators and Primers

    DTIC Science & Technology

    Designed , fabricated and installed next generation tooling to provide additional manufacturing capabilities for new detonators and other small...prototype munitions on automated, semi-automated and manual machines. Lead design effort, procured and installed a primary explosive Drying Oven for a pilot...facility. Designed , fabricated and installed a Primary Explosives Waste Treatment System in a pilot environmental processing facility. Designed

  16. Stress-induced activation of decomposition of organic explosives: a simple way to understand.

    PubMed

    Zhang, Chaoyang

    2013-01-01

    We provide a very simply way to understand the stress-induced activation of decomposition of organic explosives by taking the simplest explosive molecule nitromethane (NM) as a prototype and constraining one or two NM molecules in a shell to represent the condensed phrase of NM against the stress caused by tension and compression, sliding and rotational shear, and imperfection. The results show that the stress loaded on NM molecule can always reduce the barriers of its decomposition. We think the origin of this stress-induced activation is due to the increased repulsive intra- and/or inter- molecular interaction potentials in explosives resulted from the stress, whose release is positive to accelerate the decomposition. Besides, by these models, we can understand that the explosives in gaseous state are easier to analyze than those in condensed state and the voids in condensed explosives make them more sensitive to external stimuli relative to the perfect crystals.

  17. FEM analysis of escape capsule suffered to gas explosion

    NASA Astrophysics Data System (ADS)

    Li, Chang-lu; Mei, Rui-bin; Li, Chang-sheng; Cai, Ban; Liu, Xiang-hua

    2013-05-01

    Escape capsules are new devices for underground coal mines that provide air, water, food and supplies in the event of an emergency in where miners are unable to escape. It is difficult to carry out the experiments of explosion and safety because the danger and nonrepeatability of explosion. The structure deformation and distribution of equivalent stress has been investigated under different impact pressure conditions including unimodal and bimodal loads based on the FEM and software LS-DYNA. The results show that the distribution of deformation and equivalent stress has the same trend on the same surface with the increment of explosion pressure. The deformation and stress are larger with side impact pressure compared with that of the same front impact pressure. Furthermore, the maximum equivalent stress is 246MPa and 260MPa on the front and sides of capsule with five times for national standard impact pressure 1.5MPa. Under these conditions, the deformation is less than about 9.97mm and 10.47mm, respectively. When the front impact pressure is 2.0MPa, the deformation of capsule still belongs to elasticity but the less plastic deformation occurs on the Ushape stiffening channels with the same side impact pressure. However, it is safe for capsule structure because the equivalent stress 283MPa is much less than the tensile strength. It is noted that bimodal load accelerates the capsule deformation so that it is more dangerous compared with unimodal load.

  18. Porous Chromatographic Materials as Substrates for Preparing Synthetic Nuclear Explosion Debris Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, Scott D.; Liezers, Martin; Antolick, Kathryn C.

    2013-06-13

    In this study, we investigated several porous chromatographic materials as synthetic substrates for preparing surrogate nuclear explosion debris particles. The resulting synthetic debris materials are of interest for use in developing analytical methods. Eighteen metals, including some of forensic interest, were loaded onto materials by immersing them in metal solutions (556 mg/L of each metal) to fill the pores, applying gentle heat (110°C) to drive off water, and then treating them at high temperatures (up to 800°C) in air to form less soluble metal species. High-boiling-point metals were uniformly loaded on spherical controlled-pore glass to emulate early fallout, whereas low-boiling-pointmore » metals were loaded on core-shell silica to represent coated particles formed later in the nuclear fallout-formation process. Analytical studies were applied to characterize solubility, material balance, and formation of recalcitrant species. Dissolution experiments indicated loading was 1.5 to 3 times higher than expected from the pore volume alone, a result attributed to surface coating. Analysis of load solutions before and after filling the material pores revealed that most metals were passively loaded; that is, solutions filled the pores without active metal discrimination. However, niobium and tin concentrations were lower in solutions after pore filling, and were found in elevated concentrations in the final products, indicating some metals were selectively loaded. High-temperature treatments caused reduced solubility of several metal species, and loss of some metals (rhenium and tellurium) because volatile species were formed. Sample preparation reproducibility was high (the inter-batch relative standard deviation was 7.8%, and the intra-batch relative standard deviation was 0.84%) indicating that this material is suitable for use as a working standard for analytical methods development. We anticipate future standardized radionuclide-loaded materials will find use in radioanalytical methods development and/or serve as a starting material for the synthesis of more complex forms of nuclear explosion debris (e.g., Trinitite).« less

  19. Nanopowder synthesis based on electric explosion technology

    NASA Astrophysics Data System (ADS)

    Kryzhevich, D. S.; Zolnikov, K. P.; Korchuganov, A. V.; Psakhie, S. G.

    2017-10-01

    A computer simulation of the bicomponent nanoparticle formation during the electric explosion of copper and nickel wires was carried out. The calculations were performed in the framework of the molecular dynamics method using many-body potentials of interatomic interaction. As a result of an electric explosion of dissimilar metal wires, bicomponent nanoparticles having different stoichiometry and a block structure can be formed. It is possible to control the process of destruction and the structure of the formed bicomponent nanoparticles by varying the distance between the wires and the loading parameters.

  20. NDIA 2018 IM and EM Technology Symposium: Innovative Insensitive Munition Solutions for Enhanced Warfighter Effectiveness

    DTIC Science & Technology

    2018-04-26

    decomposition of explosives, test materials and their mixtures. A DSC for each individual explosive, test material and mixture shall be run in duplicate... run in duplicate • Explosives and test materials are mixed in a 1:1 (w/w) ratio • Samples are heated at a rate of 5°C/min from room temperature to...warrants it. If a reaction occurs in ten trials, the load is reduced until there are no reactions observed in ten trials. The ESD test was run per a

  1. Numerical Simulation of Blast Action on Civil Structures in Urban Environment

    NASA Astrophysics Data System (ADS)

    Valger, Svetlana A.; Fedorova, Natalya N.; Fedorov, Alexander V.

    2017-10-01

    Nowadays, a lot of industrial accidents accompanied by explosions are happening throughout the world. Also, increase in the number of terrorist acts committed by means of explosions is observed. For improving safety of buildings and structures it is necessary to raise their resistance to explosive effects, as well as to be able to predict degree of potential damage upon explosive loads of various intensities. One of the principal goals in designing the structure resistant to explosive effects is to determine the dynamic response of structures to the impact of the blast wave. To this end, the transient pressure loads on the walls of the civil engineering structures are to be determined. The simulation of explosion is highly complicated, involving an explosion causing the shock wave propagation in air and then interaction with a structure. The engineering-level techniques permit one to estimate an explosive shock impact only for isolated buildings. The complexity of the building, the presence of nearby structures and the surrounding environment cannot be taken into account. Advanced computer aid engineering (CAE) software techniques combined with the latest methods of discrete three-dimensional city modelling permits one to simulate and analyse the effects of explosions in urban areas with a precision which previously was not possible. In the paper, the simulation results are presented of shock wave forming due to a spherical explosive charge and its propagation in the vicinity of geometrical configuration imitating an urban environment. The numerical simulation of a flow in the vicinity of prisms of different cross-sections and heights located on a flat plate was performed. The calculations are carried out in a three-dimensional non-viscous formulation using ANSYS software. On a basis of simulation results, a complex wave structures were analysed, and all the peculiarities of flows and pressure history records on building walls were described and explained. The possibility of a correct description of the non-stationary wave flow in the vicinity of the complex of obstacles is demonstrated. The results are compared with the experimental data on the pressure distribution in gauges located on the prism walls. The estimation of shock wave exposure intensity was performed to different objects.

  2. Numerical study of blast characteristics from detonation of homogeneous explosives

    NASA Astrophysics Data System (ADS)

    Balakrishnan, Kaushik; Genin, Franklin; Nance, Doug V.; Menon, Suresh

    2010-04-01

    A new robust numerical methodology is used to investigate the propagation of blast waves from homogeneous explosives. The gas-phase governing equations are solved using a hybrid solver that combines a higher-order shock capturing scheme with a low-dissipation central scheme. Explosives of interest include Nitromethane, Trinitrotoluene, and High-Melting Explosive. The shock overpressure and total impulse are estimated at different radial locations and compared for the different explosives. An empirical scaling correlation is presented for the shock overpressure, incident positive phase pressure impulse, and total impulse. The role of hydrodynamic instabilities to the blast effects of explosives is also investigated in three dimensions, and significant mixing between the detonation products and air is observed. This mixing results in afterburn, which is found to augment the impulse characteristics of explosives. Furthermore, the impulse characteristics are also observed to be three-dimensional in the region of the mixing layer. This paper highlights that while some blast features can be successfully predicted from simple one-dimensional studies, the growth of hydrodynamic instabilities and the impulsive loading of homogeneous explosives require robust three-dimensional investigation.

  3. 5. LOOKING NORTH TOWARD BARRICADES AROUND BUILDING NO. 230, PRIMER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. LOOKING NORTH TOWARD BARRICADES AROUND BUILDING NO. 230, PRIMER AND DETONATOR LOADING BUILDING. BARRICADES DIRECT FORCE OF BLAST UPWARD IN THE EVENT OF AN EXPLOSION. - Picatinny Arsenal, 200 Area, Shell Component Loading, State Route 15 near I-80, Dover, Morris County, NJ

  4. 30 CFR 57.6602 - Static electricity dissipation during loading.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Static electricity dissipation during loading... MINES Explosives Extraneous Electricity-Surface and Underground § 57.6602 Static electricity dissipation... generates a static electricity hazard— (a) An evaluation of the potential static electricity hazard shall be...

  5. 30 CFR 57.6602 - Static electricity dissipation during loading.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Static electricity dissipation during loading... MINES Explosives Extraneous Electricity-Surface and Underground § 57.6602 Static electricity dissipation... generates a static electricity hazard— (a) An evaluation of the potential static electricity hazard shall be...

  6. 30 CFR 57.6602 - Static electricity dissipation during loading.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Static electricity dissipation during loading... MINES Explosives Extraneous Electricity-Surface and Underground § 57.6602 Static electricity dissipation... generates a static electricity hazard— (a) An evaluation of the potential static electricity hazard shall be...

  7. 30 CFR 57.6602 - Static electricity dissipation during loading.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Static electricity dissipation during loading... MINES Explosives Extraneous Electricity-Surface and Underground § 57.6602 Static electricity dissipation... generates a static electricity hazard— (a) An evaluation of the potential static electricity hazard shall be...

  8. 30 CFR 57.6602 - Static electricity dissipation during loading.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Static electricity dissipation during loading... MINES Explosives Extraneous Electricity-Surface and Underground § 57.6602 Static electricity dissipation... generates a static electricity hazard— (a) An evaluation of the potential static electricity hazard shall be...

  9. Solid state gas sensors for detection of explosives and explosive precursors

    NASA Astrophysics Data System (ADS)

    Chu, Yun

    The increased number of terrorist attacks using improvised explosive devices (IEDs) over the past few years has made the trace detection of explosives a priority for the Department of Homeland Security. Considerable advances in early detection of trace explosives employing spectroscopic detection systems and other sensing devices have been made and have demonstrated outstanding performance. However, modern IEDs are not easily detectable by conventional methods and terrorists have adapted to avoid using metallic or nitro groups in the manufacturing of IEDs. Instead, more powerful but smaller compounds, such as TATP are being more frequently used. In addition, conventional detection techniques usually require large capital investment, labor costs and energy input and are incapable of real-time identification, limiting their application. Thus, a low cost detection system which is capable of continuous online monitoring in a passive mode is needed for explosive detection. In this dissertation, a thermodynamic based thin film gas sensor which can reliably detect various explosive compounds was developed and demonstrated. The principle of the sensors is based on measuring the heat effect associated with the catalytic decomposition of explosive compounds present in the vapor phase. The decomposition mechanism is complicated and not well known, but it can be affected by many parameters including catalyst, reaction temperature and humidity. Explosives that have relatively high vapor pressure and readily sublime at room temperature, like TATP and 2, 6-DNT, are ideal candidate for vapor phase detection using the thermodynamic gas sensor. ZnO, W2O 3, V2O5 and SnO2 were employed as catalysts. This sensor exhibited promising sensitivity results for TATP, but poor selectivity among peroxide based compounds. In order to improve the sensitivity and selectivity of the thermodynamic sensor, a Pd:SnO2 nanocomposite was fabricated and tested as part of this dissertation. A combinatorial chemistry techniques were used for catalyst discovery. Specially, a series of tin oxide catalysts with continuous varying composition of palladium were fabricated to screen for the optimum Pd loading to maximize specificity. Experimental results suggested that sensors with a 12 wt.% palladium loading generated the highest sensitivity while a 8 wt.% palladium loading provided greatest selectivity. XPS and XRD were used to study how palladium doping level affects the oxidation state and crystal structure of the nanocomposite catalyst. As with any passive detection system, a necessary theme of this dissertation was the mitigation of false positive. Toward this end, an orthogonal detection system comprised of two independent sensing platforms sharing one catalyst was demonstrated using TATP, 2, 6-DNT and ammonium nitrate as target molecules. The orthogonal sensor incorporated a thermodynamic based sensing platform to measure the heat effect associated with the decomposition of explosive molecules, and a conductometric sensing platform that monitors the change in electrical conductivity of the same catalyst when exposed to the explosive substances. Results indicate that the orthogonal sensor generates an effective response to explosives presented at part per billion level. In addition, with two independent sensing platforms, a built-in redundancy of results could be expected to minimize false positive.

  10. Effects of combustibles on internal quasi-static loads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandoval, N.R.; Hokanson, J.C.; Esparza, E.D.

    1984-08-01

    The phenomenon of quasi-static pressure enhancement produced when combustible materials are placed near HE sources has been recently discovered. The effects of placing solid and liquid combustible materials near detonating explosives on internal blast loading was measured during tests conducted in a one-eighth scale model of a containment structure. In many cases, dramatic increases in gas pressures resulted. Principal conclusions of this study are: combustible materials near explosives can markedly increase gas pressures in enclosed structures; there is a lack of data on HE-combustible combinations; quasi-static loading calculations should include estimates of contributions from the burning of combustible materials whenevermore » such materials are expected to be in intimate contact with HE sources; and effects of combustibles should be investigated further to determine methods for prediction. Variations in charge to combustible mass, charge type, structure volume, degree of venting and degree of contact between HE and combustible sbould be studied.« less

  11. 49 CFR 174.114 - Record to be made of change of seals on “Cars loaded with Division 1.1 or 1.2 (explosive...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... car to its destination: RailroadPlaceDate Car InitialsCar NumberNumber or description of seal broken Number or description of seal used to reseal car Reasons for opening car Condition of load Name and...

  12. 49 CFR 174.102 - Forbidden mixed loading and storage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... same rail car. Additionally, they may not be transported or loaded in the same rail car or stored on carrier property with charged electric storage batteries or with any hazardous material for which a... (explosive) materials or any other material in a placarded and certified car containing a shipment of...

  13. 49 CFR 174.102 - Forbidden mixed loading and storage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... same rail car. Additionally, they may not be transported or loaded in the same rail car or stored on carrier property with charged electric storage batteries or with any hazardous material for which a... (explosive) materials or any other material in a placarded and certified car containing a shipment of...

  14. 49 CFR 174.102 - Forbidden mixed loading and storage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... same rail car. Additionally, they may not be transported or loaded in the same rail car or stored on carrier property with charged electric storage batteries or with any hazardous material for which a... (explosive) materials or any other material in a placarded and certified car containing a shipment of...

  15. 30 CFR 75.815 - Disconnect devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... phase-to-phase voltage of the circuit in which they are installed, and for the full-load current of the... explosion-proof enclosures, must be capable of interrupting the full-load current of the circuit or designed and installed to cause the current to be interrupted automatically prior to the opening of the...

  16. 30 CFR 75.815 - Disconnect devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... phase-to-phase voltage of the circuit in which they are installed, and for the full-load current of the... explosion-proof enclosures, must be capable of interrupting the full-load current of the circuit or designed and installed to cause the current to be interrupted automatically prior to the opening of the...

  17. 49 CFR 172.400a - Exceptions from labeling.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... this subchapter). (2) A package or unit of military explosives (including ammunition) shipped by or on behalf of the DOD when in— (i) Freight containerload, carload or truckload shipments, if loaded and... cylinder permanently mounted in or on a transport vehicle. (5) A freight container, aircraft unit load...

  18. 49 CFR 172.400a - Exceptions from labeling.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... this subchapter). (2) A package or unit of military explosives (including ammunition) shipped by or on behalf of the DOD when in— (i) Freight containerload, carload or truckload shipments, if loaded and... cylinder permanently mounted in or on a transport vehicle. (5) A freight container, aircraft unit load...

  19. 49 CFR 172.400a - Exceptions from labeling.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... this subchapter). (2) A package or unit of military explosives (including ammunition) shipped by or on behalf of the DOD when in— (i) Freight containerload, carload or truckload shipments, if loaded and... cylinder permanently mounted in or on a transport vehicle. (5) A freight container, aircraft unit load...

  20. 49 CFR 174.102 - Forbidden mixed loading and storage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... same rail car. Additionally, they may not be transported or loaded in the same rail car or stored on carrier property with charged electric storage batteries or with any hazardous material for which a... (explosive) materials or any other material in a placarded and certified car containing a shipment of...

  1. 49 CFR 174.102 - Forbidden mixed loading and storage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... same rail car. Additionally, they may not be transported or loaded in the same rail car or stored on carrier property with charged electric storage batteries or with any hazardous material for which a... (explosive) materials or any other material in a placarded and certified car containing a shipment of...

  2. The propulsive capability of explosives heavily loaded with inert materials

    NASA Astrophysics Data System (ADS)

    Loiseau, J.; Georges, W.; Frost, D. L.; Higgins, A. J.

    2018-01-01

    The effect of inert dilution on the accelerating ability of high explosives for both grazing and normal detonations was studied. The explosives considered were: (1) neat, amine-sensitized nitromethane (NM), (2) packed beds of glass, steel, or tungsten particles saturated with amine-sensitized NM, (3) NM gelled with PMMA containing dispersed glass microballoons, (4) NM gelled with PMMA containing glass microballoons and steel particles, and (5) C-4 containing varying mass fractions of glass or steel particles. Flyer velocity was measured via photonic Doppler velocimetry, and the results were analysed using a Gurney model augmented to include the influence of the diluent. Reduction in accelerating ability with increasing dilution for the amine-sensitized NM, gelled NM, and C-4 was measured experimentally. Variation of flyer terminal velocity with the ratio of flyer mass to charge mass (M/C) was measured for both grazing and normally incident detonations in gelled NM containing 10% microballoons by mass and for steel beads saturated with amine-sensitized NM. Finally, flyer velocity was measured in grazing versus normal loading for a number of explosive admixtures. The augmented Gurney model predicted the effect of dilution on accelerating ability and the scaling of flyer velocity with M/C for mixtures containing low-density diluents. The augmented Gurney model failed to predict the scaling of flyer velocity with M/C for mixtures heavily loaded with dense diluents. In all cases, normally incident detonations propelled flyers to higher velocity than the equivalent grazing detonations because of material velocity imparted by the incident shock wave and momentum/energy transfer from the slapper used to uniformly initiate the charge.

  3. The propulsive capability of explosives heavily loaded with inert materials

    NASA Astrophysics Data System (ADS)

    Loiseau, J.; Georges, W.; Frost, D. L.; Higgins, A. J.

    2018-07-01

    The effect of inert dilution on the accelerating ability of high explosives for both grazing and normal detonations was studied. The explosives considered were: (1) neat, amine-sensitized nitromethane (NM), (2) packed beds of glass, steel, or tungsten particles saturated with amine-sensitized NM, (3) NM gelled with PMMA containing dispersed glass microballoons, (4) NM gelled with PMMA containing glass microballoons and steel particles, and (5) C-4 containing varying mass fractions of glass or steel particles. Flyer velocity was measured via photonic Doppler velocimetry, and the results were analysed using a Gurney model augmented to include the influence of the diluent. Reduction in accelerating ability with increasing dilution for the amine-sensitized NM, gelled NM, and C-4 was measured experimentally. Variation of flyer terminal velocity with the ratio of flyer mass to charge mass ( M/ C) was measured for both grazing and normally incident detonations in gelled NM containing 10% microballoons by mass and for steel beads saturated with amine-sensitized NM. Finally, flyer velocity was measured in grazing versus normal loading for a number of explosive admixtures. The augmented Gurney model predicted the effect of dilution on accelerating ability and the scaling of flyer velocity with M/ C for mixtures containing low-density diluents. The augmented Gurney model failed to predict the scaling of flyer velocity with M/ C for mixtures heavily loaded with dense diluents. In all cases, normally incident detonations propelled flyers to higher velocity than the equivalent grazing detonations because of material velocity imparted by the incident shock wave and momentum/energy transfer from the slapper used to uniformly initiate the charge.

  4. Explosive-driven, high speed, arcless switch

    DOEpatents

    Skogmo, P.J.; Tucker, T.J.

    1986-05-02

    An explosive-actuated, fast-acting arcless switch contains a highly conductive foil to carry high currents positioned adjacent a dielectric surface within a casing. At one side of the foil opposite the dielectric surface is an explosive which, when detonated, drives the conductive foil against the dielectric surface. A pattern of grooves in the dielectric surface ruptures the foil to establish a rupture path having a pattern corresponding to the pattern of the grooves. The impedance of the ruptured foil is greater than that of the original foil to divert high current to a load. Planar and cylindrical embodiments of the switch are disclosed.

  5. Explosive-driven, high speed, arcless switch

    DOEpatents

    Skogmo, Phillip J.; Tucker, Tillman J.

    1987-01-01

    An explosive-actuated, fast-acting arcless switch contains a highly conductive foil to carry high currents positioned adjacent a dielectric surface within a casing. At one side of the foil opposite the dielectric surface is an explosive which, when detonated, drives the conductive foil against the dielectric surface. A pattern of grooves in the dielectric surface ruptures the foil to establish a rupture path having a pattern corresponding to the pattern of the grooves. The impedance of the ruptured foil is greater than that of the original foil to divert high current to a load. Planar and cylindrical embodiments of the switch are disclosed.

  6. Synthesis, Chemical and Physical Characterization of TKX-50

    NASA Astrophysics Data System (ADS)

    Klapoetke, Thomas

    2015-06-01

    TKX-50 (bis(hydroxylammonium) 5,5'-bis(tetrazolate-1 N-oxide)) is one of the most promising ionic salts as a possible replacement for RDX. The thermal behavior of TKX-50 (bis(hydroxylammonium) 5,5'-(tetrazolate-1 N-oxide)) and the kinetics of its thermal decomposition were studied using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The calculated results of the detonation parameters and equations of state for the detonation products (EOS DP) of explosive materials TKX-50 and MAD-X1 and several of their derivatives were obtained using the computer program EXPLO5 V.6.01. These values were also calculated for standard explosive materials which are commonly used such as TNT, PETN, RDX, HMX as well as for the more powerful explosive material CL-20 to allow comparisons to be made. The determination of the detonation parameters and EOS DP was conducted both for explosive materials having the maximum crystalline density and for porous right up to 50% in volume materials. The influence of the content of plastic binder polyisobutylene used (up to 20% in volume) on all of the investigated properties was also examined. Calculated results on shock wave loading of different inert barriers in a wide range of their dynamic properties under explosion on their surfaces of concrete size charges of different explosive materials in various initial states were obtained with the use of the one-dimensional computer hydrocode EP. Barriers due to materials such as polystyrene, textolite, magnesium, aluminum, zinc, copper, tantalum or tungsten were examined (Fig. 1). Initial values of pressure and other parameters of loading on the interface explosive-barrier were determined in the process of conducted calculations. Phenomena of propagation and attenuation of shock waves in barrier materials were considered too for all possible situations. From these calculations, an essentially complete overview of the explosion properties and characteristics of shock wave action onto barriers was obtained for several new and also for several standard explosive materials as a comparison. Work done in collaboration with Golubev/Fischer/Stierstorfer/Bohanek/Dobrilovic.

  7. Explosion containment device

    DOEpatents

    Benedick, William B.; Daniel, Charles J.

    1977-01-01

    The disclosure relates to an explosives storage container for absorbing and containing the blast, fragments and detonation products from a possible detonation of a contained explosive. The container comprises a layer of distended material having sufficient thickness to convert a portion of the kinetic energy of the explosion into thermal energy therein. A continuous wall of steel sufficiently thick to absorb most of the remaining kinetic energy by stretching and expanding, thereby reducing the momentum of detonation products and high velocity fragments, surrounds the layer of distended material. A crushable layer surrounds the continuous steel wall and accommodates the stretching and expanding thereof, transmitting a moderate load to the outer enclosure. These layers reduce the forces of the explosion and the momentum of the products thereof to zero. The outer enclosure comprises a continuous pressure wall enclosing all of the layers. In one embodiment, detonation of the contained explosive causes the outer enclosure to expand which indicates to a visual observer that a detonation has occurred.

  8. Shock Initiated Reactions of Reactive Multiphase Blast Explosives

    NASA Astrophysics Data System (ADS)

    Wilson, Dennis; Granier, John; Johnson, Richard; Littrell, Donald

    2015-06-01

    This paper describes a new class of reactive multiphase blast explosives (RMBX) and characterization of their blast characteristics. These RMBXs are non-ideal explosive compositions of perfluoropolyether (PFPE), nano aluminum, and a micron-size high-density reactive metal - Tantalum, Zirconium, or Zinc in mass loadings of 66 to 83 percent. Unlike high explosives, these PFPE-metal compositions release energy via a fast self-oxidized combustion wave (rather than a true self-sustaining detonation) that is shock dependent, and can be overdriven to control energy release rate. The term ``reactive multiphase blast'' refers to the post-dispersion blast behavior: multiphase in that there are a gas phase that imparts pressure and a solid (particulate) phase that imparts momentum; and reactive in that the hot metal particles react with atmospheric oxygen and the explosive gas products to give an extended pressure pulse. The RMBX formulations were tested in two spherical core-shell geometries - an RMBX shell exploded by a high explosive core, and an RMBX core imploded by a high explosive shell. The fireball and blast characteristics were compared to a C-4 baseline charge.

  9. A Combustion Model for the TWA 800 Center-Wing Fuel Tank Explosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baer, M.R.; Gross, R.J.

    1998-10-02

    In support of the National Transportation Safety Board investigation of the TWA Flight 800 accident, a combined experimental/computational effort was conducted that focused on quarter-scale testing and simulation of the fuel-air explosion in the Boeing 747 center wing fuel tank. This report summarizes the modeling approach used at Sandia National Laboratories. In this approach approximations are introduced that capture the essential physics associated with turbulent flame propagation in multiple compartment fuel tanks. This model efficiently defines the pressure loading conditions during a jet-fuel air explosion in a fuel tank confinement. Modeling calculations compare favorably with a variety of experimental quarter-scalemore » tests conducted in rigid confinement. The modeling describes well the overpressure history in several geometry configurations. Upon demonstrating a reasonable comparison to experimental observations, a parametric study of eight possible ignition sources is then discussed. Model calculations demonstrate that different loading conditions arise as the location of the ignition event is varied. By comparing the inferred damage and calculated impulses to that seen in the recovered tank, it maybe possible to reduce the number of likely sources. A possible extension of this work to better define tank damage includes coupling the combustion model as a pressure loading routine for structural failure analysis.« less

  10. EDS V25 containment vessel explosive qualification test report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudolphi, John Joseph

    2012-04-01

    The V25 containment vessel was procured by the Project Manager, Non-Stockpile Chemical Materiel (PMNSCM) as a replacement vessel for use on the P2 Explosive Destruction Systems. It is the first EDS vessel to be fabricated under Code Case 2564 of the ASME Boiler and Pressure Vessel Code, which provides rules for the design of impulsively loaded vessels. The explosive rating for the vessel based on the Code Case is nine (9) pounds TNT-equivalent for up to 637 detonations. This limit is an increase from the 4.8 pounds TNT-equivalency rating for previous vessels. This report describes the explosive qualification tests thatmore » were performed in the vessel as part of the process for qualifying the vessel for explosive use. The tests consisted of a 11.25 pound TNT equivalent bare charge detonation followed by a 9 pound TNT equivalent detonation.« less

  11. Explosive vessel for coupling dynamic experiments to the X-ray beam at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Owens, Charles; Sanchez, Nathaniel; Sorensen, Christian; Jensen, Brian

    2017-06-01

    Recent experiments at the Advanced Photon Source have been successful in coupling gun systems to the synchrotron to take advantage of the advanced X-ray diagnostics available including X-ray diffraction and X-ray phase contrast imaging (PCI) to examine matter at extreme conditions. There are many experiments that require explosive loading capabilities, e.g. detonator and initiator dynamics, small angle X-ray scattering (SAXS), ejecta formation, and explosively driven flyer experiments. The current work highlights a new explosive vessel that was designed specifically for use at a synchrotron facility with requirements to confine up to 15 grams of explosives (TNT equivalent), couple the vessel to the X-ray beam line, and reliably position samples remotely. A description of the system and capability will be provided along with the results from qualification testing to bring the system into service (LA-UR-17-21381).

  12. Computer simulation of metal wire explosion under high rate heating

    NASA Astrophysics Data System (ADS)

    Zolnikov, K. P.; Kryzhevich, D. S.; Korchuganov, A. V.

    2017-05-01

    Synchronous electric explosion of metal wires and synthesis of bicomponent nanoparticles were investigated on the base of molecular dynamics method. Copper and nickel nanosized crystallites of cylindrical shape were chosen as conductors for explosion. The embedded atom approximation was used for calculation of the interatomic interactions. The agglomeration process after explosion metal wires was the main mechanism for particle synthesis. The distribution of chemical elements was non-uniform over the cross section of the bicomponent particles. The copper concentration in the surface region was higher than in the bulk of the synthesized particle. By varying the loading parameters (heating temperature, the distance between the wires) one can control the size and internal structure of the synthesized bicomponent nanoparticles. The obtained results showed that the method of molecular dynamics can be effectively used to determine the optimal technological mode of nanoparticle synthesis on the base of electric explosion of metal wires.

  13. Strength of the phase change materials on loading with the products of electric explosion of conductors

    NASA Astrophysics Data System (ADS)

    Savenkov, Georgiy; Morozov, Viktor; Kats, Victor

    2018-05-01

    Results of the experimentation on the destruction of the phase change materials (beeswax and paraffin) by the electric explosion of conductors are presented. The process of the explosion of copper and nickel titanium wires in both pure PCM and its mixture with nonosized additives of cuprous oxide is analyzed. The effect of this additive on the process of the expansion of the electric-discharge plasma during the electric explosion of conductors and on the strength of composite materials is demonstrated. The piezoprobe-based method of measurement of the radial pressure during samples destruction is developed. The experiments made it possible to determine the dimensions of the melting channel formed inside the samples during the explosion and the subsequent expansion of the electric-discharge plasma. The experiments are performed on the generator of short-term high-voltage pulses capable to shape the voltage of (10-24) kV.

  14. Numerical simulation of the fluid-structure interaction between air blast waves and soil structure

    NASA Astrophysics Data System (ADS)

    Umar, S.; Risby, M. S.; Albert, A. Luthfi; Norazman, M.; Ariffin, I.; Alias, Y. Muhamad

    2014-03-01

    Normally, an explosion threat on free field especially from high explosives is very dangerous due to the ground shocks generated that have high impulsive load. Nowadays, explosion threats do not only occur in the battlefield, but also in industries and urban areas. In industries such as oil and gas, explosion threats may occur on logistic transportation, maintenance, production, and distribution pipeline that are located underground to supply crude oil. Therefore, the appropriate blast resistances are a priority requirement that can be obtained through an assessment on the structural response, material strength and impact pattern of material due to ground shock. A highly impulsive load from ground shocks is a dynamic load due to its loading time which is faster than ground response time. Of late, almost all blast studies consider and analyze the ground shock in the fluid-structure interaction (FSI) because of its influence on the propagation and interaction of ground shock. Furthermore, analysis in the FSI integrates action of ground shock and reaction of ground on calculations of velocity, pressure and force. Therefore, this integration of the FSI has the capability to deliver the ground shock analysis on simulation to be closer to experimental investigation results. In this study, the FSI was implemented on AUTODYN computer code by using Euler-Godunov and the arbitrary Lagrangian-Eulerian (ALE). Euler-Godunov has the capability to deliver a structural computation on a 3D analysis, while ALE delivers an arbitrary calculation that is appropriate for a FSI analysis. In addition, ALE scheme delivers fine approach on little deformation analysis with an arbitrary motion, while the Euler-Godunov scheme delivers fine approach on a large deformation analysis. An integrated scheme based on Euler-Godunov and the arbitrary Lagrangian-Eulerian allows us to analyze the blast propagation waves and structural interaction simultaneously.

  15. Explosives Removal from Munitions Wastewaters

    DTIC Science & Technology

    1975-01-01

    activated carbon columns. Waste water, for the study was drawn as needed from the effluent of the i diatomaceous earth filters and stored in an 800-gallon...explosive Laterials, such as DNT and nitrocresols, from waste streams. The loaded adsorbent can be regenerated with solvent. To minimize operating costs...most effective is fixed-bed adsorption followir.nI clarification and filtration to remove suspended j solids. Activated carbon adsorbent is used at a

  16. Dynamic loading and release in Johnson Space Center Lunar regolith simulant

    NASA Astrophysics Data System (ADS)

    Plesko, C. S.; Jensen, B. J.; Wescott, B. L.; Skinner McKee, T. E.

    2011-10-01

    The behavior of regolith under dynamic loading is important for the study of planetary evolution, impact cratering, and other topics. Here we present the initial results of explosively driven flier plate experiments and numerical models of compaction and release in samples of the JSC-1A Lunar regolith simulant.

  17. Hot spot initiation and chemical reaction in shocked polymeric bonded explosives

    NASA Astrophysics Data System (ADS)

    An, Qi; Zybin, Sergey; Jaramillo-Botero, Andres; Goddard, William; Materials; Process Simulation Center, Caltech Team

    2011-06-01

    A polymer bonded explosive (PBX) model based on PBXN-106 is studied via molecular dynamics (MD) simulations using reactive force field (ReaxFF) under shock loading conditions. Hotspot is observed when shock waves pass through the non-planar interface of explosives and elastomers. Adiabatic shear localization is proposed as the main mechanism of hotspot ignition in PBX for high velocity impact. Our simulation also shows that the coupling of shear localization and chemical reactions at hotspot region play important rules at stress relaxtion for explosives. The phenomenon that shock waves are obsorbed by elastomers is also observed in the MD simulations. This research received supports from ARO (W911NF-05-1-0345; W911NF-08-1-0124), ONR (N00014-05-1-0778), and Los Alamos National Laboratory (LANL).

  18. Initiation disruptor systems and methods of initiation disruption

    DOEpatents

    Baum, Dennis W

    2014-09-23

    A system that may be used as an initiation disruption system (IDS) according to one embodiment includes an explosive charge; a plurality of particles in a layer at least partially surrounding the explosive charge; and a fire suppressant adjacent the plurality of particles. A method for disabling an object according to one embodiment includes placing the system as recited above near an object; and causing the explosive charge to initiate, thereby applying mechanical loading to the object such that the object becomes disabled. Additional systems and methods are also presented. A device according to another embodiment includes a plurality of particles bound by a binder thereby defining a sidewall having an interior for receiving an explosive; and a fire suppressant adjacent the plurality of particles and binder. Additional systems and methods are also presented.

  19. Explosive-driven, high speed, arcless switch

    DOEpatents

    Skogmo, P.J.; Tucker, T.J.

    1987-07-14

    An explosive-actuated, fast-acting arcless switch contains a highly conductive foil to carry high currents positioned adjacent a dielectric surface within a casing. At one side of the foil opposite the dielectric surface is an explosive which, when detonated, drives the conductive foil against the dielectric surface. A pattern of grooves in the dielectric surface ruptures the foil to establish a rupture path having a pattern corresponding to the pattern of the grooves. The impedance of the ruptured foil is greater than that of the original foil to divert high current to a load. Planar and cylindrical embodiments of the switch are disclosed. 7 figs.

  20. Optimization of reinforced concrete slabs

    NASA Technical Reports Server (NTRS)

    Ferritto, J. M.

    1979-01-01

    Reinforced concrete cells composed of concrete slabs and used to limit the effects of accidental explosions during hazardous explosives operations are analyzed. An automated design procedure which considers the dynamic nonlinear behavior of the reinforced concrete of arbitrary geometrical and structural configuration subjected to dynamic pressure loading is discussed. The optimum design of the slab is examined using an interior penalty function. The optimization procedure is presented and the results are discussed and compared with finite element analysis.

  1. Explosive acceleration of plates using nonconventional explosives heavily loaded with inert and reactive materials

    NASA Astrophysics Data System (ADS)

    Loiseau, Jason; Petel, Oren; Huneault, Justin; Serge, Matthew; Frost, David; Higgins, Andrew

    2013-06-01

    The detonation behavior of high explosives containing dispersed quantities or packed beds of dense additives has been previously investigated with the observation that such systems depart from the ``gamma law'' behavior typical of homogeneous explosives due to momentum transfer and thermalization between particles and detonation products. However, the influence of this non-ideal detonation behavior on the divergence speed of plates has been far less rigorously studied and existing literature suggests that the effect of dense additives cannot be explained solely through the straightforward application of the Gurney method with energy and density averaging of the explosive. In the current study, the acceleration history and terminal velocity of aluminum flyers launched by packed beds of granular material saturated by amine-sensitized nitromethane is reported. Two experimental configurations are used to study acceleration either by a purely grazing detonation in a finite thickness slab of explosive or by a normal detonation from an effectively infinite thickness of explosive. Flyer acceleration and velocity is measured via Photonic Doppler Velocimetry. Packed beds of plastic, aluminum, glass, iron, and bismuth are considered and the data is compared to Gurney velocity predictions.

  2. Dynamic Fracture Behavior of Plastic-Bonded Explosives

    NASA Astrophysics Data System (ADS)

    Fu, Hua; Li, Jun-Ling; Tan, Duo-Wang; Ifp, Caep Team

    2011-06-01

    Plastic-Bonded Explosives (PBX) are used as important energetic materials in nuclear or conventional weapons. Arms Warhead in the service process and the ballistic phase, may experience complex process such as long pulse and higher loading, compresson, tension and reciprocating compression - tension, friction with the projectile shell, which would lead to explosive deformation and fracture.And the dynamic deformation and fracture behavior of PBX subsequently affect reaction characteristics and initiation mechanism in explosives, then having influence on explosives safety. The dynamic fracure behavior of PBX are generally complex and not well studied or understood. In this paper, the dynamic fracture of explosives are conducted using a Kolsky bar. The Brazilian test, also known as a indirect tensile test or splitting test, is chosen as the test method. Tensile strength under different strain rates are obtained using quartz crystal embedded in rod end. The dynamic deformation and fracture process are captured in real-time by high-speed digital camera, and the displacement and strain fields distribution before specimen fracture are obtained by digital correlation method. Considering the non-uniform microstructure of explosives,the dynamic fracture behavior of explosive are simulated by discrete element method, the simulation results can reproduce the deformation and fracture process in Brazilian test using a maximum tensile strain criterion.

  3. Shock Equation of State of Multi-Phase Epoxy-Based Composite (Al-MnO2-Epoxy)

    DTIC Science & Technology

    2010-10-01

    single stage light gas gun , two...using three different loading techniques— single stage light gas gun , two stage light gas gun , and explosive loading—with multiple diagnostic...wave speed. B. Single stage gas gun loading experiments Four gas gun -driven equation of state experiments were conducted at NSWC-Indian Head using

  4. 23. BUILDING NO. 452, ORDNANCE FACILITY (BAG CHARGE FILLING PLANT), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. BUILDING NO. 452, ORDNANCE FACILITY (BAG CHARGE FILLING PLANT), INTERIOR, LOOKING SOUTH DOWN CENTRAL CORRIDOR. NOTE BINS IN WALLS ON EITHER SIDE OF CORRIDOR, USED FOR PASSING EXPLOSIVES AND LOADED ITEMS TO SIEVING ROOMS BEYOND WALLS. - Picatinny Arsenal, 400 Area, Gun Bag Loading District, State Route 15 near I-80, Dover, Morris County, NJ

  5. Acceleration of plates using non-conventional explosives heavily-loaded with inert materials

    NASA Astrophysics Data System (ADS)

    Loiseau, J.; Petel, O. E.; Huneault, J.; Serge, M.; Frost, D. L.; Higgins, A. J.

    2014-05-01

    The detonation behavior of high explosives containing quantities of dense additives has been previously investigated with the observation that such systems depart dramatically from the approximately "gamma law" behavior typical of conventional explosives due to momentum transfer and thermalization between particles and detonation products. However, the influence of this non-ideal detonation behavior on the divergence speed of plates has been less thoroughly studied and existing literature suggests that the effect of dense additives cannot be explained solely through the straightforward application of the Gurney method with energy and density averaging of the explosive. In the current study, the acceleration history and terminal velocity of aluminum flyers launched by packed beds of granular material saturated by amine-sensitized nitromethane is reported. It was observed that terminal flyer velocity scales primarily with the ratio of flyer mass to mass of the explosive component; a fundamental feature of the Gurney method. Velocity decrement from the addition of particles was only 20%-30% compared to the resulting velocity if propelled by an equivalent quantity of neat explosive.

  6. In-Situ X-ray Tomography Observation of Structure Evolution in 1,3,5-Triamino-2,4,6-Trinitrobenzene Based Polymer Bonded Explosive (TATB-PBX) under Thermo-Mechanical Loading.

    PubMed

    Yuan, Zeng-Nian; Chen, Hua; Li, Jing-Ming; Dai, Bin; Zhang, Wei-Bin

    2018-05-04

    In order to study the fracture behavior and structure evolution of 1,3,5-Triamino-2,4,6-Trinitrobenzene (TATB)-based polymer bonded explosive in thermal-mechanical loading, in-situ studies were performed on X-ray computed tomography system using quasi-static Brazilian test. The experiment temperature was set from −20 °C to 70 °C. Three-dimensional morphology of cracks at different temperatures was obtained through digital image process. The various fracture modes were compared by scanning electron microscopy. Fracture degree and complexity were defined to quantitatively characterize the different types of fractures. Fractal dimension was used to characterize the roughness of the crack surface. The displacement field of particles in polymer bonded explosive (PBX) was used to analyze the interior structure evolution during the process of thermal-mechanical loading. It was found that the brittleness of PBX reduced, the fracture got more tortuous, and the crack surface got smoother as the temperature rose. At lower temperatures, especially lower than glass transition temperature of binders, there were slipping and shear among particles, and particles tended to displace and disperse; while at higher temperatures, especially above the glass transition temperature of binders, there was reorganization of particles and particles tended to merge, disperse, and reduce sizes, rather than displacing.

  7. The High-Strain Rate Loading of Structural Biological Materials

    NASA Astrophysics Data System (ADS)

    Proud, W. G.; Nguyen, T.-T. N.; Bo, C.; Butler, B. J.; Boddy, R. L.; Williams, A.; Masouros, S.; Brown, K. A.

    2015-10-01

    The human body can be subjected to violent acceleration as a result of explosion caused by military ordinance or accident. Blast waves cause injury and blunt trauma can be produced by violent impact of objects against the human body. The long-term clinical manifestations of blast injury can be significantly different in nature and extent to those suffering less aggressive insult. Similarly, the damage seen in lower limbs from those injured in explosion incidents is in general more severe than those falling from height. These phenomena increase the need for knowledge of the short- and long-term effect of transient mechanical loading to the biological structures of the human body. This paper gives an overview of some of the results of collaborative investigation into blast injury. The requirement for time-resolved data, appropriate mechanical modeling, materials characterization and biological effects is presented. The use of a range of loading platforms, universal testing machines, drop weights, Hopkinson bars, and bespoke traumatic injury simulators are given.

  8. V27 Test Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stofleth, Jerome H.; Tribble, Megan Kimberly; Crocker, Robert W.

    2017-05-01

    The V27 containment vessel was procured by the US Army Recovered Chemical Material Directorate ( RCMD ) as a replacement vessel for use on the P2 Explosive Destruction Systems. It is the third EDS vessel to be fabricated under Code Case 2564 of the ASME Boiler and Pressure Vessel Code, which provides rules for the design of impulsively loaded vessels. The explosive rating for the vessel, based on the Code Case, is nine (9) pounds TNT - equivalent for up to 637 detonations . This report documents the results of explosive tests that were done on the vessel at Sandiamore » National Laboratories in Albuquerque New Mexico to qualify the vessel for explosive use . The primary qualification test consisted of si x 1.5 pound charges of Composition C - 4 (equivalent to 11.25 pounds TNT) distributed around the vessel in accordance with the User Design Specification. Four subsequent tests using less explosive evaluated the effects of slight variations in orientation of the charges . All vessel acceptance criteria were met.« less

  9. Size effect and cylinder test on several commercial explosives

    NASA Astrophysics Data System (ADS)

    Souers, P. Clark; Lauderbach, Lisa; Moua, Kou; Garza, Raul

    2012-03-01

    Some size (diameter) effect and the Cylinder test results for Kinepak (ammonium nitrate/nitromethane), Semtex 1, Semtex H and urea nitrate are presented. Cylinder test data appears normal despite faster sound speeds in the copper wall. Most explosives come to steady state in the Cylinder test as expected, but Kinepak shows a steadily increasing wall velocity with distance down the cylinder. Some data on powder densities as a function of loading procedure are also given.

  10. Method of rubblization for in-situ oil shale processing

    NASA Technical Reports Server (NTRS)

    Yang, Lien C. (Inventor)

    1985-01-01

    A method that produces a uniformly rubblized oil shale bed of desirable porosity for underground, in-situ heat extraction of oil. Rubblization is the generation of rubble of various sized fragments. The method uses explosive loadings lying at different levels in adjacent holes and detonation of the explosives at different levels in sequence to achieve the fracturing and the subsequent expansion of the fractured oil shale into excavated rooms both above and below the hole pattern.

  11. Dynamic Fracture Simulations of Explosively Loaded Cylinders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arthur, Carly W.; Goto, D. M.

    2015-11-30

    This report documents the modeling results of high explosive experiments investigating dynamic fracture of steel (AerMet® 100 alloy) cylinders. The experiments were conducted at Lawrence Livermore National Laboratory (LLNL) during 2007 to 2008 [10]. A principal objective of this study was to gain an understanding of dynamic material failure through the analysis of hydrodynamic computer code simulations. Two-dimensional and three-dimensional computational cylinder models were analyzed using the ALE3D multi-physics computer code.

  12. Advanced emergency openings for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Bement, L. J.; Schimmel, M. L.

    1985-01-01

    Explosively actuated openings in composite panels are proposed to enhance passenger survivability within commercial aircraft by providing improvements in emergency openings, fuselage venting, and fuel dump. The concept is to embed a tiny, highly stable explosive cord in the periphery of a load-carrying composite panel; on initiation of the cord, the panel is fractured to create a well-defined opening. The panel would be installed in the sides of the fuselage for passenger egress, in the top of the fuselage for smoke venting, and in the bottoms of the fuel cells for fuel dump. Described are the concerns with the use of explosive systems, safety improvements, advantages, experimental results, and recommended approach to gain acceptance and develop this concept.

  13. The Economics of Applying Suppressive Shielding to the M483A1 Improved Conventional Munition Loading, Assembling, and Packing Facility

    DTIC Science & Technology

    1977-01-01

    trays are placed on a cart (206-pound net explosive). These carts are moved by driverless tractor to an 8-hour hold in a nearby building while quality...by driverless tractor to a 40-hour hold for quality assurance inspection. After inspection, the grenades are returned to the loading, assembling, and

  14. Damage Assessment of Two-Way Bending RC Slabs Subjected to Blast Loadings

    PubMed Central

    Jia, Haokai; Wu, Guiying

    2014-01-01

    Terrorist attacks on vulnerable structures and their individual structural members may cause considerable damage and loss of life. However, the research work on response and damage analysis of single structural components, for example, a slab to blast loadings, is limited in the literature and this is necessary for assessing its vulnerability. This study investigates the blast response and damage assessment of a two-way bending reinforced concrete (RC) slab subjected to blast loadings. Numerical modeling and analysis are carried out using the commercial finite element code LS-DYNA 971. A damage assessment criterion for the two-way bending RC slab is defined based on the original and residual uniformly distributed load-carrying capacity. Parametric studies are carried out to investigate the effects of explosive weight and explosive position on the damage mode of the two-way RC slab. Some design parameters, such as the boundary conditions and the negative reinforcement steel bar length, are also discussed. The illustrated results show that the proposed criterion can apply to all failure modes. The damage assessment results are more accurate than the ones due to the conventional deformation criterion. PMID:25121134

  15. Full-scale testing of leakage of blast waves inside a partially vented room exposed to external air blast loading

    NASA Astrophysics Data System (ADS)

    Codina, R.; Ambrosini, D.

    2018-03-01

    For the last few decades, the effects of blast loading on structures have been studied by many researchers around the world. Explosions can be caused by events such as industrial accidents, military conflicts or terrorist attacks. Urban centers have been prone to various threats including car bombs, suicide attacks, and improvised explosive devices. Partially vented constructions subjected to external blast loading represent an important topic in protective engineering. The assessment of blast survivability inside structures and the development of design provisions with respect to internal elements require the study of the propagation and leakage of blast waves inside buildings. In this paper, full-scale tests are performed to study the effects of the leakage of blast waves inside a partially vented room that is subjected to different external blast loadings. The results obtained may be useful for proving the validity of different methods of calculation, both empirical and numerical. Moreover, the experimental results are compared with those computed using the empirical curves of the US Defense report/manual UFC 3-340. Finally, results of the dynamic response of the front masonry wall are presented in terms of accelerations and an iso-damage diagram.

  16. Comparison between a typical and a simplified model for blast load-induced structural response

    NASA Astrophysics Data System (ADS)

    Abd-Elhamed, A.; Mahmoud, S.

    2017-02-01

    As explosive blasts continue to cause severe damage as well as victims in both civil and military environments. There is a bad need for understanding the behavior of structural elements to such extremely short duration dynamic loads where it is of great concern nowadays. Due to the complexity of the typical blast pressure profile model and in order to reduce the modelling and computational efforts, the simplified triangle model for blast loads profile is used to analyze structural response. This simplified model considers only the positive phase and ignores the suction phase which characterizes the typical one in simulating blast loads. The closed from solution for the equation of motion under blast load as a forcing term modelled either typical or simplified models has been derived. The considered herein two approaches have been compared using the obtained results from simulation response analysis of a building structure under an applied blast load. The computed error in simulating response using the simplified model with respect to the typical one has been computed. In general, both simplified and typical models can perform the dynamic blast-load induced response of building structures. However, the simplified one shows a remarkably different response behavior as compared to the typical one despite its simplicity and the use of only positive phase for simulating the explosive loads. The prediction of the dynamic system responses using the simplified model is not satisfactory due to the obtained larger errors as compared to the system responses obtained using the typical one.

  17. Wave Propagation and Dynamic Load Transfer due to Explosive Loading in Heterogenous Granular Media with Microstructure

    DTIC Science & Technology

    1992-09-30

    acknowledge the support of the Air Force Office of Scientific Research , Boiling Air Force Base, Washington D.C. under grant No. F49620-89-C-0091 and Major... applied to the present research program by constructing model granular assemblies of birefringent disks which were dynamically loaded by exploding a...Kirtland Air Force Base, on March 26, 1991. He gave us a seminar dealing with his research on micro- geomechanics , and we i presented and discussed several

  18. Remedial action suitability for the Cornhusker Army Ammunition Plant site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nonavinakere, S.; Rappa, P. III

    1995-12-31

    Numerous Department of Defense (DOD) sites across the nation are contaminated with explosive wastes due to munitions production during World War II, Korean Conflict and Vietnam Conflict. Production activities included explosives manufacturing, loading, packing, assembling, machining, casting and curing. Contaminants often present at these sites include TNT, RDX, HMX, Tetryl 2,4-DNT, 2,6-DNT, 1,3-DNB, 1,3,5-TNB and nitrobenzene. The Cornhusker Army Ammunition Plant (CAAP) is one such DOD site that has been determined to be contaminated with explosives. The CAAP is located approximately 2 miles west of the City of Grand Island in Hall County, Nebraska. The plant produced artillery, bombs, boosters,more » supplementary charges and various other experimental explosives. The purpose of this paper is to provide an overview of the site background, review of the remedial alternatives evaluation process and rationale behind the selection of present remedial action.« less

  19. Method for loading explosive laterally from a borehole

    DOEpatents

    Ricketts, Thomas E.

    1981-01-01

    There is provided a method for forming an in situ oil shale retort in a subterranean formation containing oil shale. At least one void is excavated in the formation, leaving zones of unfragmented formation adjacent the void. An array of main blastholes is formed in the zone of unfragmented formation and at least one explosive charge which is shaped for forming a high velocity gas jet is placed into a main blasthole with the axis of the gas jet extending transverse to the blasthole. The shaped charge is detonated for forming an auxiliary blasthole in the unfragmented formation adjacent a side wall of the main blasthole. The auxiliary blasthole extends laterally away from the main blasthole. Explosive is placed into the main blasthole and into the auxiliary blasthole and is detonated for explosively expanding formation towards the free face for forming a fragmented permeable mass of formation particles in the in situ oil shale retort.

  20. High pressure-resistant nonincendive emulsion explosive

    DOEpatents

    Ruhe, Thomas C.; Rao, Pilaka P.

    1994-01-01

    An improved emulsion explosive composition including hollow microspheres/bulking agents having high density and high strength. The hollow microspheres/bulking agents have true particle densities of about 0.2 grams per cubic centimeter or greater and include glass, siliceous, ceramic and synthetic resin microspheres, expanded minerals, and mixtures thereof. The preferred weight percentage of hollow microspheres/bulking agents in the composition ranges from 3.0 to 10.0 A chlorinated paraffin oil, also present in the improved emulsion explosive composition, imparts a higher film strength to the oil phase in the emulsion. The emulsion is rendered nonincendive by the production of sodium chloride in situ via the decomposition of sodium nitrate, a chlorinated paraffin oil, and sodium perchlorate. The air-gap sensitivity is improved by the in situ formation of monomethylamine perchlorate from dissolved monomethylamine nitrate and sodium perchlorate. The emulsion explosive composition can withstand static pressures to 139 bars and dynamic pressure loads on the order of 567 bars.

  1. Minimisation of the explosion shock wave load onto the occupants inside the vehicle during trinitrotoluene charge blast.

    PubMed

    Krzystała, Edyta; Mężyk, Arkadiusz; Kciuk, Sławomir

    2016-01-01

    The aim of this study was to elaborate identification method of crew overload as a result of trinitrotoluene charge explosion under the military wheeled vehicle. During the study, an experimental military ground research was carried out. The aim of this research was to verify the mine blast resistance of the prototype wheeled vehicle according to STANG 4569 as well as the anti-explosive seat. Within the work, the original methodology was elaborated along with a prototype research statement. This article presents some results of the experimental research, thanks to which there is a possibility to estimate the crew's lives being endangered in an explosion through the measurement of acceleration as well as the pressure on the chest, head and internal organs. On the basis of our acceleration results, both effectiveness and infallibility of crew protective elements along with a blast mitigation seat were verified.

  2. Wide Area Recovery and Resiliency Program (WARRP) Knowledge Enhancement Events: Damage Assessment Building Abandonment After Action Report

    DTIC Science & Technology

    2012-04-17

    nitrate / Fuel oil (ANFO). The explosive and the shielded CsCl sources are packaged into bombs and loaded onto a truck. The total explosive yield in...Transportation Eric Jacobs State of Colorado Laura Johnston Dewberry Carl Miller Colorado Springs OEM John Miller American Red Cross Matthew...the health effects of the contamination will be. Scenario Terrorist obtain approximately 2,300 curies of 137 Cs (CsCl), and 1.5 tons of Ammonium

  3. Validation of a Simulation Process for Assessing the Response of a Vehicle and Its Occupants to an Explosive Threat

    DTIC Science & Technology

    2010-01-01

    gross vehicle response; and the effects of blast mitigation material, restraint system, and seat design to the loads developed on the members of an...occupant. A Blast Event Simulation sysTem (BEST) has been developed for facilitating the easy use of the LS- DYNA solvers for conducting a...et al, 1999] for modeling blast events. In this paper the Eulerian solver of LS- DYNA is employed for simulating the soil – explosive – air

  4. Maintenance Facilities for Ammunition, Explosives, and Toxics. Design Manual 28.3.

    DTIC Science & Technology

    1981-11-01

    LOADING DOCK RAMP PROTECTION 28.3-2 8. FIRE PROTECTION 28.3-2 9. SECURITY 28.3-2 10. SAFETY 28.3-2 Section 2. GENERAL AMMUNITION MAINTENANCE SHOPS 28.3...protection in accordance with Section 3 1910.23c, Occupatioual Safety and Health Act Standards Manual. 5 8. FIRE PROTECTION. Fire protection for all...Volume 1, and Fire Protection Engineering, NAVFAC DM-8. 9. SECURITY. Maintenance facilities for ammunition, explosives, and I toxics shall be located so

  5. Finite Element Analysis of M15 and M19 Mines Under Wheeled Vehicle Load

    DTIC Science & Technology

    2008-03-01

    the plate statically. An implicit finite element option in a code called LSDYNA was used to model the pressure generated in the explosive by the...figure 4 for the M19 mines. Maximum pressure in the explosive for each mine calculated by LSDYNA code shown for a variety of plate sizes and weights...Director U.S. Army TRADOC Analysis Center-WSMR ATTN: ATRC-WSS-R White Sands Missile Range, NM 88002 Chemical Propulsion Information Agency ATTN

  6. Shock Isolation Elements Testing for High Input Loadings. Volume III. Mechanical Shock Isolation Elements.

    DTIC Science & Technology

    SHOCK ABSORBERS ), (*GUIDED MISSILE SILOS, SHOCK ABSORBERS ), (*SPRINGS, (*SHOCK(MECHANICS), REDUCTION), TORSION BARS, ELASTOMERS, DAMPING, EQUATIONS OF MOTION, MODEL TESTS, TEST METHODS, NUCLEAR EXPLOSIONS, HARDENING.

  7. The contribution of volume, technique, and load to single-repetition and total-repetition kinematics and kinetics in response to three loading schemes.

    PubMed

    Crewther, Blair T; Cronin, John; Keogh, Justin W L

    2008-11-01

    This study examined the effect of volume, technique, and load upon single-repetition and total-repetition kinematics and kinetics during three loading schemes. Eleven recreationally trained males each performed a power (8 sets of 6 repetitions at 45% of one-repetition maximum [1RM], 3-minute rest periods, explosive and ballistic movements), hypertrophy (10 sets of 10 repetitions at 75% 1RM, 2-minute rest periods, controlled movements), and maximal strength (6 sets of 4 repetitions at 88% 1RM, 4-minute rest periods, explosive intent) scheme involving squats. Examination of repetition data showed that load intensity (% 1RM) generally had a direct effect on forces, contraction times, impulses, and work (i.e., increasing with load), whereas power varied across loads (p < 0.001). However, total-repetition forces, contraction times, impulses, work, and power were all greater in the hypertrophy scheme (p < 0.001), because of the greater number of repetitions performed (volume) as well as lifting technique. No differences in total forces were found between the equal-volume power and maximal strength schemes, but the former did produce greater total contraction times, work, and power (p < 0.001), which may also be attributed to repetition and technique differences. Total impulses were the only variable greater in the maximal strength scheme (p < 0.001). Thus, the interaction of load, volume, and technique plays an important role in determining the mechanical responses (stimuli) afforded by these workouts. These findings may explain disparities cited within research, regarding the effectiveness of different loading strategies for hypertrophy, maximal strength, and power adaptation.

  8. Report on Transport and Loading of Explosives in the Femtosecond Tank, Room 1711A HEAF 00-010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, D L

    2002-04-25

    The current OSP associated with Room 1711A located in Building 191 (HEAF) sets a limit of 5 grams Net Explosive Weight (NEW) of explosives for the room. A question was raised as to the capability of that room to withstand the overpressure created by a detonation of 5 grams NEW of explosives. Calculations were inconclusive, but indicated the wallboard would not remain intact if there was a detonation of 5 grams NEW at a distance of eight feet from the wall. These calculations did not seem logical. To verify the hypothesis, a series of experiments were conducted in the 1more » Kilogram tank. The experiments consisted of exposing a pre-built double-sided wall with the same stud spacing and drywall thickness found in the walls of Room 1711A to various amounts of explosives to create expected overpressures. The objective of this test was to prove or disprove that the walls in room 1711A could withstand a detonation of 5 grams of high explosives and to determine if larger quantities of explosives could be worked on in the room while still providing the required level of protection for personnel outside the room. Testing has verified that not only can the walls withstand a 5 gram explosion, but a 10.75 gram explosion as well. A second test was conducted using 20 grams of explosive plus a detonator. Although the inner piece of drywall cracked, the outer piece of drywall maintained its integrity, thereby confining the effects of the anticipated overpressure to the room.« less

  9. 30 CFR 56.6902 - Excessive temperatures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... material shall not be loaded into hot areas, such as kilns or sprung holes. (b) When blasting sulfide ores where hot holes occur that may react with explosive material in blastholes, operators shall— (1) Measure...

  10. 30 CFR 56.6902 - Excessive temperatures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... material shall not be loaded into hot areas, such as kilns or sprung holes. (b) When blasting sulfide ores where hot holes occur that may react with explosive material in blastholes, operators shall— (1) Measure...

  11. 30 CFR 56.6902 - Excessive temperatures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... material shall not be loaded into hot areas, such as kilns or sprung holes. (b) When blasting sulfide ores where hot holes occur that may react with explosive material in blastholes, operators shall— (1) Measure...

  12. 30 CFR 56.6902 - Excessive temperatures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... material shall not be loaded into hot areas, such as kilns or sprung holes. (b) When blasting sulfide ores where hot holes occur that may react with explosive material in blastholes, operators shall— (1) Measure...

  13. 30 CFR 56.6902 - Excessive temperatures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... material shall not be loaded into hot areas, such as kilns or sprung holes. (b) When blasting sulfide ores where hot holes occur that may react with explosive material in blastholes, operators shall— (1) Measure...

  14. Reactivity and Fragmentation of Aluminum-based Structural Energetic Materials under Explosive Loading

    NASA Astrophysics Data System (ADS)

    Glumac, Nick; Clemenson, Michael; Guadarrama, Jose; Krier, Herman

    2015-06-01

    Aluminum-cased warheads have been observed to generate enhanced blast and target damage due to reactivity of the aluminum fragments with ambient air. This effect can more than double the output of a conventional warhead. The mechanism by which the aluminum reacts under these conditions remains poorly understood. We undertake a highly controlled experimental study to investigate the phenomenon of aluminum reaction under explosive loading. Experiments are conducted with Al 6061 casings and PBX-N9 explosive with a fixed charge to case mass ratio of 1:2. Results are compared to inert casings (steel), as well as to tests performed in nitrogen environments to isolate aerobic and anaerobic effects. Padded walls are used in some tests to isolate the effects of impact-induced reactions, which are found to be non-negligible. Finally, blast wave measurements and quasi-static pressure measurements are used to isolate the fraction of case reaction that is fast enough to drive the primary blast wave from the later time reaction that generates temperature and overpressure only in the late-time fireball. Fragment size distributions, including those in the micron-scale range, are collected and quantified.

  15. Coupling crystal plasticity and phase-field damage to simulate β-HMX-based polymer-bonded explosive under shock load

    NASA Astrophysics Data System (ADS)

    Grilli, Nicolo; Dandekar, Akshay; Koslowski, Marisol

    2017-06-01

    The development of high explosive materials requires constitutive models that are able to predict the influence of microstructure and loading conditions on shock sensitivity. In this work a model at the continuum-scale for the polymer-bonded explosive constituted of β-HMX particles embedded in a Sylgard matrix is developed. It includes a Murnaghan equation of state, a crystal plasticity model, based on power-law slip rate and hardening, and a phase field damage model based on crack regularization. The temperature increase due to chemical reactions is introduced by a heat source term, which is validated using results from reactive molecular dynamics simulations. An initial damage field representing pre-existing voids and cracks is used in the simulations to understand the effect of these inhomogeneities on the damage propagation and shock sensitivity. We show the predictions of the crystal plasticity model and the effect of the HMX crystal orientation on the shock initiation and on the dissipated plastic work and damage propagation. The simulation results are validated with ultra-fast dynamic transmission electron microscopy experiments and x-ray experiments carried out at Purdue University. Membership Pending.

  16. Contemporary training practices in elite British powerlifters: survey results from an international competition.

    PubMed

    Swinton, Paul A; Lloyd, Ray; Agouris, Ioannis; Stewart, Arthur

    2009-03-01

    The primary objective of this study was to investigate current powerlifting training methods in light of anecdotal evidence purporting increased similarity with the explosive training practices of weightlifters. The study also assessed the prevalence of contemporary training practices frequently recommended for powerlifters in the popular literature. A 20-item survey was distributed to 32 elite British powerlifters at an International competition. The subject group included multiple national, international, and commonwealth champions and record holders. Based on 2007 competition results, the average Wilks score of the group was 450.26 +/- 34.7. The response rate for the surveys was 88% (28 of 32). The survey was sectioned into 6 areas of inquiry: a) repetition speed, b) explosive training load, c) resistance materials used, d) adjunct power training methods, e) exercise selection, and f) training organization. The results demonstrate that the majority of powerlifters train with the intention to explosively lift maximal and submaximal loads (79 and 82%, respectively). Results revealed that 39% of the lifters regularly used elastic bands and that 57% incorporated chains in their training. Evidence for convergence of training practices between powerlifters and weightlifters was found when 69% of the subjects reported using the Olympic lifts or their derivatives as part of their powerlifting training. Collectively, the results demonstrate that previous notions of how powerlifters train are outdated. Contemporary powerlifters incorporate a variety of training practices that are focused on developing both explosive and maximal strength.

  17. 49 CFR 171.16 - Detailed hazardous materials incident reports.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., explosion or dangerous evolution of heat (i.e., an amount of heat sufficient to be dangerous to packaging or... seal, pump, compressor, or valve; or (iii) Connection or disconnection of loading or unloading lines...

  18. Evaluation of sulfur dioxide emissions from explosive volcanism: the 1982-1983 eruptions of Galunggung, Java, Indonesia

    USGS Publications Warehouse

    Bluth, G.J.S.; Casadevall, T.J.; Schnetzler, C.C.; Doiron, S.D.; Walter, Louis S.; Krueger, A.J.; Badruddin, M.

    1994-01-01

    Galunggung volcano, Java, awoke from a 63-year quiescence in April 1982, and erupted sporadically through January 1983. During its most violent period from April to October, the Cikasasah Volcano Observatory reported 32 large and 56 moderate to small eruptions. From April 5 through September 19 the Total Ozone Mapping Spectrometer (TOMS), carried on NASA's Nimbus-7 satellite, detected and measured 24 different sulfur dioxide clouds; an estimated 1730 kilotons (kt) of SO2 were outgassed by these explosive eruptions. The trajectories, and rapid dispersion rates, of the SO2 clouds were consistent with injection altitudes below the tropopause. An additional 300 kt of SO2 were estimated to have come from 64 smaller explosive eruptions, based on the detection limit of the TOMS instrument. For the first time, an extended period of volcanic activity was monitored by remote sensing techniques which enabled observations of both the entire SO2 clouds produced by large explosive eruptions (using TOMS), and the relatively lower levels of SO2 emissions during non-explosive outgassing (using the Correlation Spectrometer, or COSPEC). Based on COSPEC measurements from August 1982 to January 1983, and on the relationship between explosive and non-explosive degassing, approximately 400 kt of SO2 were emitted during non-explosive activity. The total sulfur dioxide outgassed from Galunggung volcano from April 1982 to January 1983 is calculated to be 2500 kt (?? 30%) from both explosive and non-explosive activity. While Galunggung added large quantities of sulfur dioxide to the atmosphere, its sporadic emissions occurred in relatively small events distributed over several months, and reached relatively low altitudes, and are unlikely to have significantly affected aerosol loading of the stratosphere in 1982 by volcanic activity. ?? 1994.

  19. Structures to Resist the Effects of Accidental Explosions. Volume 3. Principles of Dynamic Analysis

    DTIC Science & Technology

    1984-06-01

    multi-degree-of-freedom systems) is presented. A step-by-step numerical integration of an element’s motion under dynamic loads using the...structural arrangements; providing closures, and preventing damage to interior portions of structures due to structual motion , shock, and fragment...an element’s motion under dynamic loads utilizing the Acceleration-Impulse- Extrapolation Method or the Average Acceleration Method and design charts

  20. Static-stress analysis of dual-axis safety vessel

    NASA Astrophysics Data System (ADS)

    Bultman, D. H.

    1992-11-01

    An 8 ft diameter safety vessel, made of HSLA-100 steel, is evaluated to determine its ability to contain the quasi-static residual pressure from a high explosive (HE) blast. The safety vessel is designed for use with the Dual-Axis Radiographic Hydrotest (DARHT) facility being developed at Los Alamos National Laboratory. A smaller confinement vessel fits inside the safety vessel and contains the actual explosion, and the safety vessel functions as a second layer of containment in the unlikely case of a confinement vessel leak. The safety vessel is analyzed as a pressure vessel based on the ASME Boiler and Pressure Vessel Code, Section 8, Division 1, and the Welding Research Council Bulletin, WRC107. Combined stresses that result from internal pressure and external loads on nozzles are calculated and compared to the allowable stresses for HSLA-100 steel. Results confirm that the shell and nozzle components are adequately designed for a static pressure of 830 psi, plus the maximum expected external loads. Shell stresses at the 'shell to nozzle' interface, produced from external loads on the nozzles, were less than 700 psi. The maximum combined stress resulting from the internal pressure plus external loads was 17,384 psi, which is significantly less than the allowable stress of 42,375 psi for HSLA-100 steel.

  1. Deformation and Spallation of Explosive Welded Steels under Gas Gun Shock Loading

    NASA Astrophysics Data System (ADS)

    Yu, Ying; Li, Chao; Ma, Hong-Hao; Qi, Mei-Lan; Luo, Sheng-Nian

    2018-01-01

    Not Available Supported by the National Basic Research Program of China under Grant No 2014CB845904, and the National Natural Science Foundation of China under Grant Nos 11627901, 11372113 and 11672110.

  2. On the high fidelity simulation of chemical explosions and their interaction with solid particle clouds

    NASA Astrophysics Data System (ADS)

    Balakrishnan, Kaushik

    The flow field behind chemical explosions in multiphase environments is investigated using a robust, state-of-the-art simulation strategy that accounts for the thermodynamics, gas dynamics and fluid mechanics of relevance to the problem. Focus is laid on the investigation of blast wave propagation, growth of hydrodynamic instabilities behind explosive blasts, the mixing aspects behind explosions, the effects of afterburn and its quantification, and the role played by solid particles in these phenomena. In particular, the confluence and interplay of these different physical phenomena are explored from a fundamental perspective, and applied to the problem of chemical explosions. A solid phase solver suited for the study of high-speed, two-phase flows has been developed and validated. This solver accounts for the inter-phase mass, momentum and energy transfer through empirical laws, and ensures two-way coupling between the two phases, viz. solid particles and gas. For dense flow fields, i.e., when the solid volume fraction becomes non-negligible (˜60%), the finite volume method with a Godunov type shock-capturing scheme requires modifications to account for volume fraction gradients during the computation of cell interface gas fluxes. To this end, the simulation methodology is extended with the formulation of an Eulerian gas, Lagrangian solid approach, thereby ensuring that the so developed two-phase simulation strategy can be applied for both flow conditions, dilute and dense alike. Moreover, under dense loading conditions the solid particles inevitably collide, which is accounted for in the current research effort with the use of an empirical collision/contact model from literature. Furthermore, the post-detonation flow field consists of gases under extreme temperature and pressure conditions, necessitating the use of real gas equations of state in the multiphase model. This overall simulation strategy is then extended to the investigation of chemical explosions in multiphase environments, with emphasis on the study of hydrodynamic instability growth, mixing, afterburn effects ensuing from the process, particle ignition and combustion (if reactive), dispersion, and their interaction with the vortices in the mixing layer. The post-detonation behavior of heterogeneous explosives is addressed by using three parts to the investigation. In the first part, only one-dimensional effects are considered, with the goal to assess the presently developed dense two-phase formulation. The total deliverable impulsive loading from heterogeneous explosive charges containing inert steel particles is estimated for a suite of operating parameters and compared, and it is demonstrated that heterogeneous explosive charges deliver a higher near-field impulse than homogeneous explosive charges containing the same mass of the high explosive. In the second part, three-dimensional effects such as hydrodynamic instabilities are accounted for, with the focus on characterizing the mixing layer ensuing from the detonation of heterogeneous explosive charges containing inert steel particles. It is shown that particles introduce significant amounts of hydrodynamic instabilities in the mixing layer, resulting in additional physical phenomena that play a prominent role in the flow features. In particular, the fluctuation intensities, fireball size and growth rates are augmented for heterogeneous explosions vis-a-vis homogeneous explosions, thereby demonstrating that solid particles enhance the perturbation intensities in the flow. In the third part of the investigation of heterogeneous explosions, dense, aluminized explosions are considered, and the particles are observed to burn in two phases, with an initial quenching due to the rarefaction wave, and a final quenching outside the fireball. Due to faster response time scales, smaller particles are observed to heat and accelerate more during early times, and also cool and decelerate more at late times, compared to counterpart larger particle sizes. Furthermore, the average particle velocities at late times are observed to be independent of the initial solid volume fraction in the explosive charge, as the particles eventually reach an equilibrium with the local gas. These studies have provided some crucial insights to the flow physics of dense, aluminized explosives. (Abstract shortened by UMI.)

  3. Some issues for blast from a structural reactive material solid

    NASA Astrophysics Data System (ADS)

    Zhang, F.

    2018-07-01

    Structural reactive material (SRM) is consolidated from a mixture of micro- or nanometric reactive metals and metal compounds to the mixture theoretical maximum density. An SRM can thus possess a higher energy density, relying on various exothermic reactions, and higher mechanical strength and heat resistance than that of conventional CHNO explosives. Progress in SRM solid studies is reviewed specifically as an energy source for air blast through the reaction of fine SRM fragments under explosive loading. This includes a baseline SRM solid explosion characterization, material properties of an SRM solid, and its dynamic fine fragmentation mechanisms and fragment reaction mechanisms. The overview is portrayed mainly from the author's own experimental studies combined with theoretical and numerical explanation. These advances have laid down some fundamentals for the next stage of developments.

  4. Some issues for blast from a structural reactive material solid

    NASA Astrophysics Data System (ADS)

    Zhang, F.

    2018-03-01

    Structural reactive material (SRM) is consolidated from a mixture of micro- or nanometric reactive metals and metal compounds to the mixture theoretical maximum density. An SRM can thus possess a higher energy density, relying on various exothermic reactions, and higher mechanical strength and heat resistance than that of conventional CHNO explosives. Progress in SRM solid studies is reviewed specifically as an energy source for air blast through the reaction of fine SRM fragments under explosive loading. This includes a baseline SRM solid explosion characterization, material properties of an SRM solid, and its dynamic fine fragmentation mechanisms and fragment reaction mechanisms. The overview is portrayed mainly from the author's own experimental studies combined with theoretical and numerical explanation. These advances have laid down some fundamentals for the next stage of developments.

  5. Hot-Spot Ignition Mechanisms for Explosives and Propellants

    NASA Astrophysics Data System (ADS)

    Field, J. E.; Bourne, N. K.; Palmer, S. J. P.; Walley, S. M.

    1992-05-01

    This paper describes the response of explosives to stress and impact and in particular the mechanisms of `hot-spot' production. Samples in the form of single crystals, powder layers, pressed pellets, gels, polymer bonded explosives (PBXs) and propellants have been studied. Techniques used include a drop-weight facility with transparent anvils which allows photography at microsecond framing intervals, an instrumented drop-weight machine, a miniaturized Hopkinson bar system for high strain rate property measurement, laser speckle for studying the deformation and fracture of PBXs, an automated system for analysing speckle patterns and heat sensitive film for recording the positions and temperatures of hot spots. Polishing and staining methods have been developed to observe the microstructure of PBXs and failure during quasi-static loading. Ignition, when it occurred, took place at local hot-spot sites. Evidence is discussed for a variety of ignition mechanisms including adiabatic shear of the explosive, adiabatic heating of trapped gases during cavity collapse, viscous flow, friction, fracture and shear of added particles and triboluminescent discharge.

  6. Times and locations of explosions; U.S. Geological Survey 1962 field season

    USGS Publications Warehouse

    Roller, John C.

    1962-01-01

    The U.S. Geological Survey detonated 86 large charges of chemical explosives in the western United States from 6 June to 9 August 1962, in a study of crustal structure in the western United States. This Technical Letter consists of two tables containing information about these explosions. Table I gives a brief geographical description of the shotpoints, and Table II gives the date, time, location, charge size, surface elevation, and some general information about the shots. In the Remarks column (Table II), the configuration and depth of most of the charges are given. This part of the table is not complete, as some of this information has not yet been compiled. Three types of explosives were used in the program. These were: Nitramon WW, a carbo-nitrate blasting agent; Composition B, a mixture of RDX and TNT; and Tovex-Gel, a non-nitroglycerin blasting slurry. The loading, firing, and surveying was done by United ElectroDynamics, Inc., of Pasadena, California. The timing was done by the U.S. Geological Survey.

  7. Fuze for explosive magnetohydrodynamic generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb, G.

    1976-12-23

    An apparatus is examined by which high explosive charges are propelled into and detonated at the center of an MHD-X generator. The high explosive charge units are engaged and propelled by a reciprocating ram device. Detonating in each instance is achieved by striking with a firing pin a detonator charge that is in register with a booster charge, the booster charge being in detonating communication with the high explosive charge. Various safety requirements are satisfied by a spring loaded slider operating in a channel transverse and adjacent to the booster charge. The slide retains the detonator charge out of registermore » with the booster charge until a safety pin that holds the slider in place is pulled by a lanyard attached between the reciprocating ram and the safety pin. Removal of the safety pin permits the detonator charge to slide into alignment with the booster charge. Firing pin actuation is initiated by the slider at the instant the detonator charge and the booster charge come into register.« less

  8. Ignition behavior of an aluminum-bonded explosive (ABX)

    NASA Astrophysics Data System (ADS)

    Hardin, D. Barrett; Zhou, Min; Horie, Yasuyuki

    2017-01-01

    We report the results of a study on the ignition behavior of a novel concept and design of a heterogeneous energetic material system called ABX, or aluminum-bonded explosives. The idea is to replace the polymeric binder in polymer-bonded explosives (PBX) with aluminum. The motivation of this study is that a new design may have several desirable attributes, including, among others, electrical conductivity, higher mechanical strength, enhanced integrity, higher energy content, and enhanced thermal stability at elevated temperatures. The analysis carried out concerns the replacement of the Estane binder in a HMX/Estane PBX by aluminum. The HMX volume fraction in the PBX and HMX is approximately 81%. 2D mesoscale simulations are carried out, accounting for elasticity, viscoelasticity, elasto-viscoplasticity, fracture, internal friction, and thermal conduction. Results show that, relative to the PBX, the aluminum bonded explosives (ABX) show significantly less heating and lower ignition sensitivity under the same loading conditions. The findings appear to confirm the expected promise of ABX as a next-generation heterogeneous energetic material system with more desirable attributes.

  9. Loads Prediction Program for Accidental Explosions in Underground Munitions Storage Facilities

    DTIC Science & Technology

    1990-08-01

    1 Loads All parameters that significantly 1417 Report Documentation Page Form ApprovedOMB No . 0704-0188 Public reporting burden for the collection...other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a...and cost of real estate to provide an adequate cushion of space around above-ground facilities. Although many governments and industries need to

  10. Dimensional Analysis of Impulse Loading Resulting from Detonation of Shallow-Buried Charges

    DTIC Science & Technology

    2013-01-01

    lines running along the floor, floor-bolted seats , ammunition storage racks, power-train lines, etc.). MMMS 9,3 368 Traditionally, the floor-rupture...The power of dimensional analysis is that the functional relations offered are generalized, i.e. the effect of geometrical, kinematic , ambient, loading... ejected vdet Explosive detonation velocity L/T A new quantity added which controls the time of sand-overburden bubble burst Charge/plate positioning

  11. Effect of W/O Emulsion Fuel Properties on Spray Combustion

    NASA Astrophysics Data System (ADS)

    Ida, Tamio; Fuchihata, Manabu; Takeda, Shuuco

    This study proposes a realizable technology for an emulsion combustion method that can reduce environmental loading. This paper discusses the effect on spray combustion for W/O emulsion fuel properties with an added agent, and the ratio between water and emulsifier added to a liquid fuel. The addition of water or emulsifier to a liquid fuel affected the spray combustion by causing micro-explosions in the flame due to geometric changes in the sprayed flame and changes to the temperature distribution. Experimental results revealed that the flame length shortened by almost 40% upon the addition of the water. Furthermore, it was found that water was effective in enhancing combustion due to its promoting micro-explosions. Results also showed that when the emulsifier was added to the spray flame, the additive burned in the flame's wake, producing a bright red flame. The flame length was observed to be long as a result. The micro-explosion phenomenon, caused by emulsifier dosage differences, was observed using time-dependent images at a generated frequency and an explosion scale with a high-speed photography method. Results indicated that the micro-explosion phenomenon in the W/O emulsion combustion method effectively promoted the combustion reaction and suppressed soot formation.

  12. A comparison study of exploding a Cu wire in air, water, and solid powders

    NASA Astrophysics Data System (ADS)

    Han, Ruoyu; Wu, Jiawei; Ding, Weidong; Zhou, Haibin; Qiu, Aici; Wang, Yanan

    2017-11-01

    In this paper, an experimental study on exploding a copper wire in air, water, incombustible powders, and energetic materials is performed. We examined the effects of the surrounding media on the explosion process and its related phenomena. Experiments were first carried out with copper wire explosions driven by microsecond timescale pulsed currents in air, water, and the half-half case. Then, the copper wires were exploded in air, water, SiO2 powders, quartz sand, NaCl powders, and energetic-material cylinders, respectively. Our experimental results indicated that the explosion process was significantly influenced by the surrounding media, resulting in noticeable differences in energy deposition, optical emission, and shock waves. In particular, incombustible powders could throttle the current flow completely when a fine wire was adopted. We also found that an air or incombustible-powder layer could drastically attenuate the shock wave generated by a wire explosion. As for energetic-material loads, obvious discrepancies were found in voltage/current waveforms from vaporization when compared with a wire explosion in air/water, which meant the metal vapor/liquid drops play a significant role in the ignition process.

  13. 49 CFR 176.162 - Security.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Security. 176.162 Section 176.162 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION... Class 1 (Explosive) Materials Precautions During Loading and Unloading § 176.162 Security. A responsible...

  14. 49 CFR 176.162 - Security.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Security. 176.162 Section 176.162 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION... Class 1 (Explosive) Materials Precautions During Loading and Unloading § 176.162 Security. A responsible...

  15. 49 CFR 176.162 - Security.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Security. 176.162 Section 176.162 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION... Class 1 (Explosive) Materials Precautions During Loading and Unloading § 176.162 Security. A responsible...

  16. 49 CFR 176.162 - Security.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Security. 176.162 Section 176.162 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION... Class 1 (Explosive) Materials Precautions During Loading and Unloading § 176.162 Security. A responsible...

  17. 49 CFR 176.162 - Security.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Security. 176.162 Section 176.162 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION... Class 1 (Explosive) Materials Precautions During Loading and Unloading § 176.162 Security. A responsible...

  18. 49 CFR 176.160 - Protection against weather.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Protection against weather. 176.160 Section 176.160 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS... Protection against weather. Any person loading or unloading packages containing Class 1 (explosive) materials...

  19. 49 CFR 176.160 - Protection against weather.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Protection against weather. 176.160 Section 176.160 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS... Protection against weather. Any person loading or unloading packages containing Class 1 (explosive) materials...

  20. 49 CFR 176.160 - Protection against weather.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Protection against weather. 176.160 Section 176.160 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS... Protection against weather. Any person loading or unloading packages containing Class 1 (explosive) materials...

  1. 49 CFR 176.160 - Protection against weather.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Protection against weather. 176.160 Section 176.160 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS... Protection against weather. Any person loading or unloading packages containing Class 1 (explosive) materials...

  2. 49 CFR 176.160 - Protection against weather.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Protection against weather. 176.160 Section 176.160 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS... Protection against weather. Any person loading or unloading packages containing Class 1 (explosive) materials...

  3. Numerical Simulation of the Layer-Bylayer Destruction of Cylindrical Shells Under Explosive Loading

    NASA Astrophysics Data System (ADS)

    Abrosimov, N. A.; Novoseltseva, N. A.

    2015-09-01

    A technique of numerical analysis of the influence of reinforcement structure on the nature of the dynamic response and the process of layer-by-layer destruction of layered fiberglass cylindrical shells under an axisymmetric internal explosive loading is elaborated. The kinematic model of deformation of the laminate package is based on a nonclassical theory of shells. The geometric dependences are based on simple quadratic relations of the nonlinear theory of elasticity. The relationship between the stress and strain tensors are established by using Hooke's law for orthotropic bodies with account of degradation of stiffness characteristics of the multilayer composite due to the local destruction of some its elementary layers. An energetically consistent system of dynamic equations for composite cylindrical shells is obtained by minimizing the functional of total energy of the shell as a three-dimensional body. The numerical method for solving the formulated initial boundary-value problem is based on an explicit variational-difference scheme. Results confirming the reliability of the method used to analyze the influence of reinforcement structure on the character of destruction and the bearing capacity of pulse-loaded cylindrical shells are presented.

  4. Probing Dynamic Processes in Explosives and Propellants - Science Issues

    NASA Astrophysics Data System (ADS)

    Moore, David

    2017-06-01

    Recent experiments on advanced light sources have started to unravel some of the micromechanical behavior of single crystal energetic materials, including void collapse under shock loading and inter-granular failure. These examples just scratch the surface of many extant explosives science issues, which could be elucidated with advanced XFEL-type resources. These include such diverse questions as: How do powders actually compact and what are the spatially and temporally resolved temperature and flow fields generated (especially two-phase flows)? Are there polymorphic effects (if so, how are they spatially distributed)? What are the strain fields during compaction? What happens near surfaces, especially for composite explosives? How is mechanics coupled to chemistry? What are hot spots really? I will provide some history behind these and other questions and point towards how future experiments might be designed to provide some answers.

  5. Nanomaterial-Based Biosensors for Detection of Pesticides and Explosives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jun; Lin, Yuehe

    2009-01-01

    In this chapter, we describe nanomaterial-based biosensors for detecting OP pesticides and explosives. CNTs and functionalized silica nanoparticles have been chosen for this study. The biosensors were combined with the flow-injection system, providing great advantages for onsite, real-time, and continuous detection of environmental pollutants such as OPs and TNT. The sensors take advantage of the electrocatalytic properties of CNTs, which makes it feasible to achieve a sensitive electrochemical detection of the products from enzymatic reactions at low potential. This approach uses a large aspect ratio of silica nanoparticles, which can be used as a carrier for loading a large amountmore » of electroactive species, such as poly(guanine), for amplified detection of explosives. These methods offer a new environmental monitoring tool for rapid, inexpensive, and highly sensitive detection of OPs or TNT compounds.« less

  6. An investigation of a reticulated foam - perforated steel sheet combination as a blast mitigation structure

    NASA Astrophysics Data System (ADS)

    Nguyen, Thuy-Tien N.; Proud, William G.

    2017-01-01

    Explosions are one of the main causes of injuries during battles and conflicts, with improvised explosive devices (IEDs) becoming increasingly common. Blast waves produced from such explosions can inflict very complex injuries on human and serious damage to structures. Here, the interaction between blast waves and sandwich structures of reticulated foam and perforated sheets is studied using a shock tube. The level of mitigation for primary blast injuries of these structures are discussed in terms of pulse shape, pressure magnitude and impulse. Schlieren photography and other high-speed imaging were used to capture the form of the blast wave. The results show up to 95% mitigation in both pressure and impulse with the structures studied. The behaviors of these mitigating sandwich panels under two loadings, Mach 2.0 and Mach 2.6, are also discussed.

  7. Some features of the fabrication of multilayer fiber composites by explosive welding

    NASA Technical Reports Server (NTRS)

    Kotov, V. A.; Mikhaylov, A. N.; Cabelka, D.

    1985-01-01

    The fabrication of multilayer fiber composites by explosive welding is characterized by intense plastic deformation of the matrix material as it fills the spaces between fibers and by high velocity of the collision between matrix layers due to acceleration in the channels between fibers. The plastic deformation of the matrix layers and fiber-matrix friction provide mechanical and thermal activation of the contact surfaces, which contributes to the formation of a bond. An important feature of the process is that the fiber-matrix adhesion strength can be varied over a wide range by varying the parameters of impulsive loading.

  8. Checkpoint and restart procedures for single and multi-stage structural model analysis in NASTRAN/COSMIC on a CDC 176

    NASA Technical Reports Server (NTRS)

    Camp, George H.; Fallon, Dennis J.

    1987-01-01

    The Underwater Explosions Research Division (UERD) of the David Taylor Naval Ship Research and Development Center makes extensive use of NASTRAN/COSMIC on a CDC 176 to evaluate the structural response of ship structures subjected to underwater explosion shock loadings in the time domain. As relatively new users, UERD engineers have experienced difficulties with the checkpoint/restart feature because of the vague instructions in the user manual. Working procedures for the application of the checkpoint/restart feature to the transient analysis using NASTRAN/COSMIC are illustrated.

  9. Force to Fail Reactions With Monoethanolamine: Application to the Explosive Destruction System

    DTIC Science & Technology

    2014-02-01

    include good solvent properties for agents, miscibility with water, noncorrosivity to stainless steel under typical EDS operating conditions, and low...50%. However, when the HD loading was ≥50%, noticeable amounts of heat were generated and white fumes were observed to form when the reagent was...heat and fumes were generated when the MEA was added to the HD. At loadings ≥ 80%, the neutralent became so viscous it could not be stirred

  10. Dredging in Sediments Containing Munitions and Explosives of Concern (MEC)

    DTIC Science & Technology

    2008-08-01

    bucket jaws are closed in order to “grab” a load of sediment. The loaded bucket is hoisted to the surface and side dumped into a trans- portation...digitally entering a percentage of total power (0 to 100 percent). The dredge’s hydraulic functions for the pump and hoist were controlled by solenoids...Cheryl Pollock Coastal and Hydraulics Laboratory U.S. Army Engineer Research and Development Center 3909 Halls Ferry Road Vicksburg, MS 39180-6199

  11. Blast Load Simulator Experiments for Computational Model Validation Report 3

    DTIC Science & Technology

    2017-07-01

    establish confidence in the results produced by the simulations. This report describes a set of replicate experiments in which a small, non - responding steel...designed to simulate blast waveforms for explosive yields up to 20,000 lb of TNT equivalent at a peak reflected pressure up to 80 psi and a peak...the pressure loading on a non - responding box-type structure at varying obliquities located in the flow of the BLS simulated blast environment for

  12. Compressive strength after blast of sandwich composite materials

    PubMed Central

    Arora, H.; Kelly, M.; Worley, A.; Del Linz, P.; Fergusson, A.; Hooper, P. A.; Dear, J. P.

    2014-01-01

    Composite sandwich materials have yet to be widely adopted in the construction of naval vessels despite their excellent strength-to-weight ratio and low radar return. One barrier to their wider use is our limited understanding of their performance when subjected to air blast. This paper focuses on this problem and specifically the strength remaining after damage caused during an explosion. Carbon-fibre-reinforced polymer (CFRP) composite skins on a styrene–acrylonitrile (SAN) polymer closed-cell foam core are the primary composite system evaluated. Glass-fibre-reinforced polymer (GFRP) composite skins were also included for comparison in a comparable sandwich configuration. Full-scale blast experiments were conducted, where 1.6×1.3 m sized panels were subjected to blast of a Hopkinson–Cranz scaled distance of 3.02 m kg−1/3, 100 kg TNT equivalent at a stand-off distance of 14 m. This explosive blast represents a surface blast threat, where the shockwave propagates in air towards the naval vessel. Hopkinson was the first to investigate the characteristics of this explosive air-blast pulse (Hopkinson 1948 Proc. R. Soc. Lond. A 89, 411–413 (doi:10.1098/rspa.1914.0008)). Further analysis is provided on the performance of the CFRP sandwich panel relative to the GFRP sandwich panel when subjected to blast loading through use of high-speed speckle strain mapping. After the blast events, the residual compressive load-bearing capacity is investigated experimentally, using appropriate loading conditions that an in-service vessel may have to sustain. Residual strength testing is well established for post-impact ballistic assessment, but there has been less research performed on the residual strength of sandwich composites after blast. PMID:24711494

  13. Operation greenhouse. Scientific director`s report of atomic weapon tests at Eniwetok, 1951. Annex 8.1. Blast effects on aircraft in flight. Nuclear explosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wayne, J.C.; Lehmkuhl, J.C.

    1951-10-01

    The primary objective of this report is to present data concerning the structural and aerodynamic loads as measured on various types of aircraft, in flight, in the vicinity of an atomic explosion. A secondary objective is to describe the instrumentation (installation, calibration, and operation) in order to provide for the future planning and conduct of similar tests. The data presented herein were obtained on Dog, Easy, and George shots of Operation Greenhouse. The airplanes used to collect these data were B-17`s, T-33`s, B-50D`s and one XB-47. These instrumented airplanes were arrayed at preassigned locations in the air space above themore » explosions. A total of approximately 250 channels of information were obtained which essentially consisted in wing bending, torsion, and shear at the root, mid-span, and outer panel; horizontal stabilizer bending at the root; normal accelerations at the nose, c.g., and tail; aerodynamic pressures at various locations on the airplanes; and temperatures experienced by various critical components of the airplane. The positions of the airplanes at the time of shock arrival were accurately determined by means of radar tracking. The measured data were correlated by means of time signals, every second, from a land based radio transmitter station, and with reference to time zero, by means of a photoelectric cell. The recorded data show that the loads produced by the shock wave were in general accord with theory. The loading experienced by an airplane while passing through the `puff` of the atomic cloud is shown to be considerably higher than that caused by the shock wave. For this reason the penetration of the puff should be avoided even by `sampling` drones.« less

  14. The Study of the Relationship between Probabilistic Design and Axiomatic Design Methodology. Volume 3

    NASA Technical Reports Server (NTRS)

    Onwubiko, Chin-Yere; Onyebueke, Landon

    1996-01-01

    Structural failure is rarely a "sudden death" type of event, such sudden failures may occur only under abnormal loadings like bomb or gas explosions and very strong earthquakes. In most cases, structures fail due to damage accumulated under normal loadings such as wind loads, dead and live loads. The consequence of cumulative damage will affect the reliability of surviving components and finally causes collapse of the system. The cumulative damage effects on system reliability under time-invariant loadings are of practical interest in structural design and therefore will be investigated in this study. The scope of this study is, however, restricted to the consideration of damage accumulation as the increase in the number of failed components due to the violation of their strength limits.

  15. Smith machine counterbalance system affects measures of maximal bench press throw performance.

    PubMed

    Vingren, Jakob L; Buddhadev, Harsh H; Hill, David W

    2011-07-01

    Equipment with counterbalance weight systems is commonly used for the assessment of performance in explosive resistance exercise movements, but it is not known if such systems affect performance measures. The purpose of this study was to determine the effect of using a counterbalance weight system on measures of smith machine bench press throw performance. Ten men and 14 women (mean ± SD: age, 25 ± 4 years; height, 173 ± 10 cm; weight, 77.7 ± 18.3 kg) completed maximal smith machine bench press throws under 4 different conditions (2 × 2; counterbalance × load): with or without a counterbalance weight system and using 'light' or 'moderate' net barbell loads. Performance variables (peak force, peak velocity, and peak power) were measured using a linear accelerometer attached to the barbell. The counterbalance weight system resulted in significant (p < 0.001) reductions in measures of peak force (mean difference ± standard error: light: -112 ± 20 N; moderate: -140 ± 23 N), peak velocity (light: -0.49 ± 0.10 m·s; moderate: -0.33 ± 0.07 m·s), and peak power (light: -220 ± 43 W; moderate: -143 ± 28 W) compared with no counterbalance system for both load conditions. Load condition did not affect absolute or percentage reductions from the counterbalance weight system for any variable. In conclusion, the use of a counterbalance weight system reduces accelerometer-based performance measures for the bench press throw exercise at light and moderate loads. This reduction in measures is likely because of an increase in the external resistance during the movement, which results in a discrepancy between the manually input and the actual value for external load. A counterbalance weight system should not be used when measuring performance in explosive resistance exercises with an accelerometer.

  16. Numerical modelling of underwater detonation of non-ideal condensed-phase explosives

    NASA Astrophysics Data System (ADS)

    Schoch, Stefan; Nikiforakis, Nikolaos

    2015-01-01

    The interest in underwater detonation tests originated from the military, since the expansion and subsequent collapse of the explosive bubble can cause considerable damage to surrounding structures or vessels. In military applications, the explosive is typically represented as a pre-burned material under high pressure, a reasonable assumption due to the short reaction zone lengths, and complete detonation of the unreacted explosive. Hence, numerical simulations of underwater detonation tests have been primarily concerned with the prediction of target loading and the damage incurred rather than the accurate modelling of the underwater detonation process. The mining industry in contrast has adopted the underwater detonation test as a means to experimentally characterise the energy output of their highly non-ideal explosives depending on explosive type and charge configuration. This characterisation requires a good understanding of how the charge shape, pond topography, charge depth, and additional charge confinement affect the energy release, some of which can be successfully quantified with the support of accurate numerical simulations. In this work, we propose a numerical framework which is able to capture the non-ideal explosive behaviour and in addition is capable of capturing both length scales: the reaction zone and the pond domain. The length scale problem is overcome with adaptive mesh refinement, which, along with the explosive model, is validated against experimental data of various TNT underwater detonations. The variety of detonation and bubble behaviour observed in non-ideal detonations is demonstrated in a parameter study over the reactivity of TNT. A representative underwater mining test containing an ammonium-nitrate fuel-oil ratestick charge is carried out to demonstrate that the presented method can be readily applied alongside experimental underwater detonation tests.

  17. Inter-relationships between machine squat-jump strength, force, power and 10 m sprint times in trained sportsmen.

    PubMed

    Harris, Nigel K; Cronin, J B; Hopkins, W G; Hansen, K T

    2010-03-01

    Strength and conditioning practitioners appear focussed on developing maximal strength based on the premise that it underpins explosive muscular performance. Investigation into the relationship between strength and a multitude of explosive power measures is limited though. Furthermore, the relationship of explosive force and power with functional performance is unclear. We examined the inter-relationships between maximal strength and explosive measures of force and power at different loads. Also investigated were the relationships between explosive measures and 10-m sprinting ability. Forty elite-level well-trained rugby union and league athletes performed 10-m sprints followed by bilateral concentric-only machine squat-jumps at 20 and 80%1RM. The magnitudes of the inter-relationships between groups of force measures, power measures and sprint times were interpreted using Pearson correlation coefficients, which had uncertainty (90% confidence limits) of approximately +/-0.25. Measures investigated included peak force, peak power, rate of force development, and some of Zatsiorsky's explosive measures, all expressed relative to body mass. The relationship between maximal strength and peak power was moderate at 20 %1RM (r=0.32) but trivial at 80 %1RM (r=-0.03). Practically no relationship between any of the explosive measures and 10-m sprint ability was observed (r=-0.01 to 0.06). Although correlations do not imply cause and effect, we speculate that the common practice of focussing on high levels of maximal strength in a machine squat to improve power output may be misguided. Our results also cast doubt on the efficacy of increasing explosive force and power in a machine squat-jump with the intention of improving sprint ability in well-trained athletes.

  18. Investigating the fate of nitroaromatic (TNT) and nitramine (RDX and HMX) explosives in fractured and pristine soils.

    PubMed

    Douglas, Thomas A; Walsh, Marianne E; McGrath, Christian J; Weiss, Charles A

    2009-01-01

    Explosives compounds, known toxins, are loaded to soils on military training ranges predominantly during explosives detonation events that likely fracture soil particles. This study was conducted to investigate the fate of explosives compounds in aqueous slurries containing fractured and pristine soil particles. Three soils were crushed with a piston to emulate detonation-induced fracturing. X-ray diffraction, energy-dispersive X-ray spectrometry, gas adsorption surface area measurements, and scanning electron microscopy were used to quantify and image pristine and fractured soil particles. Aqueous batches were prepared by spiking soils with solutions containing 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), octahydro 1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), and 2,4-dinitrotoluene (2,4-DNT). Samples were collected over 92 d and the concentrations of the spiked explosives compounds and TNT transformation products 2-amino-4,6-dinitrotoluene (2ADNT) and 4-amino-2,6-dinitrotoluene (4ADNT) were measured. Our results suggest soil mineralogical and geochemical compositions were not changed during piston-induced fracturing but morphological differences were evident with fractured soils exhibiting more angular surfaces, more fine grained particles, and some microfracturing that is not visible in the pristine samples. TNT, 2,4-DNT, RDX, and HMX exhibited greater analyte loss over time in batch solutions containing fractured soil particles compared to their pristine counterparts. 2ADNT and 4ADNT exhibited greater concentrations in slurries containing pristine soils than in slurries containing fractured soils. Explosives compound transformation is greater in the presence of fractured soil particles than in the presence of pristine soil particles. Our results imply fractured soil particles promote explosive compound transformation and/or explosives compounds have a greater affinity for adsorption to fractured soil particle surfaces.

  19. Machine Gun Liner Bond Strength

    DTIC Science & Technology

    2007-08-01

    explosive bonding of pure tantalum, several tantalum alloys, and Stellite 25 (an alloy of cobalt, chrome , nickel, and tungsten) in a liner...smoothly as elastic stresses increase in the plug and liner. At a certain level of displacement, the load reaches a peak and then drops sharply. The

  20. 49 CFR 176.148 - Artificial lighting.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Artificial lighting. 176.148 Section 176.148... Requirements for Class 1 (Explosive) Materials Precautions During Loading and Unloading § 176.148 Artificial lighting. Electric lights, except arc lights, are the only form of artificial lighting permitted when...

  1. 49 CFR 176.148 - Artificial lighting.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Artificial lighting. 176.148 Section 176.148... Requirements for Class 1 (Explosive) Materials Precautions During Loading and Unloading § 176.148 Artificial lighting. Electric lights, except arc lights, are the only form of artificial lighting permitted when...

  2. Experimental observations on the links between surface perturbation parameters and shock-induced mass ejection

    NASA Astrophysics Data System (ADS)

    Monfared, S. K.; Oró, D. M.; Grover, M.; Hammerberg, J. E.; LaLone, B. M.; Pack, C. L.; Schauer, M. M.; Stevens, G. D.; Stone, J. B.; Turley, W. D.; Buttler, W. T.

    2014-08-01

    We have assembled together our ejecta measurements from explosively shocked tin acquired over a period of about ten years. The tin was cast at 0.99995 purity, and all of the tin targets or samples were shocked to loading pressures of about 27 GPa, allowing meaningful comparisons. The collected data are markedly consistent, and because the total ejected mass scales linearly with the perturbations amplitudes they can be used to estimate how much total Sn mass will be ejected from explosively shocked Sn, at similar loading pressures, based on the surface perturbation parameters of wavelength and amplitude. Most of the data were collected from periodic isosceles shapes that approximate sinusoidal perturbations. Importantly, however, we find that not all periodic perturbations behave similarly. For example, we observed that sawtooth (right triangular) perturbations eject more mass than an isosceles perturbation of similar depth and wavelength, demonstrating that masses ejected from irregular shaped perturbations cannot be normalized to the cross-sectional areas of the perturbations.

  3. Two examples of industrial applications of shock physics research

    NASA Astrophysics Data System (ADS)

    Sanai, Mohsen

    1996-05-01

    An in-depth understanding of shock physics phenomena has led to many industrial applications. Two recent applications discussed in this paper are a method for assessing explosion safety in industrial plants and a bomb-resistant luggage container for widebody aircraft. Our explosion safety assessment is based on frequent use of computer simulation of postulated accidents to model in detail the detonation of energetic materials, the formation and propagation of the resulting airblast, and the projection of fragments of known material and mass. Using a general load-damage analysis technique referred to as the pressure-impulse (PI) method, we have developed a PC-based computer algorithm that includes a continually expanding library of PI load and damage curves, which can predict and graphically display common structural damage modes and the response of humans to postulated explosion accidents. A second commercial application of shock physics discussed here is a bomb-resistant luggage container for widebody aircraft that can protect the aircraft from a terrorist bomb hidden inside the luggage. This hardened luggage container (HLC) relies on blast management and debris containment provided by a flexible flow-through blanket woven from threads made with a strong lightweight material, such as Spectra or Kevlar. This mitigation blanket forms a continuous and seamless shell around the sides of the luggage container that are parallel to the aircraft axis, leaving the two ends of the container unprotected. When an explosion occurs, the mitigation blanket expands into a nearly circular shell that contains the flying debris while directing the flow into the adjacent containers. The HLC concept has been demonstrated through full-scale experiments conducted at SRI. We believe that these two examples represent a broad class of potential industrial hazard applications of the experimental, analytical, and computational tools possessed by the shock physics community.

  4. Quick reproduction of blast-wave flow-field properties of nuclear, TNT, and ANFO explosions

    NASA Astrophysics Data System (ADS)

    Groth, C. P. T.

    1986-04-01

    In many instances, extensive blast-wave flow-field properties are required in gasdynamics research studies of blast-wave loading and structure response, and in evaluating the effects of explosions on their environment. This report provides a very useful computer code, which can be used in conjunction with the DNA Nuclear Blast Standard subroutines and code, to quickly reconstruct complete and fairly accurate blast-wave data for almost any free-air (spherical) and surface-burst (hemispherical) nuclear, trinitrotoluene (TNT), or ammonium nitrate-fuel oil (ANFO) explosion. This code is capable of computing all of the main flow properties as functions of radius and time, as well as providing additional information regarding air viscosity, reflected shock-wave properties, and the initial decay of the flow properties just behind the shock front. Both spatial and temporal distributions of the major blast-wave flow properties are also made readily available. Finally, provisions are also included in the code to provide additional information regarding the peak or shock-front flow properties over a range of radii, for a specific explosion of interest.

  5. "US-detonated nano bombs" facilitate targeting treatment of resistant breast cancer.

    PubMed

    Shi, Jinjin; Liu, Wei; Fu, Yu; Yin, Na; Zhang, Hongling; Chang, Junbiao; Zhang, Zhenzhong

    2018-03-28

    Reversal of drug resistance and targeted therapy are the keys but remain challenging in resistant breast cancer treatment. Herein, low frequency ultrasound detonated "nano bombs" were rationally designed and used for treatment of resistant breast cancer. For the 'nano bombs', the ammunition (Doxorubicin, DOX) was loaded into the ammunition depot (hollow mesoporous TiO 2 , MTNs), and the safety device (dsDNA) was wrapped on the surface of MTNs to avoid the unexpected DOX release. We found the "US-detonated explosive" abilities of "nano bomb" MTNs (NBMTNs), including explosive generation of ROS, explosive release of DOX, US-triggered lysosome escape and mitochondrial targeting in the in vitro and in vivo studies. More importantly, the drug resistance of MCF-7/ADR cells could be reversed via the inhibition of mitochondrial energy supply approach caused by the "explosion" of NBMTNs. Furthermore, NBMTNs combined the superior chemotherapy efficacy of DOX and potent SDT efficacy in one single platform and significantly enhanced the anticancer efficacy. Our results demonstrate an approach for reversing resistance and specific targeting of tumors using 'US-detonated nano bombs'. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Formation of Load Parameters of Destroyed Massife in Explosion of Multicharge Composition with Separation of its Parts by Profile Inert Interval

    NASA Astrophysics Data System (ADS)

    Paramonov, G. P.; Mysin, A. V.; Babkin, R. S.

    2017-10-01

    The paper introduces construction of multicharge composition with separation of parts by the profile inert interval. On the basis of the previous researches, the pulse-forming process at explosion of the borehole multicharge taking into account the offered design is considered. The physical model for definition of reflected wavelet taking into account an increment of radius of cross section of a charging cavity and the expiration of detonation products is offered. A technique is developed for numerical modeling of gas-dynamic processes in a borehole with a change in the axial channel of a profile inert interval caused by a high-temperature flow of gaseous products of an explosion. The authors obtained the dependence of the change in mean pressure on the borehole wall on time for each of the parts of the multicharge. To blast a series of charges of the proposed design, taking into account optimization of the stress fields of neighboring charges, the delay interval is determined for a short-delayed explosion.

  7. Novel circuits for energizing manganin stress gauges

    NASA Astrophysics Data System (ADS)

    Tasker, Douglas G.

    2017-01-01

    This paper describes the design of a novel MOSFET pulsed constant current supplies for low impedance Manganin stress gauges. The design emphasis has been on high accuracy, low noise, simple, low cost, disposable supplies that can be used to energize multiple gauges in explosive or shock experiments. The Manganin gauges used to measure stresses in detonating explosive experiments have typical resistances of 50 mΩ and are energized with pulsed currents of 50 A. Conventional pulsed, constant current supplies for these gauges are high voltage devices with outputs as high as 500 V. Common problems with the use of high voltage supplies at explosive firing sites are: erroneous signals caused by ground loops; overdrive of oscilloscopes on gauge failure; gauge signal crosstalk; cost; and errors due to changing load impedances. The new circuit corrects these issues. It is an 18-V circuit, powered by 9-V alkaline batteries, and features an optically isolated trigger, and single-point grounding. These circuits have been successfully tested at the Los Alamos National Laboratory in explosive experiments. [LA-UR-15-24819

  8. Investigation of Fundamental Processes and Crystal-Level Defect Structures in Metal-Loaded High-Explosive Materials under Dynamic Thermo-Mechanical Loads and their Relationships to Impact Survivability of Munitions (Thrust 4, Topic J)

    DTIC Science & Technology

    2014-06-01

    to better represent the interactions at high compression . Monodisperse systems containing 64, 128, and 256 backbone carbon atoms were studied...was observed that for the sensitive orientation only elastic compression occurred, leading to the propagation of a single wave through the material...whereas for the insensitive direction elastic compression at and immediately behind the shock front was followed by inelastic deformation, leading to

  9. Modeling deflagration waves out of hot spots

    NASA Astrophysics Data System (ADS)

    Partom, Yehuda

    2017-01-01

    It is widely accepted that shock initiation and detonation of heterogeneous explosives comes about by a two-step process known as ignition and growth. In the first step a shock sweeping through an explosive cell (control volume) creates hot spots that become ignition sites. In the second step, deflagration waves (or burn waves) propagate out of those hot spots and transform the reactant in the cell into reaction products. The macroscopic (or average) reaction rate of the reactant in the cell depends on the speed of those deflagration waves and on the average distance between neighboring hot spots. Here we simulate the propagation of deflagration waves out of hot spots on the mesoscale in axial symmetry using a 2D hydrocode, to which we add heat conduction and bulk reaction. The propagation speed of the deflagration waves may depend on both pressure and temperature. It depends on pressure for quasistatic loading near ambient temperature, and on temperature at high temperatures resulting from shock loading. From the simulation we obtain deflagration fronts emanating out of the hot spots. For 8 to 13 GPa shocks, the emanating fronts propagate as deflagration waves to consume the explosive between hot spots. For higher shock levels deflagration waves may interact with the sweeping shock to become detonation waves on the mesoscale. From the simulation results we extract average deflagration wave speeds.

  10. Numerical simulation of Composition B high explosive charge desensitization in gap test assembly after loading by precursor wave

    NASA Astrophysics Data System (ADS)

    Balagansky, I. A.; Stepanov, A. A.

    2016-03-01

    Results of numerical research into the desensitization of high explosive charges in water gap test-based experimental assemblies are presented. The experimental data are discussed, and the analysis using ANSYS AUTODYN 14.5 is provided. The desensitization phenomenon is well reproduced in numerical simulation using the JWL EOS and the Lee-Tarver kinetic equation for modeling of the initiation of heterogeneous high explosives with as well as without shock front waves. The analysis of the wave processes occurring during the initiation of the acceptor HE charge has been carried out. Peculiarities of the wave processes in the water gap test assemblies, which can influence the results of sensitivity measurement, have been studied. In particular, it has been established that precursor waves in the walls of the gap test assemblies can influence the detonation transmission distance.

  11. 14 CFR 23.1353 - Storage battery design and installation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... pilots to recognize the loss of generated power and take appropriate load shedding action. [Doc. No. 4080... and pressures must be maintained during any probable charging and discharging condition. No... shown that maintaining safe cell temperatures and pressures presents no problem. (d) No explosive or...

  12. 14 CFR 23.1353 - Storage battery design and installation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... pilots to recognize the loss of generated power and take appropriate load shedding action. [Doc. No. 4080... and pressures must be maintained during any probable charging and discharging condition. No... shown that maintaining safe cell temperatures and pressures presents no problem. (d) No explosive or...

  13. Role of helmet in the mechanics of shock wave propagation under blast loading conditions.

    PubMed

    Ganpule, S; Gu, L; Alai, A; Chandra, N

    2012-01-01

    The effectiveness of helmets in extenuating the primary shock waves generated by the explosions of improvised explosive devices is not clearly understood. In this work, the role of helmet on the overpressurisation and impulse experienced by the head were examined. The shock wave-head interactions were studied under three different cases: (i) unprotected head, (ii) head with helmet but with varying head-helmet gaps and (iii) head covered with helmet and tightly fitting foam pads. The intensification effect was discussed by examining the shock wave flow pattern and verified with experiments. A helmet with a better protection against shock wave is suggested.

  14. Wedge Experiment Modeling and Simulation for Reactive Flow Model Calibration

    NASA Astrophysics Data System (ADS)

    Maestas, Joseph T.; Dorgan, Robert J.; Sutherland, Gerrit T.

    2017-06-01

    Wedge experiments are a typical method for generating pop-plot data (run-to-detonation distance versus input shock pressure), which is used to assess an explosive material's initiation behavior. Such data can be utilized to calibrate reactive flow models by running hydrocode simulations and successively tweaking model parameters until a match between experiment is achieved. Typical simulations are performed in 1D and typically use a flyer impact to achieve the prescribed shock loading pressure. In this effort, a wedge experiment performed at the Army Research Lab (ARL) was modeled using CTH (SNL hydrocode) in 1D, 2D, and 3D space in order to determine if there was any justification in using simplified models. A simulation was also performed using the BCAT code (CTH companion tool) that assumes a plate impact shock loading. Results from the simulations were compared to experimental data and show that the shock imparted into an explosive specimen is accurately captured with 2D and 3D simulations, but changes significantly in 1D space and with the BCAT tool. The difference in shock profile is shown to only affect numerical predictions for large run distances. This is attributed to incorrectly capturing the energy fluence for detonation waves versus flat shock loading. Portions of this work were funded through the Joint Insensitive Munitions Technology Program.

  15. Long-term volcanic hazard forecasts based on Somma-Vesuvio past eruptive activity

    NASA Astrophysics Data System (ADS)

    Lirer, Lucio; Petrosino, Paola; Alberico, Ines; Postiglione, Immacolata

    2001-02-01

    Distributions of pyroclastic deposits from the main explosive events at Somma-Vesuvio during the 8,000-year B.P.-A.D. 1906 time-span have been analysed to provide maps of volcanic hazard for long-term eruption forecasting. In order to define hazard ratings, the spatial distributions and loads (kg/m2) exerted by the fall deposits on the roofs of buildings have been considered. A load higher than 300 kg/m2 is defined as destructive. The relationship load/frequency (the latter defined as the number of times that an area has been impacted by the deposition of fall deposits) is considered to be a suitable parameter for differentiating among areas according to hazard rating. Using past fall deposit distributions as the basis for future eruptive scenarios, the total area that could be affected by the products of a future Vesuvio explosive eruption is 1,500 km2. The perivolcanic area (274 km2) has the greatest hazard rating because it could be buried by pyroclastic flow deposits thicker than 0.5 m and up to several tens of metres in thickness. Currently, the perivolcanic area also has the highest risk because of the high exposed value, mainly arising from the high population density.

  16. Static-stress analysis of dual-axis confinement vessel

    NASA Astrophysics Data System (ADS)

    Bultman, D. H.

    1992-11-01

    This study evaluates the static-pressure containment capability of a 6-ft-diameter, spherical vessel, made of HSLA-100 steel, to be used for high-explosive (HE) containment. The confinement vessel is designed for use with the Dual-Axis Radiographic Hydrotest Facility (DARHT) being developed at Los Alamos National Laboratory. Two sets of openings in the vessel are covered with x-ray transparent covers to allow radiographic imaging of an explosion as it occurs inside the vessel. The confinement vessel is analyzed as a pressure vessel based on the ASME Boiler and Pressure Vessel Code, Section 8, Division 1, and the Welding Research Council Bulletin, WRC-107. Combined stresses resulting from internal pressure and external loads on nozzles are calculated and compared with the allowable stresses for HSLA-100 steel. Results confirm that the shell and nozzles of the confinement vessel are adequately designed to safely contain the maximum residual pressure of 1675 psi that would result from an HE charge of 24.2 kg detonated in a vacuum. Shell stresses at the shell-to-nozzle interface, produced from external loads on the nozzles, were less than 400 psi. The maximum combined stress resulting from the internal pressure plus external loads was 16,070 psi, which is less than half the allowable stress of 42,375 psi for HSLA-100 steel.

  17. Thermal-mechanical-chemical responses of polymer-bonded explosives using a mesoscopic reactive model under impact loading.

    PubMed

    Wang, XinJie; Wu, YanQing; Huang, FengLei

    2017-01-05

    A mesoscopic framework is developed to quantify the thermal-mechanical-chemical responses of polymer-bonded explosive (PBX) samples under impact loading. A mesoscopic reactive model is developed for the cyclotetramethylenetetranitramine (HMX) crystal, which incorporates nonlinear elasticity, crystal plasticity, and temperature-dependent chemical reaction. The proposed model was implemented in the finite element code ABAQUS by the user subroutine VUMAT. A series of three-dimensional mesoscale models were constructed and calculated under low-strength impact loading scenarios from 100m/s to 600m/s where only the first wave transit is studied. Crystal anisotropy and microstructural heterogeneity are responsible for the nonuniform stress field and fluctuations of the stress wave front. At a critical impact velocity (≥300m/s), a chemical reaction is triggered because the temperature contributed by the volumetric and plastic works is sufficiently high. Physical quantities, including stress, temperature, and extent of reaction, are homogenized from those across the microstructure at the mesoscale to compare with macroscale measurements, which will advance the continuum-level models. The framework presented in this study has important implications in understanding hot spot ignition processes and improving predictive capabilities in energetic materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Dynamic Analysis of Tunnel in Weathered Rock Subjected to Internal Blast Loading

    NASA Astrophysics Data System (ADS)

    Tiwari, Rohit; Chakraborty, Tanusree; Matsagar, Vasant

    2016-11-01

    The present study deals with three-dimensional nonlinear finite element (FE) analyses of a tunnel in rock with reinforced concrete (RC) lining subjected to internal blast loading. The analyses have been performed using the coupled Eulerian-Lagrangian analysis tool available in FE software Abaqus/Explicit. Rock and RC lining are modeled using three-dimensional Lagrangian elements. Beam elements have been used to model reinforcement in RC lining. Three different rock types with different weathering conditions have been used to understand the response of rock when subjected to blast load. The trinitrotoluene (TNT) explosive and surrounding air have been modeled using the Eulerian elements. The Drucker-Prager plasticity model with strain rate-dependent material properties has been used to simulate the stress-strain response of rock. The concrete damaged plasticity model and Johnson-Cook plasticity model have been used for the simulation of stress-strain response of concrete and steel, respectively. The explosive (TNT) has been modeled using Jones-Wilkins-Lee (JWL) equation of state. The analysis results have been studied for stresses, deformation and damage of RC lining and the surrounding rock. It is observed that damage in RC lining results in higher stress in rock. Rocks with low modulus and high weathering conditions show higher attenuation of shock wave. Higher amount of ground shock wave propagation is observed in case of less weathered rock. Ground heave is observed under blast loading for tunnel close to ground surface.

  19. 14 CFR 23.1353 - Storage battery design and installation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... take appropriate load shedding action. [Doc. No. 4080, 29 FR 17955, Dec. 18, 1964; 30 FR 258, Jan. 9... any probable charging and discharging condition. No uncontrolled increase in cell temperature may... temperatures and pressures presents no problem. (d) No explosive or toxic gases emitted by any battery in...

  20. 14 CFR 23.1353 - Storage battery design and installation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... generated power and to take appropriate load shedding action. [Doc. No. 4080, 29 FR 17955, Dec. 18, 1964; 30... and pressures must be maintained during any probable charging and discharging condition. No... shown that maintaining safe cell temperatures and pressures presents no problem. (d) No explosive or...

  1. 14 CFR 23.1353 - Storage battery design and installation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... generated power and to take appropriate load shedding action. [Doc. No. 4080, 29 FR 17955, Dec. 18, 1964; 30... and pressures must be maintained during any probable charging and discharging condition. No... shown that maintaining safe cell temperatures and pressures presents no problem. (d) No explosive or...

  2. Possibility of sidewall collapse of underground structures due to loss of lateral support under internal blast loading.

    DOT National Transportation Integrated Search

    2014-03-01

    For some immersed tube tunnels, the horizontal slab contributes to the structural integrity. If a train running on the slab were subjected to an explosion, which then failed a large area of the horizontal slab, the sidewall might yield under the late...

  3. Abaqus Simulations of Rock Response to Dynamic Loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steedman, David W.; Coblentz, David

    The LANL Geodynamics Team has been applying Abaqus modeling to achieve increasingly complex simulations. Advancements in Abaqus model building and simulation tools allows this progress. We use Lab-developed constitutive models, the fully coupled CEL Abaqus and general contact to simulate response of realistic sites to explosively driven shock.

  4. Modeling Blast Loading on Buried Reinforced Concrete Structures with Zapotec

    DOE PAGES

    Bessette, Greg C.

    2008-01-01

    A coupled Euler-Lagrange solution approach is used to model the response of a buried reinforced concrete structure subjected to a close-in detonation of a high explosive charge. The coupling algorithm is discussed along with a set of benchmark calculations involving detonations in clay and sand.

  5. Dynamic strain distribution of FRP plate under blast loading

    NASA Astrophysics Data System (ADS)

    Saburi, T.; Yoshida, M.; Kubota, S.

    2017-02-01

    The dynamic strain distribution of a fiber re-enforced plastic (FRP) plate under blast loading was investigated using a Digital Image Correlation (DIC) image analysis method. The testing FRP plates were mounted in parallel to each other on a steel frame. 50 g of composition C4 explosive was used as a blast loading source and set in the center of the FRP plates. The dynamic behavior of the FRP plate under blast loading were observed by two high-speed video cameras. The set of two high-speed video image sequences were used to analyze the FRP three-dimensional strain distribution by means of DIC method. A point strain profile extracted from the analyzed strain distribution data was compared with a directly observed strain profile using a strain gauge and it was shown that the strain profile under the blast loading by DIC method is quantitatively accurate.

  6. Particle momentum effects from the detonation of heterogeneous explosives

    NASA Astrophysics Data System (ADS)

    Frost, D. L.; Ornthanalai, C.; Zarei, Z.; Tanguay, V.; Zhang, F.

    2007-06-01

    Detonation of a spherical high explosive charge containing solid particles generates a high-speed two-phase flow comprised of a decaying spherical air blast wave together with a rapidly expanding cloud of particles. The particle momentum effects associated with this two-phase flow have been investigated experimentally and numerically for a heterogeneous explosive consisting of a packed bed of inert particles saturated with a liquid explosive. Experimentally, the dispersion of the particles was tracked using flash radiography and high-speed photography. A particle streak gauge was developed to measure the rate of arrival of the particles at various locations. Using a cantilever gauge and a free-piston impulse gauge, it was found that the particle momentum flux provided the primary contribution of the multiphase flow to the near-field impulse applied to a nearby small structure. The qualitative features of the interaction between a particle and the flow field are illustrated using simple models for the particle motion and blast wave dynamics. A more realistic Eulerian two-fluid model for the gas-particle flow and a finite-element model for the structural response of the cantilever gauge are then used to determine the relative contributions of the gas and particles to the loading.

  7. A method to press powder at 6000 ton using small amount of explosive

    NASA Astrophysics Data System (ADS)

    Hilmi, Ahmad Humaizi; Azmi, Nor Azmaliana; Ismail, Ariffin

    2017-12-01

    Large die hydraulic press forces are one of the key instruments in making jumbo planes. The machine can produce aircraft components such as wing spars, landing gear supports and armor plates. Superpower nations such as USA, Russia, Germany, Japan, Korea and China have large die hydraulic press which can press 50,000 tons. In Malaysia, heavy-duty press is available from companies such as Proton that builds chassis for cars. However, that heavy-duty press is not able to produce better bulkhead for engines, fuselage, and wings of an aircraft. This paper presents the design of an apparatus that uses 50 grams of commercial grade explosives to produce 6000 tons of compaction. This is a first step towards producing larger scale apparatus that can produce 50,000-ton press. The design was done using AUTODYN blast simulation software. According to the results, the maximum load the apparatus can withstand was 6000 tons which was contributed by 50 grams of commercial explosive(Emulex). Explosive size larger than 50 grams will lead to catastrophic failure. Fabrication of the apparatus was completed. However, testing of the apparatus is not presented in this article.

  8. Physical and environmental factors affecting the persistence of explosives particles (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Papantonakis, Michael R.; Nguyen, Viet K.; Furstenberg, Robert; White, Caitlyn; Shuey, Melissa; Kendziora, Christopher A.; McGill, R. Andrew

    2017-05-01

    Knowledge of the persistence of trace explosives materials is critical to aid the security community in designing detection methods and equipment. The physical and environmental factors affecting the lifetimes of particles include temperature, airflow, interparticle distance, adlayers, humidity, particle field size and vapor pressure. We are working towards a complete particle persistence model that captures the relative importance of these effects to allow the user, with known environmental conditions, to predict particle lifetimes for explosives or other chemicals. In this work, particles of explosives are sieved onto smooth glass substrates using particle sizes and loadings relevant to those deposited by fingerprint deposition. The coupon is introduced into a custom flow cell and monitored under controlled airflow, humidity and temperature. Photomicroscopy images of the sample taken at fixed time intervals are analyzed to monitor particle sublimation and characterized as a size-independent radial sublimation velocity for each particle in the ensemble. In this paper we build on previous work by comparing the relationship between sublimation of different materials and their vapor pressures. We also describe the influence of a sebum adlayer on particle sublimation, allowing us to better model `real world' samples.

  9. Effects of microscale damage evolution on piezoresistive sensing in nanocomposite bonded explosives under dynamic loading via electromechanical peridynamics

    NASA Astrophysics Data System (ADS)

    Prakash, Naveen; Seidel, Gary D.

    2018-01-01

    Polymer bonded explosives can sustain microstructural damage due to accidental impact, which may reduce their operational reliability or even cause unwanted ignition leading to detonation of the explosive. Therefore a nanocomposite piezoresistivity based sensing solution is discussed here that employs a carbon nanotube based nanocomposite binder in the explosive material by which in situ real-time sensing can be obtained. A coupled electromechanical peridynamics code is used to numerically obtain the piezoresistive response of such a material under dynamic conditions, which allows one to capture damage initiation and propagation mechanisms due to stress waves. The relative change in resistance at three locations along the length of the microstructure is monitored, and found to correlate well with deformation and damage mechanisms within the material. This response can depend on many factors, such as carbon nanotube content, electrical conductivity of the grain, impact velocity and fracture properties, which are explored through numerical simulations. For example, it is found that the piezoresistive response is highly dependent on preferential pathways of electrical current , i.e. the phase through which the current flows, which is in turn affected by the conductivity of the grain and the specific pattern of damage. It is found that the results qualitatively agree with experimental data on the dynamic piezoresistive response of nanocomposites and look promising as a sensing mechanism for explosive materials.

  10. 49 CFR 174.81 - Segregation of hazardous materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... X O O X O Organic peroxides 5.2 X X X X O X O Poisonous liquids PG I Zone A 6.1 X X O X O X X X X X... fertilizer may be loaded or stored with Division 1.1 (explosive) or Division 1.5 materials. (6) When the...

  11. 29 CFR 1926.908 - Use of detonating cord.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... physical condition of the bore hole and stemming and the type of explosives used. (b) Detonating cord shall... cord extending out of a bore hole or from a charge shall be cut from the supply spool before loading the remainder of the bore hole or placing additional charges. (d) Detonating cord shall be handled and...

  12. 29 CFR 1926.908 - Use of detonating cord.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... physical condition of the bore hole and stemming and the type of explosives used. (b) Detonating cord shall... cord extending out of a bore hole or from a charge shall be cut from the supply spool before loading the remainder of the bore hole or placing additional charges. (d) Detonating cord shall be handled and...

  13. 49 CFR 1544.205 - Acceptance and screening of cargo.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Preventing or deterring the carriage of any explosive or incendiary. Each aircraft operator operating under a... operator operating under a full program or a full all-cargo program, or a twelve-five program in an all... program, before loading it on its aircraft. (c) Control. Each aircraft operator operating under a full...

  14. 49 CFR 174.300 - Special handling requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Class 3 (flammable liquid) materials may not be loaded, transported, or stored in a rail car equipped with any type of lighted heater or open-flame device, or in a rail car equipped with any apparatus or... space is not equipped with any electrical apparatus that is not non-sparking or explosion-proof; (2...

  15. 49 CFR 174.300 - Special handling requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Class 3 (flammable liquid) materials may not be loaded, transported, or stored in a rail car equipped with any type of lighted heater or open-flame device, or in a rail car equipped with any apparatus or... space is not equipped with any electrical apparatus that is not non-sparking or explosion-proof; (2...

  16. 49 CFR 174.300 - Special handling requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Class 3 (flammable liquid) materials may not be loaded, transported, or stored in a rail car equipped with any type of lighted heater or open-flame device, or in a rail car equipped with any apparatus or... space is not equipped with any electrical apparatus that is not non-sparking or explosion-proof; (2...

  17. 43. BUILDING NO. 454, ORDNANCE FACILITY (BAG CHARGE FILLING PLANT), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. BUILDING NO. 454, ORDNANCE FACILITY (BAG CHARGE FILLING PLANT), DETAIL OF EXPLOSION-PROOF ELECTRICAL SWITCH BOX (SWITCH GEAR INSIDE BOX SUBMERGED IN OIL TO QUENCH SPARKS), SWITCH EQUIPMENT MADE BY GENERAL ELECTRIC. - Picatinny Arsenal, 400 Area, Gun Bag Loading District, State Route 15 near I-80, Dover, Morris County, NJ

  18. Structures to Resist the Effects of Accidental Explosions

    DTIC Science & Technology

    1969-06-01

    theorems, are generally used. il to Ce e same structure. reactions of the foundatio4 must also be equal to zero . e. For the analysis of structures...3. BASIS FOR STRUCTURAL D)ESIGN Section 1. Structural Response General ----------------------------------- -c--- -13- Pressure design ranges...4-11 4-.i9 V. External Blast Loads on Structures General

  19. 49 CFR 174.300 - Special handling requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) Class 3 (flammable liquid) materials may not be loaded, transported, or stored in a rail car equipped with any type of lighted heater or open-flame device, or in a rail car equipped with any apparatus or... space is not equipped with any electrical apparatus that is not non-sparking or explosion-proof; (2...

  20. 49 CFR 174.300 - Special handling requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Class 3 (flammable liquid) materials may not be loaded, transported, or stored in a rail car equipped with any type of lighted heater or open-flame device, or in a rail car equipped with any apparatus or... space is not equipped with any electrical apparatus that is not non-sparking or explosion-proof; (2...

  1. A New Take on Exploding Carts

    ERIC Educational Resources Information Center

    Broder, Darren; Burleigh, James; Christian, Matthew; Mowry, Shawn; Hassel, George E.

    2017-01-01

    The Exploding Carts is a popular introductory physics activity in which a one-dimensional explosion is simulated utilizing two dynamics carts that are pushed apart by a spring-loaded plunger released from one of the carts. Traditional treatments of the Exploding Carts usually involve multiple trials where the mass of one or both of the carts is…

  2. Pretreatment of forest residues of Douglas fir by wet explosion for enhanced enzymatic saccharification.

    PubMed

    Biswas, Rajib; Teller, Philip J; Ahring, Birgitte K

    2015-09-01

    The logging and lumbering industry in the Pacific Northwest region generates huge amount of forest residues, offering an inexpensive raw material for biorefineries. Wet explosion (WEx) pretreatment was applied to the recalcitrant biomass to optimize process conditions including temperature (170-190 °C), time (10-30 min), and oxygen loading (0.5-7.5% of DM) through an experimental design. Optimal pH for enzymatic hydrolysis of the optimized samples and a complete mass balance have been evaluated. Results indicated that cellulose digestibility improved in all conditions tested with maximum digestibility achieved at 190 °C, time 30 min, and oxygen loading of 7.5%. Glucose yield at optimal pH of 5.5 was 63.3% with an excellent recovery of cellulose and lignin of 99.9% and 96.3%, respectively. Hemicellulose sugars recovery for xylose and mannose was found to be 69.2% and 76.0%, respectively, indicating that WEx is capable of producing relative high sugar yield even from the recalcitrant forest residues. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Evaluation of Copper-1,3,5-benzenetricarboxylate Metal-organic Framework (Cu-MOF) as a Selective Sorbent for Lewis-base Analytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, Scott D.; Eckberg, Alison D.; Thallapally, Praveen K.

    2011-09-01

    The metal-organic framework Cu-BTC was evaluated for its ability to selectively interact with Lewis-base analytes, including explosives, by examining retention on GC columns packed with Chromosorb W HP that contained 3.0% SE-30 along with various loadings of Cu-BTC. SEM images of the support material showed the characteristic Cu-BTC crystals embedded in the SE-30 coating on the diatomaceous support. Results indicated that the Cu-BTC-containing stationary phase had limited thermal stability (220°C) and strong general retention for analytes. Kováts index calculations showed selective retention (amounting to about 300 Kováts units) relative to n-alkanes for many small Lewis-base analytes on a column thatmore » contained 0.75% Cu-BTC compared to an SE-30 control. Short columns that contained lower loadings of Cu-BTC (0.10%) were necessary to elute explosives and related analytes; however, selectivity was not observed for aromatic compounds (including nitroaromatics) or nitroalkanes. Observed retention characteristics are discussed.« less

  4. The effects of shockwave profile shape and shock obliquity on spallation in Cu and Ta: kinetic and stress-state effects on damage evolution(u)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, George T

    2010-12-14

    Widespread research over the past five decades has provided a wealth of experimental data and insight concerning shock hardening and the spallation response of materials subjected to square-topped shock-wave loading profiles. Less quantitative data have been gathered on the effect of direct, in-contact, high explosive (HE)-driven Taylor wave (or triangular-wave) loading profile shock loading on the shock hardening, damage evolution, or spallation response of materials. Explosive loading induces an impulse dubbed a 'Taylor Wave'. This is a significantly different loading history than that achieved by a square-topped impulse in terms of both the pulse duration at a fixed peak pressure,more » and a different unloading strain rate from the peak Hugoniot state achieved. The goal of this research is to quantify the influence of shockwave obliquity on the spallation response of copper and tantalum by subjecting plates of each material to HE-driven sweeping detonation-wave loading and quantify both the wave propagation and the post-mortem damage evolution. This talk will summarize our current understanding of damage evolution during sweeping detonation-wave spallation loading in Cu and Ta and show comparisons to modeling simulations. The spallation responses of Cu and Ta are both shown to be critically dependent on the shockwave profile and the stress-state of the shock. Based on variations in the specifics of the shock drive (pulse shape, peak stress, shock obliquity) and sample geometry in Cu and Ta, 'spall strength' varies by over a factor of two and the details of the mechanisms of the damage evolution is seen to vary. Simplistic models of spallation, such as P{sub min} based on 1-D square-top shock data lack the physics to capture the influence of kinetics on damage evolution such as that operative during sweeping detonation loading. Such considerations are important for the development of predictive models of damage evolution and spallation in metals and alloys.« less

  5. Atmospheric emission of NOx from mining explosives: A critical review

    NASA Astrophysics Data System (ADS)

    Oluwoye, Ibukun; Dlugogorski, Bogdan Z.; Gore, Jeff; Oskierski, Hans C.; Altarawneh, Mohammednoor

    2017-10-01

    High-energy materials such as emulsions, slurries and ammonium-nitrate fuel-oil (ANFO) explosives play crucial roles in mining, quarrying, tunnelling and many other infrastructure activities, because of their excellent transport and blasting properties. These explosives engender environmental concerns, due to atmospheric pollution caused by emission of dust and nitrogen oxides (NOx) from blasts, the latter characterised by the average emission factor of 5 kg (t AN explosive)-1. This first-of-its-kind review provides a concise literature account of the formation of NOx during blasting of AN-based explosives, employed in surface operations. We estimate the total NOx emission rate from AN-based explosives as 0.05 Tg (i.e., 5 × 104 t) N per annum, compared to the total global annual anthropogenic NOx emissions of 41.3 × 106 t N y-1. Although minor in the global sense, the large localised plumes from blasting exhibit high NOx concentration (500 ppm) exceeding up to 3000 times the international standards. This emission has profound consequences at mining sites and for adjacent atmospheric environment, necessitating expensive management of exclusion zones. The review describes different types of AN energetic materials for civilian applications, and summarises the essential properties and terminologies pertaining to their use. Furthermore, we recapitulate the mechanisms that lead to the formation of the reactive nitrogen species in blasting of AN-based explosives, review their implications to atmospheric air pollution, and compare the mechanisms with those experienced in other thermal and combustion operations. We also examine the mitigation approaches, including guidelines and operational-control measures. The review discusses the abatement technologies such as the formulation of new explosive mixtures, comprising secondary fuels, spin traps and other additives, in light of their effectiveness and efficiency. We conclude the review with a summary of unresolved problems, identifying possible future developments and their impacts on the environment with emphasis on local and workplace loads.

  6. The effectiveness of power-generating complexes constructed on the basis of nuclear power plants combined with additional sources of energy determined taking risk factors into account

    NASA Astrophysics Data System (ADS)

    Aminov, R. Z.; Khrustalev, V. A.; Portyankin, A. V.

    2015-02-01

    The effectiveness of combining nuclear power plants equipped with water-cooled water-moderated power-generating reactors (VVER) with other sources of energy within unified power-generating complexes is analyzed. The use of such power-generating complexes makes it possible to achieve the necessary load pickup capability and flexibility in performing the mandatory selective primary and emergency control of load, as well as participation in passing the night minimums of electric load curves while retaining high values of the capacity utilization factor of the entire power-generating complex at higher levels of the steam-turbine part efficiency. Versions involving combined use of nuclear power plants with hydrogen toppings and gas turbine units for generating electricity are considered. In view of the fact that hydrogen is an unsafe energy carrier, the use of which introduces additional elements of risk, a procedure for evaluating these risks under different conditions of implementing the fuel-and-hydrogen cycle at nuclear power plants is proposed. Risk accounting technique with the use of statistical data is considered, including the characteristics of hydrogen and gas pipelines, and the process pipelines equipment tightness loss occurrence rate. The expected intensities of fires and explosions at nuclear power plants fitted with hydrogen toppings and gas turbine units are calculated. In estimating the damage inflicted by events (fires and explosions) occurred in nuclear power plant turbine buildings, the US statistical data were used. Conservative scenarios of fires and explosions of hydrogen-air mixtures in nuclear power plant turbine buildings are presented. Results from calculations of the introduced annual risk to the attained net annual profit ratio in commensurable versions are given. This ratio can be used in selecting projects characterized by the most technically attainable and socially acceptable safety.

  7. Low load exercises targeting the gluteal muscle group acutely enhance explosive power output in elite athletes.

    PubMed

    Crow, Justin F; Buttifant, David; Kearny, Simon G; Hrysomallis, Con

    2012-02-01

    The purpose of this study was to investigate the acute effect of 3 warm-up protocols on peak power production during countermovement jump (CMJ) testing. The intention was to devise and compare practical protocols that could be applied as a warm-up immediately before competition matches or weight training sessions. A group of 22 elite Australian Rules Football players performed 3 different warm-up protocols over 3 testing sessions in a randomized order. The protocols included a series of low load exercises targeting the gluteal muscle group (GM-P), a whole-body vibration (WBV) protocol (WBV-P) wherein the subjects stood on a platform vibrating at 30 Hz for 45 seconds, and a no-warm-up condition (CON). The CMJ testing was performed within 5 minutes of each warm-up protocol on an unloaded Smith machine using a linear encoder to measure peak power output. Peak power production was significantly greater after the GM-P than after both the CON (p < 0.05) and WBV-P (p < 0.01). No significant differences in peak power production were detected between the WBV-P and CON. These results have demonstrated that a low load exercise protocol targeting the gluteal muscle group is effective at acutely enhancing peak power output in elite athletes. The mechanisms for the observed improvements are unclear and warrant further investigation. Coaches may consider incorporating low load exercises targeting the gluteal muscle group into the warm-up of athletes competing in sports requiring explosive power output of the lower limbs.

  8. Ignition Prediction of Pressed HMX based on Hotspot Analysis Under Shock Pulse Loading

    NASA Astrophysics Data System (ADS)

    Kim, Seokpum; Miller, Christopher; Horie, Yasuyuki; Molek, Christopher; Welle, Eric; Zhou, Min

    The ignition behavior of pressed HMX under shock pulse loading with a flyer is analyzed using a cohesive finite element method (CFEM) which accounts for large deformation, microcracking, frictional heating, and thermal conduction. The simulations account for the controlled loading of thin-flyer shock experiments with flyer velocities between 1.7 and 4.0 km/s. The study focuses on the computational prediction of ignition threshold using James criterion which involves loading intensity and energy imparted to the material. The predicted thresholds are in good agreement with measurements from shock experiments. In particular, it is found that grain size significantly affects the ignition sensitivity of the materials, with smaller sizes leading to lower energy thresholds required for ignition. In addition, significant stress attenuation is observed in high intensity pulse loading as compared to low intensity pulse loading, which affects density of hotspot distribution. The microstructure-performance relations obtained can be used to design explosives with tailored attributes and safety envelopes.

  9. Spray-loading: A cryogenic deposition method for diamond anvil cell

    NASA Astrophysics Data System (ADS)

    Scelta, Demetrio; Ceppatelli, Matteo; Ballerini, Riccardo; Hajeb, Ahmed; Peruzzini, Maurizio; Bini, Roberto

    2018-05-01

    An efficient loading technique has been developed for flammable, toxic, or explosive gases which can be condensed at liquid nitrogen temperature and ambient pressure in membrane diamond anvil cells (DACs). This cryogenic technique consists in a deposition of small quantities of the desired gas directly into the sample chamber. The deposition is performed using a capillary that reaches the space between the diamond anvils. The DAC is kept under inert gas overpressure during the whole process, in order to avoid contamination from atmospheric O2, CO2, and H2O. This technique provides significant advantages over standard cryo-loading and gas-loading when the condensation of dangerous samples at liquid nitrogen temperature raises safety concerns because it allows dealing with minimum quantities of condensed gases. The whole procedure is particularly fast and efficient. The "spray-loading" has been successfully used in our laboratory to load several samples including acetylene, ammonia, ethylene, and carbon dioxide/water or red phosphorus/NH3 mixtures.

  10. Integral process assessment of sugarcane agricultural crop residues conversion to ethanol.

    PubMed

    Manfredi, Adriana Paola; Ballesteros, Ignacio; Sáez, Felicia; Perotti, Nora Inés; Martínez, María Alejandra; Negro, María José

    2018-07-01

    This work focuses a whole process assessment on post-harvesting sugarcane residues for 2G ethanol production by different saccharification-fermentation conditions at high solids loading, performed after steam explosion, alkaline and acidic pretreatments. Carbohydrate recoveries and enzymatic digestibility results showed that alkali and steam explosion pretreatments were effective for the biomass assayed. Due to a significant improvement (60%) of the glucose released by combining hemicellulases and cellulases only after the NaOH pretreatment, the most favorable process settled comprised an alkali-based pretreatment followed by a pre-saccharification and simultaneous saccharification and fermentation (PSSF). The produced ethanol reached 4.8% (w/w) as a result of an 80% conversion of the glucose from the pretreated biomass. Finally, an ethanol concentration of 3.2% (w/w) was obtained by means of a steam explosion followed by PSSF, representing a suitable start point to further develop a low environmental impact alternative for ethanol production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Dynamic tensile fracture of mortar at ultra-high strain-rates

    NASA Astrophysics Data System (ADS)

    Erzar, B.; Buzaud, E.; Chanal, P.-Y.

    2013-12-01

    During the lifetime of a structure, concrete and mortar may be exposed to highly dynamic loadings, such as impact or explosion. The dynamic fracture at high loading rates needs to be well understood to allow an accurate modeling of this kind of event. In this work, a pulsed-power generator has been employed to conduct spalling tests on mortar samples at strain-rates ranging from 2 × 104 to 4 × 104 s-1. The ramp loading allowed identifying the strain-rate anytime during the test. A power law has been proposed to fit properly the rate-sensitivity of tensile strength of this cementitious material over a wide range of strain-rate. Moreover, a specimen has been recovered damaged but unbroken. Micro-computed tomography has been employed to study the characteristics of the damage pattern provoked by the dynamic tensile loading.

  12. Bilateral Deficit in Explosive Force Production Is Not Caused by Changes in Agonist Neural Drive

    PubMed Central

    Buckthorpe, Matthew W.; Pain, Matthew T. G.; Folland, Jonathan P.

    2013-01-01

    Bilateral deficit (BLD) describes the phenomenon of a reduction in performance during synchronous bilateral (BL) movements when compared to the sum of identical unilateral (UL) movements. Despite a large body of research investigating BLD of maximal voluntary force (MVF) there exist a paucity of research examining the BLD for explosive strength. Therefore, this study investigated the BLD in voluntary and electrically-evoked explosive isometric contractions of the knee extensors and assessed agonist and antagonist neuromuscular activation and measurement artefacts as potential mechanisms. Thirteen healthy untrained males performed a series of maximum and explosive voluntary contractions bilaterally (BL) and unilaterally (UL). UL and BL evoked twitch and octet contractions were also elicited. Two separate load cells were used to measure MVF and explosive force at 50, 100 and 150 ms after force onset. Surface EMG amplitude was measured from three superficial agonists and an antagonist. Rate of force development (RFD) and EMG were reported over consecutive 50 ms periods (0–50, 50–100 and 100–150 ms). Performance during UL contractions was compared to combined BL performance to measure BLD. Single limb performance during the BL contractions was assessed and potential measurement artefacts, including synchronisation of force onset from the two limbs, controlled for. MVF showed no BLD (P = 0.551), but there was a BLD for explosive force at 100 ms (11.2%, P = 0.007). There was a BLD in RFD 50–100 ms (14.9%, P = 0.004), but not for the other periods. Interestingly, there was a BLD in evoked force measures (6.3–9.0%, P<0.001). There was no difference in agonist or antagonist EMG for any condition (P≥0.233). Measurement artefacts contributed minimally to the observed BLD. The BLD in volitional explosive force found here could not be explained by measurement issues, or agonist and antagonist neuromuscular activation. The BLD in voluntary and evoked explosive force might indicate insufficient stabiliser muscle activation during BL explosive contractions. PMID:23472091

  13. Laser- and Particle-Beam Chemical Processes on Surfaces. Volume 129

    DTIC Science & Technology

    1989-12-26

    explosive decomposition of organometallic compounds with single pulse laser irradiation . This new... ultrashort , meaning ultra high intensity , excimer laser pulses , two-photon absorption becomes important and limits the penetration depth of the laser ...requires a higher photon load before suffering damage to its chemical structure. With extremely high light intensities , ultrashort excimer laser pulses

  14. Shock wave facilities at Pulter Laboratory of SRI international

    NASA Astrophysics Data System (ADS)

    Murri, W. J.

    1982-04-01

    Shock wave research in the Poulter Laboratory covers two broad areas: dynamic material response and dynamic structural response. Workers in both areas use common facilities. The Laboratory has several guns and the facilities to perform various types of high explosive loading experiments. The use of these facilities and experimental techniques is illustrated with examples from research projects.

  15. SAGE measurements of the stratospheric aerosol dispersion and loading from the Soufriere Volcano

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Kent, G. S.; Yue, G. K.; Cunnold, D. M.

    1981-01-01

    Explosions of the Soufriere volcano on the Caribbean Island of St. Vincent reduced two major stratospheric plumes which the stratospheric aerosol and gas experiment (SAGE) satellite tracked to West Africa and the North Atlantic Ocean. The total mass of the stratospheric ejecta measured is less than 0.5% of the global stratospheric aerosol burden. No significant temperature or climate perturbation is expected. It is found that the movement and dispersion of the plumes agree with those deduced from high altitude meteorological data and dispersion theory. The stratospheric aerosol dispersion and loading from the Soufrier volcano was measured.

  16. SAGE measurements of the stratospheric aerosol dispersion and loading from the Soufriere Volcano

    NASA Astrophysics Data System (ADS)

    McCormick, M. P.; Kent, G. S.; Yue, G. K.; Cunnold, D. M.

    1981-11-01

    Explosions of the Soufriere volcano on the Caribbean Island of St. Vincent reduced two major stratospheric plumes which the stratospheric aerosol and gas experiment (SAGE) satellite tracked to West Africa and the North Atlantic Ocean. The total mass of the stratospheric ejecta measured is less than 0.5% of the global stratospheric aerosol burden. No significant temperature or climate perturbation is expected. It is found that the movement and dispersion of the plumes agree with those deduced from high altitude meteorological data and dispersion theory. The stratospheric aerosol dispersion and loading from the Soufrier volcano was measured.

  17. Explosive-residue compounds resulting from snow avalanche control in the Wasatch Mountains of Utah

    USGS Publications Warehouse

    Naftz, David L.; Kanagy, Leslie K.; Susong, David D.; Wydoski, Duane S.; Kanagy, Christopher J.

    2003-01-01

    A snow avalanche is a powerful force of nature that can play a significant role in developing mountain landscapes (Perla and Martinelli, 1975). More importantly, loss of life can occur when people are caught in the path of snow avalanches (Grossman, 1999). Increasing winter recreation, including skiing, snowboarding, snowmobiling, snowshoeing, and climbing in mountainous areas, has increased the likelihood of people encountering snow avalanches (fig. 1). Explosives are used by most ski areas and State highway departments throughout the Western United States to control the release of snow avalanches, thus minimizing the loss of human life during winter recreation and highway travel (fig. 2).Common explosives used for snow avalanche control include trinitrotoluene (TNT), pentaerythritoltetranitrate (PETN), cyclotrimethylenetrinitramine (RDX), tetrytol, ammonium nitrate, and nitroglycerin (Perla and Martinelli, 1975). During and after snowfall or wind loading of potential avalanche slopes, ski patrollers and Utah Department of Transportation personnel deliver explosive charges onto predetermined targets to artificially release snow avalanches, thereby rendering the slope safer for winter activities. Explosives can be thrown by hand onto target zones or shot from cannons for more remote delivery of explosive charges. Hand-delivered charges typically contain about 2 pounds of TNT or its equivalent (Perla and Martinelli, 1975).Depending on the size of the ski area, acreage of potential avalanche terrain, and weather conditions, the annual quantity of explosives used during a season of snow avalanche control can be substantial. For example, the three ski areas of Alta, Snowbird, and Brighton, plus the Utah Department of Transportation, may use as many as 11,200 hand charges per year (Wasatch Powderbird Guides, unpub. data, 1999) for snow avalanche control in Big and Little Cottonwood Canyons (fig. 3). If each charge is assumed to weigh 2 pounds, this equates to about 22,400 pounds of explosive hand charges per year. In addition, 2,240 to 3,160 Avalauncher rounds and 626 to 958 military artillery rounds (explosive mass not specified) are used each year by the three ski areas and the Utah Department of Transportation for snow avalanche control in Big and Little Cottonwood Canyons (Wasatch Powderbird Guides, unpub. data, 1999). The other ski area in Big Cottonwood Canyon, Brighton, uses about 2,000 pounds of explosives per year for snow avalanche control (Michele Weidner, Cirrus Ecological Solutions consultant, written commun., 2001).

  18. Influence of Hot SPOT Features on the Shock Initiation of Heterogeneous Nitromethane

    NASA Astrophysics Data System (ADS)

    Dattelbaum, D. M.; Sheffield, S. A.; Stahl, D. B.; Dattelbaum, A. M.

    2009-12-01

    "Hot spots," or regions of localized high temperature and pressure that arise during the shock compression of heterogeneous materials, are known to highly influence the initiation characteristics of explosives. By introducing controlled-size particles at known number densities into otherwise homogeneous explosives, details about hot spot criticality can be mapped for a given material. Here, we describe a series of gas gun-driven plate impact experiments on nitromethane loaded with 40 μm silica beads at 6 wt%. Through the use of embedded electromagnetic gauges, we have gained insight into the initiation mechanisms as a function of the input shock pressure, and present a Pop-plot for the mixture, which is further compared to neat nitromethane.

  19. Explosive Fracturing of an F-16 Canopy for Through-Canopy Crew Egress

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J.

    2000-01-01

    Through-canopy crew egress, such as in the Harrier (AV-8B) aircraft, expands escape envelopes by reducing seat ejection delays in waiting for canopy jettison. Adverse aircraft attitude and reduced forward flight speed can further increase the times for canopy jettison. However, the advent of heavy, high-strength polycarbonate canopies for bird-strike resistance has not only increased jettison times, but has made seat penetration impossible. The goal of the effort described in this paper was to demonstrate a method of explosively fracturing the F-16 polycarbonate canopy to allow through-canopy crew ejection. The objectives of this effort were to: 1. Mount the explosive materials on the exterior of the canopy within the mold line, 2. Minimize visual obstructions, 3. Minimize internal debris on explosive activation, 4. Operate within less than 10 ms, 5. Maintain the shape of the canopy after functioning to prevent major pieces from entering the cockpit, and 6. Minimize the resistance of the canopy to seat penetration. All goals and objectives were met in a full-scale test demonstration. In addition to expanding crew escape envelopes, this canopy fracture approach offers the potential for reducing system complexity, weight and cost, while increasing overall reliability, compared to current canopy jettison approaches. To comply with International Traffic in Arms Regulations (ITAR) and permit public disclosure, this document addresses only the principles of explosive fracturing of the F-16 canopy materials and the end result. ITAR regulations restrict information on improving the performance of weapon systems. Therefore, details on the explosive loads and final assembly of this canopy fracture approach, necessary to assure functional performance, are not included.

  20. Interplay of explosive thermal reaction dynamics and structural confinement

    NASA Astrophysics Data System (ADS)

    Perry, W. Lee; Zucker, Jonathan; Dickson, Peter M.; Parker, Gary R.; Asay, Blaine W.

    2007-04-01

    Explosives play a significant role in human affairs; however, their behavior in circumstances other than intentional detonation is poorly understood. Accidents may have catastrophic consequences, especially if additional hazardous materials are involved. Abnormal ignition stimuli, such as impact, spark, friction, and heat may lead to a very violent outcome, potentially including detonation. An important factor influencing the behavior subsequent to abnormal ignition is the strength and inertia of the vessel confining the explosive, i.e., the near-field structural/mechanical environment, also known as confinement (inertial or mechanical). However, a comprehensive and quantified understanding of how confinement affects reaction violence does not yet exist. In the research discussed here, we have investigated a wide range of confinement conditions and related the explosive response to the fundamentals of the combustion process in the explosive. In our experiments, a charge of an octahydrotetranitrotetrazine-based plastic bonded explosive (PBX 9501) was loaded into a gun assembly having variable confinement conditions and subjected to a heating profile. The exploding charge breached the confinement and accelerated a projectile down the gun barrel. High bandwidth pressure and volume measurements were made and a first-law analysis was used to obtain enthalpy and power from the raw data. These results were then used to quantify reaction violence. Enthalpy change and power ranged from 0-1.8 kJ and 0-12 MW for 300 mg charges, respectively. Below a confinement strength of 20 MPa, violence was found to decline precipitously with decreasing confinement, while the violence for the heaviest confinement experiments was found to be relatively constant. Both pressure and pressurization rate were found to have critical values to induce and sustain violent reaction.

  1. Field measurements and modeling of wave propagation and subsequent weak layer failure in snow due to explosive loading

    NASA Astrophysics Data System (ADS)

    Simioni, Stephan; Sidler, Rolf; Dual, Jürg; Schweizer, Jürg

    2015-04-01

    Avalanche control by explosives is among the key temporary preventive measures. Yet, little is known about the mechanism involved in releasing avalanches by the effect of an explosion. Here, we test the hypothesis that the stress induced by acoustic waves exceeds the strength of weak snow layers. Consequently the snow fails and the onset of rapid crack propagation might finally lead to the release of a snow slab avalanche. We performed experiments with explosive charges over a snowpack. We installed microphones above the snowpack to measure near-surface air pressure and accelerometers within three snow pits. We also recorded pit walls of each pit with high speed cameras to detect weak layer failure. Empirical relationships and a priori information from ice and air were used to characterize a porous layered model from density measurements of snow profiles in the snow pits. This model was used to perform two-dimensional numerical simulations of wave propagation in Biot-type porous material. Locations of snow failure were identified in the simulation by comparing the axial and deviatoric stress field of the simulation to the corresponding snow strength. The identified snow failure locations corresponded well with the observed failure locations in the experiment. The acceleration measured in the snowpack best correlated with the modeled acceleration of the fluid relative to the ice frame. Even though the near field of the explosion is expected to be governed by non-linear effects as for example the observed supersonic wave propagation in the air above the snow surface, the results of the linear poroelastic simulation fit well with the measured air pressure and snowpack accelerations. The results of this comparison are an important step towards quantifying the effectiveness of avalanche control by explosives.

  2. A Comparison of ACQ, AIE and AEE-Based Polymers Loaded on Polyurethane Foams as Sensors for Explosives Detection.

    PubMed

    Chu, Zhiwei; Fan, Zhuxin; Zhang, Xiang; Tan, Xiaofeng; Li, Dongxu; Chen, Guohua; Zhao, Qinghua

    2018-05-15

    An aggregation-caused quenching (ACQ)-active polymer (PF), an aggregation-induced emission (AIE)-active polymer (PFTPE) and an aggregation-enhanced emission (AEE)-active polymer (PTTPE) were synthesized by tetraphenylethane (TPE), fluorene and thiophene moieties. Polyurethane (PU) foams modified by PF, PFTPE and PTTPE, namely PU-PF, PU-PFTPE and PU-PTTPE, using ultrasonication-assisted method have been prepared. A comparative study of PU-PF, PU-PFTPE and PU-PTTPE for detection explosives had been performed, and significant fluorescence quenching was observed with the introduction of PA solutions. The as-prepared PU-PF, PU-PFTPE and PU-PTTPE sensors exhibited a superior sensitivity for PA solutions with different concentrations. Remarkably, PU-PF gave a quenching efficiency of 96.2%, higher than 93.5% for PU-PFTPE and 86.7% for PU-PTTPE at a PA concentration of 180 µg·mL -1 in methanol, which was attributed to the effective energy transfer from the fluorophore (PF) to the nitro explosive (PA). This suggested that some ACQ polymers, applied to detect explosives, could afford better performances than AIE or AEE polymers through modification of structures and selection of adequate carriers. At the same time, these chemical sensors can be recycled many times.

  3. Low cost mobile explosive/drug detection devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gozani, T.; Bendahan, J.

    1999-06-10

    Inspection technologies based on Thermal Neutron Analysis (TNA) and/or Fast Neutron Analysis (FNA) are the basis for relatively compact and low-cost, material-sensitive devices for a wide variety of inspection needs. The TNA allows the use of either isotropic neutron sources such as a {sup 252}Cf, or electronic neutron generators such as the d-T sealed neutron generator tubes. The latter could be used in a steady state mode or in slow (>{mu}s) pulsing mode, to separate the thermal neutron capture signatures following the pulse from the combination of the FNA plus TNA signatures during the pulse. Over the years, Ancore Corporationmore » has built and is continuing to develop a variety of inspection devices based on its TNA and FNA technologies: SPEDS--an explosive detection device for small parcels, portable electronics, briefcases and other similar carry-on items; MDS - a system for the detection or confirmation of buried mines; VEDS - a system for the detection of varied amounts of explosives and/or drugs concealed in passenger vehicles, pallets, lightly loaded trucks or containers, etc.; ACD - a device to clear alarms from a primary, non-specific explosive detection system for passenger luggage. The principle and performance of these devices will be shown and discussed.« less

  4. A Comparison of ACQ, AIE and AEE-Based Polymers Loaded on Polyurethane Foams as Sensors for Explosives Detection

    PubMed Central

    Chu, Zhiwei; Fan, Zhuxin; Zhang, Xiang; Tan, Xiaofeng; Chen, Guohua; Zhao, Qinghua

    2018-01-01

    An aggregation-caused quenching (ACQ)-active polymer (PF), an aggregation-induced emission (AIE)-active polymer (PFTPE) and an aggregation-enhanced emission (AEE)-active polymer (PTTPE) were synthesized by tetraphenylethane (TPE), fluorene and thiophene moieties. Polyurethane (PU) foams modified by PF, PFTPE and PTTPE, namely PU-PF, PU-PFTPE and PU-PTTPE, using ultrasonication-assisted method have been prepared. A comparative study of PU-PF, PU-PFTPE and PU-PTTPE for detection explosives had been performed, and significant fluorescence quenching was observed with the introduction of PA solutions. The as-prepared PU-PF, PU-PFTPE and PU-PTTPE sensors exhibited a superior sensitivity for PA solutions with different concentrations. Remarkably, PU-PF gave a quenching efficiency of 96.2%, higher than 93.5% for PU-PFTPE and 86.7% for PU-PTTPE at a PA concentration of 180 µg·mL−1 in methanol, which was attributed to the effective energy transfer from the fluorophore (PF) to the nitro explosive (PA). This suggested that some ACQ polymers, applied to detect explosives, could afford better performances than AIE or AEE polymers through modification of structures and selection of adequate carriers. At the same time, these chemical sensors can be recycled many times. PMID:29762497

  5. Dynamic tensile fracture of mortar at ultra-high strain-rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erzar, B., E-mail: benjamin.erzar@cea.fr; Buzaud, E.; Chanal, P.-Y.

    2013-12-28

    During the lifetime of a structure, concrete and mortar may be exposed to highly dynamic loadings, such as impact or explosion. The dynamic fracture at high loading rates needs to be well understood to allow an accurate modeling of this kind of event. In this work, a pulsed-power generator has been employed to conduct spalling tests on mortar samples at strain-rates ranging from 2 × 10{sup 4} to 4 × 10{sup 4} s{sup −1}. The ramp loading allowed identifying the strain-rate anytime during the test. A power law has been proposed to fit properly the rate-sensitivity of tensile strength of thismore » cementitious material over a wide range of strain-rate. Moreover, a specimen has been recovered damaged but unbroken. Micro-computed tomography has been employed to study the characteristics of the damage pattern provoked by the dynamic tensile loading.« less

  6. Novel method to dynamically load cells in 3D-hydrogels culture for blast injury studies

    NASA Astrophysics Data System (ADS)

    Sory, David R.; Areias, Anabela C.; Overby, Darryl R.; Proud, William G.

    2017-01-01

    For at least a century explosive devices have been one of the most important causes of injuries in military conflicts as well as in terrorist attacks. Although significant experimental and modelling efforts have been focussed on blast injuries at the organ or tissue level, few studies have investigated the mechanisms of blast injuries at the cellular level. This paper introduces an in vitro method compatible with living cells to examine the effects of high stress and short-duration pulses relevant to blast loadings and blunt trauma. The experimental phase involves high strain-rate axial compression of cylindrical specimens within an hermetically sealed chamber made of biocompatible polymer. Numerical simulations were performed in order to verify the experimental loading conditions and to characterize the loading path within the sample. A proof of concept is presented so as to establish a new window to address fundamental questions regarding blast injury at the cellular level.

  7. Effects of warm-up on vertical jump performance and muscle electrical activity using half-squats at low and moderate intensity.

    PubMed

    Sotiropoulos, Konstantinos; Smilios, Ilias; Christou, Marios; Barzouka, Karolina; Spaias, Angelos; Douda, Helen; Tokmakidis, Savvas P

    2010-01-01

    The purpose of this study was to determine the effects of a specific warm-up using half-squats at low and moderate intensity on vertical jump performance and electromyographic activity of the thigh muscles. The subjects were 26 men who were divided into a low intensity group (LIG; n = 13) and a moderate intensity group (MIG; n = 13). The LIG performed a specific warm-up protocol that included the explosive execution of half-squats with loads 25 and 35% of the one repetition maximum (1RM) and the MIG with loads 45 and 65% of the 1RM. The two groups performed a countermovement jump (CMJ) before and three minutes after the specific warm-up protocols. During the concentric phase of the CMJ a linear encoder connected to an A/D converter interfaced to a PC with a software for data acquisition and analysis allowed the calculation of average mechanical power. The electromyographic (EMG) activity of the vastus lateralis (VL), vastus medialis (VM) and rectus femoris (RF) were recorded during the concentric phase of the jumps. The average quadriceps (Qc) activity (mean value of the VL, VM and RF) was also calculated. A two way ANOVA (protocols X time) with repeated measures on the second factor was used to analyze the data. Following the specific warm-up procedure both groups improved (p ≤ 0.05) CMJ performance and mechanical power by 3.5% and 6.3%, respectively, with no differences observed between the two groups. EMG activity of the Qc and VL increased (p ≤ 0.05) for both groups by 5.9% and 8.5%, respectively. It is concluded that the use of a specific warm-up that includes half-squats, performed explosively with low to moderate intensity, improves CMJ performance. This may be due to increased muscle activation as evaluated by the surface EMG. Key pointsThe inclusion of two sets of explosively performed half squats with low to moderate loads in the warm up procedure elicited an acute performance en-hancement.The performance was enhanced regardless of the load used in the warm-up.The performance enhancement is accompanied by a greater electromyographic activity of the knee extensors muscles.

  8. Effects of Warm-Up on Vertical Jump Performance and Muscle Electrical Activity Using Half-Squats at Low and Moderate Intensity

    PubMed Central

    Sotiropoulos, Konstantinos; Smilios, Ilias; Christou, Marios; Barzouka, Karolina; Spaias, Angelos; Douda, Helen; Tokmakidis, Savvas p.

    2010-01-01

    The purpose of this study was to determine the effects of a specific warm-up using half-squats at low and moderate intensity on vertical jump performance and electromyographic activity of the thigh muscles. The subjects were 26 men who were divided into a low intensity group (LIG; n = 13) and a moderate intensity group (MIG; n = 13). The LIG performed a specific warm-up protocol that included the explosive execution of half-squats with loads 25 and 35% of the one repetition maximum (1RM) and the MIG with loads 45 and 65% of the 1RM. The two groups performed a countermovement jump (CMJ) before and three minutes after the specific warm-up protocols. During the concentric phase of the CMJ a linear encoder connected to an A/D converter interfaced to a PC with a software for data acquisition and analysis allowed the calculation of average mechanical power. The electromyographic (EMG) activity of the vastus lateralis (VL), vastus medialis (VM) and rectus femoris (RF) were recorded during the concentric phase of the jumps. The average quadriceps (Qc) activity (mean value of the VL, VM and RF) was also calculated. A two way ANOVA (protocols X time) with repeated measures on the second factor was used to analyze the data. Following the specific warm-up procedure both groups improved (p ≤ 0.05) CMJ performance and mechanical power by 3.5% and 6.3%, respectively, with no differences observed between the two groups. EMG activity of the Qc and VL increased (p ≤ 0.05) for both groups by 5.9% and 8.5%, respectively. It is concluded that the use of a specific warm-up that includes half-squats, performed explosively with low to moderate intensity, improves CMJ performance. This may be due to increased muscle activation as evaluated by the surface EMG. Key points The inclusion of two sets of explosively performed half squats with low to moderate loads in the warm up procedure elicited an acute performance en-hancement. The performance was enhanced regardless of the load used in the warm-up. The performance enhancement is accompanied by a greater electromyographic activity of the knee extensors muscles. PMID:24149703

  9. On high explosive launching of projectiles for shock physics experiments

    NASA Astrophysics Data System (ADS)

    Swift, Damian C.; Forest, Charles A.; Clark, David A.; Buttler, William T.; Marr-Lyon, Mark; Rightley, Paul

    2007-06-01

    The hydrodynamic operation of the "Forest Flyer" type of explosive launching system for shock physics projectiles was investigated in detail using one and two dimensional continuum dynamics simulations. The simulations were numerically converged and insensitive to uncertainties in the material properties; they reproduced the speed of the projectile and the shape of its rear surface. The most commonly used variant, with an Al alloy case, was predicted to produce a slightly curved projectile, subjected to some shock heating and likely exhibiting some porosity from tensile damage. The curvature is caused by a shock reflected from the case; tensile damage is caused by the interaction of the Taylor wave pressure profile from the detonation wave with the free surface of the projectile. The simulations gave only an indication of tensile damage in the projectile, as damage is not understood well enough for predictions in this loading regime. The flatness can be improved by using a case of lower shock impedance, such as polymethyl methacrylate. High-impedance cases, including Al alloys but with denser materials improving the launching efficiency, can be used if designed according to the physics of oblique shock reflection, which indicates an appropriate case taper for any combination of explosive and case material. The tensile stress induced in the projectile depends on the relative thickness of the explosive, expansion gap, and projectile. The thinner the projectile with respect to the explosive, the smaller the tensile stress. Thus if the explosive is initiated with a plane wave lens, the tensile stress is lower than that for initiation with multiple detonators over a plane. The previous plane wave lens designs did, however, induce a tensile stress close to the spall strength of the projectile. The tensile stress can be reduced by changes in the component thicknesses. Experiments verifying the operation of explosively launched projectiles should attempt to measure porosity induced in the projectile: arrival time measurements are likely to be insensitive to porous regions caused by damaged or recollected material.

  10. Characterizing the energy output generated by a standard electric detonator using shadowgraph imaging

    NASA Astrophysics Data System (ADS)

    Petr, V.; Lozano, E.

    2017-09-01

    This paper overviews a complete method for the characterization of the explosive energy output from a standard detonator. Measurements of the output of explosives are commonly based upon the detonation parameters of the chemical energy content of the explosive. These quantities provide a correct understanding of the energy stored in an explosive, but they do not provide a direct measure of the different modes in which the energy is released. This optically based technique combines high-speed and ultra-high-speed imaging to characterize the casing fragmentation and the detonator-driven shock load. The procedure presented here could be used as an alternative to current indirect methods—such as the Trauzl lead block test—because of its simplicity, high data accuracy, and minimum demand for test repetition. This technique was applied to experimentally measure air shock expansion versus time and calculating the blast wave energy from the detonation of the high explosive charge inside the detonator. Direct measurements of the shock front geometry provide insight into the physics of the initiation buildup. Because of their geometry, standard detonators show an initial ellipsoidal shock expansion that degenerates into a final spherical wave. This non-uniform shape creates variable blast parameters along the primary blast wave. Additionally, optical measurements are validated using piezoelectric pressure transducers. The energy fraction spent in the acceleration of the metal shell is experimentally measured and correlated with the Gurney model, as well as to several empirical formulations for blasts from fragmenting munitions. The fragment area distribution is also studied using digital particle imaging analysis and correlated with the Mott distribution. Understanding the fragmentation distribution plays a critical role when performing hazard evaluation from these types of devices. In general, this technique allows for characterization of the detonator within 6-8% error with no knowledge of the amount or type of explosive contained within the shell, making it also suitable for the study of unknown improvised explosive devices.

  11. A Parametric Approach to Shape Field-Relevant Blast Wave Profiles in Compressed-Gas-Driven Shock Tube

    PubMed Central

    Sundaramurthy, Aravind; Chandra, Namas

    2014-01-01

    Detonation of a high-explosive produces shock-blast wave, shrapnel, and gaseous products. While direct exposure to blast is a concern near the epicenter, shock-blast can affect subjects, even at farther distances. When a pure shock-blast wave encounters the subject, in the absence of shrapnels, fall, or gaseous products the loading is termed as primary blast loading and is the subject of this paper. The wave profile is characterized by blast overpressure, positive time duration, and impulse and called herein as shock-blast wave parameters (SWPs). These parameters in turn are uniquely determined by the strength of high explosive and the distance of the human subjects from the epicenter. The shape and magnitude of the profile determine the severity of injury to the subjects. As shown in some of our recent works (1–3), the profile not only determines the survival of the subjects (e.g., animals) but also the acute and chronic biomechanical injuries along with the following bio-chemical sequelae. It is extremely important to carefully design and operate the shock tube to produce field-relevant SWPs. Furthermore, it is vital to identify and eliminate the artifacts that are inadvertently introduced in the shock-blast profile that may affect the results. In this work, we examine the relationship between shock tube adjustable parameters (SAPs) and SWPs that can be used to control the blast profile; the results can be easily applied to many of the laboratory shock tubes. Further, replication of shock profile (magnitude and shape) can be related to field explosions and can be a standard in comparing results across different laboratories. Forty experiments are carried out by judiciously varying SAPs such as membrane thickness, breech length (66.68–1209.68 mm), measurement location, and type of driver gas (nitrogen, helium). The effects SAPs have on the resulting shock-blast profiles are shown. Also, the shock-blast profiles of a TNT explosion from ConWep software is compared with the profiles obtained from the shock tube. To conclude, our experimental results demonstrate that a compressed-gas shock tube when designed and operated carefully can replicate the blast time profiles of field explosions accurately. Such a faithful replication is an essential first step when studying the effects of blast induced neurotrauma using animal models. PMID:25520701

  12. About plasma points' generation in Z-pinch

    NASA Astrophysics Data System (ADS)

    Afonin, V. I.; Potapov, A. V.; Lazarchuk, V. P.; Murugov, V. M.; Senik, A. V.

    1997-05-01

    The streak tube study results (at visible and x-ray ranges) of dynamics of fast Z-pinch formed at explosion of metal wire in diode of high current generator are presented. Amplitude of current in the load reached ˜180 kA at increase time ˜50 ns. The results' analysis points to capability of controlling hot plasma points generation process in Z-pinch.

  13. Computational Prediction of Shock Ignition Thresholds and Ignition Probability of Polymer-Bonded Explosives

    NASA Astrophysics Data System (ADS)

    Wei, Yaochi; Kim, Seokpum; Horie, Yasuyuki; Zhou, Min

    2017-06-01

    A computational approach is developed to predict the probabilistic ignition thresholds of polymer-bonded explosives (PBXs). The simulations explicitly account for microstructure, constituent properties, and interfacial responses and capture processes responsible for the development of hotspots and damage. The specific damage mechanisms considered include viscoelasticity, viscoplasticity, fracture, post-fracture contact, frictional heating, and heat conduction. The probabilistic analysis uses sets of statistically similar microstructure samples to mimic relevant experiments for statistical variations of material behavior due to inherent material heterogeneities. The ignition thresholds and corresponding ignition probability maps are predicted for PBX 9404 and PBX 9501 for the impact loading regime of Up = 200 --1200 m/s. James and Walker-Wasley relations are utilized to establish explicit analytical expressions for the ignition probability as a function of load intensities. The predicted results are in good agreement with available experimental measurements. The capability to computationally predict the macroscopic response out of material microstructures and basic constituent properties lends itself to the design of new materials and the analysis of existing materials. The authors gratefully acknowledge the support from Air Force Office of Scientific Research (AFOSR) and the Defense Threat Reduction Agency (DTRA).

  14. A review of safety-focused mechanical modeling of commercial lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhu, Juner; Wierzbicki, Tomasz; Li, Wei

    2018-02-01

    We are rapidly approaching an inflection point in the adoption of electric vehicles on the roads. All major automotive companies are having well-funded plans for mass market affordable branded EV product line models, which can open the floodgates. A rapid growth of battery energy density, accompanied by an aggressive progress of reduction of costs of lithium-ion batteries, brings safety concerns. While more energy stored in the battery pack of an EV translates to a longer range, the downside is that accidents will be more violent due to battery inevitable explosion. With today's technology, severe crashes involving intrusion into the battery pack will potentially result in a thermal runaway, fire, and explosion. Most of research on lithium-ion batteries have been concerned with the electrochemistry of cells. However, in most cases failure and thermal runaway is caused by mechanical loading due to crash events. There is a growing need to summarize the already published results on mechanical loading and response of batteries and offer a critical evaluation of work in progress. The objective of this paper is to present such review with a discussion of many outstanding issues and outline of a roadmap for future research.

  15. Analysis of dynamical response of air blast loaded safety device

    NASA Astrophysics Data System (ADS)

    Tropkin, S. N.; Tlyasheva, R. R.; Bayazitov, M. I.; Kuzeev, I. R.

    2018-03-01

    Equipment of many oil and gas processing plants in the Russian Federation is considerably worn-out. This causes the decrease of reliability and durability of equipment and rises the accident rate. An air explosion is the one of the most dangerous cases for plants in oil and gas industry, usually caused by uncontrolled emission and inflammation of oil products. Air explosion can lead to significant danger for life and health of plant staff, so it necessitates safety device usage. A new type of a safety device is designed. Numerical simulation is necessary to analyse design parameters and performance of the safety device, subjected to air blast loading. Coupled fluid-structure interaction analysis is performed to determine strength of the protective device and its performance. The coupled Euler-Lagrange method, allowable in Abaqus by SIMULIA, is selected as the most appropriate analysis tool to study blast wave interaction with the safety device. Absorption factors of blast wave are evaluated for the safety device. This factors allow one to assess efficiency of the safety device, and its main structural component – dampener. Usage of CEL allowed one to model fast and accurately the dampener behaviour, and to develop the parametric model to determine safety device sizes.

  16. Equation of State of Ammonium Nitrate

    NASA Astrophysics Data System (ADS)

    Robbins, David L.; Sheffield, Stephen A.; Dattelbaum, Dana M.; Velisavljevic, Nenad; Stahl, David B.

    2009-12-01

    Ammonium nitrate (AN) is a widely used fertilizer and mining explosive. AN is commonly used in ammonium nitrate-fuel oil (ANFO), which is a mixture of explosive-grade AN prills and fuel oil in a 94:6 ratio by weight. ANFO is a non-ideal explosive with measured detonation velocities around 4 km/s. The equation of state properties and known initiation behavior of neat AN are limited. We present the results of a series of gas gun-driven plate impact experiments on pressed neat ammonium nitrate at 1.72 g/cm3. No evidence of initiation was observed under shock loading to 22 GPa. High pressure x-ray diffraction experiments in diamond anvil cells provided insight into the high pressure phase behavior over the same pressure range (to 25 GPa), as well as a static isotherm at ambient temperature. From the isotherm and thermodynamic properties at ambient conditions, a preliminary unreacted equation of state (EOS) has been developed based on the Murnaghan isotherm and Helmholtz formalism [1], which compares favorably with the available experimental Hugoniot data on several densities of AN.

  17. Enhanced the enzymatic hydrolysis efficiency of wheat straw after combined steam explosion and laccase pretreatment.

    PubMed

    Qiu, Weihua; Chen, Hongzhang

    2012-08-01

    Laccase, capable of selectively degrading lignin while keeping cellulose intact, has been widely applied for the modification and bio-bleaching of pulp. In this study Sclerotium sp. laccase (MSLac) was employed in combination with steam explosion to evaluate the effect of this treatment on cellulose hydrolysis. Combined steam explosion with laccase pretreatment enhanced the cellulose conversion rate of wheat straw no matter in the case of successive (MSLac-Cel) and simultaneous (MSLac+Cel) MSLac and cellulase hydrolysis. The highest cellulose conversion rate of 84.23% was obtained when steam-exploded wheat straw (SEWS) (1.3 MPa, 5 min) was treated by MSLac+Cel at a laccase loading of 0.55 U g(-1) substrate. FT-IR and SEM analyses indicated that MSLac oxidized the phenol and changed electron configuration of the ring, which contributed to loosening the compact wrap of lignin-carbohydrate complex and consequently enhancing the enzymatic hydrolysis efficiency of cellulose. This article provided a promising method for lignocellulose bio-pretreatment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Tenderizing Meat with Explosives

    NASA Astrophysics Data System (ADS)

    Gustavson, Paul K.; Lee, Richard J.; Chambers, George P.; Solomon, Morse B.; Berry, Brad W.

    2001-06-01

    Investigators at the Food Technology and Safety Laboratory have had success tenderizing meat by explosively shock loading samples submerged in water. This technique, referred to as the Hydrodynamic Pressure (HDP) Process, is being developed to improve the efficiency and reproducibility of the beef tenderization processing over conventional aging techniques. Once optimized, the process should overcome variability in tenderization currently plaguing the beef industry. Additional benefits include marketing lower quality grades of meat, which have not been commercially viable due to a low propensity to tenderization. The simplest and most successful arrangement of these tests has meat samples (50 to 75 mm thick) placed on a steel plate at the bottom of a plastic water vessel. Reported here are tests which were instrumented by Indian Head investigators. Carbon-composite resistor-gauges were used to quantify the shock profile delivered to the surface of the meat. PVDF and resistor gauges (used later in lieu of PVDF) provided data on the pressure-time history at the meat/steel interface. Resulting changes in tenderization were correlated with increasing shock duration, which were provided by various explosives.

  19. FAA bulk technology overview for explosives detection

    NASA Astrophysics Data System (ADS)

    Novakoff, Alan K.

    1993-04-01

    The Federal Aviation Administration (FAA) is the leading federal agency responsible for encouraging and fostering the development of a safe, secure, and efficient national airspace system (NAS). Our goal is to establish an operating environment that ensures a threat-free system to preclude acts of terrorism and fatalities. As part of the process to meet this goal, our research and development activities continually search for technologies to ensure aviation security. Recent acts of terrorism against the aviation community have demonstrated an increasing level of sophistication in the design and deployment of explosive devices. In order to prevent the introduction of explosives onto an aircraft they must be detected prior to passenger and baggage loading. The Bulk Detection program is one method of developing a number of technologies that 'see' into and 'alarm' on suspect baggage. These detection devices must be capable of providing this serve with a confidence commensurate with the state-of-the- art available today. This program utilizes the expertise of government agencies, universities and industries working toward constructing their plans and executing their designs to produce the best available equipment.

  20. Xylose production from corn stover biomass by steam explosion combined with enzymatic digestibility.

    PubMed

    Liu, Zhi-Hua; Chen, Hong-Zhang

    2015-10-01

    A novel conversion process using steam explosion combined with enzymatic digestibility was exploited to increase sugar yield. Results showed that glucan and xylan recovery decreased with the increase of holding temperature and residence time in SE, respectively, while glucan and xylan conversion exhibited an opposite trend. The optimal conditions of steam explosion were 160 °C and 48 min, under which glucan and xylan recovery was 93.4% and 71.6%, respectively. Glucan and xylan conversion at 18% solid loading by periodic peristalsis increased by 3.4-5.8% and 4.5-6.2%, respectively, compared with that by water baths shaker. In the whole process, glucose, xylose and total sugar yield reached to 77.3%, 62.8% and 72.3%, respectively. The yield of hydroxymethyl furfural, furfural and lignin-derived products was 6.3 × 10(-2), 7.5 × 10(-2) and less than 3.7 × 10(-2) g/100 g feedstock, respectively. This novel conversion process increased sugar recovery, reduced degradation products formation, improved digestibility efficiency, and hence increased sugar yield. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Embedded optical fibers for PDV measurements in shock-loaded, light and heavy water

    NASA Astrophysics Data System (ADS)

    Mercier, Patrick; Benier, Jacky; Frugier, Pierre-Antoine; Debruyne, Michel; Bolis, Cyril

    2011-06-01

    In order to study the shock-detonation transition, it is necessary to characterize the shock loading of a high explosive plane wave generator into a nitromethane cell. To eliminate the reactive behaviour, we replace the nitromethane by an inert liquid compound. Light water has been first employed; eventually heavy water has been chosen for its better infrared spectral properties. We present the PDV results of different submerged embedded optical fibers which sense the medium with two different approaches: a non-intrusive optical observation of phenomena coming in front of them (interface, shock wave) followed by the mechanical interaction with the shock wave.

  2. Mixed maximal and explosive strength training in recreational endurance runners.

    PubMed

    Taipale, Ritva S; Mikkola, Jussi; Salo, Tiina; Hokka, Laura; Vesterinen, Ville; Kraemer, William J; Nummela, Ari; Häkkinen, Keijo

    2014-03-01

    Supervised periodized mixed maximal and explosive strength training added to endurance training in recreational endurance runners was examined during an 8-week intervention preceded by an 8-week preparatory strength training period. Thirty-four subjects (21-45 years) were divided into experimental groups: men (M, n = 9), women (W, n = 9), and control groups: men (MC, n = 7), women (WC, n = 9). The experimental groups performed mixed maximal and explosive exercises, whereas control subjects performed circuit training with body weight. Endurance training included running at an intensity below lactate threshold. Strength, power, endurance performance characteristics, and hormones were monitored throughout the study. Significance was set at p ≤ 0.05. Increases were observed in both experimental groups that were more systematic than in the control groups in explosive strength (12 and 13% in men and women, respectively), muscle activation, maximal strength (6 and 13%), and peak running speed (14.9 ± 1.2 to 15.6 ± 1.2 and 12.9 ± 0.9 to 13.5 ± 0.8 km Ł h). The control groups showed significant improvements in maximal and explosive strength, but Speak increased only in MC. Submaximal running characteristics (blood lactate and heart rate) improved in all groups. Serum hormones fluctuated significantly in men (testosterone) and in women (thyroid stimulating hormone) but returned to baseline by the end of the study. Mixed strength training combined with endurance training may be more effective than circuit training in recreational endurance runners to benefit overall fitness that may be important for other adaptive processes and larger training loads associated with, e.g., marathon training.

  3. Can Exercise Positively Influence the Intervertebral Disc?

    PubMed

    Belavý, Daniel L; Albracht, Kirsten; Bruggemann, Gert-Peter; Vergroesen, Pieter-Paul A; van Dieën, Jaap H

    2016-04-01

    To better understand what kinds of sports and exercise could be beneficial for the intervertebral disc (IVD), we performed a review to synthesise the literature on IVD adaptation with loading and exercise. The state of the literature did not permit a systematic review; therefore, we performed a narrative review. The majority of the available data come from cell or whole-disc loading models and animal exercise models. However, some studies have examined the impact of specific sports on IVD degeneration in humans and acute exercise on disc size. Based on the data available in the literature, loading types that are likely beneficial to the IVD are dynamic, axial, at slow to moderate movement speeds, and of a magnitude experienced in walking and jogging. Static loading, torsional loading, flexion with compression, rapid loading, high-impact loading and explosive tasks are likely detrimental for the IVD. Reduced physical activity and disuse appear to be detrimental for the IVD. We also consider the impact of genetics and the likelihood of a 'critical period' for the effect of exercise in IVD development. The current review summarises the literature to increase awareness amongst exercise, rehabilitation and ergonomic professionals regarding IVD health and provides recommendations on future directions in research.

  4. Power supply

    DOEpatents

    Hart, Edward J.; Leeman, James E.; MacDougall, Hugh R.; Marron, John J.; Smith, Calvin C.

    1976-01-01

    An electric power supply employs a striking means to initiate ferroelectric elements which provide electrical energy output which subsequently initiates an explosive charge which initiates a second ferroelectric current generator to deliver current to the coil of a magnetic field current generator, creating a magnetic field around the coil. Continued detonation effects compression of the magnetic field and subsequent generation and delivery of a large output current to appropriate output loads.

  5. 24. BUILDING NO. 452, ORDNANCE FACILITY (BAG CHARGE FILLING PLANT), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. BUILDING NO. 452, ORDNANCE FACILITY (BAG CHARGE FILLING PLANT), INTERIOR VIEW LOOKING WEST AT NORTH END OF CENTRAL CORRIDOR (ROOM 3). STAIRWAY WORKBENCH WITH COMPRESSED-AIR POWERED CARTRIDGE LOADER. ARMORED PASS-THROUGH OF TRANSFER BOX FOR PASSING EXPLOSIVES MATERIALS THROUGH TO NEXT ROOM TO THE NORTH. - Picatinny Arsenal, 400 Area, Gun Bag Loading District, State Route 15 near I-80, Dover, Morris County, NJ

  6. Tephra, trees, and trouble: forest dieback delays landslide response to pyroclastic eruption

    NASA Astrophysics Data System (ADS)

    Korup, Oliver; Seidemann, Jan; Mohr, Christian

    2017-04-01

    Large explosive eruptions may substantially transform landscapes by burying topography under thick layers of tephra. The excess pyroclastic sediment that is gradually washed into rivers following such eruptions is responsible for some of the highest specific sediment yields ever documented. The handful of detailed quantitative studies of such catastrophic fluvial response has hardly looked at how hillslopes respond to tephra loads, however. We studied whether three recent eruptions in Chile's Southern Volcanic Zone (SVZ) noticeably changed hillslope erosion rates, and found a strikingly delayed increase in shallow landslide activity. In the case of Chaitén volcano, which erupted in 2008, densely forested hillslopes nearby gained steadily in landslides abundance and area, and most rapidly some eight years after being covered by tephra. In 2016 alone, more than 75 per cent of the volume of all slope failures since the eruption (more than 2 million cubic metres) occurred in an area of 250 square kilometres around the volcano. Neighboring regions of comparable topography, forest cover, rainfall, and lithology have landslide rates at least ten times lower, so that we argue that successive loss of shear strength due to delayed tree-root decay and suppressed vegetation regrowth promotes slope failures near the volcano, especially where pristine rainforests were obliterated by tephra loads. These shallow landslides scrape sediment, soils, and dead wood from hillslopes, and reinforce the supply to rivers with high sediment and organic carbon loads nearly a decade after the eruption. We estimate that 0.1-0.2 Mt C were mobilized by these slope failures, and thus more than 25 per cent of the total post-eruptive organic carbon flux bound for the nearby north Patagonian fjords. Given that explosive eruptions in the SVZ have a mean return period of ca. 275 years, we propose that protracted landslide response of densely forested hillslopes to explosive eruptions plays an important, though largely ignored, part in long-term sediment and organic carbon budgets. Our results also indicate that monitoring of post-eruptive sediment and biogeochemical fluxes should account for lagged landslide response of tephra-covered forested hillslopes to avoid substantial underestimates.

  7. Changes in Blow-Off Velocity Observed in Two Explosives at the Threshold for Sustained Ignition Using the Modified Gap Test

    NASA Astrophysics Data System (ADS)

    Lee, R. J.; Forbes, J. W.; Tasker, D. G.; Orme, R. S.

    2009-12-01

    The Modified Gap Test was used to quantify different levels of partial reaction for various input stresses. This test configuration has been historically useful in highlighting thresholds for first reaction, sustained ignition, and detonation. Two different HMX based compositions were studied; a cast-cured composition with 87% HMX and a pressed composition with 92% HMX. Each explosive was prepared from large industrially produced batches consisting of different unreactive polymeric binder systems. Short samples (50.8 mm in diameter and 12.7 mm thick) were shock loaded using the standard large-scale gap test donor system. Product-cloud blow-off velocities at the opposite end of the sample were measured using a high-speed digital-camera. Velocity versus input pres sure plots provided changes in reactivity that had developed by the 12.7 mm run distance. Results appear consistent for the lower input stresses. In contrast, the results varied widely in a range of input stresses around the transition to detonation in both explosives. These results indicate that both explosives are subject to large variation in blow-off velocity in a range of input stresses near the threshold for prompt detonation. This is explained by localized variations of HMX particle size and density in industrially prepared samples. Approved for public release, Distribution unlimited, IHDIV Log No. 09-108.

  8. Spectral solar attenuation due to aerosol loading over an urban area in India

    NASA Astrophysics Data System (ADS)

    Latha, K. Madhavi; Badarinath, K. V. S.

    2005-06-01

    Anthropogenic activities in urban areas are sources for atmospheric aerosols and are increasing due to population explosion and migration. Many large cities in the developing world are presently plagued by high levels of atmospheric pollution and long-term effect of urban aerosol on climate is an important topic. In the present study, ground-based measurements of solar irradiance, aerosol loading and black carbon (BC) aerosol concentration have been analyzed during different aerosol loading conditions during 2003 over an urban environment. BC aerosols concentration has been observed to be enhanced during high aerosol optical depth day suggesting influence of local anthropogenic activities. The analysis of wind fields over the study area during the measurement period is from north with continental air mass prevailing over the region. Spectral measurements of solar irradiance exhibited variations based on aerosol loading in urban atmosphere. Relative attenuations caused by aerosols have been found to be of the order of 21% and 17% on the irradiance on visible and near infrared respectively.

  9. Reliability Analysis of Retaining Walls Subjected to Blast Loading by Finite Element Approach

    NASA Astrophysics Data System (ADS)

    GuhaRay, Anasua; Mondal, Stuti; Mohiuddin, Hisham Hasan

    2018-02-01

    Conventional design methods adopt factor of safety as per practice and experience, which are deterministic in nature. The limit state method, though not completely deterministic, does not take into account effect of design parameters, which are inherently variable such as cohesion, angle of internal friction, etc. for soil. Reliability analysis provides a measure to consider these variations into analysis and hence results in a more realistic design. Several studies have been carried out on reliability of reinforced concrete walls and masonry walls under explosions. Also, reliability analysis of retaining structures against various kinds of failure has been done. However, very few research works are available on reliability analysis of retaining walls subjected to blast loading. Thus, the present paper considers the effect of variation of geotechnical parameters when a retaining wall is subjected to blast loading. However, it is found that the variation of geotechnical random variables does not have a significant effect on the stability of retaining walls subjected to blast loading.

  10. The Material Point Method and Simulation of Wave Propagation in Heterogeneous Media

    NASA Astrophysics Data System (ADS)

    Bardenhagen, S. G.; Greening, D. R.; Roessig, K. M.

    2004-07-01

    The mechanical response of polycrystalline materials, particularly under shock loading, is of significant interest in a variety of munitions and industrial applications. Homogeneous continuum models have been developed to describe material response, including Equation of State, strength, and reactive burn models. These models provide good estimates of bulk material response. However, there is little connection to underlying physics and, consequently, they cannot be applied far from their calibrated regime with confidence. Both explosives and metals have important structure at the (energetic or single crystal) grain scale. The anisotropic properties of the individual grains and the presence of interfaces result in the localization of energy during deformation. In explosives energy localization can lead to initiation under weak shock loading, and in metals to material ejecta under strong shock loading. To develop accurate, quantitative and predictive models it is imperative to develop a sound physical understanding of the grain-scale material response. Numerical simulations are performed to gain insight into grain-scale material response. The Generalized Interpolation Material Point Method family of numerical algorithms, selected for their robust treatment of large deformation problems and convenient framework for implementing material interface models, are reviewed. A three-dimensional simulation of wave propagation through a granular material indicates the scale and complexity of a representative grain-scale computation. Verification and validation calculations on model bimaterial systems indicate the minimum numerical algorithm complexity required for accurate simulation of wave propagation across material interfaces and demonstrate the importance of interfacial decohesion. Preliminary results are presented which predict energy localization at the grain boundary in a metallic bicrystal.

  11. Experimental transient and permanent deformation studies of steel-sphere-impacted or impulsively-loaded aluminum beams with clamped ends

    NASA Technical Reports Server (NTRS)

    Witmer, E. A.

    1975-01-01

    The sheet explosive loading technique (SELT) was employed to obtain elastic-plastic, large-deflection transient and/or permanent strain data on simple well-defined structural specimens and materials: initially-flat 6061-T651 aluminum beams with both ends ideally clamped via integral construction. The SELT loading technique was chosen since it is both convenient and provides forcing function information of small uncertainty. These data will be useful for evaluating pertinent structural response prediction methods. A second objective was to obtain high-quality transient-strain data for a well-defined structural/material model subjected to impact by a rigid body of known mass, impact velocity, and geometry; large-deflection, elastic-plastic transient response conditions are of primary interest. The beam with both ends clamped and a steel sphere as the impacting body were chosen. The steel sphere was launched vertically by explosive propulsion to achieve various desired impact velocities. The sphere/beam impact tests resulted in producing a wide range of structural responses and permanent deformations, including rupture of the beam from excessive structural response in two cases. The transient and permanent strain data as well as the permanent deflection data obtained are of high quality and should be useful for checking and evaluating methods for predicting the responses of simple 2-d structures to fragment (sphere) impact. Transient strain data very close to the point of impact were not obtained over as long a time as desirable because the gage(s) in that region became detached during the transient response.

  12. Numerical investigation of particle-blast interaction during explosive dispersal of liquids and granular materials

    NASA Astrophysics Data System (ADS)

    Pontalier, Q.; Lhoumeau, M.; Milne, A. M.; Longbottom, A. W.; Frost, D. L.

    2018-05-01

    Experiments show that when a high-explosive charge with embedded particles or a charge surrounded by a layer of liquid or granular material is detonated, the flow generated is perturbed by the motion of the particles and the blast wave profile differs from that of an ideal Friedlander form. Initially, the blast wave overpressure is reduced due to the energy dissipation resulting from compaction, fragmentation, and heating of the particle bed, and acceleration of the material. However, as the blast wave propagates, particle-flow interactions collectively serve to reduce the rate of decay of the peak blast wave overpressure. Computations carried out with a multiphase hydrocode reproduce the general trends observed experimentally and highlight the transition between the particle acceleration/deceleration phases, which is not accessible experimentally, since the particles are obscured by the detonation products. The dependence of the particle-blast interaction and the blast mitigation effectiveness on the mitigant to explosive mass ratio, the particle size, and the initial solid volume fraction is investigated systematically. The reduction in peak blast overpressure is, as in experiments, primarily dependent on the mass ratio of material to explosive, with the particle size, density, and initial porosity of the particle bed playing secondary roles. In the near field, the blast overpressure decreases sharply with distance as the particles are accelerated by the flow. When the particles decelerate due to drag, energy is returned to the flow and the peak blast overpressure recovers and reaches values similar to that of a bare explosive charge for low mass ratios. Time-distance trajectory plots of the particle and blast wave motion with the pressure field superimposed, illustrate the weak pressure waves generated by the motion of the particle layer which travel upstream and perturb the blast wave motion. Computation of the particle and gas momentum flux in the multiphase flow generated during explosive particle dispersal indicates that the particle momentum flux is the dominant term in the near field. Both the gas and particle loading must be taken into account when determining the damage to nearby structures following the detonation of a high-explosive charge surrounded by a material layer.

  13. Numerical investigation of particle-blast interaction during explosive dispersal of liquids and granular materials

    NASA Astrophysics Data System (ADS)

    Pontalier, Q.; Lhoumeau, M.; Milne, A. M.; Longbottom, A. W.; Frost, D. L.

    2018-04-01

    Experiments show that when a high-explosive charge with embedded particles or a charge surrounded by a layer of liquid or granular material is detonated, the flow generated is perturbed by the motion of the particles and the blast wave profile differs from that of an ideal Friedlander form. Initially, the blast wave overpressure is reduced due to the energy dissipation resulting from compaction, fragmentation, and heating of the particle bed, and acceleration of the material. However, as the blast wave propagates, particle-flow interactions collectively serve to reduce the rate of decay of the peak blast wave overpressure. Computations carried out with a multiphase hydrocode reproduce the general trends observed experimentally and highlight the transition between the particle acceleration/deceleration phases, which is not accessible experimentally, since the particles are obscured by the detonation products. The dependence of the particle-blast interaction and the blast mitigation effectiveness on the mitigant to explosive mass ratio, the particle size, and the initial solid volume fraction is investigated systematically. The reduction in peak blast overpressure is, as in experiments, primarily dependent on the mass ratio of material to explosive, with the particle size, density, and initial porosity of the particle bed playing secondary roles. In the near field, the blast overpressure decreases sharply with distance as the particles are accelerated by the flow. When the particles decelerate due to drag, energy is returned to the flow and the peak blast overpressure recovers and reaches values similar to that of a bare explosive charge for low mass ratios. Time-distance trajectory plots of the particle and blast wave motion with the pressure field superimposed, illustrate the weak pressure waves generated by the motion of the particle layer which travel upstream and perturb the blast wave motion. Computation of the particle and gas momentum flux in the multiphase flow generated during explosive particle dispersal indicates that the particle momentum flux is the dominant term in the near field. Both the gas and particle loading must be taken into account when determining the damage to nearby structures following the detonation of a high-explosive charge surrounded by a material layer.

  14. Return on Investment (ROI) Framework Case Study: CTH.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corro, Janna L.

    CTH is a Eulerian code developed at Sandia National Laboratories capable of modeling the hydrodynamic response of explosives, liquids, gases, and solids. The code solves complex multi-dimensional problems characterized by large deformations and strong shocks that are composed of various material configurations. CTH includes models for material strength, fracture, porosity, and high explosive detonation and initiation. The code is an acronym for a complex series of names relating to its origin. A full explanation can be seen in Appendix A. The software breaks penetration simulations into millions of grid-like “cells”. As a modeled projectile impacts and penetrates a target, progressivelymore » smaller blocks of cells are placed around the projectile, which show in detail deformations and breakups. Additionally, the code is uniquely suited to modeling blunt impact and blast loading leading to human body injury.« less

  15. Collapse of elongated voids in porous energetic materials: Effects of void orientation and aspect ratio on initiation

    NASA Astrophysics Data System (ADS)

    Rai, Nirmal Kumar; Schmidt, Martin J.; Udaykumar, H. S.

    2017-04-01

    The sensitivity of porous energetic materials depends on mesostructural heterogeneities such as voids, defects, cracks, and grain boundaries. The mesostructure of pressed explosives contains voids of arbitrary shapes including elongated voids of various orientations and aspect ratios. Mesoscale simulations to date have analyzed the effect of void morphology on the sensitivity of energetic materials for idealized shapes such as cylindrical, conical, and elliptical. This work analyzes the sensitivity behavior of elongated voids in an HMX matrix subject to shock loading. Simulations show that sensitivity of elongated voids depends strongly on orientation as well as aspect ratio. Ranges of orientations and aspects ratios are identified that enhance or inhibit initiation. Insights obtained from single elongated void analyses are used to identify sensitive locations in an imaged mesostructure of a pressed explosive sample.

  16. Reducing Structural Weight and Increasing Protection in Simple Structures Subjected to Blast Loads

    DTIC Science & Technology

    2014-08-12

    centric vehicle structures that make the operation of the vehicle both comfortable and safe for the soldiers. Furthermore, a lighter weight vehicle...supporting forces. Therefore, a key design challenge is to develop lightweight occupant-centric vehicle structures that can provide high levels of...protection against explosive threats. In this paper, concepts for using materials, damping and other mechanisms to design structures with unique dynamic

  17. Diversified Submarine Weapon Suite: A Systems Engineering Approach

    DTIC Science & Technology

    2008-12-01

    safe distance from the launch platform. The warhead itself is a PBXN -3 explosive-loaded, end-initiated, annular blast/fragment unit, with 194...59 C 18.295 10 3 84 22 0 7 0 79 C 23.165 10 3 84 19 0 0 11 83 D 23.295 10 3 70 24 0 5 5 102 B 28.46 10 3 70 21 0 0 12 106 D 28.37

  18. Computer Modeling of the Dynamic Strength of Metal-Plastic Cylindrical Shells Under Explosive Loading

    NASA Astrophysics Data System (ADS)

    Abrosimov, N. A.; Novosel'tseva, N. A.

    2017-05-01

    A technique for numerically analyzing the dynamic strength of two-layer metal-plastic cylindrical shells under an axisymmetric internal explosive loading is developed. The kinematic deformation model of the layered package is based on a nonclassical theory of shells. The geometric relations are constructed using relations of the simplest quadratic version of the nonlinear elasticity theory. The stress and strain tensors in the composite macrolayer are related by Hooke's law for an orthotropic body with account of degradation of the stiffness characteristics of the multilayer package due to local failure of some its elementary layers. The physical relations in the metal layer are formulated in terms of a differential theory of plasticity. An energy-correlated resolving system of dynamic equations for the metal-plastic cylindrical shells is derived by minimizing the functional of total energy of the shells as three-dimensional bodies. The numerical method for solving the initial boundary-value problem formulated is based on an explicit variational-difference scheme. The reliability of the technique considered is verified by comparing numerical results with experimental data. An analysis of the ultimate strains and strength of one-layer basalt-and glass-fiber-reinforced plastic and two-layer metalplastic cylindrical shells is carried out.

  19. Detonation charge size versus coda magnitude relations in California and Nevada

    USGS Publications Warehouse

    Brocher, T.M.

    2003-01-01

    Magnitude-charge size relations have important uses in forensic seismology and are used in Comprehensive Nuclear-Test-Ban Treaty monitoring. I derive empirical magnitude versus detonation-charge-size relationships for 322 detonations located by permanent seismic networks in California and Nevada. These detonations, used in 41 different seismic refraction or network calibration experiments, ranged in yield (charge size) between 25 and 106 kg; coda magnitudes reported for them ranged from 0.5 to 3.9. Almost all represent simultaneous (single-fired) detonations of one or more boreholes. Repeated detonations at the same shotpoint suggest that the reported coda magnitudes are repeatable, on average, to within 0.1 magnitude unit. An empirical linear regression for these 322 detonations yields M = 0.31 + 0.50 log10(weight [kg]). The detonations compiled here demonstrate that the Khalturin et al. (1998) relationship, developed mainly for data from large chemical explosions but which fits data from nuclear blasts, can be used to estimate the minimum charge size for coda magnitudes between 0.5 and 3.9. Drilling, loading, and shooting logs indicate that the explosive specification, loading method, and effectiveness of tamp are the primary factors determining the efficiency of a detonation. These records indicate that locating a detonation within the water table is neither a necessary nor sufficient condition for an efficient shot.

  20. Reconstruction of improvised explosive device blast loading to personnel in the open

    NASA Astrophysics Data System (ADS)

    Wiri, Suthee; Needham, Charles

    2016-05-01

    Significant advances in reconstructing attacks by improvised explosive devices (IEDs) and other blast events are reported. A high-fidelity three-dimensional computational fluid dynamics tool, called Second-order Hydrodynamic Automatic Mesh Refinement Code, was used for the analysis. Computer-aided design models for subjects or vehicles in the scene accurately represent geometries of objects in the blast field. A wide range of scenario types and blast exposure levels were reconstructed including free field blast, enclosed space of vehicle cabin, IED attack on a vehicle, buried charges, recoilless rifle operation, rocket-propelled grenade attack and missile attack with single subject or multiple subject exposure to pressure levels from ˜ 27.6 kPa (˜ 4 psi) to greater than 690 kPa (>100 psi). To create a full 3D pressure time-resolved reconstruction of a blast event for injury and blast exposure analysis, a combination of intelligence data and Blast Gauge data can be used to reconstruct an actual in-theatre blast event. The methodology to reconstruct an event and the "lessons learned" from multiple reconstructions in open space are presented. The analysis uses records of blast pressure at discrete points, and the output is a spatial and temporal blast load distribution for all personnel involved.

  1. Simulation of hot spots formation and evolution in HMX

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Yang, Tonghui

    2017-06-01

    In order to study the formation and evolution of hot spots under shock loading, HMX explosives were selected as the object of study for the two-dimensional finite difference numerical simulation. A fifth order finite difference weighted essentially non-oscillatory (WENO) scheme and a third order TVD Runge-Kutta method are utilized for the spatial discretization and the time advance, respectively. The governing equations are based on the fluid elasto-plastic control equations. The Mie-Gruneisen equation of state and the ideal gas equation of state are selected to use in the state equation of the solid explosives and gas material. In order to simplify the calculation of the model, the reaction can be considered to complete in one step. The calculated area is [ 3.0 ×10-5 m ] × [ 3.0 ×10-5 m ] . The radius is 0.6 ×10-5 m, and the internal gas is not involved in the reaction. The calculation area is divided into 300×300 grids and 10 grids are selected from the bottom of each column to give the particle velocity u as the initial condition. In the selected grid, different initial velocity 100m/s and 200m/s are loaded respectively to study the influence of hot spot formation and evolution in different impact intensity.

  2. Embedded optical fibers for PDV measurements in shock-loaded, light and heavy water

    NASA Astrophysics Data System (ADS)

    Mercier, Patrick; Benier, Jacky; Frugier, Pierre Antoine; Debruyne, Michel; Bolis, Cyril

    2012-03-01

    In order to study the shock-detonation transition, we propose to characterize the shock loading of a high explosive plane wave generator into a nitromethane cell. To eliminate the reactive behaviour, we replace the nitromethane by an inert liquid compound. Light water (H2O) has been first employed; eventually heavy water (D2O) has been chosen for its better infrared spectral properties. We present the PDV results of different embedded optical fibers which sense the medium with two different approaches: a non intrusive optical observation of phenomena coming in front of them (interface, shock wave, detonation wave) followed by their mechanical interaction with the fiber.

  3. Advances in sublimation studies for particles of explosives

    NASA Astrophysics Data System (ADS)

    Furstenberg, Robert; Nguyen, Viet; Fischer, Thomas; Abrishami, Tara; Papantonakis, Michael; Kendziora, Chris; Mott, David R.; McGill, R. Andrew

    2015-05-01

    When handling explosives, or related surfaces, the hands routinely become contaminated with particles of explosives and related materials. Subsequent contact with a solid surface results in particle crushing and deposition. These particles provide an evidentiary trail which is useful for security applications. As such, the opto-physico-chemical characteristics of these particles are critical to trace explosives detection applications in DOD or DHS arenas. As the persistence of these particles is vital to their forensic exploitation, it is important to understand which factors influence their persistence. The longevity or stability of explosives particles on a substrate is a function of several environmental parameters or particle properties including: Vapor pressure, particle geometry, airflow, particle field size, substrate topography, humidity, reactivity, adlayers, admixtures, particle areal density, and temperature. In this work we deposited particles of 2,4-dinitrotoluene on standard microscopy glass slides by particle sieving and studied their sublimation as a function of airflow velocity, areal particle density and particle field size. Analysis of 2D microscopic images was used to compute and track particle size and geometrical characteristics. The humidity, temperature and substrate type were kept constant for each experiment. A custom airflow cell, using standard microscopy glass slide, allowed in-situ photomicroscopy. Areal particle densities and airflow velocities were selected to provide relevant loadings and flow velocities for a range of potential applications. For a chemical of interest, we define the radial sublimation velocity (RSV) for the equivalent sphere of a particle as the parameter to characterize the sublimation rate. The RSV is a useful parameter because it is independent of particle size. The sublimation rate for an ensemble of particles was found to significantly depend on airflow velocity, the areal density of the particles, and the particle field size. To compare sublimation studies these parameters must be known.

  4. Lactate response to different volume patterns of power clean.

    PubMed

    Date, Anand S; Simonson, Shawn R; Ransdell, Lynda B; Gao, Yong

    2013-03-01

    The ability to metabolize or tolerate lactate and produce power simultaneously can be an important determinant of performance. Current training practices for improving lactate use include high-intensity aerobic activities or a combination of aerobic and resistance training. Excessive aerobic training may have undesired physiological adaptations (e.g., muscle loss, change in fiber types). The role of explosive power training in lactate production and use needs further clarification. We hypothesized that high-volume explosive power movements such as Olympic lifts can increase lactate production and overload lactate clearance. Hence, the purpose of this study was to assess lactate accumulation after the completion of 3 different volume patterns of power cleans. Ten male recreational athletes (age 24.22 ± 1.39 years) volunteered. Volume patterns consisted of 3 sets × 3 repetition maximum (3RM) (low volume [LV]), 3 sets × 6 reps at 80-85% of 3RM (midvolume [MV]), and 3 sets × 9 reps at 70-75% of 3RM (high volume [HV]). Rest period was identical at 2 minutes. Blood samples were collected immediately before and after each volume pattern. The HV resulted in the greatest lactate accumulation (7.43 ± 2.94 mmol·L) vs. (5.27 ± 2.48 and 4.03 ± 1.78 mmol·L in MV and LV, respectively). Mean relative increase in lactate was the highest in HV (356.34%). The findings indicate that lactate production in power cleans is largely associated with volume, determined by number of repetitions, load, and rest interval. High-volume explosive training may impose greater metabolic demands than low-volume explosive training and may improve ability to produce power in the presence of lactate. The role of explosive power training in overloading the lactate clearance mechanism should be examined further, especially for athletes of intermittent sport.

  5. Explosive Event in MON-3 Oxidizer System Resulting from Pressure Transducer Failure

    NASA Technical Reports Server (NTRS)

    Baker, David L.; Reynolds, Michael; Anderson, John

    2006-01-01

    In 2003, a Druck(Registered Trademark) pressure transducer failed catastrophically in a test system circulating nitrogen tetroxide at NASA Johnson Space Center White Sands Test Facility. The cause of the explosion was not immediately obvious since the wetted areas of the pressure transducer were constructed of materials compatible with nitrogen tetroxide. Chemical analysis of the resulting residue and a materials analysis of the diaphragm and its weld zones were used to determine the chain of events that led to the catastrophic failure. Due to excessive dynamic pressure loading in the test system, the diaphragm in the pressure transducer suffered cyclic failure and allowed the silicon oil located behind the isolation diaphragm to mix with the nitrogen tetroxide. The reaction between these two chemicals formed a combination of 2,4-di and 2,4,6-trinitrophenol, which are shock sensitive explosives that caused the failure of the pressure transducer. Further research indicated numerous manufacturers offer similar pressure transducers with silicone oil separated from the test fluid by a thin stainless steel isolation diaphragm. Caution must be exercised when purchasing a pressure transducer for a particular system to avoid costly failures and test system contamination.

  6. Bioethanol production: an integrated process of low substrate loading hydrolysis-high sugars liquid fermentation and solid state fermentation of enzymatic hydrolysis residue.

    PubMed

    Chu, Qiulu; Li, Xin; Ma, Bin; Xu, Yong; Ouyang, Jia; Zhu, Junjun; Yu, Shiyuan; Yong, Qiang

    2012-11-01

    An integrated process of enzymatic hydrolysis and fermentation was investigated for high ethanol production. The combination of enzymatic hydrolysis at low substrate loading, liquid fermentation of high sugars concentration and solid state fermentation of enzymatic hydrolysis residue was beneficial for conversion of steam explosion pretreated corn stover to ethanol. The results suggested that low substrate loading hydrolysis caused a high enzymatic hydrolysis yield; the liquid fermentation of about 200g/L glucose by Saccharomyces cerevisiae provided a high ethanol concentration which could significantly decrease cost of the subsequent ethanol distillation. A solid state fermentation of enzymatic hydrolysis residue was combined, which was available to enhance ethanol production and cellulose-to-ethanol conversion. The results of solid state fermentation demonstrated that the solid state fermentation process accompanied by simultaneous saccharification and fermentation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parab, Niranjan D.; Hudspeth, Matthew; Claus, Ben

    Granular materials are widely used to resist impact and blast. Under these dynamic loadings, the constituent particles in the granular system fracture. To study the fracture mechanisms in brittle particles under dynamic compressive loading, a high speed X-ray phase contrast imaging setup was synchronized with a Kolsky bar apparatus. Controlled compressive loading was applied on two contacting particles using the Kolsky bar apparatus and fracture process was captured using the high speed X-ray imaging setup. Five different particles were investigated: soda-lime glass, polycrystalline silica (silicon dioxide), polycrystalline silicon, barium titanate glass, and yttrium stabilized zirconia. For both soda lime glassmore » and polycrystalline silica particles, one of the particles fragmented explosively, thus breaking into many small pieces. For Silicon and barium titanate glass particles, a finite number of cracks were observed in one of the particles causing it to fracture. For yttrium stabilized zirconia particles, a single meridonial crack developed in one of the particles, breaking it into two parts.« less

  8. Sub-fragmentation of structural-reactive-material casings under explosion

    NASA Astrophysics Data System (ADS)

    Zhang, Fan

    2015-06-01

    The sub-fragmentation of structural reactive material (SRM) thick-casings is to generate fine fragments during casing fragmentation under explosive loading for their efficient energy release to enhance air blast. This has been investigated using a cylindrical casing made from either rich Al-MoO3 or Al-W-based granular composites. The former composite was to study the concept of reactive hot spots where the reaction of reactive particles, which were distributed into base SRM in a fuel-rich equivalence ratio, created heat and gas products during SRM fragmentation. The expansion of these distributed hot spots initiated local fractures of the casing, leading to fine fragments. The Al-W-based composite investigated the concept of impedance mismatch, where shock dynamics at the interfaces of different impedance ingredients resulted in non-uniform, high local temperatures and stresses and late in times the dissimilar inertia resulted in different accelerations, leading to material separation and fine fragments. The casings were manufactured through both hot iso-static pressing and cold gas dynamic spray deposition. Explosion experiments were conducted in a 3 m diameter, 23 m3 cylindrical chamber for these cased charges in a casing-to-explosive mass ratio of 1.75. The results demonstrated the presence of fine fragments and more efficient fragment combustion, compared with previous results, and indicated the effectiveness of both concepts. This work was jointly funded by Defence R&D Canada and the Advanced Energetics Program of DTRA (Dr. William H. Wilson).

  9. Using optical techniques to measure aluminum burning in post-detonation explosive fireballs

    NASA Astrophysics Data System (ADS)

    Peuker, Jennifer Mott

    The objectives of the current study are twofold: (1) to further the understanding of aluminum combustion in an explosive fireball, specifically where, when, and with what the aluminum is reacting; and (2) to characterize AlO emission measurements from aluminized explosive fireballs in order to determine when and how AlO emission can be used as an indicator of aluminum combustion. Experiments were completed in six different environments using four distinct aluminized charges of varying aluminum particle size---3 microm, 10 microm and 40 microm---and loading amount---20 and 50 percent by mass---to determine with what the aluminum is reacting. In addition, a charge containing 20 percent aluminum oxide (Al2O3) was used as an inert comparison. The effect of the aluminum particle location with respect to the explosive material was tested by using end-loaded charges, and by placing a layer of grease on the aluminized charge tip. Time-resolved overpressure measurements are used to determine when the aluminum is burning. Experiments employing an air-gap between the explosive charge and aluminum powder aid in determining how and when aluminum is activated and combusted in the initial blast wave and the subsequent fireball containing high pressure and high temperature detonation products. Tests in four environments show that even when AlO emission intensity is lower by 90 percent in N2 or CO2 than it is in air for a charge, it is possible to have significant---60 to 70 percent---aluminum particle oxidation. In addition, substantial AlO emission was measured in the absence of unburned aluminum---almost half of the peak AlO emission measured when unburned aluminum was present. Results show that AlO emission intensity measurements are skewed to higher AlO intensities by high transient temperatures within the first 30 micros when the peak AlO emission is usually measured. The aluminum particle location also affects the amount of AlO emission measured such that when more particles are on the fireball surface, then more AlO emission is measured. However, the end-loaded aluminum does not add to the energy output enhancement as much as the pre-loaded aluminum charges since the peak pressures and initial impulse are similar for different amounts of aluminum. A grease layer on the tip of the charge reduces the amount of AlO emission measured by 90 percent, but has the same energy output in the initial blast wave as the same charge not having a grease layer, indicating that the material at the tip of a charge changes the breakout and subsequent AlO emission production. In addition, the overpressure measurements indicate that four distinct stages of aluminum combustion exist. The first stage is the detonation and the activation of the aluminum. In the second stage the aluminum burns to enhance the blast wave which is indicated by higher peak pressures and initial impulses than a charge not containing aluminum. During the third stage, the aluminum continues to burn to increase the overpressure of the chamber. The fireball cools during the fourth stage and any aluminum oxidation does not add to the energy release. The variations in how much AlO emission is measured indicate that interpreting AlO emission measurements from explosive fireballs is not straightforward with respect to correctly determining the amount of aluminum combusted, how long the aluminum reacted, or the energy released. If aluminum is available to burn and AlO emission is measured, then the aluminum is burning---even taking into account AlO emission from the oxide layer. However, when no AlO emission is measured, it does not necessarily mean that the aluminum is not burning. When AlO emission is measured it indicates that the temperatures are high enough to sustain aluminum combustion which produces AlO, and that oxidizers are present which react to produce the AlO emission. The relative intensities for the same time frame of AlO emission measured could be indicators about the temperature or number of reactions occurring. (Abstract shortened by UMI.)

  10. Dragon’s Claws: The Improvised Explosive Device (IED) as a Weapon of Strategic Influence

    DTIC Science & Technology

    2009-03-01

    admiration, respect, regret, sadness, guilt, and even anguish. They emotionally prepared themselves for loading their friends’ flag- draped coffins...including attacks on armoured vehicles, outposts and helicopters.164 AQI certainly has not limited its operations to the guidelines of Zarqawi’s letter...reports of American casualties, glimpses of flag- draped coffins, and stories of towns rallying behind the families of their fallen heroes accumulate in

  11. Explosive Destruction System’s Drum Filter. Part 1. Experimental Validation

    DTIC Science & Technology

    2011-06-01

    test to quantify filtration performance for MEA. Being a relatively low vapor pressure chemical, MEA is strongly adsorbed by microporous adsorbents...DMMP and the nerve/HD agents I I that it simulates are strongly adsorbed by microporous adsorbents, loading on the adsorbent is relatively...is started, the challenge chemical is fed to the top of the test filter located in an insulated enclosure (9), which can be seen immediately to the

  12. In Vitro Studies of Primary Explosive Blast Loading on Neurons

    DTIC Science & Technology

    2015-09-01

    blast but was significantly higher for the triple blast. Membrane permeability was also evaluated by calcein dye . Calcein is normally a membrane...impermeable dye ; however, upon damage to the plasma membrane, leakage of the dye into the cytosol can occur, causing an increase in the fluorescence of the...intensities were significantly higher for the injured cells compared with the control and sham. However, the difference in dye uptake between the singly and

  13. The Residual Strength of a Ship after an Internal Explosion

    DTIC Science & Technology

    1988-05-01

    uafcd by the presence of small holes, and is roughly equal to three times the critical buckling load. With regards to application , however, the...not be described by a single measure of failure. Several promising approaches to EPFM are being developed, however, which offer some insights into the...toughness so determined is a material property, and indicates that the rigid-plastic equation is valid for certain applications . From a global energy

  14. Effects of Dynamic Impact Loading on Microstructure of FCC (TWIP) Steel

    DTIC Science & Technology

    2014-08-01

    experimental development and fundamental studies into weld metal solidification cracking in steels and stainless steels . He has also undertaken...bands (ABS) may appear when the steel is subjected to high strain rate deformation. They concluded the following: 1. For TWIP steel deformed under...mm) was selected as a trial material in this case. The Explosive Bulge Test (EBT) was performed on the TWIP steel using charge weight (PE4 high

  15. Structures to Resist the Effects of Accidential Explosions. Volume 4. Reinforced Concrete Design

    DTIC Science & Technology

    1987-04-01

    menus , however, references are given defining similar procedures for, one-way elements. Procedure: Step 1. Establish design parameters: a. Blast loads...Torsional capacity. 2.4 Kfc )112 t1.v2 1/2 (eq. 4-146) [1 +( u tu A -80 V. 2.4 x (4,000)S~~~~~~~VtC ........... 1 /2 tI 1.2 x 235.2) ] 82.5 142.6 psi

  16. Blasting response of the Eiffel Tower

    NASA Astrophysics Data System (ADS)

    Horlyck, Lachlan; Hayes, Kieran; Caetano, Ryan; Tahmasebinia, Faham; Ansourian, Peter; Alonso-Marroquin, Fernando

    2016-08-01

    A finite element model of the Eiffel Tower was constructed using Strand7 software. The model replicates the existing tower, with dimensions justified through the use of original design drawings. A static and dynamic analysis was conducted to determine the actions of the tower under permanent, imposed and wind loadings, as well as under blast pressure loads and earthquake loads due to an explosion. It was observed that the tower utilises the full axial capacity of individual members by acting as a `truss of trusses'. As such, permanent and imposed loads are efficiently transferred to the primary columns through compression, while wind loads induce tensile forces in the windward legs and compressive forces in the leeward. Under blast loading, the tower experienced both ground vibrations and blast pressures. Ground vibrations induced a negligibly small earthquake loading into the structure which was ignored in subsequent analyses. The blast pressure was significant, and a dynamic analysis of this revealed that further research is required into the damping qualities of the structure due to soil and mechanical properties. In the worst case scenario, the blast was assumed to completely destroy several members in the adjacent leg. Despite this weakened condition, it was observed that the tower would still be able to sustain static loads, at least for enough time for occupant evacuation. Further, an optimised design revealed the structure was structurally sound under a 46% reduction of the metal tower's mass.

  17. Particle Size Effects on CL-20 Initiation and Detonation

    NASA Astrophysics Data System (ADS)

    Valancius, Cole; Bainbridge, Joe; Love, Cody; Richardson, Duane

    2017-06-01

    Particle size or specific surface area effects on explosives has been of interest to the explosives community for both application and modeling of initiation and detonation. Different particles sizes of CL-20 were used in detonator experiments to determine the effects of particle size on initiation, run-up to steady state detonation, and steady state detonation. Historical tests have demonstrated a direct relationship between particle size and initiation. However, historical tests inadvertently employed density gradients, making it difficult to discern the effects of particle size from the effects of density. Density gradients were removed from these tests using a larger diameter, shorter charge column, allowing for similar loading across different particle sizes. Without the density gradient, the effects of particle size on initiation and detonation are easier to determine. The results of which contrast with historical results, showing particle size does not directly affect initiation threshold.

  18. Two-material optimization of plate armour for blast mitigation using hybrid cellular automata

    NASA Astrophysics Data System (ADS)

    Goetz, J.; Tan, H.; Renaud, J.; Tovar, A.

    2012-08-01

    With the increased use of improvised explosive devices in regions at war, the threat to military and civilian life has risen. Cabin penetration and gross acceleration are the primary threats in an explosive event. Cabin penetration crushes occupants, damaging the lower body. Acceleration causes death at high magnitudes. This investigation develops a process of designing armour that simultaneously mitigates cabin penetration and acceleration. The hybrid cellular automaton (HCA) method of topology optimization has proven efficient and robust in problems involving large, plastic deformations such as crash impact. Here HCA is extended to the design of armour under blast loading. The ability to distribute two metallic phases, as opposed to one material and void, is also added. The blast wave energy transforms on impact into internal energy (IE) inside the solid medium. Maximum attenuation occurs with maximized IE. The resulting structures show HCA's potential for designing blast mitigating armour structures.

  19. Influence of insulating coating on aluminum wire explosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yang; Wu, Jian, E-mail: jxjawj@gmail.com; State Key Laboratory of Intense Pulse Radiation of Simulation and Effect, Northwest Institute of Nuclear Technology, Xi'an 710024

    2014-10-15

    Single wire explosions are widely used in understanding the early stages of z-pinch experiments. This paper presents a serial of experiments conducted on the pulse power generator with ∼1 kA peak current and ∼10 ns rising time in Xi'an Jiao Tong University. Polyimide coated aluminum wires and uncoated ones were tested under three different voltages to analyze the effect of insulating coating. Experimental results showed that insulating coating can increase the energy deposition 10%∼30% in aluminum wires by delaying the voltage collapse and raising the maximum load resistance. The substantial energy deposition resulted in about 20% faster expansion rates for coated wires.more » Experimental evidence that plasma channel shunts the current from the wire core was observed by streak camera and schlieren graphs. This paper also briefly discussed the influence of nonuniform coating on the morphology of wire expansion.« less

  20. A New Spin on an Old Technology: Piezoelectric Ejecta Diagnostics for Shock Environments

    NASA Astrophysics Data System (ADS)

    Vogan, W. S.; Anderson, W. W.; Grover, M.; King, N. S. P.; Lamoreaux, S. K.; Morley, K. B.; Rigg, P. A.; Stevens, G. D.; Turley, W. D.; Buttler, W. T.

    2006-07-01

    In our investigation of ejecta, or metal particulate emitted from a surface subjected to shock-loaded conditions, we have developed a shock experiment suitable for testing new ideas in piezoelectric mass and impact detectors. High-explosive (HE) shock loading of tin targets subjected to various machined and compressed finishes results in significant trends in ejecta characteristics of interest such as areal density and velocity. Our enhanced piezoelectric diagnostic, "piezo-pins" modified for shock mitigation, have proven levels of robustness and reliability suitable for effective operation in these ejecta milieux. These field tests address questions about ejecta production from surfaces of interest; experimental results are discussed and compared with those from complementary diagnostics such as x-ray and optical attenuation visualization techniques.

  1. Design of SC walls and slabs for impulsive loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varma, Amit H.

    2015-11-11

    Reinforced concrete (RC) structures have historically been the preferred choice for blast resistant structures because of their mass and the ductility provided by steel reinforcement. Steel-plate composite (SC) walls are a viable alternative to RC for protecting the infrastructure against explosive threats. SC structures consist of two steel faceplates with a plain concrete core between them. The steel faceplates are anchored to the concrete using stud anchors and connected to each other using tie bars. SC structures provide mass from the concrete infill and ductility from the continuous external steel faceplates. This dissertation presents findings and recommendations from experimental andmore » analytical investigations of the performance of SC walls subjected to far-field blast loads.« less

  2. Extraordinary sediment delivery and rapid geomorphic response following the 2008–2009 eruption of Chaitén Volcano, Chile

    USGS Publications Warehouse

    Major, Jon J.; Bertin, Daniel; Pierson, Thomas C.; Amigo, Alvaro; Iroume, Andres; Ulloa, Hector; Castro, Jonathan M.

    2016-01-01

    The 10 day explosive phase of the 2008–2009 eruption of Chaitén volcano, Chile, draped adjacent watersheds with a few cm to >1 m of tephra. Subsequent lava-dome collapses generated pyroclastic flows that delivered additional sediment. During the waning phase of explosive activity, modest rainfall triggered an extraordinary sediment flush which swiftly aggraded multiple channels by many meters. Ten kilometer from the volcano, Chaitén River channel aggraded 7 m and the river avulsed through a coastal town. That aggradation and delta growth below the abandoned and avulsed channels allow estimates of postdisturbance traction-load transport rate. On the basis of preeruption bathymetry and remotely sensed measurements of delta-surface growth, we derived a time series of delta volume. The initial flush from 11 to 14 May 2008 deposited 0.5–1.5 × 106 m3 of sediment at the mouth of Chaitén River. By 26 May, after channel avulsion, a second delta amassed about 2 × 106 m3 of sediment; by late 2011 it amassed about 11 × 106 m3. Accumulated sediment consists of low-density vesicular pumice and lithic rhyolite sand. Rates of channel aggradation and delta growth, channel width, and an assumed deposit bulk density of 1100–1500 kg m−3 indicate mean traction-load transport rate just before and shortly after avulsion (∼14–15 May) was very high, possibly as great as several tens of kg s−1 m−1. From October 2008 to December 2011, mean traction-load transport rate declined from about 7 to 0.4 kg−1 m−1. Despite extraordinary sediment delivery, disturbed channels recovered rapidly (a few years).

  3. Simulation of working conditions by maximum work load on firefighters.

    PubMed

    Lalić, Hrvoje; Bukmir, Leonardo; Ferhatović, Mensur

    2007-03-01

    The aim of this research is to find out whether the firefighter manpower is adequate to the requirements in the field under the most severe conditions. It also attempts to test whether firefighters' working ability corresponds to their age. To that purpose 220 Croatian firefighters from the Littoral Mountainous county, 99 professional firefighters from the city of Rijeka, 45 professional firefighters from its suburbs and 76 volunteer firefighters from the suburbs were submitted to load test, fitness test--stepping on the bench for three minutes, repetitive power test--sit-ups lasting 1 minute, and a leap-explosive power test. The fitness test was repeated carrying Drdäer's respiratory apparatus PSS 100 with compressed air, so respiratory values were compared before and after the burden of the respiratory apparatus. The results have shown that professional firefighters from the city have the mean increased body mass index (BMI) 26, and professionals from the suburbs BMI 27. In spite of the increased body mass they showed good fitness, spirometric values before and after the load showed neither restrictive nor obstructive ventilation difficulties, which indicates a good condition of cardio respiratory system and also adequate protective equipment. The initial hypothesis has been confirmed: with age, equipped with personnel does not necessarily mean operative equipment, because linear regressive analyses have shown a negative correlation coefficient in relation to repetitive and explosive power. Also, on the average somewhat younger volunteer firefighters are stronger in performing the repetitive power test (p < 0.05) compared to professional firefighters. Occupational medicine should suggest administrative health measures to improve the accelerated retirement plan and shorten the shifts so that all available firefighters could instantaneously be included in the field intervention.

  4. Changes in Muscle Architecture, Explosive Ability, and Track and Field Throwing Performance Throughout a Competitive Season and After a Taper.

    PubMed

    Bazyler, Caleb D; Mizuguchi, Satoshi; Harrison, Alex P; Sato, Kimitake; Kavanaugh, Ashley A; DeWeese, Brad H; Stone, Michael H

    2017-10-01

    The purpose of this study was to examine the effects of an overreach and taper on measures of muscle architecture, jumping, and throwing performance in Division I collegiate throwers preparing for conference championships. Six collegiate track and field throwers (3 hammer, 2 discus, 1 javelin) trained for 12 weeks using a block-periodization model culminating with a 1-week overreach followed by a 3-week taper (ORT). Session rating of perceived exertion training load (RPETL) and strength training volume-load times bar displacement (VLd) were recorded weekly. Athletes were tested pre-ORT and post-ORT on measures of vastus lateralis architecture, unloaded and loaded squat and countermovement jump performance, underhand and overhead throwing performance, and competition throwing performance. There was a statistical reduction in weight training VLd/session (d = 1.21, p ≤ 0.05) and RPETL/session (d = 0.9, p ≤ 0.05) between the in-season and ORT training phases. Five of 6 athletes improved overhead throw and competition throwing performance after the ORT (d = 0.50, p ≤ 0.05). Vastus lateralis muscle thickness statistically increased after the in-season training phase (d = 0.28, p ≤ 0.05) but did not change after the ORT. Unloaded countermovement jump peak force and relative peak power improved significantly after the ORT (d = 0.59, p ≤ 0.05, d = 0.31, p ≤ 0.05, respectively). These findings demonstrate that an overreaching week followed by a 3-week taper is an effective means of improving explosive ability and throwing performance in collegiate track and field throwers despite the absence of detectable changes in muscle architecture.

  5. A novel hybrid organosolv: steam explosion method for the efficient fractionation and pretreatment of birch biomass.

    PubMed

    Matsakas, Leonidas; Nitsos, Christos; Raghavendran, Vijayendran; Yakimenko, Olga; Persson, Gustav; Olsson, Eva; Rova, Ulrika; Olsson, Lisbeth; Christakopoulos, Paul

    2018-01-01

    The main role of pretreatment is to reduce the natural biomass recalcitrance and thus enhance saccharification yield. A further prerequisite for efficient utilization of all biomass components is their efficient fractionation into well-defined process streams. Currently available pretreatment methods only partially fulfill these criteria. Steam explosion, for example, excels as a pretreatment method but has limited potential for fractionation, whereas organosolv is excellent for delignification but offers poor biomass deconstruction. In this article, a hybrid method combining the cooking and fractionation of conventional organosolv pretreatment with the implementation of an explosive discharge of the cooking mixture at the end of pretreatment was developed. The effects of various pretreatment parameters (ethanol content, duration, and addition of sulfuric acid) were evaluated. Pretreatment of birch at 200 °C with 60% v/v ethanol and 1% w/w biomass H 2 SO 4 was proven to be the most efficient pretreatment condition yielding pretreated solids with 77.9% w/w cellulose, 8.9% w/w hemicellulose, and 7.0 w/w lignin content. Under these conditions, high delignification of 86.2% was demonstrated. The recovered lignin was of high purity, with cellulose and hemicellulose contents not exceeding 0.31 and 3.25% w/w, respectively, and ash to be < 0.17% w/w in all cases, making it suitable for various applications. The pretreated solids presented high saccharification yields, reaching 68% at low enzyme load (6 FPU/g) and complete saccharification at high enzyme load (22.5 FPU/g). Finally, simultaneous saccharification and fermentation (SSF) at 20% w/w solids yielded an ethanol titer of 80 g/L after 192 h, corresponding to 90% of the theoretical maximum. The novel hybrid method developed in this study allowed for the efficient fractionation of birch biomass and production of pretreated solids with high cellulose and low lignin contents. Moreover, the explosive discharge at the end of pretreatment had a positive effect on enzymatic saccharification, resulting in high hydrolyzability of the pretreated solids and elevated ethanol titers in the following high-gravity SSF. To the best of our knowledge, the ethanol concentration obtained with this method is the highest so far for birch biomass.

  6. Experimental Verification of a Theoretical Loading Function Describing Momentum Transfer from an Explosion to a Tree Stem

    DTIC Science & Technology

    1976-01-01

    Environmental Systems Laboratory P. 0. Box 631, Vlcksburg, Mississippi 39100 10. PROGRAM ELEMENT. PROJECT, TASK AREA » WORK UNIT NUMBERS Project...phases of the study were under the general supervision of Messrs. W. G. Shockley, Chief, Mobility and Environmental Systemo Labo- ratory (MESL), and...W. E. Grabau, former Chief, Environmental Systems Division (ESD) and now Special Assistant, MESL, and under the direct supervision of Mr. J. K

  7. Live fire testing requirements - Assessing the impact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Bryon, J.F.

    1992-08-01

    Full-up live-fire testing (LFT) of aircraft configured for combat is evaluated in terms of the practical implications of the technique. LFT legislation requires the testing of tactical fighters, helicopters, and other aircraft when they are loaded with the flammables and explosives associated with combat. LFT permits the study of damage mechanisms and battle-damage repair techniques during the design phase, and probability-of-kill estimates and novel systems designs can be developed based on LFT data.

  8. Seismic Pulse Broadening Associated with Fracture Damage Caused by Explosions in Crystalline Rock

    DTIC Science & Technology

    1989-08-30

    1/ 3 ’)I 3/ 2 -C2(() - 1 +) 3D °2/ 3 D 1 - D 1/ - (I -C, X) 1+ 2/3)-)o _ I C4)L( oj and for loading at constant a3 43 D 02𔃽 (D )?/3 31 (28) where S...U3, 103-112. Von Karman, T. (1911). Festigkeitswversuche unter allseiRgim druck , Z. Ver. Dt. Ing., 51, 1749-1757. Wawersik, W.R., and C. Fairhurst

  9. Modeling Gas Bubble Behaviour and Loading on a Rigid Target due to Close-Proximity Underwater Explosions: Comparison to Tests Conducted at DRDC Suffield

    DTIC Science & Technology

    2010-11-01

    rayon de bulle de type champ libre, d’une cible rigide. À cette distance de sécurité, l’onde de choc et la bulle de gaz contribuent de façon...produisent des prédictions d’impulsion améliorées pour les cibles rigides. DRDC Atlantic TM 2010-238 iii Executive summary Modeling...i Executive summary

  10. Shock-treated Lunar Soil Simulant: Preliminary Assessment as a Construction Material

    NASA Technical Reports Server (NTRS)

    Boslough, Mark B.; Bernold, Leonhard E.; Horie, Yasuyuki

    1992-01-01

    In an effort to examine the feasibility of applying dynamic compaction techniques to fabricate construction materials from lunar regolith, preliminary explosive shock-loading experiments on lunar soil simulants were carried out. Analysis of our shock-treated samples suggests that binding additives, such as metallic aluminum powder, may provide the necessary characteristics to fabricate a strong and durable building material (lunar adobe) that takes advantage of a cheap base material available in abundance: lunar regolith.

  11. Deformation, Fracture and Explosive Properties of Reactive Materials.

    DTIC Science & Technology

    1985-02-01

    pump was adjusted such that the oressure inside the system did not exceed 10- 5 torr at maximum gas evol ut ion. c) Laser Initiation In a separate...of the impact and ignition processes. Laser - L speckle, used in conjun ion with a specimen loaded in the Brazilian test geometry which gives ten*le...by heating slowly, by fracturing single crystals and by laser irradiation.- Dfferent reaction pathways were found in each case and these are

  12. The Effect of Small Additions of Carbon Nanotubes on the Mechanical Properties of Epoxy Polymers under Static and Dynamic Loads

    NASA Astrophysics Data System (ADS)

    Tarasov, A. E.; Badamshina, E. R.; Anokhin, D. V.; Razorenov, S. V.; Vakorina, G. S.

    2018-01-01

    The results of measurements of the mechanical characteristics of cured epoxy composites containing small and ultrasmall additions of single-walled carbon nanotubes in the concentration range from 0 to 0.133 wt % under static and dynamic loads are presented. Static measurements of strength characteristics have been carried out under standard test conditions. Measurements of the Hugoniot elastic limit and spall strength were performed under a shock wave loading of the samples at a deformation rate of (0.8-1.5) ß 105 s-1 before the fracture using explosive devices by recording and subsequent analyzing the evolution of the full wave profiles. It has been shown that agglomerates of nanotubes present in the structure of the composites after curing cause a significant scatter of the measured strength parameters, both in the static and in the dynamic test modes. However, the effects of carbon nanotube additions in the studied concentration interval on the physical and mechanical characteristics of the parameters were not revealed for both types of loading.

  13. Explosion protection for vehicles intended for the transport of flammable gases and liquids--an investigation into technical and operational basics.

    PubMed

    Förster, Hans; Günther, Werner

    2009-05-30

    In Europe, the transport of flammable gases and liquids in tanks has been impacted by new developments: for example, the introduction of the vapour-balancing technique on a broad scale and the steady increase in the application of electronic components with their own power sources; furthermore, new regulatory policies like the ATEX Directives are being enforced in the European Union. With this background in mind, the present investigation aims to provide a basis for future developments of the relevant explosion protection regulations in the safety codes for the transport of dangerous goods (RID/ADR). Specifically, the concentration of gas in the air was measured under various practical conditions while tank vehicles were being loaded with flammable gases or liquids. These spot-test data were supplemented by systematic investigations at a road tanker placed in our test field. With respect to non-electrical ignition sources, a closer investigation of the effect of hot surfaces was carried out. With regard to improving the current regulations, the results of our investigation show that it would be reasonable to implement a stronger differentiation of the characteristics of the dangerous goods (gaseous/liquid, flashpoint) on the one hand and of the techniques applied (loading with and without vapour-balancing system) on the other hand. Conclusions for the further development of the current international regulations are proposed.

  14. Lower limb explosive strength capacity in elderly women: effects of resistance training and healthy diet.

    PubMed

    Edholm, Peter; Strandberg, Emelie; Kadi, Fawzi

    2017-07-01

    The effects of 24 wk of resistance training combined with a healthy diet on lower limb explosive strength capacity were investigated in a population of healthy elderly women. Participants ( n = 63; 67.5 ± 0.4 yr) were randomized into three groups; resistance training (RT), resistance training and healthy diet (RT-HD), and control (CON). Progressive resistance training was performed at a load of 75-85% one-repetition maximum. A major adjustment in the healthy dietary approach was an n-6/n-3 polyunsaturated fatty acid (PUFA) ratio below 2. Lower limb maximal strength, explosive force capacity during dynamic and isometric movements, whole body lean mass, and physical function were assessed. Whole body lean mass significantly increased by 1.5 ± 0.5% in RT-HD only. Isometric strength performance during knee extension as well as the performance in the five sit-to-stand and single-leg-stance tests increased similarly in RT and RT-HD. Improvements in dynamic peak power and time to reach peak power (i.e shorter time) during knee extension occurred in both RT (+15.7 ± 2.6 and -11.0 ± 3.8%, respectively) and RT-HD (+24.6 ± 2.6 and -20.3 ± 2.7%, respectively); however, changes were significantly larger in RT-HD. Similarly, changes in peak force and rate of force development during squat jump were higher in RT-HD (+58.5 ± 8.4 and +185.4 ± 32.9%, respectively) compared with RT (+35.7 ± 6.9 and +105.4 ± 22.4%, respectively). In conclusion, a healthy diet rich in n-3 PUFA can optimize the effects of resistance training on dynamic explosive strength capacity during isolated lower limb movements and multijoint exercises in healthy elderly women. NEW & NOTEWORTHY Age-related decline in lower limb explosive strength leads to impaired ability to perform daily living tasks. The present randomized controlled trial demonstrates that a healthy diet rich in n-3 polyunsaturated fatty acid (n-3 PUFA) enhances resistance training-induced gains in dynamic explosive strength capacity during isolated lower limb movements and multijoint exercises in healthy elderly women. This supports the use of strategies combining resistance training and dietary changes to mitigate the decline in explosive strength capacity in older adults. Copyright © 2017 the American Physiological Society.

  15. Shock compression and flash-heating of molecular adsorbates on the picosecond time scale

    NASA Astrophysics Data System (ADS)

    Berg, Christopher Michael

    An ultrafast nonlinear coherent laser spectroscopy termed broadband multiplex vibrational sum-frequency generation (SFG) with nonresonant suppression was employed to monitor vibrational transitions of molecular adsorbates on metallic substrates during laser-driven shock compression and flash-heating. Adsorbates were in the form of well-ordered self-assembled monolayers (SAMs) and included molecular explosive simulants, such as nitroaromatics, and long chain-length alkanethiols. Based on reflectance measurements of the metallic substrates, femtosecond flash-heating pulses were capable of producing large-amplitude temperature jumps with DeltaT = 500 K. Laser-driven shock compression of SAMs produced pressures up to 2 GPa, where 1 GPa ≈ 1 x 104 atm. Shock pressures were estimated via comparison with frequency shifts observed in the monolayer vibrational transitions during hydrostatic pressure measurements in a SiC anvil cell. Molecular dynamics during flash-heating and shock loading were probed with vibrational SFG spectroscopy with picosecond temporal resolution and sub-nanometer spatial resolution. Flash-heating studies of 4-nitrobenzenethiolate (NBT) on Au provided insight into effects from hot-electron excitation of the molecular adsorbates at early pump-probe delay times. At longer delay times, effects from the excitation of SAM lattice modes and lower-energy NBT vibrations were shown. In addition, flash-heating studies of alkanethiolates demonstrated chain disordering behaviors as well as interface thermal conductances across the Au-SAM junction, which was of specific interest within the context of molecular electronics. Shock compression studies of molecular explosive simulants, such as 4-nitrobenzoate (NBA), demonstrated the proficiency of this technique to observe shock-induced molecular dynamics, in this case orientational dynamics, on the picosecond time scale. Results validated the utilization of these refined shock loading techniques to probe the shock initiation or first bond-breaking reactions in molecular explosives such as delta-HMX: a necessary study for the development of safer and more effective energetic materials.

  16. Contact between traps and surfaces during contact sampling of explosives in security settings.

    PubMed

    Chaffee-Cipich, Michelle N; Hoss, Darby J; Sweat, Melissa L; Beaudoin, Stephen P

    2016-03-01

    Realistic descriptions of interfacial contact between rough, deformable surfaces under load are difficult to obtain; however, this contact is of great import in a wide range of applications. Here, we detail, through experiment and computational simulation, the interfacial contact between four common traps and five commonly investigated surfaces encountered in explosives detection applications associated with airport security. The Young's modulus and hardness of four traps and seven substrates were measured using nanoindentation. These properties determine how deformation occurs when traps are applied for contact sampling of explosives. The nanoindentation data were analyzed using the Oliver-Pharr method, and an indenter area function was created using silicon and gold as the reference materials. The Young's moduli of the traps ranged from 0.2 to 8 GPa, while those of the surfaces ranged from 0.5 to 4 GPa. The hardness values of the traps ranged from 0.005 to 0.22 GPa, while those of the surfaces ranged from 0.02 to 0.2 GPa. For each of 20 scenarios (4 traps, 5 surfaces), six contact simulations were performed. In these contact simulations, the Greenwood-Willliamson microcontact model was used to represent the behavior of the asperities on the traps, while the Timoshenko Beam model was used to describe the macroscopic behavior of the bulk trap materials spanning the space between asperities. This combination of feature- and trap-scale modeling provides a more realistic description of the interfacial contact than either model applied individually. The calculated distributions of separation distances between the traps and surfaces when the traps were contacted with the surfaces under a normal load were compared to estimate the relative effectiveness of the traps at interrogating the topography of the surfaces. This method is proposed as a tool to guide the development of trap materials for surface sampling and surface cleaning applications. Copyright © 2016. Published by Elsevier Ireland Ltd.

  17. Spall fracture and strength of uranium, plutonium and their alloys under shock wave loading

    NASA Astrophysics Data System (ADS)

    Golubev, Vladimir

    2015-06-01

    Numerous results on studying the spall fracture phenomenon of uranium, two its alloys with molybdenum and zirconium, plutonium and its alloy with gallium under shock wave loading are presented in the paper. The majority of tests were conducted with the samples in the form of disks 4mm in thickness. They were loaded by the impact of aluminum plates 4mm thick through a copper screen serving as the cover or bottom part of a special container. The initial temperature of samples was changed in the range of -196 - 800 C degree for uranium and 40 - 315 C degree for plutonium. The character of spall failure of materials and the degree of damage for all tested samples were observed on the longitudinal metallographic sections of recovered samples. For a concrete test temperature, the impact velocity was sequentially changed and therefore the loading conditions corresponding to the consecutive transition from microdamage nucleation up to complete macroscopic spall fracture were determined. Numerical calculations of the conditions of shock wave loading and spall fracture of samples were performed in the elastoplastic approach. Several two- and three-dimensional effects of loading were taken into account. Some results obtained under conditions of intensive impulse irradiation and intensive explosive loading are presented too. The rather complete analysis and comparison of obtained results with the data of other researchers on the spall fracture of examined materials were conducted.

  18. High Explosive Detonation-Confiner Interactions

    NASA Astrophysics Data System (ADS)

    Short, Mark; Quirk, James J.

    2018-01-01

    The primary purpose of a detonation in a high explosive (HE) is to provide the energy to drive a surrounding confiner, typically for mining or munitions applications. The details of the interaction between an HE detonation and its confinement are essential to achieving the objectives of the explosive device. For the high pressures induced by detonation loading, both the solid HE and confiner materials will flow. The structure and speed of a propagating detonation, and ultimately the pressures generated in the reaction zone to drive the confiner, depend on the induced flow both within the confiner and along the HE-confiner material interface. The detonation-confiner interactions are heavily influenced by the material properties and, in some cases, the thickness of the confiner. This review discusses the use of oblique shock polar analysis as a means of characterizing the possible range of detonation-confiner interactions. Computations that reveal the fluid mechanics of HE detonation-confiner interactions for finite reaction-zone length detonations are discussed and compared with the polar analysis. This includes cases of supersonic confiner flow; subsonic, shock-driven confiner flow; subsonic, but shockless confiner flow; and sonic flow at the intersection of the detonation shock and confiner material interface. We also summarize recent developments, including the effects of geometry and porous material confinement, on detonation-confiner interactions.

  19. Explosion symmetry improvement of polyimide-coated tungsten wire in vacuum on negative discharge facility

    NASA Astrophysics Data System (ADS)

    Li, Mo; Wu, Jian; Lu, Yihan; Li, Xingwen; Li, Yang; Qiu, Mengtong

    2018-01-01

    Tungsten wire explosion is very asymmetric when fast current rate and insulated coatings are both applied on negative discharge facility using a 24-mm-diameter cathode geometry, which is commonly used on mega-ampere facilities. It is inferred, based on an analytical treatment of the guiding center drift and COMSOL simulations, that the large negative radial electric field causes early voltage breakdown and terminates energy deposition into the wire core on the anode side of the wire. After the anode side is short circuited, the radial electric field along the wire surface on the cathode side will change its polarity and thus leading to additional energy deposition into the wire core. This change causes ˜10 times larger energy deposition and ˜14 times faster explosion velocity in the cathode side than the anode side. In order to reduce this asymmetry, a hollow cylindrical cathode geometry was used to reverse the polarity of radial electric field and was optimized to use on multi-MA facilities. In this case, fully vaporized polyimide-coated tungsten wire with great symmetry improvement was achieved with energy deposition of ˜8.8 eV/atom. The atomic and electronic density distributions for the two different load geometries were obtained by the double-wavelength measurement.

  20. Numerical simulations of microcrack-related damage and ignition behavior of mild-impacted polymer bonded explosives.

    PubMed

    Yang, Kun; Wu, Yanqing; Huang, Fenglei

    2018-08-15

    A physical model is developed to describe the viscoelastic-plastic deformation, cracking damage, and ignition behavior of polymer-bonded explosives (PBXs) under mild impact. This model improves on the viscoelastic-statistical crack mechanical model (Visco-SCRAM) in several respects. (i) The proposed model introduces rate-dependent plasticity into the framework which is more suitable for explosives with relatively high binder content. (ii) Damage evolution is calculated by the generalized Griffith instability criterion with the dominant (most unstable) crack size rather than the averaged crack size over all crack orientations. (iii) The fast burning of cracks following ignition and the effects of gaseous products on crack opening are considered. The predicted uniaxial and triaxial stress-strain responses of PBX9501 sample under dynamic compression loading are presented to illustrate the main features of the materials. For an uncovered cylindrical PBX charge impacted by a flat-nosed rod, the simulated results show that a triangular-shaped dead zone is formed beneath the front of the rod. The cracks in the dead zone are stable due to friction-locked stress state, whereas the cracks near the front edges of dead zone become unstable and turn into hotspots due to high-shear effects. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Effect of shock pressure on the structure and superconducting properties of Y-Ba-Cu-O in explosively fabricated bulk metal-matrix composites

    NASA Technical Reports Server (NTRS)

    Murr, L. E.; Niou, C. S.; Pradhan-Advani, M.

    1991-01-01

    While it is now well established that copper-oxide-based power, or virtually any other ceramic superconductor powder, can be consolidated and encapsulated within a metal matrix by explosive consolidation, the erratic superconductivity following fabrication has posed a major problem for bulk applications. The nature of this behavior was found to arise from microstructural damage created in the shock wave front, and the residual degradation in superconductivity was demonstrated to be directly related to the peak shock pressure. The explosively fabricated or shock loaded YBa2Cu3Ox examples exhibit drastically altered rho (or R) - T curves. The deterioration in superconductivity is even more noticeable in the measurement of ac magnetic susceptibility and flux exclusion or shielding fraction which is also reduced in proportion to increasing peak shock pressure. The high frequency surface resistance (in the GHz range) is also correspondingly compromised in explosively fabricated, bulk metal-matrix composites based on YBa2Cu3O7. Transmission electron microscopy (including lattice imaging techniques) is being applied in an effort to elucidate the fundamental (microstructural) nature of the shock-induced degradation of superconductivity and normal state conductivity. One focus of TEM observations has assumed that oxygen displaced from b-chains rather than oxygen-vacancy disorder in the basal plane of oxygen deficient YBa2Cu3Ox may be a prime mechanism. Shock-wave displaced oxygen may also be locked into new positions or interstitial clusters or chemically bound to displaced metal (possibly copper) atoms to form precipitates, or such displacements may cause the equivalent of local lattice cell changes as a result of stoichiometric changes. While the shock-induced suppression of T(sub c) is not desirable in the explosive fabrication of bulk metal-matrix superconductors, it may be turned into an advantage if the atomic-scale distortion can be understood and controlled as local flux pinning sites.

  2. Behavior and Release of Nitrogen at Mines and Quarries in Nordic Conditions

    NASA Astrophysics Data System (ADS)

    Karlsson, Teemu; Neitola, Raisa; Jermakka, Johannes; Merta, Elina; Mroueh, Ulla-Maija

    2015-04-01

    The increased extraction of mineral resources and mining activities creates added pressure on the environmental issues and a proper water management in mining areas in Finland. Among others, nitrogen compounds released from explosives or from mining processes can have a detrimental effect on the environment. Thus, this project aimed at comprehensive understanding on the nitrogen issue in the extractive industry. The project collected essential data on nitrogen compounds present in the environments of mines and quarries, and generated better understanding of the discharge and behaviour of nitrogen compounds in mining areas. The sources and balances of explosives-originated nitrogen compounds at mines and quarries of different sizes were investigated and compared. Additionally, the focus was in 'nitrogen smudging' problem of waste rocks and the intensity, as well as evolution and chemical characteristics of their nitrogen contamination. According to the results, the total load of potential nitrogen to the environment depends on the scale and type of the activity as well as the type of explosives used. The main emission sources of nitrogen are process and dewatering waters. A lysimeter study showed that the explosives originated nitrogen content of left over stones from natural stone quarrying is relatively low and ca. half of the nitrogen is leached within the first weeks after detonation. The "nitrogen smudging" of natural stone quarrying left over stones is relatively low to begin with and enhanced by the rapid flushing by rainwater, thus the residues of explosives should not be considered to prevent the utilization of otherwise mineralogically inert waste rocks of good technical quality. The overall nitrogen management should take into account the background concentrations and sensitivity of the local ecosystem. The research project "Solution for Control of Nitrogen Discharges at Mines and Quarries, (MINIMAN)" was realized during years 2012-2014 as a cooperative project with GTK, VTT and TTY together with several industrial and international partners and financed by Tekes Green Mining Programme.

  3. Modeling Elastic Wave Propagation from an Underground Chemical Explosion Using Higher Order Finite Difference Approximation: Theory, Validation and Application to SPE

    NASA Astrophysics Data System (ADS)

    Hirakawa, E. T.; Ezzedine, S. M.; Petersson, A.; Sjogreen, B.; Vorobiev, O.; Pitarka, A.; Antoun, T.; Walter, W. R.

    2016-12-01

    Motions from underground explosions are governed by non-linear hydrodynamic response of material. However, the numerical calculation of this non-linear constitutive behavior is computationally intensive in contrast to the elastic and acoustic linear wave propagation solvers. Here, we develop a hybrid modeling approach with one-way hydrodynamic-to-elastic coupling in three dimensions in order to propagate explosion generated ground motions from the non-linear near-source region to the far-field. Near source motions are computed using GEODYN-L, a Lagrangian hydrodynamics code for high-energy loading of earth materials. Motions on a dense grid of points sampled on two nested shells located beyond the non-linear damaged zone are saved, and then passed to SW4, an anelastic anisotropic fourth order finite difference code for seismic wave modeling. Our coupling strategy is based on the decomposition and uniqueness theorems where motions are introduced into SW4 as a boundary source and continue to propagate as elastic waves at a much lower computational cost than by using GEODYN-L to cover the entire near- and the far-field domain. The accuracy of the numerical calculations and the coupling strategy is demonstrated in cases with a purely elastic medium as well as non-linear medium. Our hybrid modeling approach is applied to SPE-4' and SPE-5 which are the most recent underground chemical explosions conducted at the Nevada National Security Site (NNSS) where the Source Physics Experiments (SPE) are performed. Our strategy by design is capable of incorporating complex non-linear effects near the source as well as volumetric and topographic material heterogeneity along the propagation path to receiver, and provides new prospects for modeling and understanding explosion generated seismic waveforms. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-698608.

  4. Effect of shock pressure on the structure and superconducting properties of Y-Ba-Cu-O in explosively fabricated bulk metal-matrix composites

    NASA Technical Reports Server (NTRS)

    Murr, L. E.; Niou, C. S.; Pradhan, M.; Schoenlein, L. H.

    1990-01-01

    While it is now well established that copper-oxide-based powder, or virtually any other ceramic superconductor powder, can be consolidated and encapsulated within a metal matrix by explosive consolidation, the erratic superconductivity following fabrication has posed a major problem for bulk applications. The nature of this behavior was found to arise from microstructural damage created in the shock wave front, and the residual degradation in superconductivity was demonstrated to be directly related to the peak shock pressure. The explosively fabricated or shock loaded YBa2Cu3Ox examples exhibit drastically altered rho (or R) - T curves. The deterioration in superconductivity is even more noticeable in the measurement of ac magnetic susceptibility and flux exclusion or shielding fraction which is also reduced in proportion to increasing peak shock pressure. The high-frequency surface resistance (in the GHz range) is also correspondingly compromised in explosively fabricated, bulk metal-matrix composites based on YBa2Cu3O7. Transmission electron microscopy (including lattice imaging techniques) is being applied in an effort to elucidate the fundamental (microstructural) nature of the shock-induced degradation of superconductivity and normal state conductivity. One focus of TEM observations has assumed that oxygen displaced from b-chains rather than oxygen-vacancy disorder in the basal plane of oxygen deficient YBa2Cu3Ox may be a prime mechanism. Shock-wave displaced oxygen may also be locked into new positions or interstitial clusters or chemically bound to displaced metal (possibly copper) atoms to form precipitates, or such displacements may cause the equivalent of local lattice cell changes as a result of stoichiometric changes. While the shock-induced suppression of T(sub c) is not desirable in the explosive fabrication of bulk metal-matrix superconductors, it may be turned into an advantage if the atomic-scale distortion can be understood and controlled as local flux pinning sites.

  5. An Investigation into the Relative Risks from the Road Transport of Blasting Explosives in Maximum Loads of 5 Tonne and 16 Tonne

    DTIC Science & Technology

    1994-08-01

    Health and Safety Executive Magdalen House Stanley Precinct, Bootle Merseyside, L2O 3QZ United Kingdom P. A. MORETON AEA Technology Thomson House Risley...Warrington, WA3 6AT United Kingdom INTRODUCTION In 1992 the UK Health and Safety Commission published a report by the Advisory Committee on Dangerous...ADDRESS(ES) AEA Technology,Thomson House,Risley,Warrington, WA3 6AT, United Kingdom , 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING

  6. High Explosive Simulation of a Nuclear Surface Burst. A Feasibility Study

    DTIC Science & Technology

    1979-06-30

    International Compan ! proposed a method for applying the required close-in airblast loading to the ground surface in conjunction with the MINE THROW...internal energy, e. A check was made to ensure that the above EQS formulation did not introduce large artificial gradients into the pressure. 4.1.3 Some...Proj. Agency Harry Diamond Laboratories ATTN: TIO Department of the Army ATTN: DELHD-N-P Defense Intelligence Agency ATTN: DELHD-I-TL ATTN: DB-4C, E

  7. Caging the Dragon: The Containment of Underground Nuclear Explosions

    DTIC Science & Technology

    1995-06-01

    a nonuniform stress distribu- tion through the beam. Or, the torsion of a cylinder. If you load it into the plastic regime, the outside fibers get...driver, but you need some nonuniformities . So, we made a second sand column in which we put one permeability of sand in an outer annulus, and a...on this pumping business is that you need the atmospheric pumping, but it is the degree of nonuniformity that exists that makes it work. It is the

  8. 40. BUILDING NO. 454, ORDNANCE FACILITY (BAG CHANGE FILLING PLANT), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. BUILDING NO. 454, ORDNANCE FACILITY (BAG CHANGE FILLING PLANT), DETAIL SOUTHEAST SIDE OF EXTERIOR ELECTRICAL EQUIPMENT ROOM, SHOWING DOOR TO SEWING ROOM NO. 3, VENTILATOR FAN (OVER DOOR), STEAM LINE (PIPE), SEWING MACHINE MOTOR IN OVERHEAD, ALARM BELL, EXPLOSION-PROOF SWITCH BOXES, GROUNDS ON DOORS, PULL ALARM HANDLE (EXTREME RIGHT; PULLEY CABLE CONDUCTED IN CONDUIT TO SWITCH INSIDE BUILDING. PULLEYS INSIDE ALL ELBOW JOINTS.) - Picatinny Arsenal, 400 Area, Gun Bag Loading District, State Route 15 near I-80, Dover, Morris County, NJ

  9. Impulse Loading Resulting fromShallow Buried Explosives in Water-Saturated Sand

    DTIC Science & Technology

    2007-01-01

    speed photographs of the associated soil cratering and ejecting phenomena. The work of Bergeron et al. [6] was subsequently extended by Braid [7] to...place, a series of water hoses is placed in pit bottom to allow the introduction of water into the pit from the bottom. Next, approximately 14.2 m3...blast. Final report for contract no. DAAK70-92-C-0058, US Army Belvoir RDEC, Ft. Belvoir, VA, 1993. 6 Bergeron, D. Hlady, S., and Braid , M. P

  10. The First Thirty-six Years: A History of the Albuquerque District, 1935-1971

    DTIC Science & Technology

    1973-01-01

    rights of American citizens in the nation’s history . ZIA PROJECT LOS ALAMOS RANCH SCHOOL, FULLER LODGE Late in 1938 German scientists discovered that...explosive components of the atomic bomb were loaded into the rear seat of a sedan at Los Alamos for the journey to Trinity . Further assembly and tests of...TYPE 3. DATES COVERED 00-00-1973 to 00-00-1973 4. TITLE AND SUBTITLE The First Thirty-six Years : A History of the Albuquerque District, 1935

  11. Development of Equipment for Explosive Drilling.

    DTIC Science & Technology

    1976-06-01

    create an .eplosive drillirg capabilityw. Saftey . capsule procu-iIbility- & a xplos ive loading of the "apout* %mrs ,rie conaldelo tion dur!in design...the Mobile Drill Company , installed. 1he drill is driven through a power take-off arrangement by the truck motor. This equipment was recrnmnended by... applied in an axial direction. Its motion is also pr-vented by a lock created by a bzl held in engagement with a groove in the pin by a spring clip. When

  12. Ferroresonant Flux-Coupled Battery Charger

    NASA Technical Reports Server (NTRS)

    Mclyman, C. W.

    1986-01-01

    Portable battery charger operates at about 20 kHz to take advantage of relatively low weight and low acoustical noise of ferroresonant circuits operating in this frequency range. Charger split into stationary unit connected to powerline and mobile unit connected to battery or other load. Power transferred to mobile unit by magnetic coupling between mating transformer halves. Advantage where sparking at electrical connection might pose explosion hazard or where operator disabled and cannot manipulate plug into wall outlet. Likely applications for charger include wheelchairs and robots.

  13. Mechanism for Increasing the Pressure in an Oil Well by a Combustible Oxidizing Liquid Mixture

    NASA Astrophysics Data System (ADS)

    Melik-Gaikazov, G. V.

    2014-09-01

    A method of estimating the pressure pulse arising in a deep oil well as a result of the thermal explosion of a combustible oxidizing liquid mixture in it is presented. It was established that less than 10% of this mixture is expended for the formation of a pressure pulse in this well. The conditions under which a tubing string positioned in such a well experiences a plastic bending and its walls are crumpled were determined. The maximum admissible difference between the pressures at the walls of this tube were calculated, and axial compression loads were related to critical forces of different orders. It is shown that, when the indicated tube is submerged in the liquid in the well, its resistance to a short-time axial compression load increases.

  14. Method for making generally cylindrical underground openings

    DOEpatents

    Routh, J.W.

    1983-05-26

    A rapid, economical and safe method for making a generally cylindrical underground opening such as a shaft or a tunnel is described. A borehole is formed along the approximate center line of where it is desired to make the underground opening. The borehole is loaded with an explodable material and the explodable material is detonated. An enlarged cavity is formed by the explosive action of the detonated explodable material forcing outward and compacting the original walls of the borehole. The enlarged cavity may be increased in size by loading it with a second explodable material, and detonating the second explodable material. The process may be repeated as required until the desired underground opening is made. The explodable material used in the method may be free-flowing, and it may be contained in a pipe.

  15. Static and Dynamic Compaction of CL-20 Powders

    NASA Astrophysics Data System (ADS)

    Cooper, Marcia; Brundage, Aaron; Dudley, Evan

    2009-06-01

    Hexanitrohexaazaisowurtzitane (CL-20) powders were compacted under quasi-static and dynamic loading conditions. A uniaxial compression apparatus quasi-statically compressed the powders to 90% theoretical maximum density with applied stresses up to 0.5 GPa. Dynamic compaction measurements using low-density pressings (62-70% theoretical maximum density) were obtained in a single-stage gas gun at impact velocities between 0.17-0.70 km/s. Experiments were conducted in a reverse ballistic arrangement in which the CL-20 ladened projectile impacted a target consisting of an aluminized window. VISAR-measured particle velocities at the explosive-window interface determined the shock Hugoniot states for pressures up to 0.9 GPa. The powder compaction behavior is found to be stiffer under dynamic loading than under quasi-static loading. Additional gas gun tests were conducted in which the low-density CL-20 pressings were confined within a target cup by the aluminized window. This arrangement enabled temporal measurement of the transmitted wave profiles in which elastic wave precursors were observed.

  16. Dynamic diamond anvil cell (dDAC): A novel device for studying the dynamic-pressure properties of materials

    NASA Astrophysics Data System (ADS)

    Evans, William J.; Yoo, Choong-Shik; Lee, Geun Woo; Cynn, Hyunchae; Lipp, Magnus J.; Visbeck, Ken

    2007-07-01

    We have developed a unique device, a dynamic diamond anvil cell (dDAC), which repetitively applies a time-dependent load/pressure profile to a sample. This capability allows studies of the kinetics of phase transitions and metastable phases at compression (strain) rates of up to 500GPa/s (˜0.16s-1 for a metal). Our approach adapts electromechanical piezoelectric actuators to a conventional diamond anvil cell design, which enables precise specification and control of a time-dependent applied load/pressure. Existing DAC instrumentation and experimental techniques are easily adapted to the dDAC to measure the properties of a sample under the varying load/pressure conditions. This capability addresses the sparsely studied regime of dynamic phenomena between static research (diamond anvil cells and large volume presses) and dynamic shock-driven experiments (gas guns, explosive, and laser shock). We present an overview of a variety of experimental measurements that can be made with this device.

  17. Strain Rate Dependant Material Model for Orthotropic Metals

    NASA Astrophysics Data System (ADS)

    Vignjevic, Rade

    2016-08-01

    In manufacturing processes anisotropic metals are often exposed to the loading with high strain rates in the range from 102 s-1 to 106 s-1 (e.g. stamping, cold spraying and explosive forming). These types of loading often involve generation and propagation of shock waves within the material. The material behaviour under such a complex loading needs to be accurately modelled, in order to optimise the manufacturing process and achieve appropriate properties of the manufactured component. The presented research is related to development and validation of a thermodynamically consistent physically based constitutive model for metals under high rate loading. The model is capable of modelling damage, failure and formation and propagation of shock waves in anisotropic metals. The model has two main parts: the strength part which defines the material response to shear deformation and an equation of state (EOS) which defines the material response to isotropic volumetric deformation [1]. The constitutive model was implemented into the transient nonlinear finite element code DYNA3D [2] and our in house SPH code. Limited model validation was performed by simulating a number of high velocity material characterisation and validation impact tests. The new damage model was developed in the framework of configurational continuum mechanics and irreversible thermodynamics with internal state variables. The use of the multiplicative decomposition of deformation gradient makes the model applicable to arbitrary plastic and damage deformations. To account for the physical mechanisms of failure, the concept of thermally activated damage initially proposed by Tuller and Bucher [3], Klepaczko [4] was adopted as the basis for the new damage evolution model. This makes the proposed damage/failure model compatible with the Mechanical Threshold Strength (MTS) model Follansbee and Kocks [5], 1988; Chen and Gray [6] which was used to control evolution of flow stress during plastic deformation. In addition the constitutive model is coupled with a vector shock equation of state which allows for modelling of shock wave propagation in orthotropic the material. Parameters for the new constitutive model are typically derived on the basis of the tensile tests (performed over a range of temperatures and strain rates), plate impact tests and Taylor anvil tests. The model was applied to simulate explosively driven fragmentation, blast loading and cold spraying impacts.

  18. The Effect of an Altitude Training Camp on Swimming Start Time and Loaded Squat Jump Performance

    PubMed Central

    Štirn, Igor; Padial, Paulino; Argüelles-Cienfuegos, Javier; De la Fuente, Blanca; Calderón, Carmen; Bonitch-Góngora, Juan; Tomazin, Katja; Strumbelj, Boro; Strojnik, Vojko; Feriche, Belén

    2016-01-01

    This study evaluated the influence of an altitude training (AT) camp on swimming start time and loaded squat jump performance. To accomplish this goal, 13 international swimmers (8 women, 5 men) were allocated to both the control (Sea Level Training, SLT) and experimental conditions (AT, 2320 m above sea level) that were separated by a one year period. All tests (15 m freestyle swimming start and loaded squat jumps with additional loads of 25%, 50%, 75%, and 100% of swimmers’ body weight) were performed before and after a concurrent 3-week strength and endurance training program prescribed by the national coach. Following the SLT camp, significant impairments in swimming start times to 10 (+3.1%) and 15 m (+4.0%) were observed (P < 0.05), whereas no significant changes for the same distances were detected following the AT camp (-0.89%; P > 0.05). Trivial changes in peak velocity were obtained during the loaded squat jump after both training periods (effect sizes: < 0.20). Based on these results we can conclude that a traditional training high—living high strategy concurrent training of 3 weeks does not adversely affect swimming start time and loaded squat jump performance in high level swimmers, but further studies are necessary to assess the effectiveness of power-oriented resistance training in the development of explosive actions. PMID:27467760

  19. Cellulose-reinforced composites and SRIM and RTM modeling

    NASA Astrophysics Data System (ADS)

    Fahrurrozi, Mohammad

    Structural reaction injection molding (SRIM) cellulosic/polyurethane composites were prepared from various forms of cellulosic mats, and elastomeric polyurea-urethane (PUU) and rigid polyurethane (PU) formulations. Mats (woven and non-woven) prepared from different sources of fibers with lignin content ranging from zero (cotton) to at least 10% (sugar cane and kenaf fibers) performed comparably in PUU/cellulosic composites. Young's modulus and tensile strength of PUU/cellulosic composites were doubled with 5% and 7% fiber loading respectively. Young's modulus and tensile strength of PU/cellulosic composites were improved by 300% and 30%, respectively, with 7% fiber loading, whereas their bending moduli and strengths were improved up to 100% and 50%, respectively, with 18% fiber loading. However, the mechanical properties of PU composites were more sensitive to the fiber properties and fiber macroscopic arrangements. The study with chemical ratio variations indicates that as the fiber loading increases, the cellulose hydroxyl presence starts shifting the chemical balance and thus should be accounted for. Mats prepared from sugar cane fibers extracted from rind with low alkali concentration (0.2 N) followed by steam explosion require lower injection pressures compared to the ones prepared from fiber obtained from higher alkali treatment (above 0.5 N) without steam explosion. Hence, the steam exploded mats are more suitable for SRIM purposes. The PU kinetics was studied using an adiabatic temperature rise method. An Arrhenius type empirical equation was used to fit the data. The fitted equation was second order to the partial conversion, and the gelling time at adiabatic condition is less than 5 seconds (much quicker than the 10 to 12 seconds in mold gel time quoted by the manufacturer). FORTRAN programs were written to solve the SRIM model based on Darcy's equation. The model incorporated heat transfer and chemical reaction. The modeling was intended to aid in interpreting in-mold pressure data obtained from mat permeability characterization. The model also has other wider applications such as mold design and SRIM and resin transfer molding (RTM) simulation. The model predicts some experimental data from this work and the literature satisfactorily.

  20. Effect of pretreatment severity in continuous steam explosion on enzymatic conversion of wheat straw: Evidence from kinetic analysis of hydrolysis time courses.

    PubMed

    Monschein, Mareike; Nidetzky, Bernd

    2016-01-01

    Focusing on continuous steam explosion, the influence of pretreatment severity due to varied acid loading on hydrolysis of wheat straw by Trichoderma reesei cellulases was investigated based on kinetic evaluation of the saccharification of each pretreated substrate. Using semi-empirical descriptors of the hydrolysis time course, key characteristics of saccharification efficiency were captured in a quantifiable fashion. Not only hydrolysis rates per se, but also the transition point of their bi-phasic decline was crucial for high saccharification degree. After 48h the highest saccharification was achieved for substrate pretreated at relatively low severity (1.2% acid). Higher severity increased enzyme binding to wheat straw, but reduced the specific hydrolysis rates. Higher affinity of the lignocellulosic material for cellulases does not necessarily result in increased saccharification, probably because of lignin modifications occurring at high pretreatment severities. At comparable severity, continuous pretreatment produced a substrate more susceptible to enzymatic hydrolysis than the batch process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. A platform for exploding wires in different media

    NASA Astrophysics Data System (ADS)

    Han, Ruoyu; Wu, Jiawei; Qiu, Aici; Zhou, Haibin; Wang, Yanan; Yan, Jiaqi; Ding, Weidong

    2017-10-01

    A platform SWE-2 used for single wire explosion experiments has been designed, established, and commissioned. This paper describes the design and initial experiments of SWE-2. In summary, two pulsed current sources based on pulse capacitors and spark gaps are adopted to drive sub-microsecond and microsecond time scale wire explosions in a gaseous/liquid medium, respectively. In the initial experiments, a single copper wire was exploded in air, helium, and argon with a 0.1-0.3 MPa ambient pressure as well as tap water with a 283-323 K temperature, 184-11 000 μ S/cm conductivity, or 0.1-0.9 MPa hydrostatic pressure. In addition, the diagnostic system is introduced in detail. Energy deposition, optical emission, and shock wave characteristics are briefly discussed based on experimental results. The platform was demonstrated to operate successfully with a single wire load. These results provide the potential for further applications of this platform, such as plasma-matter interactions, shock wave effects, and reservoir simulations.

  2. Nitromethane ignition observed with embedded PDV optical fibers

    NASA Astrophysics Data System (ADS)

    Mercier, P.; Bénier, J.; Frugier, P. A.; Debruyne, M.; Crouzet, B.

    For a long time, the nitromethane (NM) ignition has been observed with different means such as high-speed cameras, VISAR or optical pyrometry diagnostics. By 2000, David Goosmann (LLNL) studied solid high-explosive detonation and shock loaded metal plates by measuring velocity (Fabry-Pérot interferometry) in embedded optical fibers. For six years Photonic Doppler Velocimetry (PDV) has become a major tool to better understand the phenomena occurring in shock physics experiments. In 2006, we began to use in turn this technique and studied shock-to-detonation transition in NM. Different kinds of bare optical fibers were set in the liquid; they provided two types of velocity information; those coming from phenomena located in front of the fibers (interface velocity, shock waves, overdriven detonation wave) and those due to phenomena environing the fibers (shock or detonation waves). We achieved several shots; devices were composed of a high explosive plane wave generator ended by a metal barrier followed by a cylindrical vessel containing NM. We present results.

  3. Development of compact explosively driven ferromagnetic seed source for helical magnetic flux compression generator

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Zhang, He; Ma, Shaojie; Shi, Yunlei

    2018-05-01

    A compact explosively driven ferromagnetic generator (FMG) is developed for seed power source of helical magnetic flux compression generator (HMFCG). The mechanism of FMG is studied by establishing a magnetoelectric conversion model. Analytical calculations and numerical simulations are conducted on the magnetostatic field of open-circuit magnet in FMG. The calculation method for the magnet's cross-sectional magnetic flux is obtained. The pulse sources made of different materials and equipped with different initiation modes are experimentally explored. Besides, the dynamic coupling experiments of FMG and HMFCG are carried out. The results show that, N35 single-ended and double-ended initiating FMGs have an energy conversion efficiency ηt not less than 14.6% and 24.4%, respectively; FMG has an output pulse current not less than 4kA and an energy of about 3J on 320nH inductive load; HMFCG experiences energy gains of about 2-3 times. FMG and HMFCG can be coupled to form a full-blast electrical driving pulse source.

  4. Prediction of Ignition of High Explosive When Submitted To Impact

    NASA Astrophysics Data System (ADS)

    Picart, Didier; Delmaire-Sizes, Franck; Gruau, Cyril; Trumel, Herve

    2009-06-01

    High explosive structures may unintentionally ignite and transit to deflagration or detonation, when subjected to mechanical loadings, such as low velocity impact. We focus our attention on ignition. The Browning and Scammon [1] criterion has been adapted. A concrete like constitutive law is derived, with an up-to-date experimental characterization. These models have been implemented in Abaqus/Explicit [2]. Numerical simulations are used to calibrate the ignition threshold. The presentation or the poster will detail the main assumptions, the models (Browning et al, mechanical behavior) and the calibration procedure. Comparisons between numerical results and experiments [3] will show the interest of this method but also its limitations (numerical artifacts, lack of mechanical data, misinterpretation of reactive tests). [1] R. Browning and R. Scammon, Shock compression of condensed matter, pp. 987-990, (2001). [2] C. Gruau, D. Picart et al., 17^th Dymat technical meeting, Cambridge, UK, (2007). [3] F. Delmaire-Sizes et al., 3^rd International symposium on energetic materials, Tokyo, Japan, (2008).

  5. BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates.

    PubMed

    Yang, Bin; Wyman, Charles E

    2006-07-05

    Cellulase and bovine serum albumin (BSA) were added to Avicel cellulose and solids containing 56% cellulose and 28% lignin from dilute sulfuric acid pretreatment of corn stover. Little BSA was adsorbed on Avicel cellulose, while pretreated corn stover solids adsorbed considerable amounts of this protein. On the other hand, cellulase was highly adsorbed on both substrates. Adding a 1% concentration of BSA to dilute acid pretreated corn stover prior to enzyme addition at 15 FPU/g cellulose enhanced filter paper activity in solution by about a factor of 2 and beta-glucosidase activity in solution by about a factor of 14. Overall, these results suggested that BSA treatment reduced adsorption of cellulase and particularly beta-glucosidase on lignin. Of particular note, BSA treatment of pretreated corn stover solids prior to enzymatic hydrolysis increased 72 h glucose yields from about 82% to about 92% at a cellulase loading of 15 FPU/g cellulose or achieved about the same yield at a loading of 7.5 FPU/g cellulose. Similar improvements were also observed for enzymatic hydrolysis of ammonia fiber explosion (AFEX) pretreated corn stover and Douglas fir treated by SO(2) steam explosion and for simultaneous saccharification and fermentation (SSF) of BSA pretreated corn stover. In addition, BSA treatment prior to hydrolysis reduced the need for beta-glucosidase supplementation of SSF. The results are consistent with non-specific competitive, irreversible adsorption of BSA on lignin and identify promising strategies to reduce enzyme requirements for cellulose hydrolysis. (c) 2006 Wiley Periodicals, Inc.

  6. Prediction of shock initiation thresholds and ignition probability of polymer-bonded explosives using mesoscale simulations

    NASA Astrophysics Data System (ADS)

    Kim, Seokpum; Wei, Yaochi; Horie, Yasuyuki; Zhou, Min

    2018-05-01

    The design of new materials requires establishment of macroscopic measures of material performance as functions of microstructure. Traditionally, this process has been an empirical endeavor. An approach to computationally predict the probabilistic ignition thresholds of polymer-bonded explosives (PBXs) using mesoscale simulations is developed. The simulations explicitly account for microstructure, constituent properties, and interfacial responses and capture processes responsible for the development of hotspots and damage. The specific mechanisms tracked include viscoelasticity, viscoplasticity, fracture, post-fracture contact, frictional heating, and heat conduction. The probabilistic analysis uses sets of statistically similar microstructure samples to directly mimic relevant experiments for quantification of statistical variations of material behavior due to inherent material heterogeneities. The particular thresholds and ignition probabilities predicted are expressed in James type and Walker-Wasley type relations, leading to the establishment of explicit analytical expressions for the ignition probability as function of loading. Specifically, the ignition thresholds corresponding to any given level of ignition probability and ignition probability maps are predicted for PBX 9404 for the loading regime of Up = 200-1200 m/s where Up is the particle speed. The predicted results are in good agreement with available experimental measurements. A parametric study also shows that binder properties can significantly affect the macroscopic ignition behavior of PBXs. The capability to computationally predict the macroscopic engineering material response relations out of material microstructures and basic constituent and interfacial properties lends itself to the design of new materials as well as the analysis of existing materials.

  7. Automatic behavior sensing for a bomb-detecting dog

    NASA Astrophysics Data System (ADS)

    Nguyen, Hoa G.; Nans, Adam; Talke, Kurt; Candela, Paul; Everett, H. R.

    2015-05-01

    Bomb-detecting dogs are trained to detect explosives through their sense of smell and often perform a specific behavior to indicate a possible bomb detection. This behavior is noticed by the dog handler, who confirms the probable explosives, determines the location, and forwards the information to an explosive ordnance disposal (EOD) team. To improve the speed and accuracy of this process and better integrate it with the EOD team's robotic explosive disposal operation, SPAWAR Systems Center Pacific has designed and prototyped an electronic dog collar that automatically tracks the dog's location and attitude, detects the indicative behavior, and records the data. To account for the differences between dogs, a 5-minute training routine can be executed before the mission to establish initial values for the k-mean clustering algorithm that classifies a specific dog's behavior. The recorded data include GPS location of the suspected bomb, the path the dog took to approach this location, and a video clip covering the detection event. The dog handler reviews and confirms the data before it is packaged up and forwarded on to the EOD team. The EOD team uses the video clip to better identify the type of bomb and for awareness of the surrounding environment before they arrive at the scene. Before the robotic neutralization operation commences at the site, the location and path data (which are supplied in a format understandable by the next-generation EOD robots—the Advanced EOD Robotic System) can be loaded into the robotic controller to automatically guide the robot to the bomb site. This paper describes the project with emphasis on the dog-collar hardware, behavior-classification software, and feasibility testing.

  8. The research based on intelligent night-time elimination of "red explosion" and "white explosion" vehicle license plate capturing and identifying system

    NASA Astrophysics Data System (ADS)

    Ren, Tian-Yu; Duanmu, Qing-Duo; Liu, Jing; Wu, Bo-Qi

    2018-03-01

    At night, high-speed road/all levels of road electronic cameras need to pass the white light flash can be used to obtain the road vehicle license plate and car appearance and the other related information, in order to solve the problems of the drivers' short dazzle caused by the flash of the camera, this paper shows a novel method to eliminate the "red explosion" and "white explosion" dazzle vehicle license plate capture and recognition system. This paper is based on the inconsistent principle of the absorption characteristics of the reflective film layer dye in the overlapping reflection process of the multispectral spectrums. The relationship between the wavelength of the reflective film and the back layer dye in different wavelength and the absorption/reflection is analyzed, and a dual-band active illumination method is developed. The system utilizes the visual features of human eyes in the sensitive insensitive area near infrared 390 nm 810 nm band, combining the enhanced Hough and Canny operator to preprocess the captured images, effectively obtains the license information of the fast moving vehicle at night or low illumination, and accurately locates the vehicle contour features, The high contour gray color rendering with the wavelet and Fourier filtering is used to distinguish the authenticity of the license plate quickly. To achieve the rapid statistics on the number of vehicles and containers on ground mobile vehicles and logistics sites, and provide a reliable technical guarantee for road security, because of its small weight and high intelligence, it's suitable for a variety of loading installations, and has a wide application foreground in the future.

  9. A novel assembly used for hot-shock consolidation

    NASA Astrophysics Data System (ADS)

    Chen, Pengwan; Zhou, Qiang; State Key Laboratory of Explosion Science and Technique Team

    2013-06-01

    A novel assembly characterized by an automatic set-up was developed for hot-shock consolidations of powders. The under-water shock wave and the high-temperature preheating, which are considered as two effective ways to eliminate cracks, were combined in the system. In this work, a SHS reaction mixture was used as chemical furnace to preheat the precursor powder, and the water column as well as the explosive attached to it was detached from the furnace by a solenoid valve fixed on the slide guide. When the precursor powders was preheated to the designed temperature, the solenoid valve was switched on, then the water column and the explosive slid down along the slide guide by gravity. At the moment the water container contacted with the lower part, the explosive was initiated, and the generated shock wave propagated through the water column to compact the powders. So the explosive and water column can be kept cool during the preheating process. The intensity of shock wave loading can be adjusted by changing the heights of water column. And the preheating temperature is controlled in the range of 700 ~1300 °C by changing the mass of the SHS mixture. In this work, pure tungsten powders and tungsten-copper mixture were separately compacted using this new assembly. The pure tungsten powder with a grain size of 2 μm were compacted to high density (96%T.D.) at 1300 °C, and the 90W-10Cu (wt pct) mixtures were compacted to nearly theoretical density at 1000 °C. The results showed that both samples were free of cracks. The consolidated specimens were then characterized by SEM analysis and micro-hardness testing.

  10. A novel assembly used for hot-shock consolidation

    NASA Astrophysics Data System (ADS)

    Chen, P.; Zhou, Q.

    2014-05-01

    A novel assembly was developed for hot-shock consolidations of powders. The under-water shock wave and the high-temperature preheating, which are considered as two effective ways to eliminate cracks, were combined in the system. In this work, a SHS (self-propagating high-temperature synthesis) reaction mixture was used as chemical furnace to preheat the precursor powder, and the water column as well as the explosive attached to it was detached from the furnace by a solenoid valve fixed on the slide guide. When the precursor powders were preheated to the designed temperature, the solenoid valve was switched on, and then the water column and the explosive slid down along the slide guide by gravity. At the moment the water container contacted with the lower part, the explosive was initiated, and the generated shock wave propagated through the water column to compact the powders. So the explosive and water column can be kept cool during the preheating process. The intensity of shock wave loading can be adjusted by changing the heights of water column. And the preheating temperature is controlled in the range of 700~1300 °C by changing the mass of the SHS mixture. In this work, pure tungsten powders and tungsten-copper mixture were separately compacted using this new assembly. The pure tungsten powder with a grain size of 2 μm were compacted to high density (96 %T.D.) at 1300 °C, and the 90W-10Cu (wt pct) mixtures were compacted to 95.3 %T.D. at 970 °C. The results showed that both samples were free of cracks. The consolidated specimens were then characterized using SEM analysis and micro-hardness testing.

  11. Dynamics of layered reinforced concrete beam on visco-elastic foundation with different resistances of concrete and reinforcement to tension and compression

    NASA Astrophysics Data System (ADS)

    Nemirovsky, Y. V.; Tikhonov, S. V.

    2018-03-01

    Originally, fundamentals of the theory of limit equilibrium and dynamic deformation of building metal and reinforced concrete structures were created by A. A. Gvozdev [1] and developed by his followers [4, 5, 6, 7, 11, 12]. Forming the basis for the calculation, the model of an ideal rigid-plastic material has enabled to determine in many cases the ultimate load bearing capacity and upper (kinematically possible) or lower (statically valid) values for a wide class of different structures with quite simple methods. At the same time, applied to concrete structures the most important property of concrete to significantly differently resist tension and compression was not taken into account [10]. This circumstance was considered in [3] for reinforced concrete beams under conditions of quasistatic loading. The deformation is often accompanied by resistance of the environment in construction practice [8, 9]. In [2], the dynamics of multi-layered concrete beams on visco-elastic foundation under the loadings of explosive type is considered. In this work we consider the case which is often encountered in practical applications when the loadings weakly change in time.

  12. Performance of a 10 kV, 625 kA, 85 kJ energy discharge module utilizing a solid dielectric switch

    NASA Astrophysics Data System (ADS)

    Richardson, R. A.; Cravey, W. R.; Goerz, D. A.

    We have designed and tested an 87-kJ energy discharge system consisting of two 720-(mu)F, 11-kV capacitors discharged through parallel coaxial cables into a 250 nH load. Data will be presented on the current and voltage waveforms, with calculated values of the system inductance and resistance. The bank uses a solid dielectric switch punctured by an explosive bridge wire (EBW) to initiate the discharge. With the capacitors charged to 9 kV, a 625-kA peak current is sent through the load with a ringing frequency of 6.8 kHz. The coaxial cables used to transmit the current to the load are 3 m in length. Both RG-217 and YK-198 cable types were tested, which have an inductance of 74 nH/ft and 35 nH/ft respectively. Normal operation requires that each cable carry 52 kA. The cables were tested to 100 kA each by connecting fewer cables to the load, and gradually increasing the charge voltage. The solid dielectric switch was chosen for high reliability. Details of the switch will be describes and data on its performance will be presented.

  13. Equation of state, initiation, and detonation of pure ammonium nitrate

    NASA Astrophysics Data System (ADS)

    Robbins, D. L.; Sheffield, S. A.; Dattelbaum, D. M.; Velisavljevic, N.; Stahl, D. B.

    2009-06-01

    Ammonium nitrate (AN) is a widely used fertilizer and mining explosive throughout the world. One of the more common explosives using AN is called ANFO, a mixture of AN prills and fuel oil in a 94:6 ratio by weight. The AN prills are specially made to absorb the fuel oil, forming a mixture that reacts under shock loading through a diffusion-controlled process, resulting in a non-ideal explosive with detonation velocities around 4 km/s. While there are a number of studies on ANFO, there are only a few studies relating to the equation of state (EOS) and detonation properties of pure AN - resulting mainly from studies of accidents that have occurred during transportation of large quantities of AN. We present the results of a series of gas gun-driven plate impact experiments on pressed AN ranging in density from 1.72 to 0.9 g/cm^3. Several of the high density experiments were performed in front surface impact geometry, in which pressed AN disks were built into the projectile front and impacted onto LiF windows. Additional experiments at low density have been done in ``half cell'' multiple magnetic gauge gun experiments. From this work a complete unreacted EOS has been developed, as well as some initiation and detonation information. Additional high pressure x-ray diffraction experiments in diamond anvil cells have provided a static isotherm for AN.

  14. Influence of different attentional focus on EMG amplitude and contraction duration during the bench press at different speeds.

    PubMed

    Calatayud, Joaquin; Vinstrup, Jonas; Jakobsen, Markus D; Sundstrup, Emil; Colado, Juan Carlos; Andersen, Lars L

    2018-05-01

    The purpose of this study was to investigate whether using different focus affects electromyographic (EMG) amplitude and contraction duration during bench press performed at explosive and controlled speeds. Eighteen young male individuals were familiarized with the procedure and performed the one-maximum repetition (1RM) test in the first session. In the second session, participants performed the bench press exercise at 50% of the 1RM with 3 different attentional focuses (regular focus on moving the load vs contracting the pectoralis vs contracting the triceps) at 2 speed conditions (controlled vs maximal speed). During the controlled speed condition, focusing on using either the pectoralis or the triceps muscles increased pectoralis normalized EMG (nEMG) by 6% (95% CI 3-8%; p = 0.0001) and 4% nEMG (95% CI 1-7%; p = 0.0096), respectively, compared with the regular focus condition. Triceps activity was increased by 4% nEMG (95% CI 0-7%; p = 0.0308) at the controlled speed condition during the triceps focus. During the explosive speed condition, the use of different focuses had no effect. The different attentional focus resulted in comparable contraction duration for the measured muscles when the exercise was performed explosively. Using internal focus to increase EMG amplitude seems to function only during conditions of controlled speed.

  15. The Influence of Minimalist Footwear on Knee and Ankle Load during Depth Jumping.

    PubMed

    Sinclair, J; Hobbs, S J; Selfe, J

    2015-01-01

    Plyometric training is used by athletes to promote strength and explosive power. However plyometric activities such as depth jumping are associated with a high incidence of injuries. This study examined the influence of minimalist and conventional footwear on the loads experienced by the patellofemoral joint and Achilles tendon. Patellofemoral and Achilles tendon forces were obtained from ten male participants using an eight-camera 3D motion capture system and force platform data as they completed depth jumps in both footwear conditions. Differences between footwear were calculated using paired t-tests. The results show that the minimalist footwear were associated with significantly lower patellofemoral contact force/pressure and also knee abduction moment. It is therefore recommended, based on these observations, that those who are susceptible to knee pain should consider minimalist footwear when performing plyometric training.

  16. New perspectives on the transition between discrete fracture, fragmentation, and pulverization during brittle failure of rocks

    NASA Astrophysics Data System (ADS)

    Griffith, W. A.; Ghaffari, H.; Barber, T. J.; Borjas, C.

    2015-12-01

    The motions of Earth's tectonic plates are typically measured in millimeters to tens of centimeters per year, seemingly confirming the generally-held view that tectonic processes are slow, and have been throughout Earth's history. In line with this perspective, the vast majority of laboratory rock mechanics research focused on failure in the brittle regime has been limited to experiments utilizing slow loading rates. On the other hand, many natural processes that pose significant risk for humans (e.g., earthquakes and extraterrestrial impacts), as well as risks associated with human activities (blow-outs, explosions, mining and mine failures, projectile penetration), occur at rates that are hundreds to thousands of times faster than those typically simulated in the laboratory. Little experimental data exists to confirm or calibrate theoretical models explaining the connection between these dramatic events and the pulverized rocks found in fault zones, impacts, or explosions; however the experimental data that does exist is thought-provoking: At the earth's surface, the process of brittle fracture passes through a critical transition in rocks at high strain rates (101-103s-1) between regimes of discrete fracture and distributed fragmentation, accompanied by a dramatic increase in strength. Previous experimental works on this topic have focused on key thresholds (e.g., peak stress, peak strain, average strain rate) that define this transition, but more recent work suggests that this transition is more fundamentally dependent on characteristics (e.g., shape) of the loading pulse and related microcrack dynamics, perhaps explaining why for different lithologies different thresholds more effectively define the pulverization transition. In this presentation we summarize some of our work focused on this transition, including the evolution of individual defects at the microscopic, microsecond scale and the energy budget associated with the brittle fragmentation process as a function of lithology and loading pulse characteristics.

  17. Cohesive finite element modeling of the delamination of HTPB binder and HMX crystals under tensile loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walters, David J.; Luscher, Darby J.; Yeager, John D.

    Accurately modeling the mechanical behavior of the polymer binders and the degradation of interfaces between binder and crystal is important to science-based understanding of the macro-scale response of polymer bonded explosives. The paper presents a description of relatively a simple bi-crystal HMX-HTPB specimen and associated tensile loading experiment including computed tomography imaging, the pertinent constitutive theory, and details of numerical simulations used to infer the behavior of the material during the delamination process. Within this work, mechanical testing and direct numerical simulation of this relatively simple bi-crystal system enabled reasonable isolation of binder-crystal interface delamination, in which the effects ofmore » the complicated thermomechanical response of explosive crystals were minimized. Cohesive finite element modeling of the degradation and delamination of the interface between a modified HTPB binder and HMX crystals was used to reproduce observed results from tensile loading experiments on bi-crystal specimens. Several comparisons are made with experimental measurements in order to identify appropriate constitutive behavior of the binder and appropriate parameters for the cohesive traction-separation behavior of the crystal-binder interface. This research demonstrates the utility of directly modeling the delamination between binder and crystal within crystal-binder-crystal tensile specimen towards characterizing the behavior of these interfaces in a manner amenable to larger scale simulation of polycrystalline PBX materials. One critical aspect of this approach is micro computed tomography imaging conducted during the experiments, which enabled comparison of delamination patterns between the direct numerical simulation and actual specimen. In addition to optimizing the cohesive interface parameters, one important finding from this investigation is that understanding and representing the strain-hardening plasticity of HTPB binder is important within the context of using a cohesive traction-separation model for the delamination of a crystal-binder system.« less

  18. The mechanisms of plastic strain accommodation and post critical behavior of heterogeneous reactive composites subject to dynamic loading

    NASA Astrophysics Data System (ADS)

    Olney, Karl L.

    The dynamic behavior of granular/porous and laminate reactive materials is of interest due to their practical applications; reactive structural components, reactive fragments, etc. The mesostructural properties control meso- and macro-scale dynamic behavior of these heterogeneous composites including the behavior during the post-critical stage of deformation. They heavily influence mechanisms of fragment generation and the in situ development of local hot spots, which act as sites of ignition in these materials. This dissertation concentrates on understanding the mechanisms of plastic strain accommodation in two representative reactive material systems with different heterogeneous mesostructrues: Aluminum-Tungsten granular/porous and Nickel-Aluminum laminate composites. The main focus is on the interpretation of results of the following dynamic experiments conducted at different strain and strain rates: drop weight tests, explosively expanded ring experiments, and explosively collapsed thick walled cylinder experiments. Due to the natural limitations in the evaluation of the mesoscale behavior of these materials experimentally and the large variation in the size scales between the mesostructural level and the sample, it is extremely difficult, if not impossible, to examine the mesoscale behavior in situ. Therefore, numerical simulations of the corresponding experiments are used as the main tool to explore material behavior at the mesoscale. Numerical models were developed to elucidate the mechanisms of plastic strain accommodation and post critical behavior in these heterogeneous composites subjected to dynamic loading. These simulations were able to reproduce the qualitative and quantitative features that were observable in the experiments and provided insight into the evolution of the mechanisms of plastic strain accommodation and post critical behavior in these materials with complex mesotructure. Additionally, these simulations provided a framework to examine the influence of various mesoscale properties such as the bonding of interfaces, the role of material properties, and the influence of mesoscale geometry. The results of this research are helpful in the design of material mesotructures conducive to the desirable behavior under dynamic loading.

  19. Cohesive finite element modeling of the delamination of HTPB binder and HMX crystals under tensile loading

    DOE PAGES

    Walters, David J.; Luscher, Darby J.; Yeager, John D.; ...

    2018-02-27

    Accurately modeling the mechanical behavior of the polymer binders and the degradation of interfaces between binder and crystal is important to science-based understanding of the macro-scale response of polymer bonded explosives. The paper presents a description of relatively a simple bi-crystal HMX-HTPB specimen and associated tensile loading experiment including computed tomography imaging, the pertinent constitutive theory, and details of numerical simulations used to infer the behavior of the material during the delamination process. Within this work, mechanical testing and direct numerical simulation of this relatively simple bi-crystal system enabled reasonable isolation of binder-crystal interface delamination, in which the effects ofmore » the complicated thermomechanical response of explosive crystals were minimized. Cohesive finite element modeling of the degradation and delamination of the interface between a modified HTPB binder and HMX crystals was used to reproduce observed results from tensile loading experiments on bi-crystal specimens. Several comparisons are made with experimental measurements in order to identify appropriate constitutive behavior of the binder and appropriate parameters for the cohesive traction-separation behavior of the crystal-binder interface. This research demonstrates the utility of directly modeling the delamination between binder and crystal within crystal-binder-crystal tensile specimen towards characterizing the behavior of these interfaces in a manner amenable to larger scale simulation of polycrystalline PBX materials. One critical aspect of this approach is micro computed tomography imaging conducted during the experiments, which enabled comparison of delamination patterns between the direct numerical simulation and actual specimen. In addition to optimizing the cohesive interface parameters, one important finding from this investigation is that understanding and representing the strain-hardening plasticity of HTPB binder is important within the context of using a cohesive traction-separation model for the delamination of a crystal-binder system.« less

  20. Portable Device Analyzes Rocks and Minerals

    NASA Technical Reports Server (NTRS)

    2008-01-01

    inXitu Inc., of Mountain View, California, entered into a Phase II SBIR contract with Ames Research Center to develop technologies for the next generation of scientific instruments for materials analysis. The work resulted in a sample handling system that could find a wide range of applications in research and industrial laboratories as a means to load powdered samples for analysis or process control. Potential industries include chemical, cement, inks, pharmaceutical, ceramics, and forensics. Additional applications include characterizing materials that cannot be ground to a fine size, such as explosives and research pharmaceuticals.

  1. The Nature, Number and Evolution of Hot-Spots in Ammonium Nitrate

    NASA Astrophysics Data System (ADS)

    Proud, W. G.; Kirby, I. J.; Field, J. E.

    2004-07-01

    Ammonium nitrate (AN) is a commonly used fertiliser and also one component of the most widely used explosive in the world AN: Fuel Oil mixtures. This study uses a combination of high-speed photography, UV/Visible spectroscopy and modelling. By using thin beds, <0.5 mm thick, with a porosity of 22%vol the number and evolution of hot-spots in ammonium nitrate are monitored directly under dynamic loading conditions. The critical conditions for ignition are defined in terms of energy localisation mechanisms, temperature rise and inter-communication between the hot-spots.

  2. Safety Engineering and Protective Technology in Support of Army Modernization Programs--Picatinny Arsenal Papers Presented at the 16th Annual Explosive Safety Seminar

    DTIC Science & Technology

    1975-08-01

    beams with diagonal bracing. The siding and roofing were constructed of corrugated aluminum panels connected to the girts and purlins by 1/4- inch...Fig 8) . Also con- tained in this report are static and dynamic properties of steel columns and beams ; as well as recommended types of steels and...both the beams and the columns . 3. The interaction between axial loads and displacements. The computer program input data includes the modulus of

  3. High throughput chemical munitions treatment system

    DOEpatents

    Haroldsen, Brent L [Manteca, CA; Stofleth, Jerome H [Albuquerque, NM; Didlake, Jr., John E.; Wu, Benjamin C-P [San Ramon, CA

    2011-11-01

    A new High-Throughput Explosive Destruction System is disclosed. The new system is comprised of two side-by-side detonation containment vessels each comprising first and second halves that feed into a single agent treatment vessel. Both detonation containment vessels further comprise a surrounding ventilation facility. Moreover, the detonation containment vessels are designed to separate into two half-shells, wherein one shell can be moved axially away from the fixed, second half for ease of access and loading. The vessels are closed by means of a surrounding, clam-shell type locking seal mechanisms.

  4. An Optical System for Body Imaging from a Distance Using Near-TeraHertz Frequencies

    NASA Astrophysics Data System (ADS)

    Duncan, W. D.; Schwall, R. E.; Irwin, K. D.; Beall, J. A.; Reintsema, C. D.; Doriese, William; Cho, Hsiao-Mei; Estey, Brian; Chattopadhyay, Goutam; Ade, Peter; Tucker, Carole

    2008-05-01

    We present the outline of the optical design of a TeraHertz (THz) imager for the detection of shrapnel-loaded improvised explosive devices (IED) devices at “stand-off” distances of 14 26 meters. The system will use 4 antenna-coupled TES detector arrays of 16 by 16 pixels cooled in a cryogen-free system with microwave readout to see beneath clothing at non-lethal detonation distances. A spatial resolution of ˜10 mm and close to video frame rates is anticipated.

  5. Dynamic Consolidation and Investigation of Nanostructural W-Cu / W-Y Cylindrical Billets

    NASA Astrophysics Data System (ADS)

    Godibadze, B.; Dgebuadze, A.; Chagelishvili, E.; Mamniashvili, G.; Peikrishvili, A.

    2018-03-01

    The main purpose of presented work is to obtain W-Cu & W-Y cylindrical bulk nanostructured billets by explosive consolidation technology (ECT) in hot condition, with low porosity near to theoretical densities and improved physical / mechanical properties. Nanocomposites were subjected to densification into cylindrical steel tube containers using hot explosive consolidation (HEC) technology to fabricate high dense cylindrical billets. The first stage : Preliminary explosive densification of the precursor powder blend is carried out at room temperature with a loading intensity up to 10GPa to increase the initial density and to activate the particle surfaces in the blend. The second stage investigation were carried out for the same already predensified billets, but consolidation were conducted in hot conditions, after heating of samples in between 940-11000C, the intensity of loading was equal to 10GPa. Consolidated different type of W-Cu composition containing 10-40% of nanoscale W, during investigation showed that the combination of high temperatures (above 940°C) and two-stage shock wave compression was beneficial to the consolidation of the incompatible pair W-Cu composites, resulting in high densities, good integrity and good electronic properties. The structure and property of the samples obtained, depended on the sizes of tungsten particles. It was established that in comparison with W-Cu composites with coarse tungsten the application of nanoscale W precursors and depending of content of W gives different result. Tungsten is a prime material candidate for the first wall of a future fusion reactor. In this study, the microstructure and microhardness of tungsten-yttrium (W-Y) composites were investigated as a function of Y doping content (0.5÷2 wt. %). It was found that the crystallite sizes and the powder particle sizes were increased as a result of the increase of Y content. Nearly fully dense materials were obtained for W-Y alloys when the Y content was higher than 0.5 wt. %. Investigation revealed that the Y rich phases were complex (W-Y) oxides formed during the sintering process. Also very interesting to use doping chromium with yttrium-containing alloys. e.g. (W - 10÷12 Cr -0.5÷2 Y) wt. %. The extent up to which yttrium acts as an active element improving the adherence and stability of the protective Cr 2 O 3 layer formed during oxidation is assessed. The structure and characteristics of the obtained samples depends on the phase content, distribution of phases and processing parameters during explosive synthesis and consolidation. Cu – (10-30%) W powder mixtures were formed into cylindrical rods using a hot shock wave consolidation (HSWC) process. Different type of Cu - W precursor composition containing 10, 20 and 30% of nanoscale W were consolidated near theoretical density under 900°C The loading intensity was under 10 GPa. The investigation showed that the combination of high temperatures (above 800°C) and two stage shock wave compression was beneficial to the consolidation of the W-Cu & W-Y composites, resulting in high densities, good integrity and good electronic properties.

  6. Effects of laser power density on static and dynamic mechanical properties of dissimilar stainless steel welded joints

    NASA Astrophysics Data System (ADS)

    Wei, Yan-Peng; Li, Mao-Hui; Yu, Gang; Wu, Xian-Qian; Huang, Chen-Guang; Duan, Zhu-Ping

    2012-10-01

    The mechanical properties of laser welded joints under impact loadings such as explosion and car crash etc. are critical for the engineering designs. The hardness, static and dynamic mechanical properties of AISI304 and AISI316 L dissimilar stainless steel welded joints by CO2 laser were experimentally studied. The dynamic strain-stress curves at the strain rate around 103 s-1 were obtained by the split Hopkinson tensile bar (SHTB). The static mechanical properties of the welded joints have little changes with the laser power density and all fracture occurs at 316 L side. However, the strain rate sensitivity has a strong dependence on laser power density. The value of strain rate factor decreases with the increase of laser power density. The welded joint which may be applied for the impact loading can be obtained by reducing the laser power density in the case of welding quality assurance.

  7. Unusual planned complex suicide committed with a muzzle-loading pistol in combination with subsequent hanging.

    PubMed

    Ondruschka, Benjamin; Morgenthal, Sylvia; Dreβler, Jan; Bayer, Ronny

    2016-11-01

    In Germany, suicides by firearms are not very common in contrast to deaths by hanging and intoxications. The use of historical muzzle-loading firearms in the context of suicides is a rarity. Contact shots from muzzle loaders cause an unusual wound morphology with extensive soot soiling. We report the case of a 59-year-old man, who committed a planned complex suicide by shooting into his mouth with a replica percussion gun in combination with hanging. The gunshot injury showed strong explosive effects in the oral cavity with fractures of the facial bones and the skull associated with cerebral evisceration (so-called Krönlein shot). Due to the special constellation of the case with hanging immediately after the shot, external bleeding from the head injuries was only moderate. Therefore, the head injuries could be assessed and partially reconstructed already at the scene.

  8. Techno-economic analysis of different pretreatment processes for lignocellulosic-based bioethanol production.

    PubMed

    da Silva, André Rodrigues Gurgel; Torres Ortega, Carlo Edgar; Rong, Ben-Guang

    2016-10-01

    In this work, a method based on process synthesis, simulation and evaluation has been used to setup and study the industrial scale lignocellulosic bioethanol productions processes. Scenarios for pretreatment processes of diluted acid, liquid hot water and ammonia fiber explosion were studied. Pretreatment reactor temperature, catalyst loading and water content as well as solids loading in the hydrolysis reactor were evaluated regarding its effects on the process energy consumption and bioethanol concentration. The best scenarios for maximizing ethanol concentration and minimizing total annual costs (TAC) were selected and their minimum ethanol selling price was calculated. Ethanol concentration in the range of 2-8% (wt.) was investigated after the pretreatment. The best scenarios maximizing the ethanol concentration and minimizing TAC obtained a reduction of 19.6% and 30.2% respectively in the final ethanol selling price with respect to the initial base case. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Research on structures, mechanical properties, and mechanical responses of TKX-50 and TKX-50 based PBX with molecular dynamics.

    PubMed

    Ma, Song; Li, Yajin; Li, Yang; Luo, Yunjun

    2016-02-01

    To improve the practicality and safety of a novel explosive dihydroxylamm onium 5,5'-bis (tetrazole)-1,1'-diolate (TKX-50), polyvinylidene difluoride (PVDF) and polychlorotrifluoroe-thylene (PCTFE) were respectively added to the TKX-50, forming the polymer-bonded explosives (PBX). Interfacial and mechanical properties of PBX were investigated through molecular dynamics (MD) method, desensitizing mechanisms of fluorine-polymers for TKX-50 were researched by compression and bulk shear simulations. Results show that the binding energies (E bind ) between polymers (PVDF or PCTFE) and TKX-50 surfaces all rank in order of (011) > (100) > (010), shorter interatomic distance and the resulted higher potentials lead to higher E bind on TKX-50/PVDF interfaces than that on PCTFE/TKX-50 interfaces. Compared with TKX-50, the ductility of PBX is improved due to the isotropic mechanical property and flexibility of fluorine-polymers especially the PCTFE. Desensitizing effect of fluorine-polymers for TKX-50 is found under loading condition, which is attributed to the enhanced compressibility and buffer capacity against external pressure in compression, as well as the improved lubricity to reduce the sliding potentials in bulk shear process. Graphical Abstract Comparisons of the internal stress and slide potentials of the novel explosive,TKX-50 and its based PBX. Desensitizing effects can be found by the adding of fluorine-polymers, it owes to their better flexibility and lubricity as well as the amorphous nature.

  10. Discovery, Progenitor and Early Evolution of a Stripped Envelope Supernova iPTF13bvn

    NASA Astrophysics Data System (ADS)

    Cao, Yi; Kasliwal, Mansi M.; Arcavi, Iair; Horesh, Assaf; Hancock, Paul; Valenti, Stefano; Cenko, S. Bradley; Kulkarni, S. R.; Gal-Yam, Avishay; Gorbikov, Evgeny; Ofek, Eran O.; Sand, David; Yaron, Ofer; Graham, Melissa; Silverman, Jeffrey M.; Wheeler, J. Craig; Marion, G. H.; Walker, Emma S.; Mazzali, Paolo; Howell, D. Andrew; Li, K. L.; Kong, A. K. H.; Bloom, Joshua S.; Nugent, Peter E.; Surace, Jason; Masci, Frank; Carpenter, John; Degenaar, Nathalie; Gelino, Christopher R.

    2013-09-01

    The intermediate Palomar Transient Factory reports our discovery of a young supernova, iPTF13bvn, in the nearby galaxy, NGC 5806 (22.5 Mpc). Our spectral sequence in the optical and infrared suggests a Type Ib classification. We identify a blue progenitor candidate in deep pre-explosion imaging within a 2σ error circle of 80 mas (8.7 pc). The candidate has an MB luminosity of -5.52 ± 0.39 mag and a B - I color of 0.25 ± 0.25 mag. If confirmed by future observations, this would be the first direct detection for a progenitor of a Type Ib. Fitting a power law to the early light curve, we find an extrapolated explosion date around 0.6 days before our first detection. We see no evidence of shock cooling. The pre-explosion detection limits constrain the radius of the progenitor to be smaller than a few solar radii. iPTF13bvn is also detected in centimeter and millimeter wavelengths. Fitting a synchrotron self-absorption model to our radio data, we find a mass-loading parameter of 1.3×1012 g cm-1. Assuming a wind velocity of 103 km s-1, we derive a progenitor mass-loss rate of 3 × 10-5 M ⊙ yr-1. Our observations, taken as a whole, are consistent with a Wolf-Rayet progenitor of the supernova iPTF13bvn.

  11. Bioaccumulation kinetics of the conventional energetics TNT and RDX relative to insensitive munitions constituents DNAN and NTO in Rana pipiens tadpoles.

    PubMed

    Lotufo, Guilherme R; Biedenbach, James M; Sims, Jerre G; Chappell, Pornsawan; Stanley, Jacob K; Gust, Kurt A

    2015-04-01

    The manufacturing of explosives and their loading, assembling, and packing into munitions for use in testing on training sites or battlefields has resulted in contamination of terrestrial and aquatic sites that may pose risk to populations of sensitive species. The bioaccumulative potential of the conventional explosives 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and of the insensitive munitions (i.e., less shock sensitive) compound 2,4-dinitroanisole (DNAN) were assessed using the Northern leopard frog, Rana pipiens. Trinitrotoluene entering the organism was readily biotransformed to aminodinitrotoluenes, whereas no transformation products were measured for RDX or DNAN. Uptake clearance rates were relatively slow and similar among compounds (1.32-2.19 L kg(-1) h(-1) ). Upon transfer to uncontaminated water, elimination rate was very fast, resulting in the prediction of fast time to approach steady state (5 h or less) and short elimination half-lives (1.2 h or less). A preliminary bioconcentration factor of 0.25 L kg(-1) was determined for the insensitive munitions compound 3-nitro-1,2,4-trizole-5-one (NTO) indicating negligible bioaccumulative potential. Because of the rapid elimination rate for explosives, tadpoles inhabiting contaminated areas are expected to experience harmful effects only if under constant exposure conditions given that body burdens can rapidly depurate preventing tissue concentrations from persisting at levels that may cause detrimental biological effects. © 2014 SETAC.

  12. Intermittent explosive disorder: Associations with PTSD and other Axis I disorders in a US Military veteran sample

    PubMed Central

    Reardon, Annemarie F.; Hein, Christina L.; Wolf, Erika J.; Prince, Lauren B.; Ryabchenko, Karen; Miller, Mark W.

    2015-01-01

    This study examined the prevalence of intermittent explosive disorder (IED) and its associations with trauma exposure, posttraumatic stress disorder (PTSD), and other psychiatric diagnoses in a sample of trauma-exposed veterans (n = 232) with a high prevalence of PTSD. Structural associations between IED and latent dimensions of internalizing and externalizing psychopathology were also modeled to examine the location of IED within this influential structure. Twenty-four percent of the sample met criteria for a lifetime IED diagnosis and those with the diagnosis were more likely to meet criteria for lifetime PTSD than those without (30.3% vs. 14.3% respectively). Furthermore, regression analyses revealed lifetime PTSD severity to be a significant predictor of IED severity after controlling for combat, trauma exposure, and age. Finally, confirmatory factor analysis revealed significant cross-loadings of IED on both the externalizing and distress dimensions of psychopathology, suggesting that the association between IED and other psychiatric disorders may reflect underlying tendencies towards impulsivity and aggression and generalized distress and negative emotionality, respectively. PMID:24907536

  13. Infrared photothermal imaging of trace explosives on relevant substrates

    NASA Astrophysics Data System (ADS)

    Kendziora, Christopher A.; Furstenberg, Robert; Papantonakis, Michael; Nguyen, Viet; Borchert, James; Byers, Jeff; McGill, R. Andrew

    2013-06-01

    We are developing a technique for the stand-off detection of trace explosives on relevant substrate surfaces using photo-thermal infrared (IR) imaging spectroscopy (PT-IRIS). This approach leverages one or more compact IR quantum cascade lasers, tuned to strong absorption bands in the analytes and directed to illuminate an area on a surface of interest. An IR focal plane array is used to image the surface and detect small increases in thermal emission upon laser illumination. The PT-IRIS signal is processed as a hyperspectral image cube comprised of spatial, spectral and temporal dimensions as vectors within a detection algorithm. The ability to detect trace analytes on relevant substrates is critical for stand-off applications, but is complicated by the optical and thermal analyte/substrate interactions. This manuscript describes recent PT-IRIS experimental results and analysis for traces of RDX, TNT, ammonium nitrate (AN) and sucrose on relevant substrates (steel, polyethylene, glass and painted steel panels). We demonstrate that these analytes can be detected on these substrates at relevant surface mass loadings (10 μg/cm2 to 100 μg/cm2) even at the single pixel level.

  14. Optimization of uncatalyzed steam explosion pretreatment of rapeseed straw for biofuel production.

    PubMed

    López-Linares, Juan C; Ballesteros, Ignacio; Tourán, Josefina; Cara, Cristóbal; Castro, Eulogio; Ballesteros, Mercedes; Romero, Inmaculada

    2015-08-01

    Rapeseed straw constitutes an agricultural residue with great potential as feedstock for ethanol production. In this work, uncatalyzed steam explosion was carried out as a pretreatment to increase the enzymatic digestibility of rapeseed straw. Experimental statistical design and response surface methodology were used to evaluate the influence of the temperature (185-215°C) and the process time (2.5-7.5min). According to the rotatable central composite design applied, 215°C and 7.5min were confirmed to be the optimal conditions, considering the maximization of enzymatic hydrolysis yield as optimization criterion. These conditions led to a maximum yield of 72.3%, equivalent to 81% of potential glucose in pretreated solid. Different configurations for bioethanol production from steam exploded rapeseed straw were investigated using the pretreated solid obtained under optimal conditions as a substrate. As a relevant result, concentrations of ethanol as high as 43.6g/L (5.5% by volume) were obtained as a consequence of using 20% (w/v) solid loading, equivalent to 12.4g ethanol/100g biomass. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Full scale remediation of an explosives-contaminated site at Yorktown Naval Weapons Station using the SABRE{trademark} process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaake, R.H.; Bono, J.; Yergovich, T.

    Characterization of a former weapons loading and assembly facility identified soil contaminated with the explosives TNT (2,4,6-trinitrotoluene) and RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine). The site contains of a variety of discrete soil types that include clay, sand, and humus. A portion of the site is also periodically submerged due to tidal action. Treatability studies were performed in conjunction with the Army Corps of Engineers Waterways Experiment Station. Studies indicated the SABRE Process could successfully treat the soil to the specified treatment goals. A full scale demonstration of the Simplot Anaerobic Biological Remediation (SABRE{trademark}) Process was carried out at the Yorktown, Virginia Naval Weaponsmore » Station. Over 650 yd{sup 3} of soil was treated to less than 2.5 mg/kg TNT in approximately 30 days. Initial concentrations were estimated to be 450 mg/kg. The soil was screened and placed into an in-ground, double-lined biocell using a soil fluidizing system.« less

  16. Explosively generated shock wave processing of metal powders by instrumented detonics

    NASA Astrophysics Data System (ADS)

    Sharma, A. D.; Sharma, A. K.; Thakur, N.

    2013-06-01

    The highest pressures generated by dynamic processes resulting either from high velocity impact or by spontaneous release of high energy rate substances in direct contact with a metal find superior applications over normal mechanical means. The special feature of explosive loading to the powder materials over traditional methods is its controlled detonation pressure which directly transmits shock energy to the materials which remain entrapped inside powder resulting into several micro-structural changes and hence improved mechanical properties. superalloy powders have been compacted nearer to the theoretical density by shock wave consolidation. In a single experimental set-up, compaction of metal powder and measurement of detonation velocity have been achieved successfully by using instrumented detonics. The thrust on the work is to obtain uniform, crack-free and fracture-less compacts of superalloys having intact crystalline structure as has been examined from FE-SEM, XRD and mechanical studies. Shock wave processing is an emerging technique and receiving much attention of the materials scientists and engineers owing to its excellent advantages over traditional metallurgical methods due to short processing time, scaleup advantage and controlled detonation pressure.

  17. Influence of water conductivity on shock waves generated by underwater electrical wire explosion

    NASA Astrophysics Data System (ADS)

    Liu, Ben; Wang, Deguo; Guo, Yanbao

    2018-01-01

    The new application of electrical explosion of wire (EEW) used in petroleum industry is to enhance oil recovery (EOR). Because of the complex environment underground, the effect of underground water conductivity on EEW should be considered. This work describes the effect of water conductivities on discharge current, voltage and shock waves. It was found that the effect of water conductivity contains two parts. One is the shunt effect of saline water, which can be considered as a parallel load with the copper wire between the electrodes connected to the discharge circuit. The peak pressure of shock waves are gradually decrease with the increase of water conductivity. The other is the current loss through saline water directly to the ground ends without flowing through the electrodes. The shunt effect is the main factor affecting the wire discharge process. As the charging voltage increased, the energy loss caused by these two parts are all reduced. These indicate that increasing the charging voltage to a certain value will increase the energy efficiency to generate a more powerful shock waves in conductive water.

  18. Coupling p+n Field-Effect Transistor Circuits for Low Concentration Methane Gas Detection

    PubMed Central

    Zhou, Xinyuan; Yang, Liping; Bian, Yuzhi; Ma, Xiang; Chen, Yunfa

    2018-01-01

    Nowadays, the detection of low concentration combustible methane gas has attracted great concern. In this paper, a coupling p+n field effect transistor (FET) amplification circuit is designed to detect methane gas. By optimizing the load resistance (RL), the response to methane of the commercial MP-4 sensor can be magnified ~15 times using this coupling circuit. At the same time, it decreases the limit of detection (LOD) from several hundred ppm to ~10 ppm methane, with the apparent response of 7.0 ± 0.2 and voltage signal of 1.1 ± 0.1 V. This is promising for the detection of trace concentrations of methane gas to avoid an accidental explosion because its lower explosion limit (LEL) is ~5%. The mechanism of this coupling circuit is that the n-type FET firstly generates an output voltage (VOUT) amplification process caused by the gate voltage-induced resistance change of the FET. Then, the p-type FET continues to amplify the signal based on the previous VOUT amplification process. PMID:29509659

  19. Phenomenon of Energy Focusing in Explosive Systems which include High Modulus Elastic Elements

    NASA Astrophysics Data System (ADS)

    Balagansky, I.; Hokamoto, K.; Manikandan, P.; Matrosov, A.; Stadnichenko, I.; Miyoshi, H.

    2009-06-01

    The phenomenon was observed in a passive HE charge of cast Comp. B without cumulative shape under shock wave loading by explosion of an active HE charge through water after preliminary compression by a leading wave in silicon carbide insert. The phenomenon manifested itself as a hole in identification steel specimen with depth of about 10 mm and diameter of about 5 mm. Results of experiments on studying of conditions of implementation of this phenomenon for SEP and Comp. B are presented. For each HE a number of experiments has been executed at various length of silicon carbide insert. Presence or absence of a hole in the steel specimen was determined. Also a number of optical registrations of process in framing mode with record step of 1 μs have been executed. Digital video camera SHIMADZU HPV-1 was used for optical registration. Results of experiments testify that the phenomenon is reproduced both for SEP, and for Comp. B. Focusing process is observed in conditions close to critical conditions of transfer of a detonation from active to a passive HE charge.

  20. Investigating Deformation and Mesoscale Void Creation in HMX Based Composites using Tomography Based Grain Scale Finite Element Modeling

    NASA Astrophysics Data System (ADS)

    Walters, David J.; Luscher, Darby J.; Manner, Virginia; Yeager, John D.; Patterson, Brian M.

    2017-06-01

    The microstructure of plastic bonded explosives (PBXs) significantly affects their macroscale mechanical characteristics. Imaging and modeling of the mesoscale constituents allows for a detailed examination of the deformation of mechanically loaded PBXs. In this study, explosive composites, formulated with HMX crystals and various HTPB based polymer binders have been imaged using micro Computed Tomography (μCT). Cohesive parameters for simulation of the crystal/binder interface are determined by comparing numerical and experimental results of the delamination of a polymer bound bi-crystal system. Similarly, polycrystalline samples are discretized into a finite element mesh using the mesoscale geometry captured by in-situ μCT imaging. Experimentally, increasing the stiffness of the HTPB binder in the polycrystalline system resulted in a transition from ductile flow with little crystal/binder delamination to brittle behavior with increased void creation along the interfaces. Simulating the macroscale compression of these samples demonstrates the effects that the mesoscale geometry, cohesive properties, and binder stiffness have on the creation and distribution of interfacial voids. Understanding void nucleation is critical for modeling damage in these complex materials.

  1. Forecasting Effusive Dynamics and Decompression Rates by Magmastatic Model at Open-vent Volcanoes.

    PubMed

    Ripepe, Maurizio; Pistolesi, Marco; Coppola, Diego; Delle Donne, Dario; Genco, Riccardo; Lacanna, Giorgio; Laiolo, Marco; Marchetti, Emanuele; Ulivieri, Giacomo; Valade, Sébastien

    2017-06-20

    Effusive eruptions at open-conduit volcanoes are interpreted as reactions to a disequilibrium induced by the increase in magma supply. By comparing four of the most recent effusive eruptions at Stromboli volcano (Italy), we show how the volumes of lava discharged during each eruption are linearly correlated to the topographic positions of the effusive vents. This correlation cannot be explained by an excess of pressure within a deep magma chamber and raises questions about the actual contributions of deep magma dynamics. We derive a general model based on the discharge of a shallow reservoir and the magmastatic crustal load above the vent, to explain the linear link. In addition, we show how the drastic transition from effusive to violent explosions can be related to different decompression rates. We suggest that a gravity-driven model can shed light on similar cases of lateral effusive eruptions in other volcanic systems and can provide evidence of the roles of slow decompression rates in triggering violent paroxysmal explosive eruptions, which occasionally punctuate the effusive phases at basaltic volcanoes.

  2. Improved enzymatic saccharification of steam exploded cotton stalk using alkaline extraction and fermentation of cellulosic sugars into ethanol.

    PubMed

    Keshav, Praveen K; Naseeruddin, Shaik; Rao, L Venkateswar

    2016-08-01

    Cotton stalk, a widely available and cheap agricultural residue lacking economic alternatives, was subjected to steam explosion in the range 170-200°C for 5min. Steam explosion at 200°C and 5min led to significant hemicellulose solubilization (71.90±0.10%). Alkaline extraction of steam exploded cotton stalk (SECOH) using 3% NaOH at room temperature for 6h led to 85.07±1.43% lignin removal with complete hemicellulose solubilization. Besides, this combined pretreatment allowed a high recovery of the cellulosic fraction from the biomass. Enzymatic saccharification was studied between steam exploded cotton stalk (SECS) and SECOH using different cellulase loadings. SECOH gave a maximum of 785.30±8.28mg/g reducing sugars with saccharification efficiency of 82.13±0.72%. Subsequently, fermentation of SECOH hydrolysate containing sugars (68.20±1.16g/L) with Saccharomyces cerevisiae produced 23.17±0.84g/L ethanol with 0.44g/g yield. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Coupling p+n Field-Effect Transistor Circuits for Low Concentration Methane Gas Detection.

    PubMed

    Zhou, Xinyuan; Yang, Liping; Bian, Yuzhi; Ma, Xiang; Han, Ning; Chen, Yunfa

    2018-03-06

    Nowadays, the detection of low concentration combustible methane gas has attracted great concern. In this paper, a coupling p+n field effect transistor (FET) amplification circuit is designed to detect methane gas. By optimizing the load resistance ( R L ), the response to methane of the commercial MP-4 sensor can be magnified ~15 times using this coupling circuit. At the same time, it decreases the limit of detection (LOD) from several hundred ppm to ~10 ppm methane, with the apparent response of 7.0 ± 0.2 and voltage signal of 1.1 ± 0.1 V. This is promising for the detection of trace concentrations of methane gas to avoid an accidental explosion because its lower explosion limit (LEL) is ~5%. The mechanism of this coupling circuit is that the n-type FET firstly generates an output voltage ( V OUT ) amplification process caused by the gate voltage-induced resistance change of the FET. Then, the p-type FET continues to amplify the signal based on the previous V OUT amplification process.

  4. 49 CFR 172.522 - EXPLOSIVES 1.1, EXPLOSIVES 1.2 and EXPLOSIVES 1.3 placards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false EXPLOSIVES 1.1, EXPLOSIVES 1.2 and EXPLOSIVES 1.3... INFORMATION, TRAINING REQUIREMENTS, AND SECURITY PLANS Placarding § 172.522 EXPLOSIVES 1.1, EXPLOSIVES 1.2 and EXPLOSIVES 1.3 placards. (a) Except for size and color, the EXPLOSIVES 1.1, EXPLOSIVES 1.2 and EXPLOSIVES 1.3...

  5. 49 CFR 172.522 - EXPLOSIVES 1.1, EXPLOSIVES 1.2 and EXPLOSIVES 1.3 placards.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false EXPLOSIVES 1.1, EXPLOSIVES 1.2 and EXPLOSIVES 1.3... INFORMATION, TRAINING REQUIREMENTS, AND SECURITY PLANS Placarding § 172.522 EXPLOSIVES 1.1, EXPLOSIVES 1.2 and EXPLOSIVES 1.3 placards. (a) Except for size and color, the EXPLOSIVES 1.1, EXPLOSIVES 1.2 and EXPLOSIVES 1.3...

  6. Influence of sweeping detonation-wave loading on damage evolution during spallation loading of tantalum in both a planar and curved geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, George Thompson III; Hull, Lawrence Mark; Livescu, Veronica

    Widespread research over the past five decades has provided a wealth of experimental data and insight concerning the shock hardening, damage evolution, and the spallation response of materials subjected to square-topped shock-wave loading profiles. However, fewer quantitative studies have been conducted on the effect of direct, in-contact, high explosive (HE)-driven Taylor wave (unsupported shocks) loading on the shock hardening, damage evolution, or spallation response of materials. Systematic studies quantifying the effect of sweeping-detonation wave loading are yet sparser. In this study, the damage evolution and spallation response of Ta is shown to be critically dependent on the peak shock stress,more » the geometry of the sample (flat or curved plate geometry), and the shock obliquity during sweeping-detonation-wave shock loading. Sweepingwave loading in the flat-plate geometry is observed to: a) yield a lower spall strength than previously documented for 1-D supported-shock-wave loading, b) exhibit increased shock hardening as a function of increasing obliquity, and c) lead to an increased incidence of deformation twin formation with increasing shock obliquity. Sweeping-wave loading of a 10 cm radius curved Ta plate is observed to: a) lead to an increase in the shear stress as a function of increasing obliquity, b) display a more developed level of damage evolution, extensive voids and coalescence, and lower spall strength with obliquity in the curved plate than seen in the flat-plate sweeping-detonation wave loading for an equivalent HE loading, and c) no increased propensity for deformation twin formation with increasing obliquity as seen in the flat-plate geometry. The overall observations comparing and contrasting the flat versus curved sweeping-wave spall experiments with 1D loaded spallation behavior suggests a coupled influence of obliquity and geometry on dynamic shock-induced damage evolution and spall strength. Coupled experimental and modeling research to quantify the combined effects of sweeping-wave loading with increasingly complex sample geometries on the shockwave response of materials is clearly crucial to providing the basis for developing and thereafter validation of predictive modeling capability.« less

  7. Terrorist Material Support: An Overview of 18 U.S.C. 2339A and 2339B

    DTIC Science & Technology

    2010-07-19

    child (which also is not a violent act), is an ‘act dangerous to human life.’ And it violates ... 18 U.S.C. §2339A(a), which provides that ‘whoever...United States. Giving money to Hamas, like giving a loaded gun to a child (which also is not a violent act), is an ‘act dangerous to human life.’ And...explosive or incendiary devices, or endangerment of human life by means of weapons, on an aircraft within U.S. jurisdiction) 49 U.S.C. 46506 (homicide or

  8. Spherical Acrylic Plastic Hulls under External Explosive Loading

    DTIC Science & Technology

    1976-03-01

    ACCESSION NO. 3 . RECIPIENT’S CATALOG NU04SER 4. TITLE (-d S.~bfffI.) HULL UNER seach HEIAACRYLIC JIASTICHULUNE LXTERNAL EXPLOSI L LOADIl§Go e"*N 7 AUHR,8...and opera ted inl thle 0- to 3 300-It depthI range. Several muiniersi lies with acri, lie plastic hulls have been alreadyv built and are operating...thermol’ormed spher4cal pentagOns1 that Were bonded~k togethler u ith either I’S- I -S or ’’- selt-pl\\ en ingadhesi~ e. The scale-site hltlk hiad po

  9. Simulation of switching overvoltages in the mine electric power supply system

    NASA Astrophysics Data System (ADS)

    Ivanchenko, D. I.; Novozhilov, N. G.

    2017-02-01

    Overvoltages occur in mine power supply systems during switching off consumers with high inductive load, such as transformers, reactors and electrical machines. Overvoltages lead to an increase of insulation degradation rate and may cause electric faults, power outage, fire and explosion of methane and coal dust. This paper is dedicated to simulation of vacuum circuit breaker switching overvoltages in a mine power supply system by means of Simulink MATLAB. The model of the vacuum circuit breaker implements simulation of transient recovery voltage, current chopping and an electric arc. Obtained results were compared to available experimental data.

  10. Lightning Warning and Protection for DNA High Explosive Test-Bed.

    DTIC Science & Technology

    1986-08-01

    begins, personnel should be evacuated from the test-bed and the amonium nitrate fuel oil loading area. A safe distance will depend on the size of the...typically, P = -40 C, N = - 0 C, and D = ’-1O C. and ~whgive observed electric field intensity in the vicintv oa :t thundercloud. (Ref. 4, p. 3.) 4. 2...12 16 2 12 S-P •N=40C N -- • N=-40 C > 14 p= 10 CD z OI- 1 0 - 0 4 8 12 16 20 DISTANCE D (kin) Figure 2. Electric field intensity at the ground versus

  11. Computational Hydrocode Study of Target Damage due to Fragment-Blast Impact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatch-Aguilar, T; Najjar, F; Szymanski, E

    2011-03-24

    A target's terminal ballistic effects involving explosively generated fragments, along with the original blast, are of critical importance for many different security and safety related applications. Personnel safety and protective building design are but a few of the practical disciplines that can gain from improved understanding combined loading effects. Traditionally, any engineering level analysis or design effort involving explosions would divide the target damage analysis into two correspondingly critical areas: blast wave and fragment related impact effects. The hypothesis of this paper lies in the supposition that a linear combination of a blast-fragment loading, coupled with an accurate target responsemore » description, can lead to a non-linear target damage effect. This non-linear target response could then stand as the basis of defining what a synergistic or combined frag-blast loading might actually look like. The table below, taken from Walters, et. al. categorizes some of the critical parameters driving any combined target damage effect and drives the evaluation of results. Based on table 1 it becomes clear that any combined frag-blast analysis would need to account for the target response matching similar ranges for the mechanics described above. Of interest are the critical times upon which a blast event or fragment impact loading occurs relative to the target's modal response. A blast, for the purposes of this paper is defined as the sudden release of chemical energy from a given material (henceforth referred to as an energetic material) onto its surrounding medium. During the coupling mechanism a discrete or discontinuous shockwave is generated. This shockwave travels outward from the source transferring energy and momentum to any surrounding objects including personnel and engineering structures. From an engineering perspective blast effects are typically characterized by way of physical characteristics such as Peak Pressure (PP), Time of Arrival (TOA), Pressure-Impulse (PI) and Time of Duration (TD). Other peculiarities include the radial decrease in pressure from the source, any fireball size measurement, and subsequent increase in temperature from the passing of the shockwave through the surrounding medium. In light of all of these metrics, the loading any object receives from a blast event becomes intricately connected to the distance between itself and the source. Because of this, a clear distinction is made between close-in effects and those from a source far away from the object of interest. Explosively generated fragments on the other hand are characterized by means of their localized damage potential. Metrics such as whether the fragment penetrates or perforates a given object is quantified as well as other variables including fragment's residual velocity, % kinetic energy decrease, residual fragment mass and other exit criteria. A fragment launched under such violent conditions could easily be traveling at speeds in excess of 2500 ft/s. Given these speeds it is conceivable to imagine how any given fragment could deliver a concentrated load to a target and penetrates through walls, vehicles or even the protection systems of nearby personnel. This study will focus on the individual fragment-target impact event with the hopes of expanding it to eventually include statistical procedures. Since this is a modeling excursion into the combined frag-blast target damage effects the numerical methods used to frame this problem become important in-so-far as the simulations are done in a consistent manner. For this study a Finite-Element based Hydrocode solution called ALE3D (ALE=Arbitrary Lagrangian-Eulerian) was utilized. ALE3D is developed by Lawrence Livermore National Laboratory (Livermore, CA), and as this paper will show, successfully implemented a converged ALE formulation including as many of the different aspects needed to query the synergistic damage on a given target. Further information on the modeling setup is included.« less

  12. Vertical accelerator device to apply loads simulating blast environments in the military to human surrogates.

    PubMed

    Yoganandan, Narayan; Pintar, Frank A; Schlick, Michael; Humm, John R; Voo, Liming; Merkle, Andrew; Kleinberger, Michael

    2015-09-18

    The objective of the study was to develop a simple device, Vertical accelerator (Vertac), to apply vertical impact loads to Post Mortem Human Subject (PMHS) or dummy surrogates because injuries sustained in military conflicts are associated with this vector; example, under-body blasts from explosive devices/events. The two-part mechanically controlled device consisted of load-application and load-receiving sections connected by a lever arm. The former section incorporated a falling weight to impact one end of the lever arm inducing a reaction at the other/load-receiving end. The "launch-plate" on this end of the arm applied the vertical impact load/acceleration pulse under different initial conditions to biological/physical surrogates, attached to second section. It is possible to induce different acceleration pulses by using varying energy absorbing materials and controlling drop height and weight. The second section of Vertac had the flexibility to accommodate different body regions for vertical loading experiments. The device is simple and inexpensive. It has the ability to control pulses and flexibility to accommodate different sub-systems/components of human surrogates. It has the capability to incorporate preloads and military personal protective equipment (e.g., combat helmet). It can simulate vehicle roofs. The device allows for intermittent specimen evaluations (x-ray and palpation, without changing specimen alignment). The two free but interconnected sections can be used to advance safety to military personnel. Examples demonstrating feasibilities of the Vertac device to apply vertical impact accelerations using PMHS head-neck preparations with helmet and booted Hybrid III dummy lower leg preparations under in-contact and launch-type impact experiments are presented. Published by Elsevier Ltd.

  13. Mechanosensitive control of plant growth: bearing the load, sensing, transducing, and responding

    PubMed Central

    Moulia, Bruno; Coutand, Catherine; Julien, Jean-Louis

    2015-01-01

    As land plants grow and develop, they encounter complex mechanical challenges, especially from winds and turgor pressure. Mechanosensitive control over growth and morphogenesis is an adaptive trait, reducing the risks of breakage or explosion. This control has been mostly studied through experiments with artificial mechanical loads, often focusing on cellular or molecular mechanotransduction pathway. However, some important aspects of mechanosensing are often neglected. (i) What are the mechanical characteristics of different loads and how are loads distributed within different organs? (ii) What is the relevant mechanical stimulus in the cell? Is it stress, strain, or energy? (iii) How do mechanosensing cells signal to meristematic cells? Without answers to these questions we cannot make progress analyzing the mechanobiological effects of plant size, plant shape, tissue distribution and stiffness, or the magnitude of stimuli. This situation is rapidly changing however, as systems mechanobiology is being developed, using specific biomechanical and/or mechanobiological models. These models are instrumental in comparing loads and responses between experiments and make it possible to quantitatively test biological hypotheses describing the mechanotransduction networks. This review is designed for a general plant science audience and aims to help biologists master the models they need for mechanobiological studies. Analysis and modeling is broken down into four steps looking at how the structure bears the load, how the distributed load is sensed, how the mechanical signal is transduced, and then how the plant responds through growth. Throughout, two examples of adaptive responses are used to illustrate this approach: the thigmorphogenetic syndrome of plant shoots bending and the mechanosensitive control of shoot apical meristem (SAM) morphogenesis. Overall this should provide a generic understanding of systems mechanobiology at work. PMID:25755656

  14. Dynamic Responses of Intact Post Mortem Human Surrogates from Inferior-to-Superior Loading at the Pelvis.

    PubMed

    Yoganandan, Narayan; Moore, Jason; Arun, Mike W J; Pintar, Frank A

    2014-11-01

    During certain events such as underbody blasts due to improvised explosive devices, occupants in military vehicles are exposed to inferior-to-superior loading from the pelvis. Injuries to the pelvis-sacrum-lumbar spine complex have been reported from these events. The mechanism of load transmission and potential variables defining the migration of injuries between pelvis and or spinal structures are not defined. This study applied inferior-to-superior impacts to the tuberosities of the ischium of supine-positioned five post mortem human subjects (PMHS) using different acceleration profiles, defined using shape, magnitude and duration parameters. Seventeen tests were conducted. Overlay temporal plots were presented for normalized (impulse momentum approach) forces and accelerations of the sacrum and spine. Scatter plots showing injury and non-injury data as a function of peak normalized forces, pulse characteristics, impulse and power, loading rate and sacrum and spine accelerations were evaluated as potential metrics related to pathological outcomes with the focus of examining the role of the pulse characteristics from inferior-to-superior loading of the pelvis-sacrum-lumbar spine complex. Interrelationships were explored between non-fracture and fracture outcomes, and fracture patterns with a focus on migration of injuries from the hip-only to hip and spine to spine-only regions. Observations indicate that injury to the pelvis and or spine from inferior-to-superior loading is associated with pulse and not just peak velocity. The role of the effect of mass recruitment and injury migration parallel knee-thigh-hip complex studies, suggest a wider application of the recruitment concept and the role of the pulse characteristics.

  15. The Effect of Acute and Chronic Exposure to Hypobaric Hypoxia on Loaded Squat Jump Performance

    PubMed Central

    García-Ramos, Amador; Padial, Paulino; De la Fuente, Blanca; Argüelles-Cienfuegos, Javier; Bonitch-Góngora, Juan

    2017-01-01

    Abstract The present study aimed (1) to compare loaded squat jump performance after an acute and chronic exposure to a moderate natural altitude between normoxia and hypobaric hypoxia conditions, and (2) to analyze the effect of an altitude training camp on loaded jump squat development. Sixteen male swimmers (17.1 ± 0.8 years) took part in a 17-day training camp at a natural moderate altitude. They were randomly tested in counterbalanced order on days 1 and 3 in normoxia and hypoxia (pretest) and on days 15 and 17 again in normoxia and hypoxia (posttest). The peak velocity reached with loads equivalent to 25%, 50%, 75% and 100% of swimmers’ pretest body weight in the loaded squat jump exercise was the dependent variable analyzed. An overall increase in peak velocity during the test performed in hypoxia of 6.5% in pretest (p < 0.001, ES = 0.98) and 4.5% in posttest (p < 0.001, ES = 0.81) was observed. An overall increment in peak velocity of 4.0% considering the data for normoxia tests (p < 0.001, ES = 0.61) and 2.1% considering the data for hypoxia tests (p = 0.008, ES = 0.36) was achieved after the altitude training camp. These results highlight the beneficial effects of hypobaric hypoxia on jump performance after short and longer term exposure to a natural moderate altitude. The increase in loaded squat jump performance following the 17-day training camp suggests that altitude training could constitute a favorable stimulus in explosive strength. PMID:28469753

  16. Multilevel composition fractionation process for high-value utilization of wheat straw cellulose.

    PubMed

    Chen, Hong-Zhang; Liu, Zhi-Hua

    2014-01-01

    Biomass refining into multiple products has gained considerable momentum due to its potential benefits for economic and environmental sustainability. However, the recalcitrance of biomass is a major challenge in bio-based product production. Multilevel composition fractionation processes should be beneficial in overcoming biomass recalcitrance and achieving effective conversion of multiple compositions of biomass. The present study concerns the fractionation of wheat straw using steam explosion, coupled with ethanol extraction, and that this facilitates the establishment of sugars and lignin platform and enables the production of regenerated cellulose films. The results showed that the hemicellulose fractionation yield was 73% under steam explosion at 1.6 MPa for 5.2 minutes, while the lignin fractionation yield was 90% by ethanol extraction at 160°C for 2 hours and with 60% ethanol (v/v). The cellulose yield reached up to 93% after steam explosion coupled with ethanol extraction. Therefore, cellulose sugar, hemicellulose sugar, and lignin platform were established effectively in the present study. Long fibers (retained by a 40-mesh screening) accounted for 90% of the total cellulose fibers, and the glucan conversion of short fibers was 90% at 9.0 hours with a cellulase loading of 25 filter paper units/g cellulose in enzymatic hydrolysis. Regenerated cellulose film was prepared from long fibers using [bmim]Cl, and the tensile strength and breaking elongation was 120 MPa and 4.8%, respectively. The cross-section of regenerated cellulose film prepared by [bmim]Cl displayed homogeneous structure, which indicated a dense architecture and a better mechanical performance. Multilevel composition fractionation process using steam explosion followed by ethanol extraction was shown to be an effective process by which wheat straw could be fractionated into different polymeric fractions with high yields. High-value utilization of wheat straw cellulose was achieved by preparing regenerated cellulose film using [bmim]Cl.

  17. Synthesis and Explosive Consolidation of Titanium, Aluminium, Boron and Carbon Containing Powders

    NASA Astrophysics Data System (ADS)

    Chikhradze, Mikheil; Oniashvili, George; Chikhradze, Nikoloz; D. S Marquis, Fernand

    2016-10-01

    The development of modern technologies in the field of materials science has increased the interest towards the bulk materials with improved physical, chemical and mechanical properties. Composites, fabricated in Ti-Al-B-C systems are characterized by unique physical and mechanical properties. They are attractive for aerospace, power engineering, machine and chemical applications. The technologies to fabricate ultrafine grained powder and bulk materials in Ti-Al-B-C system are described in the paper. It includes results of theoretical and experimental investigation for selection of powders composition and determination of thermodynamic conditions for bland preparation, as well as optimal technological parameters for mechanical alloying and adiabatic compaction. The crystalline coarse Ti, Al, C powders and amorphous B were used as precursors and blends with different compositions of Ti-Al, Ti-Al-C, Ti-B-C and Ti-Al-B were prepared. Preliminary determination/selection of blend compositions was made on the basis of phase diagrams. The powders were mixed according to the selected ratios of components to produce the blend. Blends were processed in “Fritsch” Planetary premium line ball mill for mechanical alloying, syntheses of new phases, amorphization and ultrafine powder production. The blends processing time was variable: 1 to 20 hours. The optimal technological regimes of nano blend preparation were determined experimentally. Ball milled nano blends were placed in metallic tube and loaded by shock waves for realization of consolidation in adiabatic regime. The structure and properties of the obtained ultrafine grained materials depending on the processing parameters are investigated and discussed. For consolidation of the mixture, explosive compaction technology is applied at room temperatures. The prepared mixtures were located in low carbon steel tube and blast energies were used for explosive consolidation compositions. The relationship of ball milling technological parameters and explosive consolidation conditions on the structure/properties of the obtained samples are described in the paper.

  18. Explosive-induced shock damage in copper and recompression of the damaged region

    DOE PAGES

    Turley, William D.; Stevens, Gerald D.; Hixson, Robert Stewart; ...

    2016-08-31

    Here, we have studied the dynamic spall process for copper samples in contact with detonating low-performance explosives. When a triangular shaped shock wave from detonation moves through a sample and reflects from the free surface, tension develops immediately, one or more damaged layers can form, and a spall scab can separate from the sample and move ahead of the remaining target material. For dynamic experiments, we used time-resolved velocimetry and x-ray radiography. Soft-recovered samples were analyzed using optical imaging and microscopy. Computer simulations were used to guide experiment design. We observe that for some target thicknesses the spall scab continuesmore » to run ahead of the rest of the sample, but for thinner samples, the detonation product gases accelerate the sample enough for it to impact the spall scab several microseconds or more after the initial damage formation. Our data also show signatures in the form of a late-time reshock in the time-resolved data, which support this computational prediction. A primary goal of this research was to study the wave interactions and damage processes for explosives-loaded copper and to look for evidence of this postulated recompression event. We found both experimentally and computationally that we could tailor the magnitude of the initial and recompression shocks by varying the explosive drive and the copper sample thickness; thin samples had a large recompression after spall, whereas thick samples did not recompress at all. Samples that did not recompress had spall scabs that completely separated from the sample, whereas samples with recompression remained intact. This suggests that the hypothesized recompression process closes voids in the damage layer or otherwise halts the spall formation process. This is a somewhat surprising and, in some ways controversial, result, and the one that warrants further research in the shock compression community.« less

  19. Explosive-induced shock damage in copper and recompression of the damaged region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turley, William D.; Stevens, Gerald D.; Hixson, Robert Stewart

    Here, we have studied the dynamic spall process for copper samples in contact with detonating low-performance explosives. When a triangular shaped shock wave from detonation moves through a sample and reflects from the free surface, tension develops immediately, one or more damaged layers can form, and a spall scab can separate from the sample and move ahead of the remaining target material. For dynamic experiments, we used time-resolved velocimetry and x-ray radiography. Soft-recovered samples were analyzed using optical imaging and microscopy. Computer simulations were used to guide experiment design. We observe that for some target thicknesses the spall scab continuesmore » to run ahead of the rest of the sample, but for thinner samples, the detonation product gases accelerate the sample enough for it to impact the spall scab several microseconds or more after the initial damage formation. Our data also show signatures in the form of a late-time reshock in the time-resolved data, which support this computational prediction. A primary goal of this research was to study the wave interactions and damage processes for explosives-loaded copper and to look for evidence of this postulated recompression event. We found both experimentally and computationally that we could tailor the magnitude of the initial and recompression shocks by varying the explosive drive and the copper sample thickness; thin samples had a large recompression after spall, whereas thick samples did not recompress at all. Samples that did not recompress had spall scabs that completely separated from the sample, whereas samples with recompression remained intact. This suggests that the hypothesized recompression process closes voids in the damage layer or otherwise halts the spall formation process. This is a somewhat surprising and, in some ways controversial, result, and the one that warrants further research in the shock compression community.« less

  20. Explosive-induced shock damage in copper and recompression of the damaged region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turley, W. D., E-mail: turleywd@nv.doe.gov; Stevens, G. D.; La Lone, B. M.

    We have studied the dynamic spall process for copper samples in contact with detonating low-performance explosives. When a triangular shaped shock wave from detonation moves through a sample and reflects from the free surface, tension develops immediately, one or more damaged layers can form, and a spall scab can separate from the sample and move ahead of the remaining target material. For dynamic experiments, we used time-resolved velocimetry and x-ray radiography. Soft-recovered samples were analyzed using optical imaging and microscopy. Computer simulations were used to guide experiment design. We observe that for some target thicknesses the spall scab continues tomore » run ahead of the rest of the sample, but for thinner samples, the detonation product gases accelerate the sample enough for it to impact the spall scab several microseconds or more after the initial damage formation. Our data also show signatures in the form of a late-time reshock in the time-resolved data, which support this computational prediction. A primary goal of this research was to study the wave interactions and damage processes for explosives-loaded copper and to look for evidence of this postulated recompression event. We found both experimentally and computationally that we could tailor the magnitude of the initial and recompression shocks by varying the explosive drive and the copper sample thickness; thin samples had a large recompression after spall, whereas thick samples did not recompress at all. Samples that did not recompress had spall scabs that completely separated from the sample, whereas samples with recompression remained intact. This suggests that the hypothesized recompression process closes voids in the damage layer or otherwise halts the spall formation process. This is a somewhat surprising and, in some ways controversial, result, and the one that warrants further research in the shock compression community.« less

  1. Variations in eruptive style and depositional processes of Neoproterozoic terrestrial volcano-sedimentary successions in the Hamid area, North Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Khalaf, Ezz El Din Abdel Hakim

    2013-07-01

    Two contrasting Neoproterozoic volcano-sedimentary successions of ca. 600 m thickness were recognized in the Hamid area, Northeastern Desert, Egypt. A lower Hamid succession consists of alluvial sediments, coherent lava flows, pyroclastic fall and flow deposits. An upper Hamid succession includes deposits from pyroclastic density currents, sills, and dykes. Sedimentological studies at different scales in the Hamid area show a very complex interaction of fluvial, eruptive, and gravitational processes in time and space and thus provided meaningful insights into the evolution of the rift sedimentary environments and the identification of different stages of effusive activity, explosive activity, and relative quiescence, determining syn-eruptive and inter-eruptive rock units. The volcano-sedimentary deposits of the study area can be ascribed to 14 facies and 7 facies associations: (1) basin-border alluvial fan, (2) mixed sandy fluvial braid plain, (3) bed-load-dominated ephemeral lake, (4) lava flows and volcaniclastics, (5) pyroclastic fall deposits, (6) phreatomagmatic volcanic deposits, and (7) pyroclastic density current deposits. These systems are in part coeval and in part succeed each other, forming five phases of basin evolution: (i) an opening phase including alluvial fan and valley flooding together with a lacustrine period, (ii) a phase of effusive and explosive volcanism (pulsatory phase), (iii) a phase of predominant explosive and deposition from base surges (collapsing phase), and (iv) a phase of caldera eruption and ignimbrite-forming processes (climactic phase). The facies architectures record a change in volcanic activity from mainly phreatomagmatic eruptions, producing large volumes of lava flows and pyroclastics (pulsatory and collapsing phase), to highly explosive, pumice-rich plinian-type pyroclastic density current deposits (climactic phase). Hamid area is a small-volume volcano, however, its magma compositions, eruption styles, and inter-eruptive breaks suggest, that it closely resembles a volcanic architecture commonly associated with large, composite volcanoes.

  2. Brittle materials at high-loading rates: an open area of research

    NASA Astrophysics Data System (ADS)

    Forquin, Pascal

    2017-01-01

    Brittle materials are extensively used in many civil and military applications involving high-strain-rate loadings such as: blasting or percussive drilling of rocks, ballistic impact against ceramic armour or transparent windshields, plastic explosives used to damage or destroy concrete structures, soft or hard impacts against concrete structures and so on. With all of these applications, brittle materials are subjected to intense loadings characterized by medium to extremely high strain rates (few tens to several tens of thousands per second) leading to extreme and/or specific damage modes such as multiple fragmentation, dynamic cracking, pore collapse, shearing, mode II fracturing and/or microplasticity mechanisms in the material. Additionally, brittle materials exhibit complex features such as a strong strain-rate sensitivity and confining pressure sensitivity that justify expending greater research efforts to understand these complex features. Currently, the most popular dynamic testing techniques used for this are based on the use of split Hopkinson pressure bar methodologies and/or plate-impact testing methods. However, these methods do have some critical limitations and drawbacks when used to investigate the behaviour of brittle materials at high loading rates. The present theme issue of Philosophical Transactions A provides an overview of the latest experimental methods and numerical tools that are currently being developed to investigate the behaviour of brittle materials at high loading rates. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  3. Brittle materials at high-loading rates: an open area of research

    PubMed Central

    2017-01-01

    Brittle materials are extensively used in many civil and military applications involving high-strain-rate loadings such as: blasting or percussive drilling of rocks, ballistic impact against ceramic armour or transparent windshields, plastic explosives used to damage or destroy concrete structures, soft or hard impacts against concrete structures and so on. With all of these applications, brittle materials are subjected to intense loadings characterized by medium to extremely high strain rates (few tens to several tens of thousands per second) leading to extreme and/or specific damage modes such as multiple fragmentation, dynamic cracking, pore collapse, shearing, mode II fracturing and/or microplasticity mechanisms in the material. Additionally, brittle materials exhibit complex features such as a strong strain-rate sensitivity and confining pressure sensitivity that justify expending greater research efforts to understand these complex features. Currently, the most popular dynamic testing techniques used for this are based on the use of split Hopkinson pressure bar methodologies and/or plate-impact testing methods. However, these methods do have some critical limitations and drawbacks when used to investigate the behaviour of brittle materials at high loading rates. The present theme issue of Philosophical Transactions A provides an overview of the latest experimental methods and numerical tools that are currently being developed to investigate the behaviour of brittle materials at high loading rates. This article is part of the themed issue ‘Experimental testing and modelling of brittle materials at high strain rates’. PMID:27956517

  4. Brittle materials at high-loading rates: an open area of research.

    PubMed

    Forquin, Pascal

    2017-01-28

    Brittle materials are extensively used in many civil and military applications involving high-strain-rate loadings such as: blasting or percussive drilling of rocks, ballistic impact against ceramic armour or transparent windshields, plastic explosives used to damage or destroy concrete structures, soft or hard impacts against concrete structures and so on. With all of these applications, brittle materials are subjected to intense loadings characterized by medium to extremely high strain rates (few tens to several tens of thousands per second) leading to extreme and/or specific damage modes such as multiple fragmentation, dynamic cracking, pore collapse, shearing, mode II fracturing and/or microplasticity mechanisms in the material. Additionally, brittle materials exhibit complex features such as a strong strain-rate sensitivity and confining pressure sensitivity that justify expending greater research efforts to understand these complex features. Currently, the most popular dynamic testing techniques used for this are based on the use of split Hopkinson pressure bar methodologies and/or plate-impact testing methods. However, these methods do have some critical limitations and drawbacks when used to investigate the behaviour of brittle materials at high loading rates. The present theme issue of Philosophical Transactions A provides an overview of the latest experimental methods and numerical tools that are currently being developed to investigate the behaviour of brittle materials at high loading rates.This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'. © 2016 The Author(s).

  5. High pressure, energy, and impulse loading of the wall in a 1-GJ Laboratory Microfusion Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrach, R.J.

    1989-07-24

    A proposed Laboratory Microfusion Facility (LMF) must be able to withstand repeated, low-repetition-rate fusion explosions at the 1-GJ (one-quarter ton) yield level. The energy release will occur at the center of a chamber only a few meters in radius, subjecting the interior or first wall to severe levels of temperature, pressure, and impulse. We show by theory and computation that the wall loading can be ameliorated by interposing a spherical shell of low-Z material between the fuel and the wall. This sacrificial shield converts the source energy components that are most damaging to the wall (soft x-rays and fast ions)more » to more benign plasma kinetic energy from the vaporized shield, and stretches the time duration over which this energy is delivered to the wall from nanoseconds to microseconds. Numerical calculations emphasize thin, volleyball-sized plastic shields, and much thicker ones of frozen nitrogen. Wall shielding criteria of small (or no) amount of surface ablation, low impulse and pressure loading, minimal shrapnel danger, small expense, and convenience in handling all favor the thin plastic shields. 7 refs., 4 figs.« less

  6. Mitigation of explosions of hydrogen-air mixtures using bulk materials and aqueous foam

    NASA Astrophysics Data System (ADS)

    Medvedev, S. P.; Khomik, S. V.; Mikhalkin, V. N.; Ivantsov, A. N.; Agafonov, G. L.; Cherepanov, A. A.; Cherepanova, T. T.; Betev, A. S.

    2018-01-01

    The objective of this work is to determine experimentally the effectiveness of protective barriers under conditions when blast waves are generated during premixed hydrogen- air combustion in various regimes. Experiments are conducted in a vertical tube having a diameter of 54 mm and a length of up to 2 m. Blast loads are produced by acceleration of premixed hydrogen-air flames in the tube with ring obstacles. Comparative tests are performed between protection barriers made of bulk materials with different densities and aqueous foams with different expansion ratios. It is demonstrated that the degree of blast load attenuation by an aqueous foam barrier increases with decreasing molecular weight of the filling gas and increasing density (decreasing expansion ratio) of the foam. An Aerosil barrier three times thicker than a titanium-dioxide one is found to have a similar attenuating effect on blast action. However, the mass per unit area of an Aerosil barrier is lower than titanium dioxide by a factor of 6 and is comparable to foam. The observed dependence of blast load attenuation on parameters of bulk materials and aqueous foams must be taken into account in systems designed to mitigate the consequences of accidental hydrogen release and combustion.

  7. Structural response of 1/20-scale models of the Clinch River Breeder Reactor to a simulated hypothetical core disruptive accident. Technical report 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romander, C. M.; Cagliostro, D. J.

    Five experiments were performed to help evaluate the structural integrity of the reactor vessel and head design and to verify code predictions. In the first experiment (SM 1), a detailed model of the head was loaded statically to determine its stiffness. In the remaining four experiments (SM 2 to SM 5), models of the vessel and head were loaded dynamically under a simulated 661 MW-sec hypothetical core disruptive accident (HCDA). Models SM 2 to SM 4, each of increasing complexity, systematically showed the effects of upper internals structures, a thermal liner, core support platform, and torospherical bottom on vessel response.more » Model SM 5, identical to SM 4 but more heavily instrumented, demonstrated experimental reproducibility and provided more comprehensive data. The models consisted of a Ni 200 vessel and core barrel, a head with shielding and simulated component masses, an upper internals structure (UIS), and, in the more complex models SM 4 and SM 5, a Ni 200 thermal liner and core support structure. Water simulated the liquid sodium coolant and a low-density explosive simulated the HCDA loads.« less

  8. Pressure-induced metallization of condensed phase β-HMX under shock loadings via molecular dynamics simulations in conjunction with multi-scale shock technique.

    PubMed

    Ge, Ni-Na; Wei, Yong-Kai; Zhao, Feng; Chen, Xiang-Rong; Ji, Guang-Fu

    2014-07-01

    The electronic structure and initial decomposition in high explosive HMX under conditions of shock loading are examined. The simulation is performed using quantum molecular dynamics in conjunction with multi-scale shock technique (MSST). A self-consistent charge density-functional tight-binding (SCC-DFTB) method is adapted. The results show that the N-N-C angle has a drastic change under shock wave compression along lattice vector b at shock velocity 11 km/s, which is the main reason that leads to an insulator-to-metal transition for the HMX system. The metallization pressure (about 130 GPa) of condensed-phase HMX is predicted firstly. We also detect the formation of several key products of condensed-phase HMX decomposition, such as NO2, NO, N2, N2O, H2O, CO, and CO2, and all of them have been observed in previous experimental studies. Moreover, the initial decomposition products include H2 due to the C-H bond breaking as a primary reaction pathway at extreme condition, which presents a new insight into the initial decomposition mechanism of HMX under shock loading at the atomistic level.

  9. 27 CFR 555.182 - Exceptions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... testing of new or modified explosive materials; (2) Training in explosives detection or development or testing of explosives detection equipment; or (3) Forensic science purposes; or (b) Was plastic explosive... EXPLOSIVES, DEPARTMENT OF JUSTICE EXPLOSIVES COMMERCE IN EXPLOSIVES Marking of Plastic Explosives § 555.182...

  10. 27 CFR 555.182 - Exceptions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... testing of new or modified explosive materials; (2) Training in explosives detection or development or testing of explosives detection equipment; or (3) Forensic science purposes; or (b) Was plastic explosive... EXPLOSIVES, DEPARTMENT OF JUSTICE EXPLOSIVES COMMERCE IN EXPLOSIVES Marking of Plastic Explosives § 555.182...

  11. Pulse generator with intermediate inductive storage as a lightning simulator

    NASA Astrophysics Data System (ADS)

    Kovalchuk, B. M.; Kharlov, A. V.; Zherlytsyn, A. A.; Kumpyak, E. V.; Tsoy, N. V.

    2016-06-01

    Compact transportable generators are required for simulating a lightning current pulse for electrical apparatus testing. A bi-exponential current pulse has to be formed by such a generator (with a current rise time of about two orders of magnitude faster than the damping time). The objective of this study was to develop and investigate a compact pulse generator with intermediate inductive storage and a fuse opening switch as a simulator of lightning discharge. A Marx generator (six stages) with a capacitance of 1 μF and an output voltage of 240 kV was employed as primary storage. In each of the stages, two IK-50/3 (50 kV, 3 μF) capacitors are connected in parallel. The generator inductance is 2 μH. A test bed for the investigations was assembled with this generator. The generator operates without SF6 and without oil in atmospheric air, which is very important in practice. Straight copper wires with adjustable lengths and diameters were used for the electro-explosive opening switch. Tests were made with active-inductive loads (up to 0.1 Ω and up to 6.3 μH). The current rise time is lower than 1200 ns, and the damping time can be varied from 35 to 125 μs, following the definition of standard lightning current pulse in the IEC standard. Moreover, 1D MHD calculations of the fuse explosion were carried out self-consistently with the electric circuit equations, in order to calculate more accurately the load pulse parameters. The calculations agree fairly well with the tests. On the basis of the obtained results, the design of a transportable generator was developed for a lightning simulator with current of 50 kA and a pulse shape corresponding to the IEEE standard.

  12. Muscle function in elite master weightlifters.

    PubMed

    Pearson, Stephen J; Young, Archie; Macaluso, Andrea; Devito, Giuseppe; Nimmo, Myra A; Cobbold, Matthew; Harridge, Stephen D R

    2002-07-01

    To determine whether explosive power and isometric strength of the lower-limb muscles in elite master Olympic weightlifters declines at a similar rate to nontrained healthy controls with increasing age. 54 elite level masters weightlifters (aged 40-87), who were competitors at the World Masters Weightlifting Championships (1999), were compared with a similar number of aged-matched, healthy untrained individuals. Isometric knee extensor strength and lower-limb explosive power were tested. Extent of antagonist co-contraction during isometric knee extension was determined by EMG and power loading characteristics by using a variable inertial system. Muscle volume was estimated using anthropometry. On average, the weightlifters were able to generate 32% more peak power (P < 0.05) in the lower limbs and 32% more isometric knee extensor force (P < 0.05) than the control subjects. No significant differences in lower-leg volume were observed between the two groups. Peak power declined at a similar rate with increasing age in the weightlifters and controls (1.2 and 1.3% of a 45-yr-old's value per year), as did strength, but at a lower rate (0.6 and 0.5% per year). The inertial load at which the weightlifters achieved their maximal peak power output was greater (P < 0.05) than the controls. The torque generated at this optimal inertia was also greater in the weightlifters (P < 0.05), whereas the time taken for the weightlifters to reach their maximal peak power was on average 13% shorter (P < 0.05). No differences in antagonist co-contraction during isometric knee extension were observed between the two groups. Muscle power and isometric strength decline at a similar rate with increasing age in elite master weightlifters and healthy controls. In spite of inertial load optimization, muscle power declined in both groups at approximately twice the rate of isometric strength. Although similar rates of decline were observed, the absolute differences between the weightlifters and controls were such that an 85-yr-old weightlifter was as powerful as a 65-yr-old control subject. This would therefore represent an apparent age advantage of approximately 20 yr for the weightlifters.

  13. Micro-blast waves using detonation transmission tubing

    NASA Astrophysics Data System (ADS)

    Samuelraj, I. Obed; Jagadeesh, G.; Kontis, K.

    2013-07-01

    Micro-blast waves emerging from the open end of a detonation transmission tube were experimentally visualized in this study. A commercially available detonation transmission tube was used (Nonel tube, M/s Dyno Nobel, Sweden), which is a small diameter tube coated with a thin layer of explosive mixture (HMX + traces of Al) on its inner side. The typical explosive loading for this tube is of the order of 18 mg/m of tube length. The blast wave was visualized using a high speed digital camera (frame rate 1 MHz) to acquire time-resolved schlieren images of the resulting flow field. The visualization studies were complemented by computational fluid dynamic simulations. An analysis of the schlieren images showed that although the blast wave appears to be spherical, it propagates faster along the tube axis than along a direction perpendicular to the tube axis. Additionally, CFD analysis revealed the presence of a barrel shock and Mach disc, showing structures that are typical of an underexpanded jet. A theory in use for centered large-scale explosions of intermediate strength (10 < Δ {p}/{p}_0 ≲ 0.02) gave good agreement with the blast trajectory along the tube axis. The energy of these micro-blast waves was found to be 1.25 ± 0.94 J and the average TNT equivalent was found to be 0.3. The repeatability in generating these micro-blast waves using the Nonel tube was very good (± 2 %) and this opens up the possibility of using this device for studying some of the phenomena associated with muzzle blasts in the near future.

  14. Near-Source Mechanism for Creating Shear Content from Buried Explosions

    NASA Astrophysics Data System (ADS)

    Steedman, D. W.; Bradley, C. R.

    2017-12-01

    The Source Physics Experiment (SPE) has the goal of developing a greater understanding of explosion phenomenology at various spatial scales, from near-source to the far-field. SPE Phase I accomplished a series of six chemical explosive tests of varying scaled depth of burial within a borehole in granite. The testbed included an extensive array of triaxial accelerometers. Velocity traces derived from these accelerometers allow for detailed study of the shock environment close in to the explosion. A specific goal of SPE is to identify various mechanisms for generating shear within the propagation environment and how this might be informative on the identification of explosive events that otherwise fail historic compression wave energy/shear wave energy (P/S) event discrimination. One of these sources was hypothesized to derive from slippage along joint sets near to the source. Velocity traces from SPE Phase I events indicate that motion tangential to a theoretically spherical shock wave are initially quiescent after shock arrival. But this period of quiescence is followed by a sudden increase in amplitude that consistently occurs just after the peak of the radial velocity (i.e., onset of shock unloading). The likelihood of occurrence of this response is related to yield-scaled depth-of-burial (SDOB). We describe a mechanism where unloading facilitates dilation of closed joints accompanied by a release of shear energy stored during compression. However, occurrence of this mechanism relies on relative amplitudes between the shock loading caused at a point and the in situ stress: at too large a SDOB the stored energy is insufficient to overcome the combination of the overburden stress and traction on the joint. On the other hand, too small of a SDOB provides that the in situ stress is insufficient to keep joints from storing stress, thus overriding the release mechanism and mitigating rupture-like slippage. We develop a notional relationship between SPE Phase I SDOB and the likelihood of shear release. We then compare this to the six recorded DPRK events in terms of where these events fall in relation to the accepted mb:MS discriminant using estimated SDOB values for those events. To first order SPE SDOBs resulting in shear release appear to map to estimated DPRK SDOBs which display excessive shear magnitude. LA-UR-17-29528.

  15. Explosive strength and endurance adaptations in young elite soccer players during two soccer seasons.

    PubMed

    Di Giminiani, Riccardo; Visca, Christiano

    2017-01-01

    The purpose of the present study was to investigate the explosive strength and endurance adaptations in young elite soccer players who underwent a supervised training program for a period of two years. Nineteen players, with seven years of training experience (age: 13.3 ± 0.1 years; body weight: 57.9 ± 4.9 kg; height: 168.9 ± 4.7 cm; BMI: 20.1 ± 1.1 kg/m2), voluntarily participated in the present study. The testing sessions were performed at the beginning of the preparation period in the first (T1), second (T2), and third year (T3). The following performance variables were measured: explosive strength [squat-jump (SJ) and counter-movement-jump (CMJ)], pre-stretch augmentation (CMJ-SJ), leg stiffness [hopping test (HT)], short sprint performance [15 m (SSP15) and 30 m (SSP30)], aerobic endurance [test of Leger (VO2max)], maximal heart rate [at the last step of Leger (HR)], and speed-strength endurance [continuous counter-movement-jumps (CCMJ)]. A significant main effect on the VO2Max (+5.72%; F(2.49) = 3.822; p = 0.029; ES = 1.00), HR (-1.70%; F(2.54) = 3.472; p = 0.038; ES = 0.97), CCMJ (+7.64%; F(2.54) = 5.438; p = 0.007; ES = 1.15), SJ (+10.26%; F(2.54) = 15.254; p = 0.0001; ES = 1.53), CMJ (+7.36; F(2.54) = 8.270; p = 0.001; ES = 1.33), HT (+8.34%; F(2.48) = 3.297; p = 0.046; ES = 1.01), SSP15 (-3.50%; F(2.44) = 12.760; p = 0.0001; ES = 1.53), and SSP30 (-4.44%; F(2.44) = 5.797; p = 0.006; ES = 1.16) was observed in the two soccer seasons. These results highlight that, in long-term training, the monitoring of the adaptive responses in relation to the training load may provide a guideline to optimize the trainability of some performance variables in young elite soccer players (13-15 years). In the present study, we cannot exclude the influence of growth and maturation on some performance variables; therefore, the monitored adaptive responses should be considered as the possible results of an interaction between the applied training load and maturation.

  16. Explosive strength and endurance adaptations in young elite soccer players during two soccer seasons

    PubMed Central

    Visca, Christiano

    2017-01-01

    The purpose of the present study was to investigate the explosive strength and endurance adaptations in young elite soccer players who underwent a supervised training program for a period of two years. Nineteen players, with seven years of training experience (age: 13.3 ± 0.1 years; body weight: 57.9 ± 4.9 kg; height: 168.9 ± 4.7 cm; BMI: 20.1 ± 1.1 kg/m2), voluntarily participated in the present study. The testing sessions were performed at the beginning of the preparation period in the first (T1), second (T2), and third year (T3). The following performance variables were measured: explosive strength [squat-jump (SJ) and counter-movement-jump (CMJ)], pre-stretch augmentation (CMJ-SJ), leg stiffness [hopping test (HT)], short sprint performance [15 m (SSP15) and 30 m (SSP30)], aerobic endurance [test of Leger (VO2max)], maximal heart rate [at the last step of Leger (HR)], and speed-strength endurance [continuous counter-movement-jumps (CCMJ)]. A significant main effect on the VO2Max (+5.72%; F(2.49) = 3.822; p = 0.029; ES = 1.00), HR (-1.70%; F(2.54) = 3.472; p = 0.038; ES = 0.97), CCMJ (+7.64%; F(2.54) = 5.438; p = 0.007; ES = 1.15), SJ (+10.26%; F(2.54) = 15.254; p = 0.0001; ES = 1.53), CMJ (+7.36; F(2.54) = 8.270; p = 0.001; ES = 1.33), HT (+8.34%; F(2.48) = 3.297; p = 0.046; ES = 1.01), SSP15 (-3.50%; F(2.44) = 12.760; p = 0.0001; ES = 1.53), and SSP30 (-4.44%; F(2.44) = 5.797; p = 0.006; ES = 1.16) was observed in the two soccer seasons. These results highlight that, in long-term training, the monitoring of the adaptive responses in relation to the training load may provide a guideline to optimize the trainability of some performance variables in young elite soccer players (13–15 years). In the present study, we cannot exclude the influence of growth and maturation on some performance variables; therefore, the monitored adaptive responses should be considered as the possible results of an interaction between the applied training load and maturation. PMID:28192512

  17. "Fooling fido"--chemical and behavioral studies of pseudo-explosive canine training aids.

    PubMed

    Kranz, William D; Strange, Nicholas A; Goodpaster, John V

    2014-12-01

    Genuine explosive materials are traditionally employed in the training and testing of explosive-detecting canines so that they will respond reliably to these substances. However, challenges arising from the acquisition, storage, handling, and transportation of explosives have given rise to the development of "pseudo-explosive" training aids. These products attempt to emulate the odor of real explosives while remaining inert. Therefore, a canine trained on a pseudo-explosive should respond to its real-life analog. Similarly, a canine trained on an actual explosive should respond to the pseudo-explosive as if it was real. This research tested those assumptions with a focus on three explosives: single-base smokeless powder, 2,4,6-trinitrotoluene (TNT), and a RDX-based plastic explosive (Composition C-4). Using gas chromatography-mass spectrometry with solid phase microextraction as a pre-concentration technique, we determined that the volatile compounds given off by pseudo-explosive products consisted of various solvents, known additives from explosive formulations, and common impurities present in authentic explosives. For example, simulated smokeless powders emitted terpenes, 2,4-dinitrotoluene, diphenylamine, and ethyl centralite. Simulated TNT products emitted 2,4- and 2,6-dinitrotoluene. Simulated C-4 products emitted cyclohexanone, 2-ethyl-1-hexanol, and dimethyldinitrobutane. We also conducted tests to determine whether canines trained on pseudo-explosives are capable of alerting to genuine explosives and vice versa. The results show that canines trained on pseudo-explosives performed poorly at detecting all but the pseudo-explosives they are trained on. Similarly, canines trained on actual explosives performed poorly at detecting all but the actual explosives on which they were trained.

  18. The effect of explosive percentage on underwater explosion energy release of hexanitrohexaazaisowurtzitane and octogen based aluminized explosives

    NASA Astrophysics Data System (ADS)

    Jiao, Qingjie; Wang, Qiushi; Nie, Jianxin; Guo, Xueyong; Zhang, Wei; Fan, Wenqi

    2018-03-01

    To control the explosion energy output by optimizing explosive components is a key requirement in a number of different application areas. The effect of different Al/O Ratio on underwater explosion of aluminized explosives has been studied detailedly. However, the effect of explosive percentage in the same Al/O Ratio is rarely researched, especially for Hexanitrohexaazaisowurtzitane (CL-20) based aluminized explosives. In this study, we performed the underwater explosion experiments with 1.2-kilogram explosives in order to investigate the explosion energy released from CL-20 and Octogen (HMX) based aluminized explosives. The percentage of the explosive varied from 5% to 30% and it is shown that: the shockwave peak pressure (pm) grows gradually; shock wave energy (Es) continues increasing, bubble energy (Eb) increases then decreases peaking at 15% for both formulas, and the total energy (E) and energy release rate (η) peak at 20% for CL-20 and 15% for HMX. This paper outlines the physical mechanism of Eb change under the influence of an aluminium initial reaction temperature and reaction active detonation product percentage coupling. The result shows that CL-20 is superior as a new high explosive and has promising application prospects in the regulation of explosive energy output for underwater explosives.

  19. Microjetting from grooved surfaces in metallic samples subjected to laser driven shocks

    NASA Astrophysics Data System (ADS)

    de Rességuier, T.; Lescoute, E.; Sollier, A.; Prudhomme, G.; Mercier, P.

    2014-01-01

    When a shock wave propagating in a solid sample reflects from a free surface, geometrical effects predominantly governed by the roughness and defects of that surface may lead to the ejection of tiny jets that may breakup into high velocity, approximately micrometer-size fragments. This process referred to as microjetting is a major safety issue for engineering applications such as pyrotechnics or armour design. Thus, it has been widely studied both experimentally, under explosive and impact loading, and theoretically. In this paper, microjetting is investigated in the specific loading conditions associated to laser shocks: very short duration of pressure application, very high strain rates, small spatial scales. Material ejection from triangular grooves in the free surface of various metallic samples is studied by combining transverse optical shadowgraphy and time-resolved velocity measurements. The influences of the main parameters (groove angle, shock pressure, nature of the metal) on jet formation and ejection velocity are quantified, and the results are compared to theoretical estimates.

  20. Test of the ``radical-like polymerization'' scheme in molecular dynamics on the behavior of polymers under shock loading

    NASA Astrophysics Data System (ADS)

    Lemarchand, Claire; Bousquet, David; Schnell, Benoît; Pineau, Nicolas

    2017-06-01

    The behavior of polymer melts under shock loading is a question attracting more and more attention because of applications such as polymer-bonded explosives, light-weight armor and civilian protective equipment, like sports and car equipment. Molecular dynamics (MD) simulations are a very good tool to characterize the microscopic response of the polymer to a shock wave. To do so, the initial configuration of the polymer melt needs to be realistic. The ``radical-like polymerization'' scheme is a method to obtain near equilibrium configurations of a melt of long polymer chains. It consists in adding one neighboring monomer at a time to each growing chain. Between each polymerization step an MD run is performed to relax the new configuration. We test how details of our implementation of the ``radical-like polymerization'' scheme can impact or not Hugoniot curves and changes of chain configuration under shock. We compare our results to other simulation and experimental results on reference polymers.

Top