Sample records for explosive nuclear burning

  1. Chemical, Biological, Radiological, Nuclear, and High-Yield Explosives Consequences Management

    DTIC Science & Technology

    2006-10-02

    cause three types of injuries: blast, thermal and radiation, as well as electromagnetic pulse (EMP) effects described further in a later section. (1...occur with conventional explosives and are further described in the next section. (2) Thermal injuries present as flash burns (burns from direct...exposure to the thermal radiation pulse, typically ultraviolet, visible, and infrared waves) or flame burns (burns from materials set afire by the infrared

  2. The Synthesis of 44Ti and 56Ni in Massive Stars

    NASA Astrophysics Data System (ADS)

    Chieffi, Alessandro; Limongi, Marco

    2017-02-01

    We discuss the influence of rotation on the combined synthesis of {}44{Ti} and {}56{Ni} in massive stars. While {}56{Ni} is significantly produced by both complete and incomplete explosive Si burning, {}44{Ti} is mainly produced by complete explosive Si burning, with a minor contribution (in standard non-rotating models) from incomplete explosive Si burning and O burning (both explosive and hydrostatic). We find that, in most cases, the thickness of the region exposed to incomplete explosive Si burning increases in rotating models (initial velocity, v ini = 300 km s-1) and since {}56{Ni} is significantly produced in this zone, the fraction of mass coming from the complete explosive Si burning zone necessary to get the required amount of {}56{Ni} reduces. Therefore the amount of {}44{Ti} ejected for a given fixed amount of {}56{Ni} decreases in rotating models. However, some rotating models at [Fe/H] = -1 develop a very extended O convective shell in which a consistent amount of {}44{Ti} is formed, preserved, and ejected in the interstellar medium. Hence a better modeling of the thermal instabilities (convection) in the advanced burning phases together with a critical analysis of the cross sections of the nuclear reactions operating in O burning are relevant for the understanding of the synthesis of {}44{Ti}.

  3. Swedish Defence Research Abstracts 82/83-3 (Froe Foersvars Forsknings Referat 82/83-3)

    DTIC Science & Technology

    1983-12-01

    A PROTECTION - ATOMIC A3 Effects of nuclear explosions , and protective measures (I 13) Radioactive fallout from nuclear weapons. A review of airborne...AND WEAPON TECHNOLOGY DI Technology of explosives (119) Boron-containing fuel-rich HTPB propellants. Manufacturing, burning experiments and specific...technology (122) TRYCK. A command procedure for presenting the param.ters of the shock wave •.:’. from detonating high- explosive charges D8 System studies (123

  4. Isotopic signature of atmospheric xenon released from light water reactors.

    PubMed

    Kalinowski, Martin B; Pistner, Christoph

    2006-01-01

    A global monitoring system for atmospheric xenon radioactivity is being established as part of the International Monitoring System to verify compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The isotopic activity ratios of (135)Xe, (133m)Xe, (133)Xe and (131m)Xe are of interest for distinguishing nuclear explosion sources from civilian releases. Simulations of light water reactor (LWR) fuel burn-up through three operational reactor power cycles are conducted to explore the possible xenon isotopic signature of nuclear reactor releases under different operational conditions. It is studied how ratio changes are related to various parameters including the neutron flux, uranium enrichment and fuel burn-up. Further, the impact of diffusion and mixing on the isotopic activity ratio variability are explored. The simulations are validated with reported reactor emissions. In addition, activity ratios are calculated for xenon isotopes released from nuclear explosions and these are compared to the reactor ratios in order to determine whether the discrimination of explosion releases from reactor effluents is possible based on isotopic activity ratios.

  5. 'Tertiary' nuclear burning - Neutron star deflagration?

    NASA Technical Reports Server (NTRS)

    Michel, F. Curtis

    1988-01-01

    A motivation is presented for the idea that dense nuclear matter can burn to a new class of stable particles. One of several possibilities is an 'octet' particle which is the 16 baryon extension of alpha particle, but now composed of a pair of each of the two nucleons, (3Sigma, Delta, and 2Xi). Such 'tertiary' nuclear burning (here 'primary' is H-He and 'secondary' is He-Fe) may lead to neutron star explosions rather than collapse to a black hole, analogous to some Type I supernovae models wherein accreting white dwarfs are pushed over the Chandrasekhar mass limit but explode rather than collapse to form neutron stars. Such explosions could possibly give gamma-ray bursts and power quasars, with efficient particle acceleration in the resultant relativistic shocks. The new stable particles themselves could possibly be the sought-after weakly interacting, massive particles (WIMPs) or 'dark' matter.

  6. Properties of Deflagration Fronts and Models for Type IA Supernovae

    NASA Astrophysics Data System (ADS)

    Domínguez, I.; Höflich, P.

    2000-01-01

    Detailed models of the explosion of a white dwarf that include self-consistent calculations of the light curve and spectra provide a link between observational quantities and the underlying explosion model. These calculations assume spherical geometry and are based on parameterized descriptions of the burning front. Recently, the first multidimensional calculations for nuclear burning fronts have been performed. Although a fully consistent treatment of the burning fronts is beyond the current state of the art, these calculations provide a new and better understanding of the physics. Several new descriptions for flame propagation have been proposed by Khokhlov et al. and Niemeyer et al. Using various descriptions for the propagation of a nuclear deflagration front, we have studied the influence on the results of previous analyses of Type Ia supernovae, namely, the nucleosynthesis and structure of the expanding envelope. Our calculations are based on a set of delayed detonation models with parameters that give a good account of the optical and infrared light curves and of the spectral evolution. In this scenario, the burning front first propagates in a deflagration mode and subsequently turns into a detonation. The explosions and light curves are calculated using a one-dimensional Lagrangian radiation-hydro code including a detailed nuclear network. We find that the results of the explosion are rather insensitive to details of the description of the deflagration front, even if its speed and the time from the transition to detonation differ almost by a factor of 2. For a given white dwarf (WD) and a fixed transition density, the total production of elements changes by less than 10%, and the distribution in the velocity space changes by less than 7%. Qualitatively, this insensitivity of the final outcome of the explosion to the details of the flame propagation during the (slow) deflagration phase can be understood as follows: for plausible variations in the speed of the turbulent deflagration, the duration of this phase is several times longer than the sound crossing time in the initial WD. Therefore, the energy produced during the early nuclear burning can be redistributed over the entire WD, causing a slow preexpansion. In this intermediate state, the WD is still bound but its binding energy is reduced by the amount of nuclear energy. The expansion ratio depends mainly on the total amount of burning during the deflagration phase. Consequently, the conditions are very similar under which nuclear burning takes place during the subsequent detonation phase. In our example, the density and temperature at the burning front changes by less than 3%, and the expansion velocity changes by less than 10%. The burning conditions are very close to previous calculations which used a constant deflagration velocity. Based on a comparison with observations, those required low deflagration speeds (~2%-3% of the speed of sound). Exceptions to the similarity are the innermost layers of ~0.03-0.05 Msolar. Still, nuclear burning is in nuclear statistical equilibrium, but the rate of electron capture is larger for the new descriptions of the flame propagation. Consequently, the production of very neutron-rich isotopes is increased. In our example, close to the center Ye is about 0.44, compared to 0.46 in the model with constant deflagration speed. This increases the 48Ca production by more than a factor of 100 to 3.E-6 Msolar. Conclusions from previous analyses of light curves and spectra on the properties of the WD and the explosions will not change, and even with the new descriptions, the delayed detonation scenario is consistent with the observations. Namely, the central density results with respect to the chemical structure of the progenitor and the transition density from deflagration to detonation do not change. The reason for this similarity is the fact that the total amount of burning during the long deflagration phase determines the restructuring of the WD prior to the detonation. Therefore, we do not expect that the precise, microphysical prescription for the speed of a subsonic burning front has a significant effect on the outcome. However, at the current level of uncertainties for the burning front, the relation between properties of the burning front and of the initial white dwarf cannot be obtained from a comparison between observation and theoretical predictions by one-dimensional models. Multidimensional calculations are needed (1) to get inside the relations between model parameters such as central density and properties of the deflagration front and its relation to the transition density between deflagration and detonation and (2) to make use of information on asphericity that is provided by polarization measurements. These questions are essential to test, estimate, and predict some of the evolutionary effects of SNe Ia and their use as cosmological yardsticks.

  7. Fates of the most massive primordial stars

    NASA Astrophysics Data System (ADS)

    Chen, Ke-Jung; Heger, Alexander; Almgren, Ann; Woosley, Stan

    2012-09-01

    We present our results of numerical simulations of the most massive primordial stars. For the extremely massive non-rotating Pop III stars over 300Msolar, they would simply die as black holes. But the Pop III stars with initial masses 140 - 260Msolar may have died as gigantic explosions called pair-instability supernovae (PSNe). We use a new radiation-hydrodynamics code CASTRO to study evolution of PSNe. Our models follow the entire explosive burning and the explosion until the shock breaks out from the stellar surface. In our simulations, we find that fluid instabilities occurred during the explosion. These instabilities are driven by both nuclear burning and hydrodynamical instability. In the red supergiant models, fluid instabilities can lead to significant mixing of supernova ejecta and alter the observational signature.

  8. Nuclear Structure Aspects in Nuclear Astrophysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Michael Scott

    2006-12-01

    Nuclear Astrophysics as a broad and diverse field of study can be viewed as a magnifier of the impact of microscopic processes on the evolution of macroscopic events. One of the primary goals in Nuclear Astrophysics is the understanding of the nucleosynthesis processes that take place in the cosmos and the simulation of the correlated stellar and explosive burning scenarios. These simulations are strongly dependent on the input from Nuclear Physics which sets the time scale for all stellar dynamic processes--from giga-years of stellar evolution to milliseconds of stellar explosions--and provides the basis for most of the signatures that wemore » have for the interpretation of these events--from stellar luminosities, elemental and isotopic abundances to neutrino flux from distant supernovae. The Nuclear Physics input comes through nuclear structure, low energy reaction rates, nuclear masses, and decay rates. There is a common perception that low energy reaction rates are the most important component of the required nuclear physics input; however, in this article we take a broader approach and present an overview of the close correlation between various nuclear structure aspects and their impact on nuclear astrophysics. We discuss the interplay between the weak and the strong forces on stellar time scales due to the limitations they provide for the evolution of slow and rapid burning processes. The effects of shell structure in nuclei on stellar burning processes as well as the impact of clustering in nuclei is outlined. Furthermore we illustrate the effects of the various nuclear structure aspects on the major nucleosynthesis processes that have been identified in the last few decades. We summarize and provide a coherent overview of the impact of all aspects of nuclear structure on nuclear astrophysics.« less

  9. A common explosion mechanism for type Ia supernovae.

    PubMed

    Mazzali, Paolo A; Röpke, Friedrich K; Benetti, Stefano; Hillebrandt, Wolfgang

    2007-02-09

    Type Ia supernovae, the thermonuclear explosions of white dwarf stars composed of carbon and oxygen, were instrumental as distance indicators in establishing the acceleration of the universe's expansion. However, the physics of the explosion are debated. Here we report a systematic spectral analysis of a large sample of well-observed type Ia supernovae. Mapping the velocity distribution of the main products of nuclear burning, we constrain theoretical scenarios. We find that all supernovae have low-velocity cores of stable iron-group elements. Outside this core, nickel-56 dominates the supernova ejecta. The outer extent of the iron-group material depends on the amount of nickel-56 and coincides with the inner extent of silicon, the principal product of incomplete burning. The outer extent of the bulk of silicon is similar in all supernovae, having an expansion velocity of approximately 11,000 kilometers per second and corresponding to a mass of slightly over one solar mass. This indicates that all the supernovae considered here burned similar masses and suggests that their progenitors had the same mass. Synthetic light-curve parameters and three-dimensional explosion simulations support this interpretation. A single explosion scenario, possibly a delayed detonation, may thus explain most type Ia supernovae.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winstanley, J. L.

    In August 1945, U.S. Navy Captain William Parsons served as the weaponeer aboard the Enola Gay for the mission to Hiroshima (Shelton 1988). In view of the fact that four B-29s had crashed and burned on takeoff from Tinian the night before, Captain Parsons made the decision to arm the gun-type weapon after takeoff for safety reasons (15 kilotons of TNT equivalent). Although he had no control over the success of the takeoff, he could prevent the possibility of a nuclear detonation on Tinian by controlling what we now call the nuclear explosive. As head of the Ordnance Division atmore » Los Alamos and a former gunnery officer, Captain Parsons clearly understood the role of safety in his work. The advent of the pre-assembled implosion weapon where the high explosive and nuclear materials are always in an intimate configuration meant that nuclear explosive safety became a reality at a certain point in development and production not just at the time of delivery by the military. This is the only industry where nuclear materials are intentionally put in contact with high explosives. The agency of the U.S. Government responsible for development and production of U.S. nuclear weapons is the Department of Energy (DOE) (and its predecessor agencies). This paper will be limited to nuclear explosive safety as it is currently practiced within the DOE nuclear weapons« less

  11. 40 CFR 265.382 - Open burning; waste explosives.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Open burning; waste explosives. 265... DISPOSAL FACILITIES Thermal Treatment § 265.382 Open burning; waste explosives. Open burning of hazardous waste is prohibited except for the open burning and detonation of waste explosives. Waste explosives...

  12. 40 CFR 265.382 - Open burning; waste explosives.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Open burning; waste explosives. 265... DISPOSAL FACILITIES Thermal Treatment § 265.382 Open burning; waste explosives. Open burning of hazardous waste is prohibited except for the open burning and detonation of waste explosives. Waste explosives...

  13. 40 CFR 265.382 - Open burning; waste explosives.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Open burning; waste explosives. 265... DISPOSAL FACILITIES Thermal Treatment § 265.382 Open burning; waste explosives. Open burning of hazardous waste is prohibited except for the open burning and detonation of waste explosives. Waste explosives...

  14. 40 CFR 265.382 - Open burning; waste explosives.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Open burning; waste explosives. 265... DISPOSAL FACILITIES Thermal Treatment § 265.382 Open burning; waste explosives. Open burning of hazardous waste is prohibited except for the open burning and detonation of waste explosives. Waste explosives...

  15. 40 CFR 265.382 - Open burning; waste explosives.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Open burning; waste explosives. 265... DISPOSAL FACILITIES Thermal Treatment § 265.382 Open burning; waste explosives. Open burning of hazardous waste is prohibited except for the open burning and detonation of waste explosives. Waste explosives...

  16. Nucleosynthesis in Thermonuclear Supernovae

    NASA Astrophysics Data System (ADS)

    Seitenzahl, Ivo Rolf; Townsley, Dean M.

    The explosion energy of thermonuclear (type Ia) supernovae is derived from the difference in nuclear binding energy liberated in the explosive fusion of light "fuel" nuclei, predominantly carbon and oxygen, into more tightly bound nuclear "ash" dominated by iron and silicon group elements. The very same explosive thermonuclear fusion event is also one of the major processes contributing to the nucleosynthesis of the heavy elements, in particular the iron-group elements. For example, most of the iron and manganese in the sun and its planetary system were produced in thermonuclear supernovae. Here, we review the physics of explosive thermonuclear burning in carbon-oxygen white dwarf material and the methodologies utilized in calculating predicted nucleosynthesis from hydrodynamic explosion models. While the dominant explosion scenario remains unclear, many aspects of the nuclear combustion and nucleosynthesis are common to all models and must occur in some form in order to produce the observed yields. We summarize the predicted nucleosynthetic yields for existing explosion models, placing particular emphasis on characteristic differences in the nucleosynthetic signatures of the different suggested scenarios leading to type Ia supernovae. Following this, we discuss how these signatures compare with observations of several individual supernovae, remnants, and the composition of material in our galaxy and galaxy clusters.

  17. 30 CFR 56.6903 - Burning explosive material.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Burning explosive material. 56.6903 Section 56... Requirements § 56.6903 Burning explosive material. If explosive material is suspected of burning at the blast... after the burning or suspected burning has stopped. ...

  18. 30 CFR 56.6903 - Burning explosive material.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Burning explosive material. 56.6903 Section 56... Requirements § 56.6903 Burning explosive material. If explosive material is suspected of burning at the blast... after the burning or suspected burning has stopped. ...

  19. 30 CFR 56.6903 - Burning explosive material.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Burning explosive material. 56.6903 Section 56... Requirements § 56.6903 Burning explosive material. If explosive material is suspected of burning at the blast... after the burning or suspected burning has stopped. ...

  20. 30 CFR 56.6903 - Burning explosive material.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Burning explosive material. 56.6903 Section 56... Requirements § 56.6903 Burning explosive material. If explosive material is suspected of burning at the blast... after the burning or suspected burning has stopped. ...

  1. 30 CFR 56.6903 - Burning explosive material.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Burning explosive material. 56.6903 Section 56... Requirements § 56.6903 Burning explosive material. If explosive material is suspected of burning at the blast... after the burning or suspected burning has stopped. ...

  2. Thermonuclear runaways in nova outbursts

    NASA Technical Reports Server (NTRS)

    Shankar, Anurag; Arnett, David; Fryxell, Bruce A.

    1992-01-01

    Results of exploratory, two-dimensional numerical calculations of a local thermonuclear runaway on the surface of a white dwarf are reported. It is found that the energy released by the runaway can induce a significant amount of vorticity near the burning region. Such mass motions account naturally for mixing of core matter into the envelope during the explosion. A new mechanism for the lateral spread of nuclear burning is also discussed.

  3. Effect of Velocity of Detonation of Explosives on Seismic Radiation

    NASA Astrophysics Data System (ADS)

    Stroujkova, A. F.; Leidig, M.; Bonner, J. L.

    2014-12-01

    We studied seismic body wave generation from four fully contained explosions of approximately the same yields (68 kg of TNT equivalent) conducted in anisotropic granite in Barre, VT. The explosions were detonated using three types of explosives with different velocities of detonation (VOD): Black Powder (BP), Ammonium Nitrate Fuel Oil/Emulsion (ANFO), and Composition B (COMP B). The main objective of the experiment was to study differences in seismic wave generation among different types of explosives, and to determine the mechanism responsible for these differences. The explosives with slow burn rate (BP) produced lower P-wave amplitude and lower corner frequency, which resulted in lower seismic efficiency (0.35%) in comparison with high burn rate explosives (2.2% for ANFO and 3% for COMP B). The seismic efficiency estimates for ANFO and COMP B agree with previous studies for nuclear explosions in granite. The body wave radiation pattern is consistent with an isotropic explosion with an added azimuthal component caused by vertical tensile fractures oriented along pre-existing micro-fracturing in the granite, although the complexities in the P- and S-wave radiation patterns suggest that more than one fracture orientation could be responsible for their generation. High S/P amplitude ratios and low P-wave amplitudes suggest that a significant fraction of the BP source mechanism can be explained by opening of the tensile fractures as a result of the slow energy release.

  4. 30 CFR 57.6903 - Burning explosive material.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Burning explosive material. 57.6903 Section 57... General Requirements-Surface and Underground § 57.6903 Burning explosive material. If explosive material is suspected of burning at the blast site, persons shall be evacuated from the endangered area and...

  5. 30 CFR 57.6903 - Burning explosive material.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Burning explosive material. 57.6903 Section 57... General Requirements-Surface and Underground § 57.6903 Burning explosive material. If explosive material is suspected of burning at the blast site, persons shall be evacuated from the endangered area and...

  6. 30 CFR 57.6903 - Burning explosive material.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Burning explosive material. 57.6903 Section 57... General Requirements-Surface and Underground § 57.6903 Burning explosive material. If explosive material is suspected of burning at the blast site, persons shall be evacuated from the endangered area and...

  7. 30 CFR 57.6903 - Burning explosive material.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Burning explosive material. 57.6903 Section 57... General Requirements-Surface and Underground § 57.6903 Burning explosive material. If explosive material is suspected of burning at the blast site, persons shall be evacuated from the endangered area and...

  8. 30 CFR 57.6903 - Burning explosive material.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Burning explosive material. 57.6903 Section 57... General Requirements-Surface and Underground § 57.6903 Burning explosive material. If explosive material is suspected of burning at the blast site, persons shall be evacuated from the endangered area and...

  9. Magnetohydrodynamical Effects on Nuclear Deflagration Fronts in Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Hristov, Boyan; Collins, David C.; Hoeflich, Peter; Weatherford, Charles A.; Diamond, Tiara R.

    2018-05-01

    This article presents a study of the effects of magnetic fields on non-distributed nuclear burning fronts as a possible solution to a fundamental problem for the thermonuclear explosion of a Chandrasekhar mass ({M}Ch}) white dwarf (WD), the currently favored scenario for the majority of Type Ia SNe. All existing 3D hydrodynamical simulations predict strong global mixing of the burning products due to Rayleigh–Taylor (RT) instabilities, which contradicts observations. As a first step toward studying the flame physics, we present a set of computational magnet-hydrodynamic models in rectangular flux tubes, resembling a small inner region of a WD. We consider initial magnetic fields up to {10}12 {{G}} of various orientations. We find an increasing suppression of RT instabilities starting at about {10}9 {{G}}. The front speed tends to decrease with increasing magnitude up to about {10}11 {{G}}. For even higher fields new small-scale, finger-like structures develop, which increase the burning speed by a factor of 3 to 4 above the field-free RT-dominated regime. We suggest that the new instability may provide sufficiently accelerated energy production during the distributed burning regime to go over the Chapman–Jougey limit and trigger a detonation. Finally, we discuss the possible origins of high magnetic fields during the final stage of the progenitor evolution or the explosion.

  10. 16 CFR 1145.3 - Extremely flammable contact adhesives; risk of burns from explosive vapor ignition and flashback...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... of burns from explosive vapor ignition and flashback fire. 1145.3 Section 1145.3 Commercial Practices...; risk of burns from explosive vapor ignition and flashback fire. (a) The Commission finds that it is in the public interest to regulate the risk of burns from explosive vapor ignition and flashback fire...

  11. 16 CFR 1145.3 - Extremely flammable contact adhesives; risk of burns from explosive vapor ignition and flashback...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... of burns from explosive vapor ignition and flashback fire. 1145.3 Section 1145.3 Commercial Practices...; risk of burns from explosive vapor ignition and flashback fire. (a) The Commission finds that it is in the public interest to regulate the risk of burns from explosive vapor ignition and flashback fire...

  12. 16 CFR 1145.3 - Extremely flammable contact adhesives; risk of burns from explosive vapor ignition and flashback...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of burns from explosive vapor ignition and flashback fire. 1145.3 Section 1145.3 Commercial Practices...; risk of burns from explosive vapor ignition and flashback fire. (a) The Commission finds that it is in the public interest to regulate the risk of burns from explosive vapor ignition and flashback fire...

  13. 16 CFR 1145.3 - Extremely flammable contact adhesives; risk of burns from explosive vapor ignition and flashback...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of burns from explosive vapor ignition and flashback fire. 1145.3 Section 1145.3 Commercial Practices...; risk of burns from explosive vapor ignition and flashback fire. (a) The Commission finds that it is in the public interest to regulate the risk of burns from explosive vapor ignition and flashback fire...

  14. Turbulence in core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Radice, David; Abdikamalov, Ernazar; Ott, Christian D.; Mösta, Philipp; Couch, Sean M.; Roberts, Luke F.

    2018-05-01

    Multidimensional simulations show that non-radial, turbulent, fluid motion is a fundamental component of the core-collapse supernova explosion mechanism. Neutrino-driven convection, the standing accretion shock instability, and relic-perturbations from advanced nuclear burning stages can all impact the outcome of core collapse in a qualitative and quantitative way. Here, we review the current understanding of these phenomena and their role in the explosion of massive stars. We also discuss the role of protoneutron star convection and of magnetic fields in the context of the delayed neutrino mechanism.

  15. 16 CFR § 1145.3 - Extremely flammable contact adhesives; risk of burns from explosive vapor ignition and flashback...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... of burns from explosive vapor ignition and flashback fire. § 1145.3 Section § 1145.3 Commercial...; risk of burns from explosive vapor ignition and flashback fire. (a) The Commission finds that it is in the public interest to regulate the risk of burns from explosive vapor ignition and flashback fire...

  16. Turbulent Nuclear Burning of Carbon Fuel in Double-Degenerate White Dwarfs

    NASA Astrophysics Data System (ADS)

    Mozumdar, Pritom; Fisher, Robert

    2018-01-01

    Type Ia supernovae (SNe Ia) are of interest as standardizable cosmological candles, though their stellar progenitors are still poorly understood. The double-degenerate (DD) channel is promising, but the mechanism for the explosion remains a matter of active investigation. A long-standing problem in modeling SNe Ia is the fact that 3D simulations leave the length scales crucial for a possible detonation unresolved. In this work, we have performed local 3D hydrodynamical adaptive mesh refinement simulations of driven turbulence for various initial conditions characteristic of the DD scenario, which are capable of capturing length scales relevant to the Zel’dovich gradient mechanism. Because the carbon burning rate is highly sensitive to temperature in this regime, we demonstrate that turbulence can dramatically enhance the nuclear burning rate, and we investigate the connection to a possible detonation.

  17. Operation REDWING. Technical Summary of Military Effects. Programs 1-9

    DTIC Science & Technology

    1981-05-15

    study chorioretinal burns. The primary objective of the program on effects on aircraft structures was to ascer- tain the reliability of current weapons...other aircraft. In the program of tests on service equipment and studies of electromagnetic effects,I 4k. the emphasis was placed on studying long...range detection of nuclear explosions. An additional objective was the study of the effects of nuclear detonations on the ionosphere and microwave

  18. Role of nuclear reactions on stellar evolution of intermediate-mass stars

    NASA Astrophysics Data System (ADS)

    Möller, H.; Jones, S.; Fischer, T.; Martínez-Pinedo, G.

    2018-01-01

    The evolution of intermediate-mass stars (8 - 12 solar masses) represents one of the most challenging subjects in nuclear astrophysics. Their final fate is highly uncertain and strongly model dependent. They can become white dwarfs, they can undergo electron-capture or core-collapse supernovae or they might even proceed towards explosive oxygen burning and a subsequent thermonuclear explosion. We believe that an accurate description of nuclear reactions is crucial for the determination of the pre-supernova structure of these stars. We argue that due to the possible development of an oxygen-deflagration, a hydrodynamic description has to be used. We implement a nuclear reaction network with ∼200 nuclear species into the implicit hydrodynamic code AGILE. The reaction network considers all relevant nuclear electron captures and beta-decays. For selected relevant nuclear species, we include a set of updated reaction rates, for which we discuss the role for the evolution of the stellar core, at the example of selected stellar models. We find that the final fate of these intermediate-mass stars depends sensitively on the density threshold for weak processes that deleptonize the core.

  19. Pressure Amplification Off High Impedance Barriers in DDT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heatwole, Eric Mann; Broilo, Robert M.; Kistle, Trevin Joseph

    The Deflagration-to-Detonation Transition (DDT) in one-dimensional porous explosive, where combustion in an explosive transitions to detonation, can be described by the following model. This simplified model proceeds in five steps, as follows: 1) Ignition of the explosive, surface burning. 2) Convective burning, with the flame front penetrating through the porous network of the explosive. This proceeds until the pressure grows high enough to result in choked flow in the pores restricting the convective burn. 3) The choked flow results in the formation of a high-density compact of explosive. This compact is driven into undisturbed material by the pressure of themore » burning explosive. See Figure1. 4) The compression of the undisturbed porous explosive by the compact leads to the ignition of a compressive burn. This builds in pressure until a supported shock forms. 5) The shock builds in pressure until detonation occurs. See Figure 2 for an overview streak of the proceeding steps.« less

  20. The evolution of massive stars including mass loss - Presupernova models and explosion

    NASA Technical Reports Server (NTRS)

    Woosley, S. E.; Langer, Norbert; Weaver, Thomas A.

    1993-01-01

    The evolution of massive stars of 35, 40, 60, and 85 solar masses is followed through all stages of nuclear burning to the point of Fe core collapse. Critical nuclear reaction and mass-loss rates are varied. Efficient mass loss during the Wolf-Rayet (WR) stage is likely to lead to final masses as small as 4 solar masses. For a reasonable parameterization of the mass loss, there may be convergence of all WR stars, both single and in binaries, to a narrow band of small final masses. Our representative model, a 4.25 solar-mass WR presupernova derived from a 60 solar mass star, is followed through a simulated explosion, and its explosive nucleosynthesis and light curve are determined. Its properties are similar to those observed in Type Ib supernovae. The effects of the initial mass and mass loss on the presupernova structure of small mass WR models is also explored. Important properties of the presupernova star and its explosion can only be obtained by following the complete evolution starting on the main sequence.

  1. PHYSICS: Will Livermore Laser Ever Burn Brightly?

    PubMed

    Seife, C; Malakoff, D

    2000-08-18

    The National Ignition Facility (NIF), a superlaser being built here at Lawrence Livermore National Laboratory in an effort to use lasers rather than nuclear explosions to create a fusion reaction, is supposed to allow weapons makers to preserve the nuclear arsenal--and do nifty fusion science, too. But a new report that examines its troubled past also casts doubt on its future. Even some of NIF's scientific and political allies are beginning to talk openly of a scaled-down version of the original 192-laser design.

  2. History of the Nuclei Important for Cosmochemistry

    NASA Technical Reports Server (NTRS)

    Meyer, Bradley S.

    2004-01-01

    An essential aspect of studying the nuclei important for cosmochemistry is their production in stars. Over the grant period, we have further developed the Clemson/American University of Beirut stellar evolution code. Through use of a biconjugate-gradient matrix solver, we now routinely solve l0(exp 6) x l0(exp 6) sparse matrices on our desktop computers. This has allowed us to couple nucleosynthesis and convection fully in the 1-D star, which, in turn, provides better estimates of nuclear yields when the mixing and nuclear burning timescales are comparable. We also have incorporated radiation transport into our 1-D supernova explosion code. We used the stellar evolution and explosion codes to compute iron abundances in a 25 Solar mass star and compared the results to data from RIMS.

  3. Shock-turbulence interaction in core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Abdikamalov, Ernazar; Zhaksylykov, Azamat; Radice, David; Berdibek, Shapagat

    2016-10-01

    Nuclear shell burning in the final stages of the lives of massive stars is accompanied by strong turbulent convection. The resulting fluctuations aid supernova explosion by amplifying the non-radial flow in the post-shock region. In this work, we investigate the physical mechanism behind this amplification using a linear perturbation theory. We model the shock wave as a one-dimensional planar discontinuity and consider its interaction with vorticity and entropy perturbations in the upstream flow. We find that, as the perturbations cross the shock, their total turbulent kinetic energy is amplified by a factor of ˜2, while the average linear size of turbulent eddies decreases by about the same factor. These values are not sensitive to the parameters of the upstream turbulence and the nuclear dissociation efficiency at the shock. Finally, we discuss the implication of our results for the supernova explosion mechanism. We show that the upstream perturbations can decrease the critical neutrino luminosity for producing explosion by several per cent.

  4. Constraining the astrophysical origin of the p-nuclei through nuclear physics and meteoritic data.

    PubMed

    Rauscher, T; Dauphas, N; Dillmann, I; Fröhlich, C; Fülöp, Zs; Gyürky, Gy

    2013-06-01

    A small number of naturally occurring, proton-rich nuclides (the p-nuclei) cannot be made in the s- and r-processes. Their origin is not well understood. Massive stars can produce p-nuclei through photodisintegration of pre-existing intermediate and heavy nuclei. This so-called γ-process requires high stellar plasma temperatures and occurs mainly in explosive O/Ne burning during a core-collapse supernova. Although the γ-process in massive stars has been successful in producing a large range of p-nuclei, significant deficiencies remain. An increasing number of processes and sites has been studied in recent years in search of viable alternatives replacing or supplementing the massive star models. A large number of unstable nuclei, however, with only theoretically predicted reaction rates are included in the reaction network and thus the nuclear input may also bear considerable uncertainties. The current status of astrophysical models, nuclear input and observational constraints is reviewed. After an overview of currently discussed models, the focus is on the possibility to better constrain those models through different means. Meteoritic data not only provide the actual isotopic abundances of the p-nuclei but can also put constraints on the possible contribution of proton-rich nucleosynthesis. The main part of the review focuses on the nuclear uncertainties involved in the determination of the astrophysical reaction rates required for the extended reaction networks used in nucleosynthesis studies. Experimental approaches are discussed together with their necessary connection to theory, which is especially pronounced for reactions with intermediate and heavy nuclei in explosive nuclear burning, even close to stability.

  5. Burn Injury and Explosions: An Australian Perspective

    PubMed Central

    Greenwood, John E.

    2009-01-01

    Objectives: Increasingly (but not exclusively), terrorist activity and the use of explosive devices have enjoyed the focus of the global media. This paper aims to bring a range of issues to attention, to highlight how burn injuries are sustained in such incidents and why burn injuries (and thus burn disasters) are so complicated to manage. Materials and Methods: The author's experience with burn injury caused during explosions and his involvement in burn disaster situations has been summarized to form the basis of the article. This has been expanded upon with discussion points which provide a strategy for planning for such events and by a broad sample of the literature. Results: Several strategies are suggested to facilitate planning for burn disasters and to illustrate to those not directly involved why forward planning is pivotal to success when these incidents occur. Conclusions: Disasters generating large numbers of burn-injured are relatively frequent. Explosive devices are widespread in their use both in military and increasingly in civilian fields. Encompassing a large range of aetiologies, geographical sites, populations, and resources; burn disaster management is difficult and planning essential. PMID:19834533

  6. Burn Propagation in a PBX 9501 Thermal Explosion

    NASA Astrophysics Data System (ADS)

    Henson, B. F.; Smilowitz, L.; Romero, J. J.; Sandstrom, M. M.; Asay, B. W.; Schwartz, C.; Saunders, A.; Merrill, F.; Morris, C.; Murray, M. M.; McNeil, W. V.; Marr-Lyon, M.; Rightley, P. M.

    2007-12-01

    We have applied proton radiography to study the conversion of solid density to gaseous combustion products subsequent to ignition of a thermal explosion in PBX 9501. We apply a thermal boundary condition to the cylindrical walls of the case, ending with an induction period at 205 C. We then introduce a laser pulse that accelerates the thermal ignition and synchronizes the explosion with the proton accelerator. We then obtain fast, synchronized images of the evolution of density loss with few microsecond resolution during the approximately 100 microsecond duration of the explosion. We present images of the solid explosive during the explosion and discuss measured rates and assumed mechanisms of burning the role of pressure in this internal burning.

  7. Corneoscleral Laceration and Ocular Burns Caused by Electronic Cigarette Explosions

    PubMed Central

    Paley, Grace L.; Echalier, Elizabeth; Eck, Thomas W.; Hong, Augustine R.; Gregory, Darren G.; Lubniewski, Anthony J.

    2016-01-01

    Purpose: To report cases of acute globe rupture and bilateral corneal burns from electronic cigarette (EC) explosions. Methods: Case series. Results: We describe a series of patients with corneal injury caused by EC explosions. Both patients suffered bilateral corneal burns and decreased visual acuity, and one patient sustained a unilateral corneoscleral laceration with prolapsed iris tissue and hyphema. A review of the scientific literature revealed no prior reported cases of ocular injury secondary to EC explosions; however, multiple media and government agency articles describe fires and explosions involving ECs, including at least 4 with ocular injuries. Conclusions: Given these cases and the number of recent media reports, ECs pose a significant public health risk. Users should be warned regarding the possibility of severe injury, including sight-threatening ocular injuries ranging from corneal burns to full-thickness corneoscleral laceration. PMID:27191672

  8. Detection of burning ashes from thermonuclear X-ray bursts

    NASA Astrophysics Data System (ADS)

    Kajava, J. J. E.; Nättilä, J.; Poutanen, J.; Cumming, A.; Suleimanov, V.; Kuulkers, E.

    2017-01-01

    When neutron stars (NS) accrete gas from low-mass binary companions, explosive nuclear burning reactions in the NS envelope fuse hydrogen and helium into heavier elements. The resulting thermonuclear (type-I) X-ray bursts produce energy spectra that are fit well with black bodies, but a significant number of burst observations show deviations from Planck spectra. Here we present our analysis of RXTE/PCA observations of X-ray bursts from the NS low-mass X-ray binary HETE J1900.1-2455. We have discovered that the non-Planckian spectra are caused by photoionization edges. The anticorrelation between the strength of the edges and the colour temperature suggests that the edges are produced by the nuclear burning ashes that have been transported upwards by convection and become exposed at the photosphere. The atmosphere model fits show that occasionally the photosphere can consist entirely of metals, and that the peculiar changes in blackbody temperature and radius can be attributed to the emergence and disappearance of metals in the photosphere. As the metals are detected already in the Eddington-limited phase, it is possible that a radiatively driven wind ejects some of the burning ashes into the interstellar space.

  9. Numerical and experimental study of thermal explosions in LX-10 and PBX 9501: Influence of thermal damage on deflagration processes

    NASA Astrophysics Data System (ADS)

    Tringe, J. W.; Kercher, J. R.; Springer, H. K.; Glascoe, E. A.; Levie, H. W.; Hsu, P.; Willey, T. M.; Molitoris, J. D.

    2013-07-01

    We employ in-situ flash x-ray imaging, together with a detailed multiphase convective burn model, to demonstrate how explosives' binder characteristics influence the burning processes in thermal explosions. Our study focuses on the HMX-based explosives LX-10 and PBX 9501. While the HMX (cyclotetramethylene-tetranitramine) crystallite size distributions for these two explosives are nearly identical before heating, our experiments and simulations indicate that after heating, variations result due to differences in binder composition. Post-ignition flash x-ray images reveal that the average density decreases at late times more rapidly in PBX 9501 than LX-10, suggesting a faster conductive burning rate in PBX-9501. Heated permeability measurements in LX-10 and PBX 9501 demonstrate that the binder system characteristics influence the evolution of connected porosity. Once ignited, connected porosity provides pathways for product gas heating ahead of the reaction front and additional surface area for burning, facilitating the transition from conductive to convective burning modes. A multiphase convective burn model implemented in the ALE3D code is used to better understand the influence on burn rates of material properties such as porosity and effective thermally damaged particle size. In this context, particles are defined as gas-impermeable binder-coated crystallites and agglomerations with a set of effective radii reff. Model results demonstrate quantitative agreement with containment wall velocity for confined PBX 9501 and LX-10, and qualitative agreement with density as a function of position in the burning explosive. The model predicts a decrease in post-ignition containment wall velocity with larger radii in reff. These experimental data and model results together provide insight into the initiation and propagation of the reaction wave that defines the convective burn front in HMX-based explosives, a necessary step toward predicting violence under a broad range of conditions.

  10. Isotopic anomalies from neutron reactions during explosive carbon burning

    NASA Technical Reports Server (NTRS)

    Lee, T.; Schramm, D. N.; Wefel, J. P.; Blake, J. B.

    1978-01-01

    The possibility that the newly discovered correlated isotopic anomalies for heavy elements in the Allende meteorite were synthesized in the secondary neutron capture episode during the explosive carbon burning, the possible source of the O-16 and Al-26 anomalies, is examined. Explosive carbon burning calculations under typical conditions were first performed to generate time profiles of temperature, density, and free particle concentrations. These quantities were inputted into a general neutron capture code which calculates the resulting isotopic pattern from exposing the preexisting heavy seed nuclei to these free particles during the explosive carbon burning conditions. The interpretation avoids the problem of the Sr isotopic data and may resolve the conflict between the time scales inferred from 1-129, Pu-244, and Al-26.

  11. MESOSCALE MODELING OF DEFLAGRATION-INDUCED DECONSOLIDATION IN POLYMER-BONDED EXPLOSIVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Springer, H K; Glascoe, E A; Reaugh, J E

    Initially undamaged polymer-bonded explosives can transition from conductive burning to more violent convective burning via rapid deconsolidation at higher pressures. The pressure-dependent infiltration of cracks and pores, i.e., damage, by product gases at the burn-front is a key step in the transition to convective burning. However, the relative influence of pre-existing damage and the evolution of deflagration-induced damage during the transition to convective burning is not well understood. The objective of this study is to investigate the role of microstructure and initial pressurization on deconsolidation. We performed simulations using the multi-physics hydrocode, ALE3D. HMX-Viton A served as our model explosive.more » A Prout-Tompkins chemical kinetic model, Vielle's Law pressure-dependent burning, Gruneisen equation-of-state, and simplified strength model were used for the HMX. The propensity for deconsolidation increased with increasing defect size and decreasing initial pressurization, as measured by the increase in burning surface area. These studies are important because they enable the development of continuum-scale damage models and the design of inherently safer explosives.« less

  12. Internal sub-sonic burning during an explosion viewed via dynamic X-ray radiography

    NASA Astrophysics Data System (ADS)

    Smilowitz, L.; Henson, B. F.; Oschwald, D.; Suvorova, N.; Remelius, D.

    2017-10-01

    We observe internal convective and conductive burn front propagation and solid consumption subsequent to thermal ignition for plastic bonded formulations of the solid organic secondary explosives octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine and 1,3,5-triamino-2,4,6-trinitrobenzene. This work describes x-ray radiographic diagnostics enabling the study of solid density in a fully encased explosive during internal burning subsequent to ignition. The result of this study is the ability to directly observe and measure rates of energy release during a thermal explosion.

  13. Model Independent Determination of Electron Fraction for Individual SNIa

    NASA Astrophysics Data System (ADS)

    De, Soma; Timmes, F.; Hawley, W.; Chamulak, D.; Athanassiadou, T.; Jack, D.; Calder, A.; Brown, E.; Townsley, D.

    2013-01-01

    Ye of individual supernova Type Ia at the time of explosion by using the silicon, sulfur, and calcium features from single epoch and multi-epoch spectra near maximum light. Most one-dimensional Chandrasekhar mass models of supernova Type Ia in the single-degenerate scenario produce their intermediate-mass elements in a burn to quasi-nuclear statistical equilibrium between the mass shells 0.8 and 1.1 M. We find a near linear dependence of the intermediate-mass element nuclear yields on the white dwarf’s initial metallicity from such SNe Ia explosion models, and the effect this dependence has on synthetic spectra near maximum light. We demonstrate that these metallicity signatures are only due to material achieving the necessary thermodynamic conditions. In addition, we find that global abundance of silicon is insensitive to change in metallicity but sulfur and calcium abundances change significantly

  14. Source spectral variation and yield estimation for small, near-source explosions

    NASA Astrophysics Data System (ADS)

    Yoo, S.; Mayeda, K. M.

    2012-12-01

    Significant S-wave generation is always observed from explosion sources which can lead to difficulty in discriminating explosions from natural earthquakes. While there are numerous S-wave generation mechanisms that are currently the topic of significant research, the mechanisms all remain controversial and appear to be dependent upon the near-source emplacement conditions of that particular explosion. To better understand the generation and partitioning of the P and S waves from explosion sources and to enhance the identification and discrimination capability of explosions, we investigate near-source explosion data sets from the 2008 New England Damage Experiment (NEDE), the Humble-Redwood (HR) series of explosions, and a Massachusetts quarry explosion experiment. We estimate source spectra and characteristic source parameters using moment tensor inversions, direct P and S waves multi-taper analysis, and improved coda spectral analysis using high quality waveform records from explosions from a variety of emplacement conditions (e.g., slow/fast burning explosive, fully tamped, partially tamped, single/ripple-fired, and below/above ground explosions). The results from direct and coda waves are compared to theoretical explosion source model predictions. These well-instrumented experiments provide us with excellent data from which to document the characteristic spectral shape, relative partitioning between P and S-waves, and amplitude/yield dependence as a function of HOB/DOB. The final goal of this study is to populate a comprehensive seismic source reference database for small yield explosions based on the results and to improve nuclear explosion monitoring capability.

  15. Large Scale Supernova Structure from Pre- and Post-Explosion Convection

    NASA Astrophysics Data System (ADS)

    Young, Patrick A.; Vance, Gregory; Ellinger, Carola; Fryer, Chris

    2017-06-01

    We present results of 3D supernova simulations with initial conditions drawn from 3D models of late stage stellar convection. Simulations are performed with the supernova-optimized smooth particle hydrodynamics code SNSPH and postprocessed using a 522 isotope nuclear reaction network. The simulations also have a non-fixed central compact object that is free to accrete momentum from fall back material. It has been established that neutrino-driven convection can produce large asymmetries in the explosion, but the effects caused by convective anisotropies in late burning shells in the progenitor star and time-varying gravitational potential after the explosion are less well explored. We find that convective motions can result in highly asymmetric overturn of deep layers that are not susceptible to large effects from explosion generated Rayleigh-Taylor and Richtmeyer-Meshkov instabilities. Such overturn can produce regions with a strong alpha-rich freezeout and high iron abundances morphologically similar to the iron-rich structure in the southeast quadrant of Cassiopeia A.

  16. Human Health and Ecological Risk Assessment for the Operation of the Explosives Waste Treatment Facility at Site 300 of the Lawrence Livermore National Laboratory Volume 1: Report of Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallegos, G; Daniels, J; Wegrecki, A

    2006-04-24

    This document contains the human health and ecological risk assessment for the Resource Recovery and Conservation Act (RCRA) permit renewal for the Explosives Waste Treatment Facility (EWTF). Volume 1 is the text of the risk assessment, and Volume 2 (provided on a compact disc) is the supporting modeling data. The EWTF is operated by the Lawrence Livermore National Laboratory (LLNL) at Site 300, which is located in the foothills between the cities of Livermore and Tracy, approximately 17 miles east of Livermore and 8 miles southwest of Tracy. Figure 1 is a map of the San Francisco Bay Area, showingmore » the location of Site 300 and other points of reference. One of the principal activities of Site 300 is to test what are known as ''high explosives'' for nuclear weapons. These are the highly energetic materials that provide the force to drive fissionable material to criticality. LLNL scientists develop and test the explosives and the integrated non-nuclear components in support of the United States nuclear stockpile stewardship program as well as in support of conventional weapons and the aircraft, mining, oil exploration, and construction industries. Many Site 300 facilities are used in support of high explosives research. Some facilities are used in the chemical formulation of explosives; others are locations where explosive charges are mechanically pressed; others are locations where the materials are inspected radiographically for such defects as cracks and voids. Finally, some facilities are locations where the machined charges are assembled before they are sent to the on-site test firing facilities, and additional facilities are locations where materials are stored. Wastes generated from high-explosives research are treated by open burning (OB) and open detonation (OD). OB and OD treatments are necessary because they are the safest methods for treating explosives wastes generated at these facilities, and they eliminate the requirement for further handling and transportation that would be required if the wastes were treated off site.« less

  17. Human Health and Ecological Risk Assessment for the Operation of the Explosives Waste Treatment Facility at Site 300 of the Lawrence Livermore National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallegos, G; Daniels, J; Wegrecki, A

    2007-10-01

    This document contains the human health and ecological risk assessment for the Resource Recovery and Conservation Act (RCRA) permit renewal for the Explosives Waste Treatment Facility (EWTF). Volume 1 is the text of the risk assessment, and Volume 2 (provided on a compact disc) is the supporting modeling data. The EWTF is operated by the Lawrence Livermore National Laboratory (LLNL) at Site 300, which is located in the foothills between the cities of Livermore and Tracy, approximately 17 miles east of Livermore and 8 miles southwest of Tracy. Figure 1 is a map of the San Francisco Bay Area, showingmore » the location of Site 300 and other points of reference. One of the principal activities of Site 300 is to test what are known as 'high explosives' for nuclear weapons. These are the highly energetic materials that provide the force to drive fissionable material to criticality. LLNL scientists develop and test the explosives and the integrated non-nuclear components in support of the United States nuclear stockpile stewardship program as well as in support of conventional weapons and the aircraft, mining, oil exploration, and construction industries. Many Site 300 facilities are used in support of high explosives research. Some facilities are used in the chemical formulation of explosives; others are locations where explosive charges are mechanically pressed; others are locations where the materials are inspected radiographically for such defects as cracks and voids. Finally, some facilities are locations where the machined charges are assembled before they are sent to the onsite test firing facilities, and additional facilities are locations where materials are stored. Wastes generated from high-explosives research are treated by open burning (OB) and open detonation (OD). OB and OD treatments are necessary because they are the safest methods for treating explosives wastes generated at these facilities, and they eliminate the requirement for further handling and transportation that would be required if the wastes were treated off site.« less

  18. Proton Radiography of a Thermal Explosion in PBX9501

    NASA Astrophysics Data System (ADS)

    Smilowitz, L.; Henson, B. F.; Romero, J. J.; Sandstrom, M. M.; Asay, B. W.; Schwartz, C.; Saunders, A.; Merrill, F.; Morris, C.; Murray, M. M.; McNeil, W. V.; Marr-Lyon, M.; Rightley, P. M.

    2007-12-01

    The understanding of thermal explosions and burn propagation lags that of detonations and shock propagation. Diagnostics such as high energy radiography have been used to image shocks, but have been previously precluded from use in thermal explosions due to their stringent timing requirements: shock propagation can be synchronized to an external diagnostic while thermal explosion can not. This issue is solved by following the evolution of the ignition volume in a thermal explosion and using a laser pulse to provide a temperature jump in that central volume during the final thermal runaway leading to ignition. Thermal explosion experiments have been conducted at the Los Alamos Proton Radiography facility and have yielded images of the evolution of ignition, post-ignition burn propagation, and case failure in a radially confined cylinder of PBX 9501. This paper presents images taken during the hours long quasistatic heating, the final minutes of thermal runaway, and the post ignition burn propagation.

  19. Risk factors for kerosene stove explosion burns seen at Kenyatta National Hospital in Kenya.

    PubMed

    Ombati, Alex N; Ndaguatha, Peter L W; Wanjeri, Joseph K

    2013-05-01

    The kerosene stove is a common cooking appliance in lower and middle income households in Kenya and if it explodes, life threatening thermal burn injuries may be sustained by those using the appliance. Women tend to be victims more frequently since traditionally they are the ones who are involved in cooking. The aim of this study was to determine risk factors predisposing to kerosene stove explosion burns seen at Kenyatta National Hospital. The study was a prospective longitudinal descriptive study carried out at the Kenyatta National Hospital. Forty-eight patients who met the inclusion criteria were recruited into the study over a period of 6 months from November 2010 to April 2011 and the data was collected using a structured questionnaire. The analysis, using SPSS version 17.0 was done by associating occurrence of injury to: age, sex, socioeconomic status and level of education of patient. Charts and tables were used to present the results. The mean age of patients who sustained kerosene stove explosion burns was 23.6 years (SD ± 11.7) with the commonest age group being 20-39 years. More females were affected than males by a ratio of 7:3 and ninety two percent of those who sustained these burns were either from poor or lower middle socio-economic class. Stove explosions occurred mainly during cooking and when kerosene refill was being done. Most of the patients (63%) reported having bought kerosene from fuel vendors and almost all explosions were caused by the wick type of stove (98%). Young females from poor socioeconomic background were found to be at a higher risk for kerosene stove explosion burns. The wick stove is a common cause of burns especially when users unwittingly refill it with kerosene when already lit resulting in an explosion. Prevention can be done through evidence based public health education targeting the groups at risk and enactment of relevant laws. Copyright © 2012 Elsevier Ltd and ISBI. All rights reserved.

  20. CFD analysis of gas explosions vented through relief pipes.

    PubMed

    Ferrara, G; Di Benedetto, A; Salzano, E; Russo, G

    2006-09-21

    Vent devices for gas and dust explosions are often ducted to safe locations by means of relief pipes. However, the presence of the duct increases the severity of explosion if compared to simply vented vessels (i.e. compared to cases where no duct is present). Besides, the identification of the key phenomena controlling the violence of explosion has not yet been gained. Multidimensional models coupling, mass, momentum and energy conservation equations can be valuable tools for the analysis of such complex explosion phenomena. In this work, gas explosions vented through ducts have been modelled by a two-dimensional (2D) axi-symmetric computational fluid dynamic (CFD) model based on the unsteady Reynolds Averaged Navier Stokes (RANS) approach in which the laminar, flamelet and distributed combustion models have been implemented. Numerical test have been carried out by varying ignition position, duct diameter and length. Results have evidenced that the severity of ducted explosions is mainly driven by the vigorous secondary explosion occurring in the duct (burn-up) rather than by the duct flow resistance or acoustic enhancement. Moreover, it has been found out that the burn-up affects explosion severity due to the reduction of venting rate rather than to the burning rate enhancement through turbulization.

  1. Burn injuries related to liquefied petroleum gas-powered cars.

    PubMed

    Bozkurt, Mehmet; Kulahci, Yalcin; Zor, Fatih; Kapi, Emin

    2008-01-01

    Liquefied petroleum gas (LPG), which is used as a type of fuel, is stored as a liquid under high pressure in tanks. Immediate and sudden explosion of these tanks can release a large amount of gas and energy into the environment and can result in serious burns. In this study, the cases of 18 patients injured due to LPG burns in five incidents were examined, along with their epidemiologic features. The authors also investigated the causes of the LPG tank explosions. Inhalation injury was present in 11 cases with varying degrees of severity, and 7 patients subsequently required mechanical ventilation. The explosions resulted from weakening of the tank wall (n = 2), crash impact (n = 2), and gas leakage from the tank (n = 1). LPG-powered cars are becoming more popular because of their lower operational costs. However, LPG tanks can be hazardous in the event of a tank explosion. Burns caused by explosions of the LPG tanks in cars have significant mortality and morbidity. This danger must be taken into account and public awareness must be increased.

  2. HERMES: A Model to Describe Deformation, Burning, Explosion, and Detonation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reaugh, J E

    2011-11-22

    HERMES (High Explosive Response to MEchanical Stimulus) was developed to fill the need for a model to describe an explosive response of the type described as BVR (Burn to Violent Response) or HEVR (High Explosive Violent Response). Characteristically this response leaves a substantial amount of explosive unconsumed, the time to reaction is long, and the peak pressure developed is low. In contrast, detonations characteristically consume all explosive present, the time to reaction is short, and peak pressures are high. However, most of the previous models to describe explosive response were models for detonation. The earliest models to describe the responsemore » of explosives to mechanical stimulus in computer simulations were applied to intentional detonation (performance) of nearly ideal explosives. In this case, an ideal explosive is one with a vanishingly small reaction zone. A detonation is supersonic with respect to the undetonated explosive (reactant). The reactant cannot respond to the pressure of the detonation before the detonation front arrives, so the precise compressibility of the reactant does not matter. Further, the mesh sizes that were practical for the computer resources then available were large with respect to the reaction zone. As a result, methods then used to model detonations, known as {beta}-burn or program burn, were not intended to resolve the structure of the reaction zone. Instead, these methods spread the detonation front over a few finite-difference zones, in the same spirit that artificial viscosity is used to spread the shock front in inert materials over a few finite-difference zones. These methods are still widely used when the structure of the reaction zone and the build-up to detonation are unimportant. Later detonation models resolved the reaction zone. These models were applied both to performance, particularly as it is affected by the size of the charge, and to situations in which the stimulus was less than that needed for reliable performance, whether as a result of accident, hazard, or a fault in the detonation train. These models describe the build-up of detonation from a shock stimulus. They are generally consistent with the mesoscale picture of ignition at many small defects in the plane of the shock front and the growth of the resulting hot-spots, leading to detonation in heterogeneous explosives such as plastic-bonded explosives (PBX). The models included terms for ignition, and also for the growth of reaction as tracked by the local mass fraction of product gas, {lambda}. The growth of reaction in such models incorporates a form factor that describes the change of surface area per unit volume (specific surface area) as the reaction progresses. For unimolecular crystalline-based explosives, the form factor is consistent with the mesoscale picture of a galaxy of hot spots burning outward and eventually interacting with each other. For composite explosives and propellants, where the fuel and oxidizer are segregated, the diffusion flame at the fuel-oxidizer interface can be interpreted with a different form factor that corresponds to grains burning inward from their surfaces. The form factor influences the energy release rate, and the amount of energy released in the reaction zone. Since the 19th century, gun and cannon propellants have used perforated geometric shapes that produce an increasing surface area as the propellant burns. This helps maintain the pressure as burning continues while the projectile travels down the barrel, which thereby increases the volume of the hot gas. Interior ballistics calculations use a geometric form factor to describe the changing surface area precisely. As a result, with a suitably modified form factor, detonation models can represent burning and explosion in damaged and broken reactant. The disadvantage of such models in application to accidents is that the ignition term does not distinguish between a value of pressure that results from a shock, and the same pressure that results from a more gradual increase. This disagrees with experiments, where explosives were subjected to a gradual rise in pressure and did not exhibit reaction. More recent models do distinguish between slow pressure rises and shocks, and have had some success in the describing the response of explosives to single and multiple shocks, and the increase of shock sensitivity with porosity, at least over a limited range. The original formulation is appropriate for sustained shocks, but further work is ongoing to describe the response to short pulses. The HERMES model combines features from these prior models. It describes burning and explosion in damaged reactant, and also will develop a detonation if the gradual rise in pressure from burning steepens into a strong-enough shock. The shock strength needed for detonation in a fixed run distance decreases with increasing porosity.« less

  3. A Preliminary Assessment of the SURF Reactive Burn Model Implementation in FLAG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Carl Edward; McCombe, Ryan Patrick; Carver, Kyle

    Properly validated and calibrated reactive burn models (RBM) can be useful engineering tools for assessing high explosive performance and safety. Experiments with high explosives are expensive. Inexpensive RBM calculations are increasingly relied on for predictive analysis for performance and safety. This report discusses the validation of Menikoff and Shaw’s SURF reactive burn model, which has recently been implemented in the FLAG code. The LANL Gapstick experiment is discussed as is its’ utility in reactive burn model validation. Data obtained from pRad for the LT-63 series is also presented along with FLAG simulations using SURF for both PBX 9501 and PBXmore » 9502. Calibration parameters for both explosives are presented.« less

  4. Common Occurrence of Explosive Hydrogen Burning in Type II Supernovae

    NASA Astrophysics Data System (ADS)

    Liu, Nan; Stephan, Thomas; Boehnke, Patrick; Nittler, Larry R.; Meyer, Bradley S.; O’D. Alexander, Conel M.; Davis, Andrew M.; Trappitsch, Reto; Pellin, Michael J.

    2018-03-01

    We report Mo isotopic data for 16 15N-rich presolar SiC grains of type AB (14N/15N < solar, AB1) and their correlated Sr and Ba isotope ratios when available. Of the 16 AB1 grains, 8 show s-process Mo isotopic compositions, together with s-process Ba and/or Sr isotopic compositions. We found that a higher percentage of AB1 grains show anomalous isotopic compositions than that of AB2 grains (14N/15N > solar), thus providing further support to the division of the two AB subgroups recently proposed by Liu et al., who showed that AB1 grains most likely originated from Type II supernovae (SNe) with explosive H burning. Comparison of the Sr, Mo, and Ba isotopic compositions of the AB1 grains with SN model predictions indicates that the s-process isotopic compositions of AB1 grains resulted from neutron-capture processes occurring during the progenitor massive stars’ pre-SN evolution rather than from an explosive neutron-capture process. In addition, the observations of (1) explosive H burning occurring in the C-rich regions of the progenitor SNe of X grains as suggested by the isotopic compositions of X grains, and (2) explosive H burning occurring both at the bottom of the He/C zone and at the top of the He/N zone as suggested by model simulations, imply that explosive H burning is a common phenomenon in outer SN zones.

  5. Common Occurrence of Explosive Hydrogen Burning in Type II Supernovae

    DOE PAGES

    Liu, Nan; Stephan, Thomas; Boehnke, Patrick; ...

    2018-03-16

    In this paper, we report Mo isotopic data for 16 15N-rich presolar SiC grains of type AB ( 14N/ 15N < solar, AB1) and their correlated Sr and Ba isotope ratios when available. Of the 16 AB1 grains, 8 show s-process Mo isotopic compositions, together with s-process Ba and/or Sr isotopic compositions. We found that a higher percentage of AB1 grains show anomalous isotopic compositions than that of AB2 grains ( 14N/ 15N > solar), thus providing further support to the division of the two AB subgroups recently proposed by Liu et al., who showed that AB1 grains most likelymore » originated from Type II supernovae (SNe) with explosive H burning. Comparison of the Sr, Mo, and Ba isotopic compositions of the AB1 grains with SN model predictions indicates that the s-process isotopic compositions of AB1 grains resulted from neutron-capture processes occurring during the progenitor massive stars' pre-SN evolution rather than from an explosive neutron-capture process. Finally, in addition, the observations of (1) explosive H burning occurring in the C-rich regions of the progenitor SNe of X grains as suggested by the isotopic compositions of X grains, and (2) explosive H burning occurring both at the bottom of the He/C zone and at the top of the He/N zone as suggested by model simulations, imply that explosive H burning is a common phenomenon in outer SN zones.« less

  6. Common Occurrence of Explosive Hydrogen Burning in Type II Supernovae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Nan; Stephan, Thomas; Boehnke, Patrick

    In this paper, we report Mo isotopic data for 16 15N-rich presolar SiC grains of type AB ( 14N/ 15N < solar, AB1) and their correlated Sr and Ba isotope ratios when available. Of the 16 AB1 grains, 8 show s-process Mo isotopic compositions, together with s-process Ba and/or Sr isotopic compositions. We found that a higher percentage of AB1 grains show anomalous isotopic compositions than that of AB2 grains ( 14N/ 15N > solar), thus providing further support to the division of the two AB subgroups recently proposed by Liu et al., who showed that AB1 grains most likelymore » originated from Type II supernovae (SNe) with explosive H burning. Comparison of the Sr, Mo, and Ba isotopic compositions of the AB1 grains with SN model predictions indicates that the s-process isotopic compositions of AB1 grains resulted from neutron-capture processes occurring during the progenitor massive stars' pre-SN evolution rather than from an explosive neutron-capture process. Finally, in addition, the observations of (1) explosive H burning occurring in the C-rich regions of the progenitor SNe of X grains as suggested by the isotopic compositions of X grains, and (2) explosive H burning occurring both at the bottom of the He/C zone and at the top of the He/N zone as suggested by model simulations, imply that explosive H burning is a common phenomenon in outer SN zones.« less

  7. Risk Assessment for Emergency Planning Related to Nuclear Weapons Accidents

    DTIC Science & Technology

    1985-09-25

    accidents is higher than many of the other accidents, several reviewers thought it appropriate to evaluate these accidents in more detail. In particular, it...consequences is presented in Table 2-5. The plutonium releases in the 1F-3F gram range are due to plutonium burning in Type A weapons, while the higher ...explosion given a tanker casualty varies from 0.05 (in harbor) to 0.16 (at pier) to 0.19 (at sea). Although these numbers are somewhat higher than the

  8. Analysis of Xrage and Flag High Explosive Burn Models with PBX 9404 Cylinder Tests

    NASA Astrophysics Data System (ADS)

    Harrier, Danielle; Fessenden, Julianna; Ramsey, Scott

    2016-11-01

    High explosives are energetic materials that release their chemical energy in a short interval of time. They are able to generate extreme heat and pressure by a shock driven chemical decomposition reaction, which makes them valuable tools that must be understood. This study investigated the accuracy and performance of two Los Alamos National Laboratory hydrodynamic codes, which are used to determine the behavior of explosives within a variety of systems: xRAGE which utilizes an Eulerian mesh, and FLAG with utilizes a Lagrangian mesh. Various programmed and reactive burn models within both codes were tested, using a copper cylinder expansion test. The test was based off of a recent experimental setup which contained the plastic bonded explosive PBX 9404. Detonation velocity versus time curves for this explosive were obtained from the experimental velocity data collected using Photon Doppler Velocimetry (PDV). The modeled results from each of the burn models tested were then compared to one another and to the experimental results using the Jones-Wilkins-Lee (JWL) equation of state parameters that were determined and adjusted from the experimental tests. This study is important to validate the accuracy of our high explosive burn models and the calibrated EOS parameters, which are important for many research topics in physical sciences.

  9. VizieR Online Data Catalog: NuGrid stellar data set I. Yields from H to Bi (Pignatari+, 2016)

    NASA Astrophysics Data System (ADS)

    Pignatari, M.; Herwig, F.; Hirschi, R.; Bennett, M.; Rockefeller, G.; Fryer, C.; Timmes, F. X.; Ritter, C.; Heger, A.; Jones, S.; Battino, U.; Dotter, A.; Trappitsch, R.; Diehl, S.; Frischknecht, U.; Hungerford, A.; Magkotsios, G.; Travaglio, C.; Young, P.

    2016-10-01

    We provide a set of stellar evolution and nucleosynthesis calculations that applies established physics assumptions simultaneously to low- and intermediate-mass and massive star models. Our goal is to provide an internally consistent and comprehensive nuclear production and yield database for applications in areas such as presolar grain studies. Our non-rotating models assume convective boundary mixing (CBM) where it has been adopted before. We include 8 (12) initial masses for Z=0.01 (0.02). Models are followed either until the end of the asymptotic giant branch phase or the end of Si burning, complemented by simple analytic core-collapse supernova (SN) models with two options for fallback and shock velocities. The explosions show which pre-SN yields will most strongly be effected by the explosive nucleosynthesis. We discuss how these two explosion parameters impact the light elements and the s and p process. For low- and intermediate-mass models, our stellar yields from H to Bi include the effect of CBM at the He-intershell boundaries and the stellar evolution feedback of the mixing process that produces the 13C pocket. All post-processing nucleosynthesis calculations use the same nuclear reaction rate network and nuclear physics input. We provide a discussion of the nuclear production across the entire mass range organized by element group. The entirety of our stellar nucleosynthesis profile and time evolution output are available electronically, and tools to explore the data on the NuGrid VOspace hosted by the Canadian Astronomical Data Centre are introduced. (12 data files).

  10. NuGrid Stellar Data Set. I.Stellar Yields from H to Bi for Stars with Metallicities Z = 0.02 and Z = 0.01

    NASA Astrophysics Data System (ADS)

    Pignatari, M.; Herwig, F.; Hirschi, R.; Bennett, M.; Rockefeller, G.; Fryer, C.; Timmes, F. X.; Ritter, C.; Heger, A.; Jones, S.; Battino, U.; Dotter, A.; Trappitsch, R.; Diehl, S.; Frischknecht, U.; Hungerford, A.; Magkotsios, G.; Travaglio, C.; Young, P.

    2016-08-01

    We provide a set of stellar evolution and nucleosynthesis calculations that applies established physics assumptions simultaneously to low- and intermediate-mass and massive star models. Our goal is to provide an internally consistent and comprehensive nuclear production and yield database for applications in areas such as presolar grain studies. Our non-rotating models assume convective boundary mixing (CBM) where it has been adopted before. We include 8 (12) initial masses for Z = 0.01 (0.02). Models are followed either until the end of the asymptotic giant branch phase or the end of Si burning, complemented by simple analytic core-collapse supernova (SN) models with two options for fallback and shock velocities. The explosions show which pre-SN yields will most strongly be effected by the explosive nucleosynthesis. We discuss how these two explosion parameters impact the light elements and the s and p process. For low- and intermediate-mass models, our stellar yields from H to Bi include the effect of CBM at the He-intershell boundaries and the stellar evolution feedback of the mixing process that produces the {}13{{C}} pocket. All post-processing nucleosynthesis calculations use the same nuclear reaction rate network and nuclear physics input. We provide a discussion of the nuclear production across the entire mass range organized by element group. The entirety of our stellar nucleosynthesis profile and time evolution output are available electronically, and tools to explore the data on the NuGrid VOspace hosted by the Canadian Astronomical Data Centre are introduced.

  11. Properties of convective oxygen and silicon burning shells in supernova progenitors

    NASA Astrophysics Data System (ADS)

    Collins, Christine; Müller, Bernhard; Heger, Alexander

    2018-01-01

    Recent 3D simulations have suggested that convective seed perturbations from shell burning can play an important role in triggering neutrino-driven supernova explosions. Since isolated simulations cannot determine whether this perturbation-aided mechanism is of general relevance across the progenitor mass range, we here investigate the pertinent properties of convective oxygen and silicon burning shells in a broad range of pre-supernova stellar evolution models. We find that conditions for perturbation-aided explosions are most favourable in the extended oxygen shells of progenitors between about 16 and 26 solar masses, which exhibit large-scale convective overturn with high convective Mach numbers. Although the highest convective Mach numbers of up to 0.3 are reached in the oxygen shells of low-mass progenitors, convection is typically dominated by small-scale modes in these shells, which implies a more modest role of initial perturbations in the explosion mechanism. Convective silicon burning rarely provides the high Mach numbers and large-scale perturbations required for perturbation-aided explosions. We also find that about 40 per cent of progenitors between 16 and 26 solar masses exhibit simultaneous oxygen and neon burning in the same convection zone as a result of a shell merger shortly before collapse.

  12. A mesoscopic reaction rate model for shock initiation of multi-component PBX explosives.

    PubMed

    Liu, Y R; Duan, Z P; Zhang, Z Y; Ou, Z C; Huang, F L

    2016-11-05

    The primary goal of this research is to develop a three-term mesoscopic reaction rate model that consists of a hot-spot ignition, a low-pressure slow burning and a high-pressure fast reaction terms for shock initiation of multi-component Plastic Bonded Explosives (PBX). Thereinto, based on the DZK hot-spot model for a single-component PBX explosive, the hot-spot ignition term as well as its reaction rate is obtained through a "mixing rule" of the explosive components; new expressions for both the low-pressure slow burning term and the high-pressure fast reaction term are also obtained by establishing the relationships between the reaction rate of the multi-component PBX explosive and that of its explosive components, based on the low-pressure slow burning term and the high-pressure fast reaction term of a mesoscopic reaction rate model. Furthermore, for verification, the new reaction rate model is incorporated into the DYNA2D code to simulate numerically the shock initiation process of the PBXC03 and the PBXC10 multi-component PBX explosives, and the numerical results of the pressure histories at different Lagrange locations in explosive are found to be in good agreements with previous experimental data. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Analysis of xRAGE and flag high explosive burn models with PBX 9404 cylinder tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrier, Danielle; Andersen, Kyle Richard

    High explosives are energetic materials that release their chemical energy in a short interval of time. They are able to generate extreme heat and pressure by a shock driven chemical decomposition reaction, which makes them valuable tools that must be understood. This study investigated the accuracy and performance of two Los Alamos National Laboratory hydrodynamic codes, which are used to determine the behavior of explosives within a variety of systems: xRAGE which utilizes an Eulerian mesh, and FLAG with utilizes a Lagrangian mesh. Various programmed and reactive burn models within both codes were tested using a copper cylinder expansion test.more » The test was based on a recent experimental setup which contained the plastic bonded explosive PBX 9404. Detonation velocity versus time curves for this explosive were obtained using Photon Doppler Velocimetry (PDV). The modeled results from each of the burn models tested were then compared to one another and to the experimental results. This study validate« less

  14. Verification Study of Buoyancy-Driven Turbulent Nuclear Combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-01-01

    Buoyancy-driven turbulent nuclear combustion determines the rate of nuclear burning during the deflagration phase (i.e., the ordinary nuclear flame phase) of Type 1a supernovae, and hence the amount of nuclear energy released during this phase. It therefore determines the amount the white dwarf star expands prior to initiation of a detonation wave, and so the amount of radioactive nickel and thus the peak luminosity of the explosion. However, this key physical process is not fully understood. To better understand this process, the Flash Center has conducted an extensive series of large-scale 3D simulations of buoyancy-driven turbulent nuclear combustion for threemore » different physical situations. This movie shows the results for some of these simulations. Credits: Science: Ray Bair, Katherine Riley, Argonne National Laboratory; Anshu Dubey, Don Lamb, Dongwook Lee, University of Chicago; Robert Fisher, University of Massachusetts at Dartmouth and Dean Townsley, University of Alabama Visualization: Jonathan Gallagher, University of Chicago; Randy Hudson, John Norris and Michael E. Papka, Argonne National Laboratory/University of Chicago« less

  15. Radiation-stimulated explosive evaporation and burning of hydrogen droplets in hot aerosol mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osipov, V. V.; Marchenko, M. P.; Khasin, M.

    2016-06-13

    We present results of analytical and numerical investigation of explosive evaporation and burning scenarios of hydrogen droplets in hydrogen/oxygen aerosols. The following two scenarios have been elucidated. The first scenario, corresponding to sufficiently large droplets, is characterized by three stages: (i) an essentially homogeneous heating of a droplet to a near-critical temperature by IR radiation from the hot gas; (ii) explosive evaporation; and (iii) burning of hydrogen cloud formed by evaporation. The second scenario, corresponding to small droplets, differs in that a droplet is heated mainly by thermal conduction from the hot gas. The heating is accompanied by evaporation whichmore » can become explosive at the final stage of evaporation. The crossover droplet size separating the two scenarios is calculated. Conservative finite-difference numerical analysis is used to explore the predicted scenarios and verify analytical estimates.« less

  16. Mesoscale Modeling of Deflagration-Induced Deconsolidation in Polymer-Bonded Explosives

    NASA Astrophysics Data System (ADS)

    Springer, H. Keo; Reaugh, J. E.; Glascoe, E. A.; Kercher, J. R.; Friedman, G.

    2011-06-01

    Initially intact polymer-bonded explosives can transition from conductive burning to more violent convective burning via rapid deconsolidation at higher pressures. The pressure-dependent infiltration of cracks and pores, i.e., damage, by product gases at the burn-front is a key step in the transition to convective burning. However, the relative influence of pre-existing damage and deflagration-induced damage on the transition to convective burning is not well understood. The objective of this study is to investigate the role of explosive constituent properties, microstructure, and deflagration velocity on deconsolidation. We performed simulations using the multi-physics hydrocode, ALE3D. HMX was used as the model energetic grain. We used a JWL form for the unreacted and reacted equation-of-state of the HMX. Simplified strength and failure models were used for the HMX and the binder. The propensity for deconsolidation increased with increasing grain volume fraction, increasing porosity, decreasing binder strength, and increasing deflagration velocity. These studies are important because they enable the development of deflagration-induced damage models, as well as the design of inherently safer explosives. This work performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344. This work was funded by the Joint DoD/DOE Munitions Technology Development Program.

  17. Ignition and Combustion Studies of Hazard Division 1.1 and 1.3 Substances

    DTIC Science & Technology

    2010-07-01

    Effect of Time at Temperature on Burning Rate. The burning rate of the HD1.1 explosive PBXN -5 is compared to that of neat cyclotetramethylene...tetranitramine (HMX) in Figure 14. The explosive, PBXN -5, is composed of 95 weight percent HMX and 5 percent Viton A as binder. The HMX burning rate...the closed bomb technique (Reference 18). The PBXN -5 was composed of small agglomerates of HMX coated with the binder (Reference 19). The PBXN -5

  18. Development of an Animal Model for Burn-Blast Combined Injury and Cardiopulmonary System Changes in the Early Shock Stage.

    PubMed

    Hu, Quan; Chai, Jiake; Hu, Sen; Fan, Jun; Wang, Hong-Wei; Ma, Li; Duan, Hong-Jie; Liu, Lingying; Yang, Hongming; Li, Bai-Ling; Wang, Yi-He

    2015-12-01

    The purposes of this study were to establish an animal model for burn-blast combined injury research and elaborate cardiopulmonary system changes in the early shock stage. In this study, royal demolition explosive or RDX (hexagon, ring trimethylene nitramine) was used as an explosive source, and the injury conditions of the canine test subjects at various distances to the explosion (30, 50, and 70 cm) were observed by gross anatomy and pathology to determine a larger animal model of moderate blast injury. The canines were then subjected to a 35 % total body surface area (TBSA) full-thickness flame injury using napalm, which completed the development of a burn-blast combined injury model. Based on this model, the hemodynamic changes and arterial blood gas analysis after the burn-blast combined injury were measured to identify the cardiopulmonary system characteristics. In this research, RDX explosion and flame injury were used to develop a severe burn-blast injury animal model that was stable, close to reality, and easily controllable. The hemodynamic and arterial blood gas changes in the canine subjects after burn-blast injury changed distinctly from the burn and blast injuries. Blood pressure and cardiac output fluctuated, and the preload was significantly reduced, whereas the afterload significantly increased. Meanwhile, the oxygen saturation (SO2) decreased markedly with carbon dioxide partial pressure (PCO2), and lactic acid (Lac) rose, and oxygen partial pressure (PO2) reduced. These changes suggested that immediate clinical treatment is important during burn-blast injury both to stabilize cardiac function and supply blood volume and to reduce the vascular permeability, thereby preventing acute pneumonedema or other complications.

  19. Colored corn starch dust explosion-related ocular injuries at a Taiwan water park: A preliminary report from a single medical center

    PubMed Central

    Liao, Yi-Lin; Yeh, Lung-Kun; Tsai, Yueh-Ju; Chen, Shin-Yi

    2016-01-01

    Purpose: To elucidate the manifestations of ocular injuries in the colored corn starch dust explosion at a Taiwan water park. Methods: This is a retrospective, non-comparative, consecutive-interventional case series. Fifty explosion-injury patients on 27 June 2015 treated at Chang-Gung Memorial Hospital, Linkou, were included. Thorough ophthalmic examinations were based on emergent triage and consecutive ophthalmological consultations. Multiple ocular and systemic parameters were assessed. Results: Of the 100 eyes in the 50 cases reviewed, 22 cases were male and 28 cases were female. The mean age was 22.08 ± 4.64 years, and the mean burn total body surface area (TBSA) of patients was 45.92 ± 20.30%. Of the 50 patients, 20 had Grade 1 ocular burns, and the others were without ocular involvement. Two of the 20 cases that presented Grade 1 ocular burns died within 1 month due to other systemic complications. The most common ocular manifestations among those with ocular injuries included periocular swelling (75%), followed by conjunctival chemosis (65%), conjunctival hyperemia (50%), singed eyelashes (20%), cornea epithelial defects (10%), and punctate keratopathy (5%). It is worth mentioning that one patient developed herpes simplex keratitis due to stress 3 weeks after being burned. Half of the 50 patients had facial burns. Specifically, the patients with a greater TBSA presented more significant ocular-burn manifestations than those patients with lower TBSA. Conclusion: Prompt ophthalmologic consultations are particularly necessary for mass burn-casualty patients with facial burns, inhalation injuries, and greater TBSA. The inspection and control of all ignition sources and the manipulation of dust with low concentrations and in an open space are crucial factors to prevent future dust explosions. PMID:29018726

  20. 49 CFR 176.164 - Fire precautions and firefighting.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Class 1 (explosive) materials other than those of Division 1.4 (explosive). No welding, burning, cutting... compartment, including a closed vehicle deck space, which contains Class 1 (explosive) materials must be...

  1. 49 CFR 176.164 - Fire precautions and firefighting.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Class 1 (explosive) materials other than those of Division 1.4 (explosive). No welding, burning, cutting... compartment, including a closed vehicle deck space, which contains Class 1 (explosive) materials must be...

  2. Optimization of Equation of State and Burn Model Parameters for Explosives

    NASA Astrophysics Data System (ADS)

    Bergh, Magnus; Wedberg, Rasmus; Lundgren, Jonas

    2017-06-01

    A reactive burn model implemented in a multi-dimensional hydrocode can be a powerful tool for predicting non-ideal effects as well as initiation phenomena in explosives. Calibration against experiment is, however, critical and non-trivial. Here, a procedure is presented for calibrating the Ignition and Growth Model utilizing hydrocode simulation in conjunction with the optimization program LS-OPT. The model is applied to the explosive PBXN-109. First, a cylinder expansion test is presented together with a new automatic routine for product equation of state calibration. Secondly, rate stick tests and instrumented gap tests are presented. Data from these experiments are used to calibrate burn model parameters. Finally, we discuss the applicability and development of this optimization routine.

  3. Cardowan coal mine explosion: experience of a mass burns incident.

    PubMed Central

    Allister, C; Hamilton, G M

    1983-01-01

    A coal mine explosion 1700 feet (516 m) underground and two miles (3.2 km) from the pit head resulted in 40 casualties. Two hours elapsed between the explosion and the arrival of patients at hospital. Six patients suffered mechanical injuries, only one of which was life threatening. Thirty six suffered burns; in 18 over 15% of the total body surface area was affected. Nineteen patients had a mild respiratory upset requiring oxygen treatment. The average length of inpatient stay in those admitted was 24 days. Early assessment and treatment in the accident and emergency department was relatively simple because of the large proportion of burn injuries. Lack of communication between site and hospital made administration of the disaster difficult. PMID:6409324

  4. Feasibility of an advanced thrust termination assembly for a solid propellant rocket motor

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A total of 68 quench tests were conducted in a vented bomb assembly (VBA). Designed to simulate full-scale motor operating conditions, this laboratory apparatus uses a 2-inch-diameter, end-burning propellant charge and an insulated disc of consolidated hydrated aluminum sulfate along with the explosive charge necessary to disperse the salt and inject it onto the burning surface. The VBA was constructed to permit variation of motor design parameters of interest; i.e., weight of salt per unit burning surface area, weight of explosive per unit weight of salt, distance from salt surface to burning surface, incidence angle of salt injection, chamber pressure, and burn time. Completely satisfactory salt quenching, without re-ignition, occurred in only two VBA tests. These were accomplished with a quench charge ratio (QCR) of 0.023 lb salt per square inch of burning surface at dispersing charge ratios (DCR) of 13 and 28 lb of salt per lb of explosive. Candidate materials for insulating salt charges from the rocket combustion environment were evaluated in firings of 5-inch-diameter, uncured end-burner motors. A pressed, alumina ceramic fiber material was selected for further evaluation and use in the final demonstration motor.

  5. The History and Impact of the CNO Cycles in Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Wiescher, Michael

    2018-03-01

    The carbon cycle, or Bethe-Weizsäcker cycle, plays an important role in astrophysics as one of the most important energy sources for quiescent and explosive hydrogen burning in stars. This paper presents the intellectual and historical background of the idea of the correlation between stellar energy production and the synthesis of the chemical elements in stars on the example of this cycle. In particular, it addresses the contributions of Carl Friedrich von Weizsäcker and Hans Bethe, who provided the first predictions of the carbon cycle. Further, the experimental verification of the predicted process as it developed over the following decades is discussed, as well as the extension of the initial carbon cycle to the carbon-nitrogen-oxygen (CNO) multi-cycles and the hot CNO cycles. This development emerged from the detailed experimental studies of the associated nuclear reactions over more than seven decades. Finally, the impact of the experimental and theoretical results on our present understanding of hydrogen burning in different stellar environments is presented, as well as the impact on our understanding of the chemical evolution of our universe.

  6. [Carl Friedrich von Weizsäcker and the Bethe-Weizsäcker cycle].

    PubMed

    Wiescher, Michael

    2014-01-01

    The Carbon- or Bethe-Weizsäcker Cycle plays an important role in astrophysics as one of the most important energy sources for a quiescent and explosive hydrogen burning in stars. This paper presents the historical background and the contributions by Carl Friedrich von Weizsäcker and Hans Bethe who provided the first predictions of the cycle. Furthermore, it discussed the experimental verification of the predicted process in the following decades. Also discussed is the extension of the initial Carbon cycle to the CNO multi-cycles and the hot CNO cycles which followed from the detailed experimental studies of the associated nuclear reactions. Finally discussed is the impact of the experimental and theoretical results on our present understanding of hydrogen burning in different stellar environments and on our understanding of the chemical evolution of our universe.

  7. Statistical Hotspot Model for Explosive Detonation

    NASA Astrophysics Data System (ADS)

    Nichols, Albert

    2005-07-01

    The presence and need for energy localization in the ignition and detonation of high explosives is a corner stone in our understanding of explosive behavior. This energy localization, known as hot spots, provides the match that starts the energetic response that is integral to the detonation. In our model, we use the life cycle of a hot spot to predict explosive response. This life cycle begins with a random distribution of inhomogeneities in the explosive that we describe as a potential hot spot. A shock wave can transform these into hot spots that can then grow by consuming the explosive around them. The fact that the shock wave can collapse a potential hot spot without causing ignition is required in order to model phenomena like dead pressing. The burn rate of the hot spot is taken directly from experimental data. In our approach we do not assume that every hot spot is burning in an identical environment, but rather we take a statistical approach to the burning process. We also do not make a uniform temperature assumption in order to close the mixture equation of state, but track the flow of energy from reactant to product. Finally, we include both the hot spot burn model and a thermal decomposition path, required to explain certain long time behaviors. Building on work performed by Reaugh et. al., we have developed a set of reaction parameters for an HMX based heterogeneous explosive. These parameters have been determined from computer models on the micron scale, and experimental data. This model will be compared to experimental rate stick data. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

  8. Relationship between pressure and reaction violence in thermal explosions

    NASA Astrophysics Data System (ADS)

    Smilowitz, L.; Henson, B. F.; Rodriguez, G.; Remelius, D.; Baca, E.; Oschwald, D.; Suvorova, N.

    2017-01-01

    Reaction violence of a thermal explosion is determined by the energy release rate of the explosive and the coupling of that energy to the case and surroundings. For the HMX and TATB based secondary high explosives studied, we have observed that temperature controls the time to explosion and pressure controls the final energy release rate subsequent to ignition. Pressure measurements in the thermal explosion regime have been notoriously difficult to make due to the extreme rise in temperature which is also occurring during a thermal explosion. We have utilized several different pressure measurement techniques for several different secondary high explosives. These techniques include commercially available piezoelectric and piezoresistive sensors which we have utilized in the low pressure (sub 30 MPa) range of PBX 9502 thermal explosions, and fiber Bragg grating sensors for the higher pressure range (up to GPa) for PBX9501 experiments. In this talk, we will compare the measurement techniques and discuss the pressures measured for the different formulations studied. Simultaneous x-ray radiography measurements of burn velocity will also be shown and correlations between pressure, burn velocity, and reaction violence will be discussed.

  9. Rays as weapons.

    PubMed

    Vogel, H

    2007-08-01

    Ionizing radiation is being regarded as life threatening. Therefore, accidents in nuclear power plants are considered equal threatening as nuclear bomb explosions, and attacks with dirty bombs are thought as dangerous as nuclear weapon explosions. However, there are differences between a nuclear bomb explosion, the largest imaginable accident in a nuclear power plant, and an attack with a dirty bomb. It is intended to point them out. The processes are described, which damage in a nuclear bomb explosion, in the largest imaginable accident in a nuclear power plant, and in an attack with a dirty bomb. Their effects are compared with each other, i.e. explosion, heat, shock wave (blast), ionizing radiation, and fallout. In the center of the explosion of a nuclear bomb, the temperature rises to 100Mio degrees C, this induces damaging heat radiation and shock wave. In the largest imaginable accident in a nuclear power plant and in the conventional explosion of a dirty bomb, the temperature may rise up to 3000 degrees C, heat radiation and blast are limited to a short distance. In nuclear power plants, explosions due to oxyhydrogen gas or steam may occur. In nuclear explosions the dispersed radioactive material (fall out) consists mainly of isotopes with short half-life, in nuclear power plants and in dirty bomb attacks with longer half-life. The amount of fall out is comparable in nuclear bomb explosions with that in the largest imaginable accident in a nuclear power plant, it is smaller in attacks with dirty bombs. An explosion in a nuclear power plant even in the largest imaginable accident is not a nuclear explosion. In Hiroshima and Nagasaki, there were 200,000 victims nearly all by heat and blast, some 300 died by ionizing radiation. In Chernobyl, there have been less than 100 victims due to ionizing radiation up till now. A dirty bomb kills possibly with the explosion of conventional explosive, the dispersed radioactive material may damage individuals. The incorporation of irradiating substances may kill and be difficult to detect (Litvinenko). A new form of (government supported) terrorism/crime appears possible. The differences are important between a nuclear weapon explosion, the largest imaginable accident in a nuclear power plant, and an attack with a dirty bomb. Nuclear weapons kill by heat and blast; in the largest imaginable accident in a nuclear power plant, they are less strong and limited to the plant; an attack with a dirty bomb is as life threatening as an ("ordinary") bomb attack, dispersed radiating material may be a risk for individuals.

  10. Stellar explosions from accreting white dwarfs

    NASA Astrophysics Data System (ADS)

    Moore, Kevin L.

    Unstable thermonuclear burning on accreting white dwarfs (WDs) can lead to a wide variety of outcomes, and induce shock waves in several contexts. In classical and recurrent novae, a WD accreting hydrogen-rich material from a binary companion can experience thermonuclear runaways, ejecting mass into the interstellar/circumbinary environment at ~1000 km/s. This highly supersonic ejecta drives shock waves into the interstellar gas which may be relevant for sweeping out gas from globular clusters or forming circumstellar absorption regions in interacting supernovae. While runaway nuclear burning in novae releases enough energy for these objects to brighten by a factor of ~10 4 over roughly a weeklong outburst, it does not become dynamically unstable. In contrast, certain helium accretion scenarios may allow for dynamical burning modes, in part due to the higher temperature sensitivity of helium burning reactions and larger accreted envelopes. The majority of this thesis involves such dynamical burning modes, specifically detonations - shock waves sustained by nuclear energy release behind the shock front. We investigate when steady-state detonations are realizable in accreted helium layers on WDs, and model their strength and burning products using both semi-analytic and numerical models. We find the minimum helium layer thickness that will sustain a steady laterally propagating detonation and show that it depends on the density and composition of the helium layer, specifically 12 C and 16O. Though gravitationally unbound, the ashes still have unburned helium (~80% in the thinnest cases) and only reach up to heavy elements such as 40Ca, 44Ti, 48Cr, and 52Fe. It is rare for these thin shells to generate large amounts of radioactive isotopes necessary to power light curves, such as 56Ni. This has important implications on whether the unbound helium burning ashes may create faint and fast peculiar supernovae or events with virtually no radioactivity, as well as on off-center ignition of the underlying WD in the double detonation scenario for Type Ia supernovae.

  11. Direct measurement of nuclear cross-section of astrophysical interest: Results and perspectives

    NASA Astrophysics Data System (ADS)

    Cavanna, Francesca; Prati, Paolo

    2018-03-01

    Stellar evolution and nucleosynthesis are interconnected by a wide network of nuclear reactions: the study of such connection is usually known as nuclear astrophysics. The main task of this discipline is the determination of nuclear cross-section and hence of the reaction rate in different scenarios, i.e. from the synthesis of a few very light isotopes just after the Big Bang to the heavy element production in the violent explosive end of massive stars. The experimental determination of reaction cross-section at the astrophysical relevant energies is extremely difficult, sometime impossible, due to the Coulomb repulsion between the interacting nuclei which turns out in cross-section values down to the fbar level. To overcome these obstacles, several experimental approaches have been developed and the adopted techniques can be roughly divided into two categories, i.e. direct and indirect methods. In this review paper, the general problem of nuclear astrophysics is introduced and discussed from the point of view of experimental approach. We focus on direct methods and in particular on the features of low-background experiments performed at underground laboratory facilities. The present knowledge of reactions involved in the Big Bang and stellar hydrogen-burning scenarios is discussed as well as the ongoing projects aiming to investigate mainly the helium- and carbon-burning phases. Worldwide, a new generation of experiment in the MeV range is in the design phase or at the very first steps and decisive progresses are expected to come in the next years.

  12. The Progenitor of Tycho’s Supernova was Not Hot and Luminous

    NASA Astrophysics Data System (ADS)

    Ghavamian, Parviz; Woods, T. E.; Gilfanov, M.; Badenes, C.; T. E. Woods, C. Badenes, M. Gilfanov

    2018-01-01

    Canonical accretion models of Type Ia supernovae predict that a hot and luminous progenitor will ionize the surrounding gas out to a radius of ∼10–100 pc for ∼100,000 years after the explosion. Tycho’s supernova of 1572 was a Type Ia explosion which produced a remnant that is currently interacting with neutral gas in the form of Balmer-dominated shocks. From analysis of these shocks and photoionization calculations, we have placed stringent upper limits on the temperature and luminosity of the progenitor of Tycho’s supernova. Hot, luminous progenitors that would have produced a greater hydrogen ionization fraction than that measured at the current SNR radius (∼3 parsecs) can thus be excluded. This rules out steadily nuclear-burning white dwarfs (i..e, supersoft X-ray sources), as well as disk emission from a Chandrasekhar-mass white dwarf accreting 1E-8 solar masses per year (recurrent novae). The lack of a Stromgren sphere around Tycho’s SNR is consistent with a double degenerate explosion, although other more exotic scenarios may be possible.

  13. Recent Progress on the Conversion of Surplus Picric Acid/Explosive D to Higher Value Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R.Mitchell, A; Hsu, P C; Coburn, M D

    2004-07-06

    The global demilitarization of nuclear and conventional munitions is producing millions of pounds of surplus energetic materials. Historically, energetic materials (high explosives, propellants, and pyrotechnics) have been disposed of by open burning/open detonation (OB/OD). The use of OB/OD is becoming unacceptable due to public concerns and increasingly stringent environmental regulations. Clearly, there is a great need to develop environmentally sound and cost-effective alternatives to OB/OD. The conversion of surplus picric acid and/or ammonium picrate (Explosive D) to1,3,5-triamino-2,4,6- trinitrobenzene (TATB) has been subject of extensive process development studies at Lawrence Livermore National Laboratory (LLNL). LLNL, under the direction and sponsorship ofmore » the U.S. Army Defense Ammunition Center (DAC), is developing a process for the conversion of picric acid to TATB on a larger scale. In FY 03, a 10 g per batch process was developed with good results. Development for a one pound per batch system is required as part of overall scale up process for producing TATB from the surplus feedstocks.« less

  14. Turbulent combustion in aluminum-air clouds for different scale explosion fields

    NASA Astrophysics Data System (ADS)

    Kuhl, Allen L.; Balakrishnan, Kaushik; Bell, John B.; Beckner, Vincent E.

    2017-01-01

    This paper explores "scaling issues" associated with Al particle combustion in explosions. The basic idea is the following: in this non-premixed combustion system, the global burning rate is controlled by rate of turbulent mixing of fuel (Al particles) with air. From similarity considerations, the turbulent mixing rates should scale with the explosion length and time scales. However, the induction time for ignition of Al particles depends on an Arrhenius function, which is independent of the explosion length and time. To study this, we have performed numerical simulations of turbulent combustion in unconfined Al-SDF (shock-dispersed-fuel) explosion fields at different scales. Three different charge masses were assumed: 1-g, 1-kg and 1-T Al-powder charges. We found that there are two combustion regimes: an ignition regime—where the burning rate decays as a power-law function of time, and a turbulent combustion regime—where the burning rate decays exponentially with time. This exponential dependence is typical of first order reactions and the more general concept of Life Functions that control the dynamics of evolutionary systems. Details of the combustion model are described. Results, including mean and rms profiles in combustion cloud and fuel consumption histories, are presented.

  15. Exposing Hierarchical Parallelism in the FLASH Code for Supernova Simulation on Summit and Other Architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papatheodore, Thomas L.; Messer, Bronson

    Since roughly 100 million years after the big bang, the primordial elements hydrogen (H), helium (He), and lithium (Li) have been synthesized into heavier elements by thermonuclear reactions inside of the stars. The change in stellar composition resulting from these reactions causes stars to evolve over the course of their lives. Although most stars burn through their nuclear fuel and end their lives quietly as inert, compact objects, whereas others end in explosive deaths. These stellar explosions are called supernovae and are among the most energetic events known to occur in our universe. Supernovae themselves further process the matter ofmore » their progenitor stars and distribute this material into the interstellar medium of their host galaxies. In the process, they generate ∼1051 ergs of kinetic energy by sending shock waves into their surroundings, thereby contributing to galactic dynamics as well.« less

  16. Kepler Beyond Planets: Finding Exploding Stars (Type Ia Supernova from a White Dwarf Merger)

    NASA Image and Video Library

    2018-03-26

    This frame from an animation shows the merger of two white dwarfs. A white dwarf is an extremely dense remnant of a star that can no longer burn nuclear fuel at its core. This is another way that a "type Ia" supernova occurs. Stellar explosions forge and distribute materials that make up the world in which we live, and also hold clues to how fast the universe is expanding. By understanding supernovae, scientists can unlock mysteries that are key to what we are made of and the fate of our universe. But to get the full picture, scientists must observe supernovae from a variety of perspectives, especially in the first moments of the explosion. That's really difficult -- there's no telling when or where a supernova might happen next. An animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA22353

  17. Cell phone explosion.

    PubMed

    Atreya, Alok; Kanchan, Tanuj; Nepal, Samata; Pandey, Bhuwan Raj

    2016-03-01

    Cell phone explosions and resultant burn injuries are rarely reported in the scientific literature. We report a case of cell phone explosion that occurred when a young male was listening to music while the mobile was plugged in for charging. © The Author(s) 2015.

  18. Numerical Simulation of Shock-Dispersed Fuel Charges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, John B.; Day, Marcus; Beckner, Vincent

    Successfully attacking underground storage facilities for chemical and biological (C/B) weapons is an important mission area for the Department of Defense. The fate of a C/B agent during an attack depends critically on the pressure and thermal environment that the agent experiences. The initial environment is determined by the blast wave from an explosive device. The byproducts of the detonation provide a fuel source that burn when mixed with oxidizer (after burning). Additional energy can be released by the ignition of the C/B agent as it mixes with the explosion products and the air in the chamber. Hot plumes ventingmore » material from any openings in the chamber can provide fuel for additional energy release when mixed with additional oxidizer. Assessment of the effectiveness of current explosives as well as the development of new explosive systems requires a detailed understanding of all of these modes of energy release. Using methodologies based on the use of higher-order Godunov schemes combined with Adaptive Mesh Refinement (AMR), implemented in a parallel adaptive framework suited to the massively parallel computer systems provided by the DOD High-Performance Computing Modernization program, we use a suite of programs to develop predictive models for the simulation of the energetics of blast waves, deflagration waves and ejecta plumes. The programs use realistic reaction kinetic and thermodynamic models provided by standard components (such as CHEMKIN) as well as other novel methods to model enhanced explosive devices. The work described here focuses on the validation of these models against a series of bomb calorimetry experiments performed at the Ernst-Mach Institute. In this paper, we present three-dimensional simulations of the experiments, examining the explosion dynamics and the role of subsequent burning on the explosion products on the thermal and pressure environment within the calorimeter. The effects of burning are quantified by comparing two sets of computations, one in which the calorimeter is filled with nitrogen so there is no after burning and a second in which the calorimeter contains air.« less

  19. Numerical computation of Pop plot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menikoff, Ralph

    The Pop plot — distance-of-run to detonation versus initial shock pressure — is a key characterization of shock initiation in a heterogeneous explosive. Reactive burn models for high explosives (HE) must reproduce the experimental Pop plot to have any chance of accurately predicting shock initiation phenomena. This report describes a methodology for automating the computation of a Pop plot for a specific explosive with a given HE model. Illustrative examples of the computation are shown for PBX 9502 with three burn models (SURF, WSD and Forest Fire) utilizing the xRage code, which is the Eulerian ASC hydrocode at LANL. Comparisonmore » of the numerical and experimental Pop plot can be the basis for a validation test or as an aid in calibrating the burn rate of an HE model. Issues with calibration are discussed.« less

  20. [Burns in adolescents].

    PubMed

    Ortiz Rodríguez, R; Domínguez Amillo, E; Soto Beauregard, C; Díaz González, M; López Gutiérrez, J C; Ros Mar, Z; Tovar Larrucea, J A

    2012-04-01

    The aim of this study was to know the epidemiology of burns in teenagers. Burn patients over 11 years old admitted in our Institution in the last 10 years were included. Etiology, burn size, hospital stay, quirurgical interventions and long term sequelae were registered. One thousand and eight patients were admitted, 89 were over 11 years (8.8%), 70.7% were boys and 29.3% girls. Fire was the principal agent in 58 cases (65.1%), due to fireworks in 13 (22.4%), alcohol in 7 (12%), explosion of flammable containers (spray) in 4 (6.8%) and gasoline in 3 (5.2%). Fireworks injuries and spray explosions affected face and hand in 88% cases. The median hospital stay was 8 days after admission (1 to 90). 83.1% required surgical treatment with mean of 1.8 +/- 1.4 interventions and 21.3% had long-term sequelaes that required at least one surgical intervention. Fire is the main cause of burns in adolescents. Fireworks injuries represented a quarter of that lesions, and highlights paint spray explosions as new causative agents. Considering the high morbidity in this age group, with permanent functional and aesthetic sequelae, prevention campaigns are needed to reduce such accidents.

  1. Advancing Explosion Source Theory through Experimentation: Results from Seismic Experiments Since the Moratorium on Nuclear Testing

    NASA Astrophysics Data System (ADS)

    Bonner, J. L.; Stump, B. W.

    2011-12-01

    On 23 September 1992, the United States conducted the nuclear explosion DIVIDER at the Nevada Test Site (NTS). It would become the last US nuclear test when a moratorium ended testing the following month. Many of the theoretical explosion seismic models used today were developed from observations of hundreds of nuclear tests at NTS and around the world. Since the moratorium, researchers have turned to chemical explosions as a possible surrogate for continued nuclear explosion research. This talk reviews experiments since the moratorium that have used chemical explosions to advance explosion source models. The 1993 Non-Proliferation Experiment examined single-point, fully contained chemical-nuclear equivalence by detonating over a kiloton of chemical explosive at NTS in close proximity to previous nuclear explosion tests. When compared with data from these nearby nuclear explosions, the regional and near-source seismic data were found to be essentially identical after accounting for different yield scaling factors for chemical and nuclear explosions. The relationship between contained chemical explosions and large production mining shots was studied at the Black Thunder coal mine in Wyoming in 1995. The research led to an improved source model for delay-fired mining explosions and a better understanding of mining explosion detection by the International Monitoring System (IMS). The effect of depth was examined in a 1997 Kazakhstan Depth of Burial experiment. Researchers used local and regional seismic observations to conclude that the dominant mechanism for enhanced regional shear waves was local Rg scattering. Travel-time calibration for the IMS was the focus of the 1999 Dead Sea Experiment where a 10-ton shot was recorded as far away as 5000 km. The Arizona Source Phenomenology Experiments provided a comparison of fully- and partially-contained chemical shots with mining explosions, thus quantifying the reduction in seismic amplitudes associated with partial confinement. The Frozen Rock Experiment in 2006 found only minor differences in seismic coupling for explosions in frozen and unfrozen rock. The seismo-acoustic source function was the focus of the above- and below-ground Humble Redwood explosions (2007, 2009 ) in New Mexico and detonations of rocket motor explosions in Utah. Acoustic travel time calibration for the IMS was accomplished with the 2009 and 2011 100-ton surface explosions in southern Israel. The New England Damage Experiment in 2009 correlated increased shear wave generation with increased rock damage from explosions. Damage from explosions continues to be an important research topic at Nevada's National Center for Nuclear Security with the ongoing Source Physics Experiment. A number of exciting experiments are already planned for the future and thus continue the effort to improve global detection, location, and identification of nuclear explosions.

  2. r-process nucleosynthesis in dynamic helium-burning environments

    NASA Technical Reports Server (NTRS)

    Cowan, J. J.; Cameron, A. G. W.; Truran, J. W.

    1985-01-01

    The results of an extended examination of r-process nucleosynthesis in helium-burning enviroments are presented. Using newly calculated nuclear rates, dynamical r-process calculations have been made of thermal runaways in helium cores typical of low-mass stars and in the helium zones of stars undergoing supernova explosions. These calculations show that, for a sufficient flux of neutrons produced by the C-13 neutron source, r-process nuclei in solar proportions can be produced. The conditions required for r-process production are found to be 10 to the 20th-10 to the 21st neutrons per cubic centimeter for times of 0.01-0.1 s and neutron number densities in excess of 10 to the 19th per cubic centimeter for times of about 1 s. The amount of C-13 required is found to be exceedingly high - larger than is found to occur in any current stellar evolutionary model. It is thus unlikely that these helium-burning environments are responsible for producing the bulk of the r-process elements seen in the solar system.

  3. Hot-spot contributions in shocked high explosives from mesoscale ignition models

    NASA Astrophysics Data System (ADS)

    Levesque, G.; Vitello, P.; Howard, W. M.

    2013-06-01

    High explosive performance and sensitivity is strongly related to the mesoscale defect densities. Bracketing the population of mesoscale hot spots that are active in the shocked ignition of explosives is important for the development of predictive reactive flow models. By coupling a multiphysics-capable hydrodynamics code (ale3d) with a chemical kinetics solver (cheetah), we can parametrically analyze different pore sizes undergoing collapse in high pressure shock conditions with evolving physical parameter fields. Implementing first-principles based decomposition kinetics, burning hot spots are monitored, and the regimes of pore sizes that contribute significantly to burnt mass faction and those that survive thermal conduction on the time scales of ignition are elucidated. Comparisons are drawn between the thermal explosion theory and the multiphysics models for the determination of nominal pore sizes that burn significantly during ignition for the explosive 1,3,5-triamino-2,4,6-trinitrobenzene.

  4. High explosive spot test analyses of samples from Operable Unit (OU) 1111

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McRae, D.; Haywood, W.; Powell, J.

    1995-01-01

    A preliminary evaluation has been completed of environmental contaminants at selected sites within the Group DX-10 (formally Group M-7) area. Soil samples taken from specific locations at this detonator facility were analyzed for harmful metals and screened for explosives. A sanitary outflow, a burn pit, a pentaerythritol tetranitrate (PETN) production outflow field, an active firing chamber, an inactive firing chamber, and a leach field were sampled. Energy dispersive x-ray fluorescence (EDXRF) was used to obtain semi-quantitative concentrations of metals in the soil. Two field spot-test kits for explosives were used to assess the presence of energetic materials in the soilmore » and in items found at the areas tested. PETN is the major explosive in detonators manufactured and destroyed at Los Alamos. No measurable amounts of PETN or other explosives were detected in the soil, but items taken from the burn area and a high-energy explosive (HE)/chemical sump were contaminated. The concentrations of lead, mercury, and uranium are given.« less

  5. The clinical consequences of an industrial aerosol plant explosion.

    PubMed

    Hull, D; Grindlinger, G A; Hirsch, E F; Petrone, S; Burke, J

    1985-04-01

    The factors relating to the clinical outcome of an industrial aerosol plant explosion are reviewed. Eighteen of 24 workers inside the plant required hospitalization and five died. Proximity to the blast was associated with extensive injuries unless workers were shielded by physical barriers or partitions. Burn severity and mortality were increased in those wearing synthetic garments compared to their counterparts wearing fiber clothing. Facial burns occurred in all unprotected workers. Forearm and hand burns in 11 patients required decompressive escharotomies. Topical treatment with silver sulfadiazine was associated with more significant leukopenia and neutropenia than treatment with silver nitrate. We conclude that industrial design should include safeguards which isolate workers from flammable materials, including isolation of explosive materials from working areas, alarm systems to detect leakage of flammable agents, protective barriers and shields, and the regulation and institution of flame and flash-resistant clothing.

  6. Comparison Between Surf and Multi-Shock Forest Fire High Explosive Burn Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenfield, Nicholas Alexander

    PAGOSA1 has several different burn models used to model high explosive detonation. Two of these, Multi-Shock Forest Fire and Surf, are capable of modeling shock initiation. Accurately calculating shock initiation of a high explosive is important because it is a mechanism for detonation in many accident scenarios (i.e. fragment impact). Comparing the models to pop-plot data give confidence that the models are accurately calculating detonation or lack thereof. To compare the performance of these models, pop-plots2 were created from simulations where one two cm block of PBX 9502 collides with another block of PBX 9502.

  7. The Nuclear Barcode: a New Taggant for Identifying Explosives

    NASA Astrophysics Data System (ADS)

    Seman, James; Johnson, Catherine; Castaño, Carlos

    2017-06-01

    Creating an effective taggant system for explosives is a challenging problem since the taggant used must be designed to endure the detonation process. A new taggant for use in explosives has been recently developed and named the `nuclear barcode'. The nuclear barcode tags explosives by adding low concentrations of eight different elements to the explosive, and then reads the tag from the post-blast residue using neutron activation analysis (NAA) to identify the elements and their concentrations. The nuclear barcode can be used to identify explosives after detonation by sampling the post-blast residue that is deposited due to incomplete reaction of the explosives. This method of tagging explosives creates an identifying taggant that survives detonation as NAA detects atomic nuclei as opposed to using any chemical or physical properties of the taggant that don't always survive the detonation process. Additional advantages this taggant method offers is ease of recovery of the taggant after detonation, and a total of 25.6 billion possible taggants as currently conceived, which enables the nuclear barcode to be used to tag individual batches of explosives. This paper describes the development of the nuclear barcode taggant system and its potential use in the explosives industry.

  8. Ballistically Initiated Fire Ball Generation Using M&S: Innovation Grant (Briefing Charts)

    DTIC Science & Technology

    2012-01-26

    isotropic in nature Phenomenological models for explosives initiation. – HVRB, forest fire etc. Equation of state – Ideal gas, Mie-Gruneisen, JWL ...perfectly plastic description • EOS • Mie Gruneisen • JWL for explosive • Phenomenological Model for EFP • High Explosive input for programmed burn

  9. Friction on Crack Surfaces During Compression of Explosives - A Source of Hot Spots and Probable Ignition Sites

    DTIC Science & Technology

    2009-05-01

    conditioned at temperature for at least 2 hrs before measurement. The dimensions of all samples at 0.1 MPa (atmospheric pressure) were used to obtain...are often used under conditions of confinement and pressurization. Explosives are confined in projectile cases and are pressurized during launch by...propellants during burning can lead to hazardous burning conditions (ref. 5). The results presented here also indicate the possible hazards associated

  10. Thigh burns from exploding e-cigarette lithium ion batteries: First case series.

    PubMed

    Nicoll, K J; Rose, A M; Khan, M A A; Quaba, O; Lowrie, A G

    2016-06-01

    E-cigarette (EC) use has risen meteorically over the last decade. The majority of these devices are powered by re-chargeable lithium ion batteries, which can represent a fire hazard if damaged, over-heated, over-charged or stored inappropriately. There are currently no reports in the medical literature of lithium ion battery burns related to EC use and no guidance on the appropriate management of lithium ion battery associated injuries. We report two individual cases of burn resulting from explosion of EC re-chargeable lithium ion batteries. Both patients required in-patient surgical management. We provide evidence that lithium ion battery explosions can be associated with mixed thermal and alkali chemical burns, resulting from the significant discharge of thermal energy and the dispersal of corrosive lithium ion compounds. We would recommend, as with other elemental metal exposures, caution in exposing lithium ion battery burns to water irrigation. Early and thorough cleaning and debridement of such burns, to remove residual lithium contamination, may limit the risk of burn wound extension and potentially improve outcomes. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  11. Micro-explosion of compound drops

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Kuei; Lin, Ta-Hui

    2014-08-01

    Introducing water into spray combustion systems, by either water-in-oil emulsification or supplementary water injection, is one of the major techniques for combustion improvement and NOx reduction. Plentiful researches are available on combustion of water-in-oil emulsion fuel drops. The emulsified liquid is a heterogeneous mixture of immiscible liquids. One component forms the continuous phase and the other component forms the discrete phase. The discrete phase consists of globules of the one fluid that are suspended in the continuous phase fluid. Water-in-oil emulsions are commonly considered for combustion applications because emulsions can result in micro-explosion, thereby reducing the average drop diameter to enhance liquid vaporization, and suppressing the formation of soot and NOx. However, the water addition generally does not exceed about 20% for smooth engine operations[!, 21. The combustion characteristics and micro-explosion of emulsion drop were studied by many researchers. The micro-explosion of water in fuel emulsion drops was caused by very fast growth of superheated water vapor bubbles, its superheat limits must be lower than the boiling point temperature of the fuel. These bubbles were primarily governed by the pressure difference between the superheated vapor and the liquid, and by the inertia imparted to the liquid by the motion of the bubble surface[3 6 In this study, we used a coaxial nozzle to generation the multi-component drop. The different type of water-in-oil fuel drops called the compound drops. Unlike an emulsion drop, a compound drop consists of a water core and a fuel shell, which can originate from the phase separation of emulsion[7, 81 or a water drop colliding with a fuel drop[9, 101 Burning and micro-explosion of compound drops have been found to be distinct from those of emulsion drops[9-111 Wang et al.[9 , 101 studied the combustion characteristics of collision merged alkane-water drops. The merged drops appeared in adhesive and inserted manners. The drop ignition delay time increased with increasing water content. The average burning rate of alkane-water drops decreased with increasing water content. In the burning process, hexadecane-water drops exhibited flash vaporization or flame extinction. Heterogeneous explosion was occasionally observed in drops with trapped air bubbles. The air bubbles were assumed to be the nucleation points of the heterogeneous explosions. Chen and Lin[11 studied the characteristics of water-in-dodecane compound drop with different water content, diameter of drop and environmental oxygen concentration. The vaporization rate increased with increasing environmental oxygen concentration. The compound drops micro-exploded during the burning process in a random way. The number of micro-explosions was majorly influenced by drop diameter, followed by environmental oxygen concentration. Water content had a weaker effect on micro-explosion. As available literature and research results of compound drop burning are scarce, their combustion and micro-explosion behaviors are still poorly understood. In this regard, we changed the drop nature as compound drops to study their combustion characteristics and micro-explosion phenomena.

  12. Reacting Chemistry Based Burn Model for Explosive Hydrocodes

    NASA Astrophysics Data System (ADS)

    Schwaab, Matthew; Greendyke, Robert; Steward, Bryan

    2017-06-01

    Currently, in hydrocodes designed to simulate explosive material undergoing shock-induced ignition, the state of the art is to use one of numerous reaction burn rate models. These burn models are designed to estimate the bulk chemical reaction rate. Unfortunately, these models are largely based on empirical data and must be recalibrated for every new material being simulated. We propose that the use of an equilibrium Arrhenius rate reacting chemistry model in place of these empirically derived burn models will improve the accuracy for these computational codes. Such models have been successfully used in codes simulating the flow physics around hypersonic vehicles. A reacting chemistry model of this form was developed for the cyclic nitramine RDX by the Naval Research Laboratory (NRL). Initial implementation of this chemistry based burn model has been conducted on the Air Force Research Laboratory's MPEXS multi-phase continuum hydrocode. In its present form, the burn rate is based on the destruction rate of RDX from NRL's chemistry model. Early results using the chemistry based burn model show promise in capturing deflagration to detonation features more accurately in continuum hydrocodes than previously achieved using empirically derived burn models.

  13. Improvements to a Major Digital Archive of Seismic Waveforms from Nuclear Explosions: Borovoye Seismogram Archive

    DTIC Science & Technology

    2008-09-30

    coda) meet expectations. We are also interpreting absolute amplitudes, for those underground nuclear explosions at the Semipalatinsk Test Site (STS...waves, coda) meet expectations. We are also interpreting absolute amplitudes, for those underground nuclear explosions at the Semipalatinsk Test Site ...Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies 4.0- Balapan Subregion Semipalatinsk Test Site n- 3.5 - (U CIO ’-3.0 ES UI

  14. Direct Observation of the Phenomenology of a Solid Thermal Explosion Using Time-Resolved Proton Radiography

    NASA Astrophysics Data System (ADS)

    Smilowitz, L.; Henson, B. F.; Romero, J. J.; Asay, B. W.; Schwartz, C. L.; Saunders, A.; Merrill, F. E.; Morris, C. L.; Kwiatkowski, K.; Hogan, G.; Nedrow, P.; Murray, M. M.; Thompson, T. N.; McNeil, W.; Rightley, P.; Marr-Lyon, M.

    2008-06-01

    We present a new phenomenology for burn propagation inside a thermal explosion based on dynamic radiography. Radiographic images were obtained of an aluminum cased solid cylindrical sample of a plastic bonded formulation of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. The phenomenology observed is ignition followed by cracking in the solid accompanied by the propagation of a radially symmetric front of increasing proton transmission. This is followed by a further increase in transmission through the sample, ending after approximately 100μs. We show that these processes are consistent with the propagation of a convective burn front followed by consumption of the remaining solid by conductive particle burning.

  15. Direct observation of the phenomenology of a solid thermal explosion using time-resolved proton radiography.

    PubMed

    Smilowitz, L; Henson, B F; Romero, J J; Asay, B W; Schwartz, C L; Saunders, A; Merrill, F E; Morris, C L; Kwiatkowski, K; Hogan, G; Nedrow, P; Murray, M M; Thompson, T N; McNeil, W; Rightley, P; Marr-Lyon, M

    2008-06-06

    We present a new phenomenology for burn propagation inside a thermal explosion based on dynamic radiography. Radiographic images were obtained of an aluminum cased solid cylindrical sample of a plastic bonded formulation of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. The phenomenology observed is ignition followed by cracking in the solid accompanied by the propagation of a radially symmetric front of increasing proton transmission. This is followed by a further increase in transmission through the sample, ending after approximately 100 micros. We show that these processes are consistent with the propagation of a convective burn front followed by consumption of the remaining solid by conductive particle burning.

  16. No double detonations but core carbon ignitions in high-resolution, grid-based simulations of binary white dwarf mergers

    NASA Astrophysics Data System (ADS)

    Fenn, D.; Plewa, T.; Gawryszczak, A.

    2016-11-01

    We study the violent phase of the merger of massive binary white dwarf systems. Our aim is to characterize the conditions for explosive burning to occur, and identify a possible explosion mechanism of Type Ia supernovae. The primary components of our model systems are carbon-oxygen (C/O) white dwarfs, while the secondaries are made either of C/O or of pure helium. We account for tidal effects in the initial conditions in a self-consistent way, and consider initially well-separated systems with slow inspiral rates. We study the merger evolution using an adaptive mesh refinement, reactive, Eulerian code in three dimensions, assuming symmetry across the orbital plane. We use a corotating reference frame to minimize the effects of numerical diffusion, and solve for self-gravity using a multigrid approach. We find a novel detonation mechanism in C/O mergers with massive primaries. Here, the detonation occurs in the primary's core and relies on the combined action of tidal heating, accretion heating, and self-heating due to nuclear burning. The exploding structure is compositionally stratified, with a reverse shock formed at the surface of the dense ejecta. The existence of such a shock has not been reported elsewhere. The explosion energy (1.6 × 1051 erg) and 56Ni mass (0.86 M⊙) are consistent with an SN Ia at the bright end of the luminosity distribution, with an approximated decline rate of Δm15(B) ≈ 0.99. Our study does not support double-detonation scenarios in the case of a system with a 0.6 M⊙ helium secondary and a 0.9 M⊙ primary. Although the accreted helium detonates, it fails to ignite carbon at the base of the boundary layer or in the primary's core.

  17. THE THREE-DIMENSIONAL EVOLUTION TO CORE COLLAPSE OF A MASSIVE STAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couch, Sean M.; Chatzopoulos, Emmanouil; Arnett, W. David

    2015-07-20

    We present the first three-dimensional (3D) simulation of the final minutes of iron core growth in a massive star, up to and including the point of core gravitational instability and collapse. We capture the development of strong convection driven by violent Si burning in the shell surrounding the iron core. This convective burning builds the iron core to its critical mass and collapse ensues, driven by electron capture and photodisintegration. The non-spherical structure and motion generated by 3D convection is substantial at the point of collapse, with convective speeds of several hundreds of km s{sup −1}. We examine the impactmore » of such physically realistic 3D initial conditions on the core-collapse supernova mechanism using 3D simulations including multispecies neutrino leakage and find that the enhanced post-shock turbulence resulting from 3D progenitor structure aids successful explosions. We conclude that non-spherical progenitor structure should not be ignored, and should have a significant and favorable impact on the likelihood for neutrino-driven explosions. In order to make simulating the 3D collapse of an iron core feasible, we were forced to make approximations to the nuclear network making this effort only a first step toward accurate, self-consistent 3D stellar evolution models of the end states of massive stars.« less

  18. Modelling of Deflagration to Detonation Transition in Porous PETN of Density 1.4 g / cc with HERMES

    NASA Astrophysics Data System (ADS)

    Reaugh, John; Curtis, John; Maheswaran, Mary-Ann

    2017-06-01

    The modelling of Deflagration to Detonation Transition in explosives is a severe challenge for reactive burn models because of the complexity of the physics; there is mechanical and thermal interaction of the gaseous burn products with the burning porous matrix, with resulting compaction, shock formation and subsequent detonation. Experiments on the explosive PETN show a strong dependence of run distance to detonation on porosity. The minimum run distance appears to occur when the density is approximately 1.4 g / cc. Recent research on the High Explosive Response to Mechanical Stimulation (HERMES) model for High Explosive Violent Reaction has included the development of a model for PETN at 1.4 g / cc., which allows the prediction of the run distance in the experiments for PETN at this density. Detonation and retonation waves as seen in the experiment are evident. The HERMES simulations are analysed to help illuminate the physics occurring in the experiments. JER's work was performed under the auspices of the US DOE by LLNL under Contract DE-AC52-07NA27344 and partially funded by the Joint US DoD/DOE Munitions Technology Development Program. LLNL-ABS-723537.

  19. A New Database of Digitized Regional Seismic Waveforms from Nuclear Explosions in Eurasia

    NASA Astrophysics Data System (ADS)

    Sokolova, I. N.; Richards, P. G.; Kim, W. Y.; Mikhailova, N. N.

    2014-12-01

    Seismology is an observational science. Hence, the effort to understand details of seismic signals from underground nuclear explosions requires analysis of waveforms recorded from past nuclear explosions. Of principal interest, are regional signals from explosions too small to be reliably identified via teleseismic recording. But the great majority of stations operated today, even those in networks for nuclear explosion monitoring, have never recorded explosion signals at regional distances, because most stations were installed long after the period when most underground nuclear explosions were conducted; and the few nuclear explosions since the early 1990s were mostly recorded only at teleseismic distances. We have therefore gathered thousands of nuclear explosion regional seismograms from more than 200 analog stations operated in the former Soviet Union. Most of them lie in a region stretching approximately 6000 km East-West and 2000 km North-South and including much of Central Asia. We have digitized them and created a modern digital database, including significant metadata. Much of this work has been done in Kazakhstan. Most of the explosions were underground, but several were conducted in the atmosphere. This presentation will characterize the content and overall quality of the new database for signals from nuclear explosions in Eurasia, which were conducted across substantial ranges of yield and shot-point depth, and under a great variety of different geological conditions. This work complements a 20-year collaborative effort which made the original digital recordings of the Borovoye Geophysical Observatory, Kazakhstan, openly available in a modern format (see http://www.ldeo.columbia.edu/res/pi/Monitoring/Data/). For purposes of characterizing explosive sources, it would be of assistance to have seismogram archives from explosions conducted in all regions including the Pacific, North Africa, and the United States (including the Aleutians). Openly available seismogram archives for Eurasian explosions are in several respects now better than those for explosions conducted by the United States, France, and the UK, especially for the era from 1960 to about 1985. The opportunity to build and improve such archives will not last indefinitely.

  20. The role of atmospheric nuclear explosions on the stagnation of global warming in the mid 20th century

    NASA Astrophysics Data System (ADS)

    Fujii, Yoshiaki

    2011-04-01

    This study suggests that the cause of the stagnation in global warming in the mid 20th century was the atmospheric nuclear explosions detonated between 1945 and 1980. The estimated GST drop due to fine dust from the actual atmospheric nuclear explosions based on the published simulation results by other researchers (a single column model and Atmosphere-Ocean General Circulation Model) has served to explain the stagnation in global warming. Atmospheric nuclear explosions can be regarded as full-scale in situ tests for nuclear winter. The non-negligible amount of GST drop from the actual atmospheric explosions suggests that nuclear winter is not just a theory but has actually occurred, albeit on a small scale. The accuracy of the simulations of GST by IPCC would also be improved significantly by introducing the influence of fine dust from the actual atmospheric nuclear explosions into their climate models; thus, global warming behavior could be more accurately predicted.

  1. Civil Defense, U. S. A.: A Programmed Orientation to Civil Defense. Unit 2. Nuclear Weapons Effects and Shelter.

    ERIC Educational Resources Information Center

    Defense Civil Preparedness Agency (DOD), Battle Creek, MI.

    Basic information about nuclear weapons is presented so that their effects can be meaningfully related to the defensive countermeasures which will be most effective against them. Major topics include: (1) Explosive power of nuclear weapons, (2) Major effects of nuclear explosions, (3) Two basic types of nuclear explosions, (4) Contrast between air…

  2. Effects of magnesium-based hydrogen storage materials on the thermal decomposition, burning rate, and explosive heat of ammonium perchlorate-based composite solid propellant.

    PubMed

    Liu, Leili; Li, Jie; Zhang, Lingyao; Tian, Siyu

    2018-01-15

    MgH 2 , Mg 2 NiH 4 , and Mg 2 CuH 3 were prepared, and their structure and hydrogen storage properties were determined through X-ray photoelectron spectroscopy and thermal analyzer. The effects of MgH 2 , Mg 2 NiH 4 , and Mg 2 CuH 3 on the thermal decomposition, burning rate, and explosive heat of ammonium perchlorate-based composite solid propellant were subsequently studied. Results indicated that MgH 2 , Mg 2 NiH 4 , and Mg 2 CuH 3 can decrease the thermal decomposition peak temperature and increase the total released heat of decomposition. These compounds can improve the effect of thermal decomposition of the propellant. The burning rates of the propellant increased using Mg-based hydrogen storage materials as promoter. The burning rates of the propellant also increased using MgH 2 instead of Al in the propellant, but its explosive heat was not enlarged. Nonetheless, the combustion heat of MgH 2 was higher than that of Al. A possible mechanism was thus proposed. Copyright © 2017. Published by Elsevier B.V.

  3. Competency Development Detonator Development and Design

    DTIC Science & Technology

    2007-09-01

    required. Exploding foil initiators ( EFI or Slapper) - The benefits of using an EFI is that the metal bridge is separated from the explosive, the explosive...to the materials ignition temperature to begin a burning reaction that propagates to the next material in the initiator . Exploding bridgewire (EBW...principles "* Initiation capabilities of the MEMS scale detonator DETONATOR BACKGROUND In a typical detonator, an explosive train is used. The explosive train

  4. Refinement of parameters of weak nuclear explosions conducted at the Semipalatinsk test site on the basis of historical seismograms study

    NASA Astrophysics Data System (ADS)

    Sokolova, Inna

    2014-05-01

    Many researchers working in the field of monitoring and discriminating of nuclear tests encounter the problem of lacking in seismic catalogues the information about source parameters for weak nuclear explosions. As usual, the information about origin time, coordinates and magnitude is absent, there is information about date, approximate coordinates and information about explosion yield. Huge work conducted on recovery of parameters of small underground nuclear explosions conducted at the Semipalatinsk Test Site using records of analogue seismic stations of the USSR located at regional distances was conducted by V. Khalturin, T. Rayutian, P. Richards (Pure and Applied Geophysics, 2001). However, if underground nuclear explosions are studied and described in literature quite well, then air and contact explosions were small and were not recorded by standard permanent seismic stations. In 1961-1962 maximum number of air and contact explosions was conducted at Opytnoye polye site of the STS. We managed to find and analyze additional seismic data from some temporary and permanent stations. That time IPE AS USSR installed a network of high-sensitive stations along Pamir-Baykal profile to study earth crust structure and upper mantle, the profile length was 3500 km. Epicentral distance from some stations of the profile to Opytnoye polye was 300-400 km. In addition, a permanent seismic station Semipalatinsk (SEM) located 175 km away from the site started its operation. The seismograms from this station became available recently. The digitized historical seismograms allowed to recover and add parameters for more than 36 air and surface explosions. Origin time, coordinates, magnitudes mpv, MLV and energy class K were determined for explosions. A regional travel-time curve for Central Kazakhstan constructed using records of calibration chemical explosions conducted at the STS in 1997-2000 and ground-truth underground nuclear explosions was used to determine kinematic parameters of explosions. MLV, mpv, and energy class K were determined for all underground nuclear explosions conducted at the STS using historical seismograms from Central Asia stations. Dependencies of regional magnitudes on yield were received for air and underground nuclear explosions. Thus, application of historical seismograms at regional distances allows to recover and replenish the seismic catalogues of past nuclear explosions for further use in scientific investigations and monitoring tasks.

  5. Apparatus and method for rapid detection of explosives residue from the deflagration signature thereof

    DOEpatents

    Funsten, Herbert O.; McComas, David J.

    1997-01-01

    Apparatus and method for rapid detection of explosives residue from the deflagration signature thereof. A property inherent to most explosives is their stickiness, resulting in a strong tendency of explosive particulate to contaminate the environment of a bulk explosive. An apparatus for collection of residue particulate, burning the collected particulate, and measurement of the optical emission produced thereby is described. The present invention can be utilized for real-time screening of personnel, cars, packages, suspected devices, etc., and provides an inexpensive, portable, and noninvasive means for detecting explosives.

  6. Apparatus and method for rapid detection of explosives residue from the deflagration signature thereof

    DOEpatents

    Funsten, Herbert O.; McComas, David J.

    1999-01-01

    Apparatus and method for rapid detection of explosives residue from the deflagration signature thereof. A property inherent to most explosives is their stickiness, resulting in a strong tendency of explosive particulate to contaminate the environment of a bulk explosive. An apparatus for collection of residue particulate, burning the collected particulate, and measurement of the ultraviolet emission produced thereby, is described. The present invention can be utilized for real-time screening of personnel, cars, packages, suspected devices, etc., and provides an inexpensive, portable, and noninvasive means for detecting explosives.

  7. [Severe ocular burns by calcium carbide in a speleologist: a case report].

    PubMed

    Testud, F; Voegtlé, R; Nordmann, J P; Descotes, J

    2002-03-01

    A case of severe ocular burns in an amateur speleologist is reported. The explosion of his acetylene lamp caused the projection of calcium carbide particles, which induced burning of the cornea and conjunctiva in both eyes. He slowly recovered in several months. The pathophysiology of the burns, linked to the in situ production of lime, and their management are discussed.

  8. Can North Korean Nuclear Explosions Stir Baekdu (Changbai) Volcano to be Erupted?

    NASA Astrophysics Data System (ADS)

    Hong, T. K.; Choi, E.; Park, S.; Shin, J. S.

    2015-12-01

    Potential volcanic eruption in Mt. Baekdu (Changbai) hasbeen a long-lasting concern in the far-eastern Asia.There were several explosive eruptions historically. Themost recent eruption was made in 1903. The eruption in969 is believed to be the most violent with volcanicexplosivity index of 7. The volcano is located in ~130 kmaway from the North Korean nuclear explosion test sitewhere three moderate-size nuclear explosions withmagnitudes of 4.3, 4.7 and 5.1 were conducted in 2006,2009 and 2013. There is increasing concern that a largenuclear explosion may trigger volcanic eruption. Seismicwaveforms are subtle to vary with the crustal structure.The strong ground motions generated by a potential largenuclear explosion are difficult to be simulated forvolcanic regions where complex crustal structures areexpected. We calculate the ground motions by hypotheticallarge nuclear explosions using a nuclear-explosion sourcemodel and the seismic waveforms of prior nuclearexplosions. The validity of the method is examined bycomparing the observed and quasi-synthetic seismicwaveforms of prior nuclear explosions. The peak groundaccelerations (PGA) around the volcano are estimated froma PGA attenuation equation that was determined based onseismic waveforms from natural earthquakes. Thehorizontal and vertical PGAs by an M7.0 undergroundnuclear explosion are expected to reach 0.14 and 0.11m/s2 at the volcano, inducing a dynamic stress in themagma chamber. The induced pressure change in the magmachamber is verified by numerical modeling of dynamicstress changes.

  9. Exploring Systematic Effects in Thermonuclear Supernovae

    NASA Astrophysics Data System (ADS)

    Jackson, Aaron Perry

    Type Ia supernovae (SNe) are bright astrophysical explosions that form a remarkably homogeneous class of objects serving as the premier distance indicators for studying the expansion history of the Universe and the nature of dark energy. Despite the widespread acceptance of the surprising discovery of the acceleration of the expansion of the Universe and the existence of the mysterious dark energy driving it that followed from these studies, the progenitor systems of these explosions are unknown. Knowledge of the progenitor system is required to understand possible systematic effects due to properties of the parent stellar population or host galaxy. While several scenarios have been proposed, the most widely accepted one is the thermonuclear explosion of a near-Chandrasekharmass, carbon-oxygen white dwarf (WD). Under this scenario, the explosive burning begins near the center as a deflagration (subsonic burning) that transitions to a detonation (supersonic burning) some time later after the WD has expanded in response to the energy release. Turbulence, either pre-existing or generated by burning, serves to increase the surface area of the burning front, thus enhancing the fuel consumption rate. In addition, turbulence--flame interaction (TFI) may be responsible for deflagration--detonation transition (DDT). Simulations of this explosion scenario typically parameterize the DDT to occur when the flame reaches a particular density. I performed a suite of two-dimensional (2D) simulations with the compressible, hydrodynamics code FLASH to evaluate the influence of the DDT density on the average yield of radioactive 56Ni that powers the SN light curve. In addition, I considered the compositional dependence of the DDT density to explore one way in which metallicity may influence the explosion outcome. My results have confirmed a new pathway to explain observed trends in the average peak brightness of SNe Ia with host galaxy metallicity. In a separate study, I address the basic physics of modeling flames and turbulent combustion. The disparate length scales in the SN necessitate use of a flame model to capture the effect of burning on unresolved scales. I implemented a method to measure the strength of unresolved turbulence, which is used to estimate the amount of wrinkling of the unresolved flame surface. In addition, the measure of turbulent strength may be used to improve the criterion by which DDT is initiated. These improvements will allow three-dimensional (3D) simulations of the early flame evolution in the presence of strong pre-existing turbulence. The research conducted for this dissertation has led to important insights into the explosion mechanism of SNe Ia. In addition, improvements to the model have allowed and will continue to allow simulations of unprecedented realism of the complex process of exploding WDs in a thermonuclear SN.

  10. Wave Pattern Peculiarities of Different Types of Explosions Conducted at Semipalatinsk Test Site

    NASA Astrophysics Data System (ADS)

    Sokolova, Inna

    2014-05-01

    The historical seismograms of the explosions conducted at the STS in 1949 - 1989 are of great interest for the researchers in the field of monitoring. Large number of air (86), surface (30) and underground nuclear explosions were conducted here in boreholes and tunnels (340). In addition to nuclear explosions, large chemical explosions were conducted at the Test Site. It is known that tectonic earthquakes occur on the Test Site territory and near it. Since 2005 the Institute of Geophysical Researches conducts works on digitizing the historical seismograms of nuclear explosions. Currently, the database contains more than 6000 digitized seismograms of nuclear explosions used for investigative monitoring tasks, major part of them (4000) are events from the STS region. Dynamic parameters of records of air, surface and underground nuclear explosions, as well as large chemical explosions with compact charge laying were investigated for seismic stations located on the territory of Kazakhstan using digitized records of the STS events. In addition, the comparison between salvo wave pattern and single explosions was conducted. The records of permanent and temporary seismic stations (epicentral distances range 100 - 800 km) were used for the investigations. Explosions spectra were analyzed, specific features of each class of events were found. The seismograms analysis shows that the wave pattern depends significantly on the explosion site and on the source type.

  11. Cost Analysis of 48 Burn Patients in a Mass Casualty Explosion Treated at Chang Gung Memorial Hospital.

    PubMed

    Mathews, Alexandra L; Cheng, Ming-Huei; Muller, John-Michael; Lin, Miffy Chia-Yu; Chang, Kate W C; Chung, Kevin C

    2017-01-01

    Little is known about the costs of treating burn patients after a mass casualty event. A devastating Color Dust explosion that injured 499 patients occurred on June 27, 2015 in Taiwan. This study was performed to investigate the economic effects of treating burn patients at a single medical center after an explosion disaster. A detailed retrospective analysis on 48 patient expense records at Chang Gung Memorial Hospital after the Color Dust explosion was performed. Data were collected during the acute treatment period between June 27, 2015 and September 30, 2015. The distribution of cost drivers for the entire patient cohort (n=48), patients with a percent total body surface area burn (%TBSA)≥50 (n=20), and those with %TBSA <50 (n=28) were analyzed. The total cost of 48 burn patients over the acute 3-month time period was $2,440,688, with a mean cost per patient of $50,848 ±36,438. Inpatient ward fees (30%), therapeutic treatment fees (22%), and medication fees (11%) were found to be the three highest cost drivers. The 20 patients with a %TBSA ≥50 consumed $1,559,300 (63.8%) of the total expenses, at an average cost of $77,965±34,226 per patient. The 28 patients with a %TBSA <50 consumed $881,387 (36.1%) of care expenses, at an average cost of $31,478±23,518 per patient. In response to this mass casualty event, inpatient ward fees represented the largest expense. Hospitals can reduce this fee by ensuring wound dressing and skin substitute materials are regionally stocked and accessible. Medication fees may be higher than expected when treating a mass burn cohort. In preparation for a future event, hospitals should anticipate patients with a %TBSA≥50 will contribute the majority of inpatient expenses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Cost Analysis of 48 Burn Patients in a Mass Casualty Explosion Treated at Chang Gung Memorial Hospital

    PubMed Central

    Mathews, Alexandra L.; Cheng, Ming-Huei; Muller, John-Michael; Lin, Miffy Chia-Yu; Chang, Kate W.C.; Chung, Kevin C.

    2016-01-01

    Introduction Little is known about the costs of treating burn patients after a mass casualty event. A devastating Color Dust explosion that injured 499 patients occurred on June 27, 2015 in Taiwan. This study was performed to investigate the economic effects of treating burn patients at a single medical center after an explosion disaster. Methods A detailed retrospective analysis on 48 patient expense records at Chang Gung Memorial Hospital after the Color Dust explosion was performed. Data were collected during the acute treatment period between June 27, 2015 and September 30, 2015. The distribution of cost drivers for the entire patient cohort (n=48), patients with a percent total body surface area burn (%TBSA) ≥ 50 (n=20), and those with %TBSA <50 (n=28) were analyzed. Results The total cost of 48 burn patients over the acute 3-month time period was $2,440,688, with a mean cost per patient of $50,848 ±36,438. Inpatient ward fees (30%), therapeutic treatment fees (22%), and medication fees (11%) were found to be the three highest cost drivers. The 20 patients with a %TBSA ≥50 consumed $1,559,300 (63.8%) of the total expenses, at an average cost of $77,965 ± 34,226 per patient. The 28 patients with a %TBSA <50 consumed $881,387 (36.1%) of care expenses, at an average cost of $31,478 ± 23,518 per patient. Conclusions In response to this mass casualty event, inpatient ward fees represented the largest expense. Hospitals can reduce this fee by ensuring wound dressing and skin substitute materials are regionally stocked and accessible. Medication fees may be higher than expected when treating a mass burn cohort. In preparation for a future event, hospitals should anticipate patients with a %TBSA ≥ 50 will contribute the majority of inpatient expenses. PMID:27553390

  13. High Pressure Burn Rate Measurements on an Ammonium Perchlorate Propellant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glascoe, E A; Tan, N

    2010-04-21

    High pressure deflagration rate measurements of a unique ammonium perchlorate (AP) based propellant are required to design the base burn motor for a Raytheon weapon system. The results of these deflagration rate measurements will be key in assessing safety and performance of the system. In particular, the system may experience transient pressures on the order of 100's of MPa (10's kPSI). Previous studies on similar AP based materials demonstrate that low pressure (e.g. P < 10 MPa or 1500 PSI) burn rates can be quite different than the elevated pressure deflagration rate measurements (see References and HPP results discussed herein),more » hence elevated pressure measurements are necessary in order understand the deflagration behavior under relevant conditions. Previous work on explosives have shown that at 100's of MPa some explosives will transition from a laminar burn mechanism to a convective burn mechanism in a process termed deconsolidative burning. The resulting burn rates that are orders-of-magnitude faster than the laminar burn rates. Materials that transition to the deconsolidative-convective burn mechanism at elevated pressures have been shown to be considerably more violent in confined heating experiments (i.e. cook-off scenarios). The mechanisms of propellant and explosive deflagration are extremely complex and include both chemical, and mechanical processes, hence predicting the behavior and rate of a novel material or formulation is difficult if not impossible. In this work, the AP/HTPB based material, TAL-1503 (B-2049), was burned in a constant volume apparatus in argon up to 300 MPa (ca. 44 kPSI). The burn rate and pressure were measured in-situ and used to calculate a pressure dependent burn rate. In general, the material appears to burn in a laminar fashion at these elevated pressures. The experiment was reproduced multiple times and the burn rate law using the best data is B = (0.6 {+-} 0.1) x P{sup (1.05{+-}0.02)} where B is the burn rate in mm/s and P is the pressure in units of MPa. Details of the experimental method, results and data analysis are discussed herein and briefly compared to other AP based materials that have been measured in this apparatus.« less

  14. Characteristics of acoustic wave from atmospheric nuclear explosions conducted at the USSR Test Sites

    NASA Astrophysics Data System (ADS)

    Sokolova, Inna

    2015-04-01

    Availability of the acoustic wave on the record of microbarograph is one of discriminate signs of atmospheric (surface layer of atmosphere) and contact explosions. Nowadays there is large number of air wave records from chemical explosions recorded by the IMS infrasound stations installed during recent decade. But there is small number of air wave records from nuclear explosions as air and contact nuclear explosions had been conducted since 1945 to 1962, before the Limited Test Ban Treaty was signed in 1963 (the treaty banning nuclear weapon tests in the atmosphere, in outer space and under water) by the Great Britain, USSR and USA. That time there was small number of installed microbarographs. First infrasound stations in the USSR appeared in 1954, and by the moment of the USSR collapse the network consisted of 25 infrasound stations, 3 of which were located on Kazakhstan territory - in Kurchatov (East Kazakhstan), in Borovoye Observatory (North Kazakhstan) and Talgar Observatory (Northern Tien Shan). The microbarograph of Talgar Observatory was installed in 1962 and recorded large number of air nuclear explosions conducted at Semipalatinsk Test Site and Novaya Zemlya Test Site. The epicentral distance to the STS was ~700 km, and to Novaya Zemlya Test Site ~3500 km. The historical analog records of the microbarograph were analyzed on the availability of the acoustic wave. The selected records were digitized, the database of acoustic signals from nuclear explosions was created. In addition, acoustic signals from atmospheric nuclear explosions conducted at the USSR Test Sites were recorded by analogue broadband seismic stations at wide range of epicentral distances, 300-3600 km. These signals coincide well by its form and spectral content with records of microbarographs and can be used for monitoring tasks and discrimination in places where infrasound observations are absent. Nuclear explosions which records contained acoustic wave were from 0.03 to 30 kt yield for the STS, and from 8.3 to 25 Mt yield for Novaya Zemlya Test Site region. The peculiarities of the wave pattern and spectral content of the acoustic wave records, and relation regularities of acoustic wave amplitude and periods with explosion yield and distance were investigated. The created database can be applied in different monitoring tasks, such as infrasound stations calibration, discrimination of nuclear explosions, precision of nuclear explosions parameters, determination of the explosion yield etc.

  15. Friction on Crack Surfaces During Compression of Explosives - A Possible Ignition Source for Unplanned Explosions Due to Accidental Deformations

    DTIC Science & Technology

    2008-12-01

    samples were conditioned at temperature for at least two hours before measurement. The dimensions of all samples at 0.1 MPa (atmospheric pressure...1. INTRODUCTION Explosives and propellants are often used under conditions of confinement and pressurization. Explosives are confined...lead to hazardous burning conditions (Nicolaides et al, 2000). The results presented here also indicate the possible hazards associated with crack

  16. ON THE EFFECT OF EXPLOSIVE THERMONUCLEAR BURNING ON THE ACCRETED ENVELOPES OF WHITE DWARFS IN CATACLYSMIC VARIABLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sion, Edward M.; Sparks, Warren, E-mail: edward.sion@villanova.edu, E-mail: warrensparks@comcast.net

    2014-11-20

    The detection of heavy elements at suprasolar abundances in the atmospheres of some accreting white dwarfs in cataclysmic variables (CVs), coupled with the high temperatures needed to produce these elements, requires explosive thermonuclear burning. The central temperatures of any formerly more massive secondary stars in CVs undergoing hydrostatic CNO burning are far too low to produce these elements. Evidence is presented that at least some CVs contain donor secondaries that have been contaminated by white dwarf remnant burning during the common envelope phase and are transferring this material back to the white dwarf. This scenario does not exclude the channelmore » in which formerly more massive donor stars underwent CNO processing in systems with thermal timescale mass transfer. Implications for the progenitors of CVs are discussed and a new scenario for the white dwarf's accretion-nova-outburst is given.« less

  17. Comparison of combat and non-combat burns from ongoing U.S. military operations.

    PubMed

    Kauvar, David S; Cancio, Leopoldo C; Wolf, Steven E; Wade, Charles E; Holcomb, John B

    2006-05-15

    Military burns result from either combat or non-combat causes. We compared these etiologies from patients involved in ongoing conflicts to evaluate their impact and provide prevention recommendations. All military patients with significant burns treated at the United States Army Institute of Surgical Research from April 2003 to May 2005 were reviewed. Injuries were categorized as having resulted from combat or non-combat causes. Demographics, burn severity and pattern, mortality, and early outcomes were compared. There were 273 burn patients seen with 63% injured in combat. A high early rate of non-combat injuries was noted. Feedback on non-combat burn prevention was provided to the combat theater, and the incidence of non-combat burns decreased. Mean age and time from injury to admission did not differ. The majority of combat injuries resulted from explosive device detonation. Waste burning, ammunition handling, and gasoline caused most non-combat injuries. Combat casualties had more associated and inhalation injuries and greater full-thickness burn size; total body surface area burned was equivalent. The hands and the face were the most frequently burned body areas. Mortality was 5% in combat and 2% in non-combat patients. The majority of survivors in both groups returned to military duty. The disparity in full-thickness burn size and incidence of inhalation and associated injuries resulted from differing mechanisms of injury, with explosions and penetrating trauma more common in combat wounds. Despite the severity of combat burns, mortality was low and outcomes generally good. Non-combat burns are preventable and have decreased in incidence.

  18. Nuclear technologies for explosives detection

    NASA Astrophysics Data System (ADS)

    Bell, Curtis J.

    1992-12-01

    This paper presents an exploration of several techniques for detection of Improvised Explosive Devices (IED) using interactions of specific nuclei with gammarays or fast neutrons. Techniques considered use these interactions to identify the device by measuring the densities and/or relative concentrations of the elemental constituents of explosives. These techniques are to be compared with selected other nuclear and non-nuclear methods. Combining of nuclear and non-nuclear techniques will also be briefly discussed.

  19. Determining nucleosynthesis yields in supernovae with spectral modelling

    NASA Astrophysics Data System (ADS)

    Jerkstrand, Anders

    2018-04-01

    The methodology to estimate element masses in supernova ejecta from nebular spectroscopy is discussed. Results using the SUMO spectral synthesis code are reviewed with regard to two key elements; oxygen (a hydrostatic burning ash) and nickel (an explosive burning ash). The typical oxygen mass in both Type IIP and IIb supernovae is found to be ˜0.5 M⊙, and points to progenitor stars in the 8 - 17 M⊙ range. For nickel, a new diagnostic method has been developed that shows Ni/Fe production close to solar in most cases, but sometimes larger by a factor of a few. It is shown that the larger values require the burning of silicon shell layers in the progenitor, a unique constraint on explosion theory.

  20. Nuclear Physical Uncertainties in Modeling X-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Regis, Eric; Amthor, A. Matthew

    2017-09-01

    Type I x-ray bursts occur when a neutron star accretes material from the surface of another star in a compact binary star system. For certain accretion rates and material compositions, much of the nuclear material is burned in short, explosive bursts. Using a one-dimensional stellar model, Kepler, and a comprehensive nuclear reaction rate library, ReacLib, we have simulated chains of type I x-ray bursts. Unfortunately, there are large remaining uncertainties in the nuclear reaction rates involved, since many of the isotopes reacting are unstable and have not yet been studied experimentally. Some individual reactions, when varied within their estimated uncertainty, alter the light curves dramatically. This limits our ability to understand the structure of the neutron star. Previous studies have looked at the effects of individual reaction rate uncertainties. We have applied a Monte Carlo method ``-simultaneously varying a set of reaction rates'' -in order to probe the expected uncertainty in x-ray burst behaviour due to the total uncertainty in all nuclear reaction rates. Furthermore, we aim to discover any nonlinear effects due to the coupling between different reaction rates. Early results show clear non-linear effects. This research was made possible by NSF-DUE Grant 1317446, BUScholars Program.

  1. Low Frequency Electromagnetic Pulse and Explosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweeney, J J

    2011-02-01

    This paper reviews and summarizes prior work related to low frequency (< 100 Hz) EMP (ElectroMagnetic Pulse) observed from explosions. It focuses on how EMP signals might, or might not, be useful in monitoring underground nuclear tests, based on the limits of detection, and physical understanding of these signals. In summary: (1) Both chemical and nuclear explosions produce an EMP. (2) The amplitude of the EMP from underground explosions is at least two orders of magnitude lower than from above ground explosions and higher frequency components of the signal are rapidly attenuated due to ground conductivity. (3) In general, inmore » the near field, that is distances (r) of less than 10s of kilometers from the source, the amplitude of the EMP decays approximately as 1/r{sup 3}, which practically limits EMP applications to very close (<{approx}1km) distances. (4) One computational model suggests that the EMP from a decoupled nuclear explosion may be enhanced over the fully coupled case. This has not been validated with laboratory or field data. (5) The magnitude of the EMP from an underground nuclear explosion is about two orders of magnitude larger than that from a chemical explosion, and has a larger component of higher frequencies. In principle these differences might be used to discriminate a nuclear from a chemical explosion using sensors at very close (<{approx}1 km) distances. (6) Arming and firing systems (e.g. detonators, exploding bridge wires) can also produce an EMP from any type of explosion. (7) To develop the understanding needed to apply low frequency EMP to nuclear explosion monitoring, it is recommended to carry out a series of controlled underground chemical explosions with a variety of sizes, emplacements (e.g. fully coupled and decoupled), and arming and firing systems.« less

  2. Apparatus and method for rapid detection of explosives residue from the deflagration signature thereof

    DOEpatents

    Funsten, H.O.; McComas, D.J.

    1999-06-15

    Apparatus and method are disclosed for rapid detection of explosives residue from the deflagration signature thereof. A property inherent to most explosives is their stickiness, resulting in a strong tendency of explosive particulate to contaminate the environment of a bulk explosive. An apparatus for collection of residue particulate, burning the collected particulate, and measurement of the ultraviolet emission produced thereby, is described. The present invention can be utilized for real-time screening of personnel, cars, packages, suspected devices, etc., and provides an inexpensive, portable, and noninvasive means for detecting explosives. 4 figs.

  3. Prediction of ground motion and dynamic stress change in Baekdusan (Changbaishan) volcano caused by a North Korean nuclear explosion.

    PubMed

    Hong, Tae-Kyung; Choi, Eunseo; Park, Seongjun; Shin, Jin Soo

    2016-02-17

    Strong ground motions induce large dynamic stress changes that may disturb the magma chamber of a volcano, thus accelerating the volcanic activity. An underground nuclear explosion test near an active volcano constitutes a direct treat to the volcano. This study examined the dynamic stress changes of the magma chamber of Baekdusan (Changbaishan) that can be induced by hypothetical North Korean nuclear explosions. Seismic waveforms for hypothetical underground nuclear explosions at North Korean test site were calculated by using an empirical Green's function approach based on a source-spectral model of a nuclear explosion; such a technique is efficient for regions containing poorly constrained velocity structures. The peak ground motions around the volcano were estimated from empirical strong-motion attenuation curves. A hypothetical M7.0 North Korean underground nuclear explosion may produce peak ground accelerations of 0.1684 m/s(2) in the horizontal direction and 0.0917 m/s(2) in the vertical direction around the volcano, inducing peak dynamic stress change of 67 kPa on the volcano surface and ~120 kPa in the spherical magma chamber. North Korean underground nuclear explosions with magnitudes of 5.0-7.6 may induce overpressure in the magma chamber of several tens to hundreds of kilopascals.

  4. Co-production of Nitrogen-15 and Oxygen-18 in Explosive Helium Burning and Implications for Supernova Graphite Grains

    NASA Astrophysics Data System (ADS)

    Bojazi, Michael

    My Masters research involves simulations of a supernova whereby a shock wave of constant Mach number is sent through a 15-solar-mass star evolved to the point of core-collapse. The resulting nucleosynthesis is examined with the intent of explaining the overproduction, relative to solar values, of nitrogen-15 and oxygen-18 abundances in supernova presolar graphite grains, as experimentally determined by Groopman et al. via a NanoSIMS analysis. We find such overabundances to be present in the helium-rich zone. Oxygen-18 is leftover from presupernova helium burning while nitrogen-15 is produced by explosive helium burning. Interestingly, anomalous excesses in molybdenum-95 and molybdenum-97 abundances in SiC X grains, discovered by Pellin et al. using the CHARISMA instrument, probably arise from explosive helium burning as well. These results signal the importance of the helium-rich zone for supernova presolar grain growth. We suggest that matter deep from the supernova, which is rich in iron-peak elements, gets injected into the helium-rich zone. Small TiC grains form in this material. These subgrains then traverse the helium-rich zone and serve as seeds for the growth of the graphite or SiC X grains.

  5. Underground Nuclear Explosions and Release of Radioactive Noble Gases

    NASA Astrophysics Data System (ADS)

    Dubasov, Yuri V.

    2010-05-01

    Over a period in 1961-1990 496 underground nuclear tests and explosions of different purpose and in different rocks were conducted in the Soviet Union at Semipalatinsk and anovaya Zemlya Test Sites. A total of 340 underground nuclear tests were conducted at the Semipalatinsk Test Site. One hundred seventy-nine explosions (52.6%) among them were classified as these of complete containment, 145 explosions (42.6%) as explosions with weak release of radioactive noble gases (RNG), 12 explosions (3.5%) as explosions with nonstandard radiation situation, and four excavation explosions with ground ejection (1.1%). Thirty-nine nuclear tests had been conducted at the Novaya Zemlya Test Site; six of them - in shafts. In 14 tests (36%) there were no RNG release. Twenty-three tests have been accompanied by RNG release into the atmosphere without sedimental contamination. Nonstandard radiation situation occurred in two tests. In incomplete containment explosions both early-time RNG release (up to ~1 h) and late-time release from 1 to 28 h after the explosion were observed. Sometimes gas release took place for several days, and it occurred either through tunnel portal or epicentral zone, depending on atmospheric air temperature.

  6. The Last Minutes of Oxygen Shell Burning in a Massive Star

    NASA Astrophysics Data System (ADS)

    Müller, Bernhard; Viallet, Maxime; Heger, Alexander; Janka, Hans-Thomas

    2016-12-01

    We present the first 4π-three-dimensional (3D) simulation of the last minutes of oxygen shell burning in an 18 M ⊙ supernova progenitor up to the onset of core collapse. A moving inner boundary is used to accurately model the contraction of the silicon and iron core according to a one-dimensional stellar evolution model with a self-consistent treatment of core deleptonization and nuclear quasi-equilibrium. The simulation covers the full solid angle to allow the emergence of large-scale convective modes. Due to core contraction and the concomitant acceleration of nuclear burning, the convective Mach number increases to ˜0.1 at collapse, and an ℓ = 2 mode emerges shortly before the end of the simulation. Aside from a growth of the oxygen shell from 0.51 M ⊙ to 0.56 M ⊙ due to entrainment from the carbon shell, the convective flow is reasonably well described by mixing-length theory, and the dominant scales are compatible with estimates from linear stability analysis. We deduce that artificial changes in the physics, such as accelerated core contraction, can have precarious consequences for the state of convection at collapse. We argue that scaling laws for the convective velocities and eddy sizes furnish good estimates for the state of shell convection at collapse and develop a simple analytic theory for the impact of convective seed perturbations on shock revival in the ensuing supernova. We predict a reduction of the critical luminosity for explosion by 12%-24% due to seed asphericities for our 3D progenitor model relative to the case without large seed perturbations.

  7. Underground Nuclear Explosions at Azgir, Kazakhstan, and Implications for Identifying Decoupled Nuclear Testing in Salt

    DTIC Science & Technology

    1993-06-28

    nuclear explosions in the national economy of the USSR, UCRL - Trans-10477, (Translation from Russian), Lawrence Radiation Laboratory, University of...applications of underground nuclear explosions in the national economy of the USSR, UCRL -Trans-10477, 47 pp., Lawrence Radiation Laboratory, University of...of Southern California 3701 North Fairfax Drive University Park Arlington, VA 22203-1714 Los Angeles, CA 90089-0741 Prof. Shelton Alexander Dr

  8. Nuclear cycler: An incremental approach to the deflection of asteroids

    NASA Astrophysics Data System (ADS)

    Vasile, Massimiliano; Thiry, Nicolas

    2016-04-01

    This paper introduces a novel deflection approach based on nuclear explosions: the nuclear cycler. The idea is to combine the effectiveness of nuclear explosions with the controllability and redundancy offered by slow push methods within an incremental deflection strategy. The paper will present an extended model for single nuclear stand-off explosions in the proximity of elongated ellipsoidal asteroids, and a family of natural formation orbits that allows the spacecraft to deploy multiple bombs while being shielded by the asteroid during the detonation.

  9. High-Temperature Nucleosynthesis Processes on the Proton-Rich Side of Stability: the Alpha-Rich Freezeout and the rp^2-Process

    NASA Astrophysics Data System (ADS)

    Meyer, Bradley S.

    2001-10-01

    Nucleosynthesis on the proton-rich side of stability has at least two intriguing aspects. First, the most abundant of the stable iron-group isotopes, such as ^48Ti, ^52Cr, and ^56,57Fe, are synthesized as proton-rich, radioactive parents in alpha-rich freezeouts from equilibrium. The production of these radioactive progenitors depends in large measure on reactions on the proton-rich side of stability. The second intriguing aspect is that explosive nucleosynthesis in a hydrogen-rich environment (namely, the rp-process) may be associated with exotic astrophysical settings, such as x-ray bursts, and may be responsible for production of some of the light p-process nuclei (for example, ^92,94Mo and ^96,98Ru). We have developed web-based tools to help nuclear physicists determine which nuclear reactions on the proton-rich side of stability govern the nucleosynthesis in these processes. For the alpha-rich freezeout, one may determine the effect of any one of 2,140 reactions on the yield of any isotope in the nuclear reaction network with the web calculator. As a relevant example, I will discuss the governing role of ^57Ni (n,p)^57Co in the synthesis of the important astronomical observable ^57Co. As for explosive, proton-rich burning, I will discuss the synthesis of p-process nuclei in the repetitive rp-process (the rp^2-process). Movies of the rp^2-process illustrate its important features and give some indications of the important nuclear reactions.

  10. Merging Infrasound and Electromagnetic Signals as a Means for Nuclear Explosion Detection

    NASA Astrophysics Data System (ADS)

    Ashkenazy, Joseph; Lipshtat, Azi; Kesar, Amit S.; Pistinner, Shlomo; Ben Horin, Yochai

    2016-04-01

    The infrasound monitoring network of the CTBT consists of 60 stations. These stations are capable of detecting atmospheric events, and may provide approximate location within time scale of a few hours. However, the nature of these events cannot be deduced from the infrasound signal. More than two decades ago it was proposed to use the electromagnetic pulse (EMP) as a means of discriminating nuclear explosion from other atmospheric events. An EMP is a unique signature of nuclear explosion and is not detected from chemical ones. Nevertheless, it was decided to exclude the EMP technology from the official CTBT verification regime, mainly because of the risk of high false alarm rate, due to lightning electromagnetic pulses [1]. Here we present a method of integrating the information retrieved from the infrasound system with the EMP signal which enables us to discriminate between lightning discharges and nuclear explosions. Furthermore, we show how spectral and other characteristics of the electromagnetic signal emitted from a nuclear explosion are distinguished from those of lightning discharge. We estimate the false alarm probability of detecting a lightning discharge from a given area of the infrasound event, and identifying it as a signature of a nuclear explosion. We show that this probability is very low and conclude that the combination of infrasound monitoring and EMP spectral analysis may produce a reliable method for identifying nuclear explosions. [1] R. Johnson, Unfinished Business: The Negotiation of the CTBT and the End of Nuclear Testing, United Nations Institute for Disarmament Research, 2009.

  11. Prediction of ground motion and dynamic stress change in Baekdusan (Changbaishan) volcano caused by a North Korean nuclear explosion

    PubMed Central

    Hong, Tae-Kyung; Choi, Eunseo; Park, Seongjun; Shin, Jin Soo

    2016-01-01

    Strong ground motions induce large dynamic stress changes that may disturb the magma chamber of a volcano, thus accelerating the volcanic activity. An underground nuclear explosion test near an active volcano constitutes a direct treat to the volcano. This study examined the dynamic stress changes of the magma chamber of Baekdusan (Changbaishan) that can be induced by hypothetical North Korean nuclear explosions. Seismic waveforms for hypothetical underground nuclear explosions at North Korean test site were calculated by using an empirical Green’s function approach based on a source-spectral model of a nuclear explosion; such a technique is efficient for regions containing poorly constrained velocity structures. The peak ground motions around the volcano were estimated from empirical strong-motion attenuation curves. A hypothetical M7.0 North Korean underground nuclear explosion may produce peak ground accelerations of 0.1684 m/s2 in the horizontal direction and 0.0917 m/s2 in the vertical direction around the volcano, inducing peak dynamic stress change of 67 kPa on the volcano surface and ~120 kPa in the spherical magma chamber. North Korean underground nuclear explosions with magnitudes of 5.0–7.6 may induce overpressure in the magma chamber of several tens to hundreds of kilopascals. PMID:26884136

  12. Explosion in boiler closes Arkansas utility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-08-23

    A major boiler explosion Aug. 11 that seriously injured one worker at the Independence Unit 2 coal-fired powerplant in Newark, Ark., caused extensive damage that will keep the plant closed for several months. The plant is owned by Arkansas Power Light Co., Little Rock. Officials are still trying to determine cause and are assessing damage, though they expect the boiler can be repaired. Etienne Senac, plant manager, says the explosion [open quotes]puffed out[close quotes] but did not rupture the 271-ft-tall boiler and also buckled several buck stays, which hold the boiler to a steel superstructure. The accident took place atmore » 8:30 a.m. as the 842-Mw unit was operating close to full capacity. Senac says the concussion knocked down workers standing 50 ft from the boiler. The explosion pushed ash and molten material out of the bottom of the unit, causing a small fire. One contract worker was seriously burned and hospitalized. Four AP L workers received minor burns.« less

  13. Successful management of esophageal perforation diagnosed 3 days after injury caused by an explosion in the workplace: report of a case.

    PubMed

    Sawada, Shigeaki; Kusama, Akio; Shimakage, Naohiro; Tanabe, Tadashi; Okamura, Takanao; Uchida, Katsuyuki; Tsukada, Kazuhiro; Tajima, Kenzo

    2006-01-01

    We report a case of esophageal perforation caused by an explosion, but which was not diagnosed until 3 days after the injury. A 53-year-old worker sustained superficial dermal burns to his trachea, face, neck, and legs during an explosion. The burns were treated conservatively at a local hospital, but he was transferred to our hospital 3 days after the injury, when mediastinal emphysema and bilateral pleural effusion became evident. An esophagogram followed by computed tomography showed an esophageal perforation caused by the blast injury, and we performed an esophagectomy with recontruction of the gastric tube. After the operation, an X-ray showed a foreign body in the lower abdomen, which we found in the upper thoracic esophagus on the day of injury. We surmised that the patient had inadvertently swallowed a foreign body, which had been heated and scattered by the explosion, and it had melted the upper thoracic esophagus.

  14. Evaluation of XHVRB for Capturing Explosive Shock Desensitization

    NASA Astrophysics Data System (ADS)

    Tuttle, Leah; Schmitt, Robert; Kittell, Dave; Harstad, Eric

    2017-06-01

    Explosive shock desensitization phenomena have been recognized for some time. It has been demonstrated that pressure-based reactive flow models do not adequately capture the basic nature of the explosive behavior. Historically, replacing the local pressure with a shock captured pressure has dramatically improved the numerical modeling approaches. Models based upon shock pressure or functions of entropy have recently been developed. A pseudo-entropy based formulation using the History Variable Reactive Burn model, as proposed by Starkenberg, was implemented into the Eulerian shock physics code CTH. Improvements in the shock capturing algorithm were made. The model is demonstrated to reproduce single shock behavior consistent with published pop plot data. It is also demonstrated to capture a desensitization effect based on available literature data, and to qualitatively capture dead zones from desensitization in 2D corner turning experiments. This models shows promise for use in modeling and simulation problems that are relevant to the desensitization phenomena. Issues are identified with the current implementation and future work is proposed for improving and expanding model capabilities. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  15. Nuclear explosions and distant earthquakes: A search for correlations

    USGS Publications Warehouse

    Healy, J.H.; Marshall, P.A.

    1970-01-01

    An apparent correlation between nuclear explosions and earthquakes has been reported for the events between September 1961 and September 1966. When data from the events between September 1966 and December 1968 are examined, this correlation disappears. No relationship between the size of the nuclear explosions and the number of distant earthquakes is apparent in the data.

  16. The Soviet Program for Peaceful Uses of Nuclear Explosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nordyke, M.D.

    2000-07-26

    During a period of some 23 years between 1965 and 1988, the Soviet Union's ''Program for the Utilization of Nuclear Explosions in the National Economy'' carried out 122 nuclear explosions to study and put into industrial use some 13 applications. In all, 128 explosives with yields ranging from 0.01 to 140 kt were used, with the vast majority being between 2 and 20 kt. Most peaceful applications of nuclear explosions in the Soviet PNE Program were explored in depth with a number of tests, but unfortunately little has been reported on the technical results other than general outcomes. Two applications,more » deep seismic sounding of the Earth's crust and upper mantle and the creation of underground cavities in salt for the storage of gas condensate, found widespread use, representing over 50% of all the explosions. Explosions to explore the technical possibilities of stimulating the production of oil and gas reservoirs accounted for an additional 17%.« less

  17. Plowshare Program - American Atomic Bomb Tests For Industrial Applications

    ScienceCinema

    None

    2018-01-16

    The United States Atomic Energy Commission (AEC) established the Plowshare Program as a research and development activity to explore the technical and economic feasibility of using nuclear explosives for industrial applications. The reasoning was that the relatively inexpensive energy available from nuclear explosions could prove useful for a wide variety of peaceful purposes. The Plowshare Program began in 1958 and continued through 1975. Between December 1961 and May 1973, the United States conducted 27 Plowshare nuclear explosive tests comprising 35 individual detonations. Conceptually, industrial applications resulting from the use of nuclear explosives could be divided into two broad categories: 1) large-scale excavation and quarrying, where the energy from the explosion was used to break up and/or move rock; and 2) underground engineering, where the energy released from deeply buried nuclear explosives increased the permeability and porosity of the rock by massive breaking and fracturing. Possible excavation applications included: canals, harbors, highway and railroad cuts through mountains, open pit mining, construction of dams, and other quarry and construction-related projects. Underground nuclear explosion applications included: stimulation of natural gas production, preparation of leachable ore bodies for in situ leaching, creation of underground zones of fractured oil shale for in situ retorting, and formation of underground natural gas and petroleum storage reservoirs.

  18. Plowshare Program - American Atomic Bomb Tests For Industrial Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2012-04-22

    The United States Atomic Energy Commission (AEC) established the Plowshare Program as a research and development activity to explore the technical and economic feasibility of using nuclear explosives for industrial applications. The reasoning was that the relatively inexpensive energy available from nuclear explosions could prove useful for a wide variety of peaceful purposes. The Plowshare Program began in 1958 and continued through 1975. Between December 1961 and May 1973, the United States conducted 27 Plowshare nuclear explosive tests comprising 35 individual detonations. Conceptually, industrial applications resulting from the use of nuclear explosives could be divided into two broad categories: 1)more » large-scale excavation and quarrying, where the energy from the explosion was used to break up and/or move rock; and 2) underground engineering, where the energy released from deeply buried nuclear explosives increased the permeability and porosity of the rock by massive breaking and fracturing. Possible excavation applications included: canals, harbors, highway and railroad cuts through mountains, open pit mining, construction of dams, and other quarry and construction-related projects. Underground nuclear explosion applications included: stimulation of natural gas production, preparation of leachable ore bodies for in situ leaching, creation of underground zones of fractured oil shale for in situ retorting, and formation of underground natural gas and petroleum storage reservoirs.« less

  19. Testing of Flame Screens and Flame Arresters as Devices Designed to Prevent the Passage of Flame (DPPF) into Tanks Containing Flammable Atmospheres According to an IMO Standard

    DTIC Science & Technology

    1989-10-01

    flashback tests FM does not speci- fy the type of enclosure to contain the explosive fuel/air mix -ture. 3.4 INTERNATIONAL CONVENTION FOR THE SAFETY OF...2) Continuous burn tests: ... "Same mix - ture and concentration as for explosion tests; flow rate of the gasoline vapor-air mixture is specified as a...gas temperature of the flammable hexane/air mix - ture on the tank side was used as the representative endu ance burn test temperature for the following

  20. CONDITIONS FOR SUCCESSFUL HELIUM DETONATIONS IN ASTROPHYSICAL ENVIRONMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holcomb, Cole; Guillochon, James; De Colle, Fabio

    2013-07-01

    Several models for Type Ia-like supernova events rely on the production of a self-sustained detonation powered by nuclear reactions. In the absence of hydrogen, the fuel that powers these detonations typically consists of either pure helium (He) or a mixture of carbon and oxygen (C/O). Studies that systematically determine the conditions required to initiate detonations in C/O material exist, but until now no analogous investigation of He matter has been conducted. We perform one-dimensional reactive hydrodynamical simulations at a variety of initial density and temperature combinations and find critical length scales for the initiation of He detonations that range betweenmore » 1 and 10{sup 10} cm. A simple estimate of the length scales over which the total consumption of fuel will occur for steady-state detonations is provided by the Chapman-Jouguet (CJ) formalism. Our initiation lengths are consistently smaller than the corresponding CJ length scales by a factor of {approx}100, providing opportunities for thermonuclear explosions in a wider range of low-mass white dwarfs (WDs) than previously thought possible. We find that virialized WDs with as little mass as 0.24 M{sub Sun} can be detonated, and that even less massive WDs can be detonated if a sizable fraction of their mass is raised to a higher adiabat. That the initiation length is exceeded by the CJ length implies that certain systems may not reach nuclear statistical equilibrium within the time it takes a detonation to traverse the object. In support of this hypothesis, we demonstrate that incomplete burning will occur in the majority of He WD detonations and that {sup 40}Ca, {sup 44}Ti, or {sup 48}Cr, rather than {sup 56}Ni, is the predominant burning product for many of these events. We anticipate that a measure of the quantity of the intermediate-mass elements and {sup 56}Ni produced in a helium-rich thermonuclear explosion can potentially be used to constrain the nature of the progenitor system.« less

  1. Towards an Empirically Based Parametric Explosion Spectral Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ford, S R; Walter, W R; Ruppert, S

    2009-08-31

    Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never before been tested. The focus of our work is on the local and regional distances (< 2000 km) and phases (Pn, Pg, Sn, Lg) necessary to see small explosions. We are developing a parametric model of the nuclear explosion seismic source spectrum that is compatible with the earthquake-based geometrical spreading and attenuation models developed using the Magnitude Distance Amplitude Correction (MDAC) techniques (Walter and Taylor, 2002). The explosion parametric model will be particularly important in regions without any priormore » explosion data for calibration. The model is being developed using the available body of seismic data at local and regional distances for past nuclear explosions at foreign and domestic test sites. Parametric modeling is a simple and practical approach for widespread monitoring applications, prior to the capability to carry out fully deterministic modeling. The achievable goal of our parametric model development is to be able to predict observed local and regional distance seismic amplitudes for event identification and yield determination in regions with incomplete or no prior history of underground nuclear testing. The relationship between the parametric equations and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source.« less

  2. Yield Determination of Underground and Near Surface Explosions

    NASA Astrophysics Data System (ADS)

    Pasyanos, M.

    2015-12-01

    As seismic coverage of the earth's surface continues to improve, we are faced with signals from a wide variety of explosions from various sources ranging from oil train and ordnance explosions to military and terrorist attacks, as well as underground nuclear tests. We present on a method for determining the yield of underground and near surface explosions, which should be applicable for many of these. We first review the regional envelope method that was developed for underground explosions (Pasyanos et al., 2012) and more recently modified for near surface explosions (Pasyanos and Ford, 2015). The technique models the waveform envelope templates as a product of source, propagation (geometrical spreading and attenuation), and site terms, while near surface explosions include an additional surface effect. Yields and depths are determined by comparing the observed envelopes to the templates and minimizing the misfit. We then apply the method to nuclear and chemical explosions for a range of yields, depths, and distances. We will review some results from previous work, and show new examples from ordnance explosions in Scandinavia, nuclear explosions in Eurasia, and chemical explosions in Nevada associated with the Source Physics Experiments (SPE).

  3. Los Alamos Explosives Performance Key to Stockpile Stewardship

    ScienceCinema

    Dattelbaum, Dana

    2018-02-14

    As the U.S. Nuclear Deterrent ages, one essential factor in making sure that the weapons will continue to perform as designed is understanding the fundamental properties of the high explosives that are part of a nuclear weapons system. As nuclear weapons go through life extension programs, some changes may be advantageous, particularly through the addition of what are known as "insensitive" high explosives that are much less likely to accidentally detonate than the already very safe "conventional" high explosives that are used in most weapons. At Los Alamos National Laboratory explosives research includes a wide variety of both large- and small-scale experiments that include small contained detonations, gas and powder gun firings, larger outdoor detonations, large-scale hydrodynamic tests, and at the Nevada Nuclear Security Site, underground sub-critical experiments.

  4. Nuclear Masses in the A=80 Region of Nuclei

    NASA Astrophysics Data System (ADS)

    Cuka, N.; Gadala-Maria, A.; Aprahamian, A.

    1996-05-01

    Nucleosynthesis in explosive hydrogen burning at high temperatures above 8x10^8 K is characterized by the rp-process. A recent study^1 of the reaction flow and their associated time scales showed that the reaction path may in fact proceed well beyond the A=80 region of nuclei. An accurate simulation of the nucleosynthesis and energy generation of this process strongly depends on reliable nuclear physics input parameters such as masses, lifetimes, and reaction rates. We have extended the use of the simple P-parametrization^2,3 that had been applied to the characterization of the structure contributions to the nuclear masses in the actinides to include the A=80 region. The results will be presented along with predictions of masses for presently unknown masses of nuclei along the rp-process path. ^1 R. Wallace and S. Woosley, Ap. J. Suppl. 45, 389 (81). ^2 R. F. Casten, D.S. Brenner and P.E. Haustein, Phys. Rev. Lett. 58, 658 (87). ^3 P. Haustein, D.S. Brenner and R.F. Casten, Phys. Rev. C 38, 467 (88).

  5. Stellar MHD and Nuclear Physics Coupled Together Solve the Puzzle of Oxide Grain Composition

    NASA Astrophysics Data System (ADS)

    Palmerini, Sara; Trippella, Oscar; Busso, Maurizio; La Cognata, Marco; Petrelli, Maurizio; Zucchini, Azzurra

    Oxide grains, enclosed in meteorites, give us very precise information about the stars in which they formed. Grains belonging to group 1 and 2 are characterized by values of 17O/16O and 18O/16O inconsistent with explosive nucleosynthesis scenarios, and are then believed to form in low mass stars. Nowadays, models of non convective mixing coupled with nuclear burning succeed in reproducing the oxygen isotopic mix found in these ancient solids thanks to the more accurate nuclear physics inputs employed in calculations. However, a large part of oxide grains shows values of the 26Al/27Al isotopic ratio too high to be accounted for by the mixing models mentioned above. Recently, [1] demonstrated that the stellar magnetic field might promote the transport of material across the stellar radiative layers. We apply this magnetic mixing model to a 1.2M ⊙ AGB star of solar metallicity. It turns out that the oxygen and aluminum isotopic ratios shown by group 1 and 2 grains are perfectly reproduced.

  6. Deterrence Requirements and Arms Control Responsibilities: The United State’s Obligation to Ratify the Comprehensive Nuclear Test Ban Treaty

    DTIC Science & Technology

    2010-02-17

    systems to detect a nuclear explosion; seismic, hydroacoustic, infrasound , and radionuclide. These stations are able to detect a nuclear explosion as...These sites detect thousands of seismic events a year, mainly from earthquakes and mining explosions, and have proved effective in detecting past...that detect sound waves in the oceans, and the 60 infrasound stations above ground that detect ultra-low frequency sound waves emitted by nuclear

  7. Burns and military clothing.

    PubMed

    McLean, A D

    2001-02-01

    Burn injury is a ubiquitous threat in the military environment. The risks during combat are well recognised, but the handling of fuel, oil, munitions and other hot or flammable materials during peacetime deployment and training also imposes an inherent risk of accidental burn injury. Over the last hundred years, the burn threat in combat has ranged from nuclear weapons to small shoulder-launched missiles. Materials such as napalm and white phosphorus plainly present a risk of burn, but the threat extends to encompass personnel in vehicles attacked by anti-armour weapons, large missiles, fuel-air explosives and detonations/conflagrations on weapons platforms such as ships. Large numbers of burn casualties were caused at Pearl Harbor, in Hiroshima and Nagasaki, Vietnam, during the Arab/Israeli Wars and in the Falkland Islands conflict. The threat from burns is unlikely to diminish, indeed new developments in weapons seek to exploit the vulnerability of the serviceman and servicewoman to burns. Clothing can be a barrier to some types of burn--both inherently in the properties of the material, but also by trapping air between clothing layers. Conversely, ignition of the clothing may exacerbate a burn. There is hearsay that burnt clothing products within a wound may complicate the clinical management, or that materials that melt (thermoplastic materials) should not be worn if there is a burn threat. This paper explores the incidence of burn injury, the mechanisms of heat transfer to bare skin and skin covered by materials, and the published evidence for the complication of wound management by materials. Even light-weight combat clothing can offer significant protection to skin from short duration flash burns; the most vulnerable areas are the parts of the body not covered--face and hands. Multilayered combat clothing can offer significant protection for short periods from engulfment by flames; lightweight tropical wear with few layers offers little protection. Under high heat loads in the laboratory, combat clothing can ignite, but there is little evidence that clothing ignition is a common occurrence in military burn casualties. Thermoplastic materials have many benefits in civil and military clothing. There is little objective evidence that they exacerbate burns, or complicate burn management. Their use in military clothing must be based on objective evidence, not hearsay.

  8. Supernova simulations from a 3D progenitor model - Impact of perturbations and evolution of explosion properties

    NASA Astrophysics Data System (ADS)

    Müller, Bernhard; Melson, Tobias; Heger, Alexander; Janka, Hans-Thomas

    2017-11-01

    We study the impact of large-scale perturbations from convective shell burning on the core-collapse supernova explosion mechanism using 3D multigroup neutrino hydrodynamics simulations of an 18M⊙ progenitor. Seed asphericities in the O shell, obtained from a recent 3D model of O shell burning, help trigger a neutrino-driven explosion 330 ms after bounce whereas the shock is not revived in a model based on a spherically symmetric progenitor for at least another 300 ms. We tentatively infer a reduction of the critical luminosity for shock revival by ˜ 20 {per cent} due to pre-collapse perturbations. This indicates that convective seed perturbations play an important role in the explosion mechanism in some progenitors. We follow the evolution of the 18M⊙ model into the explosion phase for more than 2 s and find that the cycle of accretion and mass ejection is still ongoing at this stage. With a preliminary value of 7.7 × 1050 erg for the diagnostic explosion energy, a baryonic neutron star mass of 1.85M⊙, a neutron star kick of ˜ 600 km s^{-1} and a neutron star spin period of ˜ 20 ms at the end of the simulation, the explosion and remnant properties are slightly atypical, but still lie comfortably within the observed distribution. Although more refined simulations and a larger survey of progenitors are still called for, this suggests that a solution to the problem of shock revival and explosion energies in the ballpark of observations is within reach for neutrino-driven explosions in 3D.

  9. On silicon group elements ejected by supernovae type IA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De, Soma; Timmes, F. X.; Brown, Edward F.

    2014-06-01

    There is evidence that the peak brightness of a Type Ia supernova is affected by the electron fraction Y {sub e} at the time of the explosion. The electron fraction is set by the aboriginal composition of the white dwarf and the reactions that occur during the pre-explosive convective burning. To date, determining the makeup of the white dwarf progenitor has relied on indirect proxies, such as the average metallicity of the host stellar population. In this paper, we present analytical calculations supporting the idea that the electron fraction of the progenitor systematically influences the nucleosynthesis of silicon group ejectamore » in Type Ia supernovae. In particular, we suggest the abundances generated in quasi-nuclear statistical equilibrium are preserved during the subsequent freeze-out. This allows potential recovery of Y {sub e} at explosion from the abundances recovered from an observed spectra. We show that measurement of {sup 28}Si, {sup 32}S, {sup 40}Ca, and {sup 54}Fe abundances can be used to construct Y {sub e} in the silicon-rich regions of the supernovae. If these four abundances are determined exactly, they are sufficient to recover Y {sub e} to 6%. This is because these isotopes dominate the composition of silicon-rich material and iron-rich material in quasi-nuclear statistical equilibrium. Analytical analysis shows the {sup 28}Si abundance is insensitive to Y {sub e}, the {sup 32}S abundance has a nearly linear trend with Y {sub e}, and the {sup 40}Ca abundance has a nearly quadratic trend with Y {sub e}. We verify these trends with post-processing of one-dimensional models and show that these trends are reflected in the model's synthetic spectra.« less

  10. Effects of Nuclear Weapons.

    ERIC Educational Resources Information Center

    Sartori, Leo

    1983-01-01

    Fundamental principles governing nuclear explosions and their effects are discussed, including three components of a nuclear explosion (thermal radiation, shock wave, nuclear radiation). Describes how effects of these components depend on the weapon's yield, its height of burst, and distance of detonation point. Includes effects of three…

  11. Nebular Phase Observations of the Type Ia Supernova 2014J in the Near Infrared

    NASA Astrophysics Data System (ADS)

    Diamond, Tiara

    2018-01-01

    Late-time spectra of SNe Ia show numerous strong emission features of iron and cobalt throughout the near infrared region. As the spectrum ages, the cobalt features fade as is expected from the decay of 56Co to 56Fe. The strong 1.6440 μm [Fe II] feature is sensitive to the central density of the white dwarf just prior to the runaway because of electron capture in the early stages of burning, hence the line profile width and evolution can be used to probe possible progenitor scenarios. The line profile is dependent on the extent of mixing during any deflagration burning in addition to asymmetries in the distribution of burning products or an off-center ignition. We present observations of SN 2014J from 300–500 days post-explosion. The data are consistent with spherical models of a MCh explosion with a deflagration-to-detonation transition, central density of 0.7×109 g/cm3, and limited mixing. An asymmetry in the line profile of the last spectrum could indicate an off-center ignition or burning products that are not centered on the kinetic center of the explosion. These and other late-time spectroscopic observations in the infrared of a significant sample of SNe Ia will provide insight into the natural variety of these objects, improving our understanding of the underlying physical processes and their usability in cosmology.

  12. Hospital bioterrorism planning and burn surge.

    PubMed

    Kearns, Randy D; Myers, Brent; Cairns, Charles B; Rich, Preston B; Hultman, C Scott; Charles, Anthony G; Jones, Samuel W; Schmits, Grace L; Skarote, Mary Beth; Holmes, James H; Cairns, Bruce A

    2014-01-01

    On the morning of June 9, 2009, an explosion occurred at a manufacturing plant in Garner, North Carolina. By the end of the day, 68 injured patients had been evaluated at the 3 Level I trauma centers and 3 community hospitals in the Raleigh/Durham metro area (3 people who were buried in the structural collapse died at the scene). Approximately 300 employees were present at the time of the explosion, when natural gas being vented during the repair of a hot water heater ignited. The concussion from the explosion led to structural failure in multiple locations and breached additional natural gas, electrical, and ammonia lines that ran overhead in the 1-story concrete industrial plant. Intent is the major difference between this type of accident and a terrorist using an incendiary device to terrorize a targeted population. But while this disaster lacked intent, the response, rescue, and outcomes were improved as a result of bioterrorism preparedness. This article discusses how bioterrorism hospital preparedness planning, with an all-hazards approach, became the basis for coordinated burn surge disaster preparedness. This real-world disaster challenged a variety of systems, hospitals, and healthcare providers to work efficiently and effectively to manage multiple survivors. Burn-injured patients served as a focus for this work. We describe the response, rescue, and resuscitation provided by first responders and first receivers as well as efforts made to develop burn care capabilities and surge capacity.

  13. Hospital Bioterrorism Planning and Burn Surge

    PubMed Central

    Myers, Brent; Cairns, Charles B.; Rich, Preston B.; Hultman, C. Scott; Charles, Anthony G.; Jones, Samuel W.; Schmits, Grace L.; Skarote, Mary Beth; Holmes, James H.; Cairns, Bruce A.

    2014-01-01

    On the morning of June 9, 2009, an explosion occurred at a manufacturing plant in Garner, North Carolina. By the end of the day, 68 injured patients had been evaluated at the 3 Level I trauma centers and 3 community hospitals in the Raleigh/Durham metro area (3 people who were buried in the structural collapse died at the scene). Approximately 300 employees were present at the time of the explosion, when natural gas being vented during the repair of a hot water heater ignited. The concussion from the explosion led to structural failure in multiple locations and breached additional natural gas, electrical, and ammonia lines that ran overhead in the 1-story concrete industrial plant. Intent is the major difference between this type of accident and a terrorist using an incendiary device to terrorize a targeted population. But while this disaster lacked intent, the response, rescue, and outcomes were improved as a result of bioterrorism preparedness. This article discusses how bioterrorism hospital preparedness planning, with an all-hazards approach, became the basis for coordinated burn surge disaster preparedness. This real-world disaster challenged a variety of systems, hospitals, and healthcare providers to work efficiently and effectively to manage multiple survivors. Burn-injured patients served as a focus for this work. We describe the response, rescue, and resuscitation provided by first responders and first receivers as well as efforts made to develop burn care capabilities and surge capacity. PMID:24527874

  14. Core-collapse supernova simulations

    NASA Astrophysics Data System (ADS)

    Mueller, Bernhard

    2017-01-01

    Core-collapse supernovae, the deaths of massive stars, are among the most spectacular phenomena in astrophysics: Not only can supernovae outshine their host galaxy for weeks; they are also laboratories for the behavior of matter at supranuclear densities, and one of the few environments where collective neutrino effects can become important. Moreover, supernovae play a central role in the cosmic matter cycle, e.g., as the dominant producers of oxygen in the Universe. Yet the mechanism by which massive stars explode has eluded us for decades, partly because classical astronomical observations across the electromagnetic spectrum cannot directly probe the supernovae ``engine''. Numerical simulations are thus our primary tool for understanding the explosion mechanism(s) of massive stars. Rigorous modeling needs to take a host of important physical ingredients into account, such as the emission and partial reabsorption of neutrinos from the young proto-neutron star, multi-dimensional fluid motions, general relativistic gravity, the equation of state of nuclear matter, and magnetic fields. This is a challenging multi-physics problem that has not been fully solved yet. Nonetheless, as I shall argue in this talk, recent first-principle 3D simulations have gone a long way towards demonstrating the viability of the most popular explosion scenario, the ``neutrino-driven mechanism''. Focusing on successful explosion models of the MPA-QUB-Monash collaboration, I will discuss possible requirements for robust explosions across a wide range of progenitors, such as accurate neutrino opacities, stellar rotation, and seed asymmetries from convective shell burning. With the advent of successful explosion models, supernova theory can also be confronted with astronomical observations. I will show that recent 3D models come closer to matching observed explosion parameters (explosion energies, neutron star kicks) than older 2D models, although there are still discrepancies. This work has been supported by the ARC (grant DE150101145), NSF (PHY-1430152, JINA-CEE) and the supercomputing centers/initiatives NCI, Pawsey, and DiRAC.

  15. 30S(α , p) Thermonuclear Reaction Rate from Experimental Level Structure of 34Ar

    NASA Astrophysics Data System (ADS)

    Kahl, D.; Chen, A. A.; Kubono, S.; Yamaguchi, H.; Binh, D. N.; Chen, J.; Cherubini, S.; Duy, N. N.; Hashimoto, T.; Hayakawa, S.; Iwasa, N.; Jung, H. S.; Kato, S.; Kwon, Y. K.; Nishimura, S.; Ota, S.; Setoodehnia, K.; Teranishi, T.; Tokieda, H.; Yamada, T.; Yun, C. C.; Zhang, L. Y.

    Type I X-ray bursts are the most frequent thermonuclear explosions in the galaxy. Owing to their recurrence from known astronomical objects, burst morphology is extensively documented, and they are modeled very successfully as neutron-deficient, thermonuclear runaway on the surface of accreting neutron stars. While reaction networks include hundreds of isotopes and thousands of nuclear processes, only a small subset appear to play a pivotal role. One such reaction is the 30S(α , p) reaction, which is believed to be a crucial link in the explosive helium burning which is responsible for the large energy flux. However, very little experimental information is available concerning the cross section itself, nor the 34Ar compound nucleus at the relevant energies. We performed the first study of the entrance channel via 30S alpha resonant elastic scattering using a state-of-the-art, low-energy, 30S radioactive ion beam. The measurement was performed in inverse kinematics using a newly-developed active target. An R-matrix analysis of the excitation function reveals previously unknown resonances, including their quantum properties of spin, parity, width, and energy.

  16. Cosmic gamma-ray bursts from primordial stars: A new renaissance in astrophysics?

    NASA Astrophysics Data System (ADS)

    Chardonnet, Pascal; Filina, Anastasia; Chechetkin, Valery; Popov, Mikhail; Baranov, Andrey

    2015-10-01

    The cosmic gamma-ray bursts are certainly an enigma in astrophysics. The “standard fireball” scenario developed during many years has provided a possible explanation of this phenomena. The aim of this work is simply to explore a new possible interpretation by developing a coherent scenario inside the global picture of stellar evolution. At the basis of our scenario, is the fact that maybe we have not fully understood how the core of a pair instability supernova explodes. In such way, we have proposed a new paradigm assuming that the core of such massive star, instead of doing a symmetrical explosion, is completely fragmented in hot spots of burning nuclear matter. We have tested our scenario with observational data like GRB spectra, lightcurves, Amati relation and GRB-SN connection, and for each set of data we have proposed a possible physical interpretation. We have also suggested some possible test of this scenario by measurement at high redshifts. If this scenario is correct, it tells us simply that the cosmic gamma-ray bursts are a missing link in stellar evolution, related to an unusual explosion.

  17. Scientific Support for NQR Explosive Detection Development

    DTIC Science & Technology

    2006-07-01

    Final 3. DATES COVERED (From - To) 8 March 2004 - 7 March 2006 4. TITLE AND SUBTITLE Scientific Support for NQR Explosive Detection Development...Laboratory (NRL) to improve explosive detection using nuclear quadrupole resonance ( NQR ) is summarized. The work includes studies of the effects...superconducting coils for explosive detection. Additional studies involving slowly rotating NQR measurements were also pursued. 15. SUBJECT TERMS Nuclear

  18. The nu-process

    NASA Technical Reports Server (NTRS)

    Woosley, S. E.; Hartmann, D. H.; Hoffman, R. D.; Haxton, W. C.

    1990-01-01

    As the core of a massive star collapses to form a neutron star, the flux of neutrinos in the overlying shells of heavy elements becomes so great that, despite the small cross section, substantial nuclear transmutation is induced. Neutrinos excite heavy elements and even helium to particle unbound levels. The evaporation of a single neutron or proton, and the back reaction of these nucleons on other species present, significantly alters the outcome of traditional nucleosynthesis calculations leading to a new process: nu-nucleosynthesis. Modifications to traditional hydrostatic and explosive varieties of helium, carbon, neon, oxygen, and silicon burning are considered. The results show that a large number of rare isotopes, including many of the odd-Z nuclei from boron through copper, owe much of their present abundance in nature to this process.

  19. Los Alamos Explosives Performance Key to Stockpile Stewardship

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dattelbaum, Dana

    2014-11-03

    As the U.S. Nuclear Deterrent ages, one essential factor in making sure that the weapons will continue to perform as designed is understanding the fundamental properties of the high explosives that are part of a nuclear weapons system. As nuclear weapons go through life extension programs, some changes may be advantageous, particularly through the addition of what are known as "insensitive" high explosives that are much less likely to accidentally detonate than the already very safe "conventional" high explosives that are used in most weapons. At Los Alamos National Laboratory explosives research includes a wide variety of both large- andmore » small-scale experiments that include small contained detonations, gas and powder gun firings, larger outdoor detonations, large-scale hydrodynamic tests, and at the Nevada Nuclear Security Site, underground sub-critical experiments.« less

  20. Explosion Generated Seismic Waves and P/S Methods of Discrimination from Earthquakes with Insights from the Nevada Source Physics Experiments

    NASA Astrophysics Data System (ADS)

    Walter, W. R.; Ford, S. R.; Pitarka, A.; Pyle, M. L.; Pasyanos, M.; Mellors, R. J.; Dodge, D. A.

    2017-12-01

    The relative amplitudes of seismic P-waves to S-waves are effective at identifying underground explosions among a background of natural earthquakes. These P/S methods appear to work best at frequencies above 2 Hz and at regional distances ( >200 km). We illustrate this with a variety of historic nuclear explosion data as well as with the recent DPRK nuclear tests. However, the physical basis for the generation of explosion S-waves, and therefore the predictability of this P/S technique as a function of path, frequency and event properties such as size, depth, and geology, remains incompletely understood. A goal of current research, such as the Source Physics Experiments (SPE), is to improve our physical understanding of the mechanisms of explosion S-wave generation and advance our ability to numerically model and predict them. The SPE conducted six chemical explosions between 2011 and 2016 in the same borehole in granite in southern Nevada. The explosions were at a variety of depths and sizes, ranging from 0.1 to 5 tons TNT equivalent yield. The largest were observed at near regional distances, with P/S ratios comparable to much larger historic nuclear tests. If we control for material property effects, the explosions have very similar P/S ratios independent of yield or magnitude. These results are consistent with explosion S-waves coming mainly from conversion of P- and surface waves, and are inconsistent with source-size based models. A dense sensor deployment for the largest SPE explosion allowed this conversion to be mapped in detail. This is good news for P/S explosion identification, which can work well for very small explosions and may be ultimately limited by S-wave detection thresholds. The SPE also showed explosion P-wave source models need to be updated for small and/or deeply buried cases. We are developing new P- and S-wave explosion models that better match all the empirical data. Historic nuclear explosion seismic data shows that the media in which the explosion takes place is quite important. These material property effects can surprisingly degrade the seismic waveform correlation of even closely spaced explosions in different media. The next phase of the SPE will contrast chemical explosions in dry alluvium with the prior SPE explosions in granite and historic nuclear tests in a variety of media.

  1. A review of the burns caseload of a physician-based helicopter emergency medical service.

    PubMed

    Hall, Karina; Burns, Brian

    2017-08-01

    The aim of this study was to describe patient demographics, injuries, physiology and interventions performed by retrieval physicians in the care of burns patients in both a pre-hospital and interhospital setting. A retrospective review of patient records from a large Australian Helicopter Emergency Medical Service was conducted. Demographics, injury, burn type, physiology and intervention data were extracted into a database for statistical analysis. Basic descriptive statistics were calculated, and patient physiology measures were compared at arrival and destination. A total of 490 burns cases were identified from a 5 year period (January 2010-August 2015). The majority (78.6%) were interhospital transfers conducted by road (49.4%) or helicopter (36.9%). Patients were predominantly men (75.7%) with a median age of 37 years (interquartile range [IQR] 23-50). Median estimated total body surface area burned was 15% (IQR 8.5-20) and 18% (IQR 10-30) in pre-hospital and interhospital groups, respectively; however, retrieval physicians tended to overestimate total body surface area burned in comparison to destination burns units. Flash burn or explosion were the predominant aetiology of burn (49.4%), although the majority (95.3%) of patients had no associated traumatic injuries. Sixty patients were intubated by the Service. Escharotomies were performed on eight occasions resulting in improvement in circulation or ventilation. Overall mortality was 3.7% at 24 h. The Service cares for 80-100 burns patients annually, a proportion of whom require complex interventions such as intubation and escharotomy, which was performed by retrieval physicians appropriately. Associated traumatic injuries were infrequent in patients who sustained burns from flashes or explosions. © 2017 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.

  2. The velocity and composition of supernova ejecta

    NASA Technical Reports Server (NTRS)

    Colgate, S. A.

    1971-01-01

    In case of the Gum nebula, a pulsar - a presumed neutron star - is believed to be a relic of the supernova explosion. Regardless of the mechanism of the explosion, the velocity distribution and composition of the ejected matter will be roughly the same. The reimploding mass fraction is presumed to be neutron rich. The final composition is thought to be roughly 1/3 iron and 2/3 silicon, with many small fractions of elements from helium to iron. The termination of helium shell burning occurs because the shell is expanded and cooled by radiation stress. The mass fraction of the helium burning shell was calculated.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, David Charles

    In 2014, baseline storm water monitoring samples for Potrillo Canyon Sample Management Area at Los Alamos National Laboratory (LANL) exceeded the National Pollutant Discharge Elimination System Individual Permit No. NM0030759 target action level (TAL) of 15 picocuries per liter (pCi/L) for gross-alpha radioactivity (393 pCi/L) and a TAL of 30 pCi/L for radium-226 and radium-228 (95.9 pCi/L). Consequently, erosion control measures within the management area are proposed to minimize sediment migration, a corrective action under the permit that is a requirement of the New Mexico Environment Department consent decree and a good management practice to limit off-site sediment migration. Themore » area proposed for erosion controls consists of portions of Technical Area 36 that were used as firing sites primarily involving high explosives (HE) and metal (e.g., depleted uranium, lead, copper, aluminum, and steel), small-explosives experiments and burn pits (burn pits were used for burning and disposal of test debris). In addition, underground explosive tests at an approximate depth of 100 feet were also conducted. These watershed-based storm water controls will focus on addressing erosion occurring within the floodplain through mitigating and reducing both current and future channelization and head cutting.« less

  4. Measurement of the flow properties within a copper tube containing a deflagrating explosive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Larry G; Morris, John S; Jackson, Scott I

    2009-01-01

    We report on the propagation of deflagration waves in the high explosive (HE) PBX 9501 (95 wt % HMX, 5 wt% binder). Our test configuration, which we call the def1agration cylinder test (DFCT), is fashioned after the detonation cylinder test (DTCT) that is used to calibrate the JWL detonation product equation of state (EOS). In the DFCT, the HE is heated to a uniform slightly subcritical temperature, and is ignited at one end by a hot wire. For some configurations and initial conditions, we observe a quasi-steady wave that flares the tube into a funnel shape, stretching it to themore » point of rupture. This behavior is qualitatively like the DTCT, such that, by invoking certain additional approximations that we discuss, its behavior can be analyzed by the same methods. We employ an analysis proposed by G.I. Taylor to infer the pressure-volume curve for the burning, expanding flow. By comparing this result to the EOS of HMX product gas alone. we infer that only {approx}20 wt% of the HMX has burned at tube rupture. This result confirms pre-existing observations about the role of convective burning in HMX cookoff explosions.« less

  5. Weapons of mass destruction: Overview of the CBRNEs (Chemical, Biological, Radiological, Nuclear, and Explosives).

    PubMed

    Prockop, Leon D

    2006-11-01

    The events of September 11, 2001, made citizens of the world acutely aware of disasters consequent to present-day terrorism. This is a war being waged for reasons obscure to many of its potential victims. The term "NBCs" was coined in reference to terrorist weapons of mass destruction, i.e., nuclear, biological and chemical. The currently accepted acronym is "CBRNE" which includes Chemical, Biological, Radiological, Nuclear, and Explosive weapons. Non-nuclear explosives are the most common terrorist weapon now in use. Nuclear and radiological weapons are beyond the scope of this publication, which focuses on the "CBEs", i.e. chemical, biological and explosive weapons. Although neurologists will not be the first responders to CBEs, they must know about the neurological effects in order to provide diagnosis and treatment to survivors. Neurological complications of chemical, biological and explosive weapons which have or may be used by terrorists are reviewed by international experts in this publication. Management and treatment profiles are outlined.

  6. Effect of slow energy releasing on divergent detonation of Insensitive High Explosives

    NASA Astrophysics Data System (ADS)

    Hu, Xiaomian; Pan, Hao; Huang, Yong; Wu, Zihui

    2014-03-01

    There exists a slow energy releasing (SER) process in the slow reaction zone located behind the detonation wave due to the carbon cluster in the detonation products of Insensitive High Explosives (IHEs), and the process will affect the divergent detonation wave's propagation and the driving process of the explosives. To study the potential effect, a new artificial burn model including the SER process based on the programmed burn model is proposed in the paper. Quasi-steady analysis of the new model indicates that the nonlinearity of the detonation speed as a function of front curvature owes to the significant change of the reaction rate and the reaction zone length at the sonic state. What's more, in simulating the detonation of IHE JB-9014, the new model including the slow reaction can predict a slower jump-off velocity, in good agreement with the result of the test.

  7. Mass Burns Disaster in Abule-egba, Lagos, Nigeria from a Petroleum Pipeline Explosion Fire

    PubMed Central

    Fadeyibi, I.O.; Omosebi, D.T.; Jewo, P.I.; Ademiluyi, S.A.

    2009-01-01

    Summary The aim of this paper is to review the basic principles of triage in mass burns disasters and discuss the experience of the Lagos State University Teaching Hospital (LASUTH), Ikeja, Nigeria, in the December 2006 disaster at Abule-Egba, Lagos, Nigeria. It is hoped that the experience gained will help in the planning for and management of similar disasters in the developing countries with limited facilities. Burn injury has been described as the severest form of trauma and its management is very challenging as it is often accompanied by numerous pathophysiological changes. Successful management requires expert management by well-trained personnel in equipped and dedicated centres. In mass disasters the total number of victims may exceed the capability of the facility and its staff and a system for sorting out the patients and caring for those that will benefit from the facilities available needs to be developed. Other patients will either be sent to other medical facilities for further treatment or discharged after initial care for future follow-up. Documented experiences in the management of mass burns disasters from petroleum pipeline explosions from developing countries are rare. However, petroleum pipeline explosions, especially in the Lagos area of Nigeria, are relatively common. These cases have been associated with a variety of factors. The resulting morbidity and mortality have been high. LASUTH has a dedicated burns centre, which has received and managed many burn patients. Triage is the medical process of screening patients according to their need of treatment and the resources available. The aims and objectives of triage are discussed, its various levels described, and the final goals elaborated. All the burn victims involved in the 2006 disaster were studied, together with the triage carried out at different levels and the consequent sorting of the patients. Standard burns management was carried out. A total of 385 patients sustained burns of various degrees from the fire resulting from the explosion. On site, emergency department (ED) and intra-hospital triage were carried out. Ninety patients were brought to the LASUTH ED. Of these, 51 patients (56.67%) received first-aid treatment and were either discharged for out-patient follow-up or referred to secondary health care facilities. Twenty-eight (31.11%) out of the remaining 39 patients with burns in more than 70% total body surface area (TBSA) were categorized as unsalvageable and 11 (12.22%) with less than 70% TBSA as salvageable. All the patients in the unsalvageable group died (i.e. 100% mortality), while one patient died in the salvageable group (mortality rate, 9.09%). The mortality rate for the ruptured petroleum product pipeline incident was 84.16%; the fatality rate for all patients seen at LASUTH was 32.22%. The need for caution in the handling of petroleum products is discussed and the effectiveness of the triage system used is highlighted. In conclusion, burns from flammable petroleum products can be very dangerous and proper triage should therefore be carried out, with salvageable patients being managed by experts in dedicated burns centres. PMID:21991163

  8. THE LAST MINUTES OF OXYGEN SHELL BURNING IN A MASSIVE STAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Müller, Bernhard; Viallet, Maxime; Janka, Hans-Thomas

    We present the first  4 π– three-dimensional (3D) simulation of the last minutes of oxygen shell burning in an 18 M {sub ⊙} supernova progenitor up to the onset of core collapse. A moving inner boundary is used to accurately model the contraction of the silicon and iron core according to a one-dimensional stellar evolution model with a self-consistent treatment of core deleptonization and nuclear quasi-equilibrium. The simulation covers the full solid angle to allow the emergence of large-scale convective modes. Due to core contraction and the concomitant acceleration of nuclear burning, the convective Mach number increases to ∼0.1 at collapse,more » and an ℓ  = 2 mode emerges shortly before the end of the simulation. Aside from a growth of the oxygen shell from 0.51 M {sub ⊙} to 0.56 M {sub ⊙} due to entrainment from the carbon shell, the convective flow is reasonably well described by mixing-length theory, and the dominant scales are compatible with estimates from linear stability analysis. We deduce that artificial changes in the physics, such as accelerated core contraction, can have precarious consequences for the state of convection at collapse. We argue that scaling laws for the convective velocities and eddy sizes furnish good estimates for the state of shell convection at collapse and develop a simple analytic theory for the impact of convective seed perturbations on shock revival in the ensuing supernova. We predict a reduction of the critical luminosity for explosion by 12% – 24% due to seed asphericities for our 3D progenitor model relative to the case without large seed perturbations.« less

  9. Ejection of the Massive Hydrogen-rich Envelope Timed with the Collapse of the Stripped SN 2014C

    PubMed Central

    Margutti, Raffaella; Kamble, A.; Milisavljevic, D.; Zapartas, E.; de Mink, S. E.; Drout, M.; Chornock, R.; Risaliti, G.; Zauderer, B. A.; Bietenholz, M.; Cantiello, M.; Chakraborti, S.; Chomiuk, L.; Fong, W.; Grefenstette, B.; Guidorzi, C.; Kirshner, R.; Parrent, J. T.; Patnaude, D.; Soderberg, A. M.; Gehrels, N. C.; Harrison, F.

    2017-01-01

    We present multi-wavelength observations of SN 2014C during the first 500 days. These observations represent the first solid detection of a young extragalactic stripped-envelope SN out to high-energy X-rays ~40 keV. SN 2014C shows ordinary explosion parameters (Ek ~ 1.8 × 1051 erg and Mej ~ 1.7 M⊙). However, over an ~1 year timescale, SN 2014C evolved from an ordinary hydrogen-poor supernova into a strongly interacting, hydrogen-rich supernova, violating the traditional classification scheme of type-I versus type-II SNe. Signatures of the SN shock interaction with a dense medium are observed across the spectrum, from radio to hard X-rays, and revealed the presence of a massive shell of ~1 M⊙of hydrogen-rich material at ~6 × 1016 cm. The shell was ejected by the progenitor star in the decades to centuries before collapse. This result challenges current theories of massive star evolution, as it requires a physical mechanism responsible for the ejection of the deepest hydrogen layer of H-poor SN progenitors synchronized with the onset of stellar collapse. Theoretical investigations point at binary interactions and/or instabilities during the last nuclear burning stages as potential triggers of the highly time-dependent mass loss. We constrain these scenarios utilizing the sample of 183 SNe Ib/c with public radio observations. Our analysis identifies SN 2014C-like signatures in ~10% of SNe. This fraction is reasonably consistent with the expectation from the theory of recent envelope ejection due to binary evolution if the ejected material can survive in the close environment for 103–104 years. Alternatively, nuclear burning instabilities extending to core C-burning might play a critical role. PMID:28684881

  10. Seismological investigation of September 09 2016, North Korea underground nuclear test

    NASA Astrophysics Data System (ADS)

    Gaber, H.; Elkholy, S.; Abdelazim, M.; Hamama, I. H.; Othman, A. S.

    2017-12-01

    On Sep. 9, 2016, a seismic event of mb 5.3 took place in North Korea. This event was reported as a nuclear test. In this study, we applied a number of discriminant techniques that facilitate the ability to distinguish between explosions and earthquakes on the Korean Peninsula. The differences between explosions and earthquakes are due to variation in source dimension, epicenter depth and source mechanism, or a collection of them. There are many seismological differences between nuclear explosions and earthquakes, but not all of them are detectable at large distances or are appropriate to each earthquake and explosion. The discrimination methods used in the current study include the seismic source location, source depth, the differences in the frequency contents, complexity versus spectral ratio and Ms-mb differences for both earthquakes and explosions. Sep. 9, 2016, event is located in the region of North Korea nuclear test site at a zero depth, which is likely to be a nuclear explosion. Comparison between the P wave spectra of the nuclear test and the Sep. 8, 2000, North Korea earthquake, mb 4.9 shows that the spectrum of both events is nearly the same. The results of applying the theoretical model of Brune to P wave spectra of both explosion and earthquake show that the explosion manifests larger corner frequency than the earthquake, reflecting the nature of the different sources. The complexity and spectral ratio were also calculated from the waveform data recorded at a number of stations in order to investigate the relation between them. The observed classification percentage of this method is about 81%. Finally, the mb:Ms method is also investigated. We calculate mb and Ms for the Sep. 9, 2016, explosion and compare the result with the mb: Ms chart obtained from the previous studies. This method is working well with the explosion.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Gary R. Jr.; Holmes, Matthew D.; Dickson, Peter

    Conventional high explosives (e.g. PBX 9501, LX-07) have been observed to react violently following thermal insult: (1) Fast convective and compressive burns (HEVR); (2) Thermal explosions (HEVR); and (3) Deflagration-to-detonation transition (DDT). No models exist that sufficiently capture/predict these complex multiphase and multiscale behaviors. For now, research is focused on identifying vulnerabilities and factors that control this behavior.

  12. Determination of detonation wave boundary angles via hydrocode simulations using CREST

    NASA Astrophysics Data System (ADS)

    Whitworth, N. J.; Childs, M.

    2017-01-01

    A key input parameter to Detonation Shock Dynamics models is the angle that the propagating detonation wave makes with the charge edge. This is commonly referred to as the boundary angle, and is a property of the explosive/confiner material combination. Such angles can be determined: (i) experimentally from measured detonation wave-shapes, (ii) theoretically, or (iii) via hydrocode simulations using a reactive burn model. Of these approaches: (i) is difficult because of resolution, (ii) breaks down for certain configurations, while (iii) requires a well validated model. In this paper, the CREST reactive burn model, which has previously been successful in modelling a wide range of explosive phenomena, is used to simulate recent Detonation Confinement Sandwich Tests conducted at LANL using the insensitive high explosive PBX 9502. Simulated detonation wave-shapes in PBX 9502 for a number of different confiner materials and combinations closely match those recorded from the experiments. Boundary angles were subsequently extracted from the simulated results via a wave-shape analysis toolkit. The results shown demonstrate the usefulness of CREST in determining detonation wave boundary angles for a range of explosive/confiner material combinations.

  13. Another Inconvenient Truth: Even a Small Nuclear War Could be Much Worse Than you Think

    NASA Astrophysics Data System (ADS)

    Toon, O. B.

    2008-05-01

    The number of nuclear warheads in the world has fallen by about a factor of three since its peak in 1986. However, the potential exists for numerous regional nuclear arms races, and for a significant expansion in the number of nuclear weapons states. Eight countries are known to have nuclear weapons, 2 are constructing them, and an additional 32 nations already have the fissile material needed to build weapons if they so desire. Population and economic activity worldwide are congregated to an increasing extent in "megacities", which are ideal targets for nuclear weapons. Based upon observations of the damage caused by nuclear explosions in World War II and in nuclear tests, a group of researchers has estimated the area that might be consumed in firestorms following a regional war between the smallest current nuclear states involving 100, 15-kt explosions (less than 0.1% of the explosive yield of the current global nuclear arsenal). Based upon observations of large forest fires these firestorms should inject smoke into the upper troposphere. Using estimates of the mass of flammable material in the areas that would burn we find that 5x1012 g of elemental carbon could be injected into the upper troposphere in a regional nuclear war. A suite of numerical models show that this upper tropospheric soot will be transported due to solar heating into the stratosphere and will rise to altitudes above 40 km. The elemental carbon will absorb sunlight, heating the stratosphere and cooling the ground. The heating of the stratosphere could cause column ozone losses in excess of 20% globally, 25-45% at mid-latitudes, and 50- 70% at northern high latitudes persisting for 5 years, with substantial losses continuing for 5 additional years. Column ozone amounts would remain near or below 220 Dobson units at all latitudes even after three years, constituting an extra-tropical "ozone hole". The cooling at the ground would reduce precipitation globally by about 10%, create lower temperatures than any observed in the past thousand years, and cause a several week shortening of the growing season at mid-latitudes in both hemispheres for several years. While these environmental perturbations from a regional scale conflict involving smaller nuclear powers, such as India and Pakistan, are very serious, recent studies of the results of a global nuclear war between the superpowers show that a "nuclear winter" could occur that is even more long lasting than previously believed. Following a global nuclear conflict global precipitation might fall by 45% for several years, and surface temperatures might decline to values not seen since the ice ages. There are many uncertainties in the issues we discuss here, however these results indicate that nuclear weapons pose a dire threat to everyone on the planet, even those far removed from any combat zone. Each of these potential hazards deserves careful analysis by governments worldwide advised by a broad section of the world scientific community, as well as widespread debate.

  14. LLNL Contribution to Sandia Used Fuel Disposition - Security March 2011 Deliverable

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blink, J A

    2011-03-23

    Cleary [2007] divides the proliferation pathway into stages: diversion, facility misuse, transportation, transformation, and weapons fabrication. King [2010], using Cleary's methodology, compares a deepburn fusion-driven blanket containing weapons-grade plutonium with a PWR burning MOX fuel enrichments of 5-9%. King considers the stages of theft, transportation, transformation, and nuclear explosive fabrication. In the current study of used fuel storage security, a similar approach is appropriate. First, one must consider the adversary's objective, which can be categorized as on-site radionuclide dispersion, theft of material for later radionuclide dispersion, and theft of material for later processing and fabrication into a nuclear explosive. Formore » on-site radionuclide dispersion, only a single proliferation pathway stage is appropriate: dispersion. That situation will be addressed in future reports. For later radionuclide dispersion, the stages are theft, transportation, and transformation (from oxide spent fuel containing both fission products and actinides to a material size and shape suitable for dispersion). For later processing and fabrication into a nuclear explosive, the stages are theft (by an outsider or by facility misuse by an insider), transportation, transformation (from oxide spent fuel containing both fission products and actinides to a metal alloy), and fabrication (of the alloy into a weapon). It should be noted that the theft and transportation stages are similar, and possibly identical, for later radionuclide dispersion and later processing and fabrication into a nuclear explosive. Each stage can be evaluated separately, and the methodology can vary for each stage. For example, King starts with the methodology of Cleary for the theft, transportation, transformation, and fabrication stages. Then, for each stage, King assembles and modifies the attributes and inputs suggested by Cleary. In the theft (also known as diversion) stage, Cleary has five high-level categories (material handling during diversion, difficulty of evading detection by the accounting system, difficulty of evading detection by the material control system, difficulty of conducting undeclared facility modifications for the purpose of diverting nuclear material, and difficulty of evading detection of the facility modifications for the purposes of diverting nuclear material). Each category has one or more subcategories. For example, the first category includes mass per significant quantity (SQ) of nuclear material, volume/SQ of nuclear material, number of items/SQ, material form (solid, liquid, powder, gas), radiation level in terms of dose, chemical reactivity, heat load, and process temperature. King adds the following two subcategories to that list: SQs available for theft, and interruptions/changes (normal and unexpected) in material stocks and flows. For the situation of an orphaned surface storage facility, this approach is applicable, with some of the categories and subcategories being modified to reflect the static situation (no additions or removals of fuel or containers). In addition, theft would require opening a large overpack and either removing a full container or opening that sealed container and then removing one or more spent nuclear fuel assemblies. These activities would require time without observation (detection), heavy-duty equipment, and some degree of protection of the thieves from radiological dose. In the transportation stage, Cleary has two high-level categories (difficulty of handling material during transportation, and difficulty of evading detection during transport). Each category has a number of subcategories. For the situation of an orphaned surface storage facility, these categories are applicable. The transformation stage of Cleary has three high-level categories (facilities and equipment needed to process diverted materials; knowledge, skills, and workforce needed to process diverted materials; and difficulty of evading detection of transformation activities). Again, there are subcategories. King [2007] adds a fourth high-level category: time required to transform the materials. For the situation of an orphaned surface storage facility, the categories are applicable, but the evaluations of each category and subcategory will be significantly different for later radionuclide dispersion than for later processing and fabrication into a nuclear explosive. The fabrication stage of Cleary has three high-level categories (difficulty associated with design, handling difficulties, and knowledge and skills needed to design and fabricate). King replaces the first two high-level categories with the Figure of Merit for Nuclear Explosives Utility (FOM), with subcategories of bare critical mass, heat content of transformed material, dose rate of transformed material, and SQs available for theft. The next section of this report describes the FOM in more detail.« less

  15. Non-malignant thyroid disease after exposure to radioactive elements during nuclear explosion: a neglected issue.

    PubMed

    Wiwanitkit, Viroj

    2012-01-01

    Recent nuclear explosion in Japan led to a great concern regarding its detrimental effects on health. As obtained data imply the increased risk of thyroid cancer, the prevention is widely suggested. Also the adverse effect of leaked radioactive elements can lead to non-malignant thyroid disease, which is neglected. In this article, non-malignant thyroid disease after exposure to radioactive elements during nuclear explosion was reviewed and discussed.

  16. The acoustic field in the ionosphere caused by an underground nuclear explosion

    NASA Astrophysics Data System (ADS)

    Krasnov, V. M.; Drobzheva, Ya. V.

    2005-07-01

    The problem of describing the generation and propagation of an infrasonic wave emitted by a finite extended source in the inhomogeneous absorbing atmosphere is the focus of this paper. It is of interest since the role of infrasonic waves in the energy balance of the upper atmosphere remains largely unknown. We present an algorithm, which allows adaptation of a point source model for calculating the infrasonic field from an underground nuclear explosion at ionospheric altitudes. Our calculations appear to agree remarkably well with HF Doppler sounding data measured for underground nuclear explosions at the Semipalatinsk Test Site. We show that the temperature and ionospheric electron density perturbation caused by an acoustic wave from underground nuclear explosion can reach 10% of background levels.

  17. Violent Mergers

    NASA Astrophysics Data System (ADS)

    Pakmor, Rüdiger

    The progenitor systems and explosion scenarios of Type Ia supernovae (SNe Ia) are still heavily debated. The violent merger scenario is a recent addition to explosion scenarios for SNe Ia. Here, two white dwarfs (WDs) in a binary system approach each other owing to the emission of gravitational waves. The interaction between the two WDs preluding or during the merger creates a hotspot on the surface of the primary, more massive, WD that ignites a detonation. If the detonation is a carbon detonation, it completely burns the primary WD leading to a SN Ia. If instead the detonation is a helium detonation in the helium shell of a carbon-oxygen WD, it burns around the primary WD in its helium shell and sends a shock wave into its core that ignites a carbon detonation. Again the primary WD is fully burned. Synthetic observables for explosion models of SNe Ia in the violent merger scenario show good agreement with normal SNe Ia and the subclass of faint, slowly evolving 02es-like SNe Ia for different masses of the primary WD. The violent merger scenario can also explain the delay time distribution and brightness distribution of normal SNe Ia. This chapter discusses in detail the mechanism that leads to ignition in the violent merger scenario, summarizes the properties of explosions in the violent merger scenario and compares to observations. It ends with a summary of the main properties of the population of normal SNe Ia and discusses to which degree they can be explained in the violent merger scenario.

  18. Seismological analysis of the fourth North Korean nuclear test

    NASA Astrophysics Data System (ADS)

    Hartmann, Gernot; Gestermann, Nicolai; Ceranna, Lars

    2016-04-01

    The Democratic People's Republic of Korea has conducted its fourth underground nuclear explosions on 06.01.2016 at 01:30 (UTC). The explosion was clearly detected and located by the seismic network of the International Monitoring System (IMS) of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Additional seismic stations of international earthquake monitoring networks at regional distances, which are not part of the IMS, are used to precisely estimate the epicenter of the event in the North Hamgyong province (41.38°N / 129.05°E). It is located in the area of the North Korean Punggye-ri nuclear test site, where the verified nuclear tests from 2006, 2009, and 2013 were conducted as well. The analysis of the recorded seismic signals provides the evidence, that the event was originated by an explosive source. The amplitudes as well as the spectral characteristics of the signals were examined. Furthermore, the similarity of the signals with those from the three former nuclear tests suggests very similar source type. The seismograms at the 8,200 km distant IMS station GERES in Germany, for example, show the same P phase signal for all four explosions, differing in the amplitude only. The comparison of the measured amplitudes results in the increasing magnitude with the chronology of the explosions from 2006 (mb 4.2), 2009 (mb 4.8) until 2013 (mb 5.1), whereas the explosion in 2016 had approximately the same magnitude as that one three years before. Derived from the magnitude, a yield of 14 kt TNT equivalents was estimated for both explosions in 2013 and 2016; in 2006 and 2009 yields were 0.7 kt and 5.4 kt, respectively. However, a large inherent uncertainty for these values has to be taken into account. The estimation of the absolute yield of the explosions depends very much on the local geological situation and the degree of decoupling of the explosive from the surrounding rock. Due to the missing corresponding information, reliable magnitude-yield estimation for the North Korean test site is proved to be difficult. The direct evidence for the nuclear character of the explosion can only be found, if radioactive fission products of the explosion get released into the atmosphere and detected. The corresponding analysis by Atmospheric Transport Modelling is presented on the poster by O. Ross and L. Ceranna assessing the detection chances of IMS radionuclide stations.

  19. Benefit of extracorporeal membrane oxygenation in major burns after stun grenade explosion: Experience from a single military medical center.

    PubMed

    Hsu, Po-Shun; Tsai, Yi-Ting; Lin, Chih-Yuan; Chen, Shyi-Gen; Dai, Niann-Tzyy; Chen, Cheng-Jung; Chen, Jia-Lin; Tsai, Chien-Sung

    2017-05-01

    Explosion injury is very common on the battlefield and is associated with major burn and inhalation injuries and subsequent high mortality and morbidity rates. Here we report six victims who suffered from explosion injuries caused by stun grenade; all were treated with extracorporeal membrane oxygenation (ECMO) as salvage therapy. This study was aimed to evaluate the indications and efficacy of ECMO in acute and critically ill major burn patients. This was a retrospective analysis of six patients from Tri-Service General Hospital, National Defense Medical Center in Taiwan. All suffered from major burns with 89.0±19.1% average of total body surface area over second degree (TBSA; range, 50-99%). ECMO was used due to inhalation injury in five patients and cardiogenic shock in one patient. The average interval to start ECMO was 26.5±19.0h (range, 14-63h). Venoarterial ECMO was used on in four patients due to unstable hemodynamic status, whereas venovenous ECMO was used in two patients for sustained hypoxemia. All patients had rhabdomyolysis with acute renal failure. The average duration of ECMO was 169.6±180.9h (range, 27-401h). All patients developed coagulopathy and needed debridement surgery during ECMO support, and five underwent torso escharotomy due to inspiratory compromise. Only one patient whose second and third degree burns covered 50% TBSA was successfully weaned from ECMO and survived; he was discharged after 221 hospital days. All patients who died had second and third degree burns covering over 90% of their TBSA. Three patients died of multiple organ failure, one died of septic shock, and the other died of cardiogenic shock. Overall survival rate was 16.7%. In acute and critically ill major burn patients, ECMO could be considered as a salvage therapy, particularly in those with inhalation injury and burn-related acute respiratory distress syndrome. However, ECMO does not seem to provide benefits for circulatory support in those with hemodynamic compromise. The use of ECMO in these patients is still investigational, as our data provided no benefit in terms of the outcomes or survival, particularly in those with more than 90% TBSA burns. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  20. The Status of Multi-Dimensional Core-Collapse Supernova Models

    NASA Astrophysics Data System (ADS)

    Müller, B.

    2016-09-01

    Models of neutrino-driven core-collapse supernova explosions have matured considerably in recent years. Explosions of low-mass progenitors can routinely be simulated in 1D, 2D, and 3D. Nucleosynthesis calculations indicate that these supernovae could be contributors of some lighter neutron-rich elements beyond iron. The explosion mechanism of more massive stars remains under investigation, although first 3D models of neutrino-driven explosions employing multi-group neutrino transport have become available. Together with earlier 2D models and more simplified 3D simulations, these have elucidated the interplay between neutrino heating and hydrodynamic instabilities in the post-shock region that is essential for shock revival. However, some physical ingredients may still need to be added/improved before simulations can robustly explain supernova explosions over a wide range of progenitors. Solutions recently suggested in the literature include uncertainties in the neutrino rates, rotation, and seed perturbations from convective shell burning. We review the implications of 3D simulations of shell burning in supernova progenitors for the `perturbations-aided neutrino-driven mechanism,' whose efficacy is illustrated by the first successful multi-group neutrino hydrodynamics simulation of an 18 solar mass progenitor with 3D initial conditions. We conclude with speculations about the impact of 3D effects on the structure of massive stars through convective boundary mixing.

  1. 76 FR 43356 - Evaluations of Explosions Postulated To Occur at Nearby Facilities and on Transportation Routes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-20

    ... the ``Regulatory Guides'' collection of the NRC's Library at http://www.nrc.gov/reading-rm/doc... NUCLEAR REGULATORY COMMISSION [NRC-2011-0152] Evaluations of Explosions Postulated To Occur at..., ``Evaluations of Explosions Postulated to Occur at Nearby Facilities and on Transportation Routes Near Nuclear...

  2. A Scaling Analysis of Frequency Dependent Energy Partition for Local and Regional Seismic Phases from Explosions

    DTIC Science & Technology

    2007-08-31

    explosions at the former Soviet Semipalatinsk test site (STS). Labeled stations are those for which high resolution digital data are available. 12 8...characteristics of regional phase observations from underground nuclear explosions at the former Soviet Semipalatinsk and Novaya Zemlya test sites , the...various regional phases observed from underground nuclear explosions at the former Soviet Semipalatinsk test site (STS). Labeled stations are those for

  3. Hydrogen and helium shell burning during white dwarf accretion

    NASA Astrophysics Data System (ADS)

    Cui, Xiao; Meng, Xiang-Cun; Han, Zhan-Wen

    2018-05-01

    Type Ia supernovae (SNe Ia) are believed to be thermonuclear explosions of carbon oxygen (CO) white dwarfs (WDs) with masses close to the Chandrasekhar mass limit. How a CO WD accretes matter and grows in mass to this limit is not well understood, hindering our understanding of SN Ia explosions and the reliability of using SNe Ia as a cosmological distance indicator. In this work, we employed the stellar evolution code MESA to simulate the accretion process of hydrogen-rich material onto a 1.0 M ⊙ CO WD at a high rate (over the Eddington limit) of 4.3 × 10‑7 M ⊙ yr‑1. The simulation demonstrates the characteristics of the double shell burning on top of the WD, with a hydrogen shell burning on top of a helium burning shell. The results show that helium shell burning is not steady (i.e. it flashes). Flashes from the helium shell are weaker than those in the case of accretion of helium-rich material onto a CO WD. The carbon to oxygen mass ratio resulting from the helium shell burning is higher than what was previously thought. Interestingly, the CO WD growing due to accretion has an outer part containing a small fraction of helium in addition to carbon and oxygen. The flashes become weaker and weaker as the accretion continues.

  4. Burns from illegal drug manufacture: case series and management.

    PubMed

    Porter, C J W; Armstrong, J R

    2004-01-01

    This case series presents our experience with burns sustained while manufacturing illegal drugs. All adult burn admissions in an 18-month period were retrospectively reviewed. All patients suspected of sustaining burns from illegal drug manufacture were contacted. Information regarding the burn mechanism was sought. Nine of the 64 adult burn admissions were caused by explosions during the manufacture of cannabis oil. Young males with hand and face burns were heavily represented. First-aid treatment was often ignored in favor of hiding incriminating evidence. Only two patients gave honest admission histories. Illegal drug manufacture is becoming more common as synthetic drugs become more consumer desirable. Burns sustained may be thermal and/or chemical. Dishonest patient histories negatively influence burn management. A high level of suspicion is required for diagnosing and treating burns from illegal drug manufacture. Public education is unlikely to be effective as the financial rewards outweigh the perceived risks.

  5. Yield Estimation for Semipalatinsk Underground Nuclear Explosions Using Seismic Surface-wave Observations at Near-regional Distances

    NASA Astrophysics Data System (ADS)

    Adushkin, V. V.

    - A statistical procedure is described for estimating the yields of underground nuclear tests at the former Soviet Semipalatinsk test site using the peak amplitudes of short-period surface waves observed at near-regional distances (Δ < 150 km) from these explosions. This methodology is then applied to data recorded from a large sample of the Semipalatinsk explosions, including the Soviet JVE explosion of September 14, 1988, and it is demonstrated that it provides seismic estimates of explosion yield which are typically within 20% of the yields determined for these same explosions using more accurate, non-seismic techniques based on near-source observations.

  6. The role of nuclear physics in supernovae and the evolution of neutron stars Neutrino Opacities, Equation of State, Transport Coefficients, and Dark Matter Production

    NASA Astrophysics Data System (ADS)

    Rrapaj, Ermal

    A massive star, of at least eight solar masses, end their life cycle in a sudden, catastrophic collapse under its own gravity. In a thousandth of a second, it can shrink from thousands of kilometers across to a ball of ultra-condensed matter just a few kilometers across. Ultimately, it all ends in a cataclysmic explosion known as a supernova, and for a few short weeks it burns as brightly as several billion suns, briefly outshining the star's entire home galaxy. The visible light of a supernova, though, represents only about 1% of the released energy, the vast majority being in the form of ultraviolet light, x-rays, gamma rays and, especially neutrinos. In the first chapter of work, I study neutrino - nucleon interactions and their role in the nucleosynthesis of heavy elements. Another key ingredient is the equation of state, which relates the thermodynamic properties of these extreme environments to the micro physics of nuclear interactions, explored in the second chapter. As a supernova cools, a new neutron star is born. The thermal, electric properties and the shear viscosity of this object are analyzed in terms of a newly discovered interaction, among electrons and neutrons, in the third chapter. Given the enormous amount of energy released during the explosion, I study the possibility of producing light massive particles, candidates for what is commonly called dark matter, in the last chapter of this work. I find that supernovae are ideal environments where the interplay of all forces in nature can be observed, nuclear forces playing a paramount role.

  7. Application of Geophysical Techniques in Identifying UNE Signatures at Semipalatinsk Test Site (for OSI Purposes)

    NASA Astrophysics Data System (ADS)

    Belyashov, A.; Shaitorov, V.; Yefremov, M.

    2014-03-01

    This article describes geological and geophysical studies of an underground nuclear explosion area in one of the boreholes at the Semipalatinsk test site in Kazakhstan. During these studies, the typical elements of mechanical impact of the underground explosion on the host medium—fracturing of rock, spall zones, faults, cracks, etc., were observed. This information supplements to the database of underground nuclear explosion phenomenology and can be applied in fulfilling on-site inspection tasks under the Comprehensive Nuclear-Test-Ban Treaty.

  8. Tritium as an indicator of venues for nuclear tests.

    PubMed

    Lyakhova, O N; Lukashenko, S N; Mulgin, S I; Zhdanov, S V

    2013-10-01

    Currently, due to the Treaty on the Non-proliferation of Nuclear Weapons there is a highly topical issue of an accurate verification of nuclear explosion venues. This paper proposes to consider new method for verification by using tritium as an indicator. Detailed studies of the tritium content in the air were carried in the locations of underground nuclear tests - "Balapan" and "Degelen" testing sites located in Semipalatinsk Test Site. The paper presents data on the levels and distribution of tritium in the air where tunnels and boreholes are located - explosion epicentres, wellheads and tunnel portals, as well as in estuarine areas of the venues for the underground nuclear explosions (UNE). Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. β-delayed p-decay of proton-rich nuclei ^23Al and ^31Cl and explosive H-burning in novae

    NASA Astrophysics Data System (ADS)

    Trache, L.; Banu, A.; Hardy, J. C.; McCleskey, M.; Simmons, E.; Tabacaru, G.; Tribble, R. E.; Aysto, J.; Jokinen, A.; Saastamoinen, A.; Davinson, T.; Woods, P. J.; Achouri, L.; Roeder, B.

    2008-10-01

    We developed a technique to measure β-delayed proton-decay of proton-rich nuclei produced and separated with MARS at TAMU. In particular, we studied the decay of ^23Al and ^31Cl, both important for understanding explosive H-burning in novae. We have pulsed the beam, implanting the source nuclei moving at about 40 MeV/u in a thin Si strip detector, and then measured β-p and β-γ coincidences simultaneously. The states populated above the proton threshold in ^23Mg and ^31S, respectively, may proton decay. They are resonances in the reaction ^22Na(p,γ)^23Mg (crucial for the depletion of ^22Na in ONe novae) and in ^30P(p,γ)^31S (critical point in explosive H-burning in novae), but the protons emitted have very low energies, starting at about 200 keV, an experimental challenge. The setup and the results are described. The β-decay schemes were established for both nuclei, and IAS identified. The technique has shown a remarkable selectivity to β-delayed charged particle emission and shown to work even at radioactive beam rates of a few pps, for rare isotopes with lifetimes as low as 10s msec.

  10. TYPE Ia SUPERNOVAE: CAN CORIOLIS FORCE BREAK THE SYMMETRY OF THE GRAVITATIONAL CONFINED DETONATION EXPLOSION MECHANISM?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    García-Senz, D.; Cabezón, R. M.; Thielemann, F. K.

    Currently the number of models aimed at explaining the phenomena of type Ia supernovae is high and distinguishing between them is a must. In this work we explore the influence of rotation on the evolution of the nuclear flame that drives the explosion in the so-called gravitational confined detonation models. Assuming that the flame starts in a pointlike region slightly above the center of the white dwarf (WD) and adding a moderate amount of angular velocity to the star we follow the evolution of the deflagration using a smoothed particle hydrodynamics code. We find that the results are very dependentmore » on the angle between the rotational axis and the line connecting the initial bubble of burned material with the center of the WD at the moment of ignition. The impact of rotation is larger for angles close to 90° because the Coriolis force on a floating element of fluid is maximum and its principal effect is to break the symmetry of the deflagration. Such symmetry breaking weakens the convergence of the nuclear flame at the antipodes of the initial ignition volume, changing the environmental conditions around the convergence region with respect to non-rotating models. These changes seem to disfavor the emergence of a detonation in the compressed volume at the antipodes and may compromise the viability of the so-called gravitational confined detonation mechanism.« less

  11. Nucleosynthesis and the nova outburst

    NASA Technical Reports Server (NTRS)

    Starrfield, S.; Truran, J.W.; Wiescher, M.; Sparks, W.M.

    1995-01-01

    A nova outburst is the consequence of the accretion of hydrogen rich material onto a white dwarf and it can be considered as the largest hydrogen bomb in the Universe. The fuel is supplied by a secondary star in a close binary system while the strong degeneracy of the massive white dwarf acts to contain the gas during the early stages of the explosion. The containment allows the temperature in the nuclear burning region to exceed 10(sup 8)K under all circumstances. As a result a major fraction of CNO nuclei in the envelope are transformed into (beta)(sup +)-unstable nuclei. We discuss the effects of these nuclei on the evolution. Recent observational studies have shown that there are two compositional classes of novae; one which occurs on carbon-oxygen white dwarfs, and a second class that occurs on oxygen-neon-magnesium white dwarfs. In this review we will concentrate on the latter explosions since they produce the most interesting nucleosynthesis. We report both on the results of new observational determinations of nova abundances and, in addition, new hydrodynamic calculations that examine the consequences of the accretion process on 1.0M(sub (circle dot)), 1.25M(sub (circle dot)), and 1.35M(sub (circle dot)) white dwarfs. Our results show that novae can produce (sup 22)Na, (sup 26)Al, and other intermediate mass nuclei in interesting amounts. We will present the results of new calculations, done with updated nuclear reaction rates and opacities, which exhibit quantitative differences with respect to published work.

  12. Application of Reactor Antineutrinos: Neutrinos for Peace

    NASA Astrophysics Data System (ADS)

    Suekane, F.

    2013-02-01

    In nuclear reactors, 239Pu are produced along with burn-up of nuclear fuel. 239Pu is subject of safeguard controls since it is an explosive component of nuclear weapon. International Atomic Energy Agency (IAEA) is watching undeclared operation of reactors to prevent illegal production and removal of 239Pu. In operating reactors, a huge numbers of anti electron neutrinos (ν) are produced. Neutrino flux is approximately proportional to the operating power of reactor in short term and long term decrease of the neutrino flux per thermal power is proportional to the amount of 239Pu produced. Thus rector ν's carry direct and real time information useful for the safeguard purposes. Since ν can not be hidden, it could be an ideal medium to monitor the reactor operation. IAEA seeks for novel technologies which enhance their ability and reactor neutrino monitoring is listed as one of such candidates. Currently neutrino physicists are performing R&D of small reactor neutrino detectors to use specifically for the safeguard use in response to the IAEA interest. In this proceedings of the neutrino2012 conference, possibilities of such reactor neutrinos application and current world-wide R&D status are described.

  13. Effects of Containment on Radionuclide Releases from Underground Nuclear Explosions

    NASA Astrophysics Data System (ADS)

    Carrigan, C. R.; Sun, Y.

    2016-12-01

    Confirming the occurrence of an underground nuclear explosion can require capturing short-lived noble gas radioisotopes produced by the explosion, sometimes referred to as the "smoking gun" for nuclear explosion detection. It is well known that the radioisotopic distribution resulting from the detonation evolves with time in the explosion cavity. In effect, the explosion cavity or chimney behaves as a chemical reactor. As long as the parent and daughter radionuclides remain in a closed and well-mixed cavity, parameters, such as radioxenon isotopic ratios, can be calculated analytically from a decay-chain network model. When gases from the cavity migrate into the containment regime, consideration of a "leaky reactor" model is more appropriate. We consider several implications of such a leaky reactor model relevant to interpretations of gas samples from the subsurface during an on-site inspection that could potentially be carried out under the Comprehensive Nuclear Test Ban Treaty. Additionally, we have attempted to validate our leaky reactor model against atmospheric observations of radioactive xenon isotopes detected by radionuclide monitoring stations in Japan and Russia following the February 2013 DPRK underground nuclear explosion (Carrigan et al., 2016). While both model uncertainty and observational error are significant, our model of isotopic evolution appears to be in broad agreement with radionuclide observations, and for the first time links atmospheric measurements of radioxenon isotopic ratios to estimates of seismic yield. Carrigan et al., Scientific Reports 6, Article number: 23032 (2016) doi:10.1038/srep23032

  14. METHOD 529, DETERMINATION OF EXPLOSIVES AND RELATED COMPOUNDS IN DRINKING WATER BY SOLID PHASE EXTRACTION AND CAPILLARY COLUMN GAS CHROMATOGRAPHY/MASS SPECTROMETRY

    EPA Science Inventory

    Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a military explosive which is known to have contaminated groundwater on and near military installations where it has been used and stored. Historical disposal practices such as open burning and detonation have contributed to envir...

  15. Analysis of Potassium Superoxide/Kerosene Situation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. S. Bullock

    2001-01-16

    A general picture of the processes that could occur in an initiated KO{sub 2}-kerosene reaction with excess kerosene and in contact with K metal has been created. A worst-case estimate of explosion of the dispersed kerosene overlayer has also been created, with a probable value of average pressure surge in the current storage room of less than 0.4 psi. more probable scenarios would put the peak value of pressure surge somewhat lower, with ignition of the K metal and burning of the excess kerosene at a rate between smooth burning and a slow deflagration. The enthalpy release from the combustionmore » of kerosene in this situation 9478,440 cal is much larger than that for the reaction between KO{sub 2} and kerosene (between 2346 and 4589 cal). Thus, kerosene combustion is potentially much more significant than the KO{sub 2} reaction and may provide 99.05 to 99.51% of the total energy of possible explosions. Hence, there is a good reason to separate bulk amounts of flammable or combustible hydrocarbons from explosive material. For this case, in the limit that absolutely all hydrocarbons were removed from the system, there should no longer be an explosive hazard.« less

  16. Accretion Disk Outflows from Compact Object Mergers

    NASA Astrophysics Data System (ADS)

    Metzger, Brian

    Nuclear reactions play a key role in the accretion disks and outflows associated with the merger of binary compact objects and the central engines of gamma-ray bursts and supernovae. The proposed research program will investigate the impact of nucleosynthesis on these events and their observable signatures by means of analytic calculations and numerical simulations. One focus of this research is rapid accretion following the tidal disruption of a white dwarf (WD) by a neutron star (NS) or black hole (BH) binary companion. Tidal disruption shreds the WD into a massive torus composed of C, O, and/or He, which undergoes nuclear reactions and burns to increasingly heavier elements as it flows to smaller radii towards the central compact object. The nuclear energy so released is comparable to that released gravitationally, suggesting that burning could drastically alter the structure and stability of the accretion flow. Axisymmetric hydrodynamic simulations of the evolution of the torus including nuclear burning will be performed to explore issues such as the mass budget of the flow (accretion vs. outflows) and its thermal stability (steady burning and accretion vs. runaway explosion). The mass, velocity, and composition of outflows from the disk will be used in separate radiative transfer calculations to predict the lightcurves and spectra of the 56Ni-decay powered optical transients from WD-NS/WD-BH mergers. The possible connection of such events to recently discovered classes of sub-luminous Type I supernovae will be assessed. The coalescence of NS-NS/NS-BH binaries also results in the formation of a massive torus surrounding a central compact object. Three-dimensional magnetohydrodynamic simulations of the long-term evolution of such accretion disks will be performed, which for the first time follow the effects of weak interactions and the nuclear energy released by Helium recombination. The nucleosynthetic yield of disk outflows will be calculated using a detailed nuclear reaction network along characteristic Lagrangian trajectories. Results of these calculations will be used to (1) reassess NS-NS/NS-BH mergers as an astrophysical source of heavy r-process nuclei; and (2) calculate the light curves of the optical transients (`kilonovae') powered by the radioactive decay. Separate work will assess the effects that neutrino irradiation from a long-lived neutron star remnant has on the electron fraction of the disk outflows. The strong contrast between the opacities of proton- and neutron-rich matter imply that the presence and lifetime of such a remnant could be imprinted on the kilonova emission. Our investigation sheds light on the central engines of GRBs and other high-energy transients and hence is relevant to NASA's Swift, MAXI, and Fermi missions. Our results will also impact the interpretation of future observations of supernovae and their galactic environments with the Hubble Space Telescope (HST). Our results will also impact follow-up observations of kilonovae, maximizing the impact of HST to constrain the key open questions such as the progenitors of gamma-ray bursts and the origin of r-process nuclei.

  17. A compilation of nuclear weapons test detonation data for U.S. Pacific ocean tests.

    PubMed

    Simon, S L; Robison, W L

    1997-07-01

    Prior to December 1993, the explosive yields of 44 of 66 nuclear tests conducted by the United States in the Marshall Islands were still classified. Following a request from the Government of the Republic of the Marshall Islands to the U.S. Department of Energy to release this information, the Secretary of Energy declassified and released to the public the explosive yields of the Pacific nuclear tests. This paper presents a synopsis of information on nuclear test detonations in the Marshall Islands and other locations in the mid-Pacific including dates, explosive yields, locations, weapon placement, and summary statistics.

  18. Behavior of Explosives Under Pressure in a Diamond Anvil Cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foltz, M F

    2006-06-20

    Diamond anvil cell (DAC) studies can yield information about the pressure dependence of materials and reactions under conditions comparable to shock loading. The pressure gradient across the face of the diamonds is often deliberately minimized to create uniform pressure over much of the sample and a simplified data set. To reach very high pressures (30-40 GPa), however, it may be necessary to use ''softer'', high nitrogen content diamonds that are more susceptible to bending under pressure. The resulting enhanced pressure gradient then provides a view of high-pressure behavior under anisotropic conditions similar to those found at the burn front inmore » a bulk sample. We discuss visual observations of pressure-induced changes relative to variations in burn rate of several explosives (Triaminotrinitrobenzene, Nitromethane, CL-20) in the DAC. The burn rate behavior of both Nitromethane (NM) and Triaminotrinitrobenzene (TATB) were previously reported for pressures up to {approx}40 GPa. Nitromethane showed a near monotonic increase in burn rate to a maximum at {approx}30 GPa after which the burn rate decreased, all without color change. At higher pressures, the TATB samples had shiny (metallic) polycrystalline zones or inclusions where the pressure was highest in the sample. Around the shiny zones was a gradation of color (red to yellow) that appeared to follow the pressure gradient. The color changes are believed related to disturbances in the resonance structure of this explosive as the intermolecular separations decrease with pressure. The color and type of residue found in unvented gaskets after the burn was complete also varied with pressure. The four polymorphs of CL-20 ({alpha}, {beta}, {gamma}, {var_epsilon}-Hexanitrohexaazaisowurtzitane, HNIW) did not change color up to the highest pressure applied ({approx}30 GPa), and each polymorph demonstrated a distinctly different burn rate signature. One polymorph {beta} was so sensitive to laser ignition over a narrow pressure range that the sample could not be aligned with a low power laser without ignition. The burn rate for that one polymorph could only be measured at pressures above and below that unique pressure. This anomalous ignition threshold is discussed with respect to the matrix of possible polymorphs, most of which have not been isolated in the laboratory. The changes in behavior, color and reaction rates of all samples are discussed with respect to possible implications to chemistry at high pressure.« less

  19. Generalized Pseudo-Reaction Zone Model for Non-Ideal Explosives

    NASA Astrophysics Data System (ADS)

    Wescott, B. L.

    2007-12-01

    The pseudo-reaction zone model was proposed to improve engineering scale simulations with high explosives that have a slow reaction component. In this work an extension of the pseudo-reaction zone model is developed for non-ideal explosives that propagate well below the steady-planar Chapman-Jouguet velocity. A programmed burn method utilizing Detonation Shock Dynamics (DSD) and a detonation velocity dependent pseudo-reaction rate has been developed for non-ideal explosives and applied to the explosive mixture of ammonium nitrate and fuel oil (ANFO). The pseudo-reaction rate is calibrated to the experimentally obtained normal detonation velocity—shock curvature relation. Cylinder test simulations predict the proper expansion to within 1% even though significant reaction occurs as the cylinder expands.

  20. Laser Simulations of the Destructive Impact of Nuclear Explosions on Hazardous Asteroids

    NASA Astrophysics Data System (ADS)

    Aristova, E. Yu.; Aushev, A. A.; Baranov, V. K.; Belov, I. A.; Bel'kov, S. A.; Voronin, A. Yu.; Voronich, I. N.; Garanin, R. V.; Garanin, S. G.; Gainullin, K. G.; Golubinskii, A. G.; Gorodnichev, A. V.; Denisova, V. A.; Derkach, V. N.; Drozhzhin, V. S.; Ericheva, I. A.; Zhidkov, N. V.; Il'kaev, R. I.; Krayukhin, A. A.; Leonov, A. G.; Litvin, D. N.; Makarov, K. N.; Martynenko, A. S.; Malinov, V. I.; Mis'ko, V. V.; Rogachev, V. G.; Rukavishnikov, A. N.; Salatov, E. A.; Skorochkin, Yu. V.; Smorchkov, G. Yu.; Stadnik, A. L.; Starodubtsev, V. A.; Starodubtsev, P. V.; Sungatullin, R. R.; Suslov, N. A.; Sysoeva, T. I.; Khatunkin, V. Yu.; Tsoi, E. S.; Shubin, O. N.; Yufa, V. N.

    2018-01-01

    We present the results of preliminary experiments at laser facilities in which the processes of the undeniable destruction of stony asteroids (chondrites) in space by nuclear explosions on the asteroid surface are simulated based on the principle of physical similarity. We present the results of comparative gasdynamic computations of a model nuclear explosion on the surface of a large asteroid and computations of the impact of a laser pulse on a miniature asteroid simulator confirming the similarity of the key processes in the fullscale and model cases. The technology of fabricating miniature mockups with mechanical properties close to those of stony asteroids is described. For mini-mockups 4-10 mm in size differing by the shape and impact conditions, we have made an experimental estimate of the energy threshold for the undeniable destruction of a mockup and investigated the parameters of its fragmentation at a laser energy up to 500 J. The results obtained confirm the possibility of an experimental determination of the criteria for the destruction of asteroids of various types by a nuclear explosion in laser experiments. We show that the undeniable destruction of a large asteroid is possible at attainable nuclear explosion energies on its surface.

  1. The resonant structure of ^18Ne and its relevance in the breakout of the Hot CNO cycle

    NASA Astrophysics Data System (ADS)

    Almaraz-Calderon, S.; Tan, W.; Aprahamian, A.; Bucher, B.; Gorres, J.; Roberts, A.; Villano, A.; Wiescher, M.; Brune, C.; Heinen, Z.; Massey, T.; Mach, H.; Guray, N.; Guray, R. T.

    2009-10-01

    In explosive hydrogen burning environments such as Novae and X-ray bursts, temperatures and densities achieved are sufficiently high to bypass the beta decay of the waiting points of the hot CNO cycle by alpha captures, leading to a thermonuclear runaway via the rp-process. One of the two paths to a breakout from the hot CNO cycle is the route starting from ^14O(α,p)^17F followed by ^17F(p,γ)^18Ne and ^18Ne(α,p). The ^14O(α,p) reaction proceeds through resonant states in ^18Ne, making the reaction rate dependent on the excitation energies and spins as well as partial and total widths of these resonances. We used the ^16O(^3He,n) reaction and charged particle-neutron coincidences to measure the structure details of levels in ^18Ne. In particular, the α and proton decay branching ratios via ground state and excited states in ^17F were measured. The analysis of the data will allow us to provide crucial information to be included in the reaction network calculations that could have great impact on the nuclear energy generation and nucleosynthesis that occur in these explosive environments.

  2. Saving Lives With Rocket Power

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Thiokol Propulsion uses NASA's surplus rocket fuel to produce a flare that can safely destroy land mines. Through a Memorandum of Agreement between Thiokol and Marshall Space Flight Center, Thiokol uses the scrap Reusable Solid Rocket Motor (RSRM) propellant. The resulting Demining Device was developed by Thiokol with the help of DE Technologies. The Demining Device neutralizes land mines in the field without setting them off. The Demining Device flare is placed next to an uncovered land mine. Using a battery-triggered electric match, the flare is then ignited. Using the excess and now solidified rocket fuel, the flare burns a hole in the mine's case and ignites the explosive contents. Once the explosive material is burned away, the mine is disarmed and no longer dangerous.

  3. Simulating Hadronic-to-Quark-Matter with Burn-UD: Recent work and astrophysical applications

    NASA Astrophysics Data System (ADS)

    Welbanks, Luis; Ouyed, Amir; Koning, Nico; Ouyed, Rachid

    2017-06-01

    We present the new developments in Burn-UD, our in-house hydrodynamic combustion code used to model the phase transition of hadronic-to-quark matter. Our two new modules add neutrino transport and the time evolution of a (u, d, s) quark star (QS). Preliminary simulations show that the inclusion of neutrino transport points towards new hydrodynamic instabilities that increase the burning speed. A higher burning speed could elicit the deflagration to detonation of a neutron star (NS) into a QS. We propose that a Quark-Nova (QN: the explosive transition of a NS to a QS) could help us explain the most energetic astronomical events to this day: superluminous supernovae (SLSNe). Our models consider a QN occurring in a massive binary, experiencing two common envelope stages and a QN occurring after the supernova explosion of a Wolf-Rayet (WO) star. Both models have been successful in explaining the double humped light curves of over half a dozen SLSNe. We also introduce SiRop our r-process simulation code and propose that a QN site has the hot temperatures and neutron densities required to make it an ideal site for the r-process.

  4. [Entering the Dawn of a New Life: A Discussion of Life for Survivors of the Formosa Fun Coast Water Park Explosion].

    PubMed

    Wen, Hui-Min

    2016-02-01

    A dust explosion at the Formosa Fun Coast water park in Taiwan caused nearly 500 burn injury cases. One hundred of these cases involved burns over more than 20% of the total body surface area. This tragedy inundated hospitals across northern Taiwan with an unprecedented number of burn patients. Significant manpower and medical resources were targeted on related resuscitation and treatment efforts, with support and assistance provided by agencies and organizations nationwide. Most of the burn patients were young people in their teens and twenties, whose severe burns posed the greatest threat and challenge to their lives so far. Furthermore, their experience presented major psychosocial and physical health challenges. Patients received an array of clinical treatments such as debridement, skin grafting, dressing, and rehabilitation. Debilitating pain, skin damage, changes to body image, physical disabilities, helplessness, sadness, and anxiety have not only deeply affected the patients physically and psychologically but also created significant life stresses for their family members / companions, which requires counseling in order to facilitate emotional healing. Although burn patients gradually recover as they pass through the acute, recovery, and rehabilitation phases, they will face the challenges of lifelong rehabilitation after discharge. I hope that these young victims will take courage and be brave and strong in dealing with the difficulties and challenges of daily life and will embrace the future with hope as they enter the dawn of their new life.

  5. Regional Seismic Methods of Identifying Explosions

    NASA Astrophysics Data System (ADS)

    Walter, W. R.; Ford, S. R.; Pasyanos, M.; Pyle, M. L.; Hauk, T. F.

    2013-12-01

    A lesson from the 2006, 2009 and 2013 DPRK declared nuclear explosion Ms:mb observations is that our historic collection of data may not be representative of future nuclear test signatures (e.g. Selby et al., 2012). To have confidence in identifying future explosions amongst the background of other seismic signals, we need to put our empirical methods on a firmer physical footing. Here we review the two of the main identification methods: 1) P/S ratios and 2) Moment Tensor techniques, which can be applied at the regional distance (200-1600 km) to very small events, improving nuclear explosion monitoring and confidence in verifying compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Amplitude ratios of seismic P-to-S waves at sufficiently high frequencies (~>2 Hz) can identify explosions among a background of natural earthquakes (e.g. Walter et al., 1995). However the physical basis for the generation of explosion S-waves, and therefore the predictability of this P/S technique as a function of event properties such as size, depth, geology and path, remains incompletely understood. Calculated intermediate period (10-100s) waveforms from regional 1-D models can match data and provide moment tensor results that separate explosions from earthquakes and cavity collapses (e.g. Ford et al. 2009). However it has long been observed that some nuclear tests produce large Love waves and reversed Rayleigh waves that complicate moment tensor modeling. Again the physical basis for the generation of these effects from explosions remains incompletely understood. We are re-examining regional seismic data from a variety of nuclear test sites including the DPRK and the former Nevada Test Site (now the Nevada National Security Site (NNSS)). Newer relative amplitude techniques can be employed to better quantify differences between explosions and used to understand those differences in term of depth, media and other properties. We are also making use of the Source Physics Experiments (SPE) at NNSS. The SPE chemical explosions are explicitly designed to improve our understanding of emplacement and source material effects on the generation of shear and surface waves (e.g. Snelson et al., 2013). Our goal is to improve our explosion models and our ability to understand and predict where P/S and moment tensor methods of identifying explosions work, and any circumstances where they may not. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  6. Propulsion of space ships by nuclear explosion

    NASA Astrophysics Data System (ADS)

    Linhart, J. G.; Kravárik, J.

    2005-01-01

    Recent progress in the research on deuterium-tritium (D-T) inertially confined microexplosions encourages one to reconsider the nuclear propulsion of spaceships based on the concept originally proposed in the Orion project. We discuss first the acceleration of medium-sized spaceships by D-T explosions whose output is in the range of 0.1 10 t of TNT. The launching of such a ship into an Earth orbit or beyond by a large nuclear explosion in an underground cavity is sketched out in the second section of the paper, and finally we consider a hypothetical Mars mission based on these concepts. In the conclusion it is argued that propulsion based on the Orion concept only is not the best method for interplanetary travel owing to the very large number of nuclear explosion required. A combination of a super gun and subsequent rocket propulsion using advanced chemical fuels appears to be the best solution for space flights of the near future.

  7. The ins and outs of terrorist bus explosions: injury profiles of on-board explosions versus explosions occurring adjacent to a bus.

    PubMed

    Golan, Ron; Soffer, Dror; Givon, Adi; Peleg, Kobi

    2014-01-01

    Terrorist explosions occurring in varying settings have been shown to lead to significantly different injury patterns among the victims, with more severe injuries generally arising in confined space attacks. Increasing numbers of terrorist attacks have been targeted at civilian buses, yet most studies focus on events in which the bomb was detonated within the bus. This study focuses on the injury patterns and hospital utilisation among casualties from explosive terrorist bus attacks with the bomb detonated either within a bus or adjacent to a bus. All patients hospitalised at six level I trauma centres and four large regional trauma centres following terrorist explosions that occurred in and adjacent to buses in Israel between November 2000 and August 2004 were reviewed. Injury severity scores (ISS) were used to assess severity. Hospital utilisation data included length of hospital stay, surgical procedures performed, and intensive care unit (ICU) admission. The study included 262 victims of 22 terrorist attacks targeted at civilian bus passengers and drivers; 171 victims were injured by an explosion within a bus (IB), and 91 were injured by an explosion adjacent to a bus (AB). Significant differences were noted between the groups, with the IB population having higher ISS scores, more primary blast injury, more urgent surgical procedures performed, and greater ICU utilisation. Both groups had percentages of nearly 20% for burn injury, had high percentages of injuries to the head/neck, and high percentages of surgical wound and burn care. Explosive terrorist attacks detonated within a bus generate more severe injuries among the casualties and require more urgent surgical and intensive level care than attacks occurring adjacent to a bus. The comparison and description of the outcomes to these terrorist attacks should aid in the preparation and response to such devastating events. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Nuclear quadrupole resonance detection of explosives: an overview

    NASA Astrophysics Data System (ADS)

    Miller, Joel B.

    2011-06-01

    Nuclear Quadrupole Resonance (NQR) is a spectroscopic technique closely related to Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI). These techniques, and NQR in particular, induce signals from the material being interrogated that are very specific to the chemical and physical structure of the material, but are relatively insensitive to the physical form of the material. NQR explosives detection exploits this specificity to detect explosive materials, in contrast to other well known techniques that are designed to detect explosive devices. The past two decades have seen a large research and development effort in NQR explosives detection in the United States aimed at transportation security and military applications. Here, I will briefly describe the physical basis for NQR before discussing NQR developments over the past decade, with particular emphasis on landmine detection and the use of NQR in combating IED's. Potential future directions for NQR research and development are discussed.

  9. Ignition Behavior of alpha-AlH3

    DTIC Science & Technology

    2010-01-01

    nitromethane (Weiser et al., 2007) and Ammonium Perchlorate= HTPB propellants (Deluca et al., 2007) compared to similarly aluminized versions may...aluminum burning times. Combustion, Explosives , and Shockwaves, 41, 533–546. Benson, S.W. 1976. Thermochemical Kinetics, 2nd ed., Wiley Interscience, New...flat-flame burner. 16th International Colloquium on the Dynamic Explosions and Reactive Systems, Krakow, Poland. Brzustowski, T.A., and Glassman, I. 1964

  10. Near-Infrared Spectra of Type Ia Supernovae

    NASA Technical Reports Server (NTRS)

    Marion, G. H.; Hoeflich, P.; Vacca, W. D.; Wheeler, J. C.

    2003-01-01

    We report near-infrared (NIR) spectroscopic observations of 12 'branch-normal' Type Ia supernovae (SNe Ia) that cover the wavelength region from 0.8 to 2.5 microns. Our sample more than doubles the number of SNe Ia with published NIR spectra within 3 weeks of maximum light. The epochs of observation range from 13 days before maximum light to 18 days after maximum light. A detailed model for a Type Ia supernovae is used to identify spectral features. The Doppler shifts of lines are measured to obtain the velocity and thus the radial distribution of elements. The NIR is an extremely useful tool to probe the chemical structure in the layers of SNe Ia ejecta. This wavelength region is optimal for examining certain products of the SNe Ia explosion that may be blended or obscured in other spectral regions. We identify spectral features from Mg II, Ca II, Si II, Fe II, Co II, Ni II, and possibly Mn II. We find no indications for hydrogen, helium, or carbon in the spectra. The spectral features reveal important clues about the physical characteristics of SNe Ia. We use the features to derive upper limits for the amount of unburned matter, to identify the transition regions from explosive carbon to oxygen burning and from partial to complete silicon burning, and to estimate the level of mixing during and after the explosion. Elements synthesized in the outer layers during the explosion appear to remain in distinct layers. That provides strong evidence for the presence of a detonation phase during the explosion as it occurs in delayed detonation or merger models. Mg II velocities are found to exceed 11,000 - 15,000 km/s, depending on the individual SNe Ia. That result suggests that burning during the explosion reaches the outermost layers of the progenitor and limits the amount of unburned material to less than 10% of the mass of the progenitor. Small residuals of unburned material are predicted by delayed detonation models but are inconsistent with pure deflagration or merger models. Differences in the spectra of the individual SNe Ia demonstrate the variety of these events.

  11. Burning--Gravitational, Chemical, and Nuclear.

    ERIC Educational Resources Information Center

    Jones, Goronwy Tudor

    1991-01-01

    Energy problems that incorporate power generation in hydroelectric, fossil-fuel burning, and nuclear power stations are presented. The burning process and the energy released are discussed. Practice problems and solutions, a summary of various energy units and conversion factors, and lists of thought-provoking energies and powers are included. (KR)

  12. Monitoring of atmospheric nuclear explosions with infrasonic microphone arrays

    NASA Astrophysics Data System (ADS)

    Wilson, Charles R.

    2002-11-01

    A review is given of the various United States programs for the infrasonic monitoring of atmospheric nuclear explosions from their inception in 1946 to their termination in 1975. The US Atomic Energy Detection System (USAEDS) monitored all nuclear weapons tests that were conducted by the Soviet Union, France, China, and the US with arrays of sensitive microbarographs in a worldwide network of infrasonic stations. A discussion of the source mechanism for the creation and subsequent propagation around the globe of long wavelength infrasound from explosions (volcanic and nuclear) is given to show the efficacy of infrasonic monitoring for the detection of atmospheric nuclear weapons tests. The equipment that was used for infrasound detection, the design of the sensor arrays, and the data processing techniques that were used by USAEDS are all discussed.

  13. REGIONAL SEISMIC CHEMICAL AND NUCLEAR EXPLOSION DISCRIMINATION: WESTERN U.S. EXAMPLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walter, W R; Taylor, S R; Matzel, E

    2006-07-07

    We continue exploring methodologies to improve regional explosion discrimination using the western U.S. as a natural laboratory. The western U.S. has abundant natural seismicity, historic nuclear explosion data, and widespread mine blasts, making it a good testing ground to study the performance of regional explosion discrimination techniques. We have assembled and measured a large set of these events to systematically explore how to best optimize discrimination performance. Nuclear explosions can be discriminated from a background of earthquakes using regional phase (Pn, Pg, Sn, Lg) amplitude measures such as high frequency P/S ratios. The discrimination performance is improved if the amplitudesmore » can be corrected for source size and path length effects. We show good results are achieved using earthquakes alone to calibrate for these effects with the MDAC technique (Walter and Taylor, 2001). We show significant further improvement is then possible by combining multiple MDAC amplitude ratios using an optimized weighting technique such as Linear Discriminant Analysis (LDA). However this requires data or models for both earthquakes and explosions. In many areas of the world regional distance nuclear explosion data is lacking, but mine blast data is available. Mine explosions are often designed to fracture and/or move rock, giving them different frequency and amplitude behavior than contained chemical shots, which seismically look like nuclear tests. Here we explore discrimination performance differences between explosion types, the possible disparity in the optimization parameters that would be chosen if only chemical explosions were available and the corresponding effect of that disparity on nuclear explosion discrimination. Even after correcting for average path and site effects, regional phase ratios contain a large amount of scatter. This scatter appears to be due to variations in source properties such as depth, focal mechanism, stress drop, in the near source material properties (including emplacement conditions in the case of explosions) and in variations from the average path and site correction. Here we look at several kinds of averaging as a means to try and reduce variance in earthquake and explosion populations and better understand the factors going into a minimum variance level as a function of epicenter (see Anderson ee et al. this volume). We focus on the performance of P/S ratios over the frequency range from 1 to 16 Hz finding some improvements in discrimination as frequency increases. We also explore averaging and optimally combining P/S ratios in multiple frequency bands as a means to reduce variance. Similarly we explore the effects of azimuthally averaging both regional amplitudes and amplitude ratios over multiple stations to reduce variance. Finally we look at optimal performance as a function of magnitude and path length, as these put limits the availability of good high frequency discrimination measures.« less

  14. Neutrino emission from nearby supernova progenitors

    NASA Astrophysics Data System (ADS)

    Yoshida, Takashi; Takahashi, Koh; Umeda, Hideyuki

    2016-05-01

    Neutrinos have an important role for energy loss process during advanced evolution of massive stars. Although the luminosity and average energy of neutrinos during the Si burning are much smaller than those of supernova neutrinos, these neutrinos are expected to be detected by the liquid scintillation neutrino detector KamLAND if a supernova explosion occurs at the distance of ~100 parsec. We investigate the neutrino emission from massive stars during advanced evolution. We calculate the evolution of the energy spectra of neutrinos produced through electron-positron pair-annihilation in the supernova progenitors with the initial mass of 12, 15, and 20 M ⊙ during the Si burning and core-collapse stages. The neutrino emission rate increases from ~ 1050 s-1 to ~ 1052 s-1. The average energy of electron-antineutrinos is about 1.25 MeV during the Si burning and gradually increases until the core-collapse. For one week before the supernova explosion, the KamLAND detector is expected to observe 12-24 and 6-13 v¯e events in the normal and inverted mass hierarchies, respectively, if a supernova explosion of a 12-20 M ⊙ star occurs at the distance of 200 parsec, corresponding to the distance to Betelgeuse. Observations of neutrinos from SN progenitors have a possibility to constrain the core structure and the evolution just before the core collapse of massive stars.

  15. Nova Eruptions from Radio to Gamma-raysówith AAVSO Data in the Middle (Abstract)

    NASA Astrophysics Data System (ADS)

    Mukai, K.; Kafka, S.; Chomiuk, L.; Li, R.; Finzell, T.; Linford, J.; Sokoloski, J.; Nelson, T.; Rupen, M.; Mioduszewski, A.; Weston, J.

    2018-06-01

    (Abstract only) Novae are among the longest-known class of optical transients. In recent years, V1369 Cen in the south reached magnitude 3.3 in late 2013, and had repeated (but not periodic) cycles of re-brightening. Earlier in 2013, V339 Del almost reached magnitude 4.0 during the northern summer. An expanding ball of gas, at about 10,000 K, expelled by a nuclear explosion on the surface of a white dwarf, can explain much of the visible light outputs of novae. But these spectacular visible light displays turn out to be just a small part of the show. Novae are also transient objects in the radio through gamma-raysóin addition to the warm, visible light-emitting gas, we need cold dust particles that emit in the infra-red, 10 million degree shock-heated gas that emits hard X-rays, and the exposed surface of the nuclear-burning white dwarf that emits soft X-rays. Last but not least, we need an exotic process of particle acceleration to explain the gamma-rays and some radio data.

  16. Testing of a work bench for handling of explosives in the laboratory

    NASA Astrophysics Data System (ADS)

    Hank, R.; Johansson, K.; Lagman, L.

    1981-01-01

    A prototype work station was developed at which jobs can be carried out with explosives up to 10 gr and deflagrating products up to 50 gr. Tests were made to investigate the consequences of a spontaneous accident during work. Conclusions are: the workbench offers good protection against splinters provided the inside walls are coated with a shock absorber; the carbonate glass should be a minimum of eight mm thick; the risk of burns, except on arms and hands, is very low; the bench withstands the explosion with the given weight of explosives (10 gr); the risk of lesions on the lung are very low, for the operator as well as for somebody nearby.

  17. Generalized Pseudo-Reaction Zone Model for Non-Ideal Explosives

    NASA Astrophysics Data System (ADS)

    Wescott, Bradley

    2007-06-01

    The pseudo-reaction zone model was proposed to improve engineering scale simulations when using Detonation Shock Dynamics with high explosives that have a slow reaction component. In this work an extension of the pseudo-reaction zone model is developed for non-ideal explosives that propagate well below their steady-planar Chapman-Jouguet velocity. A programmed burn method utilizing Detonation Shock Dynamics and a detonation velocity dependent pseudo-reaction rate has been developed for non-ideal explosives and applied to the explosive mixture of ammonium nitrate and fuel oil (ANFO). The pseudo-reaction rate is calibrated to the experimentally obtained normal detonation velocity---shock curvature relation. The generalized pseudo-reaction zone model proposed here predicts the cylinder expansion to within 1% by accounting for the slow reaction in ANFO.

  18. Explosive Venting Technology for Cook-Off Response Mitigation

    DTIC Science & Technology

    2010-07-01

    endplate blew off 188.3 PAX-28 Go 6.4 Explode, HE boiled out, body banana peeled 177.8 PAX-28 No go 7.6 Burn, HE boiled out of fixture, smoking, then burn...PAX-28 5.1-mm diameter vent test was to blow off the top fixture and peel off three out of the four heating bands while leaving the fixture in its

  19. Screening Level Assessment of Risks Due to Dioxin Emissions from Burning Oil from the BP Deepwater Horizon Gulf of Mexico Spill

    EPA Science Inventory

    Between April 28 and July 19 of 2010, the U.S. Coast Guard conducted in situ oil burns as one approach used for the management of oil spilled after the explosion and subsequent sinking of the BP Deepwater Horizon platform in the Gulf of Mexico. The purpose of this paper is to des...

  20. Comprehensive Nuclear-Test-Ban Treaty seismic monitoring: 2012 USNAS report and recent explosions, earthquakes, and other seismic sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richards, Paul G.

    A comprehensive ban on nuclear explosive testing is briefly characterized as an arms control initiative related to the Non-Proliferation Treaty. The work of monitoring for nuclear explosions uses several technologies of which the most important is seismology-a physics discipline that draws upon extensive and ever-growing assets to monitor for earthquakes and other ground-motion phenomena as well as for explosions. This paper outlines the basic methods of seismic monitoring within that wider context, and lists web-based and other resources for learning details. It also summarizes the main conclusions, concerning capability to monitor for test-ban treaty compliance, contained in a major studymore » published in March 2012 by the US National Academy of Sciences.« less

  1. California Fires

    Atmospheric Science Data Center

    2014-05-15

    ... title:  Smoke from Station Fire Blankets Southern California     View Larger Image ... that had not burned in decades, and years of extended drought contributed to the explosive growth of wildfires throughout southern ...

  2. Planning Guidance for Response to a Nuclear Detonation

    DTIC Science & Technology

    2009-01-16

    Radiation and Fallout One of the primary outputs from a nuclear explosion is radiation . Intense... on the jet streams and have a low-level global impact. Radiation Injuries and Fallout Health Impacts A nuclear explosion will produce dangerous... radiation dose rates based on the quantity of visible fallout. Therefore, visible fallout may possibly be used as an indicator of a direct radiation

  3. Proceedings of the 30th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetovsky, Marv A; Aguilar-chang, Julio; Arrowsmith, Marie

    These proceedings contain papers prepared for the 30th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 23-25 September, 2008 in Portsmouth, Virginia. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States’ capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoringmore » agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.« less

  4. Proceedings of the 2010 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetovsky, Marvin A; Patterson, Eileen F

    These proceedings contain papers prepared for the Monitoring Research Review 2010: Ground-Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2010 in Orlando, Florida,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, National Science Foundation (NSF), Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, asmore » well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.« less

  5. Proceedings of the 2011 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetovsky, Marvin A.; Patterson, Eileen F.; Sandoval, Marisa N.

    These proceedings contain papers prepared for the Monitoring Research Review 2011: Ground-Based Nuclear Explosion Monitoring Technologies, held 13-15 September, 2011 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), National Science Foundation (NSF), and other invited sponsors. The scientific objectives of the research are to improve the United States' capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is tomore » provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.« less

  6. Proceedings of the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.

    These proceedings contain papers prepared for the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 19-21 September, 2006 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoringmore » agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.« less

  7. Proceedings of the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.

    These proceedings contain papers prepared for the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 25-27 September, 2007 in Denver, Colorado. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoringmore » agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.« less

  8. Nonequilibrium phase coexistence and criticality near the second explosion limit of hydrogen combustion

    NASA Astrophysics Data System (ADS)

    Newcomb, Lucas B.; Alaghemandi, Mohammad; Green, Jason R.

    2017-07-01

    While hydrogen is a promising source of clean energy, the safety and optimization of hydrogen technologies rely on controlling ignition through explosion limits: pressure-temperature boundaries separating explosive behavior from comparatively slow burning. Here, we show that the emergent nonequilibrium chemistry of combustible mixtures can exhibit the quantitative features of a phase transition. With stochastic simulations of the chemical kinetics for a model mechanism of hydrogen combustion, we show that the boundaries marking explosive domains of kinetic behavior are nonequilibrium critical points. Near the pressure of the second explosion limit, these critical points terminate the transient coexistence of dynamical phases—one that autoignites and another that progresses slowly. Below the critical point temperature, the chemistry of these phases is indistinguishable. In the large system limit, the pseudo-critical temperature converges to the temperature of the second explosion limit derived from mass-action kinetics.

  9. Proceedings of the 24th Seismic Research Review: Nuclear Explosion Monitoring: Innovation and Integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, N. Jill

    2002-09-17

    These proceedings contain papers prepared for the 24th Seismic Research Review: Nuclear Explosion Monitoring: Innovation and Integration, held 17-19 September, 2002 in Ponte Vedra Beach, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the precedingmore » year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.« less

  10. Effect of Using Thorium Molten Salts on the Neutronic Performance of PACER

    NASA Astrophysics Data System (ADS)

    Acır, Adem; Übeyli, Mustafa

    2010-04-01

    Utilization of nuclear explosives can produce a significant amount of energy which can be converted into electricity via a nuclear fusion power plant. An important fusion reactor concept using peaceful nuclear explosives is called as PACER which has an underground containment vessel to handle the nuclear explosives safely. In this reactor, Flibe has been considered as a working coolant for both tritium breeding and heat transferring. However, the rich neutron source supplied from the peaceful nuclear explosives can be used also for fissile fuel production. In this study, the effect of using thorium molten salts on the neutronic performance of the PACER was investigated. The computations were performed for various coolants bearing thorium and/or uranium-233 with respect to the molten salt zone thickness in the blanket. Results pointed out that an increase in the fissile content of the salt increased the neutronic performance of the reactor remarkably. In addition, higher energy production was obtained with thorium molten salts compared to the pure mode of the reactor. Moreover, a large quantity of 233U was produced in the blanket in all cases.

  11. Open Burn/Open Detonation (OBOD) Area Management Using Lime For Explosives Transformation And Metals Immobilization

    DTIC Science & Technology

    2012-01-01

    14 Figure 7. The column study used to test treatment options and longevity by tracking pH in the leachate from the APG OD soil...during baseline characterization of the APG OD site. ............................................................. 39 Table 8. Runoff water and leachate ...et al. 2006). Off-site migration of explosives from OBOD area soils is possible through horizon- tal transport in surface water and vertical leachate

  12. Early Leakage Protection System of LPG (Liquefied Petroleum Gas) Based on ATMega 16 Microcontroller

    NASA Astrophysics Data System (ADS)

    Sriwati; Ikhsan Ilahi, Nur; Musrawati; Baco, Syarifuddin; Suyuti'Andani Achmad, Ansar; Umrianah, Ejah

    2018-04-01

    LPG (Liquefied Petroleum Gas). LPG is a hydrocarbon gas production from refineries and gas refinery with the major components of propane gas (C3H8) and butane (C4H10). Limit flame (Flammable Range) or also called gas with air. Value Lower Explosive Limit (LEL) is the minimum limit of the concentration of fuel vapor in the air which if there is no source of fire, the gas will be burned. While the value of the Upper Explosive Limit (UEL), which limits the maximum concentration of fuel vapor in the air, which if no source of fire, the gas will be burned. Protection system is a defend mechanism of human, equipment, and buildings around the protected area. Goals to be achieved in this research are to design a protection system against the consequences caused by the leakage of LPG gas based on ATmega16 microcontroller. The method used in this research is to reduce the levels of leaked LPG and turned off the power source when the leakage of LPG is on the verge of explosive limit. The design of this protection system works accurately between 200 ppm up to 10000 ppm, which is still below the threshold of explosive. Thus protecting the early result of that will result in the leakage of LPG gas.

  13. Wavelet feature extraction for reliable discrimination between high explosive and chemical/biological artillery

    NASA Astrophysics Data System (ADS)

    Hohil, Myron E.; Desai, Sachi V.; Bass, Henry E.; Chambers, Jim

    2005-03-01

    Feature extraction methods based on the discrete wavelet transform and multiresolution analysis are used to develop a robust classification algorithm that reliably discriminates between conventional and simulated chemical/biological artillery rounds via acoustic signals produced during detonation. Distinct characteristics arise within the different airburst signatures because high explosive warheads emphasize concussive and shrapnel effects, while chemical/biological warheads are designed to disperse their contents over large areas, therefore employing a slower burning, less intense explosive to mix and spread their contents. The ensuing blast waves are readily characterized by variations in the corresponding peak pressure and rise time of the blast, differences in the ratio of positive pressure amplitude to the negative amplitude, and variations in the overall duration of the resulting waveform. Unique attributes can also be identified that depend upon the properties of the gun tube, projectile speed at the muzzle, and the explosive burn rates of the warhead. In this work, the discrete wavelet transform is used to extract the predominant components of these characteristics from air burst signatures at ranges exceeding 2km. Highly reliable discrimination is achieved with a feedforward neural network classifier trained on a feature space derived from the distribution of wavelet coefficients and higher frequency details found within different levels of the multiresolution decomposition.

  14. Temperature and pressure influence on maximum rates of pressure rise during explosions of propane-air mixtures in a spherical vessel.

    PubMed

    Razus, D; Brinzea, V; Mitu, M; Movileanu, C; Oancea, D

    2011-06-15

    The maximum rates of pressure rise during closed vessel explosions of propane-air mixtures are reported, for systems with various initial concentrations, pressures and temperatures ([C(3)H(8)]=2.50-6.20 vol.%, p(0)=0.3-1.3 bar; T(0)=298-423 K). Experiments were performed in a spherical vessel (Φ=10 cm) with central ignition. The deflagration (severity) index K(G), calculated from experimental values of maximum rates of pressure rise is examined against the adiabatic deflagration index, K(G, ad), computed from normal burning velocities and peak explosion pressures. At constant temperature and fuel/oxygen ratio, both the maximum rates of pressure rise and the deflagration indices are linear functions of total initial pressure, as reported for other fuel-air mixtures. At constant initial pressure and composition, the maximum rates of pressure rise and deflagration indices are slightly influenced by the initial temperature; some influence of the initial temperature on maximum rates of pressure rise is observed only for propane-air mixtures far from stoichiometric composition. The differentiated temperature influence on the normal burning velocities and the peak explosion pressures might explain this behaviour. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. The clinical and microbiological characteristics of infections in burn patients from the Formosa Fun Coast Dust Explosion.

    PubMed

    Lin, Tzu-Chao; Wu, Rui-Xin; Chiu, Chih-Chien; Yang, Ya-Sung; Lee, Yi; Lin, Jung-Chung; Chang, Feng-Yee

    2018-04-01

    Bloodstream infection is a leading cause of mortality among burn patients. This study aimed to evaluate the risk factors, causative pathogens, and the relationship between bloodstream infections and other infections among burn patients from the Formosa Fun Coast Dust Explosion. This retrospective study evaluated the demographic and clinical characteristics, infection types, causative pathogen(s), and isolates' antibiotic susceptibilities from patients who were hospitalized between June 27 and September 31, 2015. Fifty-eight patients were admitted during the study period (36 males, mean age: 22.6 years). The mean burned total body surface area (TBSA) was 40% for all patients. Eighteen (31%) patients with mean TBSA of 80% had 66 episodes of bloodstream infections caused by 92 isolates. Twelve (18.2%) episodes of bloodstream infections were polymicrobial. Acinetobacter baumannii (19, 20.7%), Ralstonia pickettii (17, 18.5%), and Chryseobacterium meningosepticum (13, 14.1%) were the most common pathogens causing bloodstream infections. A high concordance rate of wound cultures with blood cultures was seen in Staphylococcus aureus (3, 75%) and C. meningosepticum (8, 61.5%) infections. However, no Ralstonia isolate was found in burn wounds of patients with Ralstonia bacteremia. A high concordance rate of central venous catheter cultures with blood cultures was noted in Ralstonia mannitolilytica (5, 62.5%) and Chryseobacterium indologenes (3, 60%) infections. Approximately 21.1% of A. baumannii strains were resistant to carbapenem. All S. aureus isolates were susceptible to methicillin. Waterborne bacteria should be considered in patients of burns with possible water contact. Empirical broad-spectrum antibiotics should be considered for patients who were hospitalized for severe sepsis, or septic shock with a large burn. Antibiotic treatment should be administered based on the specific pathogens and their detection points. Copyright © 2017. Published by Elsevier B.V.

  16. Reflection processing of the large-N seismic data from the Source Physics Experiment (SPE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paschall, Olivia C.

    2016-07-18

    The purpose of the SPE is to develop a more physics-based model for nuclear explosion identification to understand the development of S-waves from explosion sources in order to enhance nuclear test ban treaty monitoring.

  17. Nuclear and Non-Nuclear Airblast Effects.

    DTIC Science & Technology

    1984-02-14

    algorithms. 2 The above methodologr has been applied to a series of test prorlems initiated by a spherical high- explosive (HE) detonation In air . An...used, together with a real- air equation of state, to follow the development of an explosion initialized with the 1-kton standard as it reflects from the...interior. Stage (1) is not contained in our model; since the weapon mass greatly exceeds the ,mass of air contained within the initial explosion radius

  18. Decomposition of the Seismic Source Using Numerical Simulations and Observations of Nuclear Explosions

    DTIC Science & Technology

    2017-05-31

    SUBJECT TERMS nonlinear finite element calculations, nuclear explosion monitoring, topography 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...3D North Korea calculations........ Figure 6. The CRAM 3D finite element outer grid (left) is rectangular......................... Figure 7. Stress...Figure 6. The CRAM 3D finite element outer grid (left) is rectangular. The inner grid (center) is shaped to match the shape of the explosion shock wave

  19. Refinement of Regional Distance Seismic Moment Tensor and Uncertainty Analysis for Source-Type Identification

    DTIC Science & Technology

    2011-09-01

    a NSS that lies in this negative explosion positive CLVD quadrant due to the large degree of tectonic release in this event that reversed the phase...Mellman (1986) in their analysis of fundamental model Love and Rayleigh wave amplitude and phase for nuclear and tectonic release source terms, and...1986). Estimating explosion and tectonic release source parameters of underground nuclear explosions from Rayleigh and Love wave observations, Air

  20. MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): BINARIES, PULSATIONS, AND EXPLOSIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paxton, Bill; Bildsten, Lars; Cantiello, Matteo

    We substantially update the capabilities of the open-source software instrument Modules for Experiments in Stellar Astrophysics (MESA). MESA can now simultaneously evolve an interacting pair of differentially rotating stars undergoing transfer and loss of mass and angular momentum, greatly enhancing the prior ability to model binary evolution. New MESA capabilities in fully coupled calculation of nuclear networks with hundreds of isotopes now allow MESA to accurately simulate the advanced burning stages needed to construct supernova progenitor models. Implicit hydrodynamics with shocks can now be treated with MESA, enabling modeling of the entire massive star lifecycle, from pre-main-sequence evolution to themore » onset of core collapse and nucleosynthesis from the resulting explosion. Coupling of the GYRE non-adiabatic pulsation instrument with MESA allows for new explorations of the instability strips for massive stars while also accelerating the astrophysical use of asteroseismology data. We improve the treatment of mass accretion, giving more accurate and robust near-surface profiles. A new MESA capability to calculate weak reaction rates “on-the-fly” from input nuclear data allows better simulation of accretion induced collapse of massive white dwarfs and the fate of some massive stars. We discuss the ongoing challenge of chemical diffusion in the strongly coupled plasma regime, and exhibit improvements in MESA that now allow for the simulation of radiative levitation of heavy elements in hot stars. We close by noting that the MESA software infrastructure provides bit-for-bit consistency for all results across all the supported platforms, a profound enabling capability for accelerating MESA's development.« less

  1. Nuclear subsurface explosion modeling and hydrodynamic fragmentation simulation of hazardous asteroids

    NASA Astrophysics Data System (ADS)

    Premaratne, Pavithra Dhanuka

    Disruption and fragmentation of an asteroid using nuclear explosive devices (NEDs) is a highly complex yet a practical solution to mitigating the impact threat of asteroids with short warning time. A Hypervelocity Asteroid Intercept Vehicle (HAIV) concept, developed at the Asteroid Deflection Research Center (ADRC), consists of a primary vehicle that acts as kinetic impactor and a secondary vehicle that houses NEDs. The kinetic impactor (lead vehicle) strikes the asteroid creating a crater. The secondary vehicle will immediately enter the crater and detonate its nuclear payload creating a blast wave powerful enough to fragment the asteroid. The nuclear subsurface explosion modeling and hydrodynamic simulation has been a challenging research goal that paves the way an array of mission critical information. A mesh-free hydrodynamic simulation method, Smoothed Particle Hydrodynamics (SPH) was utilized to obtain both qualitative and quantitative solutions for explosion efficiency. Commercial fluid dynamics packages such as AUTODYN along with the in-house GPU accelerated SPH algorithms were used to validate and optimize high-energy explosion dynamics for a variety of test cases. Energy coupling from the NED to the target body was also examined to determine the effectiveness of nuclear subsurface explosions. Success of a disruption mission also depends on the survivability of the nuclear payload when the secondary vehicle approaches the newly formed crater at a velocity of 10 km/s or higher. The vehicle may come into contact with debris ejecting the crater which required the conceptual development of a Whipple shield. As the vehicle closes on the crater, its skin may also experience extreme temperatures due to heat radiated from the crater bottom. In order to address this thermal problem, a simple metallic thermal shield design was implemented utilizing a radiative heat transfer algorithm and nodal solutions obtained from hydrodynamic simulations.

  2. Apparatus for reducing shock and overpressure

    DOEpatents

    Walter, C.E.

    1975-01-28

    An apparatus for reducing shock and overpressure is particularly useful in connection with the sequential detonation of a series of nuclear explosives under ground. A coupling and decoupling arrangement between adjacent nuclear explosives in the tubing string utilized to emplace the explosives is able to support lower elements on the string but yields in a manner which absorbs energy when subjected to the shock wave produced upon detonation of one of the explosives. Overpressure is accomodated by an arrangement in the string which provides an additional space into which the pressurized material can expand at a predetermined overpressure. (10 claims)

  3. Apparatus for reducing shock and overpressure

    DOEpatents

    Walter, C.E.

    1975-10-21

    The design is given of an apparatus for reducing shock and overpressure particularly useful in connection with the sequential detonation of a series of nuclear explosives underground. A coupling and decoupling arrangement between adjacent nuclear explosives in the tubing string utilized to emplace the explosives is able to support lower elements on the string but yields in a manner which absorbs energy when subjected to the shock wave produced upon detonation of one of the explosives. Overpressure is accommodated by an arrangement in the string which provides an additional space into which the pressurized material can expand at a predetermined overpressure.

  4. Ejection of the Massive Hydrogen-rich Envelope Timed with the Collapse of the Stripped SN 2014C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Margutti, Raffaella; Kamble, A.; Milisavljevic, D.

    2017-02-01

    We present multi-wavelength observations of SN 2014C during the first 500 days. These observations represent the first solid detection of a young extragalactic stripped-envelope SN out to high-energy X-rays ∼40 keV. SN 2014C shows ordinary explosion parameters ( E {sub k} ∼ 1.8 × 10{sup 51} erg and M {sub ej} ∼ 1.7 M{sub ⊙}). However, over an ∼1 year timescale, SN 2014C evolved from an ordinary hydrogen-poor supernova into a strongly interacting, hydrogen-rich supernova, violating the traditional classification scheme of type-I versus type-II SNe. Signatures of the SN shock interaction with a dense medium are observed across the spectrum,more » from radio to hard X-rays, and revealed the presence of a massive shell of ∼1 M {sub ⊙} of hydrogen-rich material at ∼6 × 10{sup 16} cm. The shell was ejected by the progenitor star in the decades to centuries before collapse. This result challenges current theories of massive star evolution, as it requires a physical mechanism responsible for the ejection of the deepest hydrogen layer of H-poor SN progenitors synchronized with the onset of stellar collapse. Theoretical investigations point at binary interactions and/or instabilities during the last nuclear burning stages as potential triggers of the highly time-dependent mass loss. We constrain these scenarios utilizing the sample of 183 SNe Ib/c with public radio observations. Our analysis identifies SN 2014C-like signatures in ∼10% of SNe. This fraction is reasonably consistent with the expectation from the theory of recent envelope ejection due to binary evolution if the ejected material can survive in the close environment for 10{sup 3}–10{sup 4} years. Alternatively, nuclear burning instabilities extending to core C-burning might play a critical role.« less

  5. SDSS 1240+6710: a partially burnt supernova remnant

    NASA Astrophysics Data System (ADS)

    Gaensicke, Boris

    2016-10-01

    We have recently (Kepler et al. 2016, Science 352, 6281, April 1 issue) identified SDSSJ124043.01+671034.68 as a white dwarf with most peculiar characterstics. Instead of the usual hydrogen or helium, its atmosphere is composed almost purely of oxygen, the only other trace elements detected are neon, magnesium, and silicon; and it has a large transverse velocity of 340km/s. The relatively low mass, 0.6Msun, and the non-detection of carbon strongly argue against SDSSJ1240+6710 being a canonical oxygen-neon core formed from the evolution of a single progenitor star with a mass of 6.5-10Msun. The detection of silicon suggests that the progenitor of this white dwarf may have initiated oxygen-burning, and we argue that SDSSJ1240+6710 is the partially burnt remnant of an unusual thermonuclear supernova, of which a variety have been discovered by the ongoing large transient surveys. We propose to obtain COS ultraviolet spectroscopy of SDSSJ1240+6710 to measure (1) the abundances of phosphorus and sulfur, two other products of oxygen-burning, (2) significantly improve the upper limits on hydrogen (from Ly alpha) and carbon (1330/1335A resonance lines), (3) probe for traces of other nuclear burning, including nitrogen, iron, and nickel, and (4) accurately measure its effective temperature and mass. SDSSJ1240+6710 provides so far the unique opportunity to test the predictions of the rapidly growing number of theoretical stellar explosion models producing gravitationally bound remnants.

  6. Broadband Evaluation of DPRK Explosions, Collapse Event, and Induced Aftershocks

    NASA Astrophysics Data System (ADS)

    Mayeda, K.; Roman-Nieves, J. I.; Wagner, G.; Jeon, Y. S.

    2017-12-01

    We report on the past 6 declared DPRK nuclear explosions, a collapse event, and recent associated induced shear dislocation sources using long-period waveform modeling, direct regional phases, and stable P-coda and S-coda spectral ratios. We find that the recent September 3rd, 2017 explosion is well modeled with an MM71 explosion source model at normal scale depth, but the previous 5 smaller yield explosions exhibit much larger relative high frequency radiation, strongly suggesting they are all over buried by varying amounts. The collapse event that occurred 8 minutes following the September 3rd DPRK explosion shares significant similarities with a number of NTS collapse events for explosions of comparable yield, both in absolute amplitude and spectral fall-off. A large number of smaller sources have been observed, which from stable coda spectral analysis and waveform modeling, are consistent with shallow shear dislocations likely caused by stress redistribution following the past nuclear explosions. We conclude with testing of a new discriminant that is specific to this region.

  7. A novel method for the measurement of the von Neumann spike in detonating high explosives

    NASA Astrophysics Data System (ADS)

    Sollier, A.; Bouyer, V.; Hébert, P.; Doucet, M.

    2016-06-01

    We present detonation wave profiles measured in T2 (97 wt. % TATB) and TX1 (52 wt. % TATB and 45 wt. % HMX) high explosives. The experiments consisted in initiating a detonation wave in a 15 mm diameter cylinder of explosive using an explosive wire detonator and an explosive booster. Free surface velocity wave profiles were measured at the explosive/air interface using a Photon Doppler Velocimetry system. We demonstrate that a comparison of these free surface wave profiles with those measured at explosive/window interfaces in similar conditions allows to bracket the von Neumann spike in a narrow range. For T2, our measurements show that the spike pressure lies between 35.9 and 40.1 GPa, whereas for TX1, it lies between 42.3 and 47.0 GPa. The numerical simulations performed in support to these measurements show that they can be used to calibrate reactive burn models and also to check the accuracy of the detonation products equation of state at low pressure.

  8. 46 CFR 197.420 - Operations manual.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... dive team. (b) The operations manual must be modified in writing when adaptation is required because of...) Hand-held power tools; (ii) Welding and burning equipment; and (iii) Explosives. specific diving mode...

  9. Camp Minden Fact Sheet July 2015

    EPA Pesticide Factsheets

    The Louisiana Military Department (LMD) led a Community Meeting on June 30, 2015. The LMD contractor, Explosive Service Intl., and its subcontractor El Dorado Engineering, presented details of Contained Burn System (CBS).

  10. Simulation Study of Near-Surface Coupling of Nuclear Devices vs. Equivalent High-Explosive Charges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fournier, Kevin B; Walton, Otis R; Benjamin, Russ

    2014-09-29

    A computational study was performed to examine the differences in near-surface ground-waves and air-blast waves generated by high-explosive energy sources and those generated by much higher energy - density low - yield nuclear sources. The study examined the effect of explosive-source emplacement (i.e., height-of-burst, HOB, or depth-of-burial, DOB) over a range from depths of -35m to heights of 20m, for explosions with an explosive yield of 1-kt . The chemical explosive was modeled by a JWL equation-of-state model for a ~14m diameter sphere of ANFO (~1,200,000kg – 1 k t equivalent yield ), and the high-energy-density source was modeled asmore » a one tonne (1000 kg) plasma of ‘Iron-gas’ (utilizing LLNL’s tabular equation-of-state database, LEOS) in a 2m diameter sphere, with a total internal-energy content equivalent to 1 k t . A consistent equivalent-yield coupling-factor approach was developed to compare the behavior of the two sources. The results indicate that the equivalent-yield coupling-factor for air-blasts from 1 k t ANFO explosions varies monotonically and continuously from a nearly perfec t reflected wave off of the ground surface for a HOB ≈ 20m, to a coupling factor of nearly zero at DOB ≈ -25m. The nuclear air - blast coupling curve, on the other hand, remained nearly equal to a perfectly reflected wave all the way down to HOB’s very near zero, and then quickly dropped to a value near zero for explosions with a DOB ≈ -10m. The near - surface ground - wave traveling horizontally out from the explosive source region to distances of 100’s of meters exhibited equivalent - yield coupling - factors t hat varied nearly linearly with HOB/DOB for the simulated ANFO explosive source, going from a value near zero at HOB ≈ 5m to nearly one at DOB ≈ -25m. The nuclear-source generated near-surface ground wave coupling-factor remained near zero for almost all HOB’s greater than zero, and then appeared to vary nearly - linearly with depth-of-burial until it reached a value of one at a DOB between 15m and 20m. These simulations confirm the expected result that the variation of coupling to the ground, or the air, change s much more rapidly with emplacement location for a high-energy-density (i.e., nuclear-like) explosive source than it does for relatively low - energy - density chemical explosive sources. The Energy Partitioning, Energy Coupling (EPEC) platform at LLNL utilizes laser energy from one quad (i.e. 4-laser beams) of the 192 - beam NIF Laser bank to deliver ~10kJ of energy to 1mg of silver in a hohlraum creating an effective small-explosive ‘source’ with an energy density comparable to those in low-yield nuclear devices. Such experiments have the potential to provide direct experimental confirmation of the simulation results obtained in this study, at a physical scale (and time-scale) which is a factor of 1000 smaller than the spatial- or temporal-scales typically encountered when dealing with nuclear explosions.« less

  11. UTEX modeling of xenon signature sensitivity to geology and explosion cavity characteristics following an underground nuclear explosion

    NASA Astrophysics Data System (ADS)

    Lowrey, J. D.; Haas, D.

    2013-12-01

    Underground nuclear explosions (UNEs) produce anthropogenic isotopes that can potentially be used in the verification component of the Comprehensive Nuclear-Test-Ban Treaty. Several isotopes of radioactive xenon gas have been identified as radionuclides of interest within the International Monitoring System (IMS) and in an On-Site Inspection (OSI). Substantial research has been previously undertaken to characterize the geologic and atmospheric mechanisms that can drive the movement of radionuclide gas from a well-contained UNE, considering both sensitivities on gas arrival time and signature variability of xenon due to the nature of subsurface transport. This work further considers sensitivities of radioxenon gas arrival time and signatures to large variability in geologic stratification and generalized explosion cavity characteristics, as well as compares this influence to variability in the shallow surface.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watkins, B.E.; Kanna, R.L.; Chambers, R.D.

    There is a great need for alternatives to open burn/open detonation of explosives and propellants from dismantled munitions. LANL has investigated the use of base hydrolysis for the demilitarization of explosives. Hydrolysates of Comp B, Octol, Tritonal, and PBXN-109 were processed in the pilot molten salt unit (in building 191). NOx and CO emissions were found to be low, except for CO from PBXN-109 processing. This report describes experimental results of the destruction of the base hydrolysates.

  13. The 2014 Integrated Field Exercise of the Comprehensive Nuclear-Test-Ban Treaty revisited: The case for data fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnett, Jonathan L.; Miley, Harry S.; Bowyer, Theodore W.

    The International Monitoring System of the Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) uses a global network of radionuclide monitoring stations to detect evidence of a nuclear explosion. The two radionuclide technologies employed—particulate and noble gas (radioxenon) detection—have applications for data fusion to improve detection of a nuclear explosion. Using the hypothetical 0.5 kT nuclear explosive test scenario of the CTBTO 2014 Integrated Field Exercise, the intrinsic relationship between particulate and noble gas signatures has been examined. This study shows that, depending upon the time of the radioxenon release, the particulate progeny can produce the more detectable signature.more » Thus, as both particulate and noble gas signatures are inherently coupled, the authors recommend that the sample categorization schemes should be linked.« less

  14. The 2014 Integrated Field Exercise of the Comprehensive Nuclear-Test-Ban Treaty revisited: The case for data fusion.

    PubMed

    Burnett, Jonathan L; Miley, Harry S; Bowyer, Theodore W; Cameron, Ian M

    2018-09-01

    The International Monitoring System of the Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) uses a global network of radionuclide monitoring stations to detect evidence of a nuclear explosion. The two radionuclide technologies employed-particulate and noble gas (radioxenon) detection-have applications for data fusion to improve detection of a nuclear explosion. Using the hypothetical 0.5 kT nuclear explosive test scenario of the CTBTO 2014 Integrated Field Exercise, the intrinsic relationship between particulate and noble gas signatures has been examined. This study shows that, depending upon the time of the radioxenon release, the particulate progeny can produce the more detectable signature. Thus, as both particulate and noble gas signatures are inherently coupled, the authors recommend that the sample categorization schemes should be linked. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. The Las Vegas Valley Seismic Response Project: Ground Motions in Las Vegas Valley from Nuclear Explosions at the Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodgers, A; Tkalcic, H; McCallen, D

    2005-03-18

    Between 2001-2004 the Las Vegas Seismic Response Project has sought to understand the response of Las Vegas Valley (LVV) to seismic excitation. In this study, the author report the findings of this project with an emphasis on ground motions in LVV from nuclear explosions at the Nevada Test Site (NTS). These ground motions are used to understand building structural response and damage as well as human perception. Historical nuclear explosion observations are augmented with earthquake recordings from a temporary deployment of seismometers to improve spatial coverage of LVV. The nuclear explosions were conducted between 1968 and 1989 and were recordedmore » at various sites within Las Vegas. The data from past nuclear tests were used to constrain ground motions in LVV and to gain a predictive capability of ground motions for possible future nuclear tests at NTS. Analysis of ground motion data includes peak ground motions (accelerations and velocities) and amplification of basin sites relative to hard rock sites (site response). Site response was measured with the Standard Spectral Ratios (SSR) technique relative to hard rock reference sites on the periphery of LVV. The site response curves indicate a strong basin amplification of up to a factor of ten at frequencies between 0.5-2 Hz. Amplifications are strongest in the central and northern portions of LVV, where the basin is deeper than 1 km based on the reported basin depths of Langenheim et al (2001a). They found a strong correlation between amplification and basin depth and shallow shear wave velocities. Amplification below 1 Hz is strongly controlled by slowness-averaged shear velocities to depths of 30 and 100 meters. Depth averaged shear velocities to 10 meters has modest control of amplifications between 1-3 Hz. Modeling reveals that low velocity material in the shallow layers (< 200 m) effectively controls amplification. They developed a method to scale nuclear explosion ground motion time series to sites around LVV that have no historical record of explosions. The method is also used to scale nuclear explosion ground motions to different yields. They also present a range of studies to understand basin structure and response performed on data from the temporary deployment.« less

  16. A Story Too Good to Kill: The "Nuclear" Explosion in San Francisco Bay.

    ERIC Educational Resources Information Center

    Badash, Lawrence; Hewlett, Richard G.

    1993-01-01

    Describes an explosion in Port Chicago (California) that a journalist later ascribed to a nuclear weapon, explains how his conclusions can be refuted, discusses the sociology of publishing such spectacular claims, and suggests how historians might better assist journalists in evaluating such claims. (40 references) (LRW)

  17. Critical Homeland Infrastructure Protection

    DTIC Science & Technology

    2007-01-01

    talent. Examples include: * Detection of surveillance activities; * Stand-off detection of chemical, biological, nuclear, radiation and explosive ...Manager Guardian DARPA Overview Mr. Roger Gibbs DARPA LLNL Technologies in Support of Infrastructure Mr. Don Prosnitz LLNL Protection Sandia National...FP Antiterrorism/Force Protection CBRNE Chemical Biological Radiological Nuclear Explosive CERT Commuter Emergency Response Team CIA Central

  18. Population Explosion in Africa: Further Implications.

    ERIC Educational Resources Information Center

    Hidore, John J.

    1978-01-01

    Explains that population growth in Africa has caused a deterioration of vegetation and soil resources. This deterioration has resulted from overgrazing, too frequent and too extensive burning of the vegetation, and overcultivation. (Author/AV)

  19. The Comprehensive Nuclear Test Ban Treaty (Counterproliferation Papers, Future Warfare Series, Number 54)

    DTIC Science & Technology

    2010-06-01

    parts to detect a nuclear explosion: seismic, hydroacoustic, infrasound and radionuclide. Figure 3. CTBTO International Monitoring System Sites26...Conference,” (Oct. 14, 2009), www.armscontrol.org.. [17] from earthquakes and mining explosions, but have proved effective in detecting past nuclear...hydroacoustic monitoring stations detect sound waves in the oceans, and the 60 infrasound stations detect above ground, ultra-low frequency sound waves

  20. Statistical Study of Soviet Nuclear Explosions: Data, Results, and Software Tools

    DTIC Science & Technology

    1993-11-05

    KIRTLAND AFB, NM 87117-6008 Monitored by: ADVANCED RESEARCH PROJECTS AGENCY NUCLEAR MONITORING RESEARCH OFFICE 94-03131 3701 NORTH FAIRFAX DRIVE...AGENCY REPORT NUMBER ARPAINMRO (Attn. Dr. Alan Ryall, Jr.) 3701 North Fairfax Drive Arlington, VA 22203-1714 11. SUPPLEMENTARY NOTES *Department of...dug by them, in Nuclear Explosions for Peaceful Purposes (I. D. Morokhov, Ed.), Atomizdat, Moscow, LLL Report UCRL -Trans-10517, 79-109. Nuttli, 0. W

  1. Detection of explosives, shielded nuclear materials and other hazardous substances in cargo containers

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Andrey; Evsenin, Alexey; Vakhtin, Dmitry; Gorshkov, Igor; Osetrov, Oleg; Kalinin, Valery

    2006-05-01

    Nanosecond Neutron Analysis / Associated Particles Technique (NNA/APT) has been used to create devices for detection of explosives, radioactive and heavily shielded nuclear materials in cargo containers. Explosives and other hazardous materials are detected by analyzing secondary high-energy gamma-rays form reactions of fast neutrons with the materials inside the container. Depending on the dimensions of the inspected containers, the detecting system consists of one or several detection modules, each of which contains a small neutron generator with built-in position sensitive detector of associated alpha-particles and several scintillator-based gamma-ray detectors. The same gamma-ray detectors are used to detect unshielded radioactive and nuclear materials. Array of several detectors of fast neutrons is used to detect neutrons from spontaneous and induced fission of nuclear materials. These neutrons can penetrate thick layers of lead shielding, which can be used to conceal gamma-radioactivity from nuclear materials. Coincidence and timing analysis allows one to discriminate between fission neutrons and scattered probing neutrons. Mathematical modeling by MCNP5 code was used to estimate the sensitivity of the device and its optimal configuration. Capability of the device to detect 1 kg of explosive imitator inside container filled with suitcases and other baggage items has been confirmed experimentally. First experiments with heavily shielded nuclear materials have been carried out.

  2. Kinetic calculations of explosives with slow-burning constituents

    NASA Astrophysics Data System (ADS)

    Howard, W. Michael; Souers, P. Clark; Fried, Laurence E.

    1998-07-01

    The equilibrium thermochemical code CHEETAH V1.40 has been modified to detonate part of the explosive and binder. An Einstein thermal description of the unreacted constituents is used, and the Einstein temperature may be increased to reduce heat absorption. We study the effect of the reactivity and thermal transport on the detonation velocity. Hydroxy-terminated-polybutadiene binders have low energy and density and would degrade the detonation velocity if they burned. Runs with unburned binder are closer to the measured values. Aluminum and ammonium perchlorate are also largely unburned within the sonic reaction zone that determines the detonation velocity. All three materials appear not to fully absorb heat as well. The normal assumption of total reaction in a thermochemical code is clearly not true for these special cases, where the detonation velocities have widely different values for different combinations of processes.

  3. Nuclear reactions in type IA supernovae: Effects of progenitor composition and detonation asymmetry

    NASA Astrophysics Data System (ADS)

    Chamulak, David A.

    Type Ia supernovae go through three distinct phases before their progenitor star is obliterated in a thermonuclear explosion. First is "simmering," during which the 12 C + 12 C reaction gradually heats the white dwarf on a long (~10^3 yr) timescale. Next is a period of subsonic burning. Finally, a detonation is thought to occur that finishes unbinding the star. This thesis investigates the nuclear reactions that take place in these three phases and considers what that may be able to tell us about the progenitor systems and the mechanics behind the detonation. First, we investigate the nuclear reactions during this simmering with a series of self-heating, at constant pressure, reaction network calculations. As an aid to hydrodynamical simulations of the simmering phase, we present fits to the rates of heating, electron capture, change in mean atomic mass, and consumption of 12 C in terms of the screened thermally averaged cross section for 12 C + 12 C. Our evaluation of the net heating rate includes contributions from electron captures into the 3.68 MeV excited state of 13 C. We compare our one-zone results to more accurate integrations over the white dwarf structure to estimate the amount of 12 C that must be consumed to raise the white dwarf temperature, and hence to determine the net reduction of Y e during simmering. Second, we consider the effects of 22 Ne on flame speed. Carbon-oxygen white dwarfs contain 22 Ne formed from a-captures onto 14 N during core He burning in the progenitor star. In a white dwarf (Type Ta) supernova, the 22 Ne abundance determines, in part, the neutron-to-proton ratio and hence the abundance of radioactive 56 Ni that powers the lightcurve. The 22 Ne abundance also changes the burning rate and hence the laminar flame speed. We tabulate the flame speedup for different initial 12 C and 22 Ne abundances and for a range of densities. This increase in the laminar flame speed--about 30% for a 22 Ne mass fraction of 6%--affects the deflagration just after ignition near the center of the white dwarf, where the laminar speed of the flame dominates over the buoyant rise, and in regions of lower density ~10^7 g cm -3 where a transition to distributed burning is conjectured to occur. The increase in flame speed will decrease the density of any transition to distributed burning. Finally, we look at how a surface detonation affects the composition of nuclides across the supernovae remnant. Several scenarios have been proposed as to how this delayed detonation may actually occur but careful nucleosynthesis calculations to determine the isotopic abundances produced by these scenarios have not been done. The surface detonation produces a clear compositional gradient in elemental Ni in layers of the white dwarf that do not burn to nuclear statistical equilibrium (NSE). A number of nuclides show a gradient but when combined into elemental abundances Ni shows the largest change over the face of the star. The Ni abundance varies by as much as an order of magnitude across the star. Tins may be a way to observationally test detonation models.

  4. Empirical Observations of Earthquake-Explosion Discrimination Using P/S Ratios and Implications for the Sources of Explosion S-Waves

    DTIC Science & Technology

    2007-09-01

    stations at test sites around the world (e.g., Nevada, Lop Nor, Novaya Zemlya, Semipalatinsk , India, Pakistan, and North Korea). We show this pattern...regional P/S amplitudes tended to be dominated by frequencies around 1 Hz. As shown in Figure 2 at a number of major nuclear test sites , these...Figure 2. Bandpass filtered 1-2 Hz seismograms of earthquake (red) and explosion (blue) pairs at nuclear test sites show little consistent

  5. User’s Guide and History of ANFO (Ammonium Nitrate/Fuel Oil) as a Nuclear Weapons Effect Simulation Explosive

    DTIC Science & Technology

    1983-03-31

    SHOCK SIMULATION 1659 - Amonium nitrate first prepared by Glauber 1867 - Swedish patent granted to Ohlsson and Norrbein for use of ammonium nitrate ...neceessay aqd identify by block number) Ammonium Nitrate -Fuel Oil Aiiblast - . ANFO . Craters High Explosives Explosive Charge Construction * Nuclear...utilizatilon of ANFO for future W FJOAMw. 1473- EDIT00 or INOW ,Sois 0"LTZ"" DO t 473 UNCLASSIFIED SECUM"TY CLASSIFfCATIOl# OF THIS PAGEI(Whonf D Ia LI L

  6. Proceedings of the 2009 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetovsky, Marv A; Aguilar - Chang, Julio; Anderson, Dale

    These proceedings contain papers prepared for the Monitoring Research Review 2009: Ground -Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2009 in Tucson, Arizona,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Test Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States’ capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well asmore » potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.« less

  7. Proceedings of the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.

    These proceedings contain papers prepared for the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 20-22 September, 2005 in Rancho Mirage, California. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well asmore » potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.« less

  8. Proceedings of the 25th Seismic Research Review -- Nuclear Explosion Monitoring: Building the Knowledge Base

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavez, Francesca C.; Mendius, E. Louise

    These proceedings contain papers prepared for the 25th Seismic Research Review -- Nuclear Explosion Monitoring: Building the Knowledge Base, held 23-25 September, 2003 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as wellmore » as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.« less

  9. Proceedings of the 26th Seismic Research Review: Trends in Nuclear Explosion Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavez, Francesca C; Benson, Jody; Hanson, Stephanie

    These proceedings contain papers prepared for the 26th Seismic Research Review: Trends in Nuclear Explosion Monitoring, held 21-23 September, 2004 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users,more » an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.« less

  10. On-Site inspections as a tool for nuclear explosion monitoring in the framework of the Comprehensive Nuclear Test Ban Treaty

    NASA Astrophysics Data System (ADS)

    Arndt, R.; Gaya-Pique, L.; Labak, P.; Tanaka, J.

    2009-04-01

    On-site inspections (OSIs) constitute the final verification measure under the Comprehensive Nuclear-Test-Ban Treaty (CTBT). OSIs are launched to establish whether or not a nuclear explosion has been carried out, thus they are conducted to verify States' compliance with the Treaty. During such an inspection, facts are gathered within a limited investigation area of 1000 Km2 to identify possible violators of the Treaty. Time scale (referring both to the preparation of the inspection as well as to the conduct of an OSI itself) is one of the challenges that an inspection team has to face when conducting an OSI. Other challenges are the size of the team - which is limited to 40 inspectors - and political limitations imposed by the Treaty in the use of allowed techniques. The Integrated Field Exercise 2008 (IFE08) recently conducted in Kazakhstan was the first large-scale, as well as the most comprehensive, on site inspection exercise ever conducted by the Preparatory Commission of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO). The exercise took place in a deserted area south east of Kurchatov, within the former Soviet Union's Semipalatinsk nuclear test site. In this paper we will provide an overview of the technical activities conducted by the inspection team during IFE08 in order to collect evidence for a hypothetical nuclear explosion test. The techniques applied can be distributed in four different blocks: visual observation (to look for man-made changes in the geomorphology as well as anthropogenic features related to an underground nuclear explosion, UNE); passive seismic monitoring (to identify possible aftershocks created by the UNE); radionuclide measurements (to collect evidence for radionuclide isotopes related to a nuclear explosion); and finally geophysical surveys (to identify geophysical signatures related to an UNE in terms of changes in the geological strata, to the hydrogeological regime, and in terms of the shallow remains of the infrastructure deployed during the preparation and monitoring of the test). The data collected during IFE08, together with data from previous exercises, set the fundaments of a database of invaluable value to be used by CTBTO in the future for a better understanding of the phenomenology related to a nuclear explosion.

  11. Polyester Resin Hazards

    PubMed Central

    Bourne, L. B.; Milner, F. J. M.

    1963-01-01

    Polyester resins are being increasingly used in industry. These resins require the addition of catalysts and accelerators. The handling of polyester resin system materials may give rise to skin irritations, allergic reactions, and burns. The burns are probably due to styrene and organic peroxides. Atmospheric pollution from styrene and explosion and fire risks from organic peroxides must be prevented. Where dimethylaniline is used scrupulous cleanliness and no-touch technique must be enforced. Handling precautions are suggested. Images PMID:14014495

  12. LOW MACH NUMBER MODELING OF CONVECTION IN HELIUM SHELLS ON SUB-CHANDRASEKHAR WHITE DWARFS. II. BULK PROPERTIES OF SIMPLE MODELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, A. M.; Zingale, M.; Nonaka, A.

    2016-08-10

    The dynamics of helium shell convection driven by nuclear burning establish the conditions for runaway in the sub-Chandrasekhar-mass, double-detonation model for SNe Ia, as well as for a variety of other explosive phenomena. We explore these convection dynamics for a range of white dwarf core and helium shell masses in three dimensions using the low Mach number hydrodynamics code MAESTRO. We present calculations of the bulk properties of this evolution, including time-series evolution of global diagnostics, lateral averages of the 3D state, and the global 3D state. We find a variety of outcomes, including quasi-equilibrium, localized runaway, and convective runaway.more » Our results suggest that the double-detonation progenitor model is promising and that 3D dynamic convection plays a key role.« less

  13. Low Mach Number Modeling of Convection in Helium Shells on Sub-Chandrasekhar White Dwarfs. II. Bulk Properties of Simple Models

    DOE PAGES

    Jacobs, A. M.; Zingale, M.; Nonaka, A.; ...

    2016-08-10

    The dynamics of helium shell convection driven by nuclear burning establish the conditions for runaway in the sub-Chandrasekhar-mass, double-detonation model for SNe Ia, as well as for a variety of other explosive phenomena. In this paper, we explore these convection dynamics for a range of white dwarf core and helium shell masses in three dimensions using the low Mach number hydrodynamics code MAESTRO. We present calculations of the bulk properties of this evolution, including time-series evolution of global diagnostics, lateral averages of the 3D state, and the global 3D state. We find a variety of outcomes, including quasi-equilibrium, localized runaway,more » and convective runaway. Finally, our results suggest that the double-detonation progenitor model is promising and that 3D dynamic convection plays a key role.« less

  14. Investigation Of Vapor Explosion Mechanisms Using High Speed Photography

    NASA Astrophysics Data System (ADS)

    Armstrong, Donn R.; Anderson, Richard P.

    1983-03-01

    The vapor explosion, a physical interaction between hot and cold liquids that causes the explosive vaporization of the cold liquid, is a hazard of concern in such diverse industries as metal smelting and casting, paper manufacture, and nuclear power generation. Intensive work on this problem worldwide, for the past 25 years has generated a number of theories and mechanisms proposed to explain vapor explosions. High speed photography has been the major instrument used to test the validity of the theories and to provide the observations that have lead to new theories. Examples are given of experimental techniques that have been used to investigate vapor explosions. Detailed studies of specific mechanisms have included microsecond flash photograph of contact boiling and high speed cinematography of shock driven breakup of liquid drops. Other studies looked at the explosivity of various liquid pairs using cinematography inside a pulsed nuclear reactor and x-ray cinematography of a thermite-sodium interaction.

  15. INDUSTRIAL AND SCIENTIFIC APPLICATIONS OF NUCLEAR EXPLOSIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Gerald W.

    1960-01-19

    ABS>Information is given for a series of underground and surface nuclear explosions ranging from 0.055 to 19 kilotons in size. A model of four stages is developed and applied to the case of the Rainier explosion: (1) Nuclear Reaction, microsecond range. (2) Hydrodynamic Phase, millisecond range. (3) Quasi-Static Phase, secondminute range. (4) Longer-Term Phase, minute-year range. Data are given for the growth rate of the Rainier cavity up to 75 msec, partition of energy in the second stage, and distribution of temperature 5 months after the Rainier explosion. The following generalizations were made for tuff soil: Radioactivity can be containedmore » completely underground at depths of D = 400 W/sup 1/3/ or greater, where W is the energy release in kilotons; the cavity initially formed has a radius of R = 50 W/sup 1/3/; and 65 to 80% of the fission-product activity is in dilute (0.1 ppm) glass solution. The purpose and scheme of the three current AEC projects, Gnome, Project Oil Sand, and Project Chariot, are given. Also, some experiments to be done with nuclear explosions are suggested for space research, production of transplutonic isotopes, neutron resonance, other cross sections, earth's structure, and seismology. (D.L.C.)« less

  16. Liquefied Natural Gas (LNG) Import Terminals: Siting, Safety and Regulation

    DTIC Science & Technology

    2004-05-27

    LNG Natural gas is combustible , so an uncontrolled release of LNG poses a hazard of fire or, in confined spaces, explosion. LNG also poses hazards...ignition source, the evaporating gas in a combustible gas-air concentration will burn above the LNG pool.8 The resulting “pool fire” would spread as the...serious LNG hazard.10 Other Safety Hazards. LNG spilled on water could (theoretically) regasify almost instantly in a “ flameless explosion,” but an Idaho

  17. ESTCP Cost and Performance Report (ER-200742) Open Burn/Open Detonation (OBOD) Area Management Using Lime for Explosives Transformation and Metals Immobilization

    DTIC Science & Technology

    2011-10-01

    vertical transport of water on the APG OD area. ............................................................... 33  Table 5. Runoff water and leachate ...untreated control soil (study average). There was an insignificant change in leachate pH from Day 1 to Day 9 showing that, while the increase was...explosives from OB/OD area soils have occurred through horizontal transport in surface water and vertical leachate water transport. These pathways

  18. Electronic cigarette explosions involving the oral cavity.

    PubMed

    Harrison, Rebecca; Hicklin, David

    2016-11-01

    The use of electronic cigarettes (e-cigarettes) is a rapidly growing trend throughout the United States. E-cigarettes have been linked to the risk of causing explosion and fire. Data are limited on the associated health hazards of e-cigarette use, particularly long-term effects, and available information often presents conflicting conclusions. In addition, an e-cigarette explosion and fire can pose a unique treatment challenge to the dental care provider because the oral cavity may be affected heavily. In this particular case, the patient's injuries included intraoral burns, luxation injuries, and alveolar fractures. This case report aims to help clinicians gain an increased knowledge about e-cigarette design, use, and risks; discuss the risk of spontaneous failure and explosion of e-cigarettes with patients; and understand the treatment challenges posed by an e-cigarette explosion. Copyright © 2016 American Dental Association. Published by Elsevier Inc. All rights reserved.

  19. Procalcitonin as a diagnostic biomarker for septic shock and bloodstream infection in burn patients from the Formosa Fun Coast dust explosion.

    PubMed

    Wu, Rui-Xin; Chiu, Chih-Chien; Lin, Tzu-Chao; Yang, Ya-Sung; Lee, Yi; Lin, Jung-Chung; Chang, Feng-Yee

    2017-12-01

    Infection is the most common cause of death following burn injury. The study was conducted to compare the diagnostic value of serum procalcitonin (PCT) with the other current benchmarks as early predictors of septic shock and bloodstream infection in burn patients. We included 24 patients admitted to the Burn Unit of a medical center from June 2015 to December 2015 from the Formosa Fun Coast dust explosion. We categorized all patients at initial admission into either sepsis or septic shock groups. Laboratory tests including the worst PCT and C-reactive protein (CRP) levels, platelet (PLT), and white blood cell (WBC) count were performed at <48 h after admission. Patients were also classified in two groups with subsequent bacteremia and non-bacteremia groups during hospitalization. Significantly higher PCT levels were observed among participants with septic shock compared to those with sepsis (47.19 vs. 1.18 ng/mL, respectively; p < 0.001). Patients with bacteremia had significantly elevated PCT levels compared to patients without bacteremia (29.54 versus 1.81 ng/mL, respectively, p < 0.05). No significant differences were found in CRP levels, PLT, and WBC count between the two groups. PCT levels showed reasonable discriminative power (cut-off: 5.12 ng/mL; p = 0.01) in predicting of bloodstream infection in burn patients and the area under receiver operating curves was 0.92. PCT levels can be helpful in determining the septic shock and bloodstream infection in burn patients but CRP levels, PLT, and WBC count were of little diagnostic value. Copyright © 2017. Published by Elsevier B.V.

  20. Los Alamos RAGE Simulations of the HAIV Mission Concept

    NASA Technical Reports Server (NTRS)

    Weaver, Robert P.; Barbee, Brent W.; Wie, Bong; Zimmerman, Ben

    2015-01-01

    The mitigation of potentially hazardous objects (PHOs) can be accomplished by a variety of methods including kinetic impactors, gravity tractors and several nuclear explosion options. Depending on the available lead time prior to Earth impact, non- nuclear options can be very effective at altering a PHOs orbit. However if the warning time is short nuclear options are generally deemed most effective at mitigating the hazard. The NIAC mission concept for a nuclear mission has been presented at several meetings, including the last PDC (2013).We use the adaptive mesh hydrocode RAGE to perform detailed simulations of this Hypervelocity Asteroid Intercept Vehicle (HAIV) mission concept. We use the RAGE code to simulate the crater formation by the kinetic impactor as well as the explosion and energy coupling from the follower nuclear explosive device (NED) timed to detonate below the original surface to enhance the energy coupling. The RAGE code has been well validated for a wide variety of applications. A parametric study will be shown of the energy and momentum transfer to the target 100 m diameter object: 1) the HAIV mission as planned; 2) a surface explosion and 3) a subsurface (contained) explosion; both 2) and 3) use the same source energy as 1).Preliminary RAGE simulations show that the kinetic impactor will carve out a surface crater on the object and the subsequent NED explosion at the bottom of the crater transfers energy and momentum to the target effectively moving it off its Earth crossing orbit. Figure 1 shows the initial (simplified) RAGE 2D setup geometry for this study. Figure 2 shows the crater created by the kinetic impactor and Figure 3 shows the time sequence of the energy transfer to the target by the NED.

  1. HUFF, a One-Dimensional Hydrodynamics Code for Strong Shocks

    DTIC Science & Technology

    1978-12-01

    results for two sample problems. The first problem discussed is a one-kiloton nuclear burst in infinite sea level air. The second problem is the one...of HUFF as an effective first order hydro- dynamic computer code. 1 KT Explosion The one-kiloton nuclear explosion in infinite sea level air was

  2. Trends in Nuclear Explosion Monitoring Research & Development - A Physics Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maceira, Monica; Blom, Philip Stephen; MacCarthy, Jonathan K.

    This document entitled “Trends in Nuclear Explosion Monitoring Research and Development – A Physics Perspective” reviews the accessible literature, as it relates to nuclear explosion monitoring and the Comprehensive Nuclear-Test-Ban Treaty (CTBT, 1996), for four research areas: source physics (understanding signal generation), signal propagation (accounting for changes through physical media), sensors (recording the signals), and signal analysis (processing the signal). Over 40 trends are addressed, such as moving from 1D to 3D earth models, from pick-based seismic event processing to full waveform processing, and from separate treatment of mechanical waves in different media to combined analyses. Highlighted in the documentmore » for each trend are the value and benefit to the monitoring mission, key papers that advanced the science, and promising research and development for the future.« less

  3. Understanding the shock and detonation response of high explosives at the continuum and meso scales

    NASA Astrophysics Data System (ADS)

    Handley, C. A.; Lambourn, B. D.; Whitworth, N. J.; James, H. R.; Belfield, W. J.

    2018-03-01

    The shock and detonation response of high explosives has been an active research topic for more than a century. In recent years, high quality data from experiments using embedded gauges and other diagnostic techniques have inspired the development of a range of new high-fidelity computer models for explosives. The experiments and models have led to new insights, both at the continuum scale applicable to most shock and detonation experiments, and at the mesoscale relevant to hotspots and burning within explosive microstructures. This article reviews the continuum and mesoscale models, and their application to explosive phenomena, gaining insights to aid future model development and improved understanding of the physics of shock initiation and detonation propagation. In particular, it is argued that "desensitization" and the effect of porosity on high explosives can both be explained by the combined effect of thermodynamics and hydrodynamics, rather than the traditional hotspot-based explanations linked to pressure-dependent reaction rates.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sollier, A., E-mail: arnaud.sollier@cea.fr; Bouyer, V.; Hébert, P.

    We present detonation wave profiles measured in T2 (97 wt. % TATB) and TX1 (52 wt. % TATB and 45 wt. % HMX) high explosives. The experiments consisted in initiating a detonation wave in a 15 mm diameter cylinder of explosive using an explosive wire detonator and an explosive booster. Free surface velocity wave profiles were measured at the explosive/air interface using a Photon Doppler Velocimetry system. We demonstrate that a comparison of these free surface wave profiles with those measured at explosive/window interfaces in similar conditions allows to bracket the von Neumann spike in a narrow range. For T2, our measurements show that the spike pressuremore » lies between 35.9 and 40.1 GPa, whereas for TX1, it lies between 42.3 and 47.0 GPa. The numerical simulations performed in support to these measurements show that they can be used to calibrate reactive burn models and also to check the accuracy of the detonation products equation of state at low pressure.« less

  5. One-dimensional Turbulence Models of Type I X-ray Bursts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Chen

    Type I X-ray bursts are caused by thermonuclear explosions occurring on the surface of an accreting neutron star in a binary star system. Observations and simulations of these phenomena are of great importance for understanding the fundamental properties of neutron stars and dense matter because the equation of state for cold dense matter can be constrained by the mass-radius relationship of neutron stars. During the bursts, turbulence plays a key role in mixing the fuels and driving the unstable nuclear burning process. This dissertation presents one-dimensional models of photospheric radius expansion bursts with a new approach to simulate turbulent advection.more » Compared with the traditional mixing length theory, the one-dimensional turbulence (ODT) model represents turbulent motions by a sequence of maps that are generated according to a stochastic process. The light curves I obtained with the ODT models are in good agreement with those of the KEPLER model in which the mixing length theory and various diffusive processes are applied. The abundance comparison, however, indicates that the differences in turbulent regions and turbulent diffusivities result in more 12C survival during the bursts in the ODT models, which can make a difference in the superbursts phenomena triggered by unstable carbon burning.« less

  6. On the specta of X-ray bursters: Expansion and contraction stages

    NASA Technical Reports Server (NTRS)

    Titarchuk, Lev

    1994-01-01

    The theory of spectral formation during the explosion and contraction stages of X-ray bursters, which include the effects of Computonization and free-free absorption and emission, is described. Analytical expressions are provided for color ratios, and the spectral shape is given as a function of input parameters, elemental abundance, neutron star mass and radius, and Eddington ratio. An Eulerian calculation is used to determine the photospheric evolution accurately during the Eddington luminosity phase. The developed analytical theory for hydrodynamics of the expansion takes into account the dependence of Compton scattering opacity on electron temperature. An analytical expression is derived from the sonic point position and the value of the sonic velcoity. Using this value as a boundary condition at the sonic point, the velocity, density, and temperature profile are calculated throughout the whole photosphere. It is shown that the atmopsphere radiates spectra having a low-energy power-law shape and blackbody-like hard tail. In the expansion stage the spectra depend strongly on the temperature of the helium-burning zone at the neutron star surface. The X-ray photosheric radius increases to approximately 100 km or more, depending on the condition of the nuclear burning on the surface of the neutron star in the course of the expansion.

  7. Nuclear system that burns its own wastes shows promise

    NASA Technical Reports Server (NTRS)

    Atchison, K.

    1975-01-01

    A nuclear fission energy system, capable of eliminating a significant amount of its radioactive wastes by burning them, is described. A theoretical investigation of this system conducted by computer analysis, is based on use of gaseous fuel nuclear reactors. Gaseous core reactors using a uranium plasma fuel are studied along with development for space propulsion.

  8. Simulating the Thermal Response of High Explosives on Time Scales of Days to Microseconds

    NASA Astrophysics Data System (ADS)

    Yoh, Jack J.; McClelland, Matthew A.

    2004-07-01

    We present an overview of computational techniques for simulating the thermal cookoff of high explosives using a multi-physics hydrodynamics code, ALE3D. Recent improvements to the code have aided our computational capability in modeling the response of energetic materials systems exposed to extreme thermal environments, such as fires. We consider an idealized model process for a confined explosive involving the transition from slow heating to rapid deflagration in which the time scale changes from days to hundreds of microseconds. The heating stage involves thermal expansion and decomposition according to an Arrhenius kinetics model while a pressure-dependent burn model is employed during the explosive phase. We describe and demonstrate the numerical strategies employed to make the transition from slow to fast dynamics.

  9. The Off-Site Plowshare and Vela Uniform Programs: Assessing Potential Environmental Liabilities through an Examination of Proposed Nuclear Projects,High Explosive Experiments, and High Explosive Construction Activities Volume 1 of 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck Colleen M,Edwards Susan R.,King Maureen L.

    2011-09-01

    This document presents the results of nearly six years (2002-2008) of historical research and field studies concerned with evaluating potential environmental liabilities associated with U.S. Atomic Energy Commission projects from the Plowshare and Vela Uniform Programs. The Plowshare Program's primary purpose was to develop peaceful uses for nuclear explosives. The Vela Uniform Program focused on improving the capability of detecting, monitoring and identifying underground nuclear detonations. As a result of the Project Chariot site restoration efforts in the early 1990s, there were concerns that there might be other project locations with potential environmental liabilities. The Desert Research Institute conducted archivalmore » research to identify projects, an analysis of project field activities, and completed field studies at locations where substantial fieldwork had been undertaken for the projects. Although the Plowshare and Vela Uniform nuclear projects are well known, the projects that are included in this research are relatively unknown. They are proposed nuclear projects that were not executed, proposed and executed high explosive experiments, and proposed and executed high explosive construction activities off the Nevada Test Site. The research identified 170 Plowshare and Vela Uniform off-site projects and many of these had little or no field activity associated with them. However, there were 27 projects that merited further investigation and field studies were conducted at 15 locations.« less

  10. The Off-Site Plowshare and Vela Uniform Programs: Assessing Potential Environmental Liabilities through an Examination of Proposed Nuclear Projects,High Explosive Experiments, and High Explosive Construction Activities Volume 3 of 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck Colleen M.,Edwards Susan R.,King Maureen L.

    2011-09-01

    This document presents the results of nearly six years (2002-2008) of historical research and field studies concerned with evaluating potential environmental liabilities associated with U.S. Atomic Energy Commission projects from the Plowshare and Vela Uniform Programs. The Plowshare Program's primary purpose was to develop peaceful uses for nuclear explosives. The Vela Uniform Program focused on improving the capability of detecting, monitoring and identifying underground nuclear detonations. As a result of the Project Chariot site restoration efforts in the early 1990s, there were concerns that there might be other project locations with potential environmental liabilities. The Desert Research Institute conducted archivalmore » research to identify projects, an analysis of project field activities, and completed field studies at locations where substantial fieldwork had been undertaken for the projects. Although the Plowshare and Vela Uniform nuclear projects are well known, the projects that are included in this research are relatively unknown. They are proposed nuclear projects that were not executed, proposed and executed high explosive experiments, and proposed and executed high explosive construction activities off the Nevada Test Site. The research identified 170 Plowshare and Vela Uniform off-site projects and many of these had little or no field activity associated with them. However, there were 27 projects that merited further investigation and field studies were conducted at 15 locations.« less

  11. The Off-Site Plowshare and Vela Uniform Programs: Assessing Potential Environmental Liabilities through an Examination of Proposed Nuclear Projects,High Explosive Experiments, and High Explosive Construction Activities Volume 2 of 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck Colleen M.,Edwards Susan R.,King Maureen L.

    2011-09-01

    This document presents the results of nearly six years (2002-2008) of historical research and field studies concerned with evaluating potential environmental liabilities associated with U.S. Atomic Energy Commission projects from the Plowshare and Vela Uniform Programs. The Plowshare Program's primary purpose was to develop peaceful uses for nuclear explosives. The Vela Uniform Program focused on improving the capability of detecting, monitoring and identifying underground nuclear detonations. As a result of the Project Chariot site restoration efforts in the early 1990s, there were concerns that there might be other project locations with potential environmental liabilities. The Desert Research Institute conducted archivalmore » research to identify projects, an analysis of project field activities, and completed field studies at locations where substantial fieldwork had been undertaken for the projects. Although the Plowshare and Vela Uniform nuclear projects are well known, the projects that are included in this research are relatively unknown. They are proposed nuclear projects that were not executed, proposed and executed high explosive experiments, and proposed and executed high explosive construction activities off the Nevada Test Site. The research identified 170 Plowshare and Vela Uniform off-site projects and many of these had little or no field activity associated with them. However, there were 27 projects that merited further investigation and field studies were conducted at 15 locations.« less

  12. Seismic Methods of Identifying Explosions and Estimating Their Yield

    NASA Astrophysics Data System (ADS)

    Walter, W. R.; Ford, S. R.; Pasyanos, M.; Pyle, M. L.; Myers, S. C.; Mellors, R. J.; Pitarka, A.; Rodgers, A. J.; Hauk, T. F.

    2014-12-01

    Seismology plays a key national security role in detecting, locating, identifying and determining the yield of explosions from a variety of causes, including accidents, terrorist attacks and nuclear testing treaty violations (e.g. Koper et al., 2003, 1999; Walter et al. 1995). A collection of mainly empirical forensic techniques has been successfully developed over many years to obtain source information on explosions from their seismic signatures (e.g. Bowers and Selby, 2009). However a lesson from the three DPRK declared nuclear explosions since 2006, is that our historic collection of data may not be representative of future nuclear test signatures (e.g. Selby et al., 2012). To have confidence in identifying future explosions amongst the background of other seismic signals, and accurately estimate their yield, we need to put our empirical methods on a firmer physical footing. Goals of current research are to improve our physical understanding of the mechanisms of explosion generation of S- and surface-waves, and to advance our ability to numerically model and predict them. As part of that process we are re-examining regional seismic data from a variety of nuclear test sites including the DPRK and the former Nevada Test Site (now the Nevada National Security Site (NNSS)). Newer relative location and amplitude techniques can be employed to better quantify differences between explosions and used to understand those differences in term of depth, media and other properties. We are also making use of the Source Physics Experiments (SPE) at NNSS. The SPE chemical explosions are explicitly designed to improve our understanding of emplacement and source material effects on the generation of shear and surface waves (e.g. Snelson et al., 2013). Finally we are also exploring the value of combining seismic information with other technologies including acoustic and InSAR techniques to better understand the source characteristics. Our goal is to improve our explosion models and our ability to understand and predict where methods of identifying explosions and estimating their yield work well, and any circumstances where they may not.

  13. Burning Phosphorus under Water Safely

    NASA Astrophysics Data System (ADS)

    Taylor, Larry C.

    1997-09-01

    A safer method for demonstrating the burning of white phosphorous under water is described. This demonstration uses 3% hydrogen peroxide solution and manganese dioxide as the oxygen source, eliminating the use of potentially explosive potassium chlorate. The oxygen generation is manually controlled by means of a stopcock on the dropping funnel. The apparatus has been designed to provide a most spectacular display, especially in the dark, lasting an hour or longer if desired, and eliminates the noxious phosphorous odor.

  14. Extension of the Caucasus Seismic Information Network Study into Central Asia

    DTIC Science & Technology

    2008-09-01

    nuclear tests at the Semipalatinsk test site in Kazakhstan, Lop Nor in China, Pokharan in India, and Chagai in Pakistan, as well as for several peaceful... Semipalatinsk test site in Kazakhstan, Lop Nor in China, Pokharan in India, and Chagai in Pakistan, and several peaceful nuclear explosion (PNE) events...truth in tomography studies. Figures 5 and 6 show waveforms for a nuclear explosion at the Semipalatinsk Test Site in northeast Kazakhstan and for a

  15. The evolution of solid density within a thermal explosion II. Dynamic proton radiography of cracking and solid consumption by burning

    NASA Astrophysics Data System (ADS)

    Smilowitz, L.; Henson, B. F.; Romero, J. J.; Asay, B. W.; Saunders, A.; Merrill, F. E.; Morris, C. L.; Kwiatkowski, K.; Grim, G.; Mariam, F.; Schwartz, C. L.; Hogan, G.; Nedrow, P.; Murray, M. M.; Thompson, T. N.; Espinoza, C.; Lewis, D.; Bainbridge, J.; McNeil, W.; Rightley, P.; Marr-Lyon, M.

    2012-05-01

    We report proton transmission images obtained subsequent to the laser assisted thermal ignition of a sample of PBX 9501 (a plastic bonded formulation of the explosive nitramine octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)). We describe the laser assisted thermal ignition technique as a means to synchronize a non-linear thermal ignition event while preserving the subsequent post-ignition behavior. We have obtained dynamic proton transmission images at two spatial magnifications and viewed both the radial and transverse axis of a solid cylindrical sample encased in aluminum. Images have been obtained with 3 to 15 μs temporal resolution and approximately 100 μm spatial resolution at the higher magnification. We observe case expansion from very early in the experiment, until case fragmentation. We observe spatially anisotropic features in the transmission which we attribute to cracking in the solid explosive, in agreement with previous measurements conducted on two dimensional samples with optical viewing. Digital analysis of the images also reveals spatially isotropic features which we attribute to the evolution of the loss of density by burning subsequent to thermal ignition.

  16. Toward an Empirically-Based Parametric Explosion Spectral Model

    DTIC Science & Technology

    2010-09-01

    estimated (Richards and Kim, 2009). This archive could potentially provide 200 recordings of explosions at Semipalatinsk Test Site of the former Soviet...estimates of explosion yield, and prior work at the Nevada Test Site (NTS) (e.g., Walter et al., 1995) has found that explosions in weak materials have...2007). Corner frequency scaling of regional seismic phases for underground nuclear explosions at the Nevada Test Site , Bull. Seismol. Soc. Am. 97

  17. Proliferation of Weapons of Mass Destruction: Assessing and Risks

    DTIC Science & Technology

    1993-10-01

    Disarmament Studies Matthew S. Meselson Leonard S. Spector Department of Biochemistry Senior Associate Thomas R. Fox and Molecular Biology Carnegie...Nuclear radiation (immediate) Flash burns, blinding, burning or suffocation from building fires Nuclear radiation (delayed effects and fallout effects

  18. Hydrodynamic Simulations of the Consequences of Accretion onto ONe White Dwarfs

    NASA Astrophysics Data System (ADS)

    Starrfield, Sumner; Bose, Maitrayee; Iliadis, Christian; Hix, William Raphael; Woodward, Charles E.; Wagner, Robert M.; José, Jordi; Hernanz, Margarita; Feng, Wanda

    2018-06-01

    Mass and luminosity variations of the white dwarf, combined with changes in the mass accretion rate and composition of the accreted material affect the evolution of the thermonuclear runaway (TNR) in classical and recurrent novae. Here we highlight continued investigations of these effects on accreting Oxygen-Neon (ONe) white dwarfs. We now use the results of the multi-dimensional studies of TNRs in white dwarfs, accreting only solar matter, which show that sufficient core material is dredged-up during the TNR to agree with the measurements of ejecta abundances in classical nova explosions. Therefore, we first accrete solar material and follow the evolution until a TNR is ongoing. We then switch the composition to a mixture with either 25% core material or 50% core material (plus accreted material) and follow the resulting evolution of the TNR through peak nuclear burning and decline. We use our 1D, Lagrangian, hydrodynamic code: NOVA. We will report on the results of these new simulations and compare the ejecta abundances to those measured in pre-solar grains that are thought to arise from classical nova explosions. We will also compare these results to our companion studies, done in a similar fashion, where we have followed the consequences of accretion onto Carbon-Oxygen white dwarfs. This work was supported in part by NASA under the Astrophysics Theory Program grant 14-ATP14-0007 and the U.S. DOE under Contract No. DE-FG02- 97ER41041. SS acknowledges partial support from NASA, NSF, and HST grants to ASU and WRH is supported by the U.S. Department of Energy, Office of Nuclear Physics.

  19. Infrasound signals from the underground nuclear explosions of North Korea

    NASA Astrophysics Data System (ADS)

    Che, Il-Young; Park, Junghyun; Kim, Inho; Kim, Tae Sung; Lee, Hee-Il

    2014-07-01

    We investigated the infrasound signals from seismic ground motions induced by North Korea's underground nuclear explosions, including the recent third explosion on 2013 February 12. For the third explosion, the epicentral infrasound signals were detected not only by three infrasound network stations (KSGAR, ULDAR and YAGAR) in South Korea but also by two nearby International Monitoring System infrasound stations, IS45 and IS30. The detectability of the signals was limited at stations located on the relatively east side of the epicentre, with large azimuth deviations due to very favourable atmospheric conditions for eastward propagation at stratospheric height in 2013. The stratospheric wind direction was the reverse of that when the second explosion was conducted in 2009 May. The source location of the epicentral infrasound with wave parameters determined at the multiple stations has an offset by about 16.6 km from the reference seismic location. It was possible to determine the infrasonic location with moderate accuracy by the correction of the azimuth deviation due to the eastward winds in the stratosphere. In addition to the epicentral infrasonic signals, diffracted infrasound signals were observed from the second underground nuclear explosion in 2009. The exceptional detectability of the diffracted infrasound was a consequence of the temporal formation of a thin atmospheric inversion layer over the ocean surface when the event occurred.

  20. A five-year review of burn injuries in Irrua

    PubMed Central

    Dongo, Andrew E; Irekpita, Eshobo E; Oseghale, Lilian O; Ogbebor, Charles E; Iyamu, Christopher E; Onuminya, John E

    2007-01-01

    Background The management of burns remains a challenge in developing countries. Few data exist to document the extent of the problem. This study provides data from a suburban setting by documenting the epidemiology of burn injury and ascertaining outcome of management. This will help in planning strategies for prevention of burns and reducing severity of complications. Methods A total of 72 patients admitted for burns between January 1st, 2002 and December 31st, 2006 at the Irrua specialist teaching hospital were studied retrospectively. Sources of information were the case notes and operation registers. Data extracted included demographics as well as treatment methods and outcome Results The results revealed male to female ratio of 2.1:1. Over 50% of the injuries occurred at home. There was a seasonal variation with over 40% of injuries occurring between November and January. The commonest etiologic agent was flame burn from kerosene explosion. There were 7 deaths in the series. Conclusion Burns are preventable. We recommend adequate supply of unadulterated petroleum products and establishment of burn centers. PMID:17956614

  1. Soviet test yields

    NASA Astrophysics Data System (ADS)

    Vergino, Eileen S.

    Soviet seismologists have published descriptions of 96 nuclear explosions conducted from 1961 through 1972 at the Semipalatinsk test site, in Kazakhstan, central Asia [Bocharov et al., 1989]. With the exception of releasing news about some of their peaceful nuclear explosions (PNEs) the Soviets have never before published such a body of information.To estimate the seismic yield of a nuclear explosion it is necessary to obtain a calibrated magnitude-yield relationship based on events with known yields and with a consistent set of seismic magnitudes. U.S. estimation of Soviet test yields has been done through application of relationships to the Soviet sites based on the U.S. experience at the Nevada Test Site (NTS), making some correction for differences due to attenuation and near-source coupling of seismic waves.

  2. Endurance of SN 2005ip after a decade: X-rays, radio and Hα like SN 1988Z require long-lived pre-supernova mass-loss

    NASA Astrophysics Data System (ADS)

    Smith, Nathan; Kilpatrick, Charles D.; Mauerhan, Jon C.; Andrews, Jennifer E.; Margutti, Raffaella; Fong, Wen-Fai; Graham, Melissa L.; Zheng, WeiKang; Kelly, Patrick L.; Filippenko, Alexei V.; Fox, Ori D.

    2017-04-01

    Supernova (SN) 2005ip was a Type IIn event notable for its sustained strong interaction with circumstellar material (CSM), coronal emission lines and infrared (IR) excess, interpreted as shock interaction with the very dense and clumpy wind of an extreme red supergiant. We present a series of late-time spectra of SN 2005ip and a first radio detection of this SN, plus late-time X-rays, all of which indicate that its CSM interaction is still strong a decade post-explosion. We also present and discuss new spectra of geriatric SNe with continued CSM interaction: SN 1988Z, SN 1993J and SN 1998S. From 3 to 10 yr post-explosion, SN 2005ip's Hα luminosity and other observed characteristics were nearly identical to those of the radio-luminous SN 1988Z, and much more luminous than SNe 1993J and 1998S. At 10 yr after explosion, SN 2005ip showed a drop in Hα luminosity, followed by a quick resurgence over several months. We interpret this Hα variability as ejecta crashing into a dense shell located ≲ 0.05 pc from the star, which may be the same shell that caused the IR echo at earlier epochs. The extreme Hα luminosities in SN 2005ip and SN 1988Z are still dominated by the forward shock at 10 yr post-explosion, whereas SN 1993J and SN 1998S are dominated by the reverse shock at a similar age. Continuous strong CSM interaction in SNe 2005ip and 1988Z is indicative of enhanced mass-loss for ˜103 yr before core collapse, longer than Ne, O or Si burning phases. Instead, the episodic mass-loss must extend back through C burning and perhaps even part of He burning.

  3. Nuclear Fusion Blast and Electrode Lifetimes in a PJMIF Reactor

    NASA Astrophysics Data System (ADS)

    Thio, Y. C. Francis; Witherspoon, F. D.; Case, A.; Brockington, S.; Cruz, E.; Luna, M.; Hsu, S. C.

    2017-10-01

    We present an analysis and numerical simulation of the nuclear blast from the micro-explosion following the completion of the fusion burn for a baseline design of a PJMIF fusion reactor with a fusion gain of 20. The stagnation pressure from the blast against the chamber wall defines the engineering requirement for the structural design of the first wall and the plasma guns. We also present an analysis of the lifetimes of the electrodes of the plasma guns which are exposed to (1) the high current, and (2) the neutron produced by the fusion reactions. We anticipate that the gun electrodes are made of tungsten alloys as plasma facing components reinforced structurally by appropriate steel alloys. Making reasonable assumptions about the electrode erosion rate (100 ng/C transfer), the electrode lifetime limited by the erosion rate is estimated to be between 19 and 24 million pulses before replacement. Based on known neutron radiation effects on structural materials such as steel alloys and plasma facing component materials such as tungsten alloys, the plasma guns are expected to survive some 22 million shots. At 1 Hz, this equal to about 6 months of continuous operation before they need to be replaced. Work supported by Strong Atomics, LLC.

  4. Installation Restoration General Environmental Technology Development. Task 2. Incineration Test of Explosives Contaminated Soils at Savanna Army Depot Activity, Savanna, Illinois.

    DTIC Science & Technology

    1984-04-01

    800OF and afterburner temperatures below 112000F. Explosives were detected in the combustion gases leaving the primary chamber for one test burn (i.e... combustion chamber. (c) Temperature in the secondary combustion chamber. l These key parameters were selected since they directly re- late to the...4523A 5.4 Heat exchanger (waste heat boiler) . The f lue gases discharged from the secondary combustion chamber were directed, via refractory-lined duct

  5. Gulf War Illnesses: DOD’s Conclusions about U.S. Troops’ Exposure Cannot be Adequately Supported

    DTIC Science & Technology

    2004-06-01

    well fires, fumes from jet fuel , fumes from burning jet fuel in tents, petroleum in drinking water, depleted uranium munitions, smoking, alcohol use...Explosive 31 Figure 6: Boundary Layer Characteristics 32 Figure 7: Three Types of Plume Geometry 33 Figure 8: The Impact of Nocturnal Jets on a...ignited by thermite grenades—alone and with the addition of diesel fuel —as well as by fused initiation of the burster explosive charge. According to

  6. Metallicity as a Source of Dispersion in the SNIa Bolometric Light Curve Luminosity-Width Relationship

    NASA Astrophysics Data System (ADS)

    Bravo, E.; Domínguez, I.; Badenes, C.; Piersanti, L.; Straniero, O.

    2010-03-01

    The recognition that the metallicity of Type Ia supernova (SNIa) progenitors might bias their use for cosmological applications has led to an increasing interest in its role in shaping SNIa light curves. We explore the sensitivity of the synthesized mass of 56Ni, M(56Ni), to the progenitor metallicity starting from pre-main-sequence models with masses M 0 = 2-7 M sun and metallicities Z = 10-5-0.10. The interplay between convective mixing and carbon burning during the simmering phase eventually raises the neutron excess, η, and leads to a smaller 56Ni yield, but does not change substantially the dependence of M(56Ni) on Z. Uncertain attributes of the progenitor white dwarf, like the central density, have a minor effect on M(56Ni). Our main results are: (1) a sizeable amount of 56Ni is synthesized during incomplete Si-burning, which leads to a stronger dependence of M(56Ni) on Z than obtained by assuming that 56Ni is produced in material that burns fully to nuclear statistical equilibrium; (2) in one-dimensional delayed detonation simulations a composition dependence of the deflagration-to-detonation transition (DDT) density gives a nonlinear relationship between M(56Ni) and Z and predicts a luminosity larger than previously thought at low metallicities (however, the progenitor metallicity alone cannot explain the whole observational scatter of SNIa luminosities); and (3) an accurate measurement of the slope of the Hubble residuals versus metallicity for a large enough data set of SNIa might give clues to the physics of DDT in thermonuclear explosions.

  7. Yields of Underground Nuclear Explosions at Azgir and Shagan River, USSR and Implications for Identifying Decoupled Nuclear Testing in Salt

    DTIC Science & Technology

    1991-12-05

    167. Kedrovshiy, O.L. (1970). Prospective applications of underground nuclear explosions in the national economy of the USSR, UCRL - Trans-10477...Studies 3701 North Fairfax Drive 1300 North 17th Street Arlington, VA 22203-1714 Suite 1450 Arlington, VA 22209-2308 Prof. Charles B. Archambeau Dr...Ryall, Jr. HQ AFTACJITR DARPAONMRO Patrick AFB, FL 32925-6001 3701 North Fairfax Drive Arlington, VA 22209-1714 4 Dr. Richard Sailor Donald L

  8. From Supernovae to Neutron Stars

    NASA Astrophysics Data System (ADS)

    Suwa, Yudai

    A core-collapse supernova is a generation site of a neutron star as well as one of the largest explosions in the universe. This article gives a brief overview of the studies on supernova explosion mechanism. Basic picture of the explosion mechanism, the method to solve neutrino transfer equation, the impact of the nuclear equation of state on the explosion, and long-term simulation of neutron star evolution from the onset of the explosion are presented.

  9. Modeling of the jack rabbit series of experiments with a temperature based reactive burn model

    NASA Astrophysics Data System (ADS)

    Desbiens, Nicolas

    2017-01-01

    The Jack Rabbit experiments, performed by Lawrence Livermore National Laboratory, focus on detonation wave corner turning and shock desensitization. Indeed, while important for safety or charge design, the behaviour of explosives in these regimes is poorly understood. In this paper, our temperature based reactive burn model is calibrated for LX-17 and compared to the Jack Rabbit data. It is shown that our model can reproduce the corner turning and shock desensitization behaviour of four out of the five experiments.

  10. Shock Detector for SURF model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menikoff, Ralph

    2016-01-11

    SURF and its extension SURFplus are reactive burn models aimed at shock initiation and propagation of detonation waves in high explosives. A distinctive feature of these models is that the burn rate depends on the lead shock pressure. A key part of the models is an algorithm to detect the lead shock. Typically, shock capturing hydro algorithms have small oscillations behind a shock. Here we investigate how well the shock detection algorithm works for a nearly steady propagating detonation wave in one-dimension using the Eulerian xRage code.

  11. The QSE-Reduced Nuclear Reaction Network for Silicon Burning

    NASA Astrophysics Data System (ADS)

    Hix, W. Raphael; Parete-Koon, Suzanne T.; Freiburghaus, Christian; Thielemann, Friedrich-Karl

    2007-09-01

    Iron and neighboring nuclei are formed in massive stars shortly before core collapse and during their supernova outbursts, as well as during thermonuclear supernovae. Complete and incomplete silicon burning are responsible for the production of a wide range of nuclei with atomic mass numbers from 28 to 64. Because of the large number of nuclei involved, accurate modeling of silicon burning is computationally expensive. However, examination of the physics of silicon burning has revealed that the nuclear evolution is dominated by large groups of nuclei in mutual equilibrium. We present a new hybrid equilibrium-network scheme which takes advantage of this quasi-equilibrium in order to reduce the number of independent variables calculated. This allows accurate prediction of the nuclear abundance evolution, deleptonization, and energy generation at a greatly reduced computational cost when compared to a conventional nuclear reaction network. During silicon burning, the resultant QSE-reduced network is approximately an order of magnitude faster than the full network it replaces and requires the tracking of less than a third as many abundance variables, without significant loss of accuracy. These reductions in computational cost and the number of species evolved make QSE-reduced networks well suited for inclusion within hydrodynamic simulations, particularly in multidimensional applications.

  12. The United States Army Medical Department Journal. October-December 2007

    DTIC Science & Technology

    2007-12-01

    weapons assembly/disassembly and functions check; individual chemical, biological , radiological, nuclear and high-explosive defense; and the operation of...the 40 Army Warrior Tasks and 11 Battle Drills, to include advanced land navigation training; weapons familiarization and qualification; convoy...operations; chemical, biological , radiological, nuclear and high- explosive defense; and squad and platoon-patrol exercises in both woodland and urban

  13. Dose prediction in Japan for nuclear test explosions in North Korea.

    PubMed

    Takada, Jun

    2008-11-01

    The impact on Japan of the underground test conducted in North Korea on October 9, 2006 is examined. By the use of the results of modelling assessment and environmental monitoring, it is concluded that there was no radiation impact on Japan. This suggests a safely conducted underground nuclear test or an explosion with a very low output.

  14. Seismic measurements of explosions in the Tatum Salt Dome, Mississippi

    USGS Publications Warehouse

    Borcherdt, Roger D.; Healy, J.H.; Jackson, W.H.; Warren, D.R.

    1967-01-01

    Project Sterling provided for the detonation of a nuclear device in the cavity resulting from the Salmon nuclear explosion in the Tatum salt dome in southern Mississippi. It also provided for a high explosive (HE) comparison shot in a nearby drill hole. The purpose of the experiment was to gather information on the seismic decoupling of a nuclear explosion in a cavity by comparing seismic signals from a nuclear shot in the Salmon cavity with seismic signals recorded from Salmon and with seismic signals recorded from a muall (about 2 tons) HE shot in the salt dome. Surface seismic measurements were made by the U.S. Geological Survey, the U.S. Coast and Geodetic Survey, and the Air Force Technical Applications Center with coordination and overall direction by the Lawrence Radiation Laboratory. This report covers only the seismic measurements made by the U. S. Geological Survey. The first objective of this report is to describe the field recording procedures and the data obtained by the U. S. Geological Survey from these events. The second objective is to describe the spectral analyses which have been made on the data and the relative seismic amplitudes which have been determined from these analyses.

  15. Parameter study of r-process lanthanide production and heating rates in kilonovae

    NASA Astrophysics Data System (ADS)

    Lippuner, Jonas; Roberts, Luke F.

    2015-04-01

    Explosive r-process nucleosynthesis in material ejected during compact object mergers may lead to radioactively powered transients called kilonovae. The timescale and peak luminosity of these transients are sensitive to the composition of the material after nuclear burning ceases, as the composition determines the local heating rate from nuclear decays and the opacity. The presence of lanthanides in the ejecta can drastically increase the opacity. We use the new general-purpose nuclear reaction network SkyNet to run a parameter study of r-process nucleosynthesis for a range of initial electron fractions Ye, initial entropies s, and density decay timescales τ. We find that the ejecta is lanthanide-free for Ye >~ 0 . 22 - 0 . 3 , depending on s and τ. The heating rate is insensitive to s and τ, but certain, larger values of Ye lead to reduced heating rates, because single nuclides dominate the heating. With a simple model we estimate the luminosity, time, and effective temperature at the peak of the light curve. Since the opacity is much lower in the lanthanide-free case, we find the luminosity peaks much earlier at ~ 1 day vs. ~ 15 days in the lanthanide-rich cases. Although there is significant variation in the heating rate with Ye, changes in the heating rate do not mitigate the effect of the lanthanides. This research is partially supported by NSF under Award Numbers AST-1333520 and AST-1205732.

  16. Explosive Joining for Nuclear-Reactor Repair

    NASA Technical Reports Server (NTRS)

    Bement, L. J.; Bailey, J. W.

    1983-01-01

    In explosive joining technique, adapter flange from fuel channel machined to incorporate a V-notch interface. Ribbon explosive, 1/2 inch (1.3 cm) in width, drives V-notched wall of adapter into bellows assembly, producing atomic-level metallurgical bond. Ribbon charge yields joint with double parent metal strength.

  17. FAILURE OF A NEUTRINO-DRIVEN EXPLOSION AFTER CORE-COLLAPSE MAY LEAD TO A THERMONUCLEAR SUPERNOVA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kushnir, Doron; Katz, Boaz, E-mail: kushnir@ias.edu

    We demonstrate that ∼10 s after the core-collapse of a massive star, a thermonuclear explosion of the outer shells is possible for some (tuned) initial density and composition profiles, assuming that the neutrinos failed to explode the star. The explosion may lead to a successful supernova, as first suggested by Burbidge et al. We perform a series of one-dimensional (1D) calculations of collapsing massive stars with simplified initial density profiles (similar to the results of stellar evolution calculations) and various compositions (not similar to 1D stellar evolution calculations). We assume that the neutrinos escaped with a negligible effect on themore » outer layers, which inevitably collapse. As the shells collapse, they compress and heat up adiabatically, enhancing the rate of thermonuclear burning. In some cases, where significant shells of mixed helium and oxygen are present with pre-collapsed burning times of ≲100 s (≈10 times the free-fall time), a thermonuclear detonation wave is ignited, which unbinds the outer layers of the star, leading to a supernova. The energy released is small, ≲10{sup 50} erg, and negligible amounts of synthesized material (including {sup 56}Ni) are ejected, implying that these 1D simulations are unlikely to represent typical core-collapse supernovae. However, they do serve as a proof of concept that the core-collapse-induced thermonuclear explosions are possible, and more realistic two-dimensional and three-dimensional simulations are within current computational capabilities.« less

  18. Nuclear Fusion induced by Coulomb Explosion of Heteronuclear Clusters

    NASA Astrophysics Data System (ADS)

    Last, Isidore; Jortner, Joshua

    2001-07-01

    We propose a new mechanism for the production of high-energy ( E>3 keV) deuterons, suitable to induce dd nuclear fusion, based on multielectron ionization and Coulomb explosion of heteronuclear deuterium containing molecular clusters, e.g., (D2O)n, in intense ( 1016-2×1018 W/cm2) laser fields. Cluster size equations for E, in conjunction with molecular dynamics simulations, reveal important advantages of Coulomb explosion of (D2O)n heteronuclear clusters, as compared with (D)n clusters. These involve the considerably increased D+ kinetic energy and a narrow, high-energy distribution of deuterons.

  19. Common explosives (TNT, RDX, HMX) and their fate in the environment: Emphasizing bioremediation.

    PubMed

    Chatterjee, Soumya; Deb, Utsab; Datta, Sibnarayan; Walther, Clemens; Gupta, Dharmendra K

    2017-10-01

    Explosive materials are energetic substances, when released into the environment, contaminate by posing toxic hazards to environment and biota. Throughout the world, soils are contaminated by such contaminants either due to manufacturing operations, military activities, conflicts of different levels, open burning/open detonation (OB/OD), dumping of munitions etc. Among different forms of chemical explosives, 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro- 1,3,5,7-tetrazocine (HMX) are most common. These explosives are highly toxic as USEPA has recommended restrictions for lifetime contact through drinking water. Although, there are several utilitarian aspects in anthropogenic activities, however, effective remediation of explosives is very important. This review article emphasizes the details of appropriate practices to ameliorate the contamination. Critical evaluation has also been made to encompass the recent knowledge and advancement about bioremediation and phytoremediation of explosives (especially TNT, RDX and HMX) along with the molecular mechanisms of biodegradation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Using optical techniques to measure aluminum burning in post-detonation explosive fireballs

    NASA Astrophysics Data System (ADS)

    Peuker, Jennifer Mott

    The objectives of the current study are twofold: (1) to further the understanding of aluminum combustion in an explosive fireball, specifically where, when, and with what the aluminum is reacting; and (2) to characterize AlO emission measurements from aluminized explosive fireballs in order to determine when and how AlO emission can be used as an indicator of aluminum combustion. Experiments were completed in six different environments using four distinct aluminized charges of varying aluminum particle size---3 microm, 10 microm and 40 microm---and loading amount---20 and 50 percent by mass---to determine with what the aluminum is reacting. In addition, a charge containing 20 percent aluminum oxide (Al2O3) was used as an inert comparison. The effect of the aluminum particle location with respect to the explosive material was tested by using end-loaded charges, and by placing a layer of grease on the aluminized charge tip. Time-resolved overpressure measurements are used to determine when the aluminum is burning. Experiments employing an air-gap between the explosive charge and aluminum powder aid in determining how and when aluminum is activated and combusted in the initial blast wave and the subsequent fireball containing high pressure and high temperature detonation products. Tests in four environments show that even when AlO emission intensity is lower by 90 percent in N2 or CO2 than it is in air for a charge, it is possible to have significant---60 to 70 percent---aluminum particle oxidation. In addition, substantial AlO emission was measured in the absence of unburned aluminum---almost half of the peak AlO emission measured when unburned aluminum was present. Results show that AlO emission intensity measurements are skewed to higher AlO intensities by high transient temperatures within the first 30 micros when the peak AlO emission is usually measured. The aluminum particle location also affects the amount of AlO emission measured such that when more particles are on the fireball surface, then more AlO emission is measured. However, the end-loaded aluminum does not add to the energy output enhancement as much as the pre-loaded aluminum charges since the peak pressures and initial impulse are similar for different amounts of aluminum. A grease layer on the tip of the charge reduces the amount of AlO emission measured by 90 percent, but has the same energy output in the initial blast wave as the same charge not having a grease layer, indicating that the material at the tip of a charge changes the breakout and subsequent AlO emission production. In addition, the overpressure measurements indicate that four distinct stages of aluminum combustion exist. The first stage is the detonation and the activation of the aluminum. In the second stage the aluminum burns to enhance the blast wave which is indicated by higher peak pressures and initial impulses than a charge not containing aluminum. During the third stage, the aluminum continues to burn to increase the overpressure of the chamber. The fireball cools during the fourth stage and any aluminum oxidation does not add to the energy release. The variations in how much AlO emission is measured indicate that interpreting AlO emission measurements from explosive fireballs is not straightforward with respect to correctly determining the amount of aluminum combusted, how long the aluminum reacted, or the energy released. If aluminum is available to burn and AlO emission is measured, then the aluminum is burning---even taking into account AlO emission from the oxide layer. However, when no AlO emission is measured, it does not necessarily mean that the aluminum is not burning. When AlO emission is measured it indicates that the temperatures are high enough to sustain aluminum combustion which produces AlO, and that oxidizers are present which react to produce the AlO emission. The relative intensities for the same time frame of AlO emission measured could be indicators about the temperature or number of reactions occurring. (Abstract shortened by UMI.)

  1. Reaction of Shocked but Undetonated HMX-Based Explosive

    NASA Astrophysics Data System (ADS)

    Taylor, P.; Salisbury, D. A.; Markland, L. S.; Winter, R. E.; Andrew, M. I.

    2002-07-01

    Cylindrical samples of the pressed plastic bonded HMX based explosive EDC37, backed by metal discs, were shocked through a stainless steel attenuator by an explosive donor. Reaction of the EDC37 sample was diagnosed with embedded PVDF pressure gauges and a distance to detonation for the geometry was determined. Sample length was then reduced to less than the observed detonation distance and laser interferometry was used to record the free surface velocity of the metal backing disc. The results provide data on the metal driving energy liberated by explosive which is shocked and reacting but not detonated. The results are compared with 2-D Eulerian calculations incorporating a 3-term ignition and growth reactive burn model with desensitisation. It is found that a parameter set for the reaction model which replicates the PVDF pressure profiles before reflection also gives good agreement to the metal disc velocity history at early times. The results show that an appreciable fraction of the metal driving potential of an explosive can be released without detonation being established.

  2. Study of the Characteristics of Elementary Processes in a Chain Hydrogen Burning Reaction in Oxygen

    NASA Astrophysics Data System (ADS)

    Bychkov, M. E.; Petrushevich, Yu. V.; Starostin, A. N.

    2017-12-01

    The characteristics of possible chain explosive hydrogen burning reactions in an oxidizing medium are calculated on the potential energy surface. Specifically, reactions H2 + O2 → H2O + O, H2 + O2 → HO2 + H, and H2 + O2 → OH + OH are considered. Special attention is devoted to the production of a pair of fast highly reactive OH radicals. Because of the high activation threshold, this reaction is often excluded from the known kinetic scheme of hydrogen burning. However, a spread in estimates of kinetic characteristics and a disagreement between theoretical predictions with experimental results suggest that the kinetic scheme should be refined.

  3. Prediction of sub-surface 37Ar concentrations at locations in the Northwestern United States.

    PubMed

    Fritz, Bradley G; Aalseth, Craig E; Back, Henning O; Hayes, James C; Humble, Paul H; Ivanusa, Pavlo; Mace, Emily K

    2018-01-01

    The Comprehensive Nuclear-Test-Ban Treaty, which is intended to prevent nuclear weapon test explosions and any other nuclear explosions, includes a verification regime, which provides monitoring to identify potential nuclear explosions. The presence of elevated 37 Ar is one way to identify subsurface nuclear explosive testing. However, the naturally occurring formation of 37 Ar in the subsurface adds a complicating factor. Prediction of the naturally occurring concentration of 37 Ar can help to determine if a measured 37 Ar concentration is elevated relative to background. The naturally occurring 37 Ar background concentration has been shown to vary between less than 1 mBq/m 3 to greater than 100 mBq/m 3 (Riedmann and Purtschert, 2011). The purpose of this work was to enhance the understanding of the naturally occurring background concentrations of 37 Ar, allowing for better interpretation of results. To that end, we present and evaluate a computationally efficient model for predicting the average concentration of 37 Ar at any depth under transient barometric pressures. Further, measurements of 37 Ar concentrations in samples collected at multiple locations are provided as validation of the concentration prediction model. The model is shown to compare favorably with concentrations of 37 Ar measured at multiple locations in the Northwestern United States. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Measurements of Argon-39 at the U20az underground nuclear explosion site.

    PubMed

    McIntyre, J I; Aalseth, C E; Alexander, T R; Back, H O; Bellgraph, B J; Bowyer, T W; Chipman, V; Cooper, M W; Day, A R; Drellack, S; Foxe, M P; Fritz, B G; Hayes, J C; Humble, P; Keillor, M E; Kirkham, R R; Krogstad, E J; Lowrey, J D; Mace, E K; Mayer, M F; Milbrath, B D; Misner, A; Morley, S M; Panisko, M E; Olsen, K B; Ripplinger, M D; Seifert, A; Suarez, R

    2017-11-01

    Pacific Northwest National Laboratory reports on the detection of 39 Ar at the location of an underground nuclear explosion on the Nevada Nuclear Security Site. The presence of 39 Ar was not anticipated at the outset of the experimental campaign but results from this work demonstrated that it is present, along with 37 Ar and 85 Kr in the subsurface at the site of an underground nuclear explosion. Our analysis showed that by using state-of-the-art technology optimized for radioargon measurements, it was difficult to distinguish 39 Ar from the fission product 85 Kr. Proportional counters are currently used for high-sensitivity measurement of 37 Ar and 39 Ar. Physical and chemical separation processes are used to separate argon from air or soil gas, yielding pure argon with contaminant gases reduced to the parts-per-million level or below. However, even with purification at these levels, the beta decay signature of 85 Kr can be mistaken for that of 39 Ar, and the presence of either isotope increases the measurement background level for the measurement of 37 Ar. Measured values for the 39 Ar measured at the site ranged from 36,000 milli- Becquerel/standard-cubic-meter-of-air (mBq/SCM) for shallow bore holes to 997,000 mBq/SCM from the rubble chimney from the underground nuclear explosion. Published by Elsevier Ltd.

  5. Mapping Calcium Rich Ejecta in Two Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Fesen, Robert

    2016-10-01

    Type Ia supernovae (SNe Ia) are thermonuclear explosions of white dwarfs (WDs) in close binary systems with either a non-degenerate or WD companion. SN Ia explosion computations are quite challenging, involving a complex interplay of turbulent hydrodynamics, nuclear burning, conduction, radiative transfer in iron-group rich material and possibly magnetic fields leading to significant uncertainties. Several key questions about expansion asymmetries and the overall characteristics of SNe Ia could be resolved if one could obtain direct observations of the internal kinematics and elemental distributions of young SN Ia remnants.We propose to use WFC3/UVIS to obtain images of the normal Type Ia supernova remnant 0519-69.0 and the overluminous Type Ia supernova remnant 0509-67.5 in the LMC. The Ca II on-band F390M filter and off-band F336W and FQ422M filters will be used to determine the spatial extent and density distributions of the Ca-rich ejecta via resonance line absorption. Differences in the observed on and off band Ca II fluxes for LMC stars located behind these young 400 - 600 yr old remnants will yield calcium column density estimates for multiple lines-of-sight within these remnants. These results will be compared to the calcium distribution seen in SN 1885, a subluminous SN Ia in M31, already imaged by HST.The resulting calcium density distribution maps for both a normal and overluminous SN Ia events will provide powerful insights regarding the structure and kinematics of calcium-rich ejecta in three different type Ia subclass events, and unique empirical data with which to test current SN Ia explosion models.

  6. Electromagnetic Pulse - The Fifth Factor in the Impact of a Nuclear Explosion,

    DTIC Science & Technology

    1986-01-16

    ELECTROMAGNETIC PULSE -THE...8217. -..-:. ’ - ’: .’ . .. ., .. ,.- ,:- .:. :. ... . -’ -:. -, .: ., ,: -:,’ ... ’. .: ,- :... ..: ,’. .,, ,-, : ., ’,, ’.. ..,.. i ii FTD- ID(RS )T-1176-85 :i EDITED TRANSLATION FTD-ID(RS)T-1176-85 16 January 1986 MICROFICHE NR: FTD-86-C-001361 ELECTROMAGNETIC PULSE - THE...34 L ELECTROMAGNETIC PULSE -THE FIFTH FACTOR IN THE IMPACT OF A NUCLEAR EXPLOSION Colonel Zbigniew Jastrak Words

  7. Kink-bands: Shock deformation of biotite resulting from a nuclear explosion

    USGS Publications Warehouse

    Cummings, D.

    1965-01-01

    Microscopic examination of granodiorite samples from the shock region around a nuclear explosion reveals sharply folded lens-shaped zones (kink-bands) in the mineral biotite. Fifty percent of these zones are oriented approximately 90?? to the direction of shock-wave propagation, but other zones are symmetrically concentrated at shear angles of 50?? and 70?? to the direction of shock-wave propagation.

  8. Report of the Defense Science Board Task Force on Critical Homeland Infrastructure Protection

    DTIC Science & Technology

    2007-01-01

    nuclear, radiation and explosive hazards; • Monitoring “people of interest” while protecting civil liberties; • Detection of hostile intent; • Detect...Guardian DARPA Overview Mr. Roger Gibbs DARPA LLNL Technologies in Support of Infrastructure Protection Mr. Don Prosnitz LLNL Sandia National...Mechanical Engineers AT/FP Antiterrorism/Force Protection CBRNE Chemical Biological Radiological Nuclear Explosive CERT Commuter Emergency Response Team

  9. Nuclear Explosion Monitoring Research and Development Roadmaps

    DTIC Science & Technology

    2010-09-01

    environment, a radionuclide event is the release of radioactive atoms. Radionuclide sources include nuclear explosions, normal or anomalous reactor ...isotopes (e.g., potassium, uranium, and thorium and their decay products) and isotopes produced from the interactions of cosmic rays with the...and reactor emissions. For example, the IMS detected a pair of xenon isotopes at a Japanese station shortly after the 2009 DPRK event. The ratio of

  10. Thermonuclear Explosions from Hybrid C/O/Ne White Dwarf Progenitors Ignited Centrally After Interior Mixing

    NASA Astrophysics Data System (ADS)

    Augustine, Carlyn

    2018-01-01

    Type Ia Supernovae are thermonuclear explosions of white dwarf (WD) stars. Past studies predict the existence of "hybrid" white dwarfs, made of a C/O/Ne core with a O/Ne shell, and that these are viable progenitors for supernovae. More recent work found that the C/O core is mixed with the surrounding O/Ne while the WD cools. Inspired by this scenario, we performed simulations of thermonuclear supernovae in the single degenerate paradigm from these hybrid progenitors. Our investigation began by constructing a hybrid white dwarf model with the one-dimensional stellar evolution code MESA. The model was allowed to go through unstable interior mixing ignite carbon burning centrally. The MESA model was then mapped to a two-dimensional initial condition and an explosion simulated from that with FLASH. For comparison, a similar simulation of an explosion was performed from a traditional C/O progenitor WD. Comparing the yields produced by explosion simulations allows us to determine which model produces more 56Ni, and therefore brighter events, and how explosions from these models differ from explosions from previous models without the mixing during the WD cooling.

  11. Ignition and Combustion of Bulk Metals in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Branch, Melvyn C.; Daily, John W.; Abbud-Madrid, Angel

    1999-01-01

    Results of a study of heterogeneous and homogeneous combustion of metals in reduced gravity are presented. Cylindrical titanium and magnesium samples are radiatively ignited in pure-oxygen at 1 atm. Qualitative observations, propagation rates, and burning times are extracted from high-speed cinematography. Time-resolved emission spectra of gas-phase reactions are acquired with an imaging spectrograph. Lower propagation rates of the reacting mass on titanium and of ignition waves on magnesium are obtained at reduced gravity. These rates are compared to theoretical results from fire-spread analyses with a diffusion/convection controlled reaction. The close agreement found between experimental and theoretical propagation rates indicates the strong influence of natural-convection-enhanced oxygen transp6rt on burning rates. Lower oxygen flux and lack of condensed product removal appear to be responsible for longer burning times of magnesium gas-phase diffusion flames in reduced gravity. Spherically symmetric explosions in magnesium flames at reduced gravity (termed radiation-induced metal explosions, or RIME) may be driven by increased radiation heat transfer from accumulated condensed products to an evaporating metal core covered by a porous, flexible oxide coating. In titanium specimens, predominantly heterogeneous burning characterizes the initial steady propagation of the molten mass, while homogeneous gas-phase reactions are detected around particles ejected from the molten mixture. In magnesium specimens, band and line reversal of all the UV spectral systems of Mg and MgO are attributed to the interaction between small oxide particles and the principal gaseous emitters.

  12. The impact of vorticity waves on the shock dynamics in core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Huete, César; Abdikamalov, Ernazar; Radice, David

    2018-04-01

    Convective perturbations arising from nuclear shell burning can play an important role in propelling neutrino-driven core-collapse supernova explosions. In this work, we analyse the impact of vorticity waves on the shock dynamics, and subsequently on the post-shock flow, using the solution of the linear hydrodynamics equations. As a result of the interaction with the shock wave, vorticity waves increase their kinetic energy, and a new set of entropic and acoustic waves is deposited in the post-shock region. These perturbations interact with the neutrino-driven turbulent convection that develops in that region. Although both vorticity and acoustic waves inject non-radial motion into the gain region, the contribution of the acoustic waves is found to be negligibly small in comparison to that of the vorticity waves. On the other hand, entropy waves become buoyant and trigger more convection. Using the concept of critical neutrino luminosity, we assess the impact of these modes on the explosion conditions. While the direct injection of non-radial motion reduces the critical neutrino luminosity by ˜ 12 per cent for typical problem parameters, the buoyancy-driven convection triggered by entropy waves reduces the critical luminosity by ˜ 17-24 per cent, which approximately agrees with the results of three-dimensional neutrino-hydrodynamics simulations. Finally, we discuss the limits of validity of the assumptions employed.

  13. Nuclear Resonance Fluorescence Measurements of High Explosives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caggiano, Joseph A.; Warren, Glen A.; Korbly, Steve

    Pacific Northwest National Laboratory and Passport Systems have collaborated to perform Nuclear Resonance Fluorescence experiments using several high quality high-explosive simulant samples. These measurements were conducted to determine the feasibility of finding and characterizing high explosive material by NRF interrogation. Electron beams of 5.1, 5.3, 8, and 10 MeV were used to produce bremsstrahlung photon beams, which irradiated the samples. The gamma-ray spectra were collected using high-purity germanium detectors. Nitrogen-to-carbon ratios of the high-explosive simulants were extracted from the 5.1 and 5.3 MeV data and compare favorably with accepted values. Analysis of the 8 and 10 MeV data is inmore » progress; preliminary isotopic comparisons within the samples are consistent with the expected results.« less

  14. Thermally generated magnetic fields in laser-driven compressions and explosions

    NASA Technical Reports Server (NTRS)

    Tidman, D. A.

    1975-01-01

    The evolution of thermally generated magnetic fields in a plasma undergoing a nearly spherically symmetric adiabatic compression or expansion is calculated. The analysis is applied to obtain approximate results for the development of magnetic fields in laser-driven compression and explosion of a pellet of nuclear fuel. Localized sources, such as those occurring at composition boundaries in structured pellets or at shock fronts, give stronger fields than those deriving from smoothly distributed asymmetries. Although these fields may approach 10 million G in the late stages of compression, this is not expected to present difficulties for the compression process. Assuming ignition of a nuclear explosion occurs, the sources become much stronger, and values of approximately 10 billion G are obtained at tamper boundaries assuming a 20% departure from spherical symmetry during the explosion.

  15. A digital seismogram archive of nuclear explosion signals, recorded at the Borovoye Geophysical Observatory, Kazakhstan, from 1966 to 1996

    DOE PAGES

    An, Vadim A.; Ovtchinnikov, Vladimir M.; Kaazik, Pyotr B.; ...

    2015-03-27

    Seismologists from Kazakhstan, Russia, and the United States have rescued the Soviet-era archive of nuclear explosion seismograms recorded at Borovoye in northern Kazakhstan during the period 1966–1996. The signals had been stored on about 8000 magnetic tapes, which were held at the recording observatory. After hundreds of man-years of work, these digital waveforms together with significant metadata are now available via the project URL, namely http://www.ldeo.columbia.edu/res/pi/Monitoring/Data/ as a modern open database, of use to diverse communities. Three different sets of recording systems were operated at Borovoye, each using several different seismometers and different gain levels. For some explosions, more thanmore » twenty different channels of data are available. A first data release, in 2001, contained numerous glitches and lacked many instrument responses, but could still be used for measuring accurate arrival times and for comparison of the strengths of different types of seismic waves. The project URL also links to our second major data release, for nuclear explosions in Eurasia recorded in Borovoye, in which the data have been deglitched, all instrument responses have been included, and recording systems are described in detail. This second dataset consists of more than 3700 waveforms (digital seismograms) from almost 500 nuclear explosions in Eurasia, many of them recorded at regional distances. It is important as a training set for the development and evaluation of seismological methods of discriminating between earthquakes and underground explosions, and can be used for assessment of three-dimensional models of the Earth’s interior structure.« less

  16. Stockpile stewardship past, present, and future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Marvin L., E-mail: mladams@tamu.edu

    2014-05-09

    The U.S. National Academies released a report in 2012 on technical issues related to the Comprehensive Test Ban Treaty. One important question addressed therein is whether the U.S. could maintain a safe, secure, and reliable nuclear-weapons stockpile in the absence of nuclear-explosion testing. Here we discuss two main conclusions from the 2012 Academies report, which we paraphrase as follows: 1) Provided that sufficient resources and a national commitment to stockpile stewardship are in place, the U.S. has the technical capabilities to maintain a safe, secure, and reliable stockpile of nuclear weapons into the foreseeable future without nuclear-explosion testing. 2) Doingmore » this would require: a) a strong weapons science and engineering program that addresses gaps in understanding; b) an outstanding workforce that applies deep and broad weapons expertise to deliver solutions to stockpile problems; c) a vigorous, stable surveillance program that delivers the requisite data; d) production facilities that meet stewardship needs. We emphasize that these conclusions are independent of CTBT ratification-they apply provided only that the U.S. continues its nuclear-explosion moratorium.« less

  17. Transfusion medicine in the Formosa Fun Coast water park explosion: The role of combined tissue and blood banking.

    PubMed

    Chang, Chih-Chun; Yeh, Chin-Chuan; Chu, Fang-Yeh

    2016-10-01

    The Formosa Fun Coast explosion, occurring in a recreational water park located in the Northern Taiwan on 27 June 2015, made 499 people burn-injured. For those who had severe burn trauma, surgical intervention and fluid resuscitation were necessary, and potential blood transfusion therapy could be initiated, especially during and after broad escharotomy. Here, we reviewed the literature regarding transfusion medicine and skin grafting as well as described the practicing experience of combined tissue and blood bank in the burn disaster in Taiwan. It was reported that patients who were severely burn-injured could receive multiple blood transfusions during hospitalization. Since the use of skin graft became a mainstay alternative for wound coverage after the early debridement of burn wounds at the beginning of the 20th century, the development of tissue banking program was initiated. In Taiwan, the tissue banking program was started in 2006. And the first combined tissue and blood bank was established in Far Eastern Memorial Hospital in 2010, equipped with the non-sterile, clean and sterile zones distinctly segregated with a unidirectional movement in the sterile area. The sterile zone was a class 10000 clean room equipped with high efficiency particulate air filter (HEPAF) and positive air pressure ventilation. The combined tissue and blood bank has been able to provide the assigned blood products and tissue graft timely and accurately, with the concepts of centralized management. In the future, the training of tissue and blood bank technicians would be continued and fortified, particularly on the regulation and quality control for further bio- and hemovigilance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Corrective Action Investigation Plan for Corrective Action Unit 140: Waste Dumps, Burn Pits, and Storage Area, Nevada Test Site, Nevada, July 2002, Rev. No. 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NNSA /NV

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 140 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 140 consists of nine Corrective Action Sites (CASs): 05-08-01, Detonation Pits; 05-08-02, Debris Pits; 05-17-01, Hazardous Waste Accumulation Site (Buried); 05-19-01, Waste Disposal Site; 05-23-01, Gravel Gertie; 05-35-01, Burn Pit; 05-99-04, Burn Pit; 22-99-04, Radioactive Waste Dump; 23-17-01, Hazardous Waste Storage Area. All nine of these CASs are located withinmore » Areas 5, 22, and 23 of the Nevada Test Site (NTS) in Nevada, approximately 65 miles northwest of Las Vegas. This CAU is being investigated because disposed waste may be present without appropriate controls (i.e., use restrictions, adequate cover) and hazardous and/or radioactive constituents may be present or migrating at concentrations and locations that could potentially pose a threat to human health and the environment. The NTS has been used for various research and development projects including nuclear weapons testing. The CASs in CAU 140 were used for testing, material storage, waste storage, and waste disposal. A two-phase approach has been selected to collect information and generate data to satisfy needed resolution criteria and resolve the decision statements. Phase I will determine if contaminants of potential concern (COPCs) are present in concentrations exceeding preliminary action levels. This data will be evaluated at all CASs. Phase II will determine the extent of the contaminant(s) of concern (COCs). This data will only be evaluated for CASs with a COC identified during Phase I. Based on process knowledge, the COPCs for CAU 140 include volatile organics, semivolatile organics, petroleum hydrocarbons, explosive residues, herbicides, pesticides, polychlorinated biphenyls, metals, and radionuclides. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.« less

  19. Real-time detection and characterization of nuclear explosion using broadband analyses of regional seismic stations

    NASA Astrophysics Data System (ADS)

    Prastowo, T.; Madlazim

    2018-01-01

    This preliminary study aims to propose a new method of real-time detection and characterization of nuclear explosions by analyzing broadband seismic waveforms acquired from a network of regional seismic stations. Signal identification generated by a nuclear test was differentiated from natural sources of either earthquakes or other natural seismo-tectonic events by verifying crucial parameters, namely source depth, type of first motion, and P-wave domination of the broadband seismic wavesunder consideration. We examined and analyzed a recently hypothetical nuclear test performed by the North Koreangovernment that occurred on September 3, 2017 as a vital point to study. From spectral analyses, we found that the source of corresponding signals associated with detonations of the latest underground nuclear test was at a much shallower depth below the surface relatively compared with that of natural earthquakes, the suspected nuclear explosions produced compressional waves with radially directed outward from the source for their first motions, and the waves were only dominated by P-components. The results are then discussed in the context of potential uses of the proposed methodology for human-induced disaster early warning system and/or the need of rapid response purposes for minimizing the disaster risks.

  20. Infection Casualty Estimation (ICE) Model: Predicting Sepsis in Nuclear Detonation Burn Patient Populations using Procalcitonin as a Biomarker

    DTIC Science & Technology

    2017-06-06

    environments may be injured or killed from the primary blast wave, thermal pulse and ionizing radiation . Burn casualties surviving the initial blast wave are...32]/1.8 degree Celsius (oC) degree Fahrenheit (oF) [T(oF) + 459.67]/1.8 kelvin (K) Radiation activity of radionuclides [curie (Ci)] 3.7 × 1010...develop casualty estimation models for improvised nuclear device (IND) scenarios. The HSRDIPT team has developed health effects models of radiation , burn

  1. Don't Mess with the NEST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, M

    NEST stands for Nuclear Emergency Support Team. The NEST Mission Statement as first established: (1) Conduct, direct, coordinate search and recovery operations for nuclear material, weapons or devices; and (2) Assist in identification and deactivation of Improvised Nuclear Devices (INDs) and Radiological Dispersal Devices (RDDs). Then in 1980 a very sophisticated improvised explosive device was found at Harvey's Casino at Lake Tahoe, Nevada. The FBI and Bomb Squads were unprepared and it detonated. As a result the additional phrase 'and Sophisticated Improvised Explosive Devices (SIEDs)' was added to the Mission Statement.

  2. Yucca blowup theory bombs, says study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taubes, G.

    The theory was explosive, but in its biggest test yet, it has fizzled. Last year, an unpublished paper circulated at the Los Alamos National Laboratory raised the possibility that the planned nuclear waste repository at Yucca Mountain, Nevada, might erupt in massive nuclear explosions. The scenario, which held that leaking waste could concentrate in the surrounding rock to form a {open_quotes}supercritical mass,{close_quotes} received heavy publicity. But a review released last week by the nuclear engineering department at the University of California, Berkeley, says it is not credible.

  3. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    DOEpatents

    Bowman, C.D.

    1992-11-03

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  4. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    DOEpatents

    Bowman, Charles D.

    1992-01-01

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  5. Transparent Tube Studies of Burning to Detonation Transition in Granular Explosives 1: Preliminary Framing Camera Studies

    DTIC Science & Technology

    1980-10-27

    Reference 13. The 94/6 RDX/ wax (X893) and 97/3 RDX/ wax (X758) were mechanical mixtures prepared from Class A RDX (X597) and carnauba wax (N134). The...UKLAS9*TE SE,’CRITY CLASSIFICATION OF THIS PAGE (When Data Entered) ionization probes in previous steel tube studies. In charges of 94/6 RDX/ wax ...explosives (picric acid, tetryl, and RDX/ wax ) were among those materials in previous steel tube studies at NSWC which achieved deflagration to

  6. Full-Scale Incineration System Demonstration Verification Test Burns at the Naval Battalion Construction Center, Gulfport, Mississippi. Volume 3. Treatability Tests. Part 2

    DTIC Science & Technology

    1991-07-01

    1525 C1:y: daho Falls State: r Zip: 83413 Telephoue Hunber: (2 16) 65-1763 4. Facilities Location: Number & Steet: Naval Construction Bat.tallcn...ed into the POTW: (a) Pollutants which create a fire or explosion hazard in the POTW; (b) Pollutants which will cause corrosive structural damage to...Haylon Located in the laboratory (1) 15-1b C02 Located in the trailer 482 / 4.3.8 Maximum Hypothetical Accident ( Explosion ) The maximum hypothetical

  7. Impact waves and detonation. Part I

    NASA Technical Reports Server (NTRS)

    Becker, R

    1929-01-01

    Among the numerous thermodynamic and kinetic problems that have arisen in the application of the gaseous explosive reaction as a source of power in the internal combustion engine, the problem of the mode or way by which the transformation proceeds and the rate at which the heat energy is delivered to the working fluid became very early in the engine's development a problem of prime importance. The work of Becker here given is a notable extension of earlier investigations, because it covers the entire range of the explosive reaction in gases - normal detonation and burning.

  8. A Coordinated Emergency Response: A Color Dust Explosion at a 2015 Concert in Taiwan

    PubMed Central

    Yang, Chih-Ching

    2016-01-01

    In June 2015, nearly 500 concert attendees suffered injuries from smoke inhalation and severe burns following a color-dust explosion at a waterpark in Taiwan. We report on the progressions of the incident and government responses, share cross-departmental mobilization and case management lessons, and reflect on clinical and complex policy issues emerged. The timely and coordinated emergency responses, a high-quality universal health care system, and dedicated clinicians voluntarily working overtime resulted in an unprecedented 2.4% mortality rate (international statistics predicted 26.8%). PMID:27459446

  9. Atmospheric Transport Modelling assessing radionuclide detection chances after the nuclear test announced by the DPRK in January 2016

    NASA Astrophysics Data System (ADS)

    Ross, J. Ole; Ceranna, Lars

    2016-04-01

    The Comprehensive Nuclear-Test-Ban Treaty (CTBT) prohibits all kinds of nuclear explosions. The International Monitoring System (IMS) is in place and at about 90% complete to verify compliance with the CTBT. The stations of the waveform technologies are capable to detect seismic, hydro-acoustic and infrasonic signals for detection, localization, and characterization of explosions. The seismic signals of the DPRK event on 6 January 2016 were detected by many seismic stations around the globe and allow for localization of the event and identification as explosion (see poster by G. Hartmann et al.). However, the direct evidence for a nuclear explosion is only possible through the detection of nuclear fission products which may be released. For that 80 Radionuclide (RN) Stations are part of the designed IMS, about 60 are already operational. All RN stations are highly sensitive for tiny traces of particulate radionuclides in large volume air samplers. There are 40 of the RN stations designated to be equipped with noble gas systems detecting traces of radioactive xenon isotopes which are more likely to escape from an underground test cavity than particulates. Already 30 of the noble gas systems are operational. Atmospheric Transport Modelling supports the interpretation of radionuclide detections (and as appropriate non-detections) by connecting the activity concentration measurements with potential source locations and release times. In our study forecasts with the Lagrangian Particle Dispersion Model HYSPLIT (NOAA) and GFS (NCEP) meteorological data are considered to assess the plume propagation patterns for hypothetical releases at the known DPRK nuclear test site. The results show a considerable sensitivity of the IMS station RN 38 Takasaki (Japan) to a potential radionuclide release at the test site in the days and weeks following the explosion in January 2016. In addition, backtracking simulations with ECMWF analysis data in 0.2° horizontal resolution are performed for selected samples to get a complementary estimation of the sensitivities and the connected thresholds for detectable releases.The meteorological situation is compared to the aftermath of the nuclear explosion on 12 February 2013 after which a specific occurrence of an unusual 131mXe signature at RN 38 eight weeks after the test could be very likely attributed to a late release from the DPRK event.

  10. OPERATION WIGWAM. Scientific Director’s Summary Report

    DTIC Science & Technology

    1980-02-01

    Base, Albuquerque, N. Mex. 1. Objectives Measure air pressures from the deep underwater nuclear explosion at the surface and at altitudes approaching...arrangpd as to take advan- tap of opportunities to obtain the effects of atomic explosives against ground and air tairgett and to acquire sclentific...atomic explosives in air and water; target response to underwater explosives ; and model scaling techniques. 3. Dr. W. 0. Penney of the Armament Research

  11. Multi-Phenomenology Explosion Monitoring (Multi-PEM). Signal Detection. Research to target smaller sources for tomorrow’s missions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmichael, Joshua Daniel

    2015-12-12

    This a guide on how to detect and identify explosions from various sources. For example, nuclear explosions produce acoustic, optical, and EMP outputs. Each signal can be buried in noise, but fusing detection statistics from seismic, acoustic, and electromagnetic signals results in clear detection otherwise unobtainable.

  12. Burning mechanism and regression rate of RX-35-AU and RX-35-AV as a function of HMX particle size measured by the hybrid closed bomb-strand burner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, W.C.; Costantino, M.S.; Ornellas, D.L.

    1990-04-01

    In this study, the average surface regression rate of two HMX-based cast explosives, RX-35-AU and RX-35-AV, is measured to pressures above 750 MPa using a hybrid closed bomb-strand burner. The hybrid design allows the simultaneous measurement of pressure and regression rate over a large range of pressures in each experiment. Nitroglycerin/Triacetin (75/25) and polyethylene glycol (PEG) are used as the energetic plasticizer and polymeric binder, respectively, in both formulations. The HMX solids loading in each formulation is 50 wt %, consisting of a narrow particle size distribution of 6--8 {mu}m for RX-35-AU and 150--177 {mu}m for RX-35-AV. Of special interestmore » are the regression rate and burning mechanism as a function of the initial particle size distribution and the mechanical properties fo the cast explosives. In general, the regression rate for the larger particle size formulation, RX-35-AV, is two to three times faster compared to that for RX-35-AU. Up to 750 MPa and independent of the initial confinement pressure, RX-35-AU exhibits a planar burning mechanism with the regression rate obeying the classical aP{sup n} formalism. For RX-35-AV, however, the burning behavior is erratic for samples ignited at 200 MPa confinement pressure. At confinement pressures above 400 MPa, the regression exhibits more of a planar burning mechanism. The unstable combustion behavior for RX-35-AV at lower confinement pressures is related to several mechanisms: (1) an abrupt increase in surface area due to particle fracture and subsequent translation and rotation, resulting in debonding and creating porosity, (2) thixotropic'' separation of the binder and nitramine, causing the significantly greater fracture damage to the nitramine during the loading cycle, (3) microscopic damage to the nitramine crystals that increase its intrinsic burning rate. 12 refs., 8 figs., 2 tabs.« less

  13. Improved Event Location Uncertainty Estimates

    DTIC Science & Technology

    2008-06-30

    throughout this study . The data set consists of GT0-2 nuclear explosions from the SAIC Nuclear Explosion Database (www.rdss.info, Bahavar et al...errors: Bias and variance In this study SNR dependence of both delay and variance of reading errors of first arriving P waves are analyzed and...ground truth and range of event size. For other datasets we turn to estimates based on double- differences between arrival times of station pairs

  14. Epidemiological studies on radiation carcinogenesis in human populations following acute exposure: nuclear explosions and medical radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fabrikant, J.I.

    1981-05-01

    The current knowledge of the carcinogenic effect of radiation in man is considered. The discussion is restricted to dose-incidence data in humans, particularly to certain of those epidemiological studies of human populations that are used most frequently for risk estimation for low-dose radiation carcinogenesis in man. Emphasis is placed solely on those surveys concerned with nuclear explosions and medical exposures. (ACR)

  15. Nuclear Explosion and Infrasound Event Resources of the SMDC Monitoring Research Program

    DTIC Science & Technology

    2008-09-01

    2008 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies 928 Figure 7. Dozens of detected infrasound signals from...investigate alternative detection schemes at the two infrasound arrays based on frequency-wavenumber (fk) processing and the F-statistic. The results of... infrasound signal - detection processing schemes. REFERENCES Bahavar, M., B. Barker, J. Bennett, R. Bowman, H. Israelsson, B. Kohl, Y-L. Kung, J. Murphy

  16. A preliminary study on the use of (10)Be in forensic radioecology of nuclear explosion sites.

    PubMed

    Whitehead, N E; Endo, S; Tanaka, K; Takatsuji, T; Hoshi, M; Fukutani, S; Ditchburn, R G; Zondervan, A

    2008-02-01

    Cosmogenic (10)Be, known for use in dating studies, unexpectedly is also produced in nuclear explosions with an atom yield almost comparable to (e.g.) (137)Cs. There are major production routes via (13)C(n, alpha)(10)Be, from carbon dioxide in the air and the organic explosives, possibly from other bomb components and to a minor extent from the direct fission reaction. Although the detailed bomb components are speculative, carbon was certainly present in the explosives and an order of magnitude calculation is possible. The (n, alpha) cross-section was determined by irradiating graphite in a nuclear reactor, and the resulting (10)Be estimated by Accelerator Mass Spectrometry (AMS) giving a cross-section of 34.5+/-0.7mb (6-9.3MeV), within error of previous work. (10)Be should have applications in forensic radioecology. Historical environmental samples from Hiroshima, and Semipalatinsk (Kazakhstan) showed two to threefold (10)Be excesses compared with the background cosmogenic levels. A sample from Lake Chagan (a Soviet nuclear cratering experiment) contained more (10)Be than previously reported soils. (10)Be may be useful for measuring the fast neutron dose near the Hiroshima bomb hypocenter at neutron energies double those previously available.

  17. Quick reproduction of blast-wave flow-field properties of nuclear, TNT, and ANFO explosions

    NASA Astrophysics Data System (ADS)

    Groth, C. P. T.

    1986-04-01

    In many instances, extensive blast-wave flow-field properties are required in gasdynamics research studies of blast-wave loading and structure response, and in evaluating the effects of explosions on their environment. This report provides a very useful computer code, which can be used in conjunction with the DNA Nuclear Blast Standard subroutines and code, to quickly reconstruct complete and fairly accurate blast-wave data for almost any free-air (spherical) and surface-burst (hemispherical) nuclear, trinitrotoluene (TNT), or ammonium nitrate-fuel oil (ANFO) explosion. This code is capable of computing all of the main flow properties as functions of radius and time, as well as providing additional information regarding air viscosity, reflected shock-wave properties, and the initial decay of the flow properties just behind the shock front. Both spatial and temporal distributions of the major blast-wave flow properties are also made readily available. Finally, provisions are also included in the code to provide additional information regarding the peak or shock-front flow properties over a range of radii, for a specific explosion of interest.

  18. ISC origin times for announced and presumed underground nuclear explosions at several test sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodean, H.C.

    1979-12-03

    Announced data for US and French underground nuclear explosions indicate that nearly all detonations have occurred within one or two tenths of a second after the minute. This report contains ISC origin-time data for announced explosions at two US test sites and one French test site, and includes similar data for presumed underground nuclear explosions at five Soviet sites. Origin-time distributions for these sites are analyzed for those events that appeared to be detonated very close to the minute. Particular attention is given to the origin times for the principal US and Soviet test sites in Nevada and Eastern Kazakhstan.more » The mean origin times for events at the several test sites range from 0.4 s to 2.8 s before the minute, with the earlier mean times associated with the Soviet sites and the later times with the US and French sites. These times indicate lower seismic velocities beneath the US and French sites, and higher velocities beneath the sites in the USSR 9 figures, 8 tables.« less

  19. [Discussion of the Roles of Medical Social Workers in the Response to the Explosion Incident at Formosa Fun Coast].

    PubMed

    Yueh, Hsin-Tien; Sung, Hsien-Yi; Wu, Chia-Feng

    2016-02-01

    Medical social workers apply the theories of "person in the environment" (PIE) and "ecological perspective" as practical foundations. Furthermore, they emphasize the people, the environment, and the interactions between these two. When burn patients from the explosion at Formosa Fun Coast were sent to hospitals, social workers not only provided care and assessed the impact on burn patients but also assisted in supporting the family members of these patients. This article discusses the various roles of social workers within different systems. In the individual system, we use Eric Erickson's theory of psychosocial development to evaluate the patient's crisis and the tasks of social workers. Secondly, in the systems of family, school, and work, we assess the relationships between a patient, his/her significant others, and caregivers as well as the interactions among sub-systems in the family. In the community and cultural systems, we focus on the social resources that may be utilized by the burn patients after discharge. Moreover, we add a time frame to examine our major tasks, including the initial stage, the middle stage, and the preparation-for-discharge stage. We explore the roles of social workers, the applicable theories, and the goals for each stage.

  20. High spatial resolution spectroscopy of Tycho’s SNR with Chandra

    NASA Astrophysics Data System (ADS)

    Guo, Yun-Dong; Yang, Xue-Juan

    2017-02-01

    We present high spatial resolution X-ray spectroscopy of Tycho’s supernova remnant (SNR) using observational data from Chandra. The whole remnant was divided into 26 × 27 regions, with each of them covering 20\\prime\\prime × 20\\prime\\prime. We selected 536 pixels with enough events to generate spectra and fit them with an absorbed two component non-equilibrium ionization model. We obtained maps of absorbing column density, weight-averaged temperature, ionization age and abundances for O, Ne, Mg, Si, S and Fe, with emission used to determine the weight. The abundance maps and the finding that Fe abundance is not correlated with any other element suggest that Fe is located at a smaller radius than other elements, supporting the onion shell model with emission from more massive elements peaking more toward the center. A tight correlation between Si and S abundances support both Si and S coming from explosive O-burning and/or incomplete Si-burning. O and Ne abundances show no correlation with any other element. Considering that O, Ne and Mg are all synthesized in the same process (C/Ne-burning), we suggest that O/Ne/Mg might mix well with other elements during the explosion of the supernova and the expansion of the SNR.

  1. The epidemiology of burns in young children from Mexico treated at a U.S. hospital.

    PubMed

    Patel, Dipen D; Rosenberg, Laura; Rosenberg, Marta; Leal, Jesus; Andersen, Clark R; Foncerrada, Guillermo; Lee, Jong O; Jimenez, Carlos J; Branski, Ludwik; Meyer, Walter J; Herndon, David N

    2016-12-01

    Young children are the most vulnerable for sustaining burns. At this pediatric burn hospital we have provided medical care to young children with severe burns from Mexico for many years. This study identified modifiable risk factors that could be used to assist in prevention of burns in this age group. A retrospective chart review was performed with children <5 years of age from Mexico who were injured from 2000 to 2013. The medical records of 447 acute patients were reviewed. There were 187 females and 260 males with large burns >20% total body surface area (TBSA) burned. Primary causes of burns were flame and scalds. Children with flame injuries were older (3.0±1.5 years of age) than those with scalds (2.6±1.2 years of age). Admissions attributed to flame burns were largely from explosions by propane tanks, gas line leaks, and house fires. Most admissions for scalds were predominantly from falling in large containers of hot water, food, or grease; and fewer were attributed to spills from hot liquids. Most cases reported to a social service agency were to find resources for families. Mortality rate for flame and scald burns was low. It is important take into account demographic, cultural, and socioeconomic variables when developing and implementing prevention programs. Burn prevention instruction for parents is crucial. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  2. UH cosmic rays and solar system material - The elements just beyond iron

    NASA Technical Reports Server (NTRS)

    Wefel, J. P.; Schramm, D. N.; Blake, J. B.

    1977-01-01

    The nucleosynthesis of cosmic-ray elements between the iron peak and the rare-earth region is examined, and compositional changes introduced by propagation in interstellar space are calculated. Theories on the origin of elements heavier than iron are reviewed, a supernova model of explosive nucleosynthesis is adopted for the ultraheavy (UH) cosmic rays, and computational results for different source distributions are compared with experimental data. It is shown that both the cosmic-ray data and the nucleosynthesis calculations are not yet of sufficient precision to pinpoint the processes occurring in cosmic-ray source regions, that the available data do provide boundary conditions for cosmic-ray nucleosynthesis, and that these limits may apply to the origin of elements in the solar system. Specifically, it is concluded that solar-system abundances appear to be consistent with a superposition of the massive-star core-helium-burning s-process plus explosive-carbon-burning synthesis for the elements from Cu to As and are explained adequately by the s- and r-processes for heavier elements.

  3. Preliminary burn and impact tests of hybrid polymeric composites. [preventing graphite fiber release

    NASA Technical Reports Server (NTRS)

    Tompkins, S. S.; Brewer, W. D.

    1978-01-01

    Free graphite fibers released into the environment from resin matrix composite components, as a result of fire and/or explosion, pose a potential hazard to electrical equipment. An approach to prevent the fibers from becoming airborne is to use hybrid composite materials which retain the fibers at the burn site. Test results are presented for three hybrid composites that were exposed to a simulation of an aircraft fire and explosion. The hybrid systems consisted of 16 plies of graphite-epoxy with two plies of Kevlar-, S-glass-, or boron-epoxy on each face. Two different test environments were used. In one environment, specimens were heated by convection only, and then impacted by a falling mass. In the other environment, specimens were heated by convection and by radiation, but were not impacted. The convective heat flux was about 100-120 kW/m in both environments and the radiative flux was about 110 kW/sq m.

  4. Textbook of Military Medicine. Part 1. Warfare, Weaponry, and the Casualty. Part 5. Conventional Warfare. Ballistic, Blast, and Burn Injuries

    DTIC Science & Technology

    1991-01-01

    United States. Because the vast majority of our patients are not active -duty military personnel, it may seem that our day-to-day ac- tivities are far... activated . A designated time-delay fuse uses an Source: Reference 8 15 Conventional Warfare: Ballistic, Blast, and Burn Injuries explosion and the...be found embedded and unexploded in tissue. The fuse is located at the tip of the warhead, and is activated and will deionate on contact only after

  5. Full and Partial Thickness Burns from Spontaneous Combustion of E-Cigarette Lithium-Ion Batteries with Review of Literature.

    PubMed

    Treitl, Daniela; Solomon, Rachele; Davare, Dafney L; Sanchez, Rafael; Kiffin, Chauniqua

    2017-07-01

    In recent years, the use of electronic cigarettes (e-cigarettes) has increased worldwide. Most electronic nicotine delivery systems use rechargeable lithium-ion batteries, which are relatively safe, but in rare cases these batteries can spontaneously combust, leading to serious full and partial thickness burn injuries. Explosions from lithium-ion batteries can cause a flash fire and accelerant-related burn injuries. A retrospective chart review was conducted of 3 patients with lithium-ion battery burns seen at our Level I community-based trauma center. Clinical presentation, management, and outcome are presented. All 3 patients sustained burn injuries (total body surface area range 5-13%) from the spontaneous combustion of lithium-ion batteries used for e-cigarettes. All patients were treated with debridement and local wound care. All fully recovered without sequelae. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Emergency physicians can expect to treat burn cases due to spontaneous lithium-ion battery combustion as e-cigarette use continues to increase. The cases presented here are intended to bring attention to lithium-ion battery-related burns, prepare physicians for the clinical presentation of this burn mechanism, and facilitate patient education to minimize burn risk. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. 10 CFR 810.3 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of neutrons used to effect SNM production in the “subcritical assembly.” Agreement for cooperation... International Atomic Energy Agency. Non-nuclear-weapon state is a country not recognized as a nuclear-weapon...-Proliferation of Nuclear Weapons. Nuclear reactor means an apparatus, other than a nuclear explosive device...

  7. 10 CFR 810.3 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... of neutrons used to effect SNM production in the “subcritical assembly.” Agreement for cooperation... International Atomic Energy Agency. Non-nuclear-weapon state is a country not recognized as a nuclear-weapon...-Proliferation of Nuclear Weapons. Nuclear reactor means an apparatus, other than a nuclear explosive device...

  8. A TRACER METHOD FOR COMPUTING TYPE IA SUPERNOVA YIELDS: BURNING MODEL CALIBRATION, RECONSTRUCTION OF THICKENED FLAMES, AND VERIFICATION FOR PLANAR DETONATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Townsley, Dean M.; Miles, Broxton J.; Timmes, F. X.

    2016-07-01

    We refine our previously introduced parameterized model for explosive carbon–oxygen fusion during thermonuclear Type Ia supernovae (SNe Ia) by adding corrections to post-processing of recorded Lagrangian fluid-element histories to obtain more accurate isotopic yields. Deflagration and detonation products are verified for propagation in a medium of uniform density. A new method is introduced for reconstructing the temperature–density history within the artificially thick model deflagration front. We obtain better than 5% consistency between the electron capture computed by the burning model and yields from post-processing. For detonations, we compare to a benchmark calculation of the structure of driven steady-state planar detonationsmore » performed with a large nuclear reaction network and error-controlled integration. We verify that, for steady-state planar detonations down to a density of 5 × 10{sup 6} g cm{sup −3}, our post-processing matches the major abundances in the benchmark solution typically to better than 10% for times greater than 0.01 s after the passage of the shock front. As a test case to demonstrate the method, presented here with post-processing for the first time, we perform a two-dimensional simulation of a SN Ia in the scenario of a Chandrasekhar-mass deflagration–detonation transition (DDT). We find that reconstruction of deflagration tracks leads to slightly more complete silicon burning than without reconstruction. The resulting abundance structure of the ejecta is consistent with inferences from spectroscopic studies of observed SNe Ia. We confirm the absence of a central region of stable Fe-group material for the multi-dimensional DDT scenario. Detailed isotopic yields are tabulated and change only modestly when using deflagration reconstruction.« less

  9. Body and Surface Wave Modeling of Observed Seismic Events

    DTIC Science & Technology

    1981-04-30

    are commonly used and the third is a modification of a test of the representation theorem. All three give similar results for explosions in an NTS...order to better understand the Ms-Yield relationship for underground nuclear explosions , we need to be able to predict quantitatively the effects of...half-space Green’s functions, previously obtained, to calculate far-field Rayleigh waves from explosions . Consider a point explosion at h. (Figure 1

  10. 2010 Joint Chemical Biological Radiological Nuclear (CBRN) Conference and Exhibition (BRIEFING CHARTS)

    DTIC Science & Technology

    2010-06-24

    control Defensive Test Chamber • Certified for Chem-Bio simulants • Man-in-simulant (MIST) testing Bang Box • Explosive material synthesis and testing...Explosive material synthesis and testing Bang Box –Peroxide Explosives Properties – HMTD, TATP, DADP –Peroxide Explosives as Initiators –TATP... Synthesis –HMTD Synthesis –RDX Synthesis –ANFO Mixture Mustang VILLAGE Approved for public release; distribution is unlimited. • Hotel, Post Office

  11. Yields of Soviet underground nuclear explosions from seismic surface waves: Compliance with the Threshold Test Ban Treaty

    PubMed Central

    Sykes, Lynn R.; Cifuentes, Inés L.

    1984-01-01

    Magnitudes of the larger Soviet underground nuclear weapons tests from the start of the Threshold Test Ban Treaty in 1976 through 1982 are determined for short- and long-period seismic waves. Yields are calculated from the surface wave magnitude for those explosions at the eastern Kazakh test site that triggered a small-to-negligible component of tectonic stress and are used to calibrate body wave magnitude-yield relationship that can be used to determine the sizes of other explosions at that test site. The results confirm that a large bias, related to differential attenuation of P waves, exists between Nevada and Central Asia. The yields of the seven largest Soviet explosions are nearly identical and are close to 150 kilotons, the limit set by the Threshold Treaty. PMID:16593440

  12. Moving towards first science with the St. George recoil separator

    NASA Astrophysics Data System (ADS)

    Meisel, Zachary; Berg, G. P. A.; Gilardy, G.; Moran, M.; Schmitt, J.; Seymour, C.; Stech, E.; Couder, M.

    2015-10-01

    The St. George recoil mass separator has recently been coupled to the 5MV St. Ana accelerator at the University of Notre Dame's Nuclear Science Lab. St. George is a unique tool designed to measure radiative alpha-capture reactions for nuclei up to A = 40 in inverse kinematics in order to directly obtain cross sections required for astrophysical models of stellar and explosive helium burning. Commissioning of St. George is presently taking place with primary beams of hydrogen, helium, and oxygen. In this presentation, results will be shown for the measured energy acceptance of St. George, which compare favorably to COSY results when employing the calculated optimal ion-optical settings. Additionally, future plans will be discussed, such as assessing the angular acceptance of St. George and the re-integration of HiPPO at the separator target position to provide a dense, windowless helium gas-jet target. The material presented in this work is partially supported by the National Science Foundation Grant No. 1419765.

  13. Mass retention efficiencies of He accretion onto carbon-oxygen white dwarfs and type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Wu, C.; Wang, B.; Liu, D.; Han, Z.

    2017-07-01

    Context. Type Ia supernovae (SNe Ia) play a crucial role in studying cosmology and galactic chemical evolution. They are thought to be thermonuclear explosions of carbon-oxygen white dwarfs (CO WDs) when their masses reach the Chandrasekar mass limit in binaries. Previous studies have suggested that He novae may be progenitor candidates of SNe Ia. However, the mass retention efficiencies during He nova outbursts are still uncertain. Aims: In this article, we aim to study the mass retention efficiencies of He nova outbursts and to investigate whether SNe Ia can be produced through He nova outbursts. Methods: Using the stellar evolution code Modules for Experiments in Stellar Astrophysics, we simulated a series of multicycle He-layer flashes, in which the initial WD masses range from 0.7 to 1.35 M⊙ with various accretion rates. Results: We obtained the mass retention efficiencies of He nova outbursts for various initial WD masses, which can be used in the binary population synthesis studies. In our simulations, He nova outbursts can increase the mass of the WD to the Chandrasekar mass limit and the explosive carbon burning can be triggered in the center of the WD; this suggests that He nova outbursts can produce SNe Ia. Meanwhile, the mass retention efficiencies in the present work are lower than those of previous studies, which leads to a lower birthrates of SNe Ia through the WD + He star channel. Furthermore, we obtained the elemental abundances distribution at the moment of explosive carbon burning, which can be used as the initial input parameters in studying explosion models of SNe Ia.

  14. North Korea nuclear test analysis results using KMA seismic and infrasound networks

    NASA Astrophysics Data System (ADS)

    Jeon, Y. S.; Park, E.; Lee, D.; Min, K.; CHO, S.

    2017-12-01

    Democratic People's Republic of Korea(DPRK) carried out 6th nuclear test on 3 Sep. 2017 at 03:30 UTC. Seismic and infrasound network operated by Korea Meteorological Administration(KMA) successfully detected signals took place in the DPRK's test site, Punggye-ri. First, we checked that Pg/Lg spectral amplitude ratio greater than 1 in the frequency range from 1.0 to 10.0 Hz is useful to discriminate between DPRK test signals and natural earthquakes. KMA's infrasound stations of Cheorwon(CW) and Yanggu(YG) successfully monitored the azimuth direction of the arrival of the infrasound signals generated from DPRK underground nuclear explosions, including the recent test on September 03, 2017. The azimuthal direction of 210(CW) and 130 (YG) point out Punggye-ri test site. Complete waveforms at stations MDJ, CHC2, YNCB in long period(0.05 to 0.1 HZ) are jointly inverted with local P-wave polarities to generate moment tensor inversion result of the explosive moment 1.20e+24 dyne cm(Mw 5.31) and 65% of ISO. The moment magnitude of 5th, 4th and 3rd are 4.61, 4.69 and 4.46 respectively. Source type moment tensor inversion result of DPRK nuclear tests show that the event is significantly away from the deviatoric line of the Hudson et at. (1989) source-type diagram and identifies as having a significant explosive component. Analysis results using seismic and infrasound network verify that the DPRK's explosion tests classified as nuclear test.

  15. Planning for the worst in Washington State: initial response planning for improvised nuclear device explosions.

    PubMed

    Poeton, Richard W; Glines, Wayne M; McBaugh, Debra

    2009-01-01

    Since 11 September 2001, improvised nuclear devices have become recognized as an important radiological threat requiring emergency response planning. Although Protective Action Guidance is well established for fixed nuclear facilities, correspondingly well-developed guidance does not exist for nuclear explosions. The Washington State Department of Health has developed preplanned Protective Action Recommendations for improvised nuclear device explosions. These recommendations recognize the need for advice to the public soon after such an event, before significant data are available. They can be used before significant outside support is available locally, and reference observable effects so people can use them if communications were disabled. The recommendations focus on early actions (24-48 h) and place priority on actions to avoid deterministic health effects due to residual fallout. Specific emphasis is placed on determining recommendations for evacuation, as well as the extent of the area for sheltering. The key recommendations developed for an initial public response are: (1) if there is ready access to robust shelter such as an underground basement or interior spaces in a multi-story structure, immediate sheltering in these areas is the best action, regardless of location; (2) if robust shelter is not available, and if fallout is observed in the area, then evacuation is the best general recommendation for locations within 16 km (10 miles) of the explosion; and (3) beyond 16 km (10 miles), the generally recommended protective action is to shelter in the best-protected location which is readily available.

  16. Assessment of the announced North Korean nuclear test using long-range atmospheric transport and dispersion modelling.

    PubMed

    De Meutter, Pieter; Camps, Johan; Delcloo, Andy; Termonia, Piet

    2017-08-18

    On 6 January 2016, the Democratic People's Republic of Korea announced to have conducted its fourth nuclear test. Analysis of the corresponding seismic waves from the Punggye-ri nuclear test site showed indeed that an underground man-made explosion took place, although the nuclear origin of the explosion needs confirmation. Seven weeks after the announced nuclear test, radioactive xenon was observed in Japan by a noble gas measurement station of the International Monitoring System. In this paper, atmospheric transport modelling is used to show that the measured radioactive xenon is compatible with a delayed release from the Punggye-ri nuclear test site. An uncertainty quantification on the modelling results is given by using the ensemble method. The latter is important for policy makers and helps advance data fusion, where different nuclear Test-Ban-Treaty monitoring techniques are combined.

  17. The Complete Burning of Weapons Grade Plutonium and Highly Enriched Uranium with (Laser Inertial Fusion-Fission Energy) LIFE Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, J C; Diaz de la Rubia, T; Moses, E

    2008-12-23

    The National Ignition Facility (NIF) project, a laser-based Inertial Confinement Fusion (ICF) experiment designed to achieve thermonuclear fusion ignition and burn in the laboratory, is under construction at the Lawrence Livermore National Laboratory (LLNL) and will be completed in April of 2009. Experiments designed to accomplish the NIF's goal will commence in late FY2010 utilizing laser energies of 1 to 1.3 MJ. Fusion yields of the order of 10 to 20 MJ are expected soon thereafter. Laser initiated fusion-fission (LIFE) engines have now been designed to produce nuclear power from natural or depleted uranium without isotopic enrichment, and from spentmore » nuclear fuel from light water reactors without chemical separation into weapons-attractive actinide streams. A point-source of high-energy neutrons produced by laser-generated, thermonuclear fusion within a target is used to achieve ultra-deep burn-up of the fertile or fissile fuel in a sub-critical fission blanket. Fertile fuels including depleted uranium (DU), natural uranium (NatU), spent nuclear fuel (SNF), and thorium (Th) can be used. Fissile fuels such as low-enrichment uranium (LEU), excess weapons plutonium (WG-Pu), and excess highly-enriched uranium (HEU) may be used as well. Based upon preliminary analyses, it is believed that LIFE could help meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the nation's and world's stockpile of spent nuclear fuel and excess weapons materials. LIFE takes advantage of the significant advances in laser-based inertial confinement fusion that are taking place at the NIF at LLNL where it is expected that thermonuclear ignition will be achieved in the 2010-2011 timeframe. Starting from as little as 300 to 500 MW of fusion power, a single LIFE engine will be able to generate 2000 to 3000 MWt in steady state for periods of years to decades, depending on the nuclear fuel and engine configuration. Because the fission blanket in a fusion-fission hybrid system is subcritical, a LIFE engine can burn any fertile or fissile nuclear material, including unenriched natural or depleted U and SNF, and can extract a very high percentage of the energy content of its fuel resulting in greatly enhanced energy generation per metric ton of nuclear fuel, as well as nuclear waste forms with vastly reduced concentrations of long-lived actinides. LIFE engines could thus provide the ability to generate vast amounts of electricity while greatly reducing the actinide content of any existing or future nuclear waste and extending the availability of low cost nuclear fuels for several thousand years. LIFE also provides an attractive pathway for burning excess weapons Pu to over 99% FIMA (fission of initial metal atoms) without the need for fabricating or reprocessing mixed oxide fuels (MOX). Because of all of these advantages, LIFE engines offer a pathway toward sustainable and safe nuclear power that significantly mitigates nuclear proliferation concerns and minimizes nuclear waste. An important aspect of a LIFE engine is the fact that there is no need to extract the fission fuel from the fission blanket before it is burned to the desired final level. Except for fuel inspection and maintenance process times, the nuclear fuel is always within the core of the reactor and no weapons-attractive materials are available outside at any point in time. However, an important consideration when discussing proliferation concerns associated with any nuclear fuel cycle is the ease with which reactor fuel can be converted to weapons usable materials, not just when it is extracted as waste, but at any point in the fuel cycle. Although the nuclear fuel remains in the core of the engine until ultra deep actinide burn up is achieved, soon after start up of the engine, once the system breeds up to full power, several tons of fissile material is present in the fission blanket. However, this fissile material is widely dispersed in millions of fuel pebbles, which can be tagged as individual accountable items, and thus made difficult to divert in large quantities. This report discusses the application of the LIFE concept to nonproliferation issues, initially looking at the LIFE (Laser Inertial Fusion-Fission Energy) engine as a means of completely burning WG Pu and HEU. By combining a neutron-rich inertial fusion point source with energy-rich fission, the once-through closed fuel-cycle LIFE concept has the following characteristics: it is capable of efficiently burning excess weapons or separated civilian plutonium and highly enriched uranium; the fission blanket is sub-critical at all times (keff < 0.95); because LIFE can operate well beyond the point at which light water reactors (LWRs) need to be refueled due to burn-up of fissile material and the resulting drop in system reactivity, fuel burn-up of 99% or more appears feasible. The objective of this work is to develop LIFE technology for burning of WG-Pu and HEU.« less

  18. Detection of Nuclear Explosions Using Infrasound Techniques

    DTIC Science & Technology

    2007-12-01

    signal correlation between array elements in these arrays can seriously limit the reliable detection of infrasound generated ...goals of this investigation are to identify problems with the detection of explosion- generated infrasonic signals at stations in the global infrasound ...restricted to a thermospheric waveguide. The second part is focused on the limitations imposed on array detection of explosion- generated infrasound

  19. Radionuclide Basics: Plutonium

    EPA Pesticide Factsheets

    Plutonium (chemical symbol Pu) is a radioactive metal. Plutonium is considered a man-made element. Plutonium-239 is used to make nuclear weapons. Pu-239 and Pu-240 are byproducts of nuclear reactor operations and nuclear bomb explosions.

  20. Impact of nuclear data uncertainty on safety calculations for spent nuclear fuel geological disposal

    NASA Astrophysics Data System (ADS)

    Herrero, J. J.; Rochman, D.; Leray, O.; Vasiliev, A.; Pecchia, M.; Ferroukhi, H.; Caruso, S.

    2017-09-01

    In the design of a spent nuclear fuel disposal system, one necessary condition is to show that the configuration remains subcritical at time of emplacement but also during long periods covering up to 1,000,000 years. In the context of criticality safety applying burn-up credit, k-eff eigenvalue calculations are affected by nuclear data uncertainty mainly in the burnup calculations simulating reactor operation and in the criticality calculation for the disposal canister loaded with the spent fuel assemblies. The impact of nuclear data uncertainty should be included in the k-eff value estimation to enforce safety. Estimations of the uncertainty in the discharge compositions from the CASMO5 burn-up calculation phase are employed in the final MCNP6 criticality computations for the intact canister configuration; in between, SERPENT2 is employed to get the spent fuel composition along the decay periods. In this paper, nuclear data uncertainty was propagated by Monte Carlo sampling in the burn-up, decay and criticality calculation phases and representative values for fuel operated in a Swiss PWR plant will be presented as an estimation of its impact.

  1. Civilian blast-related burn injuries

    PubMed Central

    Patel, J.N.; Tan, A.; Dziewulski, P.

    2016-01-01

    Summary There is limited English literature describing the experience of a civilian hospital managing blast-related burn injuries. As the largest regional burn unit, we reviewed our cases with the aim of identifying means to improve current management. A 6-year retrospective analysis of all patients coded as sustaining blast-related burns was conducted through the unit’s burns database. Medical case notes were reviewed for information on burn demographics, management and outcomes. 42 patients were identified. Male to female ratio was 37:5. Age range was 12-84 years, (mean=33 years). Total body surface area (%TBSA) burn ranged from 0.25% to 60%, (median=1%). The most common burn injury was flame (31/42, 73.8%). Gas explosions were the most common mechanism of injury (19 cases; 45.2%). 7/42 cases (16.7%) had full ATLS management pre-transfer to the burns unit. The Injury Severity Score (ISS) ranged from 0-43 (median=2). 17/42 (40.4%) patients required admission. 37/36 (88.1%) patients were managed conservatively of which 1 patient later required surgery due to deeper burns. 5/42 (11.9%) patients required surgical management at presentation and these were noted to be burns with >15% TBSA requiring resuscitation. One case required emergency escharotomies and finger amputations. All patients survived their burn injuries. Blast-related burn injuries are generally uncommon in the civilian setting. Following proper assessment, most of these cases can be deemed as minor injuries and managed conservatively. Improvement in burns management education and training at local emergency departments would provide efficient patient care and avoid unnecessary referrals to a burns unit. PMID:27857651

  2. Double-detonation Sub-Chandrasekhar Supernovae: Synthetic Observables for Minimum Helium Shell Mass Models

    NASA Astrophysics Data System (ADS)

    Kromer, M.; Sim, S. A.; Fink, M.; Röpke, F. K.; Seitenzahl, I. R.; Hillebrandt, W.

    2010-08-01

    In the double-detonation scenario for Type Ia supernovae, it is suggested that a detonation initiates in a shell of helium-rich material accreted from a companion star by a sub-Chandrasekhar-mass white dwarf. This shell detonation drives a shock front into the carbon-oxygen white dwarf that triggers a secondary detonation in the core. The core detonation results in a complete disruption of the white dwarf. Earlier studies concluded that this scenario has difficulties in accounting for the observed properties of Type Ia supernovae since the explosion ejecta are surrounded by the products of explosive helium burning in the shell. Recently, however, it was proposed that detonations might be possible for much less massive helium shells than previously assumed (Bildsten et al.). Moreover, it was shown that even detonations of these minimum helium shell masses robustly trigger detonations of the carbon-oxygen core (Fink et al.). Therefore, it is possible that the impact of the helium layer on observables is less than previously thought. Here, we present time-dependent multi-wavelength radiative transfer calculations for models with minimum helium shell mass and derive synthetic observables for both the optical and γ-ray spectral regions. These differ strongly from those found in earlier simulations of sub-Chandrasekhar-mass explosions in which more massive helium shells were considered. Our models predict light curves that cover both the range of brightnesses and the rise and decline times of observed Type Ia supernovae. However, their colors and spectra do not match the observations. In particular, their B - V colors are generally too red. We show that this discrepancy is mainly due to the composition of the burning products of the helium shell of the Fink et al. models which contain significant amounts of titanium and chromium. Using a toy model, we also show that the burning products of the helium shell depend crucially on its initial composition. This leads us to conclude that good agreement between sub-Chandrasekhar-mass explosions and observed Type Ia supernovae may still be feasible but further study of the shell properties is required.

  3. [Radioecological situation in the impact zone of the accidental underground nuclear explosion "Kraton-3" in the Republic of Sakha (Yakutia)].

    PubMed

    Sobakin, P I; Gerasimov, Ya R; Chevychelov, A P; Perk, A A; Goryachenkova, T A; Novikov, A P

    2014-01-01

    The paper reports on the results of a ground walking gamma- and gamma-spectrometric survey made in the impact zone of the accidental underground nuclear explosion "Kraton-3". Patterns of migration, 137Cs, 90Sr and Pu distribution in the soil-vegetable cover of the northern taiga on permafrost are considered. Radioeco- logical situation within the territory surveyed is noted as unfavorable.

  4. Characterization and Performance Evaluation of an HPXe Detector for Nuclear Explosion Monitoring Applications

    DTIC Science & Technology

    2007-09-01

    performance of the detector, and to compare the performance with sodium iodide and germanium detectors. Monte Carlo ( MCNP ) simulation was used to...aluminum ~50% more efficient), and to estimate optimum shield dimensions for an HPXe based nuclear explosion monitor. MCNP modeling was also used to...detector were calculated with MCNP by using input activity levels as measured in routine NEM runs at Pacific Northwest National Laboratory (PNNL

  5. Crustal structure in Nevada and southern Idaho from nuclear explosions

    USGS Publications Warehouse

    Pakiser, L.C.; Hill, D.P.

    1962-01-01

    The time of first arrival of seismic waves generated by 4 underground nuclear explosions at the Nevada Test Site (NTS) and recorded along a line extending north into southern Idaho is expressed as T0 = 0. 00 + Δ/3.0 (assumed), T1 = 0 .40 + Δ/6.03, and T2 = 6.15 + Δ/7.84, where time is in seconds and the shot-detector distance (Δ) is in km. Assuming constant velocities and horizontal layers, crustal thickness in the vicinity of NTS was determined to be 28 km. Delays in the traveltime segment T2, which represents Pn, indicate that the crust may thicken to 32 km in northern Nevada. A third phase, expressed as T3 = 14.48 + Δ/7.84, was also recognized and has arrival times appropriate for SPS. Amplitudes of Pn were determined at 7 places from recordings of seismic waves from one underground nuclear explosion (ANTLER).

  6. Listening to sounds from an exploding meteor and oceanic waves

    NASA Astrophysics Data System (ADS)

    Evers, L. G.; Haak, H. W.

    Low frequency sound (infrasound) measurements have been selected within the Comprehensive Nuclear-Test-Ban Treaty (CTBT) as a technique to detect and identify possible nuclear explosions. The Seismology Division of the Royal Netherlands Meteorological Institute (KNMI) operates since 1999 an experimental infrasound array of 16 micro-barometers. Here we show the rare detection and identification of an exploding meteor above Northern Germany on November 8th, 1999 with data from the Deelen Infrasound Array (DIA). At the same time, sound was radiated from the Atlantic Ocean, South of Iceland, due to the atmospheric coupling of standing ocean waves, called microbaroms. Occurring with only 0.04 Hz difference in dominant frequency, DIA proved to be able to discriminate between the physically different sources of infrasound through its unique lay-out and instruments. The explosive power of the meteor being 1.5 kT TNT is in the range of nuclear explosions and therefore relevant to the CTBT.

  7. 32 CFR 537.6 - Identification of recovery incidents.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., inpatient or outpatient care resulting from injuries (such as broken bones or burns arising from automobile accidents, gas explosions, falls, civilian malpractice, and similar incidents) that do not involve...) Personal injury to persons whose primary care for an accident-related injury is furnished at an Army MTF...

  8. 32 CFR 537.6 - Identification of recovery incidents.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., inpatient or outpatient care resulting from injuries (such as broken bones or burns arising from automobile accidents, gas explosions, falls, civilian malpractice, and similar incidents) that do not involve...) Personal injury to persons whose primary care for an accident-related injury is furnished at an Army MTF...

  9. 32 CFR 537.6 - Identification of recovery incidents.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., inpatient or outpatient care resulting from injuries (such as broken bones or burns arising from automobile accidents, gas explosions, falls, civilian malpractice, and similar incidents) that do not involve...) Personal injury to persons whose primary care for an accident-related injury is furnished at an Army MTF...

  10. 32 CFR 537.6 - Identification of recovery incidents.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., inpatient or outpatient care resulting from injuries (such as broken bones or burns arising from automobile accidents, gas explosions, falls, civilian malpractice, and similar incidents) that do not involve...) Personal injury to persons whose primary care for an accident-related injury is furnished at an Army MTF...

  11. 32 CFR 537.6 - Identification of recovery incidents.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., inpatient or outpatient care resulting from injuries (such as broken bones or burns arising from automobile accidents, gas explosions, falls, civilian malpractice, and similar incidents) that do not involve...) Personal injury to persons whose primary care for an accident-related injury is furnished at an Army MTF...

  12. Aerostat-Lofted Instrument Platform and Sampling Method for Determination of Emissions from Open Area Sources

    EPA Science Inventory

    Sampling emissions from open area sources, particularly sources of open burning, is difficult due to fast dilution of emissions and safety concerns for personnel. Representative emission samples can be difficult to obtain with flaming and explosive sources since personnel safety ...

  13. Cement-related injuries: review of a series, the National Burn Repository, and the prevailing literature.

    PubMed

    Chung, Joseph Y; Kowal-Vern, Areta; Latenser, Barbara A; Lewis, Robert W

    2007-01-01

    The spectrum of cement-related injuries encompasses contact dermatitis, abrasions, ulcerations, chemical burns, and burns from explosions during the manufacturing process. The purpose of this study was to compile cement-related conditions seen in two burn units (1999-2005), literature case reports and series (1950-2006) and the (1989-2001) National Burn Repository (NBR). There were 3597 admissions in two Midwestern burn units, of which 12 cases (0.8%) were cement burns. They occurred in men, aged 15 to 64 years with a burn range of 0.25 to 10% TBSA, exposure time of 1 to 6 hours, treatment delay of 1 day to 2 weeks, hospitalization (2-14 days). Literature review of 109 cases indicated that cement-related injuries were predominantly seen in men, aged 26 to 45 years; with a cement-exposure time of 1.5 to 4 hours, treatment delay (1 day to 5 weeks), hospitalization (10-33 days), and healing time (2-7 weeks). There were 52,219 burn admissions in the NBR, of which 44 (0.08%) were cement-related burns; 95% were men with a mean age of 41 years, 6% TBSA cement burn and an 8-day hospital stay. The demographic characteristics of the burn units and NBR cases were similar to those in the literature. This preventable injury occurred primarily in the working age male patient and was associated with long healing times. Public awareness and enhanced manufacturer package warnings and education may decrease future cement-related injuries.

  14. The detection of bulk explosives using nuclear-based techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgado, R.E.; Gozani, T.; Seher, C.C.

    1988-01-01

    In 1986 we presented a rationale for the detection of bulk explosives based on nuclear techniques that addressed the requirements of civil aviation security in the airport environment. Since then, efforts have intensified to implement a system based on thermal neutron activation (TNA), with new work developing in fast neutron and energetic photon reactions. In this paper we will describe these techniques and present new results from laboratory and airport testing. Based on preliminary results, we contended in our earlier paper that nuclear-based techniques did provide sufficiently penetrating probes and distinguishable detectable reaction products to achieve the FAA operational goals;more » new data have supported this contention. The status of nuclear-based techniques for the detection of bulk explosives presently under investigation by the US Federal Aviation Administration (FAA) is reviewed. These include thermal neutron activation (TNA), fast neutron activation (FNA), the associated particle technique, nuclear resonance absorption, and photoneutron activation. The results of comprehensive airport testing of the TNA system performed during 1987-88 are summarized. From a technical point of view, nuclear-based techniques now represent the most comprehensive and feasible approach for meeting the operational criteria of detection, false alarms, and throughput. 9 refs., 5 figs., 2 tabs.« less

  15. A Path Where No Man Thought; Nuclear Winter and the End of the Arms Race

    NASA Astrophysics Data System (ADS)

    Brasseur, Guy

    In 1982, Paul Crutzen, Max Planck Institute for Chemistry, Mainz, Germany, and John Birks, University of Colorado, Boulder, published a provocative paper suggesting that the smoke from the fires triggered by potential massive nuclear explosions would generate profound changes in the chemical composition and physical state of the Earth's atmosphere. A year later, a group of five scientists, Richard Turco, Brian Toon, Tom Ackerman, Jim Pollack, and Carl Sagan, showed, on the basis of model calculations, that the Earth would cool significantly following nuclear explosions and that the climatic impacts of a nuclear war would affect not only the country attacked but also the aggressor. This group, which received the acronym of TTAPS, showed that the number of fatalities resulting from the indirect climatic perturbations could be at least as large as the number of humans directly killed by the explosions. Two of the authors of the TTAPS theory, Carl Sagan and Richard Turco, have summarized 10 years of extensive research and public controversy following the publication of the nuclear winter hypothesis. In their fascinating book they try to analyze how the concept of nuclear winter has changed the attitude of the political world, has contributed to the improvement of political relations between the two superpowers, and has initiated a revision of geopolitical and military theories.

  16. Seismic Energy Generation and Partitioning into Various Regional Phases from Different Seismic Sources in the Middle East Region

    DTIC Science & Technology

    2007-09-20

    phases. The power law parameter values were found to be in close agreement with the constants for nuclear explosions in Nevada and chemical explosions in...caused by the difference of lithostatic pressures between top and bottom of a vertical cylindrical explosive source, typical for borehole chemical ...NORSAR recorded several decoupled chemical explosions in large chambers of underground mines in Sweden (Stevens et al., 2003), however a reference

  17. Thermal injuries from exploding electronic cigarettes.

    PubMed

    Hickey, Sean; Goverman, Jeremy; Friedstat, Jonathan; Sheridan, Robert; Schulz, John

    2018-03-01

    There are an estimated 2.75 million electronic cigarette (EC) users in the United States. ECs have become the most commonly used nicotine-containing product in young adults ages 18-24 years. Thermal, blast, and missile injuries from EC explosions has grown rapidly in recent years. Burn surgeons must remain up to date regarding management and treatment of burn injuries related to EC device ignition. An IRB approved retrospective review of all patients admitted to the Massachusetts General Hospital Burn Center from January 2015 to April 2017 was performed. Fourteen patients with injuries associated with EC use were identified. Patient demographics, injury location, size and degree of burn, treatments required, length of stay (LOS), time to 95% closure, associated complications and injuries, and the circumstances that led to the injury were identified. The mean age was 28.6±8.6 years with a range of 19-50 years (n=14). EC burns occurred in males 93% (13/14) of the time. The majority of EC explosions caused 2nd and 3rd degree burns (57%) within the same wound bed, followed by deep 2nd degree (29%), and superficial 2nd degree (14%). The average TBSA from EC burns was 4.7±2.4% with a range of 1-10%. The most common location of the device or battery at the time of the injury was a pant pocket 86% (12/14), followed by 7% hand (1/14) and 7% purse (1/14). Isolated lower extremity burns occurred in 43% (6/14) of patients, while lower extremity and hand burns occurred in 21% (3/14) of patients. Nine of 14 patients required an operating room encounter under general anesthesia. Eight of 14 patients required skin grafting for definitive wound closure. The mean hospital length of stay was 6.6±4.7 days with a range of 0-15 days. Time to 95% wound closure was 18.4±10.8 with a range of 8-40 days. Thermal and blast injuries associated with EC device failure tend to cause small TBSA burns that are deep 2nd and 3rd degree wounds. The most common location for EC device storage among males was the front pants pocket. EC device users should be made aware of the dangers associated with EC use and advised to carry EC devices away from their body in dedicated carrying cases without loose metallic items. Copyright © 2018 Elsevier Ltd and ISBI. All rights reserved.

  18. Simulations of multi-component explosives using simplified geometric arrangements of their constituents

    NASA Astrophysics Data System (ADS)

    Butler, George; Pemberton, Steven

    2017-06-01

    Modeling and simulation is extremely important in the design and formulation of new explosives and explosive devices due to the high cost of experiment-based development. However, the efficacy of simulations depends on the accuracy of the equations of state (EOS) and reactive burn models used to characterize the energetic materials. We investigate the possibility of using the components of an explosive fill as discrete elements in a simulation, based on the relative amounts of the constituents. This is accomplished by assembling a mosaic, or ``checkerboard'', in which each cell comprises the relative amounts of the constituents as in the mixture; it is assumed that each constituent has a well-defined set of simulation parameters. We do not consider the underlying microstructure, and recognize there will be limitations to the usefulness of this technique. We are interested in determining whether there are applications for this technique that might prove useful. As a test of the concept, two binary explosives were considered. We considered shapes for a periodic cellular structure and compared results from the checkerboards with those of the baseline explosives; detonation rates, cylinder expansion, and gap test predictions were compared.

  19. Thermodynamic States in Explosion Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhl, A L

    2009-10-16

    Here we investigate the thermodynamic states occurring in explosion fields from the detonation of condensed explosives in air. In typical applications, the pressure of expanded detonation products gases is modeled by a Jones-Wilkins-Lee (JWL) function: P{sub JWL} = f(v,s{sub CJ}); constants in that function are fit to cylinder test data. This function provides a specification of pressure as a function of specific volume, v, along the expansion isentrope (s = constant = s{sub CJ}) starting at the Chapman-Jouguet (CJ) state. However, the JWL function is not a fundamental equation of thermodynamics, and therefore gives an incomplete specification of states. Formore » example, explosions inherently involve shock reflections from surfaces; this changes the entropy of the products, and in such situations the JWL function provides no information on the products states. In addition, most explosives are not oxygen balanced, so if hot detonation products mix with air, they after-burn, releasing the heat of reaction via a turbulent combustion process. This raises the temperature of explosion products cloud to the adiabatic flame temperature ({approx}3,000K). Again, the JWL function provides no information on the combustion products states.« less

  20. Nonideal detonation regimes in low density explosives

    NASA Astrophysics Data System (ADS)

    Ershov, A. P.; Kashkarov, A. O.; Pruuel, E. R.; Satonkina, N. P.; Sil'vestrov, V. V.; Yunoshev, A. S.; Plastinin, A. V.

    2016-02-01

    Measurements using Velocity Interferometer System for Any Reflector (VISAR) were performed for three high explosives at densities slightly above the natural loose-packed densities. The velocity histories at the explosive/window interface demonstrate that the grain size of the explosives plays an important role. Fine-grained materials produced rather smooth records with reduced von Neumann spike amplitudes. For commercial coarse-grained specimens, the chemical spike (if detectable) was more pronounced. This difference can be explained as a manifestation of partial burn up. In fine-grained explosives, which are more sensitive, the reaction can proceed partly within the compression front, which leads to a lower initial shock amplitude. The reaction zone was shorter in fine-grained materials because of higher density of hot spots. The noise level was generally higher for the coarse-grained explosives, which is a natural stochastic effect of the highly non-uniform flow of the heterogeneous medium. These results correlate with our previous data of electrical conductivity diagnostics. Instead of the classical Zel'dovich-von Neumann-Döring profiles, violent oscillations around the Chapman-Jouguet level were observed in about half of the shots using coarse-grained materials. We suggest that these unusual records may point to a different detonation wave propagation mechanism.

  1. Towards a predictive thermal explosion model for energetic materials

    NASA Astrophysics Data System (ADS)

    Yoh, Jack J.; McClelland, Matthew A.; Maienschein, Jon L.; Wardell, Jeffrey F.

    2005-01-01

    We present an overview of models and computational strategies for simulating the thermal response of high explosives using a multi-physics hydrodynamics code, ALE3D. Recent improvements to the code have aided our computational capability in modeling the behavior of energetic materials systems exposed to strong thermal environments such as fires. We apply these models and computational techniques to a thermal explosion experiment involving the slow heating of a confined explosive. The model includes the transition from slow heating to rapid deflagration in which the time scale decreases from days to hundreds of microseconds. Thermal, mechanical, and chemical effects are modeled during all phases of this process. The heating stage involves thermal expansion and decomposition according to an Arrhenius kinetics model while a pressure-dependent burn model is employed during the explosive phase. We describe and demonstrate the numerical strategies employed to make the transition from slow to fast dynamics. In addition, we investigate the sensitivity of wall expansion rates to numerical strategies and parameters. Results from a one-dimensional model show that violence is influenced by the presence of a gap between the explosive and container. In addition, a comparison is made between 2D model and measured results for the explosion temperature and tube wall expansion profiles.

  2. Remembering Fukushima: PNNL Monitors Radiation from Nuclear Disaster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miley, Harry

    Senior Scientist Harry Miley describes how his work in ultra-trace, nuclear detection technology picked up the first reading of radiological materials over the U.S. following the nuclear power plant explosion in Japan.

  3. Remembering Fukushima: PNNL Monitors Radiation from Nuclear Disaster

    ScienceCinema

    Miley, Harry

    2018-02-07

    Senior Scientist Harry Miley describes how his work in ultra-trace, nuclear detection technology picked up the first reading of radiological materials over the U.S. following the nuclear power plant explosion in Japan.

  4. 78 FR 24438 - Evaluations of Explosions Postulated To Occur at Nearby Facilities and on Transportation Routes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-25

    ... Nearby Facilities and on Transportation Routes Near Nuclear Power Plants AGENCY: Nuclear Regulatory... Nearby Facilities and on Transportation Routes Near Nuclear Power Plants.'' This regulatory guide describes for applicants seeking nuclear power reactor licenses and licensees of nuclear power reactors...

  5. Rare Isotopes in Cosmic Explosions and Accelerators on Earth

    ScienceCinema

    Schatz, Hendrick

    2017-12-28

    Rare isotopes are nature’s stepping stones to produce the heavy elements, and they are produced in large quantities in stellar explosions. Despite their fleeting existence, they shape the composition of the universe and the observable features of stellar explosions. The challenge for nuclear science is to produce and study the very same rare isotopes so as to understand the origin of the elements and a range of astronomical observations. I will review the progress that has been made to date in astronomy and nuclear physics, and the prospects of finally addressing many of the outstanding issues with the future Facility for Rare Isotope Beams (FRIB), which DOE will build at Michigan State University.

  6. Nucleosynthesis during a Thermonuclear Supernova Explosion

    NASA Astrophysics Data System (ADS)

    Panov, I. V.; Glazyrin, S. I.; Röpke, F. K.; Blinnikov, S. I.

    2018-05-01

    Supernovae are such bright objects that they can be observed even at high redshifts. Some types of such events, for example, type Ia (thermonuclear), have peculiarities of the light curve, which allows them to be used for cosmological applications. The light curve is determined by the details of the explosion dynamics and nucleosynthesis: in particular, it depends on the amount of iron-peak elements produced during the explosion. We discuss the burning processes in such objects and the peculiarities of turbulence simulations in them, which is needed for a proper hydrodynamic description of the explosion process. A direct nucleosynthesis calculation is performed for the temperature and density profiles derived in the available 3D hydrodynamic explosion simulations. We show that in the supernova progenitor model considered the calculated abundances of elements from carbon to iron-peak elements are in good agreement both with the observations and with the calculations of other authors. At the same time, no r-elements are produced even at the maximum neutron excess for this model ( Y e 0.47) due to the slow evolution of the density and temperature.

  7. A Study of SDT in an Ammonium Nitrate (NH4 NO3) Based Granular Explosive

    NASA Astrophysics Data System (ADS)

    Burns, Malcolm; Taylor, Peter

    2007-06-01

    In order to study the SDT process in a granular non ideal explosive (NIE) an experimental technique has been developed that allows the granular explosive to be shock initiated at a well controlled ``tap density''. The granular NIE was contained in a PMMA cone and a planar shock was delivered to the explosive through buffer plates of varying material. A combination of piezoelectric probes, ionization pins, PVDF stress gauges and a high speed framing camera were used to measure the input shock pressure and shock and detonation wave positions in the explosive. Four trials were performed to characterize the run to detonation distance versus pressure relationship (Pop plot) of the granular NH4 NO3 explosive. Input pressures ranged from close to the 4GPa predicted CJ pressure of the granular explosive down to 1.4 GPa, giving run distances up to 14mm for the lowest pressure. The data indicates a steady acceleration of the input shock to the detonation velocity, implying significant reaction growth at the shock front. This is in contrast to the behaviour of most high density pressed PBXs which show little growth in shock front velocity before transit to detonation. The experimentally observed initiation behaviour is compared to that predicted by a simple JWL++ reactive burn model for the granular NH4 NO3 explosive which has been fitted to other detonics experiments on this material.

  8. Gut microbiota trajectory in patients with severe burn: A time series study.

    PubMed

    Wang, Xinying; Yang, Jianbo; Tian, Feng; Zhang, Li; Lei, Qiucheng; Jiang, Tingting; Zhou, Jihong; Yuan, Siming; Wang, Jun; Feng, Zhijian; Li, Jieshou

    2017-12-01

    This time series experiments aimed to investigate the dynamic change of gut microbiomes after severe burn and its association with enteral nutrition (EN). Seven severely burned patients who suffered from a severe metal dust explosion injury were recruited in this study. The dynamic changes of gut microbiome of fecal samples at six time points (1-3days, 2, 3, 4, 5 and 6weeks after severe burn) were detected using 16S ribosomal RNA pyrosequencing technology. Following the post-burn temporal order, gut microbiota dysbiosis was detected in the gut microbiome after severe burn, then it was gradually resolved. The bio-diversity of gut bacteria was initially decreased, and then returned to normal level. In addition, at the early stage (from 2 to 4weeks), the majority of those patients' gut microbiome were opportunistic pathogen genus, Enterococcus and Escherichia; while at the end of this study, the majority was a beneficial genus, Bacteroides. EN can promote the recovery of gut microbiota, especially in EN well-tolerated patients. Severe burn injury can cause a dramatic dysbiosis of gut microbiota. A trend of enriched beneficial bacteria and diminished opportunistic pathogen bacteria may serve as prognosis microbiome biomarkers of severe burn patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Simulation of differential die-away instrument’s response to asymmetrically burned spent nuclear fuel

    DOE PAGES

    Martinik, Tomas; Henzl, Vladimir; Grape, Sophie; ...

    2015-03-04

    Here, previous simulation studies of Differential Die–Away (DDA) instrument’s response to active interrogation of spent nuclear fuel from a pressurized water reactor (PWR) yielded promising results in terms of its capability to accurately measure or estimate basic spent fuel assembly (SFA) characteristics, such as multiplication, initial enrichment (IE) and burn-up (BU) as well as the total plutonium content. These studies were however performed only for a subset of idealized SFAs with a symmetric BU with respect to its longitudinal axis. Therefore, to complement the previous results, additional simulations have been performed of the DDA instrument’s response to interrogation of asymmetricallymore » burned spent nuclear fuel in order to determine whether detailed assay of SFAs from all 4 sides will be necessary in real life applications or whether a cost and time saving single sided assay could be used to achieve results of similar quality as previously reported in case of symmetrically burned SFAs.« less

  10. Simulation of differential die-away instrument’s response to asymmetrically burned spent nuclear fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinik, Tomas; Henzl, Vladimir; Grape, Sophie

    Here, previous simulation studies of Differential Die–Away (DDA) instrument’s response to active interrogation of spent nuclear fuel from a pressurized water reactor (PWR) yielded promising results in terms of its capability to accurately measure or estimate basic spent fuel assembly (SFA) characteristics, such as multiplication, initial enrichment (IE) and burn-up (BU) as well as the total plutonium content. These studies were however performed only for a subset of idealized SFAs with a symmetric BU with respect to its longitudinal axis. Therefore, to complement the previous results, additional simulations have been performed of the DDA instrument’s response to interrogation of asymmetricallymore » burned spent nuclear fuel in order to determine whether detailed assay of SFAs from all 4 sides will be necessary in real life applications or whether a cost and time saving single sided assay could be used to achieve results of similar quality as previously reported in case of symmetrically burned SFAs.« less

  11. Chemical Explosion Experiments to Improve Nuclear Test Monitoring [Developing a New Paradigm for Nuclear Test Monitoring with the Source Physics Experiments (SPE)

    DOE PAGES

    Snelson, Catherine M.; Abbott, Robert E.; Broome, Scott T.; ...

    2013-07-02

    A series of chemical explosions, called the Source Physics Experiments (SPE), is being conducted under the auspices of the U.S. Department of Energy’s National Nuclear Security Administration (NNSA) to develop a new more physics-based paradigm for nuclear test monitoring. Currently, monitoring relies on semi-empirical models to discriminate explosions from earthquakes and to estimate key parameters such as yield. While these models have been highly successful monitoring established test sites, there is concern that future tests could occur in media and at scale depths of burial outside of our empirical experience. This is highlighted by North Korean tests, which exhibit poormore » performance of a reliable discriminant, mb:Ms (Selby et al., 2012), possibly due to source emplacement and differences in seismic responses for nascent and established test sites. The goal of SPE is to replace these semi-empirical relationships with numerical techniques grounded in a physical basis and thus applicable to any geologic setting or depth.« less

  12. Device for Detection of Explosives, Nuclear and Other Hazardous Materials in Luggage and Cargo Containers

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Andrey; Evsenin, Alexey; Gorshkov, Igor; Osetrov, Oleg; Vakhtin, Dmitry

    2009-12-01

    Device for detection of explosives, radioactive and heavily shielded nuclear materials in luggage and cargo containers based on Nanosecond Neutron Analysis/Associated Particles Technique (NNA/APT) is under construction. Detection module consists of a small neutron generator with built-in position-sensitive detector of associated alpha-particles, and several scintillator-based gamma-ray detectors. Explosives and other hazardous chemicals are detected by analyzing secondary high-energy gamma-rays from reactions of fast neutrons with materials inside a container. The same gamma-ray detectors are used to detect unshielded radioactive and nuclear materials. An array of several neutron detectors is used to detect fast neutrons from induced fission of nuclear materials. Coincidence and timing analysis allows one to discriminate between fission neutrons and scattered probing neutrons. Mathematical modeling by MCNP5 and MCNP-PoliMi codes was used to estimate the sensitivity of the device and its optimal configuration. Comparison of the features of three gamma detector types—based on BGO, NaI and LaBr3 crystals is presented.

  13. Technical status of the International Monitoring System for the Comprehensive Nuclear-Test-Ban Treaty

    NASA Astrophysics Data System (ADS)

    Grenard, P.

    2009-04-01

    The International Monitoring System (IMS) for the Comprehensive Nuclear Test-ban-Treaty Organization is a global Network of stations for detecting and providing evidence of possible nuclear explosions. Upon completion, the IMS will consist of 321 monitoring facilities and 16 radionuclide laboratories distributed worldwide in locations designated by the Treaty. Many of these sites are located in areas that are remote and difficult to access, posing major engineering and logistical challenges. The IMS uses seismic, hydroacoustic and infrasound monitoring waveform technologies to detect signals released from an explosion or a naturally occurring event (e.g. earthquakes) in the underground, underwater and atmospheric environments. The radionuclide technology as an integral part of the IMS uses air samples to collect particular matter from the atmosphere. Samples are then analyzed for evidence of physical products created by a nuclear explosion and carried through the atmosphere. The certification process of the IMS stations assures their compliance with the IMS technical requirements. In 2008 significant progress was made towards the completion of the IMS Network. So far 75% of the IMS stations have been built and certified.

  14. Radionuclide observables for the Platte underground nuclear explosive test on 14 April 1962.

    PubMed

    Burnett, Jonathan L; Milbrath, Brian D

    2016-11-01

    Past nuclear weapon explosive tests provide invaluable information for understanding the radionuclide observables expected during an On-site Inspection (OSI) for the Comprehensive Nuclear-Test-Ban Treaty (CTBT). These radioactive signatures are complex and subject to spatial and temporal variability. The Platte underground nuclear explosive test on 14 April 1962 provides extensive environmental monitoring data that can be modelled and used to calculate the maximum time available for detection of the OSI-relevant radionuclides. The 1.6 kT test is especially useful as it released the highest amounts of recorded activity during Operation Nougat at the Nevada Test Site - now known as the Nevada National Security Site (NNSS). It has been estimated that 0.36% of the activity was released, and dispersed in a northerly direction. The deposition ranged from 1 × 10 -11 to 1 × 10 -9 of the atmospheric release (per m 2 ), and has been used in this paper to evaluate an OSI and the OSI-relevant radionuclides at 1 week to 2 years post-detonation. Radioactive decay reduces the activity of the OSI-relevant radionuclides by 99.7% within 2 years of detonation, such that detection throughout the hypothesized inspection is only achievable close to the explosion where deposition was highest. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Homogenized moment tensor and the effect of near-field heterogeneities on nonisotropic radiation in nuclear explosion

    NASA Astrophysics Data System (ADS)

    Burgos, Gaël.; Capdeville, Yann; Guillot, Laurent

    2016-06-01

    We investigate the effect of small-scale heterogeneities close to a seismic explosive source, at intermediate periods (20-50 s), with an emphasis on the resulting nonisotropic far-field radiation. First, using a direct numerical approach, we show that small-scale elastic heterogeneities located in the near-field of an explosive source, generate unexpected phases (i.e., long period S waves). We then demonstrate that the nonperiodic homogenization theory applied to 2-D and 3-D elastic models, with various pattern of small-scale heterogeneities near the source, leads to accurate waveforms at a reduced computational cost compared to direct modeling. Further, it gives an interpretation of how nearby small-scale features interact with the source at low frequencies, through an explicit correction to the seismic moment tensor. In 2-D simulations, we find a deviatoric contribution to the moment tensor, as high as 21% for near-source heterogeneities showing a 25% contrast of elastic values (relative to a homogeneous background medium). In 3-D this nonisotropic contribution reaches 27%. Second, we analyze intermediate-periods regional seismic waveforms associated with some underground nuclear explosions conducted at the Nevada National Security Site and invert for the full moment tensor, in order to quantify the relative contribution of the isotropic and deviatoric components of the tensor. The average value of the deviatoric part is about 35%. We conclude that the interactions between an explosive source and small-scale local heterogeneities of moderate amplitude may lead to a deviatoric contribution to the seismic moment, close to what is observed using regional data from nuclear test explosions.

  16. Insights from the Source Physics Experiments on P/S Amplitude Ratio Methods of Identifying Explosions in a Background of Earthquakes

    NASA Astrophysics Data System (ADS)

    Walter, W. R.; Ford, S. R.; Xu, H.; Pasyanos, M. E.; Pyle, M. L.; Matzel, E.; Mellors, R. J.; Hauk, T. F.

    2012-12-01

    It is well established empirically that regional distance (200-1600 km) amplitude ratios of seismic P-to-S waves at sufficiently high frequencies (~>2 Hz) can identify explosions among a background of natural earthquakes. However the physical basis for the generation of explosion S-waves, and therefore the predictability of this P/S technique as a function of event properties such as size, depth, geology and path, remains incompletely understood. A goal of the Source Physics Experiments (SPE) at the Nevada National Security Site (NNSS, formerly the Nevada Test Site (NTS)) is to improve our physical understanding of the mechanisms of explosion S-wave generation and advance our ability to numerically model and predict them. Current models of explosion P/S values suggest they are frequency dependent with poor performance below the source corner frequencies and good performance above. This leads to expectations that small magnitude explosions might require much higher frequencies (>10 Hz) to identify them. Interestingly the 1-ton chemical source physics explosions SPE2 and SPE3 appear to discriminate well from background earthquakes in the frequency band 6-8 Hz, where P and S signals are visible at the NVAR array located near Mina, NV about 200 km away. NVAR is a primary seismic station in the International Monitoring System (IMS), part of the Comprehensive nuclear-Test-Ban Treaty (CTBT). The NVAR broadband element NV31 is co-located with the LLNL station MNV that recorded many NTS nuclear tests, allowing the comparison. We find the small SPE explosions in granite have similar Pn/Lg values at 6-8 Hz as the past nuclear tests mainly in softer rocks. We are currently examining a number of other stations in addition to NVAR, including the dedicated SPE stations that recorded the SPE explosions at much closer distances with very high sample rates, in order to better understand the observed frequency dependence as compared with the model predictions. We plan to use these observations to improve our explosion models and our ability to understand and predict where P/S methods of identifying explosions work and any circumstances where they may not. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  17. He-accreting carbon-oxygen white dwarfs and Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Podsiadlowski, Philipp; Han, Zhanwen

    2017-12-01

    He accretion on to carbon-oxygen white dwarfs (CO WDs) plays a fundamental role when studying the formation of Type Ia supernovae (SNe Ia). Employing the MESA stellar evolution code, we calculated the long-term evolution of He-accreting CO WDs. Previous studies usually supposed that a WD can grow in mass to the Chandrasekhar limit in the stable He burning region and finally produce an SN Ia. However, in this study, we find that off-centre carbon ignition occurs in the stable He burning region if the accretion rate is above a critical value (∼2.05 × 10-6 M⊙ yr-1), resulting in accretion-induced collapse rather than an SN Ia. If the accretion rate is below the critical value, explosive carbon ignition will eventually happen in the centre producing an SN Ia. Taking into account the possibility of off-centre carbon ignition, we have re-determined the initial parameter space that produces SNe Ia in the He star donor channel, one of the promising channels to produce SNe Ia in young populations. Since this parameter space is smaller than was found in the previous study of Wang et al. (2009), the SN Ia rates are also correspondingly smaller. We also determined the chemical abundance profile of the He-accreting WDs at the moment of explosive carbon ignition, which can be used as initial input for SN Ia explosion models.

  18. Nuclear Explosion Monitoring History and Research and Development

    NASA Astrophysics Data System (ADS)

    Hawkins, W. L.; Zucca, J. J.

    2008-12-01

    Within a year after the nuclear detonations over Hiroshima and Nagasaki the Baruch Plan was presented to the newly formed United Nations Atomic Energy Commission (June 14, 1946) to establish nuclear disarmament and international control over all nuclear activities. These controls would allow only the peaceful use of atomic energy. The plan was rejected through a Security Council veto primarily because of the resistance to unlimited inspections. Since that time there have been many multilateral, and bilateral agreements, and unilateral declarations to limit or eliminate nuclear detonations. Almost all of theses agreements (i.e. treaties) call for some type of monitoring. We will review a timeline showing the history of nuclear testing and the more important treaties. We will also describe testing operations, containment, phenomenology, and observations. The Comprehensive Nuclear Test Ban Treaty (CTBT) which has been signed by 179 countries (ratified by 144) established the International Monitoring System global verification regime which employs seismic, infrasound, hydroacoustic and radionuclide monitoring techniques. The CTBT also includes on-site inspection to clarify whether a nuclear explosion has been carried out in violation of the Treaty. The US Department of Energy (DOE) through its National Nuclear Security Agency's Ground-Based Nuclear Explosion Monitoring R&D Program supports research by US National Laboratories, and universities and industry internationally to detect, locate, and identify nuclear detonations. This research program builds on the broad base of monitoring expertise developed over several decades. Annually the DOE and the US Department of Defense jointly solicit monitoring research proposals. Areas of research include: seismic regional characterization and wave propagation, seismic event detection and location, seismic identification and source characterization, hydroacoustic monitoring, radionuclide monitoring, infrasound monitoring, and data processing and analysis. Reports from the selected research projects are published in the proceedings of the annual Monitoring Research Review conference.

  19. Effects of high shock pressures and pore morphology on hot spot mechanisms in HMX

    NASA Astrophysics Data System (ADS)

    Springer, H. K.; Tarver, C. M.; Bastea, S.

    2017-01-01

    The shock initiation and detonation behavior of heterogeneous solid explosives is governed by its microstructure and reactive properties. New additive manufacturing techniques offer unprecedented control of explosive microstructures previously impossible, enabling us to develop novel explosives with tailored shock sensitivity and detonation properties. Since microstructure-performance relationships are not well established for explosives, there is little material design guidance for these manufacturing techniques. In this study, we explore the effects of high shock pressures (15-38 GPa) with long shock durations and different pore morphologies on hot spot mechanisms in HMX. HMX is chosen as the model material because we have experimental data on many of the chemical-thermal-mechanical properties required for pore collapse simulations. Our simulations are performed using the multi-physics arbitrary Lagrangian Eulerian finite element hydrocode, ALE3D, with Cheetah-based models for the unreacted and the product equation-of-states. We use a temperature-dependent specific heat with the unreacted equation-of-state and a temperature-dependent viscosity model to ensure accurate shock temperatures for subsequent chemistry. The Lindemann Law model is used for shock melting in HMX. In contrast to previous pore collapse studies at lower shock pressures (≤10 GPa) in HMX and shorter post-collapse burning times, our calculations show that shock melting occurs above 15 GPa due to higher bulk heating and a prominent elongated ("jet-like") hot spot region forms at later times. The combination of the elongated, post-collapse hot spot region and the higher bulk heating with increasing pressure dramatically increases the growth rate of reaction. Our calculations show that the reaction rate, dF/dt, increases with increasing shock pressure. We decompose the reaction rate into ignition ((dF/dt)ig) and growth ((dF/dt)gr) phases to better analyze our results. We define the ignition phase to primarily include pore collapse and growth phase to primarily include post-collapse grain burning. We are able to track late-time, post-collapse burning due to the unique loading conditions employed in these calculations. We find that (dF/dt)gr > (dF/dt)ig for all pressures considered. (dF/dt)gr changes more significantly from 25 to 38 GPa (from 0.05/µs to >10-100/µs) than from 15 to 25 GPa (from 0.005/µs to 0.05/µs). There is a three order-of-magnitude difference in the reaction from 15 to 38 GPa just after pore collapse. This is qualitatively consistent with fitting the (macroscopic) Ignition and Growth model to high pressure shock initiation data, where much larger reaction fractions are needed to capture the early stages of reaction. Calculated burn rates demonstrate better agreement with data at intermediate times in the growth phase for 15 to 25 GPa and late times for 30 GPa then at any time in the growth phase for 38 GPa. Our calculations are much higher than burn rate data at the earliest times in the growth phase for all pressures, which may reflect the higher localized pressures and temperatures just after pore collapse in the ignition phase. Our calculations with spherical, conical, and elliptical pores show that the influence of morphology on reaction rate is pressure dependent and the most influential pore shapes at lower pressures aren't the same at higher pressures in the regime studied. Altogether these studies provide the basis for developing microstructure-aware models that can be used to design new explosives with optimal performance-safety characteristics. Such models can be used to guide additive manufacturing of explosives and fully exploit their disruptive nature.

  20. Macro-Scale Reactive Flow Model for High-Explosive Detonation in Support of ASCI Weapon Safety Milepost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reaugh, J E

    2002-01-03

    Explosive grain-scale simulations are not practical for weapon safety simulations. Indeed for nearly ideal explosives with reaction zones of order 500 {micro}m, even reactive flow models are not practical for weapon safety simulations. By design, reactive flow models must resolve the reaction zone, which implies computational cells with dimension of order 50 {micro}m for such explosives. The desired result for a simulation in which the reaction zone is not resolved is that the explosive behaves as an ideal one. The pressure at the shock front rises to the Chapman-Jouget (CJ) pressure with a reaction zone dimension that is like thatmore » of a shock propagating in an unreactive medium, on the order of a few computational cells. It should propagate with the detonation velocity that is determined by the equation of state of the products. In the past, this was achieved in one dimensional simulations with ''beta-burn'', a method in which the extent of conversion to final product is proportional to the approach of the specific volume in the shock front to the specific volume of the CJ state. One drawback with this method is that there is a relatively long build-up to steady detonation that is typically 50 to 100 computational cells. The need for relatively coarsely zoned simulations in two dimensions lead to ''program-burn'' by which the time to detonation can be determined by a simple ray-tracing algorithm when there are no barriers or shadows. Complications arise in two and three dimensions to the extent that some calculations of the lighting time in complex geometry can give incorrect results. We sought to develop a model based on reactive flow that might help the needs of the Weapon Safety Simulation milepost. Important features of the model are: (1) That it be useable with any equation of state description of the explosive product gases including both JWL and LEOS table forms. (2) That it exhibits the desired dependence on zone size. We believe that the model described here does exhibit these features.« less

  1. Electronic nicotine delivery system (ENDS) battery-related burns presenting to US emergency departments, 2016.

    PubMed

    Corey, Catherine G; Chang, Joanne T; Rostron, Brian L

    2018-03-05

    Currently, an estimated 7.9 million US adults use electronic nicotine delivery systems (ENDS). Although published reports have identified fires and explosions related to use of ENDS since 2009, these reports do not provide national estimates of burn injuries associated with ENDS batteries in the US. We analyzed nationally representative data provided in the National Electronic Injury Surveillance System (NEISS) to estimate the number of US emergency department (ED) visits for burn injuries associated with ENDS batteries. We reviewed the case narrative field to gain additional insights into the circumstances of the burn injury. In 2016, 26 ENDS battery-related burn cases were captured by NEISS, which translates to a national estimate of 1007 (95%CI: 357-1657) injuries presenting in US EDs. Most of the burns were thermal burns (80.4%) and occurred to the upper leg/lower trunk (77.3%). Examination of the case narrative field indicated that at least 20 of the burn injuries occurred while ENDS batteries were in the user's pocket. Our study provides valuable information for understanding the current burden of ENDS battery-related burn injuries treated in US EDs. The nature and circumstances of the injuries suggest these incidents were unintentional and would potentially be prevented through battery design requirements, battery testing standards and public education related to ENDS battery safety.

  2. Economic Spillovers From Public Investments in Medical Countermeasures: A Case Study of a Burn Debridement Product.

    PubMed

    Farahati, Farah; Nystrom, Scott; Howell, David R; Jaffe, Richard

    2017-12-01

    The US federal government invests in the development of medical countermeasures for addressing adverse health effects to the civilian population from chemical, biological, and radiological or nuclear threats. We model the potential economic spillover effects in day-to-day burn care for a federal investment in a burn debridement product for responding to an improvised nuclear device. We identify and assess 4 primary components for projecting the potential economic spillover benefits of a burn debridement product: (1) market size, (2) clinical effectiveness and cost-effectiveness, (3) product cost, and (4) market adoption rates. Primary data sources were the American Burn Association's 2015 National Burn Repository Annual Report of Data and published clinical studies used to gain European approval for the burn debridement product. The study results showed that if approved for use in the United States, the burn debridement product has potential economic spillover benefits exceeding the federal government's initial investment of $24 million a few years after introduction into the burn care market. Economic spillover analyses can help to inform the prioritizing of scarce resources for research and development of medical countermeasures by the federal government. Future federal medical countermeasure research and development investments could incorporate economic spillover analysis to assess investment options. (Disaster Med Public Health Preparedness. 2017;11:711-719).

  3. Comparison of Radionuclide Ratios in Atmospheric Nuclear Explosions and Nuclear Releases from Chernobyl and Fukushima seen in Gamma Ray Spectormetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friese, Judah I.; Kephart, Rosara F.; Lucas, Dawn D.

    2013-05-01

    The Comprehensive Nuclear Test Ban Treaty (CTBT) has remote radionuclide monitoring followed by an On Site Inspection (OSI) to clarify the nature of a suspect event. An important aspect of radionuclide measurements on site is the discrimination of other potential sources of similar radionuclides such as reactor accidents or medical isotope production. The Chernobyl and Fukushima nuclear reactor disasters offer two different reactor source term environmental inputs that can be compared against historical measurements of nuclear explosions. The comparison of whole-sample gamma spectrometry measurements from these three events and the analysis of similarities and differences are presented. This analysis ismore » a step toward confirming what is needed for measurements during an OSI under the auspices of the Comprehensive Test Ban Treaty.« less

  4. Development of a technique using MCNPX code for determination of nitrogen content of explosive materials using prompt gamma neutron activation analysis method

    NASA Astrophysics Data System (ADS)

    Nasrabadi, M. N.; Bakhshi, F.; Jalali, M.; Mohammadi, A.

    2011-12-01

    Nuclear-based explosive detection methods can detect explosives by identifying their elemental components, especially nitrogen. Thermal neutron capture reactions have been used for detecting prompt gamma 10.8 MeV following radioactive neutron capture by 14N nuclei. We aimed to study the feasibility of using field-portable prompt gamma neutron activation analysis (PGNAA) along with improved nuclear equipment to detect and identify explosives, illicit substances or landmines. A 252Cf radio-isotopic source was embedded in a cylinder made of high-density polyethylene (HDPE) and the cylinder was then placed in another cylindrical container filled with water. Measurements were performed on high nitrogen content compounds such as melamine (C3H6N6). Melamine powder in a HDPE bottle was placed underneath the vessel containing water and the neutron source. Gamma rays were detected using two NaI(Tl) crystals. The results were simulated with MCNP4c code calculations. The theoretical calculations and experimental measurements were in good agreement indicating that this method can be used for detection of explosives and illicit drugs.

  5. Yields of Soviet underground nuclear explosions at Novaya Zemlya, 1964-1976, from seismic body and surface waves

    PubMed Central

    Sykes, Lynn R.; Wiggins, Graham C.

    1986-01-01

    Surface and body wave magnitudes are determined for 15 U.S.S.R. underground nuclear weapons tests conducted at Novaya Zemlya between 1964 and 1976 and are used to estimate yields. These events include the largest underground explosions detonated by the Soviet Union. A histogram of body wave magnitude (mb) values indicates a clustering of explosions at a few specific yields. The most pronounced cluster consists of six explosions of yield near 500 kilotons. Several of these seem to be tests of warheads for major strategic systems that became operational in the late 1970s. The largest Soviet underground explosion is estimated to have a yield of 3500 ± 600 kilotons, somewhat smaller than the yield of the largest U.S. underground test. A preliminary estimation of the significance of tectonic release is made by measuring the amplitude of Love waves. The bias in mb for Novaya Zemlya relative to the Nevada test site is about 0.35, nearly identical to that of the eastern Kazakhstan test site relative to Nevada. PMID:16593645

  6. Observation and modeling of deflagration-to-detonation transition (DDT) in low-density HMX

    NASA Astrophysics Data System (ADS)

    Tringe, Joseph W.; Vandersall, Kevin S.; Reaugh, John E.; Levie, Harold W.; Henson, Bryan F.; Smilowitz, Laura B.; Parker, Gary R.

    2017-01-01

    We employ simultaneous flash x-ray radiography and streak imaging, together with a multi-phase finite element model, to understand deflagration-to-detonation transition (DDT) phenomena in low-density (˜1.2 gm/cm3) powder of the explosive cyclotetramethylene-tetranitramine (HMX). HMX powder was lightly hand-tamped in a 12.7 mm diameter column, relatively lightly-confined in an optically-transparent polycarbonate cylinder with wall thickness 25.4 mm. We observe apparent compaction of the powder in advance of the detonation transition by the motion of small steel spheres pre-emplaced throughout the length of explosive. High-speed imaging along the explosive cylinder length provides a more temporally continuous record of the transition that is correlated with the high-resolution x-ray image record. Preliminary simulation of these experiments with the HERMES model implemented in the ALE3D code enables improved understanding of the explosive particle burning, compaction and detonation phenomena which are implied by the observed reaction rate and transition location within the cylinder.

  7. Improvements to a Major Digital Archive of Seismic Waveforms from Nuclear Explosions

    DTIC Science & Technology

    2010-03-23

    Semipalatinsk Test site ; Novaya Zemlya (461 traces) in Russia; and Lop Nor (120 traces) in China; and also from many Peaceful Nuclear Explosions (552... Semipalatinsk Test Site (circles) recorded at Borovoye (BRV) during 1966- 1989.The Balapan, Degelen, and Murzhik regions are indicated. 5 3. Locations of... Semipalatinsk Test Site , Kazakhstan; test of 1968 June 19 70 35. Last of seven sets of BRV seismograms on the KOD system for a UNE at the Balapan area

  8. Fractal Approach to the Regional Seismic Event Discrimination Problem

    DTIC Science & Technology

    2000-01-01

    some H > 0 and this formula might be modified as X(t) = r-HX(rt),t E R (2) where H is the Hurst exponent . Traditionally it is estimated by the...2 3 IogT Figure 2. Hurst exponent H curves for different seismic events: Pakl - nuclear explosion 30.05.98 (Pakistan), ind - nuclear explosion...seismic discrimination. Our findings are summarized in the conclusion section. 261 2 Hurst’s exponents of seismograms We started from the study of self

  9. Nondestructive inspection of explosive materials using linearly polarized two-colored photon beam

    NASA Astrophysics Data System (ADS)

    Toyokawa, H.; Hayakawa, T.; Shizuma, T.; Hajima, R.; Masuda, K.; Ohgaki, H.

    2011-10-01

    A nondestructive inspection method for screening explosive materials that are hidden in passenger vehicles, trucks, and cargo containers with radiation shielding was presented. The method was examined experimentally using linearly polarized two-colored photon beam. A sample object was irradiated with the photon beam, followed by an emission of gamma-rays in nuclear resonance fluorescence. The gamma-rays from oxygen and nitrogen emitted through nuclear resonance fluorescence were measured using high-purity germanium detectors. We were able to evaluate the element concentration ratio.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dreger, Douglas S.; Ford, Sean R.; Walter, William R.

    Research was carried out investigating the feasibility of using a regional distance seismic waveform moment tensor inverse procedure to estimate source parameters of nuclear explosions and to use the source inversion results to develop a source-type discrimination capability. The results of the research indicate that it is possible to robustly determine the seismic moment tensor of nuclear explosions, and when compared to natural seismicity in the context of the a Hudson et al. (1989) source-type diagram they are found to separate from populations of earthquakes and underground cavity collapse seismic sources.

  11. Issuance of a final RCRA Part B Subpart X permit for open burning/open detonation (OB/OD) of explosives at Eglin AFB, Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, G.E.; Culp, J.C.; Jenness, S.R.

    1997-12-31

    Treatment and disposal of explosives and munitions items have represented a significant management challenge for Department of Defense (DOD) facilities, particularly in light of increased regulatory scrutiny under the Federal Facilities Compliance Act provisions of the Resource Conservation and Recovery Act (RCRA). Subpart X of the RCRA regulations for storage, treatment, and disposal of hazardous wastes was drafted specifically to address explosive wastes. Until just recently, any DOD facility that was performing open burning/open detonation (OB/OD) of explosives was doing so under interim status for RCRA Part B Subpart X. In August 1996, Eglin Air Force Base (AFB), Florida becamemore » the first Air Force facility to be issued a final Part B Subpart X permit to perform OB/OD operations at two Eglin AFB active test ranges. This presentation will examine how Eglin AFB worked proactively with the State of Florida Department of Environmental Protection (FDEP) and EPA Region IV to develop permit conditions based upon risk assessment considerations for both air and ground-water exposure pathways. It will review the role of air emissions and air dispersion modeling in assessing potential exposure and impacts to both onsite and offsite receptors, and will discuss how air monitoring will be used to assure that the facility remains in compliance during OB/OD activities. The presentation will also discuss the soil and ground-water characterization program and associated risk assessment provisions for quarterly ground-water monitoring to assure permit compliance. The project is an excellent example of how a collaborative working relationship among the permittee, their consultant and state, and EPA can result in an environmentally protective permit that assures operational flexibility and mission sensitivity.« less

  12. Suicide bombers form a new injury profile.

    PubMed

    Aharonson-Daniel, Limor; Klein, Yoram; Peleg, Kobi

    2006-12-01

    Recent explosions of suicide bombers introduced new and unique profiles of injury. Explosives frequently included small metal parts, increasing severity of injuries, challenging both physicians and healthcare systems. Timely detonation in crowded and confined spaces further increased explosion effect. Israel National Trauma Registry data on hospitalized terror casualties between October 1, 2000 and December 31, 2004 were analyzed. A total of 1155 patients injured by explosion were studied. Nearly 30% suffered severe to critical injuries (ISS > or = 16); severe injuries (AIS > or = 3) were more prevalent than in other trauma. Triage has changed as metal parts contained in bombs penetrate the human body with great force and may result in tiny entry wounds easily concealed by hair, clothes etc. A total of 36.6% had a computed tomography (CT), 26.8% had ultrasound scanning, and 53.2% had an x-ray in the emergency department. From the emergency department, 28.3% went directly to the operating room, 10.1% to the intensive care unit, and 58.4% directly to the ward. Injuries were mostly internal, open wounds, and burns, with an excess of injuries to nerves and to blood vessels compared with other trauma mechanisms. A high rate of surgical procedures was recorded, including thoracotomies, laparotomies, craniotomies, and vascular surgery. In certain cases, there were simultaneous multiple injuries that required competing forms of treatment, such as burns and blast lung. Bombs containing metal fragments detonated by suicide bombers in crowded locations change patterns and severity of injury in a civil population. Specific injuries will require tailored approaches, an open mind, and close collaboration and cooperation between trauma surgeons to share experience, opinions, and ideas. Findings presented have implications for triage, diagnosis, treatment, hospital organization, and the definition of surge capacity.

  13. Characteristics of seismic waves from Soviet peaceful nuclear explosions in salt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adushkin, V.V.; Kaazik, P.B.; Kostyuchenko, V.N.

    1995-04-01

    The report is carried out by the Institute for Dynamics of the Geospheres, Russian Academy of Sciences under contract NB280344 with Lawrence Livermore National Laboratory, University of California. The work includes investigation of seismic waves generation and propagation from Soviet peaceful underground nuclear explosions in salt based on the data from temporary and permanent seismic stations. The explosions were conducted at the sites Azgir and Vega within the territory of the Caspian depression of the Russian platform. The data used were obtained in the following conditions of conduction: epicentral distance range from 0 to 60 degrees, yields from 1 tomore » 65 kt and depths of burial from 160 to 1500 m.« less

  14. Explosion Amplitude Reduction due to Fractures in Water-Saturated and Dry Granite

    NASA Astrophysics Data System (ADS)

    Stroujkova, A. F.; Leidig, M.; Bonner, J. L.

    2013-12-01

    Empirical observations made at the Semipalatinsk Test Site suggest that nuclear tests in the fracture zones left by previous explosions ('repeat shots') show reduced seismic amplitudes compared to the nuclear tests in virgin rocks. Likely mechanisms for the amplitude reduction in the repeat shots include increased porosity and reduced strength and elastic moduli, leading to pore closing and frictional sliding. Presence of pore water significantly decreases rock compressibility and strength, thus affecting seismic amplitudes. A series of explosion experiments were conducted in order to define the physical mechanism responsible for the amplitude reduction and to quantify the degree of the amplitude reduction in fracture zones of previously detonated explosions. Explosions in water-saturated granite were conducted in central New Hampshire in 2011 and 2012. Additional explosions in dry granite were detonated in Barre, VT in 2013. The amplitude reduction is different between dry and water-saturated crystalline rocks. Significant reduction in seismic amplitudes (by a factor of 2-3) in water-saturated rocks was achieved only when the repeat shot was detonated in the extensive damage zone created by a significantly larger (by a factor of 5) explosion. In case where the first and the second explosions were similar in yield, the amplitude reduction was relatively modest (5-20%). In dry rocks the amplitude reduction reached a factor of 2 even in less extensive damage zones. In addition there are differences in frequency dependence of the spectral amplitude ratios between explosions in dry and water-saturated rocks. Thus the amplitude reduction is sensitive to the extent of the damage zone as well as the pore water content.

  15. Analysis of the Seismic Events Apparently Associated with the 3 September 2017 DPRK Declared Nuclear Explosion

    NASA Astrophysics Data System (ADS)

    Walter, W. R.; Dodge, D. A.; Ichinose, G.; Myers, S. C.; Ford, S. R.; Pitarka, A.; Pyle, M. L.; Pasyanos, M.; Matzel, E.; Rodgers, A. J.; Mellors, R. J.; Hauk, T. F.; Kroll, K.

    2017-12-01

    On September 3, 2017, an mb 6.3 seismic event was reported by the USGS in the vicinity of the DPRK nuclear test site at Punggye-ri. Shortly afterwards DPRK declared it had conducted a nuclear explosion. The seismic signals indicate this event is roughly an order of magnitude larger than the largest of the previous five DPRK declared nuclear tests. In addition to its size, this explosion was different from previous DPRK tests in being associated with a number of additional seismic events. Approximately eight and a half minutes after the explosion a seismic event reported as ML 4.0 by the USGS occurred. Regional waveform modeling indicated this event had a collapse mechanism (e.g. Ichinose et al., 2017, written communication). On September 23 and again on October 12, 2017, seismic events were reported near the DPRK test site by the USGS and the CTBTO (on 9/23/17 two events: USGS ML 3.6 and USGS ML 2.6; and on 10/12/17 one event: USGS mb(Lg) 2.9). Aftershocks following underground nuclear testing are expected, though at much lower magnitudes and rates than for comparably sized earthquakes. This difference in aftershock production has been proposed by Ford and Walter (2010), and others as a potential source-type discriminant. Seismic signals from the collapse of cavities formed by underground nuclear testing have also been previously observed. For example, the mb 5.7 nuclear test ATRISCO in Nevada in 1982 was followed twenty minutes later by a collapse with an mb of 4.0. Here we examine the seismic characteristics of nuclear tests, post-test collapses and post-test aftershocks from both the former Nevada test site and the DPRK test site to better understand the differences between these different source-type signals. In particular we look at discriminants such as P/S ratios, to see if there are unique characteristics to post-test collapses and aftershocks. Finally, we apply correlation methods to continuous data at regional stations to look for additional seismic signals that might have an apparent association with the DPRK nuclear testing, post-testing collapses and post-test induced seismicity.

  16. Nuclear Energy for Water Desalting, A Bibliography.

    ERIC Educational Resources Information Center

    Kuhns, Helen F., Comp.; And Others

    This bibliography includes 215 abstracts of publications on the use of nuclear energy in the production of potable water from saline or brackish waters. The uses of nuclear reactors, radioisotopic heat sources, and nuclear explosives are covered in relation to the various desalination methods available. Literature through April 1967 has been…

  17. Recovering from Disaster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miley, Harry

    From swords to plowshares—a PNNL-developed technology used to monitor compliance with the Comprehensive Nuclear Test-Ban Treaty was applied by Senior Nuclear Scientist Harry Miley for humanitarian purposes. In 2011, a powerful earthquake violently shook northeast Japan, triggering a massive tsunami with 133-foot-high waves that ravaged the land. These catastrophes set in motion a series of equipment failures, explosions, nuclear meltdowns and releases of radiation materials at the Fukushima Nuclear Power Plant in Japan. More than 80,000 residents vacated the surrounding area. It was the largest nuclear disaster since the 1986 explosion at the Chernobyl Nuclear Power Plant in Ukraine. Soonmore » after the accident at Fukushima, Harry and his colleagues were there to help public officials by determining the impact on North America, the radiation dose to people, and the safety of milk and harvested foods. He used ultra-trace nuclear detection technology to provide crucial information about the nature of the radiological release, its magnitude and its impact on human health in North America.« less

  18. Explosion-induced stress changes estimated from vibrating-wire stressmeter measurements near the Mighty Epic event, Nevada Test Site

    USGS Publications Warehouse

    Ellis, William L.; Kibler, J.D.

    1983-01-01

    Explosion-induced compressive stress increases near an underground nuclear explosion are believed to contribute significantly to the containment of high-pressure gases within the explosion-produced cavity. These induced compressive stresses are predicted by computer calculations, but have never been adequately confirmed by field measurements, owing primarily to the unique difficulties of obtaining such field data. Vibrating-wire stressmeter measurements made near the Mighty Epic nuclear detonation, however, qualitatively indicate that within 150 meters of the working point, permanent compressive stress increases of several megapascals were present 15 weeks after the event. Additionally, stress-change magnitudes interpreted from the stressmeter data between the 75- and 260-meter range from the working point compare favorably with calculational predictions of the stress changes believed to be present shortly after detonation of the event. The measurements and calculations differ, however, with regard to the pattern of stress change radial and transverse to the explosion source. For the range of the field measurements from the working point, computer models predict the largest compressive-stress increase to be radial to the explosion source, while the field data indicate the transverse component of. stress change to be the most compressive. The significance of time-dependent modification of the initial explosion-induced stress distribution is, however, uncertain with regard to the comparison of the field measurements and theoretical predictions.

  19. Operation CASTLE. Operation Plan Number 3-53. March - May 1954,

    DTIC Science & Technology

    Nuclear radiation, *Nuclear explosions, *Radiation dosage, *Test methods, *Military operations, *Military planning, Radiobiology, Missions, Marshall Islands , Eniwetok Atoll, Bikini Atoll, Atmospheric physics, Low level, Radiation

  20. Chemistry resolved kinetic flow modeling of TATB based explosives

    NASA Astrophysics Data System (ADS)

    Vitello, Peter; Fried, Laurence E.; William, Howard; Levesque, George; Souers, P. Clark

    2012-03-01

    Detonation waves in insensitive, TATB-based explosives are believed to have multiple time scale regimes. The initial burn rate of such explosives has a sub-microsecond time scale. However, significant late-time slow release in energy is believed to occur due to diffusion limited growth of carbon. In the intermediate time scale concentrations of product species likely change from being in equilibrium to being kinetic rate controlled. We use the thermo-chemical code CHEETAH linked to an ALE hydrodynamics code to model detonations. We term our model chemistry resolved kinetic flow, since CHEETAH tracks the time dependent concentrations of individual species in the detonation wave and calculates EOS values based on the concentrations. We present here two variants of our new rate model and comparison with hot, ambient, and cold experimental data for PBX 9502.

  1. Explicit 2-D Hydrodynamic FEM Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Jerry

    1996-08-07

    DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. The isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL highmore » explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.« less

  2. The conductive propagation of nuclear flames. I - Degenerate C + O and O + Ne + Mg white dwarfs

    NASA Technical Reports Server (NTRS)

    Timmes, F. X.; Woosley, S. E.

    1992-01-01

    The paper determines the physical properties - speed, width, and density structure - of conductive burning fronts in degenerate carbon-oxygen (C + O) and oxygen-neon-magnesium (O + Ne + Mg) compositions for a grid of initial densities and compositions. The dependence of the physical properties of the flame on the assumed values of nuclear reaction rates, the nuclear reaction network employed, the thermal conductivity, and the choice of coordinate system are investigated. The occurrence of accretion-induced collapse of a white dwarf is found to be critically dependent on the velocity of the nuclear conductive burning front and the growth rate of hydrodynamic instabilities. Treating the expanding area of the turbulent burning region as a fractal whose tile size is identical to the minimum unstable Rayleigh-Taylor wavelength, it is found, for all reasonable values of the fractal dimension, that for initial C + O or O + Ne + Mg densities above about 9 x 10 exp 9 g/cu cm the white dwarf should collapse to a neutron star.

  3. Constraints on Bygone Nucleosynthesis of Accreting Neutron Stars

    DOE PAGES

    Meisel, Zach; Deibel, Alex

    2017-03-06

    Nuclear burning near the surface of an accreting neutron star produces ashes that, when compressed deeper by further accretion, alter the star’s thermal and compositional structure. Bygone nucleosynthesis can be constrained by the impact of compressed ashes on the thermal relaxation of quiescent neutron star transients. In particular, Urca cooling nuclei pairs in nuclear burning ashes that cool the neutron star crust via neutrino emission from e --capture/β --decay cycles and provide signatures of prior nuclear burning over the ~century timescales it takes to accrete to the e --capture depth of the strongest cooling pairs. By using crust cooling modelsmore » of the accreting neutron star transient MAXI J0556-332, we show that this source likely lacked Type I X-ray bursts and superbursts ≳120 years ago. Reduced nuclear physics uncertainties in rp-process reaction rates and e --capture weak transition strengths for low-lying transitions will improve nucleosynthesis constraints using this technique.« less

  4. Nuclear event time histories and computed site transfer functions for locations in the Los Angeles region

    USGS Publications Warehouse

    Rogers, A.M.; Covington, P.A.; Park, R.B.; Borcherdt, R.D.; Perkins, D.M.

    1980-01-01

    This report presents a collection of Nevada Test Site (NTS) nuclear explosion recordings obtained at sites in the greater Los Angeles, Calif., region. The report includes ground velocity time histories, as well as, derived site transfer functions. These data have been collected as part of a study to evaluate the validity of using low-level ground motions to predict the frequency-dependent response of a site during an earthquake. For this study 19 nuclear events were recorded at 98 separate locations. Some of these sites have recorded more than one of the nuclear explosions, and, consequently, there are a total of 159, three-component station records. The location of all the recording sites are shown in figures 1–5, the station coordinates and abbreviations are given in table 1. The station addresses are listed in table 2, and the nuclear explosions that were recorded are listed in table 3. The recording sites were chosen on the basis of three criteria: (1) that the underlying geological conditions were representative of conditions over significant areas of the region, (2) that the site was the location of a strong-motion recording of the 1971 San Fernando earthquake, or (3) that more complete geographical coverage was required in that location.

  5. The Air Blast Wave from a Nuclear Explosion

    NASA Astrophysics Data System (ADS)

    Reines, Frederick

    The sudden, large scale release of energy in the explosion of a nuclear bomb in air gives rise, in addition to nuclear emanations such as neutrons and gamma rays, to an extremely hot, rapidly expanding mass of air.** The rapidly expanding air mass has an initial temperature in the vicinity of a few hundred thousand degrees and for this reason it glows in its early stages with an intensity of many suns. It is important that the energy density in this initial "ball of fire" is of the order of 3 × 103 times that found in a detonating piece of TNT and hence that the initial stages of the large scale air motion produced by a nuclear explosion has no counterpart in an ordinary. H. E. explosion. Further, the relatively low temperatures ˜2,000°C associated with the initial stages of an H. E. detonation implies that the thermal radiation which it emits is a relatively insignificant fraction of the total energy involves. This point is made more striking when it is remembered that the thermal energy emitted by a hot object varies directly with the temperature in the Rayleigh Jeans region appropriate to the present discussion. The expansion of the air mass heated by the nuclear reaction produces, in qualitatively the same manner as in an H.E. explosion or the bursting of a high pressure balloon, an intense sharp pressure pulse, a shock wave, in the atmosphere. As the pressure pulse spreads outward it weakens due to the combined effects of divergence and the thermodynamically irreversible nature of the shock wave. The air comprising such a pressure pulse or blast wave moves first radially outward and then back towards the center as the blast wave passes. Since a permanent outward displacement of an infinite mass of air would require unlimited energy, the net outward displacement of the air distant from an explosion must approach zero with increasing distance. As the distance from the explosion is diminished the net outward displacement due to irreversible shock heating of the air increases and in the limit of small distances and increasingly strong shocks the net outward displacement of the shocked air is equal to the maximum outward displacement. These statements are applicable for short times of the order of seconds following the explosion since the heated air l behind by the shock wave will rise. The pressures and air mass motions associated with the rise of the atomic cloud are relatively unimportant in the free air pressure ranges from 2-15 psi for bomb yields under 100 kilotons (KT)…

  6. Criticality and Induction Time of Hot Spots in Detonating Heterogeneous Explosives

    NASA Astrophysics Data System (ADS)

    Hill, Larry

    2017-06-01

    Detonation reaction in physically heterogeneous explosives is-to an extent that depends on multiple material attributes-likewise heterogeneous. Like all heterogeneous reaction, detonation heterogeneous reaction begins at nucleation sites, which, in this case, comprise localized regions of higher-than-average temperature-so-called hot spots. Burning grows at, and then spreads from these nucleation sites, via reactive-thermal (R-T) waves, to consume the interstitial material. Not all hot spots are consequential, but only those that are 1) supercritical, and 2) sufficiently so as to form R-T waves before being consumed by those already emanating from neighboring sites. I explore aspects of these two effects by deriving simple formulae for hot spot criticality and the induction time of supercritical hot spots. These results serve to illustrate the non-intuitive, yet mathematically simplifying, effects of extreme dependence of reaction rate upon temperature. They can play a role in the development of better reactive burn models, for which we seek to homogenize the essentials of heterogeneous detonation reaction without introducing spurious complexity. Work supported by the US Dept. of Energy.

  7. Synthesis of Al-26 in explosive hydrogen burning

    NASA Technical Reports Server (NTRS)

    Arnould, M.; Norgaard, H.; Thielemann, F.-K.; Hillebrandt, W.

    1980-01-01

    The possibility of Al-26 synthesis during the explosive processing of hydrogen-rich material in the outer layers of a supernova or in nova envelopes is investigated. It is found that in the peak temperature range of 1-3 x 10 to the 8th deg K and for expansion time scales of the order of 1-1000 s, values of (Al-26)/(Al-27) as high as 0.1-1 can be obtained for values of 0.001-100,000 for the product of the peak density in g/cu cm and the proton mass fraction. Such a level of Al-26 production is considerably higher than that of recent carbon/neon burning nucleosynthesis models, and is sufficient to account for the magnesium anomalies detected in certain inclusions from the Leoville and Allende meteorites. Al abundances resulting from a hydrodynamical calculation performed on the grounds of a 25 solar mass presupernova model are also presented, and the influence of uncertainties in the input physics is discussed; in particular, the rates of the (Mg-25)(p,gamma)(Al-26) and (Al-26)(p,gamma)(Si-27) key reactions are studied.

  8. Radioactivity in trinitite six decades later.

    PubMed

    Parekh, Pravin P; Semkow, Thomas M; Torres, Miguel A; Haines, Douglas K; Cooper, Joseph M; Rosenberg, Peter M; Kitto, Michael E

    2006-01-01

    The first nuclear explosion test, named the Trinity test, was conducted on July 16, 1945 near Alamogordo, New Mexico. In the tremendous heat of the explosion, the radioactive debris fused with the local soil into a glassy material named Trinitite. Selected Trinitite samples from ground zero (GZ) of the test site were investigated in detail for radioactivity. The techniques used included alpha spectrometry, high-efficiency gamma-ray spectrometry, and low-background beta counting, following the radiochemistry for selected radionuclides. Specific activities were determined for fission products (90Sr, 137Cs), activation products (60Co, 133Ba, 152Eu, 154Eu, 238Pu, 241Pu), and the remnants of the nuclear fuel (239Pu, 240Pu). Additionally, specific activities of three natural radionuclides (40K, 232Th, 238U) and their progeny were measured. The determined specific activities of radionuclides and their relationships are interpreted in the context of the fission process, chemical behavior of the elements, as well as the nuclear explosion phenomenology.

  9. Abatement of Xenon and Iodine Emissions from Medical Isotope Production Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doll, Charles G.; Sorensen, Christina M.; Bowyer, Ted W.

    2014-04-01

    The capability of the International Monitoring System (IMS) to detect xenon from underground nuclear explosions is dependent on the radioactive xenon background. Adding to the background, medical isotope production (MIP) by fission releases several important xenon isotopes including xenon-133 and iodine-133 that decays to xenon-133. The amount of xenon released from these facilities may be equivalent to or exceed that released from an underground nuclear explosion. Thus the release of gaseous fission products within days of irradiation makes it difficult to distinguish MIP emissions from a nuclear explosion. In addition, recent shortages in molybdenum-99 have created interest and investment opportunitiesmore » to design and build new MIP facilities in the United States and throughout the world. Due to the potential increase in the number of MIP facilities, a discussion of abatement technologies provides insight into how the problem of emission control from MIP facilities can be tackled. A review of practices is provided to delineate methods useful for abatement of medical isotopes.« less

  10. Moment-Tensor Spectra of Source Physics Experiments (SPE) Explosions in Granite

    NASA Astrophysics Data System (ADS)

    Yang, X.; Cleveland, M.

    2016-12-01

    We perform frequency-domain moment tensor inversions of Source Physics Experiments (SPE) explosions conducted in granite during Phase I of the experiment. We test the sensitivity of source moment-tensor spectra to factors such as the velocity model, selected dataset and smoothing and damping parameters used in the inversion to constrain the error bound of inverted source spectra. Using source moments and corner frequencies measured from inverted source spectra of these explosions, we develop a new explosion P-wave source model that better describes observed source spectra of these small and over-buried chemical explosions detonated in granite than classical explosion source models derived mainly from nuclear-explosion data. In addition to source moment and corner frequency, we analyze other features in the source spectra to investigate their physical causes.

  11. Applications of nuclear physics

    NASA Astrophysics Data System (ADS)

    Hayes, A. C.

    2017-02-01

    Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applications of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.

  12. Applications of nuclear physics

    DOE PAGES

    Hayes-Sterbenz, Anna Catherine

    2017-01-10

    Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applicationsmore » of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Lastly, each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.« less

  13. Applications of nuclear physics.

    PubMed

    Hayes, A C

    2017-02-01

    Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applications of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.

  14. Applications of nuclear physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes-Sterbenz, Anna Catherine

    Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applicationsmore » of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Lastly, each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.« less

  15. Presupernova Evolution of Differentially Rotating Massive Stars Including Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Heger, A.; Woosley, S. E.; Spruit, H. C.

    2005-06-01

    As a massive star evolves through multiple stages of nuclear burning on its way to becoming a supernova, a complex, differentially rotating structure is set up. Angular momentum is transported by a variety of classic instabilities and also by magnetic torques from fields generated by the differential rotation. We present the first stellar evolution calculations to follow the evolution of rotating massive stars including, at least approximately, all these effects, magnetic and nonmagnetic, from the zero-age main sequence until the onset of iron-core collapse. The evolution and action of the magnetic fields is as described by Spruit in 2002, and a range of uncertain parameters is explored. In general, we find that magnetic torques decrease the final rotation rate of the collapsing iron core by about a factor of 30-50 when compared with the nonmagnetic counterparts. Angular momentum in that part of the presupernova star destined to become a neutron star is an increasing function of main-sequence mass. That is, pulsars derived from more massive stars rotate faster and rotation plays a more important role in the star's explosion. The final angular momentum of the core has been determined-to within a factor of 2-by the time the star ignites carbon burning. For the lighter stars studied, around 15 Msolar, we predict pulsar periods at birth near 15 ms, though a factor of 2 range is easily tolerated by the uncertainties. Several mechanisms for additional braking in a young neutron star, especially by fallback, are explored.

  16. Decay spectroscopy for nuclear astrophysics: β- and β-delayed proton decay

    NASA Astrophysics Data System (ADS)

    Trache, L.; Banu, A.; Hardy, J. C.; Iacob, V. E.; McCleskey, M.; Roeder, B. T.; Simmons, E.; Spiridon, A.; Tribble, R. E.; Saastamoinen, A.; Jokinen, A.; Äysto, J.; Davinson, T.; Lotay, G.; Woods, P. J.; Pollacco, E.

    2012-02-01

    In several radiative proton capture reactions important in novae and XRBs, the resonant parts play the capital role. We use decay spectroscopy techniques to find these resonances and study their properties. We have developed techniques to measure beta- and beta-delayed proton decay of sd-shell, proton-rich nuclei produced and separated with the MARS recoil spectrometer of Texas A&M University. The short-lived radioactive species are produced in-flight, separated, then slowed down (from about 40 MeV/u) and implanted in the middle of very thin Si detectors. This allows us to measure protons with energies as low as 200 keV from nuclei with lifetimes of 100 ms or less. At the same time we measure gamma-rays up to 8 MeV with high resolution HPGe detectors. We have studied the decay of 23Al, 27P, 31Cl, all important for understanding explosive H-burning in novae. The technique has shown a remarkable selectivity to beta-delayed charged-particle emission and works even at radioactive beam rates of a few pps. The states populated are resonances for the radiative proton capture reactions 22Na(p,γ)23Mg (crucial for the depletion of 22Na in novae), 26mAl(p,γ)27Si and 30P(p,γ)31S (bottleneck in novae and XRB burning), respectively. Lastly, results with a new detector that allowed us to measure down to about 80 keV proton energy are announced.

  17. Elements of a CERCLA action at a former Army ammunition plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tucker, D.F.; Marotz, G.A.; Frazier, G.F.

    1999-07-01

    The Sunflower Army Ammunition Plant covers 44 km{sup 2} and is located near several large population centers. Leased sites within the plant are now being used for various activities including recreation and manufacturing. Plans are in place for conversion of an additional 3,000 ha to a commercial amusement park. Some 400 structures from the plant remain and most must be removed if further ventures are to take place. Many of the buildings are structurally unsound or contain potentially hazardous materials, such as explosive residues, lead sheathing or asbestos shingles, that were stored or used in the construction of the structures.more » State and federal agencies agreed that the buildings should be destroyed, but the method to do so was unclear. Analysis on building by building basis revealed that in many cases explosive residue made it unsafe to remove the buildings by any other method rather than combustion. Completion of a comprehensive destruction plan that included ground-level monitoring of combustion plumes, and burn scheduling under tightly prescribed micro and mesoscale meteorological conditions was approved by the EPA as a non-time critical removal action under CERCLA in 1996; the US Army was designated as the lead agency. Personnel at the University of Kansas assisted in developing the destruction plan and helped conduct two test burns using the comprehensive plan protocols. Results of one test burn scenario on June 26, 1997, intended as a test of probable dispersion safety margin and covered extensively by print and television media, the EPA and State agencies, are described in this paper. The selected building was smaller than typical of the buildings on the plant site. The events leading to a burn decision on the test day are used to illustrate the decision-making process.« less

  18. Propagation of Reactions in Thermally-damaged PBX-9501

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tringe, J W; Glascoe, E A; Kercher, J R

    A thermally-initiated explosion in PBX-9501 (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) is observed in situ by flash x-ray imaging, and modeled with the LLNL multi-physics arbitrary-Lagrangian-Eulerian code ALE3D. The containment vessel deformation provides a useful estimate of the reaction pressure at the time of the explosion, which we calculate to be in the range 0.8-1.4 GPa. Closely-coupled ALE3D simulations of these experiments, utilizing the multi-phase convective burn model, provide detailed predictions of the reacted mass fraction and deflagration front acceleration. During the preinitiation heating phase of these experiments, the solid HMX portion of the PBX-9501 undergoes a {beta}-phase to {delta}-phase transition which damages the explosivemore » and induces porosity. The multi-phase convective burn model results demonstrate that damaged particle size and pressure are critical for predicting reaction speed and violence. In the model, energetic parameters are taken from LLNL's thermochemical-kinetics code Cheetah and burn rate parameters from Son et al. (2000). Model predictions of an accelerating deflagration front are in qualitative agreement with the experimental images assuming a mode particle diameter in the range 300-400 {micro}m. There is uncertainty in the initial porosity caused by thermal damage of PBX-9501 and, thus, the effective surface area for burning. To better understand these structures, we employ x-ray computed tomography (XRCT) to examine the microstructure of PBX-9501 before and after thermal damage. Although lack of contrast between grains and binder prevents the determination of full grain size distribution in this material, there are many domains visible in thermally damaged PBX-9501 with diameters in the 300-400 {micro}m range.« less

  19. Managing traumatic brain injury secondary to explosions.

    PubMed

    Burgess, Paula; E Sullivent, Ernest; M Sasser, Scott; M Wald, Marlena; Ossmann, Eric; Kapil, Vikas

    2010-04-01

    Explosions and bombings are the most common deliberate cause of disasters with large numbers of casualties. Despite this fact, disaster medical response training has traditionally focused on the management of injuries following natural disasters and terrorist attacks with biological, chemical, and nuclear agents. The following article is a clinical primer for physicians regarding traumatic brain injury (TBI) caused by explosions and bombings. The history, physics, and treatment of TBI are outlined.

  20. Numerical Experiments Investigating the Source of Explosion S-Waves

    DTIC Science & Technology

    2007-09-01

    simulations in this study are based on the well-recorded 1993 Nonproliferation experiment (NPE) ( chemical kiloton). A regional 3-dimensional model...1-kiloton chemical explosion at the NTS. NPE details and research reports can be found in Denny and Stull (1994). Figure 3 shows the extensive...T., D. Helmberger, and G. Engen (1985). Evidence for tectonic release from underground nuclear explosions in long period S waves, Bull. Seismol. Soc

  1. High Power Microwaves for Defense and Accelerator Applications

    DTIC Science & Technology

    1990-06-11

    pulsed power machines are typically made for laboratory simulation of charged particle and radiation spectra of nuclear explosions . Early on, it was...cathode and then explosive 10 ionization. After the first few nanoseconds, the electron emission is from a plasma produced at the cathode. Typically the...Virtually nothing is needed except an electron beam source. This power and simplicity makes vircators particularly interesting for single shot or explosively

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmichael, Joshua D.; Hartse, Hans

    Colocated explosive sources often produce correlated seismic waveforms. Multichannel correlation detectors identify these signals by scanning template waveforms recorded from known reference events against "target" data to find similar waveforms. This screening problem is challenged at thresholds required to monitor smaller explosions, often because non-target signals falsely trigger such detectors. Therefore, it is generally unclear what thresholds will reliably identify a target explosion while screening non-target background seismicity. Here, we estimate threshold magnitudes for hypothetical explosions located at the North Korean nuclear test site over six months of 2010, by processing International Monitoring System (IMS) array data with a multichannelmore » waveform correlation detector. Our method (1) accounts for low amplitude background seismicity that falsely triggers correlation detectors but is unidentifiable with conventional power beams, (2) adapts to diurnally variable noise levels and (3) uses source-receiver reciprocity concepts to estimate thresholds for explosions spatially separated from the template source. Furthermore, we find that underground explosions with body wave magnitudes m b = 1.66 are detectable at the IMS array USRK with probability 0.99, when using template waveforms consisting only of P -waves, without false alarms. We conservatively find that these thresholds also increase by up to a magnitude unit for sources located 4 km or more from the Feb.12, 2013 announced nuclear test.« less

  3. A Fracture Decoupling Experiment

    NASA Astrophysics Data System (ADS)

    Stroujkova, A. F.; Bonner, J. L.; Leidig, M.; Ferris, A. N.; Kim, W.; Carnevale, M.; Rath, T.; Lewkowicz, J.

    2012-12-01

    Multiple observations made at the Semipalatinsk Test Site suggest that conducting nuclear tests in the fracture zones left by previous explosions results in decreased seismic amplitudes for the second nuclear tests (or "repeat shots"). Decreased seismic amplitudes reduce both the probability of detection and the seismically estimated yield of a "repeat shot". In order to define the physical mechanism responsible for the amplitude reduction and to quantify the degree of the amplitude reduction in fractured rocks, Weston Geophysical Corp., in collaboration with Columbia University's Lamont Doherty Earth Observatory, conducted a multi-phase Fracture Decoupling Experiment (FDE) in central New Hampshire. The FDE involved conducting explosions of various yields in the damage/fracture zones of previously detonated explosions. In order to quantify rock damage after the blasts we performed well logging and seismic cross-hole tomography studies of the source region. Significant seismic velocity reduction was observed around the source regions after the initial explosions. Seismic waves produced by the explosions were recorded at near-source and local seismic networks, as well as several regional stations throughout northern New England. Our analysis confirms frequency dependent seismic amplitude reduction for the repeat shots compared to the explosions in un-fractured rocks. The amplitude reduction is caused by pore closing and/or by frictional losses within the fractured media.

  4. Sources of Error and the Statistical Formulation of M S: m b Seismic Event Screening Analysis

    NASA Astrophysics Data System (ADS)

    Anderson, D. N.; Patton, H. J.; Taylor, S. R.; Bonner, J. L.; Selby, N. D.

    2014-03-01

    The Comprehensive Nuclear-Test-Ban Treaty (CTBT), a global ban on nuclear explosions, is currently in a ratification phase. Under the CTBT, an International Monitoring System (IMS) of seismic, hydroacoustic, infrasonic and radionuclide sensors is operational, and the data from the IMS is analysed by the International Data Centre (IDC). The IDC provides CTBT signatories basic seismic event parameters and a screening analysis indicating whether an event exhibits explosion characteristics (for example, shallow depth). An important component of the screening analysis is a statistical test of the null hypothesis H 0: explosion characteristics using empirical measurements of seismic energy (magnitudes). The established magnitude used for event size is the body-wave magnitude (denoted m b) computed from the initial segment of a seismic waveform. IDC screening analysis is applied to events with m b greater than 3.5. The Rayleigh wave magnitude (denoted M S) is a measure of later arriving surface wave energy. Magnitudes are measurements of seismic energy that include adjustments (physical correction model) for path and distance effects between event and station. Relative to m b, earthquakes generally have a larger M S magnitude than explosions. This article proposes a hypothesis test (screening analysis) using M S and m b that expressly accounts for physical correction model inadequacy in the standard error of the test statistic. With this hypothesis test formulation, the 2009 Democratic Peoples Republic of Korea announced nuclear weapon test fails to reject the null hypothesis H 0: explosion characteristics.

  5. Application of high explosion cratering data to planetary problems

    NASA Technical Reports Server (NTRS)

    Oberbeck, V. R.

    1977-01-01

    The present paper deals with the conditions of explosion or nuclear cratering required to simulate impact crater formation. Some planetary problems associated with three different aspects of crater formation are discussed, and solutions based on high-explosion data are proposed. Structures of impact craters and some selected explosion craters formed in layered media are examined and are related to the structure of lunar basins. The mode of ejection of material from impact craters is identified using explosion analogs. The ejection mode is shown to have important implications for the origin of material in crater and basin deposits. Equally important are the populations of secondary craters on lunar and planetary surfaces.

  6. Residual radioactivity in the soil of the Semipalatinsk Nuclear Test Site in the former USSR.

    PubMed

    Yamamoto, M; Tsukatani, T; Katayama, Y

    1996-08-01

    This paper deals with our efforts to survey residual radioactivity in the soil sampled at the Semipalatinsk Nuclear Test Site and at off-site areas in Kazakhstan. The soil was sampled at the hypocenter where the first Soviet nuclear explosion was carried out on 29 August 1949, and at the bank of the crater called "Bolapan," which was formed by an underground nuclear detonation on 15 January 1965 along the Shagan River. As a comparison, other soil was also sampled in the cities of Kurchatov and Almaty. These data have allowed a preliminary evaluation of the contemporary radioactive contamination of the land in and around the test site. At the first nuclear explosion site and at Bolapan, higher than background levels of 239,240Pu with weapons-grade plutonium were detected together with fission and activation products such as 137Cs, 60Co, 152Eu, and 154Eu.

  7. The rise, collapse, and compaction of Mt. Mantap from the 3 September 2017 North Korean nuclear test.

    PubMed

    Wang, Teng; Shi, Qibin; Nikkhoo, Mehdi; Wei, Shengji; Barbot, Sylvain; Dreger, Douglas; Bürgmann, Roland; Motagh, Mahdi; Chen, Qi-Fu

    2018-05-10

    Surveillance of clandestine nuclear tests relies on a global seismic network, but the potential of spaceborne monitoring has been underexploited. Here, we determined the complete surface displacement field of up to 3.5 m of divergent horizontal motion with 0.5 m of subsidence associated with North Korea's largest underground nuclear test using satellite radar imagery. Combining insight from geodetic and seismological remote sensing, we found that the aftermath of the initial explosive deformation involved subsidence associated with sub-surface collapse and aseismic compaction of the damaged rocks of the test site. The explosive yield from the nuclear detonation with seismic modeling for 450m depth was between 120-304 kt of TNT equivalent. Our results demonstrate the capability of spaceborne remote sensing to help characterize large underground nuclear tests. Copyright © 2018, American Association for the Advancement of Science.

  8. Development of Methodology and Technology for Identifying and Quantifying Emission Products from Open Burning and Open Detonation Thermal Treatment Methods. Field Test Series A, B, and C. Volume 1. Test Summary

    DTIC Science & Technology

    1992-01-01

    3-37 Table 3.2 Nominal Composition of Explosive D ............................. 3-38 Table 3.3 Nominal Composition of PBXN -6...RDX used during Phase C was PBXN -6, a mixture of RDX and Viton An* (hereafter referred to as 3 RDX), The nominal composition of this explosive is...given in table 3.3. I I I I 3-38 3 I I Table 3.3 Nominal Composition of PBXN -6. II Carbon Content (%) Ingredient Weight (%)I __ .1• •,, ,,,,i, RDX 95.0

  9. Shock-to-detonation transition of RDX, HMX and NTO based composite high explosives: experiments and modelling

    NASA Astrophysics Data System (ADS)

    Baudin, G.; Roudot, M.; Genetier, M.; Mateille, P.; Lefrançois, A.

    2014-05-01

    HMX, RDX and NTO based cast-cured plastic bounded explosive (PBX) are widely used in insensitive ammunitions. Designing modern warheads needs robust and reliable models to compute shock ignition and detonation propagation inside PBX. Comparing to a pressed PBX, a cast-cured PBX is not porous and the hot-spots are mainly located at the grain-binder interface leading to a different burning behavior during shock-to-detonation transition. Here, we review the shock-to-detonation transition (SDT) and its modeling for cast-cured PBX containing HMX, RDX and NTO. Future direction is given in conclusion.

  10. 41Ca, 14C and 10Be concentrations in coral sand from the Bikini atoll.

    PubMed

    Lachner, Johannes; Christl, Marcus; Alfimov, Vasily; Hajdas, Irka; Kubik, Peter W; Schulze-König, Tim; Wacker, Lukas; Synal, Hans-Arno

    2014-03-01

    Activation measurements of materials exposed to nuclear bomb explosions are widely used to reconstruct the neutron flux for retrospective dosimetry. In this study the applicability of coral CaCO3 as a biogenic neutron fluence dosimeter is tested. The long-lived radioisotopes (41)Ca, (14)C and (10)Be, which had been produced in nuclear bomb explosions, are measured in several coral sand samples from the Bikini atoll at the 600 kV and 200 kV AMS facilities of ETH Zurich. Elevated concentrations of all studied isotopes are found in a sample from the crater that was initially formed by the high-yield nuclear explosion Castle Bravo in 1954 and that had been used as site for several tests afterward. The observed (14)C concentration is considered too large to originate from neutron irradiation of CaCO3 alone. The relatively low concentration of (10)Be found in the crater sample indicates that production of (10)Be during nuclear bomb testing is generally minor. A simple neutron fluence reconstruction is performed on basis of the (41)Ca/(40)Ca ratio. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Delayed signatures of underground nuclear explosions

    PubMed Central

    Carrigan, Charles R.; Sun, Yunwei; Hunter, Steven L.; Ruddle, David G.; Wagoner, Jeffrey L.; Myers, Katherine B. L.; Emer, Dudley F.; Drellack, Sigmund L.; Chipman, Veraun D.

    2016-01-01

    Radionuclide signals from underground nuclear explosions (UNEs) are strongly influenced by the surrounding hydrogeologic regime. One effect of containment is delay of detonation-produced radioxenon reaching the surface as well as lengthening of its period of detectability compared to uncontained explosions. Using a field-scale tracer experiment, we evaluate important transport properties of a former UNE site. We observe the character of signals at the surface due to the migration of gases from the post-detonation chimney under realistic transport conditions. Background radon signals are found to be highly responsive to cavity pressurization suggesting that large local radon anomalies may be an indicator of a clandestine UNE. Computer simulations, using transport properties obtained from the experiment, track radioxenon isotopes in the chimney and their migration to the surface. They show that the chimney surrounded by a fractured containment regime behaves as a leaky chemical reactor regarding its effect on isotopic evolution introducing a dependence on nuclear yield not previously considered. This evolutionary model for radioxenon isotopes is validated by atmospheric observations of radioxenon from a 2013 UNE in the Democratic People’s Republic of Korea (DPRK). Our model produces results similar to isotopic observations with nuclear yields being comparable to seismic estimates. PMID:26979288

  12. Delayed signatures of underground nuclear explosions

    NASA Astrophysics Data System (ADS)

    Carrigan, Charles R.; Sun, Yunwei; Hunter, Steven L.; Ruddle, David G.; Wagoner, Jeffrey L.; Myers, Katherine B. L.; Emer, Dudley F.; Drellack, Sigmund L.; Chipman, Veraun D.

    2016-03-01

    Radionuclide signals from underground nuclear explosions (UNEs) are strongly influenced by the surrounding hydrogeologic regime. One effect of containment is delay of detonation-produced radioxenon reaching the surface as well as lengthening of its period of detectability compared to uncontained explosions. Using a field-scale tracer experiment, we evaluate important transport properties of a former UNE site. We observe the character of signals at the surface due to the migration of gases from the post-detonation chimney under realistic transport conditions. Background radon signals are found to be highly responsive to cavity pressurization suggesting that large local radon anomalies may be an indicator of a clandestine UNE. Computer simulations, using transport properties obtained from the experiment, track radioxenon isotopes in the chimney and their migration to the surface. They show that the chimney surrounded by a fractured containment regime behaves as a leaky chemical reactor regarding its effect on isotopic evolution introducing a dependence on nuclear yield not previously considered. This evolutionary model for radioxenon isotopes is validated by atmospheric observations of radioxenon from a 2013 UNE in the Democratic People’s Republic of Korea (DPRK). Our model produces results similar to isotopic observations with nuclear yields being comparable to seismic estimates.

  13. Delayed signatures of underground nuclear explosions.

    PubMed

    Carrigan, Charles R; Sun, Yunwei; Hunter, Steven L; Ruddle, David G; Wagoner, Jeffrey L; Myers, Katherine B L; Emer, Dudley F; Drellack, Sigmund L; Chipman, Veraun D

    2016-03-16

    Radionuclide signals from underground nuclear explosions (UNEs) are strongly influenced by the surrounding hydrogeologic regime. One effect of containment is delay of detonation-produced radioxenon reaching the surface as well as lengthening of its period of detectability compared to uncontained explosions. Using a field-scale tracer experiment, we evaluate important transport properties of a former UNE site. We observe the character of signals at the surface due to the migration of gases from the post-detonation chimney under realistic transport conditions. Background radon signals are found to be highly responsive to cavity pressurization suggesting that large local radon anomalies may be an indicator of a clandestine UNE. Computer simulations, using transport properties obtained from the experiment, track radioxenon isotopes in the chimney and their migration to the surface. They show that the chimney surrounded by a fractured containment regime behaves as a leaky chemical reactor regarding its effect on isotopic evolution introducing a dependence on nuclear yield not previously considered. This evolutionary model for radioxenon isotopes is validated by atmospheric observations of radioxenon from a 2013 UNE in the Democratic People's Republic of Korea (DPRK). Our model produces results similar to isotopic observations with nuclear yields being comparable to seismic estimates.

  14. Investigating Gravity Anomalies Associated with Underground Nuclear Explosions

    NASA Astrophysics Data System (ADS)

    Rowe, C. A.; Miller, E.; Musa, D.; Schultz-Fellenz, E. S.; Sussman, A. J.; Swanson, E.

    2016-12-01

    Detection of subsurface effects from underground nuclear explosions (UNEs) is an important aspect of the overall characterization of a site and UNE signatures, which is central to the mission of the National Nuclear Security Admistration's Office of Proliferation Detection, Defense Nuclear Non-Prolifeation Research and Development, Underground Nuclear Explosion Signatures Experiment (UNESE). We are conducting an experiment at the Nevada National Security Site (NNSS) that includes the acquisition of ground-based gravity data to contribute to a multi-disciplinary characterization of two UNEs located on Pahute Mesa. For one of the UNEs, the working point for the detonation was in zeolitic ash-flow tuff 600 m below the surface. For the other UNE, the detonation working point was also at a depth 600m below the surface and was located in flow breccias and lavas. No evidence of chimney collapse has been manifested for either of these UNEs, hence a cavity may still in place and may produce a detectable gravity anomaly. Each of the gravity surveys consist of 150 sites which were precisely located using a Trimble 5700 GPS receiver for lateral precision of 2 cm and vertical control of 3 cm. The readings were arranged in radial lines from Surface Ground Zero (SGZ), with spacing 10-20 m near the center, and increasing intervals for the distal portions of the lines, which extended to as much as 200 m from SGZ. Gravity were collected using a LaCoste-Romberg model G gravity meter at one location and a Scintrex G-5 at the other. We present a preliminary look at the gravity data in conjunction with forward modeling of the anticipated anomaly given a suite of possible post-explosion cavity and chimney features.

  15. ATOMIC PHYSICS, AN AUTOINSTRUCTIONAL PROGRAM, VOLUME 4, SUPPLEMENT.

    ERIC Educational Resources Information Center

    DETERLINE, WILLIAM A.; KLAUS, DAVID J.

    THE AUTOINSTRUCTIONAL MATERIALS IN THIS TEXT WERE PREPARED FOR USE IN AN EXPERIMENTAL STUDY, OFFERING SELF-TUTORING MATERIAL FOR LEARNING ATOMIC PHYSICS. THE TOPICS COVERED ARE (1) RADIATION USES AND NUCLEAR FISSION, (2) NUCLEAR REACTORS, (3) ENERGY FROM NUCLEAR REACTORS, (4) NUCLEAR EXPLOSIONS AND FUSION, (5) A COMPREHENSIVE REVIEW, AND (6) A…

  16. Wolf-Rayet stars of type WN/WC and mixing processes during core helium burning of massive stars

    NASA Technical Reports Server (NTRS)

    Langer, N.

    1991-01-01

    Consequences of the recent finding that most WN/WC spectra probably originate from individual Wolf-Rayet stars for the internal structure of massive stars are discussed. Numerical models including the effect of slow-down or prevention of convective mixing due to molecular weight gradients are presented, in which a transition layer with a composition mixture of H- and He-burning ashes is formed above the convective He-burning core. These models are able to qualitatively account for the observed WN/WC frequency and agree quantitatively with the only WN/WC-composition determination so far. It is argued that the same transition layer may be responsible for the final blue loop which the SN 1987 A progenitor performed some 10,000 yr before explosion. These results indicate that composition barriers may be efficient in restricting convection during central helium burning, in contrast to computations relying on the Schwarzschild criterion for convection, with or without overshooting.

  17. Petrol--something nasty in the woodshed? A review of gasoline-related burns in a British burns unit.

    PubMed

    Wilson, D I; Bailie, F B

    1995-11-01

    Petrol (gasoline) is probably the fuel most easily available and widely in use today. Indeed, most households have a can lurking in the garden shed or basement for domestic use. It's chemical properties make it a highly explosive as well as a combustible fluid, a fact that is sometimes poorly appreciated. We looked at the incidence of petrol-related burns seen in our unit over a 2-year period. Nearly 33 per cent of the adult male admissions were petrol-related and 16 per cent were in children under the age of 16 years. The commonest cause of injury was attempting to start or accelerate a bonfire (38 per cent) with only a small number of barbecue injuries (4 per cent). Petrol causes a significant number of burn injuries a year, and particularly worrying were the number of children injured. However, we feel there is a need for greater public education and perhaps stricter control of this substance.

  18. M/V Elias explosion and fire at Fort Mifflin, Pa. , on 9 April 1974 with loss of life. Marine casualty report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1977-09-09

    At approximately 10 P.M. on 9 April 1974 while the M/V ELIAS was in the process of completing the discharge of a full cargo of Bachaquero crude oil at the Atlantic Richfield Oil (ARCO) Terminal, Fort Mifflin, Pennsylvania on the Delaware River the vessel sustained a series of three massive explosions, burned and sank. Nine members of the crew and four visitors (relatives of the master) perished or are missing. The M/V ELIAS was a total loss and the SS EDWARD L. STEINGER and the ARCO Terminal sustained extensive damages. The report contains the U.S. Coast Guard Marine Board ofmore » Investigation report and the Action taken by the Commandant to determine the probable cause of the casualty and the recommendations to prevent recurrence. The Commandant concurred with the Marine Board that source, and location of the initial explosion cannot be determined. Evidence of internal explosion in the after pump room, the cofferdam in the number 3 starboard cargo tanks, and in several of the cargo tanks indicate a varied path of the explosions.« less

  19. Effect of W/O Emulsion Fuel Properties on Spray Combustion

    NASA Astrophysics Data System (ADS)

    Ida, Tamio; Fuchihata, Manabu; Takeda, Shuuco

    This study proposes a realizable technology for an emulsion combustion method that can reduce environmental loading. This paper discusses the effect on spray combustion for W/O emulsion fuel properties with an added agent, and the ratio between water and emulsifier added to a liquid fuel. The addition of water or emulsifier to a liquid fuel affected the spray combustion by causing micro-explosions in the flame due to geometric changes in the sprayed flame and changes to the temperature distribution. Experimental results revealed that the flame length shortened by almost 40% upon the addition of the water. Furthermore, it was found that water was effective in enhancing combustion due to its promoting micro-explosions. Results also showed that when the emulsifier was added to the spray flame, the additive burned in the flame's wake, producing a bright red flame. The flame length was observed to be long as a result. The micro-explosion phenomenon, caused by emulsifier dosage differences, was observed using time-dependent images at a generated frequency and an explosion scale with a high-speed photography method. Results indicated that the micro-explosion phenomenon in the W/O emulsion combustion method effectively promoted the combustion reaction and suppressed soot formation.

  20. Electron and nuclear dynamics of molecular clusters in ultraintense laser fields. IV. Coulomb explosion of molecular heteroclusters

    NASA Astrophysics Data System (ADS)

    Last, Isidore; Jortner, Joshua

    2004-11-01

    In this paper we present a theoretical and computational study of the temporal dynamics and energetics of Coulomb explosion of (CD4)n and (CH4)n (n=55-4213) molecular heteroclusters in ultraintense (I=1016-1019W cm-2) laser fields, addressing the manifestation of electron dynamics, together with nuclear energetic and kinematic effects on the heterocluster Coulomb instability. The manifestations of the coupling between electron and nuclear dynamics were explored by molecular dynamics simulations for these heteroclusters coupled to Gaussian laser fields (pulse width τ=25 fs), elucidating outer ionization dynamics, nanoplasma screening effects (being significant for I⩽1017 W cm-2), and the attainment of cluster vertical ionization (CVI) (at I=1017 W cm-2 for cluster radius R0⩽31 Å). Nuclear kinematic effects on heterocluster Coulomb explosion are governed by the kinematic parameter η=qCmA/qAmC for (CA4)n clusters (A=H,D), where qj and mj (j=A,C) are the ionic charges and masses. Nonuniform heterocluster Coulomb explosion (η>1) manifests an overrun effect of the light ions relative to the heavy ions, exhibiting the expansion of two spatially separated subclusters, with the light ions forming the outer subcluster at the outer edge of the spatial distribution. Important features of the energetics of heterocluster Coulomb explosion originate from energetic triggering effects of the driving of the light ions by the heavy ions (C4+ for I=1017-1018W cm-2 and C6+ for I=1019 W cm-2), as well as for kinematic effects. Based on the CVI assumption, scaling laws for the cluster size (radius R0) dependence of the energetics of uniform Coulomb explosion of heteroclusters (η=1) were derived, with the size dependence of the average (Ej,av) and maximal (Ej,M) ion energies being Ej,av=aR02 and Ej,M=(5a/3)R02, as well as for the ion energy distributions P(Ej)∝Ej1/2; Ej⩽Ej,M. These results for uniform Coulomb explosion serve as benchmark reference data for the assessment of the effects of nonuniform explosion, where the CVI scaling law for the energetics still holds, with deviations of the a coefficient, which increase with increasing η. Kinematic effects (for η>1) result in an isotope effect, predicting the enhancement (by 9%-11%) of EH,av for Coulomb explosion of (C4+H4+)η (η=3) relative to ED,av for Coulomb explosion of (C4+D4+)η (η=1.5), with the isotope effect being determined by the ratio of the kinematic parameters for the pair of Coulomb exploding clusters. Kinematic effects for nonuniform explosion also result in a narrow isotope dependent energy distribution (of width ΔE) of the light ions (with ΔE/EH,av≃0.3 and ΔE/ED,av≃0.4), with the distribution peaking at the high energy edge, in marked contrast with the uniform explosion case. Features of laser-heterocluster interactions were inferred from the analyses of the intensity dependent boundary radii (R0)I and the corresponding average D+ ion energies (ED,av)I, which provide a measure for optimization of the cluster size at intensity I for the neutron yield from dd nuclear fusion driven by Coulomb explosion (NFDCE) of these heteroclusters. We infer on the advantage of deuterium containing heteronuclear clusters, e.g., (CD4)n in comparison to homonuclear clusters, e.g., (D2)n/2, for dd NFDCE, where the highly charged heavy ions (e.g., C4+ or C6+) serve as energetic and kinematic triggers driving the D+ ions to a high (10-200 keV) energy domain.

Top