Variation of methods in small-scale safety and thermal testing of improvised explosives
Sandstrom, Mary M.; Brown, Geoffrey W.; Preston, Daniel N.; ...
2014-09-29
Here, one of the first steps in establishing safe handling procedures for explosives is small-scale safety and thermal (SSST) testing. To better understand the response of homemade or improvised explosives (HMEs) to SSST testing, 16 HME materials were compared to 3 standard military explosives in a proficiency-type round robin study among five laboratories, two U.S. Department of Defense and three U.S. Department of Energy, sponsored by the Department of Homeland Security, Science & Technology Directorate, Explosives Division.
The safety and reliability of the S and A mechanism designed for the NASA/LSPE program
NASA Technical Reports Server (NTRS)
Montesi, L. J.
1973-01-01
Under contract to the Manned Spacecraft Center, NASA/Houston, NOL developed a number of explosive charges for use in studying the surface of the moon during Apollo 17 activities. The charges were part of the Lunar Seismic Profiling Experiment (LSPE). When the Safety and Arming Device used in the previous ALSEP experiments was found unsuitable for use with the new explosive packages, NOL also designed the Safety and Arming Mechanism, and the safety and reliability tests conducted are described. The results of the test program indicate that the detonation transfer probability between the armed explosive components exceeds 0.9999, and is less than 0.0001 when the explosive components are in the safe position.
Explosives Safety Requirements Manual
DOT National Transportation Integrated Search
1996-03-29
This Manual describes the Department of Energy's (DOE's) explosives safety requirements applicable to operations involving the development, testing, handling, and processing of explosives or assemblies containing explosives. It is intended to reflect...
NASA Astrophysics Data System (ADS)
1990-05-01
The Department of Energy (DOE) policy requires that all activities be conducted in a manner that protects the safety of the public and provides a safe and healthful workplace for employees. DOE has also prescribed that all personnel be protected in any explosives operation undertaken. The level of safety provided shall be at least equivalent to that of the best industrial practice. The risk of death or serious injury shall be limited to the lowest practicable minimum. DOE and contractors shall continually review their explosives operations with the aim of achieving further refinements and improvements in safety practices and protective features. This manual describes the Department's explosive safety requirements applicable to operations involving the development, testing, handling, and processing of explosives or assemblies containing explosives. It is intended to reflect the state-of-the-art in explosives safety. In addition, it is essential that applicable criteria and requirements for implementing this policy be readily available and known to those responsible for conducting DOE programs. This document shall be periodically reviewed and updated to establish new requirements as appropriate. Users are requested to submit suggestions for improving the DOE Explosives Safety Manual through their appropriate Operations Office to the Office of Quality Programs.
30 CFR 56.6102 - Explosive material storage practices.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Explosive material storage practices. 56.6102 Section 56.6102 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Storage § 56.6102 Explosive material storag...
30 CFR 56.6102 - Explosive material storage practices.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Explosive material storage practices. 56.6102 Section 56.6102 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Storage § 56.6102 Explosive material storag...
30 CFR 56.6102 - Explosive material storage practices.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Explosive material storage practices. 56.6102 Section 56.6102 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Storage § 56.6102 Explosive material storag...
Quantitative understanding of explosive stimulus transfer
NASA Technical Reports Server (NTRS)
Schimmel, M. L.
1973-01-01
The mechanisms of detonation transfer across hermetically sealed interfaces created by necessary interruptions in high explosive trains, such as at detonators to explosive columns, field joints in explosive columns, and components of munitions fuse trains are demostrated. Reliability of detonation transfer is limited by minimizing explosive quantities, the use of intensitive explosives for safety, and requirements to propagate across gaps and angles dictated by installation and production restraints. The major detonation transfer variables studied were: explosive quanity, sensitivity, and thickness, and the separation distances between donor and acceptor explosives.
14 CFR 417.417 - Propellants and explosives.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 417.417 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Ground Safety § 417.417 Propellants and explosives. (a) A launch operator must comply with the explosive safety criteria in part 420 of this chapter. (b) A...
Minutes of the 23rd Eplosives Safety Seminar, volume 2
NASA Astrophysics Data System (ADS)
1988-08-01
Some areas of discussion at this seminar were: Hazards and risks of the disposal of chemical munitions using a cryogenic process; Special equipment for demilitarization of lethal chemical agent filled munitions; explosive containment room (ECR) repair Johnston Atoll chemical agent disposal system; Sympathetic detonation testing; Blast loads, external and internal; Structural reponse testing of walls, doors, and valves; Underground explosion effects, external airblast; Explosives shipping, transportation safety and port licensing; Explosive safety management; Underground explosion effects, model test and soil rock effects; Chemical risk and protection of workers; and Full scale explosives storage test.
30 CFR 57.6102 - Explosive material storage practices.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Explosive material storage practices. 57.6102 Section 57.6102 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Storage-Surface and Underground §...
30 CFR 57.6102 - Explosive material storage practices.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Explosive material storage practices. 57.6102 Section 57.6102 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Storage-Surface and Underground §...
30 CFR 57.6102 - Explosive material storage practices.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Explosive material storage practices. 57.6102 Section 57.6102 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Storage-Surface and Underground §...
1982-08-01
between one that provides for total protection of life and property and one that per- mits operators to conduct activities in a " laisse - faire " manner...Workers. AD-PO00 456 General Risk Analysis Methodological Implications to Explosives Risk Management Systems. AD-PO0O 457 Risk Analysis for Explosives...THE EFFECTS OF THE HEALTH AND SAFETY AT WORK ACT, 1974, ON MILITARY EXPLOSIVES SAFETY MANAGEMENT IN THE UNITED KINGDOM ........................ 7 Air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, P. C.; Strout, S.; Reynolds, J. G.
Incidents caused by fire and other thermal events can heat energetic materials that may lead to thermal explosion and result in structural damage and casualty. Thus, it is important to understand the response of energetic materials to thermal insults. The One-Dimensional-Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory (LLNL) has been used for decades to characterize thermal safety of energetic materials. In this study, an integration of a pressure monitoring element has been added into the ODTX system (P-ODTX) to perform thermal explosion (cook-off) experiments (thermal runaway) on PETN powder, PBX-9407, LX-10-2, LX-17-1, and detonator samples (cupmore » tests). The P-ODTX testing generates useful data (thermal explosion temperature, thermal explosion time, and gas pressures) to assist with the thermal safety assessment of relevant energetic materials and components. This report summarizes the results of P-ODTX experiments that were performed from May 2015 to July 2017. Recent upgrades to the data acquisition system allows for rapid pressure monitoring in microsecond intervals during thermal explosion. These pressure data are also included in the report.« less
Explosives for Lunar Seismic Profiling Experiment (LSPE)
NASA Technical Reports Server (NTRS)
1973-01-01
Explosive charges of various sizes were investigated for use in lunar seismic studies. Program logistics, and the specifications for procurement of bulk explosives are described. The differential analysis, thermal properties, and detonation velocity measurements on HNS/Teflon 7C 90/10 are reported along with the field tests of the hardware. It is concluded that nearly all large explosive charges crack after fabrication, from aging or thermal shock. The cracks do not affect the safety, or reliability of the explosives.
30 CFR 75.1315 - Boreholes for explosives.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Boreholes for explosives. 75.1315 Section 75.1315 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND... thickness of the coal seam. (c) Each borehole in rock for explosives shall be at least 18 inches from any...
30 CFR 75.1315 - Boreholes for explosives.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Boreholes for explosives. 75.1315 Section 75.1315 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND... thickness of the coal seam. (c) Each borehole in rock for explosives shall be at least 18 inches from any...
30 CFR 75.1315 - Boreholes for explosives.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Boreholes for explosives. 75.1315 Section 75.1315 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND... thickness of the coal seam. (c) Each borehole in rock for explosives shall be at least 18 inches from any...
30 CFR 75.1315 - Boreholes for explosives.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Boreholes for explosives. 75.1315 Section 75.1315 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND... thickness of the coal seam. (c) Each borehole in rock for explosives shall be at least 18 inches from any...
30 CFR 75.1315 - Boreholes for explosives.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Boreholes for explosives. 75.1315 Section 75.1315 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND... thickness of the coal seam. (c) Each borehole in rock for explosives shall be at least 18 inches from any...
The Expansion of Explosives Safety Education for the 21st Century
2010-07-01
shape charges, explosive welding, thermite reaction – Sensitivity testing: drop hammer, electrospark discharge, friction – Physics of explosives, history... ATF ) • Phytoremediation workers use plants to remove explosives from soil and render the explosives harmless • Sales of explosives detection
Computing Q-D Relationships for Storage of Rocket Fuels
NASA Technical Reports Server (NTRS)
Jester, Keith
2005-01-01
The Quantity Distance Measurement Tool is a GIS BASEP computer program that aids safety engineers by calculating quantity-distance (Q-D) relationships for vessels that contain explosive chemicals used in testing rocket engines. (Q-D relationships are standard relationships between specified quantities of specified explosive materials and minimum distances by which they must be separated from persons, objects, and other explosives to obtain specified types and degrees of protection.) The program uses customized geographic-information-system (GIS) software and calculates Q-D relationships in accordance with NASA's Safety Standard For Explosives, Propellants, and Pyrotechnics. Displays generated by the program enable the identification of hazards, showing the relationships of propellant-storage-vessel safety buffers to inhabited facilities and public roads. Current Q-D information is calculated and maintained in graphical form for all vessels that contain propellants or other chemicals, the explosiveness of which is expressed in TNT equivalents [amounts of trinitrotoluene (TNT) having equivalent explosive effects]. The program is useful in the acquisition, siting, construction, and/or modification of storage vessels and other facilities in the development of an improved test-facility safety program.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-04
... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket No. USCG-2010-0290] RIN 1625-AA00 Safety Zones; Blasting Operations and Movement of Explosives, St. Marys River, Sault Sainte Marie... Movement of Explosives, St. Marys River, Sault Sainte Marie, MI. (a) Location. The following areas are...
77 FR 32136 - Agency Information Collection Activities:
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-31
... Fire Safety Authority of Storage of Explosive Materials. (3) Agency form number, if any, and the... safety of emergency response personnel responding to fires at sites where explosives are stored. The information is provided both orally and in writing to the authority having jurisdiction for fire safety in the...
DoD Contractors’ Safety Manual for Ammunition and Explosives.
1997-09-01
grit, and other foreign material into operating buildings. 9. Windows and skylights . Non-shatterable glazing is preferred where an explosion...with the explosives being processed. Dull or damaged tools shall not be used for machining high explosives. k. The explosives products resulting from
1992-08-20
the potential health and safety effects posed by the hazardous waste and ordnance at the site. When the COE began our studies, the media began to...all with the contamination can still be affected through the food chain. This is not true for OEW. The population at risk is effectively limited to...a serious health hazard. The effects of ordnance and explosive waste exposures are much more immediate, and easier to measure. Most of the time
1978-05-01
quite heated’ discussion; further, some individuals may be in conflict with one another and speaking only to their own momentary self -interest or...Explosives Safety Board has a charter with resposibilities derived from Acts of Congress and from DoD Directives. Specifically in the area of travel fund
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety Zones; Blasting Operations and Movement of Explosives, St. Marys River, Sault Sainte Marie, MI. 165.T09-0290 Section 165.T09-0290... Movement of Explosives, St. Marys River, Sault Sainte Marie, MI. (a) Location. The following areas are...
Hu, Xiaohua; Chen, Nana; Li, Weichen
2016-07-01
Safety prediction is crucial to the molecular design or the material design of explosives, and the predictions based on any single factor alone will cause much inaccuracy, leading to a desire for a method on multi-bases. The presented proposes an improved method for fast screening explosive safety by combining a crystal packing factor and a molecular one, that is, steric hindrance against shear slide in crystal and molecular stability, denoted by intermolecular friction symbol (IFS) and bond dissociation energy (BDE) of trigger linkage respectively. Employing this BDE-IFS combined method, we understand the impact sensitivities of 24 existing explosives, and predict those of two energetic-energetic cocrystals of the observed CL-20/BTF and the supposed HMX/TATB. As a result, a better understanding is implemented by the combined method relative to molecular stability alone, verifying its improvement of more accurate predictions and the feasibility of IFS to graphically reflect molecular stacking in crystals. Also, this work verifies that the explosive safety is strongly related with its crystal stacking, which determines steric hindrance and influences shear slide.
Department of the Navy Explosives Safety Site Approval Process Improvement Initiative
2010-07-01
All applicable existing land-use restrictions, such as explosives safety quantity distance (ESQD) arcs, Hazards of Electromagnetic Radiation to... Ordnance ( HERO ) zones, air field safety zones, and munitions response program sites are noted in the ESAR. PWO will have in place a written...N547) Naval Ordnance Safety and Security Activity Farragut Hall, 3817 Strauss Ave, Suite 108 Indian Head, MD 20640-5151 (301) 744-6059
Sensitivity to friction for primary explosives.
Matyáš, Robert; Šelešovský, Jakub; Musil, Tomáš
2012-04-30
The sensitivity to friction for a selection of primary explosives has been studied using a small BAM friction apparatus. The probit analysis was used for the construction of a sensitivity curve for each primary explosive tested. Two groups of primary explosives were chosen for measurement (a) the most commonly used industrially produced primary explosives (e.g. lead azide, tetrazene, dinol, lead styphnate) and (b) the most produced improvised primary explosives (e.g. triacetone triperoxide, hexamethylenetriperoxide diamine, mercury fulminate, acetylides of heavy metals). A knowledge of friction sensitivity is very important for determining manipulation safety for primary explosives. All the primary explosives tested were carefully characterised (synthesis procedure, shape and size of crystals). The sensitivity curves obtained represent a unique set of data, which cannot be found anywhere else in the available literature. Copyright © 2012 Elsevier B.V. All rights reserved.
Hsieh, Ming-Hong; Wu, Jia-Wun; Li, Ya-Cing; Tang, Jia-Suei; Hsieh, Chun-Chien
2016-02-01
This paper will explore the fire and explosion characteristics of cornstarch powder as well as strategies for protecting the safety of people who are involved a dust fire or dust explosion. We discuss the 5 elements of dust explosions and conduct tests to analyze the fire and explosion characteristics of differently colored powders (yellow, golden yellow, pink, purple, orange and green). The results show that, while all of the tested powders were difficult to ignite, low moisture content was associated with significantly greater risks of ignition and flame spread. We found the auto-ignition temperature (AIT) of air-borne cornstarch powder to be between 385°C and 405°C, with yellow-colored cornstarch powder showing the highest AIT and pink-colored cornstarch powder showing the lowest AIT. The volume resistivity of all powder samples was approximately 108 Ω.m, indicating that they were nonconductive. Lighters and cigarettes are effective ignition sources, as their lit temperatures are higher than the AIT of cornstarch powder. In order to better protect the safety of individuals at venues where cornstarch powder is released, explosion control measures such as explosion containment facilities, vents, and explosion suppression and isolation devices should be installed. Furthermore, employees that work at these venues should be better trained in explosion prevention and control measures. We hope this article is a reminder to the public to recognize the fire and explosion characteristics of flammable powders as well as the preventive and control measures for dust explosions.
Pekalski, A A; Zevenbergen, J F; Braithwaite, M; Lemkowitz, S M; Pasman, H J
2005-02-14
Experimental and theoretical investigation of explosive decomposition of ethylene oxide (EO) at fixed initial experimental parameters (T=100 degrees C, P=4 bar) in a 20-l sphere was conducted. Safety-related parameters, namely the maximum explosion pressure, the maximum rate of pressure rise, and the Kd values, were experimentally determined for pure ethylene oxide and ethylene oxide diluted with nitrogen. The influence of the ignition energy on the explosion parameters was also studied. All these dependencies are quantified in empirical formulas. Additionally, the effect of turbulence on explosive decomposition of ethylene oxide was investigated. In contrast to previous studies, it is found that turbulence significantly influences the explosion severity parameters, mostly the rate of pressure rise. Thermodynamic models are used to calculate the maximum explosion pressure of pure and of nitrogen-diluted ethylene oxide, at different initial temperatures. Soot formation was experimentally observed. Relation between the amounts of soot formed and the explosion pressure was experimentally observed and was calculated.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Use of nonpermissible explosives and nonpermissible shot-firing units; approval by Health and Safety District Manager. 77.1909-1 Section 77.1909-1...; approval by Health and Safety District Manager. Where the Coal Mine Health and Safety District Manager has...
48 CFR 252.223-7002 - Safety precautions for ammunition and explosives.
Code of Federal Regulations, 2010 CFR
2010-10-01
... propellants and explosives, pyrotechnics, incendiaries and smokes in the following forms: (i) Bulk, (ii... components containing no explosives, propellants, or pyrotechnics; (ii) Flammable liquids; (iii) Acids; (iv...
48 CFR 252.223-7002 - Safety precautions for ammunition and explosives.
Code of Federal Regulations, 2011 CFR
2011-10-01
... propellants and explosives, pyrotechnics, incendiaries and smokes in the following forms: (i) Bulk, (ii... components containing no explosives, propellants, or pyrotechnics; (ii) Flammable liquids; (iii) Acids; (iv...
1986-08-01
105 Paul D. Smith and Theodore R. Crawford BL.AST VENTING FROM A (UIBICLE 119 Y. Kivity and S. Fellur PRESSURE/TEMPERATURE DECAY IN I11 EXPLOSION...EFFECTIVENESS OF TH 5-1300 CUBICLES ADDED TO EXISTING 201 BUILDINGS Paul M. LaHoudc DESKTOP COWffRS AND EXPLOSIVE SAFU 239 John M.Ftrritto OPTIMAL DESIGN OF...EXPLOSIVES saFwlY ON READINESS - THE 799 PRICE OF SAFETY " BG Paul L. Greenberg N) NAVAL ARMAMENT DEW FUR THE ROYAL MUMALIAN NAVY 805 Comm -W k-wroughs
ABL and BAM Friction Analysis Comparison
Warner, Kirstin F.; Sandstrom, Mary M.; Brown, Geoffrey W.; ...
2014-12-29
Here, the Integrated Data Collection Analysis (IDCA) program has conducted a proficiency study for Small-Scale Safety and Thermal (SSST) testing of homemade explosives (HMEs). Described here is a comparison of the Alleghany Ballistic Laboratory (ABL) friction data and Bundesanstalt fur Materialforschung und -prufung (BAM) friction data for 19 HEM and military standard explosives.
Fuze for explosive magnetohydrodynamic generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webb, G.
1976-12-23
An apparatus is examined by which high explosive charges are propelled into and detonated at the center of an MHD-X generator. The high explosive charge units are engaged and propelled by a reciprocating ram device. Detonating in each instance is achieved by striking with a firing pin a detonator charge that is in register with a booster charge, the booster charge being in detonating communication with the high explosive charge. Various safety requirements are satisfied by a spring loaded slider operating in a channel transverse and adjacent to the booster charge. The slide retains the detonator charge out of registermore » with the booster charge until a safety pin that holds the slider in place is pulled by a lanyard attached between the reciprocating ram and the safety pin. Removal of the safety pin permits the detonator charge to slide into alignment with the booster charge. Firing pin actuation is initiated by the slider at the instant the detonator charge and the booster charge come into register.« less
30 CFR 57.6130 - Explosive material storage facilities.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Explosive material storage facilities. 57.6130 Section 57.6130 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage-Surface Only § 57.6130 Explosive material storage facilities. (a) Detonators and explosives shall...
30 CFR 57.6130 - Explosive material storage facilities.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Explosive material storage facilities. 57.6130 Section 57.6130 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage-Surface Only § 57.6130 Explosive material storage facilities. (a) Detonators and explosives shall...
1984-01-01
Brigham City, Utah 84302 ERICKSONo Jack A. Federal Cartridge Corp*, Anoka, mi 555303 ERNEST , William F. USA Defense Amo Ctr 6 School, Savanna, IL 61074-9639...Explosives Safety Board, Alex., VA 22331-0600 PRICE, William A. ASD/SEV USAF, Wright- Patterson APB, 0OR 45433 PROHASKA, Frank B. NAVSEACENPAC, San Diego, CA...1103 Paul W. Lurk COMPLEXITIES OF LEA AZIDE.,. ...... ........................ .. ,... 1143 William Shaneyfelt SESSION L--EXPLOSION RESISTANT
A Review of Safety Practices and Safety Training for the Explosives Field
1985-02-01
reworking. This was discovered when an impact test was run on the received material and a "GO" occurred. If the received material bad been handled as...exist, small quantities of the explosive or explosive mixture should -be subjected to- sensitivity tests (including at least spark sensitivity, impact ...increases more energy is put into the nix which must be considered with respect to blending speeds and tolerances in equip- ment and temperatures. Also
[Mind the explosion? The evolution of safety at work in anaesthesiology].
Petermann, Heike
2015-11-01
The evolution of safety in anaesthesiology is characterized by 2 aspects: exposure of anaesthetic staff by volatile anaesthetics and fire as well as explosions in combination with those. In the 20th century, the exposure of staff in the operating room became more and more important. Trigger for the fatal complications were gas lights in combination with chloroform. Later oxygen and inhalation anaesthetics caused explosions and fires. Therefore safety rules were implemented in the 1980s in the Federal Republic of Germany. These were valid for application anaesthetics including apparatus and configuration of operating rooms. The only imponderability is still the human factor.
30 CFR 75.1312 - Explosives and detonators in underground magazines.
Code of Federal Regulations, 2010 CFR
2010-07-01
... magazines. 75.1312 Section 75.1312 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... Blasting § 75.1312 Explosives and detonators in underground magazines. (a) The quantity of explosives kept..., explosives and detonators taken underground shall be kept in— (1) Separate, closed magazines at least 5 feet...
30 CFR 56.6130 - Explosive material storage facilities.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Explosive material storage facilities. 56.6130 Section 56.6130 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage § 56.6130 Explosive material storage facilities. (a) Detonators and explosives shall be stored in...
30 CFR 56.6102 - Explosive material storage practices.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Explosive material storage practices. 56.6102 Section 56.6102 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage § 56.6102 Explosive material storage practices. (a) Explosive material shall be— (1) Stored in a...
30 CFR 56.6102 - Explosive material storage practices.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Explosive material storage practices. 56.6102 Section 56.6102 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage § 56.6102 Explosive material storage practices. (a) Explosive material shall be— (1) Stored in a...
30 CFR 56.6130 - Explosive material storage facilities.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Explosive material storage facilities. 56.6130 Section 56.6130 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage § 56.6130 Explosive material storage facilities. (a) Detonators and explosives shall be stored in...
30 CFR 57.6100 - Separation of stored explosive material.
Code of Federal Regulations, 2010 CFR
2010-07-01
... shall not be stored in the same magazine with other explosive material. (b) When stored in the same magazine, blasting agents shall be separated from explosives, safety fuse, and detonating cord to prevent...
Environmental Impacts of Metal Cladding Operations and Remedial Measures: A Case Study
NASA Astrophysics Data System (ADS)
Roy, P. P.; Sawmliana, C.; Singh, R. K.
2014-04-01
In metal cladding operations, a mixture of 11 % TNT flakes, 44 % ammonium nitrate (non-explosive) and 45 % dehydrated salt (non-explosive) are mixed uniformly to produce an explosive mixture with velocity of detonation 1,800-2,000 m/s. To study the environmental impacts of such operations which led to serious complaints from neighbouring villagers and even closure of some units, a study was carried out to investigate the levels of ground vibration, air overpressure and noise generated by blasting operations of different explosive charge quantities during the metal cladding operations and their impacts on the surrounding villages. Following the safety norms of Central Pollution Control Board (CPCB, Model Rules of the Factories Act on Noise Pollution Control) [
30 CFR 75.1314 - Sheathed explosive units.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Sheathed explosive units. 75.1314 Section 75.1314 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND... damaged or deteriorated. (d) Except in anthracite mines, rock dust shall be applied to the roof, ribs and...
Thermal reactive hazards of HMX with contaminants.
Peng, Deng-Jr; Chang, Cheng-Ming; Chiu, Miin
2004-10-18
In the past, many unexpected runaway accidents occurred in manufacturing processes, involving volatile chemical and explosive storage and transportation. Incompatible product reactions of high explosives must be carefully considered using loss prevention strategies for thermal hazards risk analysis. High explosive reactions vary via environmental changes, contact materials, or process situations, such as onset temperature and shifts in reaction type when high explosives are in contact with contaminants. Therefore, the manufacture and handling of high explosives require the utmost in safety and loss prevention. HMX (cyclotetramethyene tetranitramine) is one kind of high explosive widely used around the world which is stable with high detonation strength properties. In this study, the influences of contaminants on HMX are investigated. The studied contaminants include ferrous chloride tetrahydrate, ferric chloride hexahydrate, acetone solution, acetic acid, and nitric acid. DSC thermal curves and incompatible reaction kinetic evaluations were preformed using iron, chlorine and acid. Organic acetone solution has lesser effects on HMX. Hopefully, this study will lead to improved thermal hazards risk analysis and reduce accidents.
Brown, Geoffrey W.; Sandstrom, Mary M.; Preston, Daniel N.; ...
2014-11-17
In this study, the Integrated Data Collection Analysis (IDCA) program has conducted a proficiency test for small-scale safety and thermal (SSST) testing of homemade explosives (HMEs). Described here are statistical analyses of the results from this test for impact, friction, electrostatic discharge, and differential scanning calorimetry analysis of the RDX Class 5 Type II standard. The material was tested as a well-characterized standard several times during the proficiency test to assess differences among participants and the range of results that may arise for well-behaved explosive materials.
Thermally stable, plastic-bonded explosives
Benziger, Theodore M.
1979-01-01
By use of an appropriate thermoplastic rubber as the binder, the thermal stability and thermal stress characteristics of plastic-bonded explosives may be greatly improved. In particular, an HMX-based explosive composition using an oil-extended styrene-ethylenebutylene-styrene block copolymer as the binder exhibits high explosive energy and thermal stability and good handling safety and physical properties.
49 CFR 173.59 - Description of terms for explosives.
Code of Federal Regulations, 2013 CFR
2013-10-01
... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SHIPPERS... other material containing only propellant explosive. The term excludes charges, shaped, commercial...-flammable materials, in which only the explosive component is the primer. Cases, combustible, empty, without...
49 CFR 173.59 - Description of terms for explosives.
Code of Federal Regulations, 2014 CFR
2014-10-01
... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SHIPPERS... other material containing only propellant explosive. The term excludes charges, shaped, commercial...-flammable materials, in which only the explosive component is the primer. Cases, combustible, empty, without...
NASA Technical Reports Server (NTRS)
Pelouch, J. J., Jr.; Mandel, G.; Ordin, P. M.
1976-01-01
This vocabulary listing characterizes the contents of over 10,000 documents of the NASA Aerospace Safety Research and Data Institute's (ASRDI) safety engineering collection. The ASRDI collection is now one of the series accessible on the NASA RECON data base. There are approximately 6,300 postable terms that describe literature in the areas of cryogenic fluid safety, specifically hydrogen, oxygen, liquified natural gas; fire and explosion technology; and the mechanics of structural failure. To facilitate the proper selection of information nonpostable, related and array terms have been included in this listing.
Railroad Safety: DoD can Improve the Safety of On-Base Track and Equipment
1991-06-01
explosives are secured on rail cars for on-base movement. Unless you publicly announce its contents earlier, we plan no further distribution of this report...and rail cars thatare used to haul ammunition, explosives, or other hazardous material . The safe transport of this material both on military...commercial operating conditions. When transporting haz- ardous materials , cars operating in commerce must also comply with safety requirements established
30 CFR 15.32 - Tolerances for weight of explosive, sheath, wrapper, and specific gravity.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., wrapper, and specific gravity. 15.32 Section 15.32 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... explosive, sheath, wrapper, and specific gravity. (a) The weight of the explosive, the sheath, and the outer.... (c) The specific gravity of the explosive and sheath shall be within ±7.5 percent of that specified...
30 CFR 15.32 - Tolerances for weight of explosive, sheath, wrapper, and specific gravity.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., wrapper, and specific gravity. 15.32 Section 15.32 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... explosive, sheath, wrapper, and specific gravity. (a) The weight of the explosive, the sheath, and the outer.... (c) The specific gravity of the explosive and sheath shall be within ±7.5 percent of that specified...
30 CFR 15.32 - Tolerances for weight of explosive, sheath, wrapper, and specific gravity.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., wrapper, and specific gravity. 15.32 Section 15.32 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... explosive, sheath, wrapper, and specific gravity. (a) The weight of the explosive, the sheath, and the outer.... (c) The specific gravity of the explosive and sheath shall be within ±7.5 percent of that specified...
30 CFR 15.32 - Tolerances for weight of explosive, sheath, wrapper, and specific gravity.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., wrapper, and specific gravity. 15.32 Section 15.32 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... explosive, sheath, wrapper, and specific gravity. (a) The weight of the explosive, the sheath, and the outer.... (c) The specific gravity of the explosive and sheath shall be within ±7.5 percent of that specified...
30 CFR 15.32 - Tolerances for weight of explosive, sheath, wrapper, and specific gravity.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., wrapper, and specific gravity. 15.32 Section 15.32 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... explosive, sheath, wrapper, and specific gravity. (a) The weight of the explosive, the sheath, and the outer.... (c) The specific gravity of the explosive and sheath shall be within ±7.5 percent of that specified...
Powdery Emulsion Explosive: A New Excellent Industrial Explosive
NASA Astrophysics Data System (ADS)
Ni, Ouqi; Zhang, Kaiming; Yu, Zhengquan; Tang, Shujuan
2012-07-01
Powdery emulsion explosive (PEE), a new powdery industrial explosive with perfect properties, has been made using an emulsification-spray drying technique. PEE is composed of 91-92.5 wt% ammonium nitrate (AN), 4.5-6 wt% organic fuels, and 1.5-1.8 wt% water. Due to its microstructure as a water-in-oil (W/O) emulsion and low water content, it has excellent detonation performance, outstanding water resistance, reliable safety, and good application compared with other industrial explosives, such as ammonite, emulsion explosives, and ANFO.
Safety and performance enhancement circuit for primary explosive detonators
Davis, Ronald W [Tracy, CA
2006-04-04
A safety and performance enhancement arrangement for primary explosive detonators. This arrangement involves a circuit containing an energy storage capacitor and preset self-trigger to protect the primary explosive detonator from electrostatic discharge (ESD). The circuit does not discharge into the detonator until a sufficient level of charge is acquired on the capacitor. The circuit parameters are designed so that normal ESD environments cannot charge the protection circuit to a level to achieve discharge. When functioned, the performance of the detonator is also improved because of the close coupling of the stored energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ritter, Boyd
Insensitive high explosives (IHEs) based on 1,3,5-triamino 2,4,6-trinitro-benzene (TATB) are the IHEs of choice for use in nuclear warheads over conventional high explosives when safety is the only consideration, because they are very insensitive to thermal or mechanical initiation stimuli. It is this inherent insensitivity to high temperatures, shock, and impact, which provides detonation design challenges when designing TATB explosive systems while at the same time providing a significant level of protection against accidental initiation. Although classified as IHE, over the past few years the focus on explosive safety has demonstrated that the shock sensitivity of TATB is influenced withmore » respect to temperature. A number of studies have been performed on TATB and TATB formulations, plastic bonded explosives (PBX) 9502, and LX-17-01 (LX-17), which demonstrates the increase in shock sensitivity of the explosive after it has been preheated or thermally cycled over various temperature ranges. Many studies suggest the change in sensitivity is partly due to the decomposition rates of the temperature elevated TATB. Others point to the coefficient of thermal expansion, the crystalline structures of TATB and/or the combination of all factors, which create voids which can become active hot spots. During thermal cycling, TATB is known to undergo an irreversible increase in specific volume called ratchet growth. This increase in specific volume correlates to a decrease in density. This decrease in density and increase in volume, demonstrate the creations of additional void spaces which could serve as potential new initiation hot spots thus, increasing the overall sensitivity of the HE. This literature review evaluates the published works to understand why the shock sensitivity of TATB-based plastic bonded explosives (PBXs) changes with temperature.« less
Assessing Explosives Safety Risks, Deviations, And Consequences
2009-07-31
Technical Paper 23 31 July 2009 DDESB Assessing Explosives Safety Risks, Deviations, And Consequences ...Deviations, And Consequences 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER...and approaches to assist warfighters in executing their mission, conserving resources, and maximizing operational effectiveness . When mission risk
Design and analysis of a personnel blast shield for different explosives applications
NASA Astrophysics Data System (ADS)
Lozano, Eduardo
The use of explosives brings countless benefits to our everyday lives in areas such as mining, oil and gas exploration, demolition, and avalanche control. However, because of the potential destructive power of explosives, strict safety procedures must be an integral part of any explosives operation. The goal of this work is to provide a solution to protect against the hazards that accompany the general use of explosives, specifically in avalanche control. For this reason, a blast shield was designed and tested to protect the Colorado Department of Transportation personnel against these unpredictable effects. This document will develop a complete analysis to answer the following questions: what are the potential hazards from the detonation of high explosives, what are their effects, and how can we protect ourselves against them. To answer these questions theoretical, analytical, and numerical calculations were performed. Finally, a full blast shield prototype was tested under different simulated operational environments proving its effectiveness as safety device. The Colorado Department of Transportation currently owns more than fifteen shields that are used during every operation involving explosive materials.
NASA Astrophysics Data System (ADS)
Reynolds, J. G.; Sandstrom, M. M.; Brown, G. W.; Warner, K. F.; Phillips, J. J.; Shelley, T. J.; Reyes, J. A.; Hsu, P. C.
2014-05-01
One of the first steps in establishing safe handling procedures for explosives is small-scale safety and thermal (SSST) testing. To better understand the response of improvised materials or homemade explosives (HMEs) to SSST testing, 16 HME materials were compared to three standard military explosives in a proficiency-type round robin study among five laboratories-two DoD and three DOE-sponsored by DHS. The testing matrix has been designed to address problems encountered with improvised materials-powder mixtures, liquid suspensions, partially wetted solids, immiscible liquids, and reactive materials. More than 30 issues have been identified that indicate standard test methods may require modification when applied to HMEs to derive accurate sensitivity assessments needed for developing safe handling and storage practices. This paper presents a generalized comparison of the results among the testing participants, comparison of friction results from BAM (German Bundesanstalt für Materi-alprüfung) and ABL (Allegany Ballistics Laboratory) designed testing equipment, and an overview of the statistical results from the RDX (1,3,5-Trinitroperhydro-1,3,5-triazine) standard tested throughout the proficiency test.
Architecting the Safety Assessment of Large-scale Systems Integration
2009-12-01
Electromagnetic Radiation to Ordnance ( HERO ) Hazards of Electromagnetic Radiation to Fuel (HERF) The main reason that this particular safety study... radiation , high voltage electric shocks and explosives safety. 1. Radiation Hazards (RADHAZ) RADHAZ describes the hazards of electromagnetic radiation ...OP3565/NAVAIR 16-1-529 [19 and 20], these hazards are segregated as follows: Hazards of Electromagnetic
Fire safety of ground-based space facilities on the spaceport ;Vostochny;
NASA Astrophysics Data System (ADS)
Artamonov, Vladimir S.; Gordienko, Denis M.; Melikhov, Anatoly S.
2017-06-01
The facilities of the spaceport ;Vostochny; and the innovative technologies for fire safety to be implemented are considered. The planned approaches and prospects for fire safety ensuring at the facilities of the spaceport ;Vostochny; are presented herein, based on the study of emergency situations having resulted in fire accidents and explosion cases at the facilities supporting space vehicles operation.
Bullet Impact Safety Study of PBX-9502
NASA Astrophysics Data System (ADS)
Ferranti, Louis
2013-06-01
A new small arms capability for performing bullet impact testing into energetic materials has recently been activated at Lawrence Livermore National Laboratory located in the High Explosives Applications Facility (HEAF). The initial capability includes 0.223, 0.30, and 0.50 testing calibers with the flexibility to add other barrels in the near future. An initial test series has been performed using the 0.50 caliber barrel shooting bullets into targets using the TATB based explosive PBX-9502 and shows an expected non-violent reaction. Future experiments to evaluate the safety of new explosive formulations to bullet impact are planned. A highlight of the new capability along with discussion of the initial experiments to date will be presented including future areas of research. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
The future of hazardous chemical safety in China: Opportunities, problems, challenges and tasks.
Wang, Bing; Wu, Chao; Reniers, Genserik; Huang, Lang; Kang, Liangguo; Zhang, Laobing
2018-06-20
China is a major country producing and using hazardous chemicals. Unfortunately, the hazardous chemical industry is still one of the most high-risk industries in China. In recent years, especially after two devastating hazardous chemical accidents, namely "Qingdao 11.2 Crude Oil Leaking and Explosion Accident" and "Tianjin Port 8.12 Fire and Explosion Accident" which occurred in 2013 and 2015 respectively, China has attached great importance to hazardous chemical safety. The period between 2016 and 2017 is a crucial period for the future direction of hazardous chemical safety in China because China released a series of important government documents (such as 'Thirteenth Five-Year (2016-2020) Plan for Hazardous Chemical Safety' and 'Comprehensive Plan for Hazardous Chemical Safety Management (December 2016-November 2019)') to promote hazardous chemical safety in the future. What is the future development of China's hazardous chemical safety? To answer this question, this paper attempts to briefly analyze and introduce the opportunities, problems, challenges and tasks of the future of safety with hazardous chemical industrial activities in China, according to the current situation of hazardous chemical safety in China and using the latest government documents and studies. Obviously, this study can provide useful evidence and suggestions for the future of safety management in the hazardous chemical industry both within China and in other countries. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winstanley, J. L.
In August 1945, U.S. Navy Captain William Parsons served as the weaponeer aboard the Enola Gay for the mission to Hiroshima (Shelton 1988). In view of the fact that four B-29s had crashed and burned on takeoff from Tinian the night before, Captain Parsons made the decision to arm the gun-type weapon after takeoff for safety reasons (15 kilotons of TNT equivalent). Although he had no control over the success of the takeoff, he could prevent the possibility of a nuclear detonation on Tinian by controlling what we now call the nuclear explosive. As head of the Ordnance Division atmore » Los Alamos and a former gunnery officer, Captain Parsons clearly understood the role of safety in his work. The advent of the pre-assembled implosion weapon where the high explosive and nuclear materials are always in an intimate configuration meant that nuclear explosive safety became a reality at a certain point in development and production not just at the time of delivery by the military. This is the only industry where nuclear materials are intentionally put in contact with high explosives. The agency of the U.S. Government responsible for development and production of U.S. nuclear weapons is the Department of Energy (DOE) (and its predecessor agencies). This paper will be limited to nuclear explosive safety as it is currently practiced within the DOE nuclear weapons« less
Analysis of dynamical response of air blast loaded safety device
NASA Astrophysics Data System (ADS)
Tropkin, S. N.; Tlyasheva, R. R.; Bayazitov, M. I.; Kuzeev, I. R.
2018-03-01
Equipment of many oil and gas processing plants in the Russian Federation is considerably worn-out. This causes the decrease of reliability and durability of equipment and rises the accident rate. An air explosion is the one of the most dangerous cases for plants in oil and gas industry, usually caused by uncontrolled emission and inflammation of oil products. Air explosion can lead to significant danger for life and health of plant staff, so it necessitates safety device usage. A new type of a safety device is designed. Numerical simulation is necessary to analyse design parameters and performance of the safety device, subjected to air blast loading. Coupled fluid-structure interaction analysis is performed to determine strength of the protective device and its performance. The coupled Euler-Lagrange method, allowable in Abaqus by SIMULIA, is selected as the most appropriate analysis tool to study blast wave interaction with the safety device. Absorption factors of blast wave are evaluated for the safety device. This factors allow one to assess efficiency of the safety device, and its main structural component – dampener. Usage of CEL allowed one to model fast and accurately the dampener behaviour, and to develop the parametric model to determine safety device sizes.
75 FR 44720 - Safety Zone; Live-Fire Gun Exercise, M/V Del Monte, James River, VA
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-29
...-AA00 Safety Zone; Live-Fire Gun Exercise, M/V Del Monte, James River, VA AGENCY: Coast Guard, DHS... mariners from the hazards associated with live fire and explosive training events. DATES: This rule is... Hampton Roads was notified that the U.S. Navy will conduct a live fire and explosive training event...
The Enhancement of Gas Pressure Diagnostics in the P-ODTX System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, Peter C.; Jones, Aaron; Tesillo, Lynda
The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory is a useful tool for thermal safety assessment of energetic material. It has been used since 1970s to measure times to explosion, threshold thermal explosion temperature, thermal explosion violence, and determine decomposition kinetic parameters of energetic materials. ODTX data obtained for the last 40 years can be found elsewhere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tokuhiro, Akira; Potirniche, Gabriel; Cogliati, Joshua
2014-07-08
An experimental and computational study, consisting of modeling and simulation (M&S), of key thermal-mechanical issues affecting the design and safety of pebble-bed (PB) reactors was conducted. The objective was to broaden understanding and experimentally validate thermal-mechanic phenomena of nuclear grade graphite, specifically, spheres in frictional contact as anticipated in the bed under reactor relevant pressures and temperatures. The contact generates graphite dust particulates that can subsequently be transported into the flowing gaseous coolent. Under postulated depressurization transients and with the potential for leaked fission products to be adsorbed onto graphite 'dust', there is the potential for fission products to escapemore » from the primary volume. This is a design safety concern. Furthermore, earlier safety assessment identified the distinct possibility for the dispersed dust to combust in contact with air if sufficient conditions are met. Both of these phenomena were noted as important to design review and containing uncertainty to warrant study. The team designed and conducted two separate effects tests to study and benchmark the potential dust-generation rate, as well as study the conditions under which a dust explosion may occure in a standardized, instrumented explosion chamber.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-05
... with DoD 4145.26-M, DoD Contractors' Safety Manual for Ammunition and Explosives, and minimize risk of mishaps; [cir] Identify the place of performance of all ammunition and explosives work; and [cir] Ensure... Conventional Arms, Ammunition, and Explosives. In addition, this information collection requires DoD...
Fragment and Debris Hazards from Accidental Explosions
1981-07-13
region boundr’ a - fragment weight m - number of fragments with weight PAq . are determined using 9. the ever- age weight of fragments voeithing more than...34 Nineteenth Explosives Safety Seminar, Los Ang. es, CA, Sep 1980. Merz, Hans A., "The Effects of Explosions in Slightly Buried Concrete Structures
Testing of Confining Pressure Impacton Explosion Energy of Explosive Materials
NASA Astrophysics Data System (ADS)
Drzewiecki, Jan; Myszkowski, Jacek; Pytlik, Andrzej; Pytlik, Mateusz
2017-06-01
This paper presents the results of testing the explosion effects of two explosive charges placed in an environment with specified values of confining pressure. The aim of this study is to determine the impact of variable environmental conditions on the suitability of particular explosives for their use in the prevention of natural hazards in hard coal mining. The research results will contribute to improving the efficiency of currently adopted technologies of natural hazard prevention and aid in raising the level of occupational safety. To carry out the subject matter measurements, a special test stand was constructed which allows the value of the initial pressure inside the chamber, which constitutes its integral part, to be altered before the detonation of the charge being tested. The obtained characteristics of the pressure changes during the explosion of the analysed charge helped to identify the work (energy) which was produced during the process. The test results are a valuable source of information, opening up new possibilities for the use of explosives, the development of innovative solutions for the construction of explosive charges and their initiation.
NASA Astrophysics Data System (ADS)
Bouillard, Jacques X.; Vignes, Alexis
2014-02-01
In this paper, an inhalation health and explosion safety risk assessment methodology for nanopowders is described. Since toxicological threshold limit values are still unknown for nanosized substances, detailed risk assessment on specific plants may not be carried out. A simple approach based on occupational hazard/exposure band expressed in mass concentrations is proposed for nanopowders. This approach is consolidated with an iso surface toxicological scaling method, which has the merit, although incomplete, to provide concentration threshold levels for which new metrological instruments should be developed for proper air monitoring in order to ensure safety. Whenever the processing or use of nanomaterials is introducing a risk to the worker, a specific nano pictogram is proposed to inform the worker. Examples of risk assessment of process equipment (i.e., containment valves) processing various nanomaterials are provided. Explosion risks related to very reactive nanomaterials such as aluminum nanopowders can be assessed using this new analysis methodology adapted to nanopowders. It is nevertheless found that to formalize and extend this approach, it is absolutely necessary to develop new relevant standard apparatuses and to qualify individual and collective safety barriers with respect to health and explosion risks. In spite of these uncertainties, it appears, as shown in the second paper (Part II) that health and explosion risks, evaluated for given MWCNTs and aluminum nanoparticles, remain manageable in their continuous fabrication mode, considering current individual and collective safety barriers that can be put in place. The authors would, however, underline that peculiar attention must be paid to non-continuous modes of operations, such as process equipment cleaning steps, that are often under-analyzed and are too often forgotten critical steps needing vigilance in order to minimize potential toxic and explosion risks.
Spectroscopic signatures of PETN in contact with sand particles
NASA Astrophysics Data System (ADS)
Ballesteros, Luz M.; Herrera, Gloria M.; Castro, Miguel E.; Briano, Julio; Mina, Nairmen; Hernandez-Rivera, Samuel P.
2005-06-01
The detection of explosive materials is not only important as an issue in landmines but also for global security reasons, unexploded ordnance, and Improvised Explosive Devices detection. In such areas, explosives detection has played a central role in ensuring the safety of the lives of citizens in many countries. Raman Spectroscopy is a well established tool for vibrational spectroscopic analysis and can be applied to the field of explosives identification and detection. The analysis of PETN is important because it is used in laminar form or mixed with RDX to manufacture Semtex plastic explosive and in the fabrication of Improvised Explosive Devices (IEDs). Our investigation is focused on the study of spectroscopic signatures of PETN in contact with soil. Ottawa sand mixed in different proportions with PETN together with the study of the influence of pH, temperature, humidity, and UV light on the vibrational signatures of the mixtures constitute the core of the investigation. The results reveal that the characteristic bands of PETN are not significantly shifted but rather appear constant with respect of the ubiquitous band of sand (~463 cm-1). These results will make possible the development of highly sensitive sensors for detection of explosives materials and IDEs.
A critical evaluation of combustible/explosible dust testing methods-part 1
USDA-ARS?s Scientific Manuscript database
Tests were conducted by the Center for Agricultural Air Quality Engineering and Science (CAAQES) and by Safety Consulting Engineers Inc. (SCE) to determine if dust found in cotton gins (gin dust) would serve as fuel for dust explosions. In other words, is gin dust explosible? The laboratory tests us...
46 CFR 35.30-25 - Explosives-TB/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Explosives-TB/ALL. 35.30-25 Section 35.30-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS General Safety Rules § 35.30-25 Explosives—TB/ALL. Fulminates or other detonating compounds in bulk in dry condition; explosive compositions...
46 CFR 35.30-25 - Explosives-TB/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Explosives-TB/ALL. 35.30-25 Section 35.30-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS General Safety Rules § 35.30-25 Explosives—TB/ALL. Fulminates or other detonating compounds in bulk in dry condition; explosive compositions...
46 CFR 35.30-25 - Explosives-TB/ALL.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 1 2014-10-01 2014-10-01 false Explosives-TB/ALL. 35.30-25 Section 35.30-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS General Safety Rules § 35.30-25 Explosives—TB/ALL. Fulminates or other detonating compounds in bulk in dry condition; explosive compositions...
46 CFR 35.30-25 - Explosives-TB/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Explosives-TB/ALL. 35.30-25 Section 35.30-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS General Safety Rules § 35.30-25 Explosives—TB/ALL. Fulminates or other detonating compounds in bulk in dry condition; explosive compositions...
46 CFR 35.30-25 - Explosives-TB/ALL.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 1 2013-10-01 2013-10-01 false Explosives-TB/ALL. 35.30-25 Section 35.30-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS General Safety Rules § 35.30-25 Explosives—TB/ALL. Fulminates or other detonating compounds in bulk in dry condition; explosive compositions...
NASA Technical Reports Server (NTRS)
Cocchiaro, James E. (Editor); Filliben, Jeff D. (Editor); Watson, Anne H. (Editor)
1997-01-01
In the Propellant Development and Characterization Subcommittee (PDCS) meeting, topics included: the analysis, characterization, and processing of propellants and propellant ingredients; chemical reactivity; liquid propellants; test methods; rheology; surveillance and aging; and process engineering. In the Safety and Environmental Protection Subcommittee (S&EPS) meeting, topics covered included: hydrazine propellant vapor detection methods; toxicity of propellants and propellants; explosives safety; atmospheric modeling and risk assessment of toxic releases; reclamation, disposal, and demilitarization methods; and remediation of explosives or propellant contaminated sites.
30 CFR 57.6133 - Powder chests.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., operators must follow the provisions of the Institute of Makers of Explosives (IME) Safety Library... other Explosive Materials,” (May 1993), and the “Generic Loading Guide for the IME-22 Container...
Apollo Spacecraft and Saturn V Launch Vehicle Pyrotechnics/Explosive Devices
NASA Technical Reports Server (NTRS)
Interbartolo, Michael
2009-01-01
The Apollo Mission employs more than 210 pyrotechnic devices per mission.These devices are either automatic of commanded from the Apollo spacecraft systems. All devices require high reliability and safety and most are classified as either crew safety critical or mission critical. Pyrotechnic devices have a wide variety of applications including: launch escape tower separation, separation rocket ignition, parachute deployment and release and electrical circuit opening and closing. This viewgraph presentation identifies critical performance, design requirements and safety measures used to ensure quality, reliability and performance of Apollo pyrotechnic/explosive devices. The major components and functions of a typical Apollo pyrotechnic/explosive device are listed and described (initiators, cartridge assemblies, detonators, core charges). The presentation also identifies the major locations and uses for the devices on: the Command and Service Module, Lunar Module and all stages of the launch vehicle.
Explosive safety criteria at a Department of Energy contractor facility
NASA Astrophysics Data System (ADS)
Krach, F.
1984-08-01
Monsanto Research Corporation (MRC) operates the Mound facility in Miamisburg, Ohio, for the Department of Energy. Small explosive components are manufactured at MRC, and stringent explosive safety criteria have been developed for their manufacturing. The goals of these standards are to reduce employee injuries and eliminate fenceline impacts resulting from accidental detonations. The manner in which these criteria were developed and what DOD standards were incorporated into MRC's own design criteria are described. These design requirements are applicable to all new construction at MRC. An example of the development of the design of a Component Test Facility is presented to illustrate the application of the criteria.
NASA Technical Reports Server (NTRS)
Pennington, D. F.; Man, T.; Persons, B.
1977-01-01
The DOT classification for transportation, the military classification for quantity distance, and hazard compatibility grouping used to regulate the transportation and storage of explosives are presented along with a discussion of tests used in determining sensitivity of propellants to an impact/shock environment in the absence of a large explosive donor. The safety procedures and requirements of a Scout launch vehicle, Western and Eastern Test Range, and the Minuteman, Delta, and Poseidon programs are reviewed and summarized. Requirements of the space transportation system safety program include safety reviews from the subsystem level to the completed payload. The Scout safety procedures will satisfy a portion of these requirements but additional procedures need to be implemented to comply with the safety requirements for Shuttle operation from the Eastern Test Range.
Development of Diesel Engine Operated Forklift Truck for Explosive Gas Atmospheres
NASA Astrophysics Data System (ADS)
Vishwakarma, Rajendra Kumar; Singh, Arvind Kumar; Ahirwal, Bhagirath; Sinha, Amalendu
2018-02-01
For the present study, a prototype diesel engine operated Forklift truck of 2 t capacity is developed for explosive gas atmosphere. The parts of the Forklift truck are assessed against risk of ignition of the explosive gases, vapors or mist grouped in Gr. IIA and having ignition temperature more than 200°C. Identification of possible sources of ignition and their control or prevention is the main objective of this work. The design transformation of a standard Forklift truck into a special Forklift truck is made on prototype basis. The safety parameters of the improved Forklift truck are discussed in this paper. The specially designed Forklift truck is useful in industries where explosive atmospheres may present during normal working conditions and risk of explosion is a concern during handling or transportation of materials. This indigenous diesel engine based Forklift truck for explosive gas atmosphere classified as Zone 1 and Zone 2 area and gas group IIA is developed first time in India in association with the Industry.
Space Station crew safety alternatives study. Volume 4: Appendices
NASA Technical Reports Server (NTRS)
Peercy, R. L., Jr.; Raasch, R. F.; Rockoff, L. A.
1985-01-01
The scope of this study considered the first 15 years of accumulated space station concepts for Initial Operational Capability (10C) during the early 1990's. Twenty-five threats to the space station are identified and selected threats addressed as impacting safety criteria, escape and rescue, and human factors safety concerns. Of the 25 threats identified, eight are discussed including strategy options for threat control: fire, biological or toxic contamination, injury/illness, explosion, loss of pressurization, radiation, meteoroid penetration and debris.
Oral Trauma and Tooth Avulsion Following Explosion of E-Cigarette.
Rogér, James M; Abayon, Maricelle; Elad, Sharon; Kolokythas, Antonia
2016-06-01
Electronic cigarettes (E-cigarettes), or personal vaporizers, were introduced in 2003 and have been available in the United States since 2007. In addition to the health and safety concerns of the aerosol delivery of nicotine through E-cigarettes, during the past 8 years, reports of explosions and fires caused by the E-cigarette devices have led the US Fire Administration to evaluate the safety of these devices. These explosions have been observed frequently enough that the US Department of Transportation has recently banned E-cigarette devices in checked baggage aboard airplanes. This report contributes to existing knowledge about the hazards related to E-cigarettes by describing oral hard and soft tissue injuries from an E-cigarette explosion. Copyright © 2016 The American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
30 CFR 75.1319 - Weight of explosives permitted in boreholes in bituminous and lignite mines.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Weight of explosives permitted in boreholes in bituminous and lignite mines. 75.1319 Section 75.1319 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... 3 pounds except when blasting solid rock in its natural deposit. (b) The total weight of explosives...
30 CFR 75.1319 - Weight of explosives permitted in boreholes in bituminous and lignite mines.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Weight of explosives permitted in boreholes in bituminous and lignite mines. 75.1319 Section 75.1319 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... 3 pounds except when blasting solid rock in its natural deposit. (b) The total weight of explosives...
30 CFR 75.1319 - Weight of explosives permitted in boreholes in bituminous and lignite mines.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Weight of explosives permitted in boreholes in bituminous and lignite mines. 75.1319 Section 75.1319 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... 3 pounds except when blasting solid rock in its natural deposit. (b) The total weight of explosives...
30 CFR 75.1319 - Weight of explosives permitted in boreholes in bituminous and lignite mines.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Weight of explosives permitted in boreholes in bituminous and lignite mines. 75.1319 Section 75.1319 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... 3 pounds except when blasting solid rock in its natural deposit. (b) The total weight of explosives...
30 CFR 75.1319 - Weight of explosives permitted in boreholes in bituminous and lignite mines.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Weight of explosives permitted in boreholes in bituminous and lignite mines. 75.1319 Section 75.1319 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... 3 pounds except when blasting solid rock in its natural deposit. (b) The total weight of explosives...
49 CFR 173.56 - New explosives-definition and procedures for classification and approval.
Code of Federal Regulations, 2010 CFR
2010-10-01
... tolerances in the composition of substances or design of articles which will be allowed in that material or... concurred in by: (i) U.S. Army Technical Center for Explosives Safety (SMCAC-EST), Naval Sea Systems Command... explosive (substance or article) and is packed, marked, labeled, described on shipping papers and is...
Effect of ground control mesh on dust sampling and explosion mitigation.
Alexander, D W; Chasko, L L
2015-07-01
Researchers from the National Institute for Occupational Safety and Health's Office of Mine Safety and Health Research conducted an assessment of the effects that ground control mesh might have on rock and float coal dust distribution in a coal mine. The increased use of mesh to control roof and rib spall introduces additional elevated surfaces on which rock or coal dust can collect. It is possible to increase the potential for dust explosion propagation if any float coal dust is not adequately inerted. In addition, the mesh may interfere with the collection of representative dust samples when using the pan-and-brush sampling method developed by the U.S. Bureau of Mines and used by the Mine Safety and Health Administration for band sampling. This study estimates the additional coal or rock dust that could accumulate on mesh and develops a means to collect representative dust samples from meshed entries.
Effect of ground control mesh on dust sampling and explosion mitigation
Alexander, D.W.; Chasko, L.L.
2017-01-01
Researchers from the National Institute for Occupational Safety and Health’s Office of Mine Safety and Health Research conducted an assessment of the effects that ground control mesh might have on rock and float coal dust distribution in a coal mine. The increased use of mesh to control roof and rib spall introduces additional elevated surfaces on which rock or coal dust can collect. It is possible to increase the potential for dust explosion propagation if any float coal dust is not adequately inerted. In addition, the mesh may interfere with the collection of representative dust samples when using the pan-and-brush sampling method developed by the U.S. Bureau of Mines and used by the Mine Safety and Health Administration for band sampling. This study estimates the additional coal or rock dust that could accumulate on mesh and develops a means to collect representative dust samples from meshed entries. PMID:28936000
Upon the reconstruction of accidents triggered by tire explosion. Analytical model and case study
NASA Astrophysics Data System (ADS)
Gaiginschi, L.; Agape, I.; Talif, S.
2017-10-01
Accident Reconstruction is important in the general context of increasing road traffic safety. In the casuistry of traffic accidents, those caused by tire explosions are critical under the severity of consequences, because they are usually happening at high speeds. Consequently, the knowledge of the running speed of the vehicle involved at the time of the tire explosion is essential to elucidate the circumstances of the accident. The paper presents an analytical model for the kinematics of a vehicle which, after the explosion of one of its tires, begins to skid, overturns and rolls. The model consists of two concurent approaches built as applications of the momentum conservation and energy conservation principles, and allows determination of the initial speed of the vehicle involved, by running backwards the sequences of the road event. The authors also aimed to both validate the two distinct analytical approaches by calibrating the calculation algorithms on a case study
A Computational Investigation of Various Water-Induced Explosion Mitigation Mechanisms
2007-01-01
Guidelines for Evaluating the Characteristics of Vapor Cloud Explosions, Flash Fires, and BLEVEs , Center for Chemical Process Safety, AIChE, New York, NY...1994. [6]. Liebman and J. K. Richmond, Suppression of Coal Dust Explosions by Passive Water Barriers in a single Entry Mine , U.S. Bureau of Mines ...R.I. 8294, 1974. [7]. Liebman, J. Corry and J. K. Richmond, Water Barriers for Suppressing Coal Dust Explosions, U.S. Bureau of Mines R.I. 8170
... the fires and explosions is failure of the lithium-ion batteries. Learn how e-cigarettes work, about recent fire and explosion incidents, and why the e-cigarette/lithium-ion battery combination presents a new and unique hazard to ...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Safety fuse. 57.6502 Section 57.6502 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Nonelectric Blasting...
2013-01-08
hazard due to enemy attack or accident (e.g. Insensitive Munitions (IM) and Electromagnetic Environmental Effects (E3)) and the explosive materials...of mitigating potential explosive remnants of war hazards , particularly from unexploded ordnance , should be conducted. 6.5 Munition Software System...TYPE Final 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Joint Ordnance Test Procedure (JOTP)-001 Allied Ammunition Safety and
1990-08-30
concrete-soil-concrete and other soil-filled elements as well as earth embankments of different shapes. The design of the shielding external walls...to vent entirely through the doors. This was required because the large amount of earth fill on the roofs, required for radiation shielding , precluded...Safety Window Shield to Protect Against External Explosions ...... ............... ................... 783 R. L. Shope, W. A. Keenan Strenghtening
An Overview of the Launch Vehicle Blast Environments Development Efforts
NASA Technical Reports Server (NTRS)
Richardson, Erin; Bangham, Mike; Blackwood, James; Skinner, Troy; Hays, Michael; Jackson, Austin; Richman, Ben
2014-01-01
NASA has been funding an ongoing development program to characterize the explosive environments produced during a catastrophic launch vehicle accident. These studies and small-scale tests are focused on the near field environments that threaten the crew. The results indicate that these environments are unlikely to result in immediate destruction of the crew modules. The effort began as an independent assessment by NASA safety organizations, followed by the Ares program and NASA Engineering and Safety Center and now as a Space Launch Systems (SLS) focused effort. The development effort is using the test and accident data available from public or NASA sources as well as focused scaled tests that are examining the fundamental aspects of uncontained explosions of Hydrogen and air and Hydrogen and Oxygen. The primary risk to the crew appears to be the high-energy fragments and these are being characterized for the SLS. The development efforts will characterize the thermal environment of the explosions as well to ensure that the risk is well understood and to document the overall energy balance of an explosion. The effort is multi-path in that analytical, computational and focused testing is being used to develop the knowledge to understand potential SLS explosions. This is an ongoing program with plans that expand the development from fundamental testing at small-scale levels to large-scale tests that can be used to validate models for commercial programs. The ultimate goal is to develop a knowledge base that can be used by vehicle designers to maximize crew survival in an explosion.
High-Explosives Applications Facility (HEAF)
NASA Astrophysics Data System (ADS)
Morse, J. L.; Weingart, R. C.
1989-03-01
This Safety Analysis Report (SAR) reviews the safety and environmental aspects of the High Explosives Applications Facility (HEAF). Topics covered include the site selected for the HEAF, safety design criteria, operations planned within the facility, and the safety and environmental analyses performed on this project to date. Provided in the Summary section is a review of hazards and the analyses, conclusions, and operating limits developed in this SAR. Appendices provide supporting documents relating to this SAR. This SAR is required by the LLNL Health and Safety Manual and DOE Order 5481.1B(2) to document the safety analysis efforts. The SAR was assembled by the Hazards Control Department, B-Division, and HEAF project personnel. This document was reviewed by B Division, the Chemistry Department, the Hazards Control Department, the Laboratory Associate Director for Administration and Operations, and the Associate Directors ultimately responsible for HEAF operations.
NASA Astrophysics Data System (ADS)
Boron, Sergiusz
2017-06-01
Operational safety of electrical machines and equipment depends, inter alia, on the hazards resulting from their use and on the scope of applied protective measures. The use of insufficient protection against existing hazards leads to reduced operational safety, particularly under fault conditions. On the other hand, excessive (in relation to existing hazards) level of protection may compromise the reliability of power supply. This paper analyses the explosion hazard created by earth faults in longwall power supply systems and evaluates existing protection equipment from the viewpoint of its protective performance, particularly in the context of explosion hazards, and also assesses its effect on the reliability of power supply.
Wheelbarrow tire explosion causing trauma to the forearm and hand: a case report
2009-01-01
Introduction Tire explosion injuries are rare, but they may result in a severe injury pattern. Case reports and statistics from injuries caused by exploded truck tires during servicing are established, but trauma from exploded small tires seems to be unknown. Case presentation A 47-year-old german man inflated a wheelbarrow tire. The tire exploded during inflation and caused an open, multiple forearm and hand injury. Conclusion Even small tires can cause severe injury patterns in the case of an explosion. High inflating pressures and low safety distances are the main factors responsible for this occurrence. Broad safety information and suitable filling devices are indispensable for preventing these occurrences. PMID:19946543
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Safety fuse. 56.6502 Section 56.6502 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Nonelectric Blasting § 56...
Detection of hazardous chemicals using field-portable Raman spectroscopy
NASA Astrophysics Data System (ADS)
Wright, Cherylyn W.; Harvey, Scott D.; Wright, Bob W.
2003-07-01
A major challenge confronting emergency response, border control, and other security-related functions is the accurate, rapid, and safe identification of potentially hazardous chemicals outside a laboratory environment. Raman spectroscopy is a rapid, non-intrusive technique that can be used to confidently identify many classes of hazardous and potentially explosive compounds based on molecular vibration information. Advances in instrumentation now allow reliable field - portable measurements to be made. Before the Raman technique can be effectively applied and be accepted within the scientific community, realistic studies must be performed to develop methods, define limitations, and rigorously evaluate its effectiveness. Examples of a variety of chemicals (including neat and diluted chemical warfare [CW] agents, a CW agent precursor, a biological warfare (BW)-related compound, an illicit drug, and explosives) identified using Raman spectroscopy in various types of containers and on surfaces are given, as well as results from a blind field test of 29 unknown samples which included CW agent precursors and/or degradation products, solvents associated with CW agent production, pesticides, explosives, and BW toxins (mostly mycotoxins). Additionally, results of experimental studies to evaluate the analysis of flammable organic solvents, propellants, military explosives, mixtures containing military explosives, shock-sensitive explosives, and gun powders are described with safety guidelines. Spectral masks for screening unknown samples for explosives and nerve agents are given.
Fire and Explosion Hazards Expected in a Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rasool, Shireen R.; Al-Dahhan, Wedad; Al-Zuhairi, Ali Jassim
Scientists at universities across Iraq are actively working to report actual incidents and accidents occurring in their laboratories, as well as structural improvements made to improve safety and security, to raise awareness and encourage openness, leading to widespread adoption of robust Chemical Safety and Security (CSS) practices. This manuscript is the fifth in a series of five case studies describing laboratory incidents, accidents, and laboratory improvements. In this study, we summarize unsafe practices involving the improper installation of a Gas Chromatograph (GC) at an Iraqi university which, if not corrected, could have resulted in a dangerous fire and explosion. Wemore » summarize the identified infractions and highlight lessons learned. By openly sharing the experiences at the university involved, we hope to minimize the possibility of another researcher being injured due to similarly unsafe practices in the future.« less
Initiation of Insensitive High Explosives Using Multiple Wave Interactions
NASA Astrophysics Data System (ADS)
Francois, Elizabeth
Insensitive High Explosives (IHEs) increase safety in many types of weapons. However, the safety comes at the cost of performance. Initiation of IHE requires large boosters and powerful detonators as well. Multipoint initiation is being utilized to exploit explosive wave interactions to create overdriven states, greatly facilitating the initiation of IHEs. This presentation will focus on recent explosive experiments where the minimum spot size for single-point initiation in PBX 9502 was determined. Below this threshold, PBX 9502 could not be initiated. This was then expanded to three initiation points, which were smaller this threshold. Measurements of the velocity and pressure of the wave interactions were measured using Photon Doppler Velocimetry (PDV). Initiation was observed, and the resulting pressures at the double and triple points were found to be above the CJ state for PBX 9502. Further testing will be performed using cutback experiments to isolate the overdriven state, and quantify the duration of the phenomenon.
Towards an Electronic Dog Nose: Surface Plasmon Resonance Immunosensor for Security and Safety
Onodera, Takeshi; Toko, Kiyoshi
2014-01-01
This review describes an “electronic dog nose” based on a surface plasmon resonance (SPR) sensor and an antigen–antibody interaction for security and safety. We have concentrated on developing appropriate sensor surfaces for the SPR sensor for practical use. The review covers different surface fabrications, which all include variations of a self-assembled monolayer containing oligo(ethylene glycol), dendrimer, and hydrophilic polymer. We have carried out detection of explosives using the sensor surfaces. For the SPR sensor to detect explosives, the vapor or particles of the target substances have to be dissolved in a liquid. Therefore, we also review the development of sampling processes for explosives, and a protocol for the measurement of explosives on the SPR sensor in the field. Additionally, sensing elements, which have the potential to be applied for the electronic dog nose, are described. PMID:25198004
14 CFR 417.411 - Safety clear zones for hazardous operations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... zone on the following criteria: (i) For a possible explosive event, base a safety clear zone on the... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Safety clear zones for hazardous operations... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Ground Safety § 417.411 Safety clear zones...
Liquefied Natural Gas (LNG) Import Terminals: Siting, Safety and Regulation
2004-05-27
LNG Natural gas is combustible , so an uncontrolled release of LNG poses a hazard of fire or, in confined spaces, explosion. LNG also poses hazards...ignition source, the evaporating gas in a combustible gas-air concentration will burn above the LNG pool.8 The resulting “pool fire” would spread as the...serious LNG hazard.10 Other Safety Hazards. LNG spilled on water could (theoretically) regasify almost instantly in a “ flameless explosion,” but an Idaho
Selected Issues in DoD’s Radio Frequency Identification (RFID) Implementation
2006-04-01
Evaluation of human exposure to electromagnetic fields from devices operating in the frequency range 0 Hz to 10 GHz, used in Electronic...standard for human exposure to RF Signal, 3 kHz-300 GHz BS EN 50364 Limitation of human exposure to electromagnetic fields from devices operating in the...Management and DoD Explosives Safety Board, and DoDD 6055.9-STD, DoD Ammunition and Explosives Safety Standards. Exposure of people to electromagnetic
Space Station crew safety alternatives study. Volume 2: Threat development
NASA Technical Reports Server (NTRS)
Raasch, R. F.; Peercy, R. L., Jr.; Rockoff, L. A.
1985-01-01
The first 15 years of accumulated space station concepts for initial operational capability (IOC) during the early 1990's were considered. Twenty-five threats to the space station are identified and selected threats addressed as impacting safety criteria, escape and rescue, and human factors safety concerns. Of the 25 threats identified, eight are discussed including strategy options for threat control: fire, biological or toxic contamination, injury/illness, explosion, loss of pressurization, radiation, meteoroid penetration, and debris.
Space station crew safety alternatives study, volume 1
NASA Technical Reports Server (NTRS)
Peercy, R. L., Jr.; Raasch, R. F.; Rockoff, L. A.
1985-01-01
The first 15 years of accumulated space station concepts for initial operational capability (IOC) during the early 1990's were considered. Twenty-five threats to the space station are identified and selected threats addressed as impacting safety criteria, escape and rescue, and human factors safety concerns. Of the 25 threats identified, eight are discussed including strategy options for threat control: fire, biological or toxic contamination, injury/illness, explosion, loss of pressurization, radiation, meteoroid penetration and debris.
Space station crew safety alternatives study. Volume 3: Safety impact of human factors
NASA Technical Reports Server (NTRS)
Rockoff, L. A.; Raasch, R. F.; Peercy, R. L., Jr.
1985-01-01
The first 15 years of accumulated space station concepts for Initial Operational Capability (IOC) during the early 1990's was considered. Twenty-five threats to the space station are identified and selected threats addressed as impacting safety criteria, escape and rescue, and human factors safety concerns. Of the 25 threats identified, eight are discussed including strategy options for threat control: fire, biological or toxic contamination, injury/illness, explosion, loss of pressurization, radiation, meteoroid penetration and debris. Of particular interest here is volume three (of five volumes) pertaining to the safety impact of human factors.
The High Energy Lightning Simulator (HELS) Test Facility for Testing Explosive Items
1996-08-01
Center, Redstone Arsenal, AL Thomas E. Roy and David W. Bagwell AMTEC Corporation, Huntsville, AL ABSTRACT Details of the High Energy Lightning...simulated lightning testing of inerted missiles and inerted explosive items containing electrically initiated explosive trains is to determine the...penetrate the safety cages, which are electrically conductive and grounded, without loss of current. This transmission system consists of six large
1986-08-01
the U.S. Customs thermionic acetone vapor detector and a non -commercial Gas Chromatograph with electron capture detection as the main types. Each had...detector would only detect RDX or HMX or other explosives that had residual solvent with an alpha keto group like acetone or methylethyl ketone...8217.’=- evaluation for both vapor and non -vapor methods. The NAVSEA was not prepared to engage in r comprehensive study but did fund a reviev of improved
Design and validation of inert homemade explosive simulants for X-ray-based inspection systems
NASA Astrophysics Data System (ADS)
Faust, Anthony A.; Nacson, Sabatino; Koffler, Bruce; Bourbeau, Éric; Gagne, Louis; Laing, Robin; Anderson, C. J.
2014-05-01
Transport Canada (TC), the Canadian Armed Forces, and other public security agencies have an interest in the assessment of the potential utility of advanced explosives detection technologies to aid in the detection and interdiction of commercial grade, military grade, and homemade or improvised explosives (HME or IE). The availability of suitable, non-hazardous, non-toxic, explosive simulants is of concern when assessing the potential utility of such detection systems. Lack of simulants limits the training opportunities, and ultimately the detection probability, of security personnel using these systems. While simulants for commercial and military grade explosives are available for a wide variety of detection technologies, the design and production of materials to simulate improvised explosives has not kept pace with this emerging threat. Funded by TC and the Canadian Safety and Security Program, Defence Research and Development Canada (DRDC), Visiontec Systems, and Optosecurity engaged in an effort to develop inert, non-toxic Xray interrogation simulants for IE materials such as ammonium nitrate, potassium chlorate, and triacetone triperoxide. These simulants were designed to mimic key X-ray interrogation-relevant material properties of real improvised explosives, principally their bulk density and effective atomic number. Different forms of the simulants were produced and tested, simulating the different explosive threat formulations that could be encountered by front line security workers. These simulants comply with safety and stability requirements, and as best as possible match form and homogeneity. This paper outlines the research program, simulant design, and validation.
Office-based anesthesia: new frontiers, better outcomes, and emphasis on safety.
Desai, Meena S
2008-12-01
Office-based anesthesia has grown and continues to grow very rapidly in the ever-changing medical environment. The demand of patients, surgeons and the evolving economic environment has set off a dynamic growth explosion. This explosion has created aggressive and tumultuous enhancements, some of which have been adapted well and some of which have led to disastrous results. As we institute rules and regulations to govern this 'wild west' of anesthesia, the landscape is set with some new guidelines that continue to evolve.Practice recommendations have been outlined for fire safety especially on patient fires. Closed claim studies offer valuable recommendations for MAC claims in the office based setting. Anesthesia Patient Safety Foundation and the ASA have outlined valuable information regarding the nonsilencing of equipment alarms.New equipment enhancements have generated successful mobile general anesthesia platforms. Finally, as we forge ahead we must construct measurements of our safety and success as outcome parameters are developed. The review of recent literature and technological advances has provided some valuable lessons in the evolution of patient safety and office based technology for the surgical office-based environment. As this specialty grows, measures of its outcome parameters will allow a gauge of performance.
Oven Evaporates Isopropyl Alcohol Without Risk Of Explosion
NASA Technical Reports Server (NTRS)
Morgan, Gene E.; Hoult, William S.
1996-01-01
Ordinary convection oven with capacity of 1 ft.(sup3) modified for use in drying objects washed in isopropyl alcohol. Nitrogen-purge equipment and safety interlocks added to prevent explosive ignition of flammable solvent evaporating from object to be dried.
Chemical Reactivity Test (CRT)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaka, F.
The Chemical Reactivity Test (CRT) is used to determine the thermal stability of High Explosives (HEs) and chemical compatibility between (HEs) and alien materials. The CRT is one of the small-scale safety tests performed on HE at the High Explosives Applications Facility (HEAF).
49 CFR 173.59 - Description of terms for explosives.
Code of Federal Regulations, 2012 CFR
2012-10-01
... perforating guns, charged, oil well, without detonator. Articles consisting of a steel tube or metallic strip... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SHIPPERS... fiber, metal or other material containing only propellant explosive. The term excludes charges, shaped...
48 CFR 223.370 - Safety precautions for ammunition and explosives.
Code of Federal Regulations, 2012 CFR
2012-10-01
... REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Hazardous Material...
48 CFR 223.370 - Safety precautions for ammunition and explosives.
Code of Federal Regulations, 2010 CFR
2010-10-01
... REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Hazardous Material...
48 CFR 223.370 - Safety precautions for ammunition and explosives.
Code of Federal Regulations, 2014 CFR
2014-10-01
... REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Hazardous Material...
48 CFR 223.370 - Safety precautions for ammunition and explosives.
Code of Federal Regulations, 2011 CFR
2011-10-01
... REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Hazardous Material...
48 CFR 223.370 - Safety precautions for ammunition and explosives.
Code of Federal Regulations, 2013 CFR
2013-10-01
... REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Hazardous Material...
ERIC Educational Resources Information Center
Education in Science, 1996
1996-01-01
Discusses safety issues in science, including: allergic reactions to peanuts used in experiments; explosions in lead/acid batteries; and inspection of pressure vessels, such as pressure cookers or model steam engines. (MKR)
A Preliminary Assessment of the SURF Reactive Burn Model Implementation in FLAG
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Carl Edward; McCombe, Ryan Patrick; Carver, Kyle
Properly validated and calibrated reactive burn models (RBM) can be useful engineering tools for assessing high explosive performance and safety. Experiments with high explosives are expensive. Inexpensive RBM calculations are increasingly relied on for predictive analysis for performance and safety. This report discusses the validation of Menikoff and Shaw’s SURF reactive burn model, which has recently been implemented in the FLAG code. The LANL Gapstick experiment is discussed as is its’ utility in reactive burn model validation. Data obtained from pRad for the LT-63 series is also presented along with FLAG simulations using SURF for both PBX 9501 and PBXmore » 9502. Calibration parameters for both explosives are presented.« less
M-X Environmental Technical Report - Selection of Suitable Locational Alternatives.
1980-12-01
1.600 7,600 0 Great Basin 900 0 900 0 Colorado 8,200 Central High Plains 6,500 1.700 0 0 8,200 daho 1,800 Northern Rockies .100 0 700 400 Great Basin 700... Explosive Safety Pipelines (buried) - 300 ft Distances Above ground POL - 1.800 ft Above ground electrical distribution lines , 15,000 V - 1.780 ft Radio...security, and to allow room for future community development. Explosive Safety Distances Required by AFR regulation 127-100 to protect the public from
Maintenance Facilities for Ammunition, Explosives, and Toxics. Design Manual 28.3.
1981-11-01
LOADING DOCK RAMP PROTECTION 28.3-2 8. FIRE PROTECTION 28.3-2 9. SECURITY 28.3-2 10. SAFETY 28.3-2 Section 2. GENERAL AMMUNITION MAINTENANCE SHOPS 28.3...protection in accordance with Section 3 1910.23c, Occupatioual Safety and Health Act Standards Manual. 5 8. FIRE PROTECTION. Fire protection for all...Volume 1, and Fire Protection Engineering, NAVFAC DM-8. 9. SECURITY. Maintenance facilities for ammunition, explosives, and I toxics shall be located so
Dynamic Fracture Behavior of Plastic-Bonded Explosives
NASA Astrophysics Data System (ADS)
Fu, Hua; Li, Jun-Ling; Tan, Duo-Wang; Ifp, Caep Team
2011-06-01
Plastic-Bonded Explosives (PBX) are used as important energetic materials in nuclear or conventional weapons. Arms Warhead in the service process and the ballistic phase, may experience complex process such as long pulse and higher loading, compresson, tension and reciprocating compression - tension, friction with the projectile shell, which would lead to explosive deformation and fracture.And the dynamic deformation and fracture behavior of PBX subsequently affect reaction characteristics and initiation mechanism in explosives, then having influence on explosives safety. The dynamic fracure behavior of PBX are generally complex and not well studied or understood. In this paper, the dynamic fracture of explosives are conducted using a Kolsky bar. The Brazilian test, also known as a indirect tensile test or splitting test, is chosen as the test method. Tensile strength under different strain rates are obtained using quartz crystal embedded in rod end. The dynamic deformation and fracture process are captured in real-time by high-speed digital camera, and the displacement and strain fields distribution before specimen fracture are obtained by digital correlation method. Considering the non-uniform microstructure of explosives,the dynamic fracture behavior of explosive are simulated by discrete element method, the simulation results can reproduce the deformation and fracture process in Brazilian test using a maximum tensile strain criterion.
30 CFR 56.4101 - Warning signs.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Fire Prevention and Control... open flames shall be posted where a fire or explosion hazard exists. ...
30 CFR 57.4101 - Warning signs.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control... open flames shall be posted where a fire or explosion hazard exists. ...
Dubaniewicz, Thomas H; DuCarme, Joseph P
2016-09-01
Researchers with the National Institute for Occupational Safety and Health (NIOSH) studied the potential for lithium-ion cell thermal runaway from an internal short circuit in equipment for use in underground coal mines. In this third phase of the study, researchers compared plastic wedge crush-induced internal short circuit tests of selected lithium-ion cells within methane (CH 4 )-air mixtures with accelerated rate calorimetry tests of similar cells. Plastic wedge crush test results with metal oxide lithium-ion cells extracted from intrinsically safe evaluated equipment were mixed, with one cell model igniting the chamber atmosphere while another cell model did not. The two cells models exhibited different internal short circuit behaviors. A lithium iron phosphate (LiFePO 4 ) cell model was tolerant to crush-induced internal short circuits within CH 4 -air, tested under manufacturer recommended charging conditions. Accelerating rate calorimetry tests with similar cells within a nitrogen purged 353-mL chamber produced ignitions that exceeded explosion proof and flameproof enclosure minimum internal pressure design criteria. Ignition pressures within a 20-L chamber with 6.5% CH 4 -air were relatively low, with much larger head space volume and less adiabatic test conditions. The literature indicates that sizeable lithium thionyl chloride (LiSOCl 2 ) primary (non rechargeable) cell ignitions can be especially violent and toxic. Because ignition of an explosive atmosphere is expected within explosion proof or flameproof enclosures, there is a need to consider the potential for an internal explosive atmosphere ignition in combination with a lithium or lithium-ion battery thermal runaway process, and the resulting effects on the enclosure.
Effect of Temperature Profile on Reaction Violence in Heated, Self-Ignited, PBX-9501
NASA Astrophysics Data System (ADS)
Asay, Blaine; Dickson, Peter; Henson, Bryan; Smilowitz, Laura; Tellier, Larry
2001-06-01
Historically, the location of ignition in heated explosives has been implicated in the violence of subsequent reactions. This is based on the observation that typically, when an explosive is heated quickly, ignition occurs at the surface, leading to premature failure of confinement, a precipitous drop in pressure, and failure of the reaction. During slow heating, reaction usually occurs near the center of the charge, and more violent reactions are observed. Many safety protocols use these global results in determining safety envelopes and procedures. We have conducted instrumented experiments with cylindrical symmetry and precise thermal boundary conditions which have shown that the temperature profile in the explosive, along with the time spent at critical temperatures, and not the location of ignition, are responsible for the level of violence observed. Microwave interferometry was used to measure case expansion velocities and reaction violence. We are using the data in a companion study to develop better kinetic models for HMX and PBX 9501. Additionally, the spatially- and temporally-resolved temperature data are being made available for those who would like to use them.
NASA Astrophysics Data System (ADS)
Reynolds, John; Sandstrom, Mary; Brown, Geoffrey; Warner, Kirstin; Phillips, Jason; Shelley, Timothy; Reyes, Jose; Hsu, Peter
2013-06-01
One of the first steps in establishing safe handling procedures for explosives is small-scale safety and thermal (SSST) testing. To better understand the response of improvised materials or HMEs to SSST testing, 18 HME materials were compared to 3 standard military explosives in a proficiency-type round robin study among five laboratories--2 DoD and 3 DOE--sponsored by DHS. The testing matrix has been designed to address problems encountered with improvised materials--powder mixtures, liquid suspensions, partially wetted solids, immiscible liquids, and reactive materials. Over 30 issues have been identified that indicate standard test methods may require modification when applied to HMEs to derive accurate sensitivity assessments needed for development safe handling and storage practices. This presentation will discuss experimental difficulties encountered when testing these problematic samples, show inter-laboratory testing results, show some statistical interpretation of the results, and highlight some of the testing issues. Some of the work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-617519 (721812).
Light-Water-Reactor safety research program. Quarterly progress report, January--March 1977
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The report summarizes the Argonne National Laboratory work performed during January, February, and March 1977 on water-reactor-safety problems. The following research and development areas are covered: (1) loss-of-coolant accident research: heat transfer and fluid dynamics; (2) transient fuel response and fission-product release program; (3) mechanical properties of zircaloy containing oxygen; and (4) steam-explosion studies.
Electric conductivity of high explosives with carbon nanotubes
NASA Astrophysics Data System (ADS)
Rubtsov, I. A.; Pruuel, E. R.; Ten, K. A.; Kashkarov, A. O.; Kremenko, S. I.
2017-09-01
The paper presents a technique for introducing carbon nanotubes into high explosives (HEs). For a number of explosives (trinitrotoluene, pentaerythritol tetranitrate, benzotrifuroxan), it was possible to achieve the appearance of conductivity by adding a small amount (up to 1% by mass) of single-walled carbon nanotubes TUBALL COATE H2O (CNTs) produced by OCSiAl. Thus it is possible to reduce the sensitivity of explosives to static electricity by adding an insignificant part of conductive nanotubes. This will increase safety of HEs during production and application and will reduce the number of accidents.
Safety issues of high-concentrated hydrogen peroxide production used as rocket propellant
NASA Astrophysics Data System (ADS)
Romantsova, O. V.; Ulybin, V. B.
2015-04-01
The article dwells on the possibility of production of high-concentrated hydrogen peroxide with the Russian technology of isopropyl alcohol autoxidation. Analysis of fire/explosion hazards and reasons of insufficient quality is conducted for the technology. Modified technology is shown. Non-standard fire/explosion characteristics required for integrated fire/explosion hazards rating for modified hydrogen peroxide production based on the autoxidation of isopropyl alcohol are defined.
A Manual for the Prediction of Blast and Fragment Loadings on Structures
1981-08-01
H. and Amsden, A. A., "Fluid Dynamics---An Introductory 4100, Los Alamos Scientific Laboratory, University of California, New Mexico, February 1970...Navy Explosives Safety Board, "The Missile Hazard from Explosions," Technical Paper No. 2, ,December 1945 . Arvidsson, T. and Eriksson, L... Alamos Scientific Laboratory, Los Alamos , New-Mexico, June 1975. "Behavior and Utilization of Explosives in Engineering Design and Biomechda-. ical
NASA Astrophysics Data System (ADS)
Ismaila, Aminu; Md Kasmani, Rafiziana; Meng-Hock, Koh; Termizi Ramli, Ahmad
2017-10-01
This paper deals with the assessment of external explosion, resulting from accidental release of jet fuel from the large commercial airliner in the nuclear power plant (NPP). The study used three widely prediction methods such as Trinitrotoluene (TNT), multi energy (TNO) and Baker-strehow (BST) to determine the unconfined vapour cloud explosion (UVCE) overpressure within the distances of 100-1400 m from the first impact location. The containment building was taken as the reference position. The fatalities of persons and damage of structures was estimated using probit methodology. Analysis of the results shows that both reactor building and control-room will be highly damaged with risk consequences and probability, depending on the assumed position of the crash. The structures at the radial distance of 600 m may suffer major structural damage with probability ranging from 25 to 100%. The minor structural damage was observed throughout the bounds of the plant complex. The people working within 250 m radius may get affected with different fatality ranging from 28 to 100%. The findings of this study is valuable to evaluate the safety improvement needed on the NPP site and on the risk and consequences associated with the hydrocarbon fuel release/fires due to external hazards.
24 CFR 51.203 - Safety standards.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 24 Housing and Urban Development 1 2011-04-01 2011-04-01 false Safety standards. 51.203 Section 51... Conventional Fuels or Chemicals of an Explosive or Flammable Nature § 51.203 Safety standards. The following... from a hazard: (a) Thermal Radiation Safety Standard. Projects shall be located so that: (1) The...
24 CFR 51.203 - Safety standards.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Safety standards. 51.203 Section 51... Conventional Fuels or Chemicals of an Explosive or Flammable Nature § 51.203 Safety standards. The following... from a hazard: (a) Thermal Radiation Safety Standard. Projects shall be located so that: (1) The...
Numerical simulation study on thermal response of PBX 9501 to low velocity impact
NASA Astrophysics Data System (ADS)
Lou, Jianfeng; Zhou, Tingting; Zhang, Yangeng; Zhang, Xiaoli
2017-01-01
Impact sensitivity of solid high explosives, an important index in evaluating the safety and performance of explosives, is an important concern in handling, storage, and shipping procedures. It is a great threat for either bare dynamite or shell charge when subjected to low velocity impact involved in traffic accidents or charge piece drops. The Steven test is an effective tool to study the relative sensitivity of various explosives. In this paper, we built the numerical simulation method involving mechanical, thermo and chemical properties of Steven test based on the thermo-mechanical coupled material model. In the model, the stress-strain relationship is described by dynamic plasticity model, the thermal effect of the explosive induced by impact is depicted by isotropic thermal material model, the chemical reaction of explosives is described by Arrhenius reaction rate law, and the effects of heating and melting on mechanical properties and thermal properties of materials are also taken into account. Specific to the standard Steven test, the thermal and mechanical response rules of PBX 9501 at various impact velocities were numerically analyzed, and the threshold velocity of explosive initiation was obtained, which is in good agreement with experimental results. In addition, the effect of confine condition of test device to the threshold velocity was explored.
Code of Federal Regulations, 2011 CFR
2011-07-01
.... The following definitions apply in this subpart. Blasting agent. Any substance classified as a blasting agent by the Department of Transportation in 49 CFR 173.114a(a). This document is available at any... Metal and Nonmetal Safety and Health district office. Explosive material. Explosives, blasting agents...
Code of Federal Regulations, 2010 CFR
2010-07-01
.... The following definitions apply in this subpart. Blasting agent. Any substance classified as a blasting agent by the Department of Transportation in 49 CFR 173.114a(a). This document is available at any... Metal and Nonmetal Safety and Health district office. Explosive material. Explosives, blasting agents...
Code of Federal Regulations, 2014 CFR
2014-07-01
.... The following definitions apply in this subpart. Blasting agent. Any substance classified as a blasting agent by the Department of Transportation in 49 CFR 173.114a(a). This document is available at any... Metal and Nonmetal Safety and Health district office. Explosive material. Explosives, blasting agents...
Code of Federal Regulations, 2013 CFR
2013-07-01
.... The following definitions apply in this subpart. Blasting agent. Any substance classified as a blasting agent by the Department of Transportation in 49 CFR 173.114a(a). This document is available at any... Metal and Nonmetal Safety and Health district office. Explosive material. Explosives, blasting agents...
Code of Federal Regulations, 2012 CFR
2012-07-01
.... The following definitions apply in this subpart. Blasting agent. Any substance classified as a blasting agent by the Department of Transportation in 49 CFR 173.114a(a). This document is available at any... Metal and Nonmetal Safety and Health district office. Explosive material. Explosives, blasting agents...
30 CFR 18.42 - Explosion-proof distribution boxes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Explosion-proof distribution boxes. 18.42 Section 18.42 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction...
Initiation of Insensitive High Explosives Using Multiple Wave Interactions
NASA Astrophysics Data System (ADS)
Francois, Elizabeth; Burritt, Rosmary; Biss, Matt; Bowden, Patrick
2017-06-01
Insensitive High Explosives (IHEs) increase safety in many types of weapons. However, the safety comes at the cost of performance. Initiation of IHE requires large boosters and powerful detonators as well. Multipoint initiation is being utilized to exploit explosive wave interactions to create overdriven states, greatly facilitating the initiation of IHEs. This presentation will build from recent explosive experiments where the minimum spot size for single-point initiation in PBX 9502 was determined. Below this threshold, PBX 9502 could not be initiated. This was then expanded to three initiation points, which were smaller this threshold. Measurements of the velocity and pressure of the wave interactions were measured using Photon Doppler Velocimetry (PDV). Initiation was observed, and the resulting pressures at the double and triple points were found to be above the CJ state for PBX 9502. Based on these results, further tests were conducted to isolate and measure the longevity and pressure of this phenomenon using cut-back tests. All results will be presented and discussed.
Shock Initiation of Wedge-shaped Explosive Measured with Smear Camera and Photon Doppler Velocimetry
NASA Astrophysics Data System (ADS)
Gu, Yan
2017-06-01
Triaminotrinitrobenzene (TATB) is an important insensitive high explosive in conventional weapons due to its safety and high energy. In order to have an insight into the shock initiation performance of a TATB-based insensitive high explosive (IHE), experimental measurements of the particle velocity histories of the TATB-based Explosive using Photon Doppler Velocimetry and shock wave profile of the TATB-based explosive using High Speed Rotating Mirror Smear Camera had been performed. In this paper, we would describe the shock initiation performance of the TATB-based explosive by run-to-detonation distance and the particle velocity history at an initialization shock of about 7.9 GPa. The parameters of hugoniot of unreacted the TATB-based explosive and Pop relationship could be derived with the particle velocity history obtained in this paper.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Grounding. 57.6601 Section 57.6601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Extraneous Electricity...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Grounding. 56.6601 Section 56.6601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Extraneous Electricity...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Grounding. 56.6601 Section 56.6601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Extraneous Electricity...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Grounding. 57.6601 Section 57.6601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Extraneous Electricity...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Grounding. 57.6601 Section 57.6601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Extraneous Electricity...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Grounding. 57.6601 Section 57.6601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Extraneous Electricity...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Grounding. 56.6601 Section 56.6601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Extraneous Electricity...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Grounding. 56.6601 Section 56.6601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Extraneous Electricity...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Grounding. 56.6601 Section 56.6601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Extraneous Electricity...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Grounding. 57.6601 Section 57.6601 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Extraneous Electricity...
30 CFR 57.4430 - Surface storage facilities.
Code of Federal Regulations, 2010 CFR
2010-07-01
....4430 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention... ignition sources to prevent fire or explosion; and (4) Vented or otherwise constructed to prevent...
30 CFR 56.4430 - Storage facilities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Fire Prevention and... separated from ignition sources to prevent fire or explosion; and (4) Vented or otherwise constructed to...
30 CFR 57.6160 - Main facilities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Storage... facilities will not prevent escape from the mine, or cause detonation of the contents of another storage...
Chemistry laboratory safety manual available
NASA Technical Reports Server (NTRS)
Elsbrock, R. G.
1968-01-01
Chemistry laboratory safety manual outlines safe practices for handling hazardous chemicals and chemistry laboratory equipment. Included are discussions of chemical hazards relating to fire, health, explosion, safety equipment and procedures for certain laboratory techniques and manipulations involving glassware, vacuum equipment, acids, bases, and volatile solvents.
30 CFR 57.6312 - Secondary blasting.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Transportation-Surface and Underground § 57.6312 Secondary blasting. Secondary blasts fired at the same time in...
30 CFR 715.19 - Use of explosives.
Code of Federal Regulations, 2010 CFR
2010-07-01
... wells, petroleum or gas-storage facilities, municipal water-storage facilities, fluid-transmission pipelines, gas or oil-collection lines, or water and sewage lines; and (C) 500 feet of an underground mine... explosive materials shall— (i) Have demonstrated a knowledge of, and a willingness to comply with, safety...
30 CFR 18.43 - Explosion-proof splice boxes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Explosion-proof splice boxes. 18.43 Section 18.43 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and...
48 CFR 252.223-7002 - Safety precautions for ammunition and explosives.
Code of Federal Regulations, 2013 CFR
2013-10-01
... ammunition and explosives. 252.223-7002 Section 252.223-7002 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT...) Ammunition; (iii) Rockets; (iv) Missiles; (v) Warheads; (vi) Devices; and (vii) Components of (i) through (vi...
48 CFR 252.223-7002 - Safety precautions for ammunition and explosives.
Code of Federal Regulations, 2012 CFR
2012-10-01
... ammunition and explosives. 252.223-7002 Section 252.223-7002 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT...) Ammunition; (iii) Rockets; (iv) Missiles; (v) Warheads; (vi) Devices; and (vii) Components of (i) through (vi...
48 CFR 252.223-7002 - Safety precautions for ammunition and explosives.
Code of Federal Regulations, 2014 CFR
2014-10-01
... ammunition and explosives. 252.223-7002 Section 252.223-7002 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT...) Ammunition; (iii) Rockets; (iv) Missiles; (v) Warheads; (vi) Devices; and (vii) Components of (i) through (vi...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety. 159.95 Section 159.95... SANITATION DEVICES Design, Construction, and Testing § 159.95 Safety. (a) Each device must— (1) Be free of... explosion or over pressurization as a result of an accumulation of gases; and (3) Meet all other safety...
A scheme for the classification of explosions in the chemical process industry.
Abbasi, Tasneem; Pasman, H J; Abbasi, S A
2010-02-15
All process industry accidents fall under three broad categories-fire, explosion, and toxic release. Of these fire is the most common, followed by explosions. Within these broad categories occur a large number of sub-categories, each depicting a specific sub-type of a fire/explosion/toxic release. But whereas clear and self-consistent sub-classifications exist for fires and toxic releases, the situation is not as clear vis a vis explosions. In this paper the inconsistencies and/or shortcomings associated with the classification of different types of explosions, which are seen even in otherwise highly authentic and useful reference books on process safety, are reviewed. In its context a new classification is attempted which may, hopefully, provide a frame-of-reference for the future.
Integrated Data Collection Analysis (IDCA) Program - RDX Type II Class 5 Standard, Data Set 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandstrom, Mary M.; Brown, Geoffrey W.; Preston, Daniel N.
This document describes the results of the first reference sample material—RDX Type II Class 5—examined in the proficiency study for small-scale safety and thermal (SSST) testing of explosive materials for the Integrated Data Collection Analysis (IDCA) Program. The IDCA program is conducting proficiency testing on homemade explosives (HMEs). The reference sample materials are being studied to establish the accuracy of traditional explosives safety testing for each performing laboratory. These results will be used for comparison to results from testing HMEs. This effort, funded by the Department of Homeland Security (DHS), ultimately will put the issues of safe handling of thesemore » materials in perspective with standard military explosives. The results of the study will add SSST testing results for a broad suite of different HMEs to the literature, potentially suggest new guidelines and methods for HME testing, and possibly establish what are the needed accuracies in SSST testing to develop safe handling practices. Described here are the results for impact, friction, electrostatic discharge, and scanning calorimetry analysis of a reference sample of RDX Type II Class 5. The results from each participating testing laboratory are compared using identical test material and preparation methods wherever possible. Note, however, the test procedures differ among the laboratories. These results are then compared to historical data from various sources. The performers involved are Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Air Force Research Laboratory/ RXQL (AFRL), Indian Head Division, Naval Surface Warfare Center, (IHD-NSWC), and Sandia National Laboratories (SNL). These tests are conducted as a proficiency study in order to establish some consistency in test protocols, procedures, and experiments and to understand how to compare results when test protocols are not identical.« less
Experiments To Demonstrate Chemical Process Safety Principles.
ERIC Educational Resources Information Center
Dorathy, Brian D.; Mooers, Jamisue A.; Warren, Matthew M.; Mich, Jennifer L.; Murhammer, David W.
2001-01-01
Points out the need to educate undergraduate chemical engineering students on chemical process safety and introduces the content of a chemical process safety course offered at the University of Iowa. Presents laboratory experiments demonstrating flammability limits, flash points, electrostatic, runaway reactions, explosions, and relief design.…
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Air gap. 56.6603 Section 56.6603 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Extraneous Electricity...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Air gap. 57.6603 Section 57.6603 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Extraneous Electricity...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Air gap. 57.6603 Section 57.6603 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Extraneous Electricity...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Air gap. 57.6603 Section 57.6603 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Extraneous Electricity...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Air gap. 57.6603 Section 57.6603 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Extraneous Electricity...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Air gap. 56.6603 Section 56.6603 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Extraneous Electricity...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Air gap. 56.6603 Section 56.6603 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Extraneous Electricity...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Air gap. 56.6603 Section 56.6603 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Extraneous Electricity...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Air gap. 57.6603 Section 57.6603 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Extraneous Electricity...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Air gap. 56.6603 Section 56.6603 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Extraneous Electricity...
30 CFR 75.1326 - Examination after blasting.
Code of Federal Regulations, 2010 CFR
2010-07-01
....1326 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1326 Examination... and dust. (b) Immediately after the blasting area has cleared, a qualified person or a person working...
Decreasing Friction Sensitivity for Primary Explosives
NASA Astrophysics Data System (ADS)
Matyáš, Robert; Šelešovský, Jakub
2014-04-01
Primary explosives are a group of explosives that are widely used in various initiating devices. One of their properties is sufficient sensitivity to initiating stimuli. However, their sensitivity often introduces a safety risk during their production and subsequent handling. It is generally known that water can be used to desensitize these compounds. The most commonly used industrial primary explosives (lead azide, lead styphnate, tetrazene, and diazodinitrophenol) were mixed with water in various ratios and the sensitivity to friction was determined for all mixtures. It was found that even a small addition of water (5-10%) considerably lowered the friction sensitivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reaugh, J E
2002-01-03
Explosive grain-scale simulations are not practical for weapon safety simulations. Indeed for nearly ideal explosives with reaction zones of order 500 {micro}m, even reactive flow models are not practical for weapon safety simulations. By design, reactive flow models must resolve the reaction zone, which implies computational cells with dimension of order 50 {micro}m for such explosives. The desired result for a simulation in which the reaction zone is not resolved is that the explosive behaves as an ideal one. The pressure at the shock front rises to the Chapman-Jouget (CJ) pressure with a reaction zone dimension that is like thatmore » of a shock propagating in an unreactive medium, on the order of a few computational cells. It should propagate with the detonation velocity that is determined by the equation of state of the products. In the past, this was achieved in one dimensional simulations with ''beta-burn'', a method in which the extent of conversion to final product is proportional to the approach of the specific volume in the shock front to the specific volume of the CJ state. One drawback with this method is that there is a relatively long build-up to steady detonation that is typically 50 to 100 computational cells. The need for relatively coarsely zoned simulations in two dimensions lead to ''program-burn'' by which the time to detonation can be determined by a simple ray-tracing algorithm when there are no barriers or shadows. Complications arise in two and three dimensions to the extent that some calculations of the lighting time in complex geometry can give incorrect results. We sought to develop a model based on reactive flow that might help the needs of the Weapon Safety Simulation milepost. Important features of the model are: (1) That it be useable with any equation of state description of the explosive product gases including both JWL and LEOS table forms. (2) That it exhibits the desired dependence on zone size. We believe that the model described here does exhibit these features.« less
Multi-scale fracture damage associated with underground chemical explosions
NASA Astrophysics Data System (ADS)
Swanson, E. M.; Sussman, A. J.; Wilson, J. E.; Townsend, M. J.; Prothro, L. B.; Gang, H. E.
2018-05-01
Understanding rock damage induced by explosions is critical for a number of applications including the monitoring and verification of underground nuclear explosions, mine safety issues, and modeling fluid flow through fractured rock. We use core observations, televiewer logs, and thin section observations to investigate fracture damage associated with two successive underground chemical explosions (SPE2 and SPE3) in granitic rock at both the mesoscale and microscale. We compare the frequency and orientations of core-scale fractures, and the frequency of microfractures, between a pre-experiment core and three post-experiment cores. Natural fault zones and explosion-induced fractures in the vicinity of the explosive source are readily apparent in recovered core and in thin sections. Damage from faults and explosions is not always apparent in fracture frequency plots from televiewer logs, although orientation data from these logs suggests explosion-induced fracturing may not align with the pre-existing fracture sets. Core-scale observations indicate the extent of explosion-induced damage is 10.0 m after SPE2 and 6.8 m after SPE3, despite both a similar size and location for both explosions. At the microscale, damage is observed to a range distance of 10.2 ± 0.9 m after SPE2, and 16.6 ± 0.9 and 11.2 ± 0.6 in two different cores collected after SPE3. Additional explosion-induced damage, interpreted to be the result of spalling, is readily apparent near the surface, but only in the microfracture data. This depth extent and intensity of damage in the near-surface region also increased after an additional explosion. This study highlights the importance of evaluating structural damage at multiple scales for a more complete characterization of the damage, and particularly shows the importance of microscale observations for identifying spallation-induced damage.
Soft container for explosive nuts
NASA Technical Reports Server (NTRS)
Glenn, D. C.; Drummond, W. E.; Miller, G.
1981-01-01
Flexible fabric fits over variety of assembly shapes to contain debris produced by detonations or safety tests. Bag material is woven multifilament polyamide or aramid. Belt loops hold bag to clamp. Ring supports explosive nut structure and detonator wires, and after nut is mounted, bag and clamp are slipped over ring and fastened.
30 CFR 27.33 - Test to determine explosion-proof construction.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Test to determine explosion-proof construction. 27.33 Section 27.33 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Test Requirements § 27.33...
30 CFR 18.14 - Identification of tested noncertified explosion-proof enclosures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Identification of tested noncertified explosion-proof enclosures. 18.14 Section 18.14 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, Christina J.; Spencer, Khalil J.
This document summarizes an incident where a large volume of explosive gas was detonated at the UH-Manoa's School of Ocean and Earth Science and Technology. This description is used as an example to teach lab safety.
49 CFR 176.168 - Transport of Class 1 (explosive) materials in vehicle spaces.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 2 2012-10-01 2012-10-01 false Transport of Class 1 (explosive) materials in vehicle spaces. 176.168 Section 176.168 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS CARRIAGE BY VESSEL Detailed...
30 CFR 27.33 - Test to determine explosion-proof construction.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Test to determine explosion-proof construction. 27.33 Section 27.33 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Test Requirements § 27.33...
Safety shield for vacuum/pressure-chamber windows
NASA Technical Reports Server (NTRS)
Shimansky, R. A.; Spencer, R.
1980-01-01
Optically-clear shatter-resistant safety shield protects workers from implosion and explosion of vacuum and pressure windows. Plastic shield is inexpensive and may be added to vacuum chambers, pressure chambers, and gas-filling systems.
1990-11-01
radioactive) - Determine class of HAZMAT (Class A Explosive, Class B Explosive, Class C Explosive, Blasting Agent , Flammable Gas , Non- flammable Gas ... agent . Specific health and safety plans related to IRP actions amy be obtained from the same source. 2. Interaction of Fire Departments with the...such as digging near a gas line, a fuel tank, or buried explo- sives, the fire department would be briefed before beginning the work, and, under
1980-01-01
DOUBLE-BASE EXTRUSION COMPOSITIONS ................................... 89 Messrs. Craig E. Johnson and Paul F. Dendor V I GUN PROPELLANT PROPAGATION IN...Mullins and C. F. Baker RESULTS AND ANALYSIS OF STRENGTHENED STEEL BUILDING BLAST TESTS ..... 165 Messrs. Frederic E. Sock, Norval Dobbs, Paul Price and...347 Mr. J. Paul Glenn I viLR SESSION - EXPLOSION CONTAIMENT & VENTING Moderator - Mr. Irving Forsten EXPLOSION CONTAINMENT VESSELS AND M4TERIALS
Code of Federal Regulations, 2012 CFR
2012-07-01
... by a liquid to form a flammable vapor-air mixture near the surface of the liquid. Igniter cord. A... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives § 56.6000 Definitions. The...
30 CFR 56.6312 - Secondary blasting.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Use § 56.6312 Secondary blasting. Secondary blasts fired at the same time in the same work area shall be initiated from...
ERIC Educational Resources Information Center
Slater, Beverley L.; Lawton, Rebecca; Armitage, Gerry; Bibby, John; Wright, John
2012-01-01
Introduction: Despite an explosion of interest in improving safety and reducing error in health care, one important aspect of patient safety that has received little attention is a systematic approach to education and training for the whole health care workforce. This article describes an evaluation of an innovative multiprofessional, team-based…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vandersall, K S; Chidester, S K; Forbes, J W
2002-06-28
The Steven test and associated modeling has greatly increased the fundamental knowledge of practical predictions of impact safety hazards for confined and unconfined explosive charges. Building on a database of initial work, experimental and modeling studies of crush, puncture, and perforation scenarios were investigated using the Steven impact test. The descriptions of crush, puncture, and perforation arose from safety scenarios represented by projectile designs that ''crush'' the energetic material or either ''puncture'' with a pinpoint nose or ''perforate'' the front cover with a transportation hook. As desired, these scenarios offer different aspects of the known mechanisms that control ignition: friction,more » shear and strain. Studies of aged and previously damaged HMX-based high explosives included the use of embedded carbon foil and carbon resistor gauges, high-speed cameras, and blast wave gauges to determine the pressure histories, time required for an explosive reaction, and the relative violence of those reactions, respectively. Various ignition processes were modeled as the initial reaction rate expression in the Ignition and Growth reaction rate equations. Good agreement with measured threshold velocities, pressure histories, and times to reaction was calculated for LX-04 impacted by several projectile geometries using a compression dependent ignition term and an elastic-plastic model with a reasonable yield strength for impact strain rates.« less
Effect of Temperature Profile on Reaction Violence in Heated and Self-Ignited PBX 9501
NASA Astrophysics Data System (ADS)
Asay, Blaine; Dickson, Peter; Henson, Bryan; Smilowitz, Laura; Tellier, Larry
2002-07-01
Historically, the location of ignition in heated explosives has been implicated in the violence of subsequent reactions. This is based on the observation that typically, when an explosive is heated quickly, ignition occurs at the surface, leading to premature failure of confinement, a precipitous drop in pressure, and failure of the reaction. During slow heating, reaction usually occurs near the center of the charge, and more violent reactions are observed. Many safety protocols use these global results in determining safety envelopes and procedures. We are conducting instrumented experiments with cylindrical symmetry and precise thermal boundary conditions which are beginning to show that the temperature profile in the explosive, along with the time spent at critical temperatures, and not the location of ignition, are responsible for the level of violence observed. Microwave interferometry was used to measure case expansion velocities which can be considered a measure of reaction violence. We are using the data in a companion study to develop better kinetic models for HMX and PBX 9501. Additionally, the spatially- and temporally-resolved temperature data are being made available for those who would like to use them.
Deflagration-to-detonation characteristics of a laser exploding bridge detonator
NASA Astrophysics Data System (ADS)
Welle, E. J.; Fleming, K. J.; Marley, S. K.
2006-08-01
Evaluation of laser initiated explosive trains has been an area of extreme interest due to the safety benefits of these systems relative to traditional electro-explosive devices. A particularly important difference is these devices are inherently less electro-static discharge (ESD) sensitive relative to traditional explosive devices due to the isolation of electrical power and associated materials from the explosive interface. This paper will report work conducted at Sandia National Laboratories' Explosive Components Facility, which evaluated the initiation and deflagration-to-detonation characteristics of a Laser Driven Exploding Bridgewire detonator. This paper will report and discuss characteristics of Laser Exploding Bridgewire devices loaded with hexanitrohexaazaisowurtzitane (CL-20) and tetraammine-cis-bis-(5-nitro-2H-tetrazolato-N2) cobalt (III) perchlorate (BNCP).
2004-04-01
ingredients were freely b ought in the popular shops of chemicals. The following facts can serve as the evidence of wide use of mine -explosive...workshop rooms etc. The HE charges weight restrictions developed for conducting of blasting operations in open-cast mines and testing areas, are...Russian) 8. Silnikov M.V., Serdtsev N.I., Nelezin P.V. On the prospects of methods of explosion localization for the increase of safety of mine
Laser initiation of explosives
NASA Astrophysics Data System (ADS)
Singh, Manpreet; Sethi, V. S.
2002-09-01
Through laser initiation of explosives offers many advantages like controlled threshold energy over wide range, replacement of complicated safety arming mechanisms to simple and better system, immunity to RF/EMI environment etc, but there is greater difficulty to build detonator for all purpose applications and regular field trials. The challenges are to understand the interaction of laser radiation or its induced plasma with explosives, launching and transmission of high power laser beam, coupling and focussing to desired target area. This paper looks into the details of those facts.
49 CFR Appendix D to Part 173 - Test Methods for Dynamite (Explosive, Blasting, Type A)
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 2 2014-10-01 2014-10-01 false Test Methods for Dynamite (Explosive, Blasting, Type A) D Appendix D to Part 173 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SHIPPERS-GENERAL REQUIREMENTS FOR...
30 CFR 36.46 - Explosion tests of intake and exhaust systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
.... 36.46 Section 36.46 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...) Explosion tests shall be made with the engine at rest and with the flammable natural gas-air mixtures in the intake and exhaust systems. In other tests with the flammable mixture in motion, the engine shall be...
30 CFR 36.46 - Explosion tests of intake and exhaust systems.
Code of Federal Regulations, 2011 CFR
2011-07-01
.... 36.46 Section 36.46 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...) Explosion tests shall be made with the engine at rest and with the flammable natural gas-air mixtures in the intake and exhaust systems. In other tests with the flammable mixture in motion, the engine shall be...
30 CFR 36.46 - Explosion tests of intake and exhaust systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... 36.46 Section 36.46 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...) Explosion tests shall be made with the engine at rest and with the flammable natural gas-air mixtures in the intake and exhaust systems. In other tests with the flammable mixture in motion, the engine shall be...
30 CFR 36.46 - Explosion tests of intake and exhaust systems.
Code of Federal Regulations, 2013 CFR
2013-07-01
.... 36.46 Section 36.46 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...) Explosion tests shall be made with the engine at rest and with the flammable natural gas-air mixtures in the intake and exhaust systems. In other tests with the flammable mixture in motion, the engine shall be...
30 CFR 36.46 - Explosion tests of intake and exhaust systems.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... 36.46 Section 36.46 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...) Explosion tests shall be made with the engine at rest and with the flammable natural gas-air mixtures in the intake and exhaust systems. In other tests with the flammable mixture in motion, the engine shall be...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Supervision of Class 1 (explosive) materials during loading, unloading, handling and stowage. 176.108 Section 176.108 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS...
Chemical Safety: Molten Salt Baths Cited as Lab Hazards.
ERIC Educational Resources Information Center
Baum, Rudy
1982-01-01
Discusses danger of explosions with molten salts baths, commonly used as heat-transfer media. One such explosion involved use of a bath containing 3-lb sodium nitrite and 1-lb potassium thiocyanate. Although most commercially available mixtures for heat transfer contain oxidizers, a reducer (thiocyanate) was included which possibly triggered the…
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 2 2012-10-01 2012-10-01 false Structural serviceability of freight containers and vehicles carrying Class 1 (explosive) materials on ships. 176.172 Section 176.172 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS...
30 CFR 15.22 - Tolerances for performance, wrapper, and specific gravity.
Code of Federal Regulations, 2014 CFR
2014-07-01
... specific gravity. 15.22 Section 15.22 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT... performance, wrapper, and specific gravity. (a) The rate of detonation of the explosive shall be within ±15... within ±2 grams of that specified in the approval. (c) The apparent specific gravity of the explosive...
A deep towed explosive source for seismic experiments on the ocean floor
NASA Astrophysics Data System (ADS)
Koelsch, Donald E.; Witzell, Warren E.; Broda, James E.; Wooding, Frank B.; Purdy, G. M.
1986-12-01
A new seismic source for carrying out high resolution measurements of deep ocean crustal structure has been constructed and successfully used in a number of ocean bottom refraction experiments on the Mid Atlantic Ridge near 23° N. The source is towed within 100 m of the ocean floor on a conventional 0.68″ coaxial cable and is capable of firing, upon command from the research vessel, up to 48 individual 2.3 kg explosive charges. The explosive used was commercially available Penta-Erythritol-Tetra Nitrate (PETN) that was activated by 14.9 gm m-1 Primacord and DuPont E-97 electrical detonators. For safety reasons each detonator was fitted with a pressure switch that maintained a short until the source was at depth in excess of approximately 300 m. In addition, a mechanical protector isolated the detonator from the main charge and was only removed by the physical release of the explosive from the source package. These and other safety precautions resulted in several misfires but three experiments were successfully completed during the summer of 1985 at source depths of 3000 4000 m.
Safety in Elevators and Grain Handling Facilities. Module SH-27. Safety and Health.
ERIC Educational Resources Information Center
Center for Occupational Research and Development, Inc., Waco, TX.
This student module on safety in elevators and grain handling facilities is one of 50 modules concerned with job safety and health. Following the introduction, 15 objectives (each keyed to a page in the text) the student is expected to accomplish are listed (e.g., Explain how explosion suppression works). Then each objective is taught in detail,…
Safety on North Carolina and Kentucky trout farms.
Ogunsanya, T J; Durborow, R M; Myers, M L; Cole, H P; Thompson, S L
2011-01-01
The objective of this study was to identify and describe work-related safety hazards, injuries, and near-injury events (close calls) that occurred on trout farms in North Carolina and Kentucky. An interview instrument was used to collect information on occupational hazards, injuries, and near-injury events that resulted from work-related activities. Trout farmers reported occupational hazards including falling live tank lids, slippery surfaces on hauling trucks, lifting strains, falls from raceway walls and walkways, needlesticks while vaccinating fish, allergies, hypothermia/drowning, falls from cranes, chemical exposure, fire/explosions related to oxygen exposure, and electrical contact with overhead power lines. This study also reports solutions suggested by farm safety researchers or used by farmers to prevent the safety hazards found on trout farms.
The thermal response of HMX-TATB charges
NASA Astrophysics Data System (ADS)
Drake, R. C.
2017-01-01
One approach to achieving charge safety and performance requirements is to prepare formulations containing two (or more) explosives. The intention of this approach is that by judicious choice of explosives and binder the formulation will have the desirable features of the constituent materials. HMX and TATB have very different properties. In an attempt to achieve a formulation which has the safety and performance characteristics of TATB and HMX, respectively, a range of formulations were prepared. The thermal response of the formulations were measured in the One-Dimensional Time To Explosion (ODTX) configuration and compared to those of formulations containing only HMX and TATB. The response of the mixed formulations was found to be largely determined by the HMX component with the binder making a small contribution. A formulation with a Kel-F 800 binder had a much higher critical temperature than would have been expected based on the critical temperatures of formulations with HTPB-IPDI as the binder.
THRESHOLD STUDIES ON TNT, COMPOSITION B, C-4, AND ANFO EXPLOSIVES USING THE STEVEN IMPACT TEST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vandersall, K S; Switzer, L L; Garcia, F
2006-06-20
Steven Impact Tests were performed at low velocity on the explosives TNT (trinitrotolulene), Composition B (63% RDX, 36% TNT, and 1% wax by weight), C-4 (91% RDX, 5.3% Di (2-ethylhexyl) sebacate, 2.1% Polyisobutylene, and 1.6% motor oil by weight) and ANFO (94% ammonium Nitrate with 6% Fuel Oil) in attempts to obtain a threshold for reaction. A 76 mm helium driven gas gun was used to accelerate the Steven Test projectiles up to approximately 200 m/s in attempts to react (ignite) the explosive samples. Blast overpressure gauges, acoustic microphones, standard video and high-speed photography were used to characterize the levelmore » of any high explosive reaction violence. No bulk reactions were observed in the TNT, Composition B, C-4 or ANFO explosive samples impacted up to velocities in the range of 190-200 m/s. This work will outline the experimental details and discuss the lack of reaction when compared to the reaction thresholds of other common explosives. These results will also be compared to that of the Susan Test and reaction thresholds observed in the common small-scale safety tests such as the drop hammer and friction tests in hopes of drawing a correlation.« less
NASA Astrophysics Data System (ADS)
Sakata, K.; Tagomori, K.; Sugiyama, N.; Sasaki, S.; Shinya, Y.; Nanbu, T.; Kawashita, Y.; Narita, I.; Kuwatori, K.; Ikeda, T.; Hara, R.; Miyahara, H.
2014-01-01
Compared to conventional thermal spray coating, cold spray processing typically employs finer, smaller-diameter metal powders. Furthermore, cold-sprayed particles exhibit fewer surface oxides than thermally sprayed particles due to the absence of particle melting during spraying. For these reasons, it is important to consider the potential for dust explosions or fires during cold spray processing, for both industrial and R&D applications. This work examined the dust explosion characteristics of metal powders typically used in cold spray coating, for the purpose of preventing dust explosions and fires and thus protecting the health and safety of workers and guarding against property damage. In order to safely make use of the new cold spray technology in industrial settings, it is necessary to manage the risks based on an appropriate assessment of the hazards. However, there have been few research reports focused on such risk management. Therefore, in this study, the dust explosion characteristics of aluminum, titanium, zinc, carbonyl iron, and eutectoid steel containing chromium at 4 wt.% (4 wt.% Cr-eutectoid steel) powders were evaluated according to the standard protocols JIS Z 8818, IEC61241-2-3(1994-09) section 3, and JIS Z 8817. This paper reports our results concerning the dust explosion properties of the above-mentioned metal powders.
NASA Astrophysics Data System (ADS)
Newcomb, Lucas B.; Alaghemandi, Mohammad; Green, Jason R.
2017-07-01
While hydrogen is a promising source of clean energy, the safety and optimization of hydrogen technologies rely on controlling ignition through explosion limits: pressure-temperature boundaries separating explosive behavior from comparatively slow burning. Here, we show that the emergent nonequilibrium chemistry of combustible mixtures can exhibit the quantitative features of a phase transition. With stochastic simulations of the chemical kinetics for a model mechanism of hydrogen combustion, we show that the boundaries marking explosive domains of kinetic behavior are nonequilibrium critical points. Near the pressure of the second explosion limit, these critical points terminate the transient coexistence of dynamical phases—one that autoignites and another that progresses slowly. Below the critical point temperature, the chemistry of these phases is indistinguishable. In the large system limit, the pseudo-critical temperature converges to the temperature of the second explosion limit derived from mass-action kinetics.
Controlled Detonation Dynamics in Additively Manufactured High Explosives
NASA Astrophysics Data System (ADS)
Schmalzer, Andrew; Tappan, Bryce; Bowden, Patrick; Manner, Virginia; Clements, Brad; Menikoff, Ralph; Ionita, Axinte; Branch, Brittany; Dattelbaum, Dana; Espy, Michelle; Patterson, Brian; Wu, Ruilian; Mueller, Alexander
2017-06-01
The effect of structure in explosives has long been a subject of interest to explosives engineers and scientists. Through structure, detonation dynamics in explosives can be manipulated, introducing a new level of safety and directed performance into these previously difficult to control materials. New advances in additive manufacturing (AM) allow the deliberate introduction of exact internal structures at dimensions approaching the mesoscale of these energetic materials. We show through simulation and experiment that this structure can be used to control detonation behavior by manipulating complex shockwave interactions. We use high-speed video and shorting mag-wires to determine the detonation velocity in AM generated explosive structures, demonstrating, for the first time, a method of controlling the directional propagation of reactive flow through the controlled introduction of structure within a high explosive. With ongoing improvement in the AM methods available coupled with guidance through modeling and simulations, more complex interactions are being explored. LANL LDRD Office.
Critical Review of Commercial Secondary Lithium-Ion Battery Safety Standards
NASA Astrophysics Data System (ADS)
Jones, Harry P.; Chapin, Thomas, J.; Tabaddor, Mahmod
2010-09-01
The development of Li-ion cells with greater energy density has lead to safety concerns that must be carefully assessed as Li-ion cells power a wide range of products from consumer electronics to electric vehicles to space applications. Documented field failures and product recalls for Li-ion cells, mostly for consumer electronic products, highlight the risk of fire, smoke, and even explosion. These failures have been attributed to the occurrence of internal short circuits and the subsequent thermal runaway that can lead to fire and explosion. As packaging for some applications include a large number of cells, the risk of failure is likely to be magnified. To address concerns about the safety of battery powered products, safety standards have been developed. This paper provides a review of various international safety standards specific to lithium-ion cells. This paper shows that though the standards are harmonized on a host of abuse conditions, most lack a test simulating internal short circuits. This paper describes some efforts to introduce internal short circuit tests into safety standards.
Laser-based firing systems for prompt initiation of secondary explosives
NASA Technical Reports Server (NTRS)
Meeks, Kent D.; Setchell, Robert E.
1993-01-01
Motivated by issues of weapon safety and security, laser based firing systems for promptly initiating secondary explosives have been under active development at Sandia National Laboratories for more than four years. Such a firing system consists of miniaturized, Q-switched, solid-state laser, optical detonators, optical safety switches, and elements for splitting, coupling, and transmitting the laser output. Potential system applications pose significant challenges in terms of server mechanical and thermal environments and packaging constraints, while requiring clear demonstration of safety enhancements. The Direct Optical Initiation (DOI) Program at Sandia is addressing these challenges through progress development phases during which the design, fabrication, and testing of prototype hardware is aimed at more difficult application requirements. A brief history of the development program, and a summary of current and planned activities, will be presented.
Synthesis and Explosion Hazards of 4-Azido-l-phenylalanine.
Richardson, Mark B; Brown, Derek B; Vasquez, Carlos A; Ziller, Joseph W; Johnston, Kevin M; Weiss, Gregory A
2018-04-20
A reliable, scalable, cost-effective, and chromatography-free synthesis of 4-azido-l-phenylalanine beginning from l-phenylalanine is described. Investigations into the safety of the synthesis reveal that the Ullman-like Cu(I)-catalyzed azidation step does not represent a significant risk. The isolated 4-azido-l-phenylalanine product, however, exhibits previously undocumented explosive characteristics.
75 FR 43906 - Hazardous Materials: Requirements for the Storage of Explosives During Transportation
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-27
... program in emergency response procedures for all employees working at the safe haven. NFPA 498 section 4.5... safe havens used for unattended storage of Division 1.1, 1.2, and 1.3 explosives. DATES: Comments must... circumstances and operational environment. B. Federal Motor Carrier Safety Regulations (FMCSRs), 49 CFR Parts...
Tiger Team Assessment of the Los Alamos National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-11-01
The purpose of the safety and health assessment was to determine the effectiveness of representative safety and health programs at the Los Alamos National Laboratory (LANL). Within the safety and health programs at LANL, performance was assessed in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Explosives Safety, Natural Phenomena, and Medical Services.
1972-09-19
Dextrinated Lead Azide. ŕ.4.2 Reports. Applied Mathematic Panel of the National Defense Research Committee (AMP Report No. t01.1R, SRG-P No. 40). 1-2 0D 44811... dextrinated lead azide. (A normal ranae for these compounds shall have been obtained at the time of testing the explosive to be qualified.) 4.3...normal lead styphnate and dextrinated lead azide obtained using the same apparatus and procedure and run at the same time. 4.3.5 Special Requirements
Multi-scale fracture damage associated with underground chemical explosions
Swanson, Erika M.; Sussman, A. J.; Wilson, J. E.; ...
2018-02-22
Understanding rock damage induced by explosions is critical for a number of applications including the monitoring and verification of underground nuclear explosions, mine safety issues, and modeling fluid flow through fractured rock. We use core observations, televiewer logs, and thin section observations to investigate fracture damage associated with two successive underground chemical explosions (SPE2 and SPE3) in granitic rock at both the mesoscale and microscale. We compare the frequency and orientations of core-scale fractures, and the frequency of microfractures, between a pre-experiment core and three post-experiment cores. Natural fault zones and explosion-induced fractures in the vicinity of the explosive sourcemore » are readily apparent in recovered core and in thin sections. Damage from faults and explosions is not always apparent in fracture frequency plots from televiewer logs, although orientation data from these logs suggests explosion-induced fracturing may not align with the pre-existing fracture sets. Core-scale observations indicate the extent of explosion-induced damage is 10.0 m after SPE2 and 6.8 m after SPE3, despite both a similar size and location for both explosions. At the microscale, damage is observed to a range distance of 10.2 ± 0.9 m after SPE2, and 16.6 ± 0.9 and 11.2 ± 0.6 in two different cores collected after SPE3. Additional explosion-induced damage, interpreted to be the result of spalling, is readily apparent near the surface, but only in the microfracture data. This depth extent and intensity of damage in the near-surface region also increased after an additional explosion. This study highlights the importance of evaluating structural damage at multiple scales for a more complete characterization of the damage, and particularly shows the importance of microscale observations for identifying spallation-induced damage.« less
Multi-scale fracture damage associated with underground chemical explosions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swanson, Erika M.; Sussman, A. J.; Wilson, J. E.
Understanding rock damage induced by explosions is critical for a number of applications including the monitoring and verification of underground nuclear explosions, mine safety issues, and modeling fluid flow through fractured rock. We use core observations, televiewer logs, and thin section observations to investigate fracture damage associated with two successive underground chemical explosions (SPE2 and SPE3) in granitic rock at both the mesoscale and microscale. We compare the frequency and orientations of core-scale fractures, and the frequency of microfractures, between a pre-experiment core and three post-experiment cores. Natural fault zones and explosion-induced fractures in the vicinity of the explosive sourcemore » are readily apparent in recovered core and in thin sections. Damage from faults and explosions is not always apparent in fracture frequency plots from televiewer logs, although orientation data from these logs suggests explosion-induced fracturing may not align with the pre-existing fracture sets. Core-scale observations indicate the extent of explosion-induced damage is 10.0 m after SPE2 and 6.8 m after SPE3, despite both a similar size and location for both explosions. At the microscale, damage is observed to a range distance of 10.2 ± 0.9 m after SPE2, and 16.6 ± 0.9 and 11.2 ± 0.6 in two different cores collected after SPE3. Additional explosion-induced damage, interpreted to be the result of spalling, is readily apparent near the surface, but only in the microfracture data. This depth extent and intensity of damage in the near-surface region also increased after an additional explosion. This study highlights the importance of evaluating structural damage at multiple scales for a more complete characterization of the damage, and particularly shows the importance of microscale observations for identifying spallation-induced damage.« less
Developing an industry-oriented safety curriculum using the Delphi technique.
Chen, Der-Fa; Wu, Tsung-Chih; Chen, Chi-Hsiang; Chang, Shu-Hsuan; Yao, Kai-Chao; Liao, Chin-Wen
2016-09-01
In this study, we examined the development of industry-oriented safety degree curricula at a college level. Based on a review of literature on the practices and study of the development of safety curricula, we classified occupational safety and health curricula into the following three domains: safety engineering, health engineering, and safety and health management. We invited 44 safety professionals to complete a four-round survey that was designed using a modified Delphi technique. We used Chi-square statistics to test the panel experts' consensus on the significance of the items in the three domains and employed descriptive statistics to rank the participants' rating of each item. The results showed that the top three items for each of the three domains were Risk Assessment, Dangerous Machinery and Equipment, and Fire and Explosion Prevention for safety engineering; Ergonomics, Industrial Toxicology, and Health Risk Assessment for health engineering; and Industrial Safety and Health Regulations, Accident Investigation and Analysis, and Emergency Response for safety and health management. Only graduates from safety programmes who possess practical industry-oriented abilities can satisfy industry demands and provide value to the existence of college safety programmes.
DoD Ammunition and Explosives Safety Standards.
1997-08-01
excluding "cold- iron " facilities, supply, and mechanical support at naval station waterfront areas when not continuously manned, when serving only the... pyrophoric material. Ammunition in this group contains fillers which are spontaneously flammable when exposed to the atmosphere. Examples are WP...plasticized white phosphorus (PWP), or other ammunition containing pyrophoric material. 9. Group J. Ammunition containing both explosives and flammable
Modeling an explosion : the devil is in the details
Peter W. Hart; Alan W. Rudie
2011-01-01
The Chemical Safety and Hazards Investigation Board has recently encouraged chemical engineering faculty to address student knowledge about reactive hazards in their curricula. This paper presents a simple approach that may be used to illustrate the importance of these types of safety considerations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 29 Labor 8 2011-07-01 2011-07-01 false Misfires. 1926.911 Section 1926.911 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Blasting and the Use of Explosives § 1926.911 Misfires. (a...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 29 Labor 8 2013-07-01 2013-07-01 false Misfires. 1926.911 Section 1926.911 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Blasting and the Use of Explosives § 1926.911 Misfires. (a...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 29 Labor 8 2014-07-01 2014-07-01 false Misfires. 1926.911 Section 1926.911 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Blasting and the Use of Explosives § 1926.911 Misfires. (a...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 8 2010-07-01 2010-07-01 false Misfires. 1926.911 Section 1926.911 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Blasting and the Use of Explosives § 1926.911 Misfires. (a...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 29 Labor 8 2012-07-01 2012-07-01 false Misfires. 1926.911 Section 1926.911 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Blasting and the Use of Explosives § 1926.911 Misfires. (a...
49 CFR 173.62 - Specific packaging requirements for explosives.
Code of Federal Regulations, 2011 CFR
2011-10-01
... article or material carried in the vehicle; and (ii) The assembled gun packed on the vehicle may not... HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS... kg in small packages as specified by the Associate Administrator for Hazardous Materials Safety 110(a...
49 CFR 173.62 - Specific packaging requirements for explosives.
Code of Federal Regulations, 2012 CFR
2012-10-01
... article or material carried in the vehicle; and (ii) The assembled gun packed on the vehicle may not... HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS... packages as specified by the Associate Administrator for Hazardous Materials Safety 110(a) Bags Bags Drums...
Safety shield for vacuum/pressure chamber viewing port
NASA Technical Reports Server (NTRS)
Shimansky, R. A.; Spencer, R. S. (Inventor)
1981-01-01
Observers are protected from flying debris resulting from a failure of a vacuum or pressure chamber viewing port following an implosion or explosion by an optically clear shatter resistant safety shield which spaced apart from the viewing port on the outer surface of the chamber.
Safety considerations of lithium-thionyl chloride cells
NASA Astrophysics Data System (ADS)
Subbarao, Surampudi; Halpert, Gerald; Stein, Irving
1986-06-01
The use of spirally wound lithium-thionyl chloride (Li-SOCl2) cells is currently limited because of their hazardous behavior. Safety hazards have ranged from mild venting of toxic materials to violent explosions and fires. These incidents may be related to both user- and manufacturer-induced causes. Many explanations have been offered to explain the unsafe behavior of the cells under operating and abuse conditions. Explanations fall into two categories: (1) thermal mechanisms, and (2) chemical mechanisms. However, it is quite difficult to separate the two. Both may be responsible for cell venting or explosion. Some safety problems encountered with these cells also may be due to design deficiencies and ineffective quality control during cell fabrication. A well-coordinated basic and applied research program is needed to develop safe Li-SOCl2 cells. Recommendations include: (1) learnig more about Li-SOL2 cell chemistry; (2) modeling cell and battery behavior; (3) optimizing cell design for safety and performance, (4) implementing quality control procedures; and (5) educating users.
Safety considerations of lithium-thionyl chloride cells
NASA Technical Reports Server (NTRS)
Subbarao, Surampudi; Halpert, Gerald; Stein, Irving
1986-01-01
The use of spirally wound lithium-thionyl chloride (Li-SOCl2) cells is currently limited because of their hazardous behavior. Safety hazards have ranged from mild venting of toxic materials to violent explosions and fires. These incidents may be related to both user- and manufacturer-induced causes. Many explanations have been offered to explain the unsafe behavior of the cells under operating and abuse conditions. Explanations fall into two categories: (1) thermal mechanisms, and (2) chemical mechanisms. However, it is quite difficult to separate the two. Both may be responsible for cell venting or explosion. Some safety problems encountered with these cells also may be due to design deficiencies and ineffective quality control during cell fabrication. A well-coordinated basic and applied research program is needed to develop safe Li-SOCl2 cells. Recommendations include: (1) learnig more about Li-SOL2 cell chemistry; (2) modeling cell and battery behavior; (3) optimizing cell design for safety and performance, (4) implementing quality control procedures; and (5) educating users.
Pyrophoric sulfides influence over the minimum ignition temperature of dust cloud
NASA Astrophysics Data System (ADS)
Prodan, Maria; Lupu, Leonard Andrei; Ghicioi, Emilian; Nalboc, Irina; Szollosi-Mota, Andrei
2017-12-01
The dust cloud is the main form of existence of combustible dust in the production area and together with the existence of effective ignition sources are the main causes of dust explosions in production processes. The minimum ignition temperature has an important role in the process of selecting the explosion-protected electrical equipment when performing the explosion risk assessment of combustible dusts. The heated surfaces are able to ignite the dust clouds that can form in process industry. The oil products usually contain hydrogen sulfide and thus on the pipe walls iron sulfides can form, which can be very dangerous from health and safety point of view. In order to study the influence of the pyrophoric sulfide over the minimum ignition temperature of combustible dusts for this work were performed several experiments on a residue collected from the oil pipes contaminated with commercially iron sulfide.
Huang, Bing; Hao, Xiaofei; Zhang, Haobin; Yang, Zhijian; Ma, Zhigang; Li, Hongzhen; Nie, Fude; Huang, Hui
2014-07-01
To improve the safety of sensitive explosive HMX while maintaining explosion performance, a moderately powerful but insensitive explosive TATB was used to coat HMX microparticles via a facile ultrasonic method. By using Estane as surface modifier and nano-sized TATB as the shell layer, the HMX@TATB core-shell microparticles with a monodisperse size and compact shell structure were successfully constructed. Both scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) results confirmed the formation of perfect core-shell structured composites. Based on a systematic and comparative study of the effect of experimental conditions, a possible formation mechanism of core-shell structure was proposed in detail. Moreover, the perfect core-shell HMX@TATB microparticles exhibited a unique thermal behavior and significantly improved mechanical sensitivity compared with that of the physical mixture. Copyright © 2014 Elsevier B.V. All rights reserved.
"US-detonated nano bombs" facilitate targeting treatment of resistant breast cancer.
Shi, Jinjin; Liu, Wei; Fu, Yu; Yin, Na; Zhang, Hongling; Chang, Junbiao; Zhang, Zhenzhong
2018-03-28
Reversal of drug resistance and targeted therapy are the keys but remain challenging in resistant breast cancer treatment. Herein, low frequency ultrasound detonated "nano bombs" were rationally designed and used for treatment of resistant breast cancer. For the 'nano bombs', the ammunition (Doxorubicin, DOX) was loaded into the ammunition depot (hollow mesoporous TiO 2 , MTNs), and the safety device (dsDNA) was wrapped on the surface of MTNs to avoid the unexpected DOX release. We found the "US-detonated explosive" abilities of "nano bomb" MTNs (NBMTNs), including explosive generation of ROS, explosive release of DOX, US-triggered lysosome escape and mitochondrial targeting in the in vitro and in vivo studies. More importantly, the drug resistance of MCF-7/ADR cells could be reversed via the inhibition of mitochondrial energy supply approach caused by the "explosion" of NBMTNs. Furthermore, NBMTNs combined the superior chemotherapy efficacy of DOX and potent SDT efficacy in one single platform and significantly enhanced the anticancer efficacy. Our results demonstrate an approach for reversing resistance and specific targeting of tumors using 'US-detonated nano bombs'. Copyright © 2018 Elsevier B.V. All rights reserved.
Explosion characteristics of synthesised biogas at various temperatures.
Dupont, L; Accorsi, A
2006-08-25
Biogas is considered as a valuable source of renewable energy. Indeed, it can be turned into useful energy (heat, electricity, fuel) and can contribute to reduce greenhouse gas emissions. Knowledge of its safety characteristics is a very important practical issue. Experimental investigation of synthesised biogas explosion characteristics was conducted in a 20-L sphere at various temperatures (30-70 degrees C) and at atmospheric pressure. The studied biogas was made of 50% methane (CH(4)) and 50% carbon dioxide (CO(2)). It was also saturated with humidity: this composition is frequently met in digesters during waste methanisation. There are two inert gases in biogas: water vapour and carbon dioxide. Its vapour water content rises along with temperature. The presence of these inert gases modifies considerably biogas characteristics compared to the ones of pure methane: explosion limits are lowered and beyond 70 degrees C, water vapour content is sufficient to inert the mixture. Furthermore, explosion violence (estimated with the maximum rate of pressure rise values, (dp/dt)(max)) is three times lower for biogas than for pure methane at ambient temperature.
Explosives remain preferred methods for platform abandonment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pulsipher, A.; Daniel, W. IV; Kiesler, J.E.
1996-05-06
Economics and safety concerns indicate that methods involving explosives remain the most practical and cost-effective means for abandoning oil and gas structures in the Gulf of Mexico. A decade has passed since 51 dead sea turtles, many endangered Kemp`s Ridleys, washed ashore on the Texas coast shortly after explosives helped remove several offshore platforms. Although no relationship between the explosions and the dead turtles was ever established, in response to widespread public concern, the US Minerals Management Service (MMS) and National Marine Fisheries Service (NMFS) implemented regulations limiting the size and timing of explosive charges. Also, more importantly, they requiredmore » that operators pay for observers to survey waters surrounding platforms scheduled for removal for 48 hr before any detonations. If observers spot sea turtles or marine mammals within the danger zone, the platform abandonment is delayed until the turtles leave or are removed. However, concern about the effects of explosives on marine life remains.« less
Colonic gas explosion during therapeutic colonoscopy with electrocautery
Ladas, Spiros D; Karamanolis, George; Ben-Soussan, Emmanuel
2007-01-01
Therapeutic colonoscopy with electrocautery is widely used around the world. Adequate colonic cleansing is considered a crucial factor for the safety of this procedure. Colonic gas explosion, although rare, is one of the most frightening iatrogenic complications during colonoscopy with electrocautery. This complication is the result of an accumulation of colonic gases to explosive concentrations, but may be prevented by meticulous bowel preparation. The purpose of this review is to discuss the indications and the types of bowel preparations for therapeutic colonoscopy, and to contribute recommendations for the adequate bowel preparation for colonoscopy with electrocautery. PMID:17879396
NASA Technical Reports Server (NTRS)
Baker, W. E.; Kulesz, J. J.; Ricker, R. E.; Westine, P. S.; Parr, V. B.; Vargas, L. M.; Moseley, P. K.
1978-01-01
A workbook is presented to supplement an earlier NASA publication, which was intended to provide the designer and safety engineer with rapid methods for predicting damage and hazards from explosions of liquid propellant and compressed gas vessels used in ground storage, transport and handling. Information is presented in the form of graphs and tables to allow easy calculation, using only desk or handheld calculators. Topics covered in various chapters are: (1) estimates of explosive yield; (2) characteristics of pressure waves; (3) effects of pressure waves; (4) characteristics of fragments; and (5) effects of fragments and related topics.
2009-01-01
pro- gram requirements, and administering local and federal funding. Emergency services—organizations that provide for public safety by the...chemicals Nerve agent Chlorine tank explosion Major earthquake Major hurricane Radiological dispersal device Improvised explosive device Food ...state Locally Developed Software 1 city 1 county 1 city 1 county 3 states Lotus Notes Suite 1 NGO MABAS.ORG 1 county
2009-09-01
and Explosives Provided to the Security Forces of Afghanistan SPO-2009-005 Assessment of Electrical Safety in Afghanistan67. SPO-2009-004...capabilities and those being developed to protect forces deployed in Iraq and Afghanistan, as well as the electrical safety of deployed personnel. Other...accidental electrocutions, electrical safety and fire services. Electrical Safety In response to concerns regarding electrocution deaths of several
30 CFR 57.6801 - Vehicle repair.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Vehicle repair. 57.6801 Section 57.6801 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... and Underground § 57.6801 Vehicle repair. Vehicles containing explosive material and oxidizers shall...
30 CFR 57.6801 - Vehicle repair.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Vehicle repair. 57.6801 Section 57.6801 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... and Underground § 57.6801 Vehicle repair. Vehicles containing explosive material and oxidizers shall...
30 CFR 57.6801 - Vehicle repair.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Vehicle repair. 57.6801 Section 57.6801 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... and Underground § 57.6801 Vehicle repair. Vehicles containing explosive material and oxidizers shall...
30 CFR 57.6801 - Vehicle repair.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Vehicle repair. 57.6801 Section 57.6801 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... and Underground § 57.6801 Vehicle repair. Vehicles containing explosive material and oxidizers shall...
30 CFR 56.6801 - Vehicle repair.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Vehicle repair. 56.6801 Section 56.6801 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Vehicle repair. Vehicles containing explosive material and oxidizers shall not be taken into a repair...
30 CFR 57.6801 - Vehicle repair.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Vehicle repair. 57.6801 Section 57.6801 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... and Underground § 57.6801 Vehicle repair. Vehicles containing explosive material and oxidizers shall...
30 CFR 56.6801 - Vehicle repair.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Vehicle repair. 56.6801 Section 56.6801 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Vehicle repair. Vehicles containing explosive material and oxidizers shall not be taken into a repair...
30 CFR 56.6801 - Vehicle repair.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Vehicle repair. 56.6801 Section 56.6801 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Vehicle repair. Vehicles containing explosive material and oxidizers shall not be taken into a repair...
30 CFR 56.6801 - Vehicle repair.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Vehicle repair. 56.6801 Section 56.6801 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Vehicle repair. Vehicles containing explosive material and oxidizers shall not be taken into a repair...
30 CFR 56.6801 - Vehicle repair.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Vehicle repair. 56.6801 Section 56.6801 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Vehicle repair. Vehicles containing explosive material and oxidizers shall not be taken into a repair...
30 CFR 56.6403 - Branch circuits.
Code of Federal Regulations, 2010 CFR
2010-07-01
... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Electric Blasting § 56.6403 Branch circuits. (a) If electric blasting includes the use of branch circuits, each... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Branch circuits. 56.6403 Section 56.6403...
30 CFR 57.6403 - Branch circuits.
Code of Federal Regulations, 2010 CFR
2010-07-01
... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Electric Blasting-Surface and Underground § 57.6403 Branch circuits. (a) If electric blasting includes the use of... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Branch circuits. 57.6403 Section 57.6403...
30 CFR 57.6407 - Circuit testing.
Code of Federal Regulations, 2010 CFR
2010-07-01
... connection of electric detonator series; and (4) Total blasting circuit resistance prior to connection to the... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Circuit testing. 57.6407 Section 57.6407... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Electric...
76 FR 1131 - Sunshine Act Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-07
... CHEMICAL SAFETY AND HAZARD INVESTIGATION BOARD Sunshine Act Meeting In connection with its investigation into an explosion and fire that occurred at the Bayer CropScience facility in Institute, West Virginia, on August 28, 2008, the U.S. Chemical Safety Board (CSB) announces that it will hold a public...
Sampling emissions from open area sources, particularly sources of open burning, is difficult due to fast dilution of emissions and safety concerns for personnel. Representative emission samples can be difficult to obtain with flaming and explosive sources since personnel safety ...
The challenge of improvised explosives
Maienschein, Jon L.
2012-06-14
Energetic materials have been developed for decades, and indeed centuries, with a common set of goals in mind. Performance (as a detonating explosive, a propellant, or a pyrotechnic) has always been key, equally important have been the attributes of safety, stability, and reproducibility. Research and development with those goals has led to the set of energetic materials commonly used today. In the past few decades, the adoption and use of improvised explosives in attacks by terrorists or third-world parties has led to many questions about these materials, e.g., how they may be made, what threat they pose to the intendedmore » target, how to handle them safely, and how to detect them. The unfortunate advent of improvised explosives has opened the door for research into these materials, and there are active programs in many countries. I will discuss issues and opportunities facing research into improvised explosives.« less
Stand-off laser Raman spectroscopy and its advancement in explosives detection
NASA Astrophysics Data System (ADS)
Liu, Sheng-run; Xue, Bin; Li, Yi-zhe; Wang, Hui
2017-10-01
The explosives detection has been a hot and difficult issue in the field of security it is particularly important to detect explosives quickly and reliably. There are many methods to detect explosives currently, stand-off Raman spectroscopy is one of the most promising and practical technologies, this technique can be used for non-contact and nondestructive detection, ensure the safety of attendants, at the same time the precision and speed of detection are also very high and be characterized by rapid response. This paper mainly gives an account of the fundamental principle of Raman spectroscopy, as well as recount major challenges of Standoff Laser Raman Spectroscopy applied in explosives detection and corresponding solutions. From the perspective of the system, this paper sums up related theories and techniques of the excitation laser and telescopic system etc.. Ultimately, a brief analysis and summary of the development trend of this technology is given.
Workplace fire-not a misfortune, but an avoidable occupational hazard in Korea.
Park, Ji-Eun; Kim, Myoung-Hee
2015-02-01
In this article, we argue that workplace fire should be understood within an occupational safety and health context. We selected two cases of fire and explosion with the greatest numbers of fatalities from the annual lists of the "Worst Manslaughter Companies of the Year" in Korea. Through review of information from major media, government, courts, and workers' advocacy organizations, we found that these incidents resulted from violations of basic safety rules by the companies, and that the penalties imposed on them were light. In addition, precarious workers were more vulnerable to such risk, and self-regulation did not work even in large corporations. Like other types of occupational hazards, explosions and fires can be prevented, but prevention requires that occupational safety and health regulations be thoroughly enforced and that heavy penalties be imposed in order to eliminate any incentives for regulatory violations. © 2015 SAGE Publications.
Shahraki, Hassan; Tabrizchi, Mahmoud; Farrokhpor, Hossein
2018-05-26
The ionization source is an essential component of most explosive detectors based on negative ion mobility spectrometry. Conventional ion sources suffer from such inherent limitations as special safety regulations on radioactive sources or generating interfering ions (for non-radioactive sources) such as corona discharge operating in the air. In this study, a new negative ion source is introduced for ion mobility spectrometry that is based on thermal ionization and operates in the air, applicable to explosives detection. Our system consists of a heating filament powered by an isolated power supply connected to negative high voltage. The ionization is assisted by doping chlorinated compounds in the gas phase using chlorinated hydrocarbons in contact with the heating element to yield Cl - reactant ions. Several chlorinated hydrocarbons are evaluated as the reagent chemicals for providing Cl- reactant ions, of which CCl 4 is identified as the best ionizing reagent. The ion source is evaluated by recording the ion mobility spectra of common explosives, including TNT, RDX, and PETN in the air. A detection limit of 150 pg is obtained for TNT. Compared to other ionization sources, the new source is found to be low-cost, simple, and long-lived, making it suited to portable explosives detection devices. Copyright © 2018 Elsevier B.V. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-26
...: Notification to Fire Safety Authority of Storage of Explosive Materials. (3) Agency form number, if any, and... provided both orally and in writing to the authority having jurisdiction for fire safety in the locality in...] Agency Information Collection Activities: Proposed Collection; Comments Requested: Notification to Fire...
30 CFR 56.6407 - Circuit testing.
Code of Federal Regulations, 2010 CFR
2010-07-01
... blasting circuits shall be used to test each of the following: (a) Continuity of each electric detonator in... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Circuit testing. 56.6407 Section 56.6407... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Electric...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-03
... DEPARTMENT OF LABOR Mine Safety and Health Administration Proposed Information Collection..., Explosives, and Shot-Firing Units; Posting Notices of Misfires AGENCY: Mine Safety and Health Administration..., and the impact of collection requirements on respondents can be properly assessed. Currently, the Mine...
DOD Ammunition and Explosives Safety Standards
2008-02-29
8. The equivalent explosive weight of the hybrid rocket system N2O4 liquid oxidizer combined with PBAN solid fuel was evaluated as 15 percent for an...separate isolated system and fitting types to preclude intermixing, and the energetic liquids are of required purity. Otherwise, equivalent...Water outlets in a toxic chemical agent operational facility shall be fitted with backflow devices. C11.8.2.7. Dedicated liquid waste systems
Explosively driven air blast in a conical shock tube
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, Joel B., E-mail: joel.b.stewart2.civ@mail.mil; Pecora, Collin, E-mail: collin.r.pecora.civ@mail.mil
2015-03-15
Explosively driven shock tubes present challenges in terms of safety concerns and expensive upkeep of test facilities but provide more realistic approximations to the air blast resulting from free-field detonations than those provided by gas-driven shock tubes. Likewise, the geometry of conical shock tubes can naturally approximate a sector cut from a spherically symmetric blast, leading to a better agreement with the blast profiles of free-field detonations when compared to those provided by shock tubes employing constant cross sections. The work presented in this article documents the design, fabrication, and testing of an explosively driven conical shock tube whose goalmore » was to closely replicate the blast profile seen from a larger, free-field detonation. By constraining the blast through a finite area, large blasts (which can add significant damage and safety constraints) can be simulated using smaller explosive charges. The experimental data presented herein show that a close approximation to the free-field air blast profile due to a 1.5 lb charge of C4 at 76 in. can be achieved by using a 0.032 lb charge in a 76-in.-long conical shock tube (which translates to an amplification factor of nearly 50). Modeling and simulation tools were used extensively in designing this shock tube to minimize expensive fabrication costs.« less
High-temperature explosive development for geothermal well stimulation. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, E.W.; Mars, J.E.; Wang, C.
1978-03-31
A two-component, temperature-resistant liquid explosive called HITEX has been developed which is capable of withstanding 561/sup 0/K (550/sup 0/F) for 24 hours in a geothermal environment. The explosive is intended for the stimulation of nonproducing or marginally producing geothermal (hot dry rock, vapor-dominated or hydrothermal) reservoirs by fracturing the strata in the vicinity of a borehole. The explosive is inherently safe because it is mixed below ground downhole from two nondetonable liquid components. Development and safety tests included differential scanning calorimetry, thermal stability, minerals compatibility, drop-weight sensitivity, adiabatic compression, electrostatic discharge sensitivity, friction sensitivity, detonation arrest capability, cook-off tests, detonabilitymore » at ambient and elevated pressure, detonation velocity and thin film propagation in a wedge.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vandersall, K S; Tarver, C M; Garcia, F
Shock initiation experiments on the HMX based explosives LX-10 (95% HMX, 5% Viton by weight) and LX-07 (90% HMX, 10% Viton by weight) were performed to obtain in-situ pressure gauge data, run-distance-to-detonation thresholds, and Ignition and Growth modeling parameters. A 101 mm diameter propellant driven gas gun was utilized to initiate the explosive samples with manganin piezoresistive pressure gauge packages placed between sample slices. The run-distance-to-detonation points on the Pop-plot for these experiments and prior experiments on another HMX based explosive LX LX-04 (85% HMX, 15% Viton by weight) will be shown, discussed, and compared as a function of themore » binder content. This parameter set will provide additional information to ensure accurate code predictions for safety scenarios involving HMX explosives with different percent binder content additions.« less
Effects Of Rapid Crushing On Composites
NASA Technical Reports Server (NTRS)
Farley, Gary L.
1990-01-01
Experimental study described in NASA technical memorandum performed to determine whether crash energy-absorption capabilities of graphite/epoxy and Kevlar/epoxy composite materials are functions of speed of crushing. Additional objective to develop understanding of mechanisms of crushing. Technology applied to enhancement of safety and crashworthiness of automobiles, design of energy-absorbing devices in machinery, and problems involving explosions and impacts.
Determining the explosion risk level and the explosion hazard area for a group of natural gas wells
NASA Astrophysics Data System (ADS)
Gligor, A.; Petrescu, V.; Deac, C.; Bibu, M.
2016-11-01
Starting from the fact that the natural gas engineering profession is generally associated with a high occupational risk, the current paper aims to help increase the safety of natural gas wells and reduce the risk of work-related accidents, as well as the occurrence of professional illnesses, by applying an assessment method that has proven its efficiency in other industrial areas in combination with a computer-aided design software. More specifically, the paper focuses on two main research directions: assessing the explosion risk for employees working at natural gas wells and indicating areas with a higher explosion hazard by using a modern software that allows their presentation in 3D. The appropriate zoning of industrial areas allows to group the various functional areas function of the probability of the occurrence of a dangerous element, such as an explosive atmosphere and subsequently it allows also to correctly select the electrical and mechanical equipment that will be used in that area, since electrical apparatuses that are otherwise found in normal work environments cannot generally be used in areas with explosion hazard, because of the risk that an electric spark, an electrostatic discharge etc. ignites the explosive atmosphere.
Compressed Natural Gas Vehicle Maintenance Facility Modification Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, K.; Melendez, M.; Gonzales, J.
To ensure the safety of personnel and facilities, vehicle maintenance facilities are required by law and by guidelines of the National Fire Protection Association (NFPA) and the International Fire Code (IFC) to exhibit certain design features. They are also required to be fitted with certain fire protection equipment and devices because of the potential for fire or explosion in the event of fuel leakage or spills. All fuels have an explosion or fire potential if specific conditions are present. This handbook covers the primary elements that must be considered when developing a CNG vehicle maintenance facility design that will protectmore » against the ignition of natural gas releases. It also discusses specific protocols and training needed to ensure safety.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-10
... filming of a movie involving explosions and other dangerous stunts on water. The temporary safety zone is... filming of the movie, a delay in enacting this safety zone would be contrary to public interest. Under 5 U... 701, 3306, 3703; 50 U.S.C. 191, 195; 33 CFR 1.05-1, 6.04-1, 6.04-6, 160.5; Public Law 107-295, 116...
Bibliography on aircraft fire hazards and safety. Volume 2: Safety. Part 1: Key numbers 1 to 524
NASA Technical Reports Server (NTRS)
Pelouch, J. J., Jr. (Compiler); Hacker, P. T. (Compiler)
1974-01-01
Bibliographic citations are presented to describe and define aircraft safety methods, equipment, and criteria. Some of the subjects discussed are: (1) fire and explosion suppression using whiffle balls, (2) ultraviolet flame detecting sensors, (3) evaluation of flame arrestor materials for aircraft fuel systems, (4) crash fire prevention system for supersonic commercial aircraft, and (5) fire suppression for aerospace vehicles.
Static-stress analysis of dual-axis safety vessel
NASA Astrophysics Data System (ADS)
Bultman, D. H.
1992-11-01
An 8 ft diameter safety vessel, made of HSLA-100 steel, is evaluated to determine its ability to contain the quasi-static residual pressure from a high explosive (HE) blast. The safety vessel is designed for use with the Dual-Axis Radiographic Hydrotest (DARHT) facility being developed at Los Alamos National Laboratory. A smaller confinement vessel fits inside the safety vessel and contains the actual explosion, and the safety vessel functions as a second layer of containment in the unlikely case of a confinement vessel leak. The safety vessel is analyzed as a pressure vessel based on the ASME Boiler and Pressure Vessel Code, Section 8, Division 1, and the Welding Research Council Bulletin, WRC107. Combined stresses that result from internal pressure and external loads on nozzles are calculated and compared to the allowable stresses for HSLA-100 steel. Results confirm that the shell and nozzle components are adequately designed for a static pressure of 830 psi, plus the maximum expected external loads. Shell stresses at the 'shell to nozzle' interface, produced from external loads on the nozzles, were less than 700 psi. The maximum combined stress resulting from the internal pressure plus external loads was 17,384 psi, which is significantly less than the allowable stress of 42,375 psi for HSLA-100 steel.
Training and qualification of health and safety technicians at a national laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egbert, W.F.; Trinoskey, P.A.
1994-10-01
Over the last 30 years, Lawrence Livermore National Laboratory (LLNL) has successfully implemented the concept of a multi-disciplined technician. LLNL Health and Safety Technicians have responsibilities in industrial hygiene, industrial safety, health physics, as well as fire, explosive, and criticality safety. One of the major benefits to this approach is the cost-effective use of workers who display an ownership of health and safety issues which is sometimes lacking when responsibilities are divided. Although LLNL has always promoted the concept of a multi-discipline technician, this concept is gaining interest within the Department of Energy (DOE) community. In November 1992, individuals frommore » Oak Ridge Institute of Science and Education (ORISE) and RUST Geotech, joined by LLNL established a committee to address the issues of Health and Safety Technicians. In 1993, the DOE Office of Environmental, Safety and Health, in response to the Defense Nuclear Facility Safety Board Recommendation 91-6, stated DOE projects, particularly environmental restoration, typically present hazards other than radiation such as chemicals, explosives, complex construction activities, etc., which require additional expertise by Radiological Control Technicians. They followed with a commitment that a training guide would be issued. The trend in the last two decades has been toward greater specialization in the areas of health and safety. In contrast, the LLNL has moved toward a generalist approach integrating the once separate functions of the industrial hygiene and health physics technician into one function.« less
Evseeva, T I; Maĭstrenko, T A; Geras'kin, S A; Belykh, E S; Umarov, M A; Sergeeva, I Iu; Sergeev, V Iu
2008-01-01
Results on estimation of modern radioecological situation at nuclear explosion "Chagan" based on large-scale cartographic studies (1:25000) of a test area (4 km2) are presented. Maximum gamma-irradiation doses were observed at bulk of ground surrounded a crater and at radioactive fall-outs extended to the North-East and to the SouthWest from the crater. Based on data on artificial radionuclide specific activity most part of soil samples were attributed to radioactive wastes according to IAEA (1996) and OSPORB (1999). Natural decrease of soil radioactivity up to safety level due to 60Co, 137Cs, 90Sr, 152Eu, 154Eu radioactive decay and 241Am accumulation-decay will not take place within the next 60 years at the studied area.
NASA Astrophysics Data System (ADS)
Cioca, Ionel-Lucian; Moraru, Roland Iosif
2012-10-01
In order to meet statutory requirements concerning the workers health and safety, it is necessary for mine managers within Valea Jiului coal basin in Romania to address the potential for underground fires and explosions and their impact on the workforce and the mine ventilation systems. Highlighting the need for a unified and systematic approach of the specific risks, the authors are developing a general framework for fire/explosion risk assessment in gassy mines, based on the quantification of the likelihood of occurrence and gravity of the consequences of such undesired events and employing Root-Cause analysis method. It is emphasized that even a small fire should be regarded as being a major hazard from the point of view of explosion initiation, should a combustible atmosphere arise. The developed methodology, for the assessment of underground fire and explosion risks, is based on the known underground explosion hazards, fire engineering principles and fire test criteria for potentially combustible materials employed in mines.
Code of Federal Regulations, 2013 CFR
2013-07-01
... identification of lands containing dangerous materials. 643.22 Section 643.22 National Defense Department of...—Public safety: Requirement for early identification of lands containing dangerous materials. (a) DA will... lands by explosives, military chemical or other dangerous materials. (c) Procedures with respect to...
Code of Federal Regulations, 2014 CFR
2014-07-01
... identification of lands containing dangerous materials. 643.22 Section 643.22 National Defense Department of...—Public safety: Requirement for early identification of lands containing dangerous materials. (a) DA will... lands by explosives, military chemical or other dangerous materials. (c) Procedures with respect to...
Code of Federal Regulations, 2012 CFR
2012-07-01
... identification of lands containing dangerous materials. 643.22 Section 643.22 National Defense Department of...—Public safety: Requirement for early identification of lands containing dangerous materials. (a) DA will... lands by explosives, military chemical or other dangerous materials. (c) Procedures with respect to...
USDA-ARS?s Scientific Manuscript database
Over the last three decades, the rapid explosion of information and resources on human food-borne diseases and food safety has provided the ability to rapidly determine and interpret the mechanisms of survival and pathogenesis of food-borne pathogens. However, several factors have hindered effective...
The Safety Analysis of Shipborne Ammunition in Fire Environment
NASA Astrophysics Data System (ADS)
Ren, Junpeng; Wang, Xudong; Yue, Pengfei
2017-12-01
The safety of Ammunition has always been the focus of national military science and technology issues. And fire is one of the major safety threats to the ship’s ammunition storage environment, In this paper, Mk-82 shipborne aviation bomb has been taken as the study object, simulated the whole process of fire by using the FDS (Fire Detection System) software. According to the simulation results of FDS, ANSYS software was used to simulate the temperature field of Mk-82 carrier-based aviation bomb under fire environment, and the safety of aviation bomb in fire environment was analyzed. The result shows that the aviation bombs under the fire environment can occur the combustion or explosion after 70s constant cook-off, and it was a huge threat to the ship security.
Keeping Floodlight Temperature Low
NASA Technical Reports Server (NTRS)
Kiss, John
1987-01-01
Safety in explosive atmospheres enhanced. Retainer for floodlight designed to undergo relatively small temperature rise. Reaches no more than 350 degrees F (177 degrees C) with lamp operating at about 4,700 degrees F (2,600 degrees C). Satisfies 352 degrees F (188 degrees C) requirement for operation in some explosive atmospheres. Made of thermally conductive metal with coating of material having low thermal absorptivity/emissivity ratio so it conducts heat away from lamp and radiates to surroundings efficiently.
The use of explosives by the US Antarctic Program. Environmental report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ensminger, J.T.; Blasing, T.J.
1995-06-01
This report was prepared to assist principal investigators and others in complying with NEPA and the protocol on environmental protection to the Antarctic Treaty. Research activities and associated support operations in Antarctica sometimes require use of explosives. This report evaluates potential environmental impacts associated with such activities and possible methods for mitigating those impacts. The greatest single use of explosives, and the only type of blasting that will occur on the Polar Plateau (an exception is the rare use of explosives to cave in dangerous ice for safety reasons), is for seismic surveys. The charges for these are small-scale, aremore » placed in or on the snow or ice, are distributed linearly over long distances, and present no potential impacts to soil or geological substrata. Impacts from those would be less than minor or transitory. Wherever possible, blasting holes in sea ice will be replaced by drilling by auger or melting. Other uses of explosives, such as in geologic research and construction, are discussed.« less
NASA Astrophysics Data System (ADS)
Guan, Yifeng; Zhao, Jie; Shi, Tengfei; Zhu, Peipei
2016-09-01
In recent years, China's increased interest in environmental protection has led to a promotion of energy-efficient dual fuel (diesel/natural gas) ships in Chinese inland rivers. A natural gas as ship fuel may pose dangers of fire and explosion if a gas leak occurs. If explosions or fires occur in the engine rooms of a ship, heavy damage and losses will be incurred. In this paper, a fault tree model is presented that considers both fires and explosions in a dual fuel ship; in this model, dual fuel engine rooms are the top events. All the basic events along with the minimum cut sets are obtained through the analysis. The primary factors that affect accidents involving fires and explosions are determined by calculating the degree of structure importance of the basic events. According to these results, corresponding measures are proposed to ensure and improve the safety and reliability of Chinese inland dual fuel ships.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urtiew, P A; Forbes, J W; Tarver, C M
LX-04 is a widely used HMX-based plastic bonded explosive, which contains 85 weight % HMX and 15 weight % Viton binder. The sensitivity of LX-04 to a single stimulus such as heat, impact, and shock has been previously studied. However, hazard scenarios can involve multiple stimuli, such as heating to temperatures close to thermal explosion conditions followed by fragment impact, producing a shock in the hot explosive. The sensitivity of HMX at elevated temperatures is further complicated by the beta to delta solid-state phase transition, which occurs at approximately 165 C. This paper presents the results of shock initiation experimentsmore » conducted with LX-04 preheated to 190 C, as well as density measurements and small scale safety test results of the {delta} phase HMX at room temperature. This work shows that LX-04 at 190 C is more shock sensitive than LX-04 at 150 C or 170 C due to the volume increase during the {beta} to {delta} solid phase transition, which creates more hot spots, and the faster growth of reaction during shock compression.« less
Development of a portable non-contact optical diagnostic system for the detection of δ-HMX
NASA Astrophysics Data System (ADS)
Dale, Andrew J.; Wright, Mark W.; Hughes, Christopher T.; Bowden, Mike D.
2007-09-01
If a HMX-based explosive is subjected to an insult then there is a potential for the insulted β-HMX to undergo a phase change to the more sensitive δ form. AWE has an ongoing programme to develop a science-based model of the response of HMX-based explosives to potential insults. As part of this programme there is a need to identify whether δ-HMX has been formed, as this would subsequently affect the intrinsic safety properties of the formulation. δ-HMX, unlike the more stable β form, exhibits unusual optical properties for an explosive, as it acts as a frequency-doubling material. When illuminated by a high-energy laser pulse areas of the explosive charge that contain δ-HMX emit frequency doubled light. This non-linear optical phenomenon allows for a non-invasive diagnostic to be developed to study creation of the more sensitive δ phase within HMX based formulations. AWE has developed a portable diagnostic system based on this concept to investigate the behaviour of HMX-based explosives after low-speed impacts. The results of the commissioning trials are presented; using both an inert simulant, KDP, to align and prove the system and HMX samples from low-speed impact experiments. The results of these experiments are compared to initial calculations using the Hydrocode EDEN.
Mines Systems Safety Improvement Using an Integrated Event Tree and Fault Tree Analysis
NASA Astrophysics Data System (ADS)
Kumar, Ranjan; Ghosh, Achyuta Krishna
2017-04-01
Mines systems such as ventilation system, strata support system, flame proof safety equipment, are exposed to dynamic operational conditions such as stress, humidity, dust, temperature, etc., and safety improvement of such systems can be done preferably during planning and design stage. However, the existing safety analysis methods do not handle the accident initiation and progression of mine systems explicitly. To bridge this gap, this paper presents an integrated Event Tree (ET) and Fault Tree (FT) approach for safety analysis and improvement of mine systems design. This approach includes ET and FT modeling coupled with redundancy allocation technique. In this method, a concept of top hazard probability is introduced for identifying system failure probability and redundancy is allocated to the system either at component or system level. A case study on mine methane explosion safety with two initiating events is performed. The results demonstrate that the presented method can reveal the accident scenarios and improve the safety of complex mine systems simultaneously.
Numerical Simulation of Pre-heated Confined PBX Charge Under Low Velocity
NASA Astrophysics Data System (ADS)
Hu, Cai; Wu, Yanqing; Huang, Fenglei; Liu, Yan; Explosion; damage Team
2017-06-01
Impact sensitivity and thermal safety are very important for explosive safety usage.To investigate the effect of thermal softening on impact sensitivity of HMX-based PBX, a finite element model aiming at pre-heated confined PBX charge sbujected to bullets impact has been established. The predicted ignition starting area of the explosive charge was evaluated based on volume strain and equivalent strain contours. It showed that the ignition starting area moves towards the center of the explosives from the surface with increase of heating temperature. The threshold velocity does not increase monotonically with the pre-heating temperature increases. Instead, the threshold velocity rises till 360 m/s when the cook-off temperature is lower than 75°, then decreases the increased temperature. The results imply that our PBX has the lowest impact sensitivity at about 75°. These numerical results agree very well with the corresponding experiment results conducted by Dai et al. The influence of thermal softening on the impact sensitivity has been analyzed. As the strength decreases, more impact energy will be absorbed. At the same time, shear resistance ability will be weaken and volume compression work may play a more important role to ignition. China National Nature Science Foundation (11572045), ``Science Challenging Program'' (JCKY2016212A501), opening fund from Safety ammunition research and Development Center (RMC2015B03).
46 CFR 194.15-3 - Responsibility.
Code of Federal Regulations, 2014 CFR
2014-10-01
... CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Chemistry Laboratory and Scientific Laboratory § 194... scientific party embarked may supervise the safety and operation of the chemical laboratory. (b) The...
46 CFR 194.15-3 - Responsibility.
Code of Federal Regulations, 2012 CFR
2012-10-01
... CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Chemistry Laboratory and Scientific Laboratory § 194... scientific party embarked may supervise the safety and operation of the chemical laboratory. (b) The...
1992-08-01
reaction process ; - sensitivity versus damage (vivacity, specific surface, porosity, density variation). So, most of the experimental tests need to...the later mapping process would form a better basis for compliance with published requirementsi I than the current approach. Seytion Summary It takes... Processing of Explosives, Propellants and Ingredients, AIIPA, San Diego, (’alif. April 1991. 49. W.11I. Andersen and N.A. Louie, " Projectile Impact Ignition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wemhoff, A P; Burnham, A K
2006-04-05
Cross-comparison of the results of two computer codes for the same problem provides a mutual validation of their computational methods. This cross-validation exercise was performed for LLNL's ALE3D code and AKTS's Thermal Safety code, using the thermal ignition of HMX in two standard LLNL cookoff experiments: the One-Dimensional Time to Explosion (ODTX) test and the Scaled Thermal Explosion (STEX) test. The chemical kinetics model used in both codes was the extended Prout-Tompkins model, a relatively new addition to ALE3D. This model was applied using ALE3D's new pseudospecies feature. In addition, an advanced isoconversional kinetic approach was used in the AKTSmore » code. The mathematical constants in the Prout-Tompkins code were calibrated using DSC data from hermetically sealed vessels and the LLNL optimization code Kinetics05. The isoconversional kinetic parameters were optimized using the AKTS Thermokinetics code. We found that the Prout-Tompkins model calculations agree fairly well between the two codes, and the isoconversional kinetic model gives very similar results as the Prout-Tompkins model. We also found that an autocatalytic approach in the beta-delta phase transition model does affect the times to explosion for some conditions, especially STEX-like simulations at ramp rates above 100 C/hr, and further exploration of that effect is warranted.« less
76 FR 59742 - Petitions for Modification of Application of Existing Mandatory Safety Standards
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-27
... system. The petitioner states that: (1) The heater recaptures kiln gases to preheat the crushed limestone.... Cardox safety heaters are low grade explosives that use CO \\2\\, a gas that is commonly found in fire... diluting and rendering harmless methane gas that is released in the mine atmosphere during the mining cycle...
Safety Testing of Ammonium Nitrate Based Mixtures
NASA Astrophysics Data System (ADS)
Phillips, Jason; Lappo, Karmen; Phelan, James; Peterson, Nathan; Gilbert, Don
2013-06-01
Ammonium nitrate (AN)/ammonium nitrate based explosives have a lengthy documented history of use by adversaries in acts of terror. While historical research has been conducted on AN-based explosive mixtures, it has primarily focused on detonation performance while varying the oxygen balance between the oxidizer and fuel components. Similarly, historical safety data on these materials is often lacking in pertinent details such as specific fuel type, particle size parameters, oxidizer form, etc. A variety of AN-based fuel-oxidizer mixtures were tested for small-scale sensitivity in preparation for large-scale testing. Current efforts focus on maintaining a zero oxygen-balance (a stoichiometric ratio for active chemical participants) while varying factors such as charge geometry, oxidizer form, particle size, and inert diluent ratios. Small-scale safety testing was conducted on various mixtures and fuels. It was found that ESD sensitivity is significantly affected by particle size, while this is less so for impact and friction. Thermal testing is in progress to evaluate hazards that may be experienced during large-scale testing.
Automated High-Speed Video Detection of Small-Scale Explosives Testing
NASA Astrophysics Data System (ADS)
Ford, Robert; Guymon, Clint
2013-06-01
Small-scale explosives sensitivity test data is used to evaluate hazards of processing, handling, transportation, and storage of energetic materials. Accurate test data is critical to implementation of engineering and administrative controls for personnel safety and asset protection. Operator mischaracterization of reactions during testing contributes to either excessive or inadequate safety protocols. Use of equipment and associated algorithms to aid the operator in reaction determination can significantly reduce operator error. Safety Management Services, Inc. has developed an algorithm to evaluate high-speed video images of sparks from an ESD (Electrostatic Discharge) machine to automatically determine whether or not a reaction has taken place. The algorithm with the high-speed camera is termed GoDetect (patent pending). An operator assisted version for friction and impact testing has also been developed where software is used to quickly process and store video of sensitivity testing. We have used this method for sensitivity testing with multiple pieces of equipment. We present the fundamentals of GoDetect and compare it to other methods used for reaction detection.
Safety in the SEM laboratory--1981 update
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bance, G.N.; Barber, V.C.; Sholdice, J.A.
1981-01-01
The article reviews recent information on hazards as they relate to safety in SEM laboratories. The first section lists the safety equipment that should be available in a SEM laboratory. Flammable and combustible liquids are discussed, and particular warnings are given concerning the fire and explosion risks associated with diethyl ether and diisopropyl ether. The possible hazards associated with electrical equipment, and the risk of X-ray emissions from EM's are briefly outlined. The hazards associated with acute and chronic toxicity of chemicals used in the EM laboratory are discussed. The need to reduce exposure to a growing list of recognizablemore » hazardous chemicals is emphasized. This reduction can be accomplished by more extensive use of functioning fume hoods, and the use of more appropriate and effective protective gloves. Allergies and the hazards of dangerous pathogens in the SEM laboratory are discussed. The explosion and other hazards associated with cryogens, vacuum evaporators, critical point dryers, and compressed gas cylinders are emphasized.« less
2010-06-07
r i t y - S e r v i c e - E x c e l l e n c e 536 458 460 466 638 549 517 600 639 628 491 507 0 100 200 300 400...2008 through 1 August 2008. 4 I n t e g r i t y - S e r v i c e - E x c e l l e n c e Explosives Site Plans Received 0 200 400 600 800...measured on 1 June 2010. The current backlog is primarily ESPs awaiting MAJCOM response to review queries. 8 I n t e g r i t y - S e r v i c
Advanced emergency openings for commercial aircraft
NASA Technical Reports Server (NTRS)
Bement, L. J.; Schimmel, M. L.
1985-01-01
Explosively actuated openings in composite panels are proposed to enhance passenger survivability within commercial aircraft by providing improvements in emergency openings, fuselage venting, and fuel dump. The concept is to embed a tiny, highly stable explosive cord in the periphery of a load-carrying composite panel; on initiation of the cord, the panel is fractured to create a well-defined opening. The panel would be installed in the sides of the fuselage for passenger egress, in the top of the fuselage for smoke venting, and in the bottoms of the fuel cells for fuel dump. Described are the concerns with the use of explosive systems, safety improvements, advantages, experimental results, and recommended approach to gain acceptance and develop this concept.
Electronic Cigarette Explosion Resulting in a C1 and C2 Fracture: A Case Report.
Norii, Tatsuya; Plate, Adam
2017-01-01
Electronic cigarettes have seen a drastic increase in use. A lithium-ion battery is often used as the rechargeable battery of the electronic cigarette device and has recently received much attention in terms of safety. There are several recent case reports in the scientific literature of injuries due to electronic cigarette explosions that involved soft-tissue injuries. We report a significant spinal fracture from an electronic-cigarette explosion in a 27-year-old male. The electronic cigarette exploded during use, sending the mouthpiece through the pharynx and into the first cervical vertebra and resulting in fractures of the first and second vertebrae. An x-ray study of the neck showed a foreign body in the neck at the level of C1. A computed tomography scan of the neck showed fractures of C1. The foreign body was removed in the operating room. The patient was discharged home without neurologic sequelae. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Our case report is the first case of a cervical spine injury due to the explosion of an electronic cigarette. This case demonstrates that an electronic cigarette explosion can cause potentially serious penetrating neck injury. Emergency physicians should be aware of the potential danger of electronic cigarettes and have a low threshold to obtain radiographic tests and surgical consultation in the case of electronic cigarette explosion in the oral cavity. As the use of electronic cigarettes continue to increase, it is likely that injuries associated with them will also increase. Copyright © 2016 Elsevier Inc. All rights reserved.
Characterisation of an Exploding Foil Initiator (EFI) system
NASA Astrophysics Data System (ADS)
Davies, H. R.; Chapman, D. J.; Vine, T. A.; Proud, W. G.
2009-06-01
Exploding Foil Initiators (EFIs) provide a safe and reliable means of detonation of explosives. They are highly insensitive to mechanical shock and electrical interference, requiring a specific high current pulse for initiation. The use of only insensitive secondary explosives and not more sensitive primary explosives further improves safety. When a high current is passed through the metal bridge, a plasma is formed as the metal can not expand beyond the polymer film layer above. This causes the film to expand forming a bubble or shearing off to form a flyer. These flyers can then be used to initiate secondary explosives. Due to the very high speed at which these systems operate, high speed streak photography was used to characterise the behaviour of the polymer film flyers produced. This paper will report the preliminary findings on the mechanical, electrical and velocity changes seen in some proprietary systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zalosh, R.G.; Short, T.P.
1978-03-01
Additional hydrogen incident reports compiled during this quarter have increased the size of the computerized data base to a current total of 280 incidents. Listings of 165 incidents that have occurred in industrial and transportation operations since 1968 are presented here. Sample case histories in six different cause categories are provided together with a discussion of common safety problems contributing to these incidents. Some of these problems are inadequate detection measures for hydrogen leaks and fires and ineffective purging with inert gas. A preliminary comparison of losses due to natural gas fires/explosions and hydrogen incidents indicates that hydrogen explosions havemore » been, on the average, four-to-six times as damaging as natural gas explosions. Some tentative explanations for this result are presented but await confirmation from a more sophisticated statistical analysis.« less
Measurements of observables during detonator function
NASA Astrophysics Data System (ADS)
Smilowitz, Laura; Henson, Bryan; Remelius, Dennis
Thermal explosion and detonation are two phenomena which can both occur as the response of explosives to thermal or mechanical insults. Thermal explosion is typically considered in the safety envelope and detonation is considered in the performance regime of explosive behavior. However, the two regimes are tied together by a phenomenon called deflagration to detonation transition (DDT). In this talk, I will discuss experiments on commercial detonators aimed at understanding the mechanism for energy release during detonator function. Diagnostic development towards measuring temperature, pressure, and density during the extreme conditions and time scales of detonation will be discussed. Our current ability to perform table-top dynamic radiography on functioning detonators will be described. Dynamic measurements of temperature, pressure, and density will be shown and discussion of the function of a detonator will be given in terms of our current understanding of deflagration, detonation, and the transition between the two.
Shock waves in aviation security and safety
NASA Astrophysics Data System (ADS)
Settles, G. S.; Keane, B. T.; Anderson, B. W.; Gatto, J. A.
Accident investigations such as of Pan Am 103 and TWA 800 reveal the key role of shock-wave propagation in destroying the aircraft when an on-board explosion occurs. This paper surveys shock wave propagation inside an aircraft fuselage, caused either by a terrorist device or by accident, and provides some new experimental results. While aircraft-hardening research has been under way for more than a decade, no such experiments to date have used the crucial tool of high-speed optical imaging to visualize shock motion. Here, Penn State's Full-Scale Schlieren flow visualization facility yields the first shock-motion images in aviation security scenarios: 1) Explosions beneath full-size aircraft seats occupied by mannequins, 2) Explosions inside partially-filled luggage containers, and 3) Luggage-container explosions resulting in hull-holing. Both single-frame images and drum-camera movies are obtained. The implications of these results are discussed, though the overall topic must still be considered in its infancy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
G.A. Kotsyuba; M.I. Alpatov; Y.G. Shapoval
The need for new and revised standards for coke production in Ukraine and Russia is outlined. Such standards should address improvements in plant operation, working conditions, environmental protection, energy conservation, fire and explosion safety, and economic indices.
TAYMUR, İbrahim; SARGIN, A. Emre; ÖZDEL, Kadir; TÜRKÇAPAR, Hakan M.; ÇALIŞGAN, Lale; ZAMKI, Erkut; DEMİREL, Başak
2014-01-01
Introduction There have been deaths and injuries after an explosion which happened in an industrial region in Ankara in February 2011. The aim of this study was to determine the prevalence of acute stress disorder (ASD) and posttraumatic stress disorder (PTSD), and to determine the variables which can be the risk factors for PTSD. Methods In this study, we included a total of 197 subjects who were present at the factory building and at the four offices nearby when the disaster occurred. All the participants were assessed one month after the explosion and 157 of them were reassessed six months after the explosion. Socio-demographic information forms were given and the Clinician-Administered PTSD Scale (CAPS) was administered to the participants one month after the explosion. Psychiatric assessments were done using the structured clinical interview for DSM-IV axis-I disorders (SCID-I). The CAPS was re-applied six month after the disaster. Results At the first-month assessments, ASD was detected in 37.1% of participants and PTSD in 13.7%, whereas PTSD was observed in 16.6% of subjects at the sixth month of the accident. According to the first month data, having any psychiatric disorder before the incident, physical injury, acquaintances among the dead and the injured people, being involved in the incident and seeing dead people were detected as the risk factors for PTSD. At the sixth month assessment, physical injury, acquaintances among the dead and the injured, being involved in the incident were seen as risk factors for PTSD. Conclusion ASD and PTSD can be seen after an explosion. Having a previous psychiatric disorder and being directly affected by trauma and being injured are the risk factors for PTSD. This study implies that preventive mental health care services should include the management of current psychiatric condition and employee safety issues. PMID:28360591
Safety and security of radioactive sources in industrial radiography in Bangladesh
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mollah, A. S.; Nazrul, M. Abdullah
2013-07-01
Malicious use of radioactive sources can involve dispersal of that material through an explosive device. There has been recognition of the threat posed by the potential malicious misuse of NDT radioactive source by terrorists. The dispersal of radioactive material using conventional explosives, referred to as a 'dirty bomb', could create considerable panic, disruption and area access denial in an urban environment. However, as it is still a relatively new topic among regulators, users, and transport and storage operators worldwide, international assistance and cooperation in developing the necessary regulatory and security infrastructure is required. The most important action in reducing themore » risk of radiological terrorism is to increase the security of radioactive sources. This paper presents safety and security considerations for the transport and site storage of the industrial radiography sources as per national regulations entitled 'Nuclear Safety and Radiation Control Rules-1997'.The main emphasis was put on the stages of some safety and security actions in order to prevent theft, sabotage or other malicious acts during the transport of the packages. As a conclusion it must be mentioned that both safety and security considerations are very important aspects that must be taking in account for the transport and site storage of radioactive sources used in the practice of industrial radiography. (authors)« less
Safety engineering in handling fuels and lubricants in civil aviation
NASA Astrophysics Data System (ADS)
Protoereiskii, Aleksandr Stepanovich
The book is concerned with methods of improving working conditions, work hygiene, safety engineering, and fire and explosion prevention during the storage and handling of petroleum products at fuel and lubricant storage facilities. The discussion covers methods of protection against static and atmospheric discharges, lightning protection, safety engineering in fuel and lubricant laboratories, and methods of fire prevention and fire extinction. Attention is also given to methods for administering first aid in case of accidents and poisoning.
An Empirical Study of the Contracting Officer Representative’s Social Network
2013-09-01
any and all unforeseen environmental, explosive, safety , scheduling, and regulatory issues for the cleanup sites at APG that fall under the...wide range of investigative, remedial design, remedial construction, and remediation services required for hazardous substance and waste sites. This...engineering, data collection, and environmental remediation) than those previously examined ( food service and aircraft maintenance) as well, offering a broader
NREL Blows Up Batteries to Make the World Safer (Text Version) | NREL
World Safer (Text Version) Making lithium-ion batteries safer for earthlings and astronauts is something very large explosions] Not like that. Matt blows up lithium-ion batteries to test them for safety. Matt technology used by NASA in outer space. Matt and his team study battery failure using innovative technologies
1992-08-01
Executive Magdalen House Stanley Precinct, Bootle Merseyside L20 3QZ United Kingdom P. A. MORETON SRD of AEA Technology Wigshaw Lane Culcheth...Cheshire WA3 4NE United Kingdom INTRODUCTION The system of control imposed on explosives movements through ports in Great Britain is based on...regulations). Regulation 7 of CIMAH requires a person in control of a ’top-tier’ industrial activity to submit to the HSE a written safety report. Such a
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1999-09-01
This report explains the explosion/BLEVE that took place on April 9, 1998, at the Herrig Brothers Feather Creek Farm, located in Albert City, Iowa. Two volunteer fire fighters were killed and seven other emergency response personnel were injured. Safety issues covered in the report include protection of propane storage tanks and piping, state regulatory oversight of such installations, and fire fighter response to propane storage tank fires.
46 CFR 62.35-20 - Oil-fired main boilers.
Code of Federal Regulations, 2012 CFR
2012-10-01
... to prevent pocketing and explosive accumulations of combustible gases. (iii) The burner igniter must... of automatic detection of unsafe trip conditions. (h) Burner safety trip control system. (1) Each...
46 CFR 62.35-20 - Oil-fired main boilers.
Code of Federal Regulations, 2014 CFR
2014-10-01
... to prevent pocketing and explosive accumulations of combustible gases. (iii) The burner igniter must... of automatic detection of unsafe trip conditions. (h) Burner safety trip control system. (1) Each...
46 CFR 62.35-20 - Oil-fired main boilers.
Code of Federal Regulations, 2011 CFR
2011-10-01
... to prevent pocketing and explosive accumulations of combustible gases. (iii) The burner igniter must... of automatic detection of unsafe trip conditions. (h) Burner safety trip control system. (1) Each...
46 CFR 62.35-20 - Oil-fired main boilers.
Code of Federal Regulations, 2010 CFR
2010-10-01
... to prevent pocketing and explosive accumulations of combustible gases. (iii) The burner igniter must... of automatic detection of unsafe trip conditions. (h) Burner safety trip control system. (1) Each...
46 CFR 62.35-20 - Oil-fired main boilers.
Code of Federal Regulations, 2013 CFR
2013-10-01
... to prevent pocketing and explosive accumulations of combustible gases. (iii) The burner igniter must... of automatic detection of unsafe trip conditions. (h) Burner safety trip control system. (1) Each...
29 CFR 531.32 - “Other facilities.”
Code of Federal Regulations, 2014 CFR
2014-07-01
... restaurants or cafeterias or by hospitals, hotels, or restaurants to their employees; meals, dormitory rooms... 3(m) include: Safety caps, explosives, and miners' lamps (in the mining industry); electric power...
Humphrey Davy and the Safety Lamp: The Use of Metal Gauze as a Flame Barrier
ERIC Educational Resources Information Center
Mills, Allan
2015-01-01
The "safety lamp" invented by Humphrey Davy in 1815 utilised the cooling effect of metal gauze to prevent the flame of a candle or oil lamp (essential for illumination in mines) from passing through such a screen. It is therefore rendered unable to ignite any potentially explosive mixture of air and methane in the atmosphere surrounding…
75 FR 38721 - Safety Zone; Munising 4th of July Fireworks, South Bay, Lake Superior, Munising, MI
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-06
...-AA00 Safety Zone; Munising 4th of July Fireworks, South Bay, Lake Superior, Munising, MI AGENCY: Coast... portion of South Bay during the Munising 4th of July Fireworks display, July 4, 2010. This temporary... from hazards associated with the Munising 4th of July Fireworks display. Based on the explosive hazards...
Solvent Recycling for Shipyards
1993-05-01
Suvey results are included in Section 5) Survey manufacturers and compile information on available equipment and features . (Data is summarized in Section...should be placed on safety features . Important safety features include explosion-proof electricals and grounding protection, overpressure relief valves...solvent can dissolve a polymer plastic liner, or extract water from a clay liner, resulting in liner leakage. The threat is compounded by the ability
Methods of quantitative risk assessment: The case of the propellant supply system
NASA Astrophysics Data System (ADS)
Merz, H. A.; Bienz, A.
1984-08-01
As a consequence of the disastrous accident in Lapua (Finland) in 1976, where an explosion in a cartridge loading facility killed 40 and injured more than 70 persons, efforts were undertaken to examine and improve the safety of such installations. An ammunition factory in Switzerland considered the replacement of the manual supply of propellant hoppers by a new pneumatic supply system. This would reduce the maximum quantity of propellant in the hoppers to a level, where an accidental ignition would no longer lead to a detonation, and this would drastically limit the effects on persons. A quantitative risk assessment of the present and the planned supply system demonstrated that, in this particular case, the pneumatic supply system would not reduce the risk enough to justify the related costs. In addition, it could be shown that the safety of the existing system can be improved more effectively by other safety measures at considerably lower costs. Based on this practical example, the advantages of a strictly quantitative risk assessment for the safety planning in explosives factories are demonstrated. The methodological background of a risk assessment and the steps involved in the analysis are summarized. In addition, problems of quantification are discussed.
Sanmiquel, Lluís; Rossell, Josep M; Vintró, Carla; Freijo, Modesto
2014-01-01
Mines are hazardous and workers can suffer many types of accidents caused by fire, flood, explosion or collapse. Injury incidence rates in mining are considerably higher than those registered by other economic sectors. One of the main reasons for this high-level incidence rate is the existence of a large number of dangerous workplaces. This work analyzes the influence that occupational safety management had on the accidents that took place in Spanish mining of industrial and ornamental stone during the period 2007-2008. Primary data sources are: (a) Results from a statistical study of the occupational health and safety management practices of 71 quarries defined by a questionnaire of 41 items; and (b) Occupational accidents registered in the Spanish industrial and ornamental stone mining throughout the period 2007-2008. The obtained results indicate that workplaces with a low average score in the analysis of occupational safety management have a higher incidence rate of accidents. Studies on mining workplaces are very important to help detect occupational safety concerns. Results from this study help raise awareness and will encourage the adoption of appropriate measures to improve safety.
Hang, GuiYun; Yu, WenLi; Wang, Tao; Li, Zhen
2016-11-01
In order to determine the adsorption mechanism of water on the crystal surfaces of the explosive JOB-9003 and the effect of this adsorption on the sensitivity and detonation performance of this explosive, a model of the crystal of JOB-9003 was created in the software package Materials Studio (MS). The adsorption process was simulated, and molecular dynamics simulation was performed with the COMPASS force field in the NPT ensemble to calculate the sensitivity and detonation performance of the explosive. The results show that the maximum trigger bond length decreases whereas the interaction energy of the trigger bond and the cohesive energy density increase after adsorption, indicating that the sensitivity of JOB-9003 decreases. The results for the detonation performance show that the detonation pressure, detonation velocity, and detonation heat decrease upon the adsorption of water, thus illustrating that the detonation performance of JOB-9003 is degraded. In summary, the adsorption of water has a positive effect on the sensitivity and safety of the explosive JOB-9003 but a negative effect on its detonation performance.
The Numerical Simulation of the Shock Wave of Coal Gas Explosions in Gas Pipe*
NASA Astrophysics Data System (ADS)
Chen, Zhenxing; Hou, Kepeng; Chen, Longwei
2018-03-01
For the problem of large deformation and vortex, the method of Euler and Lagrange has both advantage and disadvantage. In this paper we adopt special fuzzy interface method(volume of fluid). Gas satisfies the conditions of conservation equations of mass, momentum, and energy. Based on explosion and three-dimension fluid dynamics theory, using unsteady, compressible, inviscid hydrodynamic equations and state equations, this paper considers pressure gradient’s effects to velocity, mass and energy in Lagrange steps by the finite difference method. To minimize transport errors of material, energy and volume in Finite Difference mesh, it also considers material transport in Euler steps. Programmed with Fortran PowerStation 4.0 and visualized with the software designed independently, we design the numerical simulation of gas explosion with specific pipeline structure, check the key points of the pressure change in the flow field, reproduce the gas explosion in pipeline of shock wave propagation, from the initial development, flame and accelerate the process of shock wave. This offers beneficial reference and experience to coal gas explosion accidents or safety precautions.
Mesoporous aluminium organophosphonates: a reusable chemsensor for the detection of explosives
NASA Astrophysics Data System (ADS)
Li, Dongdong; Yu, Xiang
2016-07-01
Rapid and sensitive detection of explosives is in high demand for homeland security and public safety. In this work, electron-rich of anthracene functionalized mesoporous aluminium organophosphonates (En-AlPs) were synthesized by a one-pot condensation process. The mesoporous structure and strong blue emission of En-AlPs were confirmed by the N2 adsorption-desorption isotherms, transmission electron microscopy images and fluorescence spectra. The materials En-AlPs can serve as sensitive chemosensors for various electron deficient nitroderivatives, with the quenching constant and the detection limit up to 1.5×106 M-1 and 0.3 ppm in water solution. More importantly, the materials can be recycled for many times by simply washed with ethanol, showing potential applications in explosives detection.
The reduction of a ""safety catastrophic'' potential hazard: A case history
NASA Technical Reports Server (NTRS)
Jones, J. P.
1971-01-01
A worst case analysis is reported on the safety of time watch movements for triggering explosive packages on the lunar surface in an experiment to investigate physical lunar structural characteristics through induced seismic energy waves. Considered are the combined effects of low pressure, low temperature, lunar gravity, gear train error, and position. Control measures constitute a seal control cavity and design requirements to prevent overbanking in the mainspring torque curve. Thus, the potential hazard is reduced to safety negligible.
Science and technology review, July/August 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upadhye, R.
This month`s issues are entitled Assuring the Safety of Nuclear Power; The Microtechnology Center, When Smaller is Better; Speeding the Gene Hunt: High Speed DNA Sequencing; and Microbial Treatments of High Explosives.
RMP Guidance for Chemical Distributors - Appendix D: OSHA Guidance on PSM
Guidance on the Process Safety Management standard says information (including MSDS) about chemicals, including process intermediates, must enable accurate assessment of fire/explosion characteristics, reactivity hazards, and corrosing/erosion effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, F.A.
1983-10-01
In August 1980, the National Institute for Occupational Safety and Health (NIOSH) received a request from the International Brotherhood of Electrical Workers Local 1600 for a Health Hazard Evaluation at the Pennsylvania Power and Light Company's Martins Creek Steam Electric Station in Martins Creek, Pennsylvania. The union was concerned about potential health and explosion hazards to employees from coal dust in Units 1 and 2 and the coal field. Based on environmental studies conducted at the time of the survey, NIOSH has determined that a potential health hazard may have existed due to exposure to respirable coal dust and quartz.more » Recommendations were made to ensure that potential health and explosion hazards are avoided in the future.« less
Trace Detection of RDX, HMX and PETN Explosives Using a Fluorescence Spot Sensor
Wang, Chen; Huang, Helin; Bunes, Benjamin R.; Wu, Na; Xu, Miao; Yang, Xiaomei; Yu, Li; Zang, Ling
2016-01-01
1,3,5-trinitroperhydro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), and pentaerythritol tetranitrate (PETN), the major components in plastic explosives, pose a significant threat to public safety. A quick, sensitive, and low-cost detection method for these non-volatile explosives is eagerly demanded. Here we present a fluo-spot approach, which can be employed for in situ detection of trace amount of explosives. The sensor molecule is a charge-transfer fluorophore, DCM, which is strongly fluorescent in its pristine state, but non-fluorescent after the quick reaction with NO2· (or NO2+) generated from the UV photolysis of RDX, HMX (or PETN). When fabricated within silica gel TLC plate, the fluo-spot sensor features high sensitivity owing to the large surface area and porous structure of the substrate. The sensor reaction mechanism was verified by various experimental characterizations, including chromatography, UV-Vis absorption and fluorescence spectroscopy, MS and 1H NMR spectrometry. The fluo-spot also demonstrated high selectivity towards RDX, HMX and PETN, as no significant fluorescence quenching was observed for other chemical compounds including common nitro-aromatic explosives and inorganic oxidative compounds. The DCM sensor can also be used as an economical spray kit to directly spot the explosives by naked eyes, implying great potential for quick, low-cost trace explosives detection. PMID:27146290
Trace Detection of RDX, HMX and PETN Explosives Using a Fluorescence Spot Sensor.
Wang, Chen; Huang, Helin; Bunes, Benjamin R; Wu, Na; Xu, Miao; Yang, Xiaomei; Yu, Li; Zang, Ling
2016-05-05
1,3,5-trinitroperhydro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), and pentaerythritol tetranitrate (PETN), the major components in plastic explosives, pose a significant threat to public safety. A quick, sensitive, and low-cost detection method for these non-volatile explosives is eagerly demanded. Here we present a fluo-spot approach, which can be employed for in situ detection of trace amount of explosives. The sensor molecule is a charge-transfer fluorophore, DCM, which is strongly fluorescent in its pristine state, but non-fluorescent after the quick reaction with NO2· (or NO2(+)) generated from the UV photolysis of RDX, HMX (or PETN). When fabricated within silica gel TLC plate, the fluo-spot sensor features high sensitivity owing to the large surface area and porous structure of the substrate. The sensor reaction mechanism was verified by various experimental characterizations, including chromatography, UV-Vis absorption and fluorescence spectroscopy, MS and (1)H NMR spectrometry. The fluo-spot also demonstrated high selectivity towards RDX, HMX and PETN, as no significant fluorescence quenching was observed for other chemical compounds including common nitro-aromatic explosives and inorganic oxidative compounds. The DCM sensor can also be used as an economical spray kit to directly spot the explosives by naked eyes, implying great potential for quick, low-cost trace explosives detection.
NASA Astrophysics Data System (ADS)
Manha, William D.
2010-09-01
One to the expressions for the most demanding quality was made by a well-known rocket scientist, for which this center was named, Dr. Wernher Von Braun in the Foreword of a book about the design of rocket engines that was first published by NASA in 1967: “Success in space demands perfection. Many of the brilliant achievements made in this vast, austere environment seem almost miraculous. Behind each apparent miracle, however, stands the flawless performance of numerous highly complex systems. All are important. The failure of only one portion of a launch vehicle or spacecraft may cause failure of an entire mission. But the first to feel this awesome imperative for perfection are the propulsion systems, especially the engines. Unless they operate flawlessly first, none of the other systems will get a chance to perform in space. Perfection begins in the design of space hardware. This book emphasizes quality and reliability in the design of propulsion and engine systems. It draws deeply from the vast know-how and experience which have been the essence of several well-designed, reliable systems of the past and present. And, with a thoroughness and completeness not previously available, it tells how the present high state of reliability, gained through years of research and testing, can be maintained, and perhaps improved, in engines of the future. As man ventures deeper into space to explore the planets, the search for perfection in the design of propulsion systems will continue.” Some catastrophes with losses of life will be compared to show lapses in quality and safety and contrasted with a catastrophe without loss of life because of compliance with safety requirements. 1. October 24, 1960,(USSR) Nedelin Catastrophe, Death on the Steppes, 124 deaths 2. October 25, 1966,(USA) North American Rockwell, Apollo Block I Service Module Service(SM) Propulsion System fuel tank explosion/fire and destruction of SM and test cell, test engineer/conductor/author, Bill Manha,(the presenter) 0 injuries, 0 deaths 3. March 18, 1980,(USSR) Vostok 8A92M booster pad explosion, 48 deaths. 4. August 22, 2003,(Brazil) -Alcantara VLS -1, V03. Solid rocket ignited on pad, 21 deaths 5. Summer of 2006(USA) a payload organization inquired about requirements to fly a satellite with a new “safe” SpaceDev hybrid propulsion system using a solid polymer as the fuel and nitrous oxide as the oxidizer. The extensive titanium/nitrous oxide materials compatibility testing that was required discouraged the payload organization from further exploration of using the Shuttle as the launch vehicle. 6. July 26, 2007(USA) SpaceShipTwo nitrous oxide explosion, 3 seriously injured, 3 deaths The above listed catastrophic failures resulted in 210 deaths, but there were none on the Apollo SM explosion because of compliance with CalOSHA. This is an applied lesson learned of the Shuttle. Safety was not jeopardized without extensive materials compatibility testing. On the other hand, the nitrous oxide was erroneously identified as safe for launch from Shuttle or ISS which resulted in a catastrophic explosion and resulted in 3 major injuries, and 3 deaths. This is a testimony of a survivor of a catastrophic failure where safety rules were followed and the application of the lesson learned which confirmed safety and quality, as expressed by Von Braun, PERFECTION and SAFETY do MATTER!
NASA Astrophysics Data System (ADS)
Kennedy, Lynn W.; Schneider, Kenneth D.
1990-07-01
A large-sclae test of the detonation of 20,000 kilograms of high explosive inside a shallow underground tunnel/chamber complex, simulating an ammunition storage magazine, was carried out in August, 1988, at the Naval Weapons Center, China Lake, California. The test was jointly sponsored by the U.S. Department of Defense Explosives Safety Board; the Safety Services Organisation of the Ministry of Defence, United Kingdom; and the Norwegian Defence Construction Service. The overall objective of the test was to determine the hazardous effects (debris, airblast, and ground motion) produced in this configuration. Actual storage magazines have considerably more overburden and are expected to contain and accidental detonation. The test configuration, on the other hand, was expected to rupture, and to scatter a significant amount of rocks, dirt and debris. Among the observations and measurements made in this test was study of airblast propagation within the storage chamber, in the access tunnel, and outside, on the tunnel ramp, prior to overburden venting. The results of these observations are being used to evaluate and validate current quantity-distance standards for the underground storage of munitions near inabited structures. As part of the prediction effort for this test, to assist with transducer ranging in the access tunnel and with post-test interpretation of the results, S-CUBED was asked to perform two-dimensional inviscid hydrodynamic code calculations of the explosive detonation and subsequent blastwave propagation in the interior chamber and access tunnel. This was accomplished using the S-CUBED Hydrodynamic Advanced Research Code (SHARC). In this paper, details of the calculations configuration will be presented. These will be compared to the actual as-built internal configuration of the tunnel/chamber complex. Results from the calculations, including contour plots and airblast waveforms, will be shown. The latter will be compared with experimental records obtained at several points within the tunnel.
Characterization of Hypervelocity Metal Fragments for Explosive Initiation
NASA Astrophysics Data System (ADS)
Yeager, John; Bowden, Patrick; Guildenbecher, Daniel; Olles, Joseph
2017-06-01
The off-normal detonation behavior of two plastic-bonded explosive (PBX) formulations was studied using explosively-driven aluminum fragments moving at hypersonic velocity. Witness plate materials, including copper and polycarbonate, were used to characterize the distribution of particles, finding that the aluminum did not fragment homogeneously but rather with larger particles in a ring surrounding finer particles. Digital holography experiments were conducted to measure three-dimensional shape and size of the fastest-moving fragments, which ranged between 100 and 700 microns and traveled between 2 and 3.5 km/s. Crucially, these experiments showed variability in the fragmentation in terms of the number of fragments at the leading edge of the fragment field, indicating that both single and multiple shock impacts could be imparted to the target material. Lower density PBX 9407 (RDX-based) was initiable at up to 4.5 inches, while higher density PBX 9501 (HMX-based) was only initiable at up to 0.25 inches. This type of data is critical for safety experiments and hydrocode simulations to quantify shock-to-detonation transition mechanisms and the associated risk-margins for these materials.
76 FR 62817 - National Offshore Safety Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-11
... Joint Investigation Team for DEEPWATER HORIZON drilling rig explosion and sinking. (9) Update from the... Advisory Committee>NOSAC and then use the event key. The meeting will be recorded by a court reporter. A...
33 CFR 160.109 - Waterfront facility safety.
Code of Federal Regulations, 2010 CFR
2010-07-01
... emergency removal, control and disposition) of explosives or other dangerous articles and substances, including oil or hazardous material as those terms are defined in 46 U.S.C. 2101 on any structure on or in...
49 CFR 173.61 - Mixed packaging requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
....61 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SHIPPERS-GENERAL... material that could, under normal conditions of transportation, adversely affect the explosive or its...
49 CFR 173.61 - Mixed packaging requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
....61 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SHIPPERS-GENERAL... material that could, under normal conditions of transportation, adversely affect the explosive or its...
49 CFR 173.61 - Mixed packaging requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
....61 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SHIPPERS-GENERAL... material that could, under normal conditions of transportation, adversely affect the explosive or its...
49 CFR 173.61 - Mixed packaging requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
....61 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SHIPPERS-GENERAL... material that could, under normal conditions of transportation, adversely affect the explosive or its...
49 CFR 173.61 - Mixed packaging requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
....61 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SHIPPERS-GENERAL... material that could, under normal conditions of transportation, adversely affect the explosive or its...
46 CFR 153.214 - Personnel emergency and safety equipment.
Code of Federal Regulations, 2010 CFR
2010-10-01
...-propelled ship must have the following: (a) Two stretchers or wire baskets complete with equipment for... Inspection or Certificate of Compliance. (3) A steel-cored lifeline with harness. (4) An explosion-proof lamp...
46 CFR 153.214 - Personnel emergency and safety equipment.
Code of Federal Regulations, 2011 CFR
2011-10-01
...-propelled ship must have the following: (a) Two stretchers or wire baskets complete with equipment for... Inspection or Certificate of Compliance. (3) A steel-cored lifeline with harness. (4) An explosion-proof lamp...
40 CFR 61.349 - Standards: Closed-vent systems and control devices.
Code of Federal Regulations, 2013 CFR
2013-07-01
... the unit in accordance with good engineering and safety practices for handling flammable, explosive... device shall be made as soon as practicable but no later than 5 calendar days after detection. Repair...
40 CFR 61.349 - Standards: Closed-vent systems and control devices.
Code of Federal Regulations, 2014 CFR
2014-07-01
... the unit in accordance with good engineering and safety practices for handling flammable, explosive... device shall be made as soon as practicable but no later than 5 calendar days after detection. Repair...
46 CFR 153.214 - Personnel emergency and safety equipment.
Code of Federal Regulations, 2012 CFR
2012-10-01
...-propelled ship must have the following: (a) Two stretchers or wire baskets complete with equipment for... Inspection or Certificate of Compliance. (3) A steel-cored lifeline with harness. (4) An explosion-proof lamp...
46 CFR 153.214 - Personnel emergency and safety equipment.
Code of Federal Regulations, 2013 CFR
2013-10-01
...-propelled ship must have the following: (a) Two stretchers or wire baskets complete with equipment for... Inspection or Certificate of Compliance. (3) A steel-cored lifeline with harness. (4) An explosion-proof lamp...
46 CFR 153.214 - Personnel emergency and safety equipment.
Code of Federal Regulations, 2014 CFR
2014-10-01
...-propelled ship must have the following: (a) Two stretchers or wire baskets complete with equipment for... Inspection or Certificate of Compliance. (3) A steel-cored lifeline with harness. (4) An explosion-proof lamp...
Health and safety programs for art and theater schools.
McCann, M
2001-01-01
A wide variety of health and safety hazards exist in schools and colleges of art and theater due to a lack of formal health and safety programs and a failure to include health and safety concerns during planning of new facilities and renovation of existing facilities. This chapter discusses the elements of a health and safety program as well as safety-related structural and equipment needs that should be in the plans for any school of art or theater. These elements include curriculum content, ventilation, storage, housekeeping, waste management, fire and explosion prevention, machine and tool safety, electrical safety, noise, heat stress, and life safety and emergency procedures and equipment. Ideally, these elements should be incorporated into the plans for any new facilities, but ongoing programs can also benefit from a review of existing health and safety programs.
Progress of IRSN R&D on ITER Safety Assessment
NASA Astrophysics Data System (ADS)
Van Dorsselaere, J. P.; Perrault, D.; Barrachin, M.; Bentaib, A.; Gensdarmes, F.; Haeck, W.; Pouvreau, S.; Salat, E.; Seropian, C.; Vendel, J.
2012-08-01
The French "Institut de Radioprotection et de Sûreté Nucléaire" (IRSN), in support to the French "Autorité de Sûreté Nucléaire", is analysing the safety of ITER fusion installation on the basis of the ITER operator's safety file. IRSN set up a multi-year R&D program in 2007 to support this safety assessment process. Priority has been given to four technical issues and the main outcomes of the work done in 2010 and 2011 are summarized in this paper: for simulation of accident scenarios in the vacuum vessel, adaptation of the ASTEC system code; for risk of explosion of gas-dust mixtures in the vacuum vessel, adaptation of the TONUS-CFD code for gas distribution, development of DUST code for dust transport, and preparation of IRSN experiments on gas inerting, dust mobilization, and hydrogen-dust mixtures explosion; for evaluation of the efficiency of the detritiation systems, thermo-chemical calculations of tritium speciation during transport in the gas phase and preparation of future experiments to evaluate the most influent factors on detritiation; for material neutron activation, adaptation of the VESTA Monte Carlo depletion code. The first results of these tasks have been used in 2011 for the analysis of the ITER safety file. In the near future, this R&D global programme may be reoriented to account for the feedback of the latter analysis or for new knowledge.
Coalbed methane: from hazard to resource
Flores, R.M.
1998-01-01
Coalbed gas, which mainly consists of methane, has remained a major hazard affecting safety and productivity in underground coal mines for more than 100 yr. Coalbed gas emissions have resulted in outbursts and explosions where ignited by open lights, smoking or improper use of black blasting powder, and machinery operations. Investigations of coal gas outbursts and explosions during the past century were aimed at predicting and preventing this mine hazard. During this time, gas emissions were diluted with ventilation by airways (eg, tunnels, vertical and horizontal drillholes, shsfts) and by drainage boreholes. The 1970s 'energy crisis' led to studies of the feasibility of producing the gas for commercial use. Subsequent research on the origin, accumulation, distribution, availability, and recoverability has been pursued vigorously during the past two decades. Since the 1970s research investigations on the causes and effects of coal mine outbursts and gas emissions have led to major advances towards the recovery and development of coalbed methane for commercial use. Thus, coalbed methane as a mining hazard was harnessed as a conventional gas resource.Coalbed gas, which mainly consists of methane, has remained a major hazard affecting safety and productivity in underground coal mines for more than 100 years. Coalbed gas emissions have resulted in outbursts and explosions where ignited by open lights, smoking or improper use of black blasting powder, and machinery operations. Investigations of coal gas outbursts and explosions during the past century were aimed at predicting and preventing this mine hazard. During this time, gas emissions were diluted with ventilation by airways (e.g., tunnels, vertical and horizontal drillholes, shafts) and by drainage boreholes. The 1970's `energy crisis' led to studies of the feasibility of producing the gas for commercial use. Subsequent research on the origin, accumulation, distribution, availability, and recoverability has been pursued vigorously during the past two decades. Since the 1970's research investigations on the causes and effects of coal mine outbursts and gas emissions have led to major advances towards the recovery and development of coalbed methane for commercial use. Thus, coalbed methane as a mining hazard was harnessed as a conventional gas resource.
Combustible dusts: a serious industrial hazard.
Joseph, Giby
2007-04-11
After investigating three fatal explosions in manufacturing plants, the U.S. Chemical Safety and Hazard Investigation Board (CSB) has concluded: The explosive hazard of combustible dust is not well known, and helping industry to understand this hazard is a priority. Prompted by these three incidents in North Carolina, Kentucky and Indiana and the need to increase the hazard awareness, CSB is conducting a study to examine the nature and scope of dust explosion risks in industry and to identify initiatives that may be necessary to more effectively prevent combustible dust fires and explosions. Such initiatives may include regulatory action, voluntary consensus standards, or other measures that could be taken by industry, labor, government, and other parties. A critical task of the dust study is analyzing past incidents to determine the severity of the problem within industry. The analysis is focusing on the number of incidents, injuries and fatalities, industrial sectors affected, and regulatory oversight. This paper presents the preliminary findings from CSBs analysis of combustible dust incidents over the past 25 years. This paper has not been approved by the Board and is published for general informational purposes only. Every effort has been made to accurately present the contents of any Board-approved report mentioned in this paper. Any material in the paper that did not originate in a Board-approved report is solely the responsibility of the authors and does not represent an official finding, conclusion, or position of the Board.
Effectiveness of the Civil Aviation Security Program.
1978-03-31
Passenger Screening Results 12. Scope of Civil Aviation Security Program 13. Basic Policies 14. Explosives Detection Dog Teams 15. Explosives Detection... policies guiding the program recognize airline responsibilities for the safety of passengers, baggage and cargo in their care as well as for the...U *i * (U U Los -7 .cn cf) 1-4 ~~LL _m e- Hf LMU 0- u,-C -oL -ccJLL LII -~ LLIOL 0 _ CL. LLJ cr-L LCnIJ C ~ ~ CnCD C. ) &j 2ic- nc r JL AJ -L JC C.- L
1978-09-14
AT THE PONT- DE -BUIS GUN-POWDER FACTORY ON 7TH AUGUST 1975 1089 Mr. Jean Quinchon EXPLOSIVE INCIDENT DURING DEMOLITION GROUND OPERATIONS 1097 Mr...OCCURRED AT THE PONT- DE -BUIS GUN-POWDER FACTORY ON 7TH AUGUST 1975 Mr. Jean Quinchon Societe Nationale Des Poudres Et Explosifs Paris, France The...Pont- de -Buis National Gun-Powder Factory in the department of Finistere was built in the reign of LOUIS XIV to supply the Brest naval dock-yards
Improved explosive collection and detection with rationally assembled surface sampling materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chouyyok, Wilaiwan; Bays, J. Timothy; Gerasimenko, Aleksandr A.
Sampling and detection of trace explosives is a key analytical process in modern transportation safety. In this work we have explored some of the fundamental analytical processes for collection and detection of trace level explosive on surfaces with the most widely utilized system, thermal desorption IMS. The performance of the standard muslin swipe material was compared with chemically modified fiberglass cloth. The fiberglass surface was modified to include phenyl functional groups. When compared to standard muslin, the phenyl functionalized fiberglass sampling material showed better analyte release from the sampling material as well as improved response and repeatability from multiple usesmore » of the same swipe. The improved sample release of the functionalized fiberglass swipes resulted in a significant increase in sensitivity. Various physical and chemical properties were systematically explored to determine optimal performance. The results herein have relevance to improving the detection of other explosive compounds and potentially to a wide range of other chemical sampling and field detection challenges.« less
Ultrasonically triggered ignition at liquid surfaces.
Simon, Lars Hendrik; Meyer, Lennart; Wilkens, Volker; Beyer, Michael
2015-01-01
Ultrasound is considered to be an ignition source according to international standards, setting a threshold value of 1mW/mm(2) [1] which is based on theoretical estimations but which lacks experimental verification. Therefore, it is assumed that this threshold includes a large safety margin. At the same time, ultrasound is used in a variety of industrial applications where it can come into contact with explosive atmospheres. However, until now, no explosion accidents have been reported in connection with ultrasound, so it has been unclear if the current threshold value is reasonable. Within this paper, it is shown that focused ultrasound coupled into a liquid can in fact ignite explosive atmospheres if a specific target positioned at a liquid's surface converts the acoustic energy into a hot spot. Based on ignition tests, conditions could be derived that are necessary for an ultrasonically triggered explosion. These conditions show that the current threshold value can be significantly augmented. Copyright © 2014 Elsevier B.V. All rights reserved.
Research and Development of High-performance Explosives
Cornell, Rodger; Wrobel, Erik; Anderson, Paul E.
2016-01-01
Developmental testing of high explosives for military applications involves small-scale formulation, safety testing, and finally detonation performance tests to verify theoretical calculations. small-scale For newly developed formulations, the process begins with small-scale mixes, thermal testing, and impact and friction sensitivity. Only then do subsequent larger scale formulations proceed to detonation testing, which will be covered in this paper. Recent advances in characterization techniques have led to unparalleled precision in the characterization of early-time evolution of detonations. The new technique of photo-Doppler velocimetry (PDV) for the measurement of detonation pressure and velocity will be shared and compared with traditional fiber-optic detonation velocity and plate-dent calculation of detonation pressure. In particular, the role of aluminum in explosive formulations will be discussed. Recent developments led to the development of explosive formulations that result in reaction of aluminum very early in the detonation product expansion. This enhanced reaction leads to changes in the detonation velocity and pressure due to reaction of the aluminum with oxygen in the expanding gas products. PMID:26966969
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clancy, T J; Brown, C G; Ong, M M
2006-01-11
Presented here is an innovation in lighting safety certification, and a description of its implementation for high explosives processing and storage facilities at Lawrence Livermore National Laboratory. Lightning rods have proven useful in the protection of wooden structures; however, modern structures made of rebar, concrete, and the like, require fresh thinking. Our process involves a rigorous and unique approach to lightning safety for modern buildings, where the internal voltages and currents are quantified and the risk assessed. To follow are the main technical aspects of lightning protection for modern structures and these methods comply with the requirements of the Nationalmore » Fire Protection Association, the National Electrical Code, and the Department of Energy [1][2]. At the date of this release, we have certified over 70 HE processing and storage cells at our Site 300 facility.« less
High-sensitivity detection of triacetone triperoxide (TATP) and its precursor acetone
NASA Astrophysics Data System (ADS)
Dunayevskiy, Ilya; Tsekoun, Alexei; Prasanna, Manu; Go, Rowel; Patel, C. Kumar N.
2007-09-01
Triacetone triperoxide (C9H18O6, molecular mass of 222.24 g/mol) (TATP) is a powerful explosive that is easy to synthesize using commonly available household chemicals, acetone, and hydrogen peroxide 1 2. Because of the simplicity of its synthesis, TATP is often the explosive of choice for terrorists, including suicide bombers. For providing safety to the population, early detection of TATP and isolation of such individuals are essential. We report unambiguous, high-sensitivity detection of TATP and its precursor, acetone, using room-temperature quantum cascade laser photoacoustic spectroscopy (QCL-PAS). The available sensitivity is such that TATP, carried on a person (at a nominal body temperature of 37 °C), should be detectable at some distance. The combination of demonstrated detection of TATP and acetone should be ideal for screening at airports and other public places for providing increased public safety.
Chemical analysis of charged Li/SO(sub)2 cells
NASA Technical Reports Server (NTRS)
Subbarao, S.; Lawson, D.; Frank, H.; Halpert, G.; Barnes, J.; Bis, R.
1987-01-01
The initial focus of the program was to confirm that charging can indeed result in explosions and constitute a significant safety problem. Results of this initial effort clearly demonstrated that cells do indeed explode on charge and that charging does indeed constitute a real and severe safety problem. The results of the effort to identify the chemical reactions involved in and responsible for the observed behavior are described.
Risk-Based Explosive Safety Analysis
2016-11-30
safety siting of energetic liquids and propellants can be greatly aided by the use of risk-based methodologies. The low probability of exposed...liquids or propellants . 15. SUBJECT TERMS N/A 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF...of energetic liquids and propellants can be greatly aided by the use of risk-based methodologies. The low probability of exposed personnel and the
The impact of the BP Baker report.
Rodríguez, Jennifer M; Payne, Stephanie C; Bergman, Mindy E; Beus, Jeremy M
2011-06-01
This study examined the impact of the British Petroleum (BP) Baker Panel Report, reviewing the March 2005 BP-Texas City explosion, on the field of process safety. Three hundred eighty-four subscribers of a process safety listserv responded to a survey two years after the BP Baker Report was published. Results revealed respondents in the field of process safety are familiar with the BP Baker Report, feel it is important to the future safety of chemical processing, and believe that the findings are generalizable to other plants beyond BP-Texas City. Respondents indicated that few organizations have administered the publicly available BP Process Safety Culture Survey. Our results also showed that perceptions of contractors varied depending on whether respondents were part of processing organizations (internal perspective) or government or consulting agencies (external perspective). This research provides some insight into the beliefs of chemical processing personnel regarding the transportability and generalizability of lessons learned from one organization to another. This study has implications for both organizational scientists and engineers in that it reveals perceptions about the primary mechanism used to share lessons learned within one industry about one major catastrophe (i.e., investigation reports). This study provides preliminary information about the perceived impact of a report such as this one. Copyright © 2011 National Safety Council and Elsevier Ltd. All rights reserved.
Fiber optic microsensor technology for detection of hydrogen in space applications
NASA Astrophysics Data System (ADS)
Kazemi, Alex A.
2008-04-01
Optical hydrogen sensors are intrinsically safe since they produce no arc or spark in an explosive environment caused by the leakage of hydrogen. Safety remains a top priority since leakage of hydrogen in air during production, storage, transfer and distribution creates an explosive atmosphere for concentrations between 4% (v/v) - the lower explosive limit (LEL) and 74.5% (v/v) - the upper explosive limit (UEL) at room temperature and pressure. Being a very small molecule, hydrogen is prone to leakage through seals and micro-cracks. Hydrogen detection in space application is very challenging; public acceptance of hydrogen fuel would require the integration of a reliable hydrogen safety sensor. For detecting leakage of cryogenic fluids in spaceport facilities, Launch vehicle industry and aerospace agencies are currently relying heavily on the bulky mass spectrometers, which fill one or more equipment racks, and weigh several hundred kilograms. This paper describes the successful development and test of a multi-point fiber optic hydrogen sensor system during the static firing of an Evolved Expandable Launch Vehicle at NASA's Stennis Space Center. The system consisted of microsensors (optrodes) using hydrogen gas sensitive indicator incorporated onto an optically transparent porous substrate. The modular optoelectronics and multiplexing network system was designed and assembled utilizing a multi-channel optoelectronic sensor readout unit that monitored the hydrogen and temperature response of the individual optrodes in real-time and communicated this information via a serial communication port to a remote laptop computer. The paper would discuss the sensor design and performance data under field deployment conditions.
Advancements in the safe identification of explosives using a Raman handheld instrument (ACE-ID)
NASA Astrophysics Data System (ADS)
Arnó, Josep; Frunzi, Michael; Kittredge, Marina; Sparano, Brian
2014-05-01
Raman spectroscopy is the technology of choice to identify bulk solid and liquid phase unknown samples without the need to contact the substance. Materials can be identified through transparent and semi-translucent containers such as plastic and glass. ConOps in emergency response and military field applications require the redesign of conventional laboratory units for: field portability; shock, thermal and chemical attack resistance; easy and intuitive use in restrictive gear; reduced size, weight, and power. This article introduces a new handheld instrument (ACE-IDTM) designed to take Raman technology to the next level in terms of size, safety, speed, and analytical performance. ACE-ID is ruggedized for use in severe climates and terrains. It is lightweight and can be operated with just one hand. An intuitive software interface guides users through the entire identification process, making it easy-to-use by personnel of different skill levels including military explosive ordinance disposal technicians, civilian bomb squads and hazmat teams. Through the use of embedded advanced algorithms, the instrument is capable of providing fluorescence correction and analysis of binary mixtures. Instrument calibration is performed automatically upon startup without requiring user intervention. ACE-ID incorporates an optical rastering system that diffuses the laser energy over the sample. This important innovation significantly reduces the heat induced in dark samples and the probability of ignition of susceptible explosive materials. In this article, the explosives identification performance of the instrument will be provided in addition to a quantitative evaluation of the safety improvements derived from the reduced ignition probabilities.
Controlled biological and biomimetic systems for landmine detection.
Habib, Maki K
2007-08-30
Humanitarian demining requires to accurately detect, locate and deactivate every single landmine and other buried mine-like objects as safely and as quickly as possible, and in the most non-invasive manner. The quality of landmine detection affects directly the efficiency and safety of this process. Most of the available methods to detect explosives and landmines are limited by their sensitivity and/or operational complexities. All landmines leak with time small amounts of their explosives that can be found on surrounding ground and plant life. Hence, explosive signatures represent the robust primary indicator of landmines. Accordingly, developing innovative technologies and efficient techniques to identify in real-time explosives residue in mined areas represents an attractive and promising approach. Biological and biologically inspired detection technology has the potential to compete with or be used in conjunction with other artificial technology to complement performance strengths. Biological systems are sensitive to many different scents concurrently, a property that has proven difficult to replicate artificially. Understanding biological systems presents unique opportunities for developing new capabilities through direct use of trained bio-systems, integration of living and non-living components, or inspiring new design by mimicking biological capabilities. It is expected that controlled bio-systems, biotechnology and microbial techniques will contribute to the advancement of mine detection and other application domains. This paper provides directions, evaluation and analysis on the progress of controlled biological and biomimetic systems for landmine detection. It introduces and discusses different approaches developed, underlining their relative advantages and limitations, and highlighting trends, safety and ecology concern, and possible future directions.
Proposed system safety design and test requirements for the microlaser ordnance system
NASA Technical Reports Server (NTRS)
Stoltz, Barb A.; Waldo, Dale F.
1993-01-01
Safety for pyrotechnic ignition systems is becoming a major concern for the military. In the past twenty years, stray electromagnetic fields have steadily increased during peacetime training missions and have dramatically increased during battlefield missions. Almost all of the ordnance systems in use today depend on an electrical bridgewire for ignition. Unfortunately, the bridgewire is the cause of the majority of failure modes. The common failure modes include the following: broken bridgewires; transient RF power, which induces bridgewire heating; and cold temperatures, which contracts the explosive mix away from the bridgewire. Finding solutions for these failure modes is driving the costs of pyrotechnic systems up. For example, analyses are performed to verify that the system in the environment will not see more energy than 20 dB below the 'No-fire' level. Range surveys are performed to determine the operational, storage, and transportation RF environments. Cryogenic tests are performed to verify the bridgewire to mix interface. System requirements call for 'last minute installation,' 'continuity checks after installation,' and rotating safety devices to 'interrupt the explosive train.' As an alternative, MDESC has developed a new approach based upon our enabling laser diode technology. We believe that Microlaser initiated ordnance offers a unique solution to the bridgewire safety concerns. For this presentation, we will address, from a system safety viewpoint, the safety design and the test requirements for a Microlaser ordnance system. We will also review how this system could be compliant to MIL-STD-1576 and DOD-83578A and the additional necessary requirements.
Detecting underwater improvised explosive threats (DUIET)
NASA Astrophysics Data System (ADS)
Feeley, Terry
2010-04-01
Improvised Explosive Devices (IEDs) have presented a major threat in the wars in Afghanistan and Iraq. These devices are powerful homemade land mines that can be small and easily hidden near roadsides. They are then remotely detonated when Coalition Forces pass by either singly or in convoys. Their rapid detection, classification and destruction is key to the safety of troops in the area. These land based bombs will have an analogue in the underwater theater especially in ports, lakes, rivers and streams. These devices may be used against Americans on American soil as an element of the global war on terrorism (GWOT) Rapid detection and classification of underwater improvised explosive devices (UIED) is critical to protecting innocent lives and maintaining the day to day flow of commerce. This paper will discuss a strategy and tool set to deal with this potential threat.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 2 2012-10-01 2012-10-01 false Security. 176.162 Section 176.162 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION... Class 1 (Explosive) Materials Precautions During Loading and Unloading § 176.162 Security. A responsible...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 2 2013-10-01 2013-10-01 false Security. 176.162 Section 176.162 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION... Class 1 (Explosive) Materials Precautions During Loading and Unloading § 176.162 Security. A responsible...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Security. 176.162 Section 176.162 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION... Class 1 (Explosive) Materials Precautions During Loading and Unloading § 176.162 Security. A responsible...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 2 2014-10-01 2014-10-01 false Security. 176.162 Section 176.162 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION... Class 1 (Explosive) Materials Precautions During Loading and Unloading § 176.162 Security. A responsible...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 2 2011-10-01 2011-10-01 false Security. 176.162 Section 176.162 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION... Class 1 (Explosive) Materials Precautions During Loading and Unloading § 176.162 Security. A responsible...
Chemical Safety Alert: Shaft Blow-Out Hazard of Check and Butterfly Valves
Certain types of check and butterfly valves can undergo shaft-disk separation and fail catastrophically, even when operated within their design limits of pressure and temperature, causing toxic/flammable gas releases, fires, and vapor cloud explosions.
75 FR 41281 - Bridge Safety Standards
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-15
... Institute; High Speed Ground Transportation Association (HSGTA); Institute of Makers of Explosives..., manufacturer, lessor, or lessee of railroad equipment, track or facilities; any independent contractor... independent contractor; and anyone held by FRA to be responsible for compliance with this part. Paragraph (d...
Imaging indicator for ESD safety testing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whinnery, LeRoy L.,; Nissen, April; Keifer, Patrick N.
2013-05-01
This report describes the development of a new detection method for electrostatic discharge (ESD) testing of explosives, using a single-lens reflex (SLR) digital camera and a 200-mm macro lens. This method has demonstrated several distinct advantages to other current ESD detection methods, including the creation of a permanent record, an enlarged image for real-time viewing as well as extended periods of review, and ability to combine with most other Go/No-Go sensors. This report includes details of the method, including camera settings and position, and results with wellcharacterized explosives PETN and RDX, and two ESD-sensitive aluminum powders.
Staubli TX-90XL robot qualification at the LLIHE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Covert, Timothy Todd
The Light Initiated High Explosive (LIHE) Facility uses a robotic arm to spray explosive material onto test items for impulse tests. In 2007, the decision was made to replace the existing PUMA 760 robot with the Staubli TX-90XL. A qualification plan was developed and implemented to verify the safe operating conditions and failure modes of the new system. The robot satisfied the safety requirements established in the qualification plan. A performance issue described in this report remains unresolved at the time of this publication. The final readiness review concluded the qualification of this robot at the LIHE facility.
1989-10-01
flashback tests FM does not speci- fy the type of enclosure to contain the explosive fuel/air mix -ture. 3.4 INTERNATIONAL CONVENTION FOR THE SAFETY OF...2) Continuous burn tests: ... "Same mix - ture and concentration as for explosion tests; flow rate of the gasoline vapor-air mixture is specified as a...gas temperature of the flammable hexane/air mix - ture on the tank side was used as the representative endu ance burn test temperature for the following
4D Imaging in Thermally Damaged Polymer-bonded Explosives
NASA Astrophysics Data System (ADS)
Parker, Gary; Bourne, Neil; Eastwood, David; Jacques, Simon; Dickson, Peter; Lopez-Pulliam, Ian; Heatwole, Eric; Holmes, Matt; Smilowitz, Laura; Rau, Christoph
2017-06-01
PBXs are composites in which explosive crystallites are bound by compliant polymers. There are safety benefits derived from compliant binders; e.g. they mitigate some effects of mechanical insult. However, during elevated thermal insult, degradation of binder and HE crystallites can modify the morphology in ways that can reduce safety margins by increasing post-ignition reaction violence. The response of thermally damaged PBXs, before and following self-ignition has safety implications and it is desirable to understand the fundamental physics controlling the rate of pre-ignition thermal runaway and the post-ignition flame propagation in thermal accident scenarios. Coupled with this there is an ongoing effort to make in situ, time-resolved, measurements of the size, nature and extent of micro-porosity in PBX 9501 during thermal decomposition. We report on PBX heating experiments conducted at the Diamond synchrotron with both PBX 9501 and an inert mock. During heating, CT radiography was conducted in order to observe void production and interconnectivity of gas flow pathways, as well as to monitor phase changes within the crystals. We explore the variation of behavior as a function of heating rate, soak temperature, soak time and confinement.
49 CFR 176.5 - Application to vessels.
Code of Federal Regulations, 2013 CFR
2013-10-01
... purpose of carrying flammable or combustible liquid cargo in bulk in its own tanks, when only carrying... (explosive) materials, Class 3 (flammable liquids), or Division 2.1 (flammable gas) materials, in which case... Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY...
49 CFR 176.5 - Application to vessels.
Code of Federal Regulations, 2011 CFR
2011-10-01
... purpose of carrying flammable or combustible liquid cargo in bulk in its own tanks, when only carrying... (explosive) materials, Class 3 (flammable liquids), or Division 2.1 (flammable gas) materials, in which case... Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY...
49 CFR 176.5 - Application to vessels.
Code of Federal Regulations, 2012 CFR
2012-10-01
... purpose of carrying flammable or combustible liquid cargo in bulk in its own tanks, when only carrying... (explosive) materials, Class 3 (flammable liquids), or Division 2.1 (flammable gas) materials, in which case... Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY...
49 CFR 176.5 - Application to vessels.
Code of Federal Regulations, 2014 CFR
2014-10-01
... purpose of carrying flammable or combustible liquid cargo in bulk in its own tanks, when only carrying... (explosive) materials, Class 3 (flammable liquids), or Division 2.1 (flammable gas) materials, in which case... Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY...
49 CFR 176.5 - Application to vessels.
Code of Federal Regulations, 2010 CFR
2010-10-01
... purpose of carrying flammable or combustible liquid cargo in bulk in its own tanks, when only carrying... (explosive) materials, Class 3 (flammable liquids), or Division 2.1 (flammable gas) materials, in which case... Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY...
10 CFR 1045.15 - Classification and declassification presumptions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... criteria in § 1045.16 indicates otherwise: (1) Basic science: mathematics, chemistry, theoretical and experimental physics, engineering, materials science, biology and medicine; (2) Magnetic confinement fusion...); (5) Fact of use of safety features (e.g., insensitive high explosives, fire resistant pits) to lower...
10 CFR 1045.15 - Classification and declassification presumptions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... criteria in § 1045.16 indicates otherwise: (1) Basic science: mathematics, chemistry, theoretical and experimental physics, engineering, materials science, biology and medicine; (2) Magnetic confinement fusion...); (5) Fact of use of safety features (e.g., insensitive high explosives, fire resistant pits) to lower...
49 CFR 176.90 - Private automobiles.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 2 2013-10-01 2013-10-01 false Private automobiles. 176.90 Section 176.90 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... § 176.90 Private automobiles. A private automobile which is carrying any Class 1 (explosive) material...
49 CFR 176.90 - Private automobiles.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 2 2011-10-01 2011-10-01 false Private automobiles. 176.90 Section 176.90 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... § 176.90 Private automobiles. A private automobile which is carrying any Class 1 (explosive) material...
49 CFR 176.90 - Private automobiles.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Private automobiles. 176.90 Section 176.90 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... § 176.90 Private automobiles. A private automobile which is carrying any Class 1 (explosive) material...
49 CFR 176.90 - Private automobiles.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 2 2012-10-01 2012-10-01 false Private automobiles. 176.90 Section 176.90 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... § 176.90 Private automobiles. A private automobile which is carrying any Class 1 (explosive) material...
49 CFR 176.90 - Private automobiles.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 2 2014-10-01 2014-10-01 false Private automobiles. 176.90 Section 176.90 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... § 176.90 Private automobiles. A private automobile which is carrying any Class 1 (explosive) material...
Phase Diagram of Ammonium Nitrate
NASA Astrophysics Data System (ADS)
Dunuwille, Mihindra; Yoo, Choong-Shik
2013-06-01
Ammonium Nitrate (AN) has often been subjected to uses in improvised explosive devices, due to its wide availability as a fertilizer and its capability of becoming explosive with slight additions of organic and inorganic compounds. Yet, the origin of enhanced energetic properties of impure AN (or AN mixtures) is neither chemically unique nor well understood - resulting in rather catastrophic disasters in the past1 and thereby a significant burden on safety, in using ammonium nitrates even today. To remedy this situation, we have carried out an extensive study to investigate the phase stability of AN, in different chemical environments, at high pressure and temperature, using diamond anvil cells and micro-Raman spectroscopy. The present results confirm the recently proposed phase IV-to-IV' transition above 15 GPa2 and provide new constraints for the melting and phase diagram of AN to 40 GPa and 673 K. The present study has been supported by the U.S. DHS under Award Number 2008-ST-061-ED0001.
Analysis of the Explosive Internal Impact on the Barriers of Building Structures
NASA Astrophysics Data System (ADS)
Siwiński, Jarosław; Stolarski, Adam
2017-10-01
Work issues concern the safety of construction in relation to the hazards arising from explosion of the explosive charge located inside the building. The algorithms proposed in the paper for determining the parameters of the overpressure wave resulting from the detonation of clustered explosive charges, determine the basis for numerical simulation analyzes. Determination of the maximum value of peak pressure on the wave forehead of an internal explosion is presented on the basis of reflected wave analysis. Changeability in time of the internal explosion action describes the overpressure phase only. The analysis of the load caused by the internal explosive charge detonation was carried out under conditions of the undisturbed standard atmosphere. A load determination algorithm has been developed, taking into account the geometrical characteristics of the building barriers and the rooms as well as the parameters of environment in which the detonation occurs. The way of taking into account the influence of venting surfaces, i.e. windows, doors, ventilation ducts, on the overpressure wave parameters, was presented. Discloses a method to take into account the effect of the surface relief, i.e. windows, doors, air ducts, pressure wave parameters. Modification of the method for explosive overpressure determination presented by Cormie, Smith, Mays (2009), was proposed in the paper. This modification was developed on the basis of substitute impulse analysis for multiple overpressure pulses. In order to take into account the pressure distribution of explosive gases on the barrier surface, the method of modification the relationship for determination the changeability over time and space of the pressure of explosive gases, was presented. For this purpose, the changeability of the pressure wave angles of incidence to the barrier and the distance of the explosive charge to any point on the surface of the barrier, was taken into account. Based on the developed procedure, the overpressure changeability over time was determined for selected measurement points of the reference room. A comparative analysis of the determined loadings with experimental results and theoretical results of other authors, taken from the original work of Weerhiejm et al. (2012), was carried out.
Regulatory system reform of occupational health and safety in China.
Wu, Fenghong; Chi, Yan
2015-01-01
With the explosive economic growth and social development, China's regulatory system of occupational health and safety now faces more and more challenges. This article reviews the history of regulatory system of occupational health and safety in China, as well as the current reform of this regulatory system in the country. Comprehensive, a range of laws, regulations and standards that promulgated by Chinese government, duties and responsibilities of the regulatory departments are described. Problems of current regulatory system, the ongoing adjustments and changes for modifying and improving regulatory system are discussed. The aim of reform and the incentives to drive forward more health and safety conditions in workplaces are also outlined.
Regulatory system reform of occupational health and safety in China
WU, Fenghong; CHI, Yan
2015-01-01
With the explosive economic growth and social development, China’s regulatory system of occupational health and safety now faces more and more challenges. This article reviews the history of regulatory system of occupational health and safety in China, as well as the current reform of this regulatory system in the country. Comprehensive, a range of laws, regulations and standards that promulgated by Chinese government, duties and responsibilities of the regulatory departments are described. Problems of current regulatory system, the ongoing adjustments and changes for modifying and improving regulatory system are discussed. The aim of reform and the incentives to drive forward more health and safety conditions in workplaces are also outlined. PMID:25843565
Hang, Gui-Yun; Yu, Wen-Li; Wang, Tao; Wang, Jin-Tao; Li, Zhen
2017-09-19
To investigate and compare the differences of structures and properties of CL-20/TNT cocrystal and composite explosives, the CL-20/TNT cocrystal and composite models were established. Molecular dynamics simulations were performed to investigate the structures, mechanical properties, sensitivity, stabilities and detonation performance of cocrystal and composite models with COMPASS force field in NPT ensemble. The lattice parameters, mechanical properties, binding energies, interaction energy of trigger bond, cohesive energy density and detonation parameters were determined and compared. The results show that, compared with pure CL-20, the rigidity and stiffness of cocrystal and composite models decreased, while plastic properties and ductility increased, so mechanical properties can be effectively improved by adding TNT into CL-20 and the cocrystal model has better mechanical properties. The interaction energy of the trigger bond and the cohesive energy density is in the order of CL-20/TNT cocrystal > CL-20/TNT composite > pure CL-20, i.e., cocrystal model is less sensitive than CL-20 and the composite model, and has the best safety parameters. Binding energies show that the cocrystal model has higher intermolecular interaction energy values than the composite model, thus illustrating the better stability of the cocrystal model. Detonation parameters vary as CL-20 > cocrystal > composite, namely, the energy density and power of cocrystal and composite model are weakened; however, the CL-20/TNT cocrystal explosive still has desirable energy density and detonation performance. This results presented in this paper help offer some helpful guidance to better understand the mechanism of CL-20/TNT cocrystal explosives and provide some theoretical assistance for cocrystal explosive design.
Hang, Gui-Yun; Yu, Wen-Li; Wang, Tao; Wang, Jin-Tao
2018-06-09
"Perfect" and defective models of CL-20/TNT cocrystal explosive were established. Molecular dynamics methods were introduced to determine the structures and predict the comprehensive performances, including stabilities, sensitivity, energy density and mechanical properties, of the different models. The influences of crystal defects on the properties of these explosives were investigated and evaluated. The results show that, compared with the "perfect" model, the rigidity and toughness of defective models are decreased, while the ductility, tenacity and plastic properties are enhanced. The binding energies, interaction energy of the trigger bond, and the cohesive energy density of defective crystals declined, thus implying that stabilities are weakened, the explosive molecule is activated, trigger bond strength is diminished and safety is worsened. Detonation performance showed that, owing to the influence of crystal defects, the density is lessened, detonation pressure and detonation velocity are also declined, i.e., the power of defective explosive is decreased. In a word, the crystal defects may have a favorable effect on the mechanical properties, but have a disadvantageous influence on sensitivity, stability and energy density of CL-20/TNT cocrystal explosive. The results could provide theoretical guidance and practical instructions to estimate the properties of defective crystal models.
Two examples of industrial applications of shock physics research
NASA Astrophysics Data System (ADS)
Sanai, Mohsen
1996-05-01
An in-depth understanding of shock physics phenomena has led to many industrial applications. Two recent applications discussed in this paper are a method for assessing explosion safety in industrial plants and a bomb-resistant luggage container for widebody aircraft. Our explosion safety assessment is based on frequent use of computer simulation of postulated accidents to model in detail the detonation of energetic materials, the formation and propagation of the resulting airblast, and the projection of fragments of known material and mass. Using a general load-damage analysis technique referred to as the pressure-impulse (PI) method, we have developed a PC-based computer algorithm that includes a continually expanding library of PI load and damage curves, which can predict and graphically display common structural damage modes and the response of humans to postulated explosion accidents. A second commercial application of shock physics discussed here is a bomb-resistant luggage container for widebody aircraft that can protect the aircraft from a terrorist bomb hidden inside the luggage. This hardened luggage container (HLC) relies on blast management and debris containment provided by a flexible flow-through blanket woven from threads made with a strong lightweight material, such as Spectra or Kevlar. This mitigation blanket forms a continuous and seamless shell around the sides of the luggage container that are parallel to the aircraft axis, leaving the two ends of the container unprotected. When an explosion occurs, the mitigation blanket expands into a nearly circular shell that contains the flying debris while directing the flow into the adjacent containers. The HLC concept has been demonstrated through full-scale experiments conducted at SRI. We believe that these two examples represent a broad class of potential industrial hazard applications of the experimental, analytical, and computational tools possessed by the shock physics community.
Applying NASA's explosive seam welding
NASA Technical Reports Server (NTRS)
Bement, Laurence J.
1991-01-01
The status of an explosive seam welding process, which was developed and evaluated for a wide range of metal joining opportunities, is summarized. The process employs very small quantities of explosive in a ribbon configuration to accelerate a long-length, narrow area of sheet stock into a high-velocity, angular impact against a second sheet. At impact, the oxide films of both surface are broken up and ejected by the closing angle to allow atoms to bond through the sharing of valence electrons. This cold-working process produces joints having parent metal properties, allowing a variety of joints to be fabricated that achieve full strength of the metals employed. Successful joining was accomplished in all aluminum alloys, a wide variety of iron and steel alloys, copper, brass, titanium, tantalum, zirconium, niobium, telerium, and columbium. Safety issues were addressed and are as manageable as many currently accepted joining processes.
Internet Based Simulations of Debris Dispersion of Shuttle Launch
NASA Technical Reports Server (NTRS)
Bardina, Jorge; Thirumalainambi, Rajkumar
2004-01-01
The debris dispersion model (which dispersion model?) is so heterogeneous and interrelated with various factors, 3D graphics combined with physical models are useful in understanding the complexity of launch and range operations. Modeling and simulation in this area mainly focuses on orbital dynamics and range safety concepts, including destruct limits, telemetry and tracking, and population risk. Particle explosion modeling is the process of simulating an explosion by breaking the rocket into many pieces. The particles are scattered throughout their motion using the laws of physics eventually coming to rest. The size of the foot print explains the type of explosion and distribution of the particles. The shuttle launch and range operations in this paper are discussed based on the operations of the Kennedy Space Center, Florida, USA. Java 3D graphics provides geometric and visual content with suitable modeling behaviors of Shuttle launches.
The reactants equation of state for the tri-amino-tri-nitro-benzene (TATB) based explosive PBX 9502
NASA Astrophysics Data System (ADS)
Aslam, Tariq D.
2017-07-01
The response of high explosives (HEs), due to mechanical and/or thermal insults, is of great importance for both safety and performance. A major component of how an HE responds to these stimuli stems from its reactant equation of state (EOS). Here, the tri-amino-tri-nitro-benzene based explosive PBX 9502 is investigated by examining recent experiments. Furthermore, a complete thermal EOS is calibrated based on the functional form devised by Wescott, Stewart, and Davis [J. Appl. Phys. 98, 053514 (2005)]. It is found, by comparing to earlier calibrations, that a variety of thermodynamic data are needed to sufficiently constrain the EOS response over a wide range of thermodynamic state space. Included in the calibration presented here is the specific heat as a function of temperature, isobaric thermal expansion, and shock Hugoniot response. As validation of the resulting model, isothermal compression and isentropic compression are compared with recent experiments.
10 CFR 40.60 - Reporting requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... available and operable to perform the required safety function. (3) An event that requires unplanned medical treatment at a medical facility of an individual with spreadable radioactive contamination on the individual's clothing or body. (4) An unplanned fire or explosion damaging any licensed material or any device...
10 CFR 76.120 - Reporting requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... available and operable to perform the required safety function. (3) An event that requires unplanned medical treatment at a medical facility of an individual with radioactive contamination on the individual's clothing or body. (4) A fire or explosion damaging any radioactive material or any device, container, or...
10 CFR 76.120 - Reporting requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... available and operable to perform the required safety function. (3) An event that requires unplanned medical treatment at a medical facility of an individual with radioactive contamination on the individual's clothing or body. (4) A fire or explosion damaging any radioactive material or any device, container, or...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED... moving devices, including fans, blowers, and jet-type air movers, and all duct work shall be electrically... and explosive solvents with flash points below 80 °F. Work involving such materials shall be done only...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED... moving devices, including fans, blowers, and jet-type air movers, and all duct work shall be electrically... and explosive solvents with flash points below 80 °F. Work involving such materials shall be done only...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED... moving devices, including fans, blowers, and jet-type air movers, and all duct work shall be electrically... and explosive solvents with flash points below 80 °F. Work involving such materials shall be done only...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED... moving devices, including fans, blowers, and jet-type air movers, and all duct work shall be electrically... and explosive solvents with flash points below 80 °F. Work involving such materials shall be done only...
Code of Federal Regulations, 2010 CFR
2010-07-01
... effects on human beings, is intended for use in military operations to kill, seriously injure, or..., and emission, degradation, or breakdown elements of such ordnance or munitions. (10 U.S.C. 2710(e)(3..., to address the explosives safety, human health, or environmental risks presented by UXO, discarded...
40 CFR 264.1201 - Design and operating standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Design and operating standards. 264... FACILITIES Hazardous Waste Munitions and Explosives Storage § 264.1201 Design and operating standards. (a... Operating Procedure specifying procedures to ensure safety, security, and environmental protection. If these...
40 CFR 264.1201 - Design and operating standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Design and operating standards. 264... FACILITIES Hazardous Waste Munitions and Explosives Storage § 264.1201 Design and operating standards. (a... Operating Procedure specifying procedures to ensure safety, security, and environmental protection. If these...
40 CFR 264.1201 - Design and operating standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Design and operating standards. 264... FACILITIES Hazardous Waste Munitions and Explosives Storage § 264.1201 Design and operating standards. (a... Operating Procedure specifying procedures to ensure safety, security, and environmental protection. If these...
40 CFR 265.1201 - Design and operating standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... be stored in accordance with a Standard Operating Procedure specifying procedures to ensure safety... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Design and operating standards. 265... operating standards. (a) Hazardous waste munitions and explosives storage units must be designed and...
40 CFR 265.1201 - Design and operating standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... be stored in accordance with a Standard Operating Procedure specifying procedures to ensure safety... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Design and operating standards. 265... operating standards. (a) Hazardous waste munitions and explosives storage units must be designed and...
40 CFR 265.1201 - Design and operating standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... be stored in accordance with a Standard Operating Procedure specifying procedures to ensure safety... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Design and operating standards. 265... operating standards. (a) Hazardous waste munitions and explosives storage units must be designed and...
40 CFR 265.1201 - Design and operating standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... be stored in accordance with a Standard Operating Procedure specifying procedures to ensure safety... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Design and operating standards. 265... operating standards. (a) Hazardous waste munitions and explosives storage units must be designed and...
40 CFR 264.1201 - Design and operating standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Design and operating standards. 264... FACILITIES Hazardous Waste Munitions and Explosives Storage § 264.1201 Design and operating standards. (a... Operating Procedure specifying procedures to ensure safety, security, and environmental protection. If these...
30 CFR 75.1322 - Stemming boreholes.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Stemming boreholes. 75.1322 Section 75.1322... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1322 Stemming boreholes. (a) Only noncombustible material shall be used for stemming boreholes. (b) Stemming materials other than...
30 CFR 75.1322 - Stemming boreholes.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Stemming boreholes. 75.1322 Section 75.1322... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1322 Stemming boreholes. (a) Only noncombustible material shall be used for stemming boreholes. (b) Stemming materials other than...
30 CFR 75.1322 - Stemming boreholes
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Stemming boreholes 75.1322 Section 75.1322... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1322 Stemming boreholes (a) Only noncombustible material shall be used for stemming boreholes. (b) Stemming materials other than...
30 CFR 75.1322 - Stemming boreholes
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Stemming boreholes 75.1322 Section 75.1322... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1322 Stemming boreholes (a) Only noncombustible material shall be used for stemming boreholes. (b) Stemming materials other than...
Space Station Freedom combustion research
NASA Technical Reports Server (NTRS)
Faeth, G. M.
1992-01-01
Extended operations in microgravity, on board spacecraft like Space Station Freedom, provide both unusual opportunities and unusual challenges for combustion science. On the one hand, eliminating the intrusion of buoyancy provides a valuable new perspective for fundamental studies of combustion phenomena. On the other hand, however, the absence of buoyancy creates new hazards of fires and explosions that must be understood to assure safe manned space activities. These considerations - and the relevance of combustion science to problems of pollutants, energy utilization, waste incineration, power and propulsion systems, and fire and explosion hazards, among others - provide strong motivation for microgravity combustion research. The intrusion of buoyancy is a greater impediment to fundamental combustion studies than to most other areas of science. Combustion intrinsically heats gases with the resulting buoyant motion at normal gravity either preventing or vastly complicating measurements. Perversely, this limitation is most evident for fundamental laboratory experiments; few practical combustion phenomena are significantly affected by buoyancy. Thus, we have never observed the most fundamental combustion phenomena - laminar premixed and diffusion flames, heterogeneous flames of particles and surfaces, low-speed turbulent flames, etc. - without substantial buoyant disturbances. This precludes rational merging of theory, where buoyancy is of little interest, and experiments, that always are contaminated by buoyancy, which is the traditional path for developing most areas of science. The current microgravity combustion program seeks to rectify this deficiency using both ground-based and space-based facilities, with experiments involving space-based facilities including: laminar premixed flames, soot processes in laminar jet diffusion flames, structure of laminar and turbulent jet diffusion flames, solid surface combustion, one-dimensional smoldering, ignition and flame spread of liquids, drop combustion, and quenching of panicle-air flames. Unfortunately, the same features that make microgravity attractive for fundamental combustion experiments, introduce new fire and explosion hazards that have no counterpart on earth. For example, microgravity can cause broader flammability limits, novel regimes of flame spread, enhanced effects of flame radiation, slower fire detector response, and enhanced combustion upon injecting fire extinguishing agents, among others. On the other hand, spacecraft provide an opportunity to use 'fire-safe' atmospheres due to their controlled environment. Investigation of these problems is just beginning, with specific fire safety experiments supplementing the space based fundamental experiments listed earlier; thus, much remains to be done to develop an adequate technology base for fire and explosion safety considerations for spacecraft.
Explosive detection technology
NASA Astrophysics Data System (ADS)
Doremus, Steven; Crownover, Robin
2017-05-01
The continuing proliferation of improvised explosive devices is an omnipresent threat to civilians and members of military and law enforcement around the world. The ability to accurately and quickly detect explosive materials from a distance would be an extremely valuable tool for mitigating the risk posed by these devices. A variety of techniques exist that are capable of accurately identifying explosive compounds, but an effective standoff technique is still yet to be realized. Most of the methods being investigated to fill this gap in capabilities are laser based. Raman spectroscopy is one such technique that has been demonstrated to be effective at a distance. Spatially Offset Raman Spectroscopy (SORS) is a technique capable of identifying chemical compounds inside of containers, which could be used to detect hidden explosive devices. Coherent Anti-Stokes Raman Spectroscopy (CARS) utilized a coherent pair of lasers to excite a sample, greatly increasing the response of sample while decreasing the strength of the lasers being used, which significantly improves the eye safety issue that typically hinders laser-based detection methods. Time-gating techniques are also being developed to improve the data collection from Raman techniques, which are often hindered fluorescence of the test sample in addition to atmospheric, substrate, and contaminant responses. Ultraviolet based techniques have also shown significant promise by greatly improved signal strength from excitation of resonance in many explosive compounds. Raman spectroscopy, which identifies compounds based on their molecular response, can be coupled with Laser Induced Breakdown Spectroscopy (LIBS) capable of characterizing the sample's atomic composition using a single laser.
Materials for lithium-ion battery safety.
Liu, Kai; Liu, Yayuan; Lin, Dingchang; Pei, Allen; Cui, Yi
2018-06-01
Lithium-ion batteries (LIBs) are considered to be one of the most important energy storage technologies. As the energy density of batteries increases, battery safety becomes even more critical if the energy is released unintentionally. Accidents related to fires and explosions of LIBs occur frequently worldwide. Some have caused serious threats to human life and health and have led to numerous product recalls by manufacturers. These incidents are reminders that safety is a prerequisite for batteries, and serious issues need to be resolved before the future application of high-energy battery systems. This Review aims to summarize the fundamentals of the origins of LIB safety issues and highlight recent key progress in materials design to improve LIB safety. We anticipate that this Review will inspire further improvement in battery safety, especially for emerging LIBs with high-energy density.
Materials for lithium-ion battery safety
Liu, Kai
2018-01-01
Lithium-ion batteries (LIBs) are considered to be one of the most important energy storage technologies. As the energy density of batteries increases, battery safety becomes even more critical if the energy is released unintentionally. Accidents related to fires and explosions of LIBs occur frequently worldwide. Some have caused serious threats to human life and health and have led to numerous product recalls by manufacturers. These incidents are reminders that safety is a prerequisite for batteries, and serious issues need to be resolved before the future application of high-energy battery systems. This Review aims to summarize the fundamentals of the origins of LIB safety issues and highlight recent key progress in materials design to improve LIB safety. We anticipate that this Review will inspire further improvement in battery safety, especially for emerging LIBs with high-energy density. PMID:29942858
Integrated Data Collection Analysis (IDCA) Program - AN and Bullseye Smokeless Powder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandstrom, Mary M.; Brown, Geoffrey W.; Preston, Daniel N.
The Integrated Data Collection Analysis (IDCA) program is conducting a proficiency study for Small- Scale Safety and Thermal (SSST) testing of homemade explosives (HMEs). Described here are the results for impact, friction, electrostatic discharge, and differential scanning calorimetry analysis of ammonium nitrate (AN) mixed with Bullseye® smokeless powder (Gunpowder). The participants found the AN/Gunpowder to: 1) have a range of sensitivity to impact, comparable to or less than RDX, 2) be fairly insensitive to friction as measured by BAM and ABL, 3) have a range for ESD, from insensitive to more sensitive than PETN, and 4) have thermal sensitivity aboutmore » the same as PETN and Gunpowder. This effort, funded by the Department of Homeland Security (DHS), is putting the issues of safe handling of these materials in perspective with standard military explosives. The study is adding SSST testing results for a broad suite of different HMEs to the literature. Ultimately the study has the potential to suggest new guidelines and methods and possibly establish the SSST testing accuracies needed when developing safe handling practices for HMEs. Each participating testing laboratory uses identical test materials and preparation methods. Note, however, the test procedures differ among the laboratories. The testing performers involved are Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Indian Head Division, Naval Surface Warfare Center, (NSWC IHD), Sandia National Laboratories (SNL), and Air Force Research Laboratory (AFRL/RXQL). These tests are conducted as a proficiency study in order to establish some consistency in test protocols, procedures, and experiments and to compare results when these testing variables cannot be made consistent. Keywords: Small-scale safety testing, proficiency test, impact-, friction-, spark discharge-, thermal testing, round-robin test, safety testing protocols, HME, RDX, potassium perchlorate, potassium chlorate, sodium chlorate, sugar, dodecane, PETN, carbon, ammonium nitrate, Gunpowder, Bullseye® smokeless powder.« less
1994-08-01
Health and Safety Executive Magdalen House Stanley Precinct, Bootle Merseyside, L2O 3QZ United Kingdom P. A. MORETON AEA Technology Thomson House Risley...Warrington, WA3 6AT United Kingdom INTRODUCTION In 1992 the UK Health and Safety Commission published a report by the Advisory Committee on Dangerous...ADDRESS(ES) AEA Technology,Thomson House,Risley,Warrington, WA3 6AT, United Kingdom , 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING
2013-06-14
ever-evolving contemporary nature of external and internal threats to the safety and security of the American homeland, it becomes increasingly...Major Justin P. Hurt, 146 pages. With the ever-evolving contemporary nature of external and internal threats to the safety and security of the American...HAZMAT Hazardous Materials HRF Homeland Response Force HSPD Homeland Security Presidential Directive JFHQ Joint Force
40 CFR 63.1042 - Standards-Separator fixed roof.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Standards-Separator fixed roof. 63.1042 Section 63.1042 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS..., ignitable, explosive, reactive, or hazardous materials. (3) Opening of a safety device, as defined in § 63...
Code of Federal Regulations, 2014 CFR
2014-07-01
... following definitions apply in this subpart. Blasting agent. Any substance classified as a blasting agent by... by a liquid to form a flammable vapor-air mixture near the surface of the liquid. Igniter cord. A... initiate other explosives or blasting agents. Safety switch. A switch that provides shunt protection in...
Code of Federal Regulations, 2013 CFR
2013-07-01
... following definitions apply in this subpart. Blasting agent. Any substance classified as a blasting agent by... by a liquid to form a flammable vapor-air mixture near the surface of the liquid. Igniter cord. A... initiate other explosives or blasting agents. Safety switch. A switch that provides shunt protection in...
Code of Federal Regulations, 2011 CFR
2011-07-01
... following definitions apply in this subpart. Blasting agent. Any substance classified as a blasting agent by... by a liquid to form a flammable vapor-air mixture near the surface of the liquid. Igniter cord. A... initiate other explosives or blasting agents. Safety switch. A switch that provides shunt protection in...
10 CFR 39.31 - Labels, security, and transportation precautions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Labels, security, and transportation precautions. 39.31 Section 39.31 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL... explosion or fire. (2) The licensee shall lock and physically secure the transport package containing...
10 CFR 39.31 - Labels, security, and transportation precautions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Labels, security, and transportation precautions. 39.31 Section 39.31 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL... explosion or fire. (2) The licensee shall lock and physically secure the transport package containing...
10 CFR 39.31 - Labels, security, and transportation precautions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Labels, security, and transportation precautions. 39.31 Section 39.31 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL... explosion or fire. (2) The licensee shall lock and physically secure the transport package containing...
30 CFR 56.6405 - Firing devices.
Code of Federal Regulations, 2010 CFR
2010-07-01
... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Electric Blasting § 56... all electric detonators to be fired with the type of circuits used. Storage or dry cell batteries are not permitted as power sources. (b) Blasting machines shall be tested, repaired, and maintained in...
76 FR 4529 - Safety Zone; Underwater Hazard, Gravesend Bay, Brooklyn, NY
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-26
... divers, U.S. Navy Explosive Ordnance Disposal divers from Naval Weapons Station Earle conducted... Government and Indian tribes. Energy Effects We have analyzed this rule under Executive Order 13211, Actions Concerning Regulations That Significantly Affect Energy Supply, Distribution, or Use. We have determined that...
42 CFR 485.727 - Condition of participation: Disaster preparedness.
Code of Federal Regulations, 2013 CFR
2013-10-01
... written plan in operation, with procedures to be followed in the event of fire, explosion, or other disaster. The plan is developed and maintained with the assistance of qualified fire, safety, and other... participation: Disaster preparedness. The organization has a written plan, periodically rehearsed, with...
42 CFR 485.727 - Condition of participation: Disaster preparedness.
Code of Federal Regulations, 2012 CFR
2012-10-01
... written plan in operation, with procedures to be followed in the event of fire, explosion, or other disaster. The plan is developed and maintained with the assistance of qualified fire, safety, and other... participation: Disaster preparedness. The organization has a written plan, periodically rehearsed, with...
42 CFR 485.727 - Condition of participation: Disaster preparedness.
Code of Federal Regulations, 2014 CFR
2014-10-01
... written plan in operation, with procedures to be followed in the event of fire, explosion, or other disaster. The plan is developed and maintained with the assistance of qualified fire, safety, and other... participation: Disaster preparedness. The organization has a written plan, periodically rehearsed, with...
42 CFR 485.727 - Condition of participation: Disaster preparedness.
Code of Federal Regulations, 2011 CFR
2011-10-01
... written plan in operation, with procedures to be followed in the event of fire, explosion, or other disaster. The plan is developed and maintained with the assistance of qualified fire, safety, and other... participation: Disaster preparedness. The organization has a written plan, periodically rehearsed, with...
30 CFR 56.6304 - Primer protection.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Primer protection. 56.6304 Section 56.6304 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Primer protection. (a) Tamping shall not be done directly on a primer. (b) Rigid cartridges of explosives...
Numerical Simulation of Blast Action on Civil Structures in Urban Environment
NASA Astrophysics Data System (ADS)
Valger, Svetlana A.; Fedorova, Natalya N.; Fedorov, Alexander V.
2017-10-01
Nowadays, a lot of industrial accidents accompanied by explosions are happening throughout the world. Also, increase in the number of terrorist acts committed by means of explosions is observed. For improving safety of buildings and structures it is necessary to raise their resistance to explosive effects, as well as to be able to predict degree of potential damage upon explosive loads of various intensities. One of the principal goals in designing the structure resistant to explosive effects is to determine the dynamic response of structures to the impact of the blast wave. To this end, the transient pressure loads on the walls of the civil engineering structures are to be determined. The simulation of explosion is highly complicated, involving an explosion causing the shock wave propagation in air and then interaction with a structure. The engineering-level techniques permit one to estimate an explosive shock impact only for isolated buildings. The complexity of the building, the presence of nearby structures and the surrounding environment cannot be taken into account. Advanced computer aid engineering (CAE) software techniques combined with the latest methods of discrete three-dimensional city modelling permits one to simulate and analyse the effects of explosions in urban areas with a precision which previously was not possible. In the paper, the simulation results are presented of shock wave forming due to a spherical explosive charge and its propagation in the vicinity of geometrical configuration imitating an urban environment. The numerical simulation of a flow in the vicinity of prisms of different cross-sections and heights located on a flat plate was performed. The calculations are carried out in a three-dimensional non-viscous formulation using ANSYS software. On a basis of simulation results, a complex wave structures were analysed, and all the peculiarities of flows and pressure history records on building walls were described and explained. The possibility of a correct description of the non-stationary wave flow in the vicinity of the complex of obstacles is demonstrated. The results are compared with the experimental data on the pressure distribution in gauges located on the prism walls. The estimation of shock wave exposure intensity was performed to different objects.
Biotransformation of 2,4-dinitroanisole by a fungal Penicillium sp.
Schroer, Hunter W; Langenfeld, Kathryn L; Li, Xueshu; Lehmler, Hans-Joachim; Just, Craig L
2017-02-01
Insensitive munitions explosives are new formulations that are less prone to unintended detonation compared to traditional explosives. While these formulations have safety benefits, the individual constituents, such as 2,4-dinitroanisole (DNAN), have an unknown ecosystem fate with potentially toxic impacts to flora and fauna exposed to DNAN and/or its metabolites. Fungi may be useful in remediation and have been shown to degrade traditional nitroaromatic explosives, such as 2,4,6-trinitrotoluene and 2,4-dinitrotoluene, that are structurally similar to DNAN. In this study, a fungal Penicillium sp., isolated from willow trees and designated strain KH1, was shown to degrade DNAN in solution within 14 days. Stable-isotope labeled DNAN and an untargeted metabolomics approach were used to discover 13 novel transformation products. Penicillium sp. KH1 produced DNAN metabolites resulting from ortho- and para-nitroreduction, demethylation, acetylation, hydroxylation, malonylation, and sulfation. Incubations with intermediate metabolites such as 2-amino-4-nitroanisole and 4-amino-2-nitroanisole as the primary substrates confirmed putative metabolite isomerism and pathways. No ring-cleavage products were observed, consistent with other reports that mineralization of DNAN is an uncommon metabolic outcome. The production of metabolites with unknown persistence and toxicity suggests further study will be needed to implement remediation with Penicillium sp. KH1. To our knowledge, this is the first report on the biotransformation of DNAN by a fungus.
Biotransformation of 2,4-dinitroanisole by a fungal Penicillium sp
Schroer, Hunter W.; Langenfeld, Kathryn; Li, Xueshu; Lehmler, Hans-Joachim; Just, Craig L.
2018-01-01
Insensitive munitions explosives are new formulations that are less prone to unintended detonation compared to traditional explosives. While these formulations have safety benefits, the individual constituents, such as 2,4-dinitroanisole (DNAN), have an unknown ecosystem fate with potentially toxic impacts to flora and fauna exposed to DNAN and/or its metabolites. Fungi may be useful in remediation and have been shown to degrade traditional nitroaromatic explosives, such as 2,4,6-trinitroluene and 2,4-dinitrotoluene, that are structurally similar to DNAN. In this study, a fungal Penicillium sp., isolated from willow trees and designated strain KH1, was shown to degrade DNAN in solution within 14 days. Stable-isotope labeled DNAN and an untargeted metabolomics approach were used to discover thirteen novel transformation products. Penicillium sp. KH1 produced DNAN metabolites resulting from ortho- and para-nitroreduction, demethylation, acetylation, hydroxylation, malonylation, and sulfation. Incubations with intermediate metabolites such as 2-amino-4-nitroanisole and 4-amino-2-nitroanisole as the primary substrates confirmed putative metabolite isomerism and pathways. No ring-cleavage products were observed, consistent with other reports that mineralization of DNAN is an uncommon metabolic outcome. The production of metabolites with unknown persistence and toxicity suggests further study will be needed to implement remediation with Penicillium sp. KH1. To our knowledge, this is the first report on the biotransformation of DNAN by a fungus. PMID:27913891
Subsea pipeline isolation systems: Reliability and costs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masheder, R.R.
1995-12-31
On the night of 6/7 July 1988 a major oil production platform known as Piper Alpha in the UK sector of the North Sea was destroyed by explosion and fire, with the loss of 167 lives. This led to the appointment of Lord Cullen, a senior Scottish Judge, to hold a Public Inquiry into the Piper Alpha Disaster. The Cullen Enquiry Report consisting of 23 chapters set out in 2 volumes, was published on 12 November 1990. One of the important conclusions drawn by Lord Cullen resulted in a recommendation for studies to be conducted to consider ways of improvingmore » the reliability and reducing the costs of SSIVs (Subsea Isolation Valves) so that it is more often reasonably practicable to install them. To address the Cullen recommendations, a joint industry study was conducted by UKOOA (United Kingdom Offshore Operators Association) and the HSE/OSD (Health and Safety Executive Offshore Safety Division) in conjunction with independent consultants. The results of the studies and the conclusions drawn by UKOOA Pipeline Valve Group and the HSE Offshore Safety Division are presented in this paper.« less
NASA Technical Reports Server (NTRS)
Subbarao, S.; Halpert, G.
1985-01-01
The safety of lithium thionyl chloride cells has been a concern of JPL for some time in the development of these cells for NASA's use. Because the safety problems are complex and several issues are interrelated it was decided that it would be best to put together an organized review of the safety issues, which are reviewed here. Hazards are classified in three categories: (1) cell leakage, a problem dealing with construction or materials; (2) venting of toxic gases through seals and welds, considered a mild hazard in which electrolyte and gas is released; and (3) violent rupture or controlled rupture of cells with the possibility of explosion of the materials inside. These hazards and their effects are detailed along with possible ways of dealing with them.
NASA Astrophysics Data System (ADS)
Goldman, G. T.; Johnson, C.; Gutierrez, A.; Declet-Barreto, J.; Berman, E.; Bergman, A.
2017-12-01
When Hurricane Harvey made landfall outside Houston, Texas, the storm's wind speeds and unprecedented precipitation caused significant damage to the region's petrochemical infrastructure. Most notably, the company Arkema's Crosby facility suffered a power failure that led to explosions and incineration of six of its peroxide tanks. Chemicals released into the air from the explosions sent 15 emergency responders to the hospital with severe respiratory conditions and led to the evacuation of hundreds of surrounding households. Other petrochemical facilities faced other damages that resulted in unsafe and acute chemical releases into the air and water. What impacts did such chemical disasters have on the surrounding communities and emergency responders during Harvey's aftermath? What steps might companies have taken to prevent such chemical releases? And what chemical safety policies might have ensured that such disaster risks were mitigated? In this talk we will report on a survey of the extent of damage to Houston's oil and gas infrastructure and related chemical releases and discuss the role of federal chemical safety policy in preventing and mitigating the potential for such risks for future storms and other extreme weather and climate events. We will also discuss how these chemical disasters created acute toxics exposures on environmental justice communities already overburdened with chronic exposures from the petrochemical industry.
Code of Federal Regulations, 2010 CFR
2010-01-01
... when— (1) Proper use is made of seats, belts, and all other safety design provisions; (2) The wheels... so that if they break loose they will be unlikely to: (i) Cause direct injury to occupants; (ii) Penetrate fuel tanks or lines or cause fire or explosion hazard by damage to adjacent systems; or (iii...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Rock dusting. 75.402 Section 75.402 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Combustible Materials and Rock Dusting § 75.402 Rock dusting... or too high in incombustible content to propagate an explosion, shall be rock dusted to within 40...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Rock dusting. 75.402 Section 75.402 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Combustible Materials and Rock Dusting § 75.402 Rock dusting... or too high in incombustible content to propagate an explosion, shall be rock dusted to within 40...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Rock dusting. 75.402 Section 75.402 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Combustible Materials and Rock Dusting § 75.402 Rock dusting... or too high in incombustible content to propagate an explosion, shall be rock dusted to within 40...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Rock dusting. 75.402 Section 75.402 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Combustible Materials and Rock Dusting § 75.402 Rock dusting... or too high in incombustible content to propagate an explosion, shall be rock dusted to within 40...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Rock dusting. 75.402 Section 75.402 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Combustible Materials and Rock Dusting § 75.402 Rock dusting... or too high in incombustible content to propagate an explosion, shall be rock dusted to within 40...
10 CFR 36.53 - Operating and emergency procedures.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Operating and emergency procedures. 36.53 Section 36.53 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Operation... the source storage pool; (6) A prolonged loss of electrical power; (7) A fire alarm or explosion in...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Reports. 36.83 Section 36.83 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Records § 36.83 Reports. (a) In... position. (2) Any fire or explosion in a radiation room. (3) Damage to the source racks. (4) Failure of the...
10 CFR 36.53 - Operating and emergency procedures.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Operating and emergency procedures. 36.53 Section 36.53 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Operation... the source storage pool; (6) A prolonged loss of electrical power; (7) A fire alarm or explosion in...
10 CFR 36.53 - Operating and emergency procedures.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Operating and emergency procedures. 36.53 Section 36.53 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Operation... the source storage pool; (6) A prolonged loss of electrical power; (7) A fire alarm or explosion in...
76 FR 73775 - Information Collection Activities
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-29
... (radioactive) material; (2) more than 25 kg (55 lbs) of a Division 1.1, 1.2, or 1.3 (explosive) material; (3... shipment of hazardous materials in a bulk packaging with a capacity equal to or greater than 13,248 L (3... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No...
Code of Federal Regulations, 2012 CFR
2012-07-01
... diesel engine with an intake system, exhaust system, and a safety shutdown system installed. Dry exhaust.... A system connected to the outlet of the diesel engine which includes, but is not limited to, the... constructed that flame or sparks from the diesel engine cannot propagate an explosion of a flammable mixture...
Code of Federal Regulations, 2014 CFR
2014-07-01
... diesel engine with an intake system, exhaust system, and a safety shutdown system installed. Dry exhaust.... A system connected to the outlet of the diesel engine which includes, but is not limited to, the... constructed that flame or sparks from the diesel engine cannot propagate an explosion of a flammable mixture...
30 CFR 56.6307 - Drill stem loading.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drill stem loading. 56.6307 Section 56.6307 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Drill stem loading. Explosive material shall not be loaded into blastholes with drill stem equipment or...
30 CFR 56.6307 - Drill stem loading.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drill stem loading. 56.6307 Section 56.6307 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Drill stem loading. Explosive material shall not be loaded into blastholes with drill stem equipment or...
30 CFR 56.6307 - Drill stem loading.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drill stem loading. 56.6307 Section 56.6307 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Drill stem loading. Explosive material shall not be loaded into blastholes with drill stem equipment or...
30 CFR 56.6307 - Drill stem loading.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drill stem loading. 56.6307 Section 56.6307 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Drill stem loading. Explosive material shall not be loaded into blastholes with drill stem equipment or...
30 CFR 56.6307 - Drill stem loading.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drill stem loading. 56.6307 Section 56.6307 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Drill stem loading. Explosive material shall not be loaded into blastholes with drill stem equipment or...
49 CFR 173.62 - Specific packaging requirements for explosives.
Code of Federal Regulations, 2014 CFR
2014-10-01
... material. No more than two segregated initiation devices per gun may be carried on the same motor vehicle... other or any other article or material carried in the vehicle; and (ii) The assembled gun packed on the... HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS...
Code of Federal Regulations, 2011 CFR
2011-07-01
... which is initiated by a safety fuse. Blasting circuit means the electrical circuit used to fire one or... enclosure through which an electric circuit is carried to one or more cables from a single incoming feed... organization which hires one or more persons to work for wages or salary. Emulsion means an explosive material...
Code of Federal Regulations, 2010 CFR
2010-07-01
... which is initiated by a safety fuse. Blasting circuit means the electrical circuit used to fire one or... enclosure through which an electric circuit is carried to one or more cables from a single incoming feed... organization which hires one or more persons to work for wages or salary. Emulsion means an explosive material...
Code of Federal Regulations, 2013 CFR
2013-07-01
... which is initiated by a safety fuse. Blasting circuit means the electrical circuit used to fire one or... enclosure through which an electric circuit is carried to one or more cables from a single incoming feed... organization which hires one or more persons to work for wages or salary. Emulsion means an explosive material...
Usmanov, D T; Chen, L C; Yu, Z; Yamabe, S; Sakaki, S; Hiraoka, K
2015-04-01
The high-sensitive detection of explosives is of great importance for social security and safety. In this work, the ion source for atmospheric pressure chemical ionization/mass spectrometry using alternating current corona discharge was newly designed for the analysis of explosives. An electromolded fine capillary with 115 µm inner diameter and 12 mm long was used for the inlet of the mass spectrometer. The flow rate of air through this capillary was 41 ml/min. Stable corona discharge could be maintained with the position of the discharge needle tip as close as 1 mm to the inlet capillary without causing the arc discharge. Explosives dissolved in 0.5 µl methanol were injected to the ion source. The limits of detection for five explosives with 50 pg or lower were achieved. In the ion/molecule reactions of trinitrotoluene (TNT), the discharge products of NOx (-) (x = 2,3), O3 and HNO3 originating from plasma-excited air were suggested to contribute to the formation of [TNT - H](-) (m/z 226), [TNT - NO](-) (m/z 197) and [TNT - NO + HNO3 ](-) (m/z 260), respectively. Formation processes of these ions were traced by density functional theory calculations. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Li, Jia; Wang, Deming; Huang, Zonghou
2017-01-01
Coal dust explosions (CDE) are one of the main threats to the occupational safety of coal miners. Aiming to identify and assess the risk of CDE, this paper proposes a novel method of fuzzy fault tree analysis combined with the Visual Basic (VB) program. In this methodology, various potential causes of the CDE are identified and a CDE fault tree is constructed. To overcome drawbacks from the lack of exact probability data for the basic events, fuzzy set theory is employed and the probability data of each basic event is treated as intuitionistic trapezoidal fuzzy numbers. In addition, a new approach for calculating the weighting of each expert is also introduced in this paper to reduce the error during the expert elicitation process. Specifically, an in-depth quantitative analysis of the fuzzy fault tree, such as the importance measure of the basic events and the cut sets, and the CDE occurrence probability is given to assess the explosion risk and acquire more details of the CDE. The VB program is applied to simplify the analysis process. A case study and analysis is provided to illustrate the effectiveness of this proposed method, and some suggestions are given to take preventive measures in advance and avoid CDE accidents. PMID:28793348
A Combustion Model for the TWA 800 Center-Wing Fuel Tank Explosion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baer, M.R.; Gross, R.J.
1998-10-02
In support of the National Transportation Safety Board investigation of the TWA Flight 800 accident, a combined experimental/computational effort was conducted that focused on quarter-scale testing and simulation of the fuel-air explosion in the Boeing 747 center wing fuel tank. This report summarizes the modeling approach used at Sandia National Laboratories. In this approach approximations are introduced that capture the essential physics associated with turbulent flame propagation in multiple compartment fuel tanks. This model efficiently defines the pressure loading conditions during a jet-fuel air explosion in a fuel tank confinement. Modeling calculations compare favorably with a variety of experimental quarter-scalemore » tests conducted in rigid confinement. The modeling describes well the overpressure history in several geometry configurations. Upon demonstrating a reasonable comparison to experimental observations, a parametric study of eight possible ignition sources is then discussed. Model calculations demonstrate that different loading conditions arise as the location of the ignition event is varied. By comparing the inferred damage and calculated impulses to that seen in the recovered tank, it maybe possible to reduce the number of likely sources. A possible extension of this work to better define tank damage includes coupling the combustion model as a pressure loading routine for structural failure analysis.« less