Sample records for explosive summit eruption

  1. Catalog of Tephra Samples from Kilauea's Summit Eruption, March-December 2008

    USGS Publications Warehouse

    Wooten, Kelly M.; Thornber, Carl R.; Orr, Tim R.; Ellis, Jennifer F.; Trusdell, Frank A.

    2009-01-01

    The opening of a new vent within Halema'uma'u Crater in March 2008 ended a 26-year period of no eruptive activity at the summit of Kilauea Volcano. It also heralded the first explosive activity at Kilauea's summit since 1924 and the first of eight discrete explosive events in 2008. At the onset of the eruption, the Hawaiian Volcano Observatory (HVO) initiated a rigorous program of sample collection to provide a temporally constrained suite of tephra samples for petrographic, geochemical, and isotopic studies. Petrologic studies help us understand conditions of magma generation at depth; processes related to transport, storage, and mixing of magma within the shallow summit region; and specific circumstances leading to explosive eruptions. This report provides a catalog of tephra samples erupted at Kilauea's summit from March 19, 2008, through the end of 2008. The Kilauea 2008 Summit Sample Catalog is tabulated in the accompanying Microsoft Excel file, of2009-1134.xls (four file types linked on right). The worksheet in this file provides sampling information and sample descriptions. Contextual information for this catalog is provided below and includes (1) a narrative of 2008 summit eruptive activity, (2) a description of sample collection methods, (3) a scheme for characterizing a diverse range in tephra lithology, and (4) an explanation of each category of sample information (column headers) in the Microsoft Excel worksheet.

  2. Kīlauea summit eruption—Lava returns to Halemaʻumaʻu

    USGS Publications Warehouse

    Babb, Janet L.; Wessells, Stephen M.; Neal, Christina A.

    2017-10-06

    In March 2008, a new volcanic vent opened within Halemaʻumaʻu, a crater at the summit of Kīlauea Volcano in Hawaiʻi Volcanoes National Park on the Island of Hawaiʻi. This new vent is one of two ongoing eruptions on the volcano. The other is on Kīlauea’s East Rift Zone, where vents have been erupting nearly nonstop since 1983. The duration of these simultaneous summit and rift zone eruptions on Kīlauea is unmatched in at least 200 years.Since 2008, Kīlauea’s summit eruption has consisted of continuous degassing, occasional explosive events, and an active, circulating lava lake. Because of ongoing volcanic hazards associated with the summit vent, including the emission of high levels of sulfur dioxide gas and fragments of hot lava and rock explosively hurled onto the crater rim, the area around Halemaʻumaʻu remains closed to the public as of 2017.Through historical photos of past Halemaʻumaʻu eruptions and stunning 4K imagery of the current eruption, this 24-minute program tells the story of Kīlauea Volcano’s summit lava lake—now one of the two largest lava lakes in the world. It begins with a Hawaiian chant that expresses traditional observations of a bubbling lava lake and reflects the connections between science and culture that continue on Kīlauea today.The video briefly recounts the eruptive history of Halemaʻumaʻu and describes the formation and continued growth of the current summit vent and lava lake. It features USGS Hawaiian Volcano Observatory scientists sharing their insights on the summit eruption—how they monitor the lava lake, how and why the lake level rises and falls, why explosive events occur, the connection between Kīlauea’s ongoing summit and East Rift Zone eruptions, and the impacts of the summit eruption on the Island of Hawaiʻi and beyond. The video is also available at the following U.S. Geological Survey Multimedia Gallery link (video hosted on YouTube): Kīlauea summit eruption—Lava returns to Halemaʻumaʻu

  3. Mechanism of explosive eruptions of Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Dvorak, J.J.

    1992-01-01

    A small explosive eruption of Kilauea Volcano, Hawaii, occurred in May 1924. The eruption was preceded by rapid draining of a lava lake and transfer of a large volume of magma from the summit reservoir to the east rift zone. This lowered the magma column, which reduced hydrostatic pressure beneath Halemaumau and allowed groundwater to flow rapidly into areas of hot rock, producing a phreatic eruption. A comparison with other events at Kilauea shows that the transfer of a large volume of magma out of the summit reservoir is not sufficient to produce a phreatic eruption. For example, the volume transferred at the beginning of explosive activity in May 1924 was less than the volumes transferred in March 1955 and January-February 1960, when no explosive activity occurred. Likewise, draining of a lava lake and deepening of the floor of Halemaumau, which occurred in May 1922 and August 1923, were not sufficient to produce explosive activity. A phreatic eruption of Kilauea requires both the transfer of a large volume of magma from the summit reservoir and the rapid removal of magma from near the surface, where the surrounding rocks have been heated to a sufficient temperature to produce steam explosions when suddenly contacted by groundwater. ?? 1992 Springer-Verlag.

  4. Volcano Inflation prior to Gas Explosions at Semeru Volcano, Indonesia

    NASA Astrophysics Data System (ADS)

    Nishimura, T.; Iguchi, M.; Kawaguchi, R.; Surono, S.; Hendrasto, M.; Rosadi, U.

    2010-12-01

    Semeru volcano in east Java, Indonesia, is well known to exhibit small vulcanian eruptions at the summit crater. Such eruptive activity stopped on April 2009, but volcanic earthquakes started to occur in August and a lava dome was found in the summit crater on November. Since then, lava sometimes flows downward on the slope and small explosions emitting steams from active crater frequently occur every a few to a few tens of minutes. Since the explosions repeatedly occur with short intervals and the active crater is located close to the summit with an altitude of 3676m, the explosions are considered to originate from the gas (steams) from magma itself in the conduit and not to be caused by interactions of magma with the underground water. We installed a tiltmeter at the summit on March 2010 to study the volcanic eruption mechanisms. The tiltmeter (Pinnacle hybrid type, accuracy of measurement is 1 nrad ) was set at a depth of about 1 m around the summit about 500 m north from the active crater. The data stored every 1 s in the internal memory was uploaded every 6 hours by a small data logger with GPS time correction function. More than one thousand gas explosion events were observed for about 2 weeks. We analyze the tilt records as well as seismic signals recorded at stations of CVGHM, Indonesia. The tilt records clearly show uplift of the summit about 20 to 30 seconds before each explosion. Uplifts before large explosions reach to about 20 - 30 n rad, which is almost equivalent to the volume increase of about 100 m^3 beneath the crater. To examine the eruption magnitude dependence on the uplift, we classify the eruptions into five groups based on the amplitudes of seismograms associated with explosions. We stack the tilt records for these groups to reduce noises in the signals and to get general characteristics of the volcano inflations. The results show that the amplitudes of uplifts are almost proportional to the amplitudes of explosion earthquakes while the preceding time of uplift is almost constant (20 s - 30 s). This implies that the inflation rate controls the magnitude of gas explosions. The observed preceding time of inflation prior to gas explosions are much shorter than those for the inflations before magmatic explosions (Nishi et al., 2007; Iguchi et al., 2008), which suggests that the pressurization processes in shallow conduit for gas explosions are different from that for explosions emitting ashes.

  5. Analyses of Etna Eruptive Activity From 18th Century and Characterization of Flank Eruptions

    NASA Astrophysics Data System (ADS)

    del Carlo, P.; Branca, S.; Coltelli, M.

    2003-12-01

    Etna explosive activity has usually been considered subordinate with respect to the effusive eruptions. Nevertheless, in the last decade and overall after the 2001 and 2002 flank eruptions, explosive activity has drawn the attention of the scientific and politic communities owing to the damages that the long-lasting ash fall caused to Sicily's economy. We analyzed the eruptions from the 18th century to find some analogous behavior of Etna in the past. A study of the Etna historical record (Branca and Del Carlo, 2003) evidenced that after the 1727 eruption, there are no more errors in the attribution of the year of the eruption. Furthermore from this time on, the scientific quality of the chronicles allowed us to obtain volcanological information and to estimate the magnitude of the major explosive events. The main goal of this work was to characterize the different typologies of Etna eruptions in the last three centuries. Meanwhile, we have tried to find the possible relationship between the two kinds of activity (explosive and effusive) in order to understand the complexity of the eruptive phenomena and define the short-term behavior of Etna. On the base of the predominance of the eruptive typology (effusive or explosive) we have classified the flank eruptions in three classes: i) Type 1: almost purely effusive; ii) Type 2: the intensity of explosive activity comparable with the effusive; iii) Type 3: almost purely explosive with minor lava effusion (only the 1763 La Montagnola and 2002 eruptions belong to this class). Long-lasting explosive activity is produced by flank eruptions with continuous ash emission and prolonged fallout on the flanks (e.g. 1763, 1811, 1852-53, 1886, 1892, 2001 and 2002 eruptions). At summit craters continuous activity is weaker, whereas the strongest explosive eruptions are short-lived events. Furthermore, from the 18th to 20th century there were several years of intense and discontinuous summit explosive activity, from high strombolian to fire fountain. This activity produced abundant ash fall in the whole volcano area reaching the Calabria region and Malta Island. Generally, some of these periods preceded important flank eruptions. Concerning the occurrence of the higher magnitude explosive events, we observe that at least one subplinian eruption occurred both in the 18th and 19th centuries. In the 20th century the increased quality of the scientific reports has allowed to recognize 6 subplinian eruptions from summit craters.

  6. Cycles of explosive and effusive eruptions at Kīlauea Volcano, Hawai‘i

    USGS Publications Warehouse

    Swanson, Don; Rose, Timothy R.; Mucek, Adonara E; Garcia, Michael O.; Fiske, Richard S.; Mastin, Larry G.

    2014-01-01

    The subaerial eruptive activity at Kīlauea Volcano (Hawai‘i) for the past 2500 yr can be divided into 3 dominantly effusive and 2 dominantly explosive periods, each lasting several centuries. The prevailing style of eruption for 60% of this time was explosive, manifested by repeated phreatic and phreatomagmatic activity in a deep summit caldera. During dominantly explosive periods, the magma supply rate to the shallow storage volume beneath the summit dropped to only a few percent of that during mainly effusive periods. The frequency and duration of explosive activity are contrary to the popular impression that Kīlauea is almost unceasingly effusive. Explosive activity apparently correlates with the presence of a caldera intersecting the water table. The decrease in magma supply rate may result in caldera collapse, because erupted or intruded magma is not replaced. Glasses with unusually high MgO, TiO2, and K2O compositions occur only in explosive tephra (and one related lava flow) and are consistent with disruption of the shallow reservoir complex during caldera formation. Kīlauea is a complex, modulated system in which melting rate, supply rate, conduit stability (in both mantle and crust), reservoir geometry, water table, and many other factors interact with one another. The hazards associated with explosive activity at Kīlauea’s summit would have major impact on local society if a future dominantly explosive period were to last several centuries. The association of lowered magma supply, caldera formation, and explosive activity might characterize other basaltic volcanoes, but has not been recognized.

  7. Upward migration of the explosion sources at Sakurajima volcano, Japan, revield by a seismic network in the close vocinity of the summit crater

    NASA Astrophysics Data System (ADS)

    Ohminato, T.; Kaneko, T.; Koyama, T.; Watanabe, A.; Takeo, M.; Iguchi, M.

    2011-12-01

    Observations in the vicinity of summit area of active volcanoes are important not only for understanding physical processes in the volcanic conduit but also for eruption prediction and volcanic hazards mitigation. It is, however, challenging to install observation sensors near active vents because of the danger of sudden eruptions. We have been developing a volcano observation system based on an unmanned aerial vehicle (UAV) for safe observations near active volcanic vents. We deployed an unmanned autonomous helicopter which can aviate autonomously along a previously programmed path within a meter accuracy using real-time kinematics differential GPS equipment. The maximum flight time, flight distance, and payload are 90 minutes, 5km, and 10kg, respectively. By using the UAV, we installed seismic stations at the summit area of Sakurajima volcano, Japan. Since 2006, explosive eruptions have been continuing at the reopened Showa crater at the eastern flank near the summit of Sakurajima. Entering the area within 2 km from the active craters is prohibited, and thus there were no observation station in the summit area. From November 2nd to 12th, 2009, and from November 2nd to 12th, 2010, we conducted seismic station installation in Sakurajima summit area using UAV and successfully installed four seismic stations within 2km from the active craters. Since the installation of the seismic stations, we have succeeded in acquiring waveform data accompanying more than 500 moderate eruptions at Showa-crater. Except for the mechanical resonance contamination at 35Hz, the recorded waveforms are as good as that recorded at permanent stations in Sakurajima. Since the beginning of the observation in the vicinity of the summit crater, the normalized amplitudes of the signals accompanying eruptions at Showa crater had been almost steady. However, after early April 2011, gradual increase of the normalized amplitude started, and this increasing trend is continuing at the time of the abstract submission. This increasing trend of the normalized amplitude strongly suggests upward migration of the source of the explosive eruptions at Showa-crater. The upward migration may suggest further intensification of the activity of Sakurajima in the near future.

  8. Acoustic and tephra records of explosive eruptions at West Mata submarine volcano, NE Lau Basin

    NASA Astrophysics Data System (ADS)

    Dziak, R. P.; Bohnenstiehl, D. R.; Baker, E. T.; Matsumoto, H.; Caplan-Auerbach, J.; Mack, C. J.; Embley, R. W.; Merle, S. G.; Walker, S. L.; Lau, T. A.

    2013-12-01

    West Mata is a 1200 m deep submarine volcano where explosive boninite eruptions were directly observed in May 2009. Here we present long-term acoustic and tephra records of West Mata explosion activity from three deployments of hydrophone and particle sensor moorings beginning on 8 January 2009. These records provide insights into the character of explosive magma degassing occurring at the volcano's summit vent until the decline and eventual cessation of the eruption during late 2010 and early 2011. The detailed acoustic records show three types of volcanic signals, 1) discrete explosions, 2) diffuse explosions, and 3) volcanic tremor. Discrete explosions are short duration, high amplitude broad-band signals caused by rapid gas bubble release. Diffuse signals are likely a result of 'trap-door' explosions where a quench cap of cooled lava forms over the magmatic vent but gas pressure builds underneath the cap. This pressure eventually causes the cap to breach and gas is explosively released until pressure reduces and the cap once again forms. Volcanic tremor is typified by narrow-band, long-duration signals with overtones, as well as narrow-band tones that vary frequency over time between 60-100 Hz. The harmonic tremor is thought to be caused by modulation of rapid, short duration gas explosion pulses and not a magma resonance phenomenon. The variable frequency tones may be caused by focused degassing or hydrothermal fluid flow from a narrow volcanic vent or conduit. High frequency (>30 Hz) tremor-like bands of energy are a result of interference caused by multipath wide-band signals, including sea-surface reflected acoustic phases, that arrive at the hydrophone with small time delays. Acoustic data suggest that eruption velocities for a single explosion range from 4-50 m s-1, although synchronous arrival of explosion signals has complicated our efforts to estimate long-term gas flux. Single explosions exhibit ~4-40 m3 s-1 of total volume flux (gas and rock) but with durations of only 20-30 ms. Interestingly, explosion activity increased at West Mata for several months, observed at more distant hydrophone stations, following the September 2009 8.1 Mw Samoan earthquake. The tephra and hydrophone data were only synchronously recorded from January to May 2010, but these data indicate a repeated record of summit explosions followed by down flank debris flows, an important process in the construction of the volcanic edifice. Bathymetric differencing between 2010 and 2011 shows two large negative anomalies at the summit and a broad positive anomaly on the east flank, interpreted as a major slump that removed part of the summit during the final magma withdrawal related to formation of the summit pit crater.

  9. 40Ar/39Ar dating of the eruptive history of Mount Erebus, Antarctica: Summit flows, tephra, and caldera collapse

    USGS Publications Warehouse

    Harpel, C.J.; Kyle, P.R.; Esser, R.P.; McIntosh, W.C.; Caldwell, D.A.

    2004-01-01

    Eruptive activity has occurred in the summit region of Mount Erebus over the last 95 ky, and has included numerous lava flows and small explosive eruptions, at least one plinian eruption, and at least one and probably two caldera-forming events. Furnace and laser step-heating 40Ar/39Ar ages have been determined for 16 summit lava flows and three englacial tephra layers erupted from Mount Erebus. The summit region is composed of at least one or possibly two superimposed calderas that have been filled by post-caldera lava flows ranging in age from 17 ?? 8 to 1 ?? 5 ka. Dated pre-caldera summit flows display two age populations at 95 ?? 9 to 76 ?? 4 ka and 27 ?? 3 to 21 ??4 ka of samples with tephriphonolite and phonolite compositions, respectively. A caldera-collapse event occurred between 25 and 11 ka. An older caldera-collapse event is likely to have occurred between 80 and 24 ka. Two englacial tephra layers from the flanks of Mount Erebus have been dated at 71 ?? 5 and 15 ?? 4 ka. These layers stratigraphically bracket 14 undated tephra layers, and predate 19 undated tephra layers, indicating that small-scale explosive activity has occurred throughout the late Pleistocene and Holocene eruptive history of Mount Erebus. A distal, englacial plinian-fall tephra sample has an age of 39 ?? 6 ka and may have been associated with the older of the two caldera-collapse events. A shift in magma composition from tephriphonolite to phonolite occurred at around 36 ka. ?? Springer-Verlag 2004.

  10. Merapi 2010 eruption—Chronology and extrusion rates monitored with satellite radar and used in eruption forecasting

    USGS Publications Warehouse

    Pallister, John S.; Schneider, David; Griswold, Julia P.; Keeler, Ronald H.; Burton, William C.; Noyles, Christopher; Newhall, Christopher G.; Ratdomopurbo, Antonius

    2013-01-01

    Despite dense cloud cover, satellite-borne commercial Synthetic Aperture Radar (SAR) enabled frequent monitoring of Merapi volcano's 2010 eruption. Near-real-time interpretation of images derived from the amplitude of the SAR signals and timely delivery of these interpretations to those responsible for warnings, allowed satellite remote sensing for the first time to play an equal role with in situ seismic, geodetic and gas monitoring in guiding life-saving decisions during a major volcanic crisis. Our remotely sensed data provide an observational chronology for the main phase of the 2010 eruption, which lasted 12 days (26 October–7 November, 2010). Unlike the prolonged low-rate and relatively low explosivity dome-forming and collapse eruptions of recent decades at Merapi, the eruption began with an explosive eruption that produced a new summit crater on 26 October and was accompanied by an ash column and pyroclastic flows that extended 8 km down the flanks. This initial explosive event was followed by smaller explosive eruptions on 29 October–1 November, then by a period of rapid dome growth on 1–4 November, which produced a summit lava dome with a volume of ~ 5 × 106 m3. A paroxysmal VEI 4 magmatic eruption (with ash column to 17 km altitude) destroyed this dome, greatly enlarged the new summit crater and produced extensive pyroclastic flows (to ~ 16 km radial distance in the Gendol drainage) and surges during the night of 4–5 November. The paroxysmal eruption was followed by a period of jetting of gas and tephra and by a second short period (12 h) of rapid dome growth on 6 November. The eruption ended with low-level ash and steam emissions that buried the 6 November dome with tephra and continued at low levels until seismicity decreased to background levels by about 23 November. Our near-real-time commercial SAR documented the explosive events on 26 October and 4–5 November and high rates of dome growth (> 25 m3 s− 1). An event tree analysis for the previous 2006 Merapi eruption indicated that for lava dome extrusion rates > 1.2 m3 s− 1, the probability of a large (1872-scale) eruption was ~ 10%. Consequently, the order-of-magnitude greater rates in 2010, along with the explosive start of the eruption on 26 October, the large volume of lava accumulating at the summit by 4 November, and the rapid and large increases in seismic energy release, deformation and gas emissions were the basis for warnings of an unusually large eruption by the Indonesian Geological Agency's Center for Volcanology and Geologic Hazard Mitigation (CVGHM) and their Volcano Research and Technology Development Center (BPPTK) in Yogyakarta — warnings that saved thousands of lives.

  11. Seismic detection of increased degassing before Kīlauea's 2008 summit explosion.

    PubMed

    Johnson, Jessica H; Poland, Michael P

    2013-01-01

    The 2008 explosion that started a new eruption at the summit of Kīlauea Volcano, Hawai'i, was not preceded by a dramatic increase in earthquakes nor inflation, but was associated with increases in SO2 emissions and seismic tremor. Here we perform shear wave splitting analysis on local earthquakes spanning the onset of the eruption. Shear wave splitting measures seismic anisotropy and is traditionally used to infer changes in crustal stress over time. We show that shear wave splitting may also vary due to changes in volcanic degassing. The orientation of fast shear waves at Kīlauea is usually controlled by structure, but in 2008 showed changes with increased SO2 emissions preceding the start of the summit eruption. This interpretation for changing anisotropy is supported by corresponding decreases in Vp/Vs ratio. Our result demonstrates a novel method for detecting changes in gas flux using seismic observations and provides a new tool for monitoring under-instrumented volcanoes.

  12. Seismic detection of increased degassing before Kīlauea's 2008 summit explosion

    USGS Publications Warehouse

    Johnson, Jessica H.; Poland, Michael P.

    2013-01-01

    The 2008 explosion that started a new eruption at the summit of Kīlauea Volcano, Hawai‘i, was not preceded by a dramatic increase in earthquakes nor inflation, but was associated with increases in SO2 emissions and seismic tremor. Here we perform shear wave splitting analysis on local earthquakes spanning the onset of the eruption. Shear wave splitting measures seismic anisotropy and is traditionally used to infer changes in crustal stress over time. We show that shear wave splitting may also vary due to changes in volcanic degassing. The orientation of fast shear waves at Kīlauea is usually controlled by structure, but in 2008 showed changes with increased SO2 emissions preceding the start of the summit eruption. This interpretation for changing anisotropy is supported by corresponding decreases in Vp/Vs ratio. Our result demonstrates a novel method for detecting changes in gas flux using seismic observations and provides a new tool for monitoring under-instrumented volcanoes.

  13. Identifying the Volcanic Eruption Depicted in a Neolithic Painting at Çatalhöyük, Central Anatolia, Turkey

    PubMed Central

    Schmitt, Axel K.; Danišík, Martin; Aydar, Erkan; Şen, Erdal; Ulusoy, İnan; Lovera, Oscar M.

    2014-01-01

    A mural excavated at the Neolithic Çatalhöyük site (Central Anatolia, Turkey) has been interpreted as the oldest known map. Dating to ∼6600 BCE, it putatively depicts an explosive summit eruption of the Hasan Dağı twin-peaks volcano located ∼130 km northeast of Çatalhöyük, and a birds-eye view of a town plan in the foreground. This interpretation, however, has remained controversial not least because independent evidence for a contemporaneous explosive volcanic eruption of Hasan Dağı has been lacking. Here, we document the presence of andesitic pumice veneer on the summit of Hasan Dağı, which we dated using (U-Th)/He zircon geochronology. The (U-Th)/He zircon eruption age of 8.97±0.64 ka (or 6960±640 BCE; uncertainties 2σ) overlaps closely with 14C ages for cultural strata at Çatalhöyük, including level VII containing the “map” mural. A second pumice sample from a surficial deposit near the base of Hasan Dağı records an older explosive eruption at 28.9±1.5 ka. U-Th zircon crystallization ages in both samples range from near-eruption to secular equilibrium (>380 ka). Collectively, our results reveal protracted intrusive activity at Hasan Dağı punctuated by explosive venting, and provide the first radiometric ages for a Holocene explosive eruption which was most likely witnessed by humans in the area. Geologic and geochronologic lines of evidence thus support previous interpretations that residents of Çatalhöyük artistically represented an explosive eruption of Hasan Dağı volcano. The magmatic longevity recorded by quasi-continuous zircon crystallization coupled with new evidence for late-Pleistocene and Holocene explosive eruptions implicates Hasan Dağı as a potential volcanic hazard. PMID:24416270

  14. Earth Observations taken by the Expedition 13 crew

    NASA Image and Video Library

    2006-08-02

    ISS013-E-62714 (2 Aug. 2006) --- Mt. Etna Summit Plumes, Sicily is featured in this image photographed by an Expedition 13 crewmember on the International Space Station. One of the most consistently active volcanoes in the world is Sicily's Mt. Etna, which has a historical record of eruptions dating back to 1500 B.C. This image captures plumes of steam and possible minor ash originating from summit craters on the mountain -- the Northeast Crater and Central Crater, which includes two secondary craters (Voragine and Bocca Nuova). Explosions were heard from the rim of the Northeast Crater on July 26, and scientists suspect that these plumes are a continuation of that activity. The massive 3350 meter high volcano is located approximately 24 kilometers to the north of Catania, the second largest city in Sicily, and dominates the northern skyline. Much of Etna's surface is comprised of numerous generations of dark basaltic lava flows, as can be seen extended outwards from the summit craters. Fertile soils developed on older flows are marked by green vegetation. While the current explosive eruptions of Etna tend to occur at the summit, lava flows generally erupt through fissures lower down on the flanks of the volcano. Many of the lava flow vents are marked by cinder cones on the flanks of Mt. Etna. Scientists have noted evidence of larger eruptive events as well. The Valle Del Bove to the south-southeast of the summit is a caldera formed by the emptying of a subsurface magma chamber during a large eruptive event -- once the magma chamber was emptied, the overlaying roof material collapsed downwards.

  15. Phreatomagmatic explosive eruptions along fissures on the top of mafic stratovolcanoes with overlapping compound calderas

    NASA Astrophysics Data System (ADS)

    Nemeth, Karoly; Geshi, Nobuo

    2017-04-01

    On near summit flank eruptions on stratovolcanoes it is commonly inferred that external water to have little or no influence on the course of the eruptions. Hence eruptions are typicaly "dry" that form spatter-dominated fissures and scoria cones. This assumption is based on that in elevated regions - especially on steep slopes - the hydrogeological conditions are not favourable to store large volume of ground water that can have effect on the eruptions. However there is some controversial trend of eruption progression from an early dry eruption below the summit that later turn to be phreatomagmatic as the eruption locus migrates toward the summit. The Suoana Ccrater on top of Miyakejima Island's mafic stratovolcano is a fine example to demonstrate such process. Suona Crater is the topmost crater of the 3 km long fissure aligned chain of small-volume volcanoes that formed in the 7th century flank of the summit region of the Miyakejima mafic stratovolcano. The oval shape crater of Suona (400 x 300 m) is surrounded by a tuff ring that developed over lava flows and epiclastic deposits accumulated in an older caldera forming about a tuff ring that is about 25 m in its thickest section with a basal consistent lava spatter dominated unit gradually transforming into a more scoria-dominated middle unit. A caldera-forming eruption in AD 2000 half-sectioned the Suona Crater exposing of its internal diatreme - crater in-fill - tephra rim succession providing a unique opportunity to understand the 3D architecture of the volcano. Toward the top of the preserved and exposed tuff ring section a clear gradual transition can be seen toward more abundance of chilled dark juvenile particles providing a matrix of a coarse ash that commonly hold cauliflower lapilli and bomb. This transition indicates that the eruption progressed from an early dry explosive phase such as lava fountaining to be a more Strombolian style explosive eruption that later on turned to be heavily influenced by external water producing debris jet dominated phreatomagmatic tephra and radially expanding pyroclastic density currents to deposit their load around the growing crater. This 3D architecture can only be explained if we infer that the original lower fissure-fed eruptions gradually allow melt to move toward the summit region where they hit ground water accumulated in an older caldera infill that hosted a succession of lava flows intercalated with lava foot and top breccias as well as abundant pyroclastic and reworked porous deposits capable to harvest water from rain and let them ponded along aquitard horizons in the caldera structure. We infer that such eruption mechanism is probably a common eruption style especially associated with volcanic islands with mafic stratovoclanoes that contain some summit caldera structures and located in humic and/or tropical climate.

  16. The first five years of Kīlauea’s summit eruption in Halema‘uma‘u Crater, 2008–2013

    USGS Publications Warehouse

    Patrick, Matthew R.; Orr, Tim R.; Sutton, A.J.; Elias, Tamar; Swanson, Donald A.

    2013-01-01

    The eruption in Halema‘uma‘u Crater that began in March 2008 is the longest summit eruption of Kīlauea Volcano, on the Island of Hawai‘i, since 1924. From the time the eruption began, the new "Overlook crater" inside Halema‘uma‘u has exhibited fluctuating lava lake activity, occasional small explosive events, and a persistent gas plume. The beautiful nighttime glow impresses and thrills visitors in Hawai‘i Volcanoes National Park, but the continuous emission of sulfur dioxide gas produces "vog" (volcanic smog) that can severely affect communities and local agriculture downwind. U.S. Geological Survey scientists continue to closely monitor the eruption and assess ongoing hazards.

  17. A sight "fearfully grand": eruptions of Lassen Peak, California, 1914 to 1917

    USGS Publications Warehouse

    Clynne, Michael A.; Christiansen, Robert L.; Stauffer, Peter H.; Hendley, James W.; Bleick, Heather A.

    2014-01-01

    On May 22, 1915, a large explosive eruption at the summit of Lassen Peak, California, the southernmost active volcano in the Cascade Range, devastated nearby areas and rained volcanic ash as far away as 280 miles to the east. This explosion was the most powerful in a series of eruptions during 1914–17 that were the last to occur in the Cascade Range before the 1980 eruption of Mount St. Helens, Washington. A century after the Lassen eruptions, work by U.S. Geological Survey (USGS) scientists in cooperation with the National Park Service is shedding new light on these events.

  18. Evolution of submarine eruptive activity during the 2011-2012 El Hierro event as documented by hydroacoustic images and remotely operated vehicle observations

    NASA Astrophysics Data System (ADS)

    Somoza, L.; González, F. J.; Barker, S. J.; Madureira, P.; Medialdea, T.; de Ignacio, C.; Lourenço, N.; León, R.; Vázquez, J. T.; Palomino, D.

    2017-08-01

    Submarine volcanic eruptions are frequent and important events, yet they are rarely observed. Here we relate bathymetric and hydroacoustic images from the 2011 to 2012 El Hierro eruption with surface observations and deposits imaged and sampled by ROV. As a result of the shallow submarine eruption, a new volcano named Tagoro grew from 375 to 89 m depth. The eruption consisted of two main phases of edifice construction intercalated with collapse events. Hydroacoustic images show that the eruptions ranged from explosive to effusive with variable plume types and resulting deposits, even over short time intervals. At the base of the edifice, ROV observations show large accumulations of lava balloons changing in size and type downslope, coinciding with the area where floating lava balloon fallout was observed. Peaks in eruption intensity during explosive phases generated vigorous bubbling at the surface, extensive ash, vesicular lapilli and formed high-density currents, which together with periods of edifice gravitational collapse, produced extensive deep volcaniclastic aprons. Secondary cones developed in the last stages and show evidence for effusive activity with lava ponds and lava flows that cover deposits of stacked lava balloons. Chaotic masses of heterometric boulders around the summit of the principal cone are related to progressive sealing of the vent with decreasing or variable magma supply. Hornitos represent the final eruptive activity with hydrothermal alteration and bacterial mats at the summit. Our study documents the distinct evolution of a submarine volcano and highlights the range of deposit types that may form and be rapidly destroyed in such eruptions.Plain Language SummaryToday and through most of geological history, the greatest number and volume of volcanic eruptions on Earth have occurred underwater. However, in comparison to subaerial eruption, little is known about submarine eruptive processes as they are dangerous to cruise it over, especially during explosive phases. This work shows the results of a study carried out during the eruption of the submarine volcano occurred during 2011-2012 1 km offshore El Hierro Island, Canary Islands, Spain. The submarine volcano emitted periodically large bubbles of gas, ashes, and giant steamed lava balloons that floated in the sea surface before sinking. These products identified later after the eruption using a submersible vehicle forming huge accumulations of lava balloons on the seafloor. More quiet periods erupted toothpaste lava from secondary cones which formed stalactite-like formations. Massive accumulation of blocks on the summit evidence intermittent violent explosions occurred when the cooling of lava progressively close the vent accumulating gas that finally exploded. The final stage of this submarine eruption consisted in the formation of chimneys by liquid-like lavas mixed with hydrothermal fluids forming 5-10 m tall "hornitos" structures at the summit of the volcano at 89 m depth but without emerging as it was expected.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1998/0106/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1998/0106/report.pdf"><span>Preliminary volcano-hazard assessment for Augustine Volcano, Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Waythomas, Christopher F.; Waitt, Richard B.</p> <p>1998-01-01</p> <p>Augustine Volcano is a 1250-meter high stratovolcano in southwestern Cook Inlet about 280 kilometers southwest of Anchorage and within about 300 kilometers of more than half of the population of Alaska. Explosive eruptions have occurred six times since the early 1800s (1812, 1883, 1935, 1964-65, 1976, and 1986). The 1976 and 1986 eruptions began with an initial series of vent-clearing explosions and high vertical plumes of volcanic ash followed by pyroclastic flows, surges, and lahars on the volcano flanks. Unlike some prehistoric eruptions, a summit edifice collapse and debris avalanche did not occur in 1812, 1935, 1964-65, 1976, or 1986. However, early in the 1883 eruption, a portion of the volcano summit broke loose forming a debris avalanche that flowed to the sea. The avalanche initiated a small tsunami reported on the Kenai Peninsula at English Bay, 90 kilometers east of the volcano. Plumes of volcanic ash are a major hazard to jet aircraft using Anchorage International and other local airports. Ashfall from future eruptions could disrupt oil and gas operations and shipping activities in Cook Inlet. Eruptions similar to the historical and prehistoric eruptions are likely in Augustine's future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://pubs.dggsalaskagov.us/webpubs/dggs/ri/text/ri2011_005.pdf','USGSPUBS'); return false;" href="http://pubs.dggsalaskagov.us/webpubs/dggs/ri/text/ri2011_005.pdf"><span>The 2009 eruption of Redoubt Volcano, Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bull, Katharine F.; Cameron, Cheryl; Coombs, Michelle L.; Diefenbach, Angie; Lopez, Taryn; McNutt, Steve; Neal, Christina; Payne, Allison; Power, John A.; Schneider, David J.; Scott, William E.; Snedigar, Seth; Thompson, Glenn; Wallace, Kristi; Waythomas, Christopher F.; Webley, Peter; Werner, Cynthia A.; Schaefer, Janet R.</p> <p>2012-01-01</p> <p>Redoubt Volcano, an ice-covered stratovolcano on the west side of Cook Inlet, erupted in March 2009 after several months of escalating unrest. The 2009 eruption of Redoubt Volcano shares many similarities with eruptions documented most recently at Redoubt in 1966–68 and 1989–90. In each case, the eruptive phase lasted several months, consisted of multiple ashproducing explosions, produced andesitic lava and tephra, removed significant amounts of ice from the summit crater and Drift glacier, generated lahars that inundated the Drift River valley, and culminated with the extrusion of a lava dome in the summit crater. Prior to the 2009 explosive phase of the eruption, precursory seismicity lasted approximately six months with the fi rst weak tremor recorded on September 23, 2008. The first phreatic explosion was recorded on March 15, and the first magmatic explosion occurred seven days later, at 22:34 on March 22. The onset of magmatic explosions was preceded by a strong, shallow swarm of repetitive earthquakes that began about 04:00 on March 20, 2009, less than three days before an explosion. Nineteen major ash-producing explosions generated ash clouds that reached heights between 17,000 ft and 62,000 ft (5.2 and 18.9 km) ASL. During ash fall in Anchorage, the Ted Stevens International Airport was shut down for 20 hours, from ~17:00 on March 28 until 13:00 on March 29. On March 23 and April 4, lahars with fl ow depths to 10 m in the upper Drift River valley inundated parts of the Drift River Terminal (DRT). The explosive phase ended on April 4 with a dome collapse at 05:58. The April 4 ash cloud reached 50,000 ft (15.2 km) and moved swiftly to the southeast, depositing up to 2 mm of ash fall in Homer, Anchor Point, and Seldovia. At least two and possibly three lava domes grew and were destroyed by explosions prior to the final lava dome extrusion that began after the April 4 event. The fi nal lava dome ceased growth by July 1, 2009, with an estimated volume of 72 Mm3</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li class="active"><span>1</span></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_1 --> <div id="page_2" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li class="active"><span>2</span></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="21"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70021269','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70021269"><span>Kilauea summit overflows: Their ages and distribution in the Puna District, Hawai'i</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Clague, D.A.; Hagstrum, J.T.; Beeson, M.H.; Champion, D.E.</p> <p>1999-01-01</p> <p>The tube-fed pahoehoe lava flows covering much of the northeast flank of Kilauea Volcano are named the 'Aila'au flows. Their eruption age, based on published and six new radiocarbon dates, is approximately AD 1445. The flows have distinctive paleomagnetic directions with steep inclinations (40??-50??) and easterly declinations (0??-10??E). The lava was transported ~40 km from the vent to the coast in long, large-diameter lava tubes; the longest tube (Kazumura Cave) reaches from near the summit to within several kilometers of the coast near Kaloli Point. The estimated volume of the 'Aila'au flow field is 5.2 ?? 0.8 km3, and the eruption that formed it probably lasted for approximately 50 years. Summit overflows from Kilauea may have been nearly continuous between approximately AD 1290 and 1470, during which time a series of shields formed at and around the summit. The 'Aila'au shield was either the youngest or the next to youngest in this series of shields. Site-mean paleomagnetic directions for lava flows underlying the 'Aila'au flows form only six groups. These older pahoehoe flows range in age from 2750 to 2200 years. Lava flows from most of these summit eruptions also reached the coast, but none appears as extensive as the 'Aila'au flow field. The chemistry of the melts erupted during each of these summit overflow events is remarkably similar, averaging approximately 6.3 wt.% MgO near the coast and 6.8 wt.% MgO near the summit. The present-day caldera probably formed more recently than the eruption that formed the 'Aila'au flows (estimated termination ca. AD 1470). The earliest explosive eruptions that formed the Keanakako'i Ash, which is stratigraphically above the 'Aila'au flows, cannot be older than this age.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70186924','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70186924"><span>Onset of a basaltic explosive eruption from Kīlauea’s summit in 2008: Chapter 19</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Carey, Rebecca J.; Swavely, Lauren; Swanson, Don; Houghton, Bruce F.; Orr, Tim R.; Elias, Tamar; Sutton, Andrew; Carey, Rebecca; Cayol, Valérie; Poland, Michael P.; Weis, Dominique</p> <p>2015-01-01</p> <p>The onset of a basaltic eruption at the summit of Kīlauea volcano in 2008 is recorded in the products generated during the first three weeks of the eruption and suggests an evolution of both the physical properties of the magma and also lava lake levels and vent wall stability. Ash componentry and the microtextures of the early erupted lapilli products reveal that the magma was largely outgassed, perhaps in the preceding weeks to months. An increase in the juvenile:lithic ratio and size of ash collected from March 23 to April 3 records an increasing level of the magma within the conduit. After April 3 until the explosive eruption of April 9, a trend of decreasing juvenile:lithic ratio suggests that vent wall collapses were more frequent, possibly because lava level increased and destabilized the overhanging wall [Orr et al. 2013]. Despite increasing lake height, the microtextural characteristics of the lapilli suggest that the outgassed end-member was still being tapped between March 26 and April 8. The April 9 rockfall triggered an explosive eruption that produced a new component in the eruption deposits not seen in the preceding weeks; microvesicular juvenile lapilli, the first evidence of an actively vesiculating magma. Two additional dense end-member pyroclast types were also erupted during the April 9 explosion, likely related to outgassed magma with longer residence times than the microvesicular magma. We link these pyroclasts to a stagnant viscous crust at the top of the magma column or to convecting, downwelling magma. Our study of ash componentry and the textures of juvenile lapilli suggests that the April 9 explosive event effectively cleared the conduit of largely outgassed magma. The degassing processes during this eruption are complex and varied: in the period of persistent degassing during March 26-April 8 small resident bubbles at shallow levels in the lava lake were coupled to the magma whereas large bubbles ascended, expanded and fragmented. During the rockfall- triggered explosion of April 9, all bubbles were coupled to the host magma on the timescale of decompression, but additional exsolution, decompression and expansion of deeper, more gas-rich resident magma likely occurred [cf. Carey et al. 2012]. Where external conditions play a significant role in eruption dynamics, e.g., by triggering eruptions, vesiculation and degassing dynamics can be expected to be complex.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.V53F..02S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.V53F..02S"><span>Intrusion Triggering of Explosive Eruptions: Lessons Learned from EYJAFJALLAJÖKULL 2010 Eruptions and Crustal Deformation Studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sigmundsson, F.; Hreinsdottir, S.; Hooper, A. J.; Arnadottir, T.; Pedersen, R.; Roberts, M. J.; Oskarsson, N.; Auriac, A.; Decriem, J.; Einarsson, P.; Geirsson, H.; Hensch, M.; Ofeigsson, B. G.; Sturkell, E. C.; Sveinbjornsson, H.; Feigl, K.</p> <p>2010-12-01</p> <p>Gradual inflation of magma chambers often precedes eruptions at highly active volcanoes. During eruptions, rapid deflation occurs as magma flows out and pressure is reduced. Less is known about the deformation style at moderately active volcanoes, such as Eyjafjallajökull, Iceland, where an explosive summit eruption of trachyandesite beginning on 14 April 2010 caused exceptional disruption to air traffic. This eruption was preceded by an effusive flank eruption of olivine basalt from 20 March - 12 April 2010. Geodetic and seismic observations revealed the growth of an intrusive complex in the roots of the volcano during three months prior to eruptions. After initial horizontal growth, modelling indicates both horizontal and sub-vertical growth in three weeks prior the first eruption. The behaviour is attributed to subsurface variations in crustal stress and strength originating from complicated volcano foundations. A low-density layer may capture magma allowing pressure to build before an intrusion can ascend towards higher levels. The intrusive complex was formed by olivine basalt as erupted on the volcano flank 20 March - 12 April; the intrusive growth halted at the onset of this eruption. Deformation associated with the eruption onset was minor as the dike had reached close to the surface in the days before. Isolated eruptive vents opening on long-dormant volcanoes may represent magma leaking upwards from extensive pre-eruptive intrusions formed at depth. A deflation source activated during the summit eruption of trachyandesite is distinct from, and adjacent to, all documented sources of inflation in the volcano roots. Olivine basalt magma which recharged the volcano appears to have triggered the summit eruption, although the exact mode of triggering is uncertain. Scenarios include stress triggering or propagation of olivine basalt into more evolved magma. The trachyandesite includes crystals that can be remnants of minor recent intrusion of olivine basalt. Alternatively, mixing of larger portion of olivine basalt with more evolved magma may have occurred. Intrusions may lead to eruptions not only when they find their way to the surface; at Eyjafjallajökull our observation show how primitive melts in an intrusive complex active since 1992 catalyzed an explosive eruption of trachyandesite. Eyjafjallajökull’s behaviour can be attributed to its off-rift setting with a relatively cold subsurface structure and limited magma at shallow depth, as may be typical for moderately active volcanoes. Clear signs of volcanic unrest signals over years to weeks may indicate reawakening of such volcanoes whereas immediate short-term precursors may be subtle and difficult to detect.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70032583','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70032583"><span>Keanakākoʻi Tephra produced by 300 years of explosive eruptions following collapse of Kīlauea's caldera in about 1500 CE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Swanson, Donald A.; Rose, Timothy R.; Fiske, Richard S.; McGeehin, John P.</p> <p>2012-01-01</p> <p>The Keanakākoʻi Tephra at Kīlauea Volcano has previously been interpreted by some as the product of a caldera-forming eruption in 1790 CE. Our study, however, finds stratigraphic and 14C evidence that the tephra instead results from numerous eruptions throughout a 300-year period between about 1500 and 1800. The stratigraphic evidence includes: (1) as many as six pure lithic ash beds interleaved in sand dunes made of earlier Keanakākoʻi vitric ash, (2) three lava flows from Kīlauea and Mauna Loa interbedded with the tephra, (3) buried syneruptive cultural structures, (4) numerous intraformational water-cut gullies, and (5) abundant organic layers rich in charcoal within the tephra section. Interpretation of 97 new accelerator mass spectrometry (AMS) 14C ages and 4 previous conventional ages suggests that explosive eruptions began in 1470–1510 CE, and that explosive activity continued episodically until the early 1800s, probably with two periods of quiescence lasting several decades. Kīlauea's caldera, rather than forming in 1790, predates the first eruption of the Keanakākoʻi and collapsed in 1470–1510, immediately following, and perhaps causing, the end of the 60-year-long, 4–6 km3 ʻAilāʻau eruption from the east side of Kīlauea's summit area. The caldera was several hundred meters deep when the Keanakākoʻi began erupting, consistent with oral tradition, and probably had a volume of 4–6 km3. The caldera formed by collapse, but no eruption of lava coincided with its formation. A large volume of magma may have quickly drained from the summit reservoir and intruded into the east rift zone, perhaps in response to a major south-flank slip event, leading to summit collapse. Alternatively, magma may have slowly drained from the reservoir during the prolonged ʻAilāʻau eruption, causing episodic collapses before the final, largest downdrop took place. Two prolonged periods of episodic explosive eruptions are known at Kīlauea, the Keanakākoʻi and the Uwēkahuna Tephra (Fiske et al., 2009), and both occurred when a deep caldera existed, probably with a floor at or below the water table, and external water could readily interact with the magmatic system. The next period of intense explosive activity will probably have to await the drastic deepening of the present caldera (or Halemaʻumaʻu Crater) or the formation of a new caldera.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70041461','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70041461"><span>Keanakākoʻi Tephra produced by 300 years of explosive eruptions following collapse of Kīlauea's caldera in about 1500 CE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Swanson, Donald A.; Rose, Timothy R.; Fiske, Richard S.; McGeehin, John P.</p> <p>2012-01-01</p> <p>The Keanakākoʻi Tephra at Kīlauea Volcano has previously been interpreted by some as the product of a caldera-forming eruption in 1790 CE. Our study, however, finds stratigraphic and 14C evidence that the tephra instead results from numerous eruptions throughout a 300-year period between about 1500 and 1800. The stratigraphic evidence includes: (1) as many as six pure lithic ash beds interleaved in sand dunes made of earlier Keanakākoʻi vitric ash, (2) three lava flows from Kīlauea and Mauna Loa interbedded with the tephra, (3) buried syneruptive cultural structures, (4) numerous intraformational water-cut gullies, and (5) abundant organic layers rich in charcoal within the tephra section. Interpretation of 97 new accelerator mass spectrometry (AMS) 14C ages and 4 previous conventional ages suggests that explosive eruptions began in 1470–1510 CE, and that explosive activity continued episodically until the early 1800s, probably with two periods of quiescence lasting several decades. Kīlauea's caldera, rather than forming in 1790, predates the first eruption of the Keanakākoʻi and collapsed in 1470–1510, immediately following, and perhaps causing, the end of the 60-year-long, 4–6 km3 ʻAilāʻau eruption from the east side of Kīlauea's summit area. The caldera was several hundred meters deep when the Keanakākoʻi began erupting, consistent with oral tradition, and probably had a volume of 4–6 km3. The caldera formed by collapse, but no eruption of lava coincided with its formation. A large volume of magma may have quickly drained from the summit reservoir and intruded into the east rift zone, perhaps in response to a major south-flank slip event, leading to summit collapse. Alternatively, magma may have slowly drained from the reservoir during the prolonged ʻAilāʻau eruption, causing episodic collapses before the final, largest downdrop took place. Two prolonged periods of episodic explosive eruptions are known at Kīlauea, the Keanakākoʻi and the Uwēkahuna Tephra (Fiske et al., 2009), and both occurred when a deep caldera existed, probably with a floor at or below the water table, and external water could readily interact with the magmatic system. The next period of intense explosive activity will probably have to await the drastic deepening of the present caldera (or Halemaʻumaʻu Crater) or the formation of a new caldera.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRB..122.1558S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRB..122.1558S"><span>A decade of volcanic construction and destruction at the summit of NW Rota-1 seamount: 2004-2014</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schnur, Susan R.; Chadwick, William W.; Embley, Robert W.; Ferrini, Vicki L.; de Ronde, Cornel E. J.; Cashman, Katharine V.; Deardorff, Nicholas D.; Merle, Susan G.; Dziak, Robert P.; Haxel, Joe H.; Matsumoto, Haru</p> <p>2017-03-01</p> <p>Arc volcanoes are important to our understanding of submarine volcanism because at some sites frequent eruptions cause them to grow and collapse on human timescales. This makes it possible to document volcanic processes. Active submarine eruptions have been observed at the summit of NW Rota-1 in the Mariana Arc. We use remotely operated vehicle videography and repeat high-resolution bathymetric surveys to construct geologic maps of the summit of NW Rota-1 in 2009 and 2010 and relate them to the geologic evolution of the summit area over a 10 year period (2004-2014). We find that 2009 and 2010 were characterized by different eruptive styles, which affected the type and distribution of eruptive deposits at the summit. Year 2009 was characterized by ultraslow extrusion and autobrecciation of lava at a single eruptive vent, producing a large cone of blocky lava debris. In 2010, higher-energy explosive eruptions occurred at multiple closely spaced vents, producing a thin blanket of pebble-sized tephra overlying lava flow outcrops. A landslide that occurred between 2009 and 2010 had a major effect on lithofacies distribution by removing the debris cone and other unconsolidated deposits, revealing steep massive flow cliffs. This relatively rapid alternation between construction and destruction forms one end of a seamount growth and mass wasting spectrum. Intraplate seamounts, which tend to grow larger than arc volcanoes, experience collapse events that are orders of magnitude larger and much less frequent than those occurring at subduction zone settings. Our results highlight the interrelated cyclicity of eruptive activity and mass wasting at submarine arc volcanoes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA126454','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA126454"><span>Seismic Methods of Infrasonic Signal Detection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1982-09-30</p> <p>11 Alaid (Kurile Is.): Plume on satellite i agery ......................................................... 11 Kilauea ( Hawaii ): Small...historic eruption ... 6-7 Kilauea ( Hawaii ): Small fissure eruption in summit caldera ................. 7-8 Galunggung (Indonesia): Explosions and...4 June. El Chich6n Volcano (continued) TABLE 1 LOCATION AND DATE LAYER ALTITUDE IN KM BACKSCATTER (peak in parentheses) Mauna Loa, Hawaii 20.5-22</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.V41F..01N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.V41F..01N"><span>Introduction to Augustine Volcano and Overview of the 2006 Eruption</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nye, C. J.</p> <p>2006-12-01</p> <p>This overview represents the combined efforts of scores of people, including Alaska Volcano Observatory staff from the US Geological Survey, the University of Alaska Fairbanks Geophysical Institute, and the Alaska Division of Geological and Geophysical Surveys; additional members of those agencies outside of AVO; and volcanologists from elsewhere. Augustine is a young, and therefore small island volcano in the Cook Inlet region of the eastern Aleutian arc. It is among the most active volcanoes in the arc, with six major historic eruptions, and a vigorous eruptive history going back at least 2,500 years. Eruptions typically begin explosively, and finish with the extrusion of domes and sometimes short, steep lava flows. At least 14 times (most recently in 1883) the -summit has become over-steepened and failed, producing debris avalanches which reached tidewater. Magmas within each of the well-studied eruptions are crystal-rich andesite spanning up to seven weight percent silica. Mixing and mingling are ubiquitous and occur at scales from meters to microns. In general, magmagenesis at Augustine is open, messy, and transcrustal. The 2006 eruption was broadly similar to the 20th century eruptions. Unrest began midway through 2005, with steadily increasing numbers of microearthquakes and continuous inflation of the edifice. By mid-December there were obvious morphological and thermal changes at the summit, as well as phreatic explosions and more passive venting of S-rich gasses. In mid-January 2006 phreatomagmatic explosions gave way to magmatic explosions, producing pyroclastic flows dominated by low-silica andesite, as well as lahars, followed by a small summit dome. In late January the nature of seismicity, eruptive style, and type of erupted magma all changed, and block-and-ash flows of high-silica, crystal-rich andesite were emplaced as the edifice deflated. Re-inflation well below the edifice and low-level effusion continued through February. During the second week in March there was a marked increase in extrusion, resulting in two short, steep lava flows dominantly composed of low-silica andesite. Effusion slowly waned through March and deformation ceased. Previous eruptions have had months-long repose followed be renewed effusion, but this has not yet happened during this eruption. Our ability to describe this eruption is based on a richness of data. The volcano was well instrumented with AVO seismometers and Earthscope/PBO continuous GPS instruments. Additional instruments were added as unrest increased, and substitutes for stations destroyed during initial explosions were deployed. As many as two-dozen AVHRR satellite passes were analyzed each day, providing thermal monitoring and ash-plume tracking. Overflights collected both visual and quantitative IR imagery on a regular basis. Georeferenced imagery acquired by satellite (ASTER) and repeated conventional aerial photography permitted detailed, accurate, mapping of many deposits as an aid to (but not substitute for) field mapping. Web cameras (both visual and near-IR) and conventional time-lapse cameras aided understanding of ongoing processes. Data sets less common to volcano monitoring (infrasound, lightning detection) extended our understanding.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.V13D2152B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.V13D2152B"><span>Mass intrusion beneath Kilauea Volcano, Hawaii, constraints from gravity and geodetic measurements (1975-2008)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bagnardi, M.; Eggers, A.; Battaglia, M.; Poland, M.; Johnson, D.</p> <p>2008-12-01</p> <p>Since January 3 1983, Kilauea Volcano, Hawaii, has erupted almost continuously from vents on the volcano's east rift zone. On March 19, 2008, an explosion at Halema'uma'u Crater, within the summit caldera of Kilauea, marked the opening of a second eruptive vent on the volcano. The east rift vent at Pu'u'O'o and the summit vent at Halema'uma'u continue to be active as of August 2008, marking the longest interval in Kilauea's recorded history of eruptive activity on the volcano. Four gravity surveys with a network covering Kilauea's summit area have been performed during 1975-2003. We reoccupied this 45-station network in January and July 2008 with three portable LaCoste-Romberg gravimeters (G209, G615 and EG026) using a double-looping procedure. These two most recent gravity surveys span the onset of summit eruptive activity. The micro-gravity data set, combined with existing geodetic data from leveling, GPS, EDM, and InSAR, allow us to investigate and model the shallow magma system under the summit caldera to roughly constrain its shape, position, volume change and density, and better understand its long and short term evolution. We corrected for the effect of vertical deformation on gravity data (the so-called free-air effect) using uplift measurements from annual surveys performed by the USGS Hawaiian Volcano Observatory. Preliminary analysis of this record, which covers more than 30 years, indicates a persistent positive residual gravity anomaly located at the southeast margin of Halema'uma'u Crater, very close to the location of the new summit eruptive vent. This anomaly suggests a long term mass accumulation beneath the summit caldera.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70113359','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70113359"><span>Explosive eruptions triggered by rockfalls at Kīlauea volcano, Hawaii</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Orr, Tim R.; Thelen, Weston A.; Patrick, Matthew R.; Swanson, Donald A.; Wilson, David C.</p> <p>2012-01-01</p> <p>Ongoing eruptive activity at Kīlauea volcano’s (Hawai‘i) summit has been controlled in part by the evolution of its vent from a 35-m-diameter opening into a collapse crater 150 m across. Geologic observations, in particular from a network of webcams, have provided an unprecedented look at collapse crater development, lava lake dynamics, and shallow outgassing processes. These observations show unequivocally that the hundreds of transient outgassing bursts and weak explosive eruptions that have punctuated the vent’s otherwise nearly steady-state behavior, and that are associated with composite seismic events, were triggered by rockfalls from the vent walls onto the top of the lava column. While the process by which rockfalls drive the explosive bursts is not fully understood, we believe that it is initiated by the generation of a rebound splash, or Worthington jet, which then undergoes fragmentation. The external triggering of low-energy outgassing events by rockfalls represents a new class of small transient explosive eruptions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70186943','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70186943"><span>Magma extrusion during the Ubinas 2013–2014 eruptive crisis based on satellite thermal imaging (MIROVA) and ground-based monitoring</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Coppola, Diego; Macedo, Orlando; Ramos, Domingo; Finizola, Anthony; Delle Donne, Dario; del Carpio, Jose; White, Randall A.; McCausland, Wendy; Centeno, Riky; Rivera, Marco; Apaza, Fredy; Ccallata, Beto; Chilo, Wilmer; Cigolini, Corrado; Laiolo, Marco; Lazarte, Ivonne; Machaca, Roger; Masias, Pablo; Ortega, Mayra; Puma, Nino; Taipe, Edú</p> <p>2015-01-01</p> <p>After 3 years of mild gases emissions, the Ubinas volcano entered in a new eruptive phase on September 2nd, 2013. The MIROVA system (a space-based volcanic hot-spot detection system), allowed us to detect in near real time the thermal emissions associated with the eruption and provided early evidence of magma extrusion within the deep summit crater. By combining IR data with plume height, sulfur emissions, hot spring temperatures and seismic activity, we interpret the thermal output detected over Ubinas in terms of extrusion rates associated to the eruption. We suggest that the 2013–2014 eruptive crisis can be subdivided into three main phases: (i) shallow magma intrusion inside the edifice, (ii) extrusion and growing of a lava plug at the bottom of the summit crater coupled with increasing explosive activity and finally, (iii) disruption of the lava plug and gradual decline of the explosive activity. The occurrence of the 8.2 Mw Iquique (Chile) earthquake (365 km away from Ubinas) on April 1st, 2014, may have perturbed most of the analyzed parameters, suggesting a prompt interaction with the ongoing volcanic activity. In particular, the analysis of thermal and seismic datasets shows that the earthquake may have promoted the most intense thermal and explosive phase that culminated in a major explosion on April 19th, 2014.These results reveal the efficiency of space-based thermal observations in detecting the extrusion of hot magma within deep volcanic craters and in tracking its evolution. We emphasize that, in combination with other geophysical and geochemical datasets, MIROVA is an essential tool for monitoring remote volcanoes with rather difficult accessibility, like those of the Andes that reach remarkably high altitudes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.V33F..07F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.V33F..07F"><span>Comparing eruptions of varying intensity at Kilauea via melt inclusion analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ferguson, D. J.; Plank, T. A.; Hauri, E. H.; Houghton, B. F.; Gonnermann, H. M.; Swanson, D. A.; Blaser, A. P.</p> <p>2013-12-01</p> <p>Over the past 500 years explosive summit eruptions from Kilauea volcano, Hawaii, have exhibited a range of eruption magnitudes, from large basaltic sub-plinian events to Hawaiian lava fountains of various intensity. Knowledge of the factors controlling such dramatic changes in explosivity and mass discharge rate is vital for understanding the dynamics of explosive basaltic magma systems, but these remain poorly constrained. At Kilauea this information also has important implications for hazard assessment, as future eruptions may be far larger than those observed historically. To investigate the processes associated with eruptions of varying magnitudes we have analyzed the composition and dissolved volatile contents (H2O-CO2-S-Cl-F) of olivine-hosted melt inclusions, sampled from tephra deposits associated with three eruptions of different sizes: a moderate lava-fountain (1959 Episode of Kilauea Iki); an exceptionally high lava-fountain (1500 CE Keanakāko'i reticulite) and a basaltic sub-plinian eruption (1650 CE Keanakāko'i layer 6 scoria). Over this time period (~500 years) we find no major shifts in the major element composition of primary melts feeding the Kilauea magmatic system, and melt inclusions from all eruptions record similar maximum water (~0.7 wt% H2O) and CO2 (~300 ppm) contents, regardless of eruption magnitude. Co-variations between other volatile species, such as CO2 and S, do not support a role for excess volatiles (i.e. CO2) in the larger eruptions via ';gas-fluxing'. Our data therefore suggests that major shifts in eruptive magnitude are unlikely to be linked to either changes in the primary volatile content of the melts or excess gas supplied by open-system degassing of deeper melts. Rather we find evidence for significant variations in the shallow degassing behavior of magmas associated with the larger Keanakāko'i eruptions (sub-plinian and strong lava-fountaining events) compared to that from less vigorous moderate Kilauea Iki lava-fountaining events. On plots of CO2 versus H2O, Kilauea Iki MI's record volatile contents consistent with equilibrium degassing of magma rising from a depth of ~3 km. In contrast, the volatile contents of melts from the more explosive eruptions appear to be strongly affected by degassing processes at shallow depths (< 300 m), indicating variations in the ascent and storage of melts over this time-period. These changes in storage conditions may be linked to variations in the depth of the summit caldera, which was significantly greater during the older more explosive eruptive phases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JVGR..261..153B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JVGR..261..153B"><span>Analysis of the seismic activity associated with the 2010 eruption of Merapi Volcano, Java</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Budi-Santoso, Agus; Lesage, Philippe; Dwiyono, Sapari; Sumarti, Sri; Subandriyo; Surono; Jousset, Philippe; Metaxian, Jean-Philippe</p> <p>2013-07-01</p> <p>The 2010 eruption of Merapi is the first large explosive eruption of the volcano that has been instrumentally observed. The main characteristics of the seismic activity during the pre-eruptive period and the crisis are presented and interpreted in this paper. The first seismic precursors were a series of four shallow swarms during the period between 12 and 4 months before the eruption. These swarms are interpreted as the result of perturbations of the hydrothermal system by increasing heat flow. Shorter-term and more continuous precursory seismic activity started about 6 weeks before the initial explosion on 26 October 2010. During this period, the rate of seismicity increased almost constantly yielding a cumulative seismic energy release for volcano-tectonic (VT) and multiphase events (MP) of 7.5 × 1010 J. This value is 3 times the maximum energy release preceding previous effusive eruptions of Merapi. The high level reached and the accelerated behavior of both the deformation of the summit and the seismic activity are distinct features of the 2010 eruption. The hypocenters of VT events in 2010 occur in two clusters at of 2.5 to 5 km and less than 1.5 km depths below the summit. An aseismic zone was detected at 1.5-2.5 km depth, consistent with studies of previous eruptions, and indicating that this is a robust feature of Merapi's subsurface structure. Our analysis suggests that the aseismic zone is a poorly consolidated layer of altered material within the volcano. Deep VT events occurred mainly before 17 October 2010; subsequent to that time shallow activity strongly increased. The deep seismic activity is interpreted as associated with the enlargement of a narrow conduit by an unusually large volume of rapidly ascending magma. The shallow seismicity is interpreted as recording the final magma ascent and the rupture of a summit-dome plug, which triggered the eruption on 26 October 2010. Hindsight forecasting of the occurrence time of the eruption is performed by applying the Material Failure Forecast Method (FFM) using cumulative Real-time Seismic Amplitude (RSAM) calculated both from raw records and on signals classified according to their dominant frequency. Stable estimates of eruption time with errors as small as ± 4 h are obtained within a 6 day lapse time before the eruption. This approach could therefore be useful to support decision making in the case of future large explosive episodes at Merapi.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70016071','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70016071"><span>Recent uplift and hydrothermal activity at Tangkuban Parahu volcano, west Java, Indonesia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dvorak, J.; Matahelumual, J.; Okamura, A.T.; Said, H.; Casadevall, T.J.; Mulyadi, D.</p> <p>1990-01-01</p> <p>Tangkuban Parahu is an active stratovolcano located 17 km north of the city of Bandung in the province west Java, Indonesia. All historical eruptive activity at this volcano has been confined to a complex of explosive summit craters. About a dozen eruptions-mostly phreatic events- and 15 other periods of unrest, indicated by earthquakes or increased thermal activity, have been noted since 1829. The last magmatic eruption occurred in 1910. In late 1983, several small phreatic explosions originated from one of the summit craters. More recently, increased hydrothermal and earthquake activity occurred from late 1985 through 1986. Tilt measurements, using a spirit-level technique, have been made every few months since February 1981 in the summit region and along the south and east flanks of the volcano. Measurements made in the summit region indicated uplift since the start of these measurements through at least 1986. From 1981 to 1983, the average tilt rate at the edges of the summit craters was 40-50 microradians per year. After the 1983 phreatic activity, the tilt rate decreased by about a factor of five. Trilateration surveys across the summit craters and on the east flank of the volcano were conducted in 1983 and 1986. Most line length changes measured during this three-year period did not exceed the expected uncertainty of the technique (4 ppm). The lack of measurable horizontal strain across the summit craters seems to contradict the several years of tilt measurements. Using a point source of dilation in an elastic half-space to model tilt measurements, the pressure center at Tangkuban Parahu is located about 1.5 km beneath the southern part of the summit craters. This is beneath the epicentral area of an earthquake swarm that occurred in late 1983. The average rate in the volume of uplift from 1981 to 1983 was 3 million m3 per year; from 1983 to 1986 it averaged about 0.4 million m3 per year. Possible causes for this uplift are increased pressure within a very shallow magma body or heating and expansion of a confined aquifier. ?? 1990 Springer-Verlag.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss018e010206.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss018e010206.html"><span>Earth Observations taken by the Expedition 18 Crew</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2008-12-03</p> <p>ISS018-E-010206 (3 Dec. 2008) --- Mount Nemrut in Turkey is featured in this image photographed by an Expedition 18 crewmember on the International Space Station. This detailed view centers on the summit caldera of Mount Nemrut (Nemrut Dagi in Turkish), a stratovolcano located in the eastern Anatolia region of Turkey along the shoreline of Lake Van. Winter snow blankets the 2,948 meter elevation summit of the mountain, highlighting the brown caldera rim (a caldera is a large, usually circular or elliptical, collapse feature caused by the rapid emptying of an underlying magma chamber). The snow also highlights the irregular shape and wrinkled surfaces of several lava flows present in the eastern portion of the caldera. Lava flows associated with Mt. Nemrut range in composition from thin, fluid basalt to thick, glassy obsidian. A coldwater caldera lake occupies the western half of the summit. The geologic record at Mt. Nemrut indicates numerous prehistoric explosive eruptions during the Holocene Epoch ?which, according to scientists, began approximately 10,000 years ago and extends to the present day ? with eruption of lava last observed during 1441. The last well-documented explosive eruption occurred during 1650. Volcanism at Mt. Nemrut is the result of tectonic activity associated with the collision of the Arabian and Eurasian Plates; this collision is ongoing, and the presence of a warm water lake in the caldera suggests that the volcano is merely quiescent at present.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JVGR..357..239A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JVGR..357..239A"><span>Combination of a pressure source and block movement for ground deformation analysis at Merapi volcano prior to the eruptions in 2006 and 2010</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aisyah, Nurnaning; Iguchi, Masato; Subandriyo; Budisantoso, Agus; Hotta, Kohei; Sumarti, Sri</p> <p>2018-05-01</p> <p>We analyzed ground deformation prior to the eruptions in 2006 and 2010 at Merapi volcano, Central Java, Indonesia. Ground deformation was monitored by electronic distance measurement (EDM) by measuring the slope distance toward 12 reflectors installed near the summit from five benchmarks on flanks every day. A large change of slope distance (CSD) was detected on the southeast and south baselines and a minor CSD was detected on the north and northwest baselines during the pre-eruptive stages of both the 2006 and 2010 eruptions. We applied a block movement model to the south and southeast baselines and a spherical pressure source model to the CSDs on the north and northwest baselines using the finite element method (FEM). The rates of block movement southward and the volume change of the pressure source increased on April 7, 2006 and continued at constant rates until the appearance of a new lava dome on April 26. Prior to the eruption in 2010, the block movement southeastward and the volume increase of the pressure source accelerated in the middle of October, and acceleration continued until the first outburst on October 26, 2010. Temporal patterns of the block movement and the increase in the volume of the pressure source correlate well with the increase in seismicity of VT and MP earthquakes. The pressure sources were obtained at a depth of 2 ± 0.5 km below the summit, and this position corresponds to the aseismic zone of VT earthquakes. Magma injection at the shallow part of this region causes an increase in the volume of the pressure source, and inflation of the ground of the summit triggered gravitational slip southeastward or southward of the ground surface. The volumes increases of the pressure sources were 9.7 ± 1 M m3 and 17.6 ± 0.8 M m3 in 2006 and 2010, respectively. The volume increase is related to the scale and type of the eruption. The effusive eruption in 2006 had a volcanic explosivity index (VEI) of 2 and the explosive eruption in 2010 had a VEI of 4. The directions and amounts of the block movement are strongly related to topography, hydrothermally weak zone and underground gap near the summit between West and East Domes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011GeoRL..38.6308M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011GeoRL..38.6308M"><span>Long-range acoustic observations of the Eyjafjallajökull eruption, Iceland, April-May 2010</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Matoza, Robin S.; Vergoz, Julien; Le Pichon, Alexis; Ceranna, Lars; Green, David N.; Evers, Läslo G.; Ripepe, Maurizio; Campus, Paola; Liszka, Ludwik; Kvaerna, Tormod; Kjartansson, Einar; Höskuldsson, Ármann</p> <p>2011-03-01</p> <p>The April-May 2010 summit eruption of Eyjafjallajökull, Iceland, was recorded by 14 atmospheric infrasound sensor arrays at ranges between 1,700 and 3,700 km, indicating that infrasound from modest-size eruptions can propagate for thousands of kilometers in atmospheric waveguides. Although variations in both atmospheric propagation conditions and background noise levels at the sensors generate fluctuations in signal-to-noise ratios and signal detectability, array processing techniques successfully discriminate between volcanic infrasound and ambient coherent and incoherent noise. The current global infrasound network is significantly more dense and sensitive than any previously operated network and signals from large volcanic explosions are routinely recorded. Because volcanic infrasound is generated during the explosive release of fluid into the atmosphere, it is a strong indicator that an eruption has occurred. Therefore, long-range infrasonic monitoring may aid volcanic explosion detection by complementing other monitoring technologies, especially in remote regions with sparse ground-based instrument networks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70016249','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70016249"><span>Phreatomagmatic and phreatic fall and surge deposits from explosions at Kilauea volcano, Hawaii, 1790 a.d.: Keanakakoi Ash Member</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>McPhie, J.; Walker, G.P.L.; Christiansen, R.L.</p> <p>1990-01-01</p> <p>In or around 1790 a.d. an explosive eruption took place in the summit caldera of Kilauea shield volcano. A group of Hawaiian warriors close to the caldera at the time were killed by the effects of the explosions. The stratigraphy of pyroclastic deposits surrounding Kilauea (i.e., the Keanakakoi Ash Member) suggests that the explosions referred to in the historic record were the culmination of a prolonged hydrovolcanic eruption consisting of three main phases. The first phase was phreatomagmatic and generated well-bedded, fine fallout ash rich in glassy, variably vesiculated, juvenile magmatic and dense, lithic pyroclasts. The ash was mainly dispersed to the southwest of the caldera by the northeasterly trade winds. The second phase produced a Strombolian-style scoria fall deposit followed by phreatomagmatic ash similar to that of the first phase, though richer in accretionary lapilli and lithics. The third and culminating phase was phreatic and deposited lithic-rich lapilli and block fall layers, interbedded with cross-bedded surge deposits, and accretionary lapilli-rich, fine ash beds. These final explosions may have been responsible for the deaths of the warriors. The three phases were separated by quiescent spells during which the primary deposits were eroded and transported downwind in dunes migrating southwestward and locally excavated by fluvial runoff close to the rim. The entire hydrovolcanic eruption may have lasted for weeks or perhaps months. At around the same time, lava erupted from Kilauea's East Rift Zone and probably drained magma from the summit storage. The earliest descriptions of Kilauea (30 years after the Keanakakoi eruption) emphasize the great depth of the floor (300-500 m below the rim) and the presence of stepped ledges. It is therefore likely that the Keanakakoi explosions were deepseated within Kilauea, and that the vent rim was substantially lower than the caldera rim. The change from phreatomagmatic to phreatic phases may reflect the progressive degassing and cooling of the magma during deep withdrawal: throughout the phreatomagmatic phases magma vesiculation contributed to the explosive interaction with water by initiating the fragmentation process: thereafter, the principal role of the subsiding magma column was to supply heat for steam production that drove the phreatic explosions of the final phase. ?? 1990 Springer-Verlag.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.4504G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.4504G"><span>Shift from magmatic to phreatomagmatic explosion controlled by the evolution of lateral fissure eruption in Suoana Crater, Miyakejima</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Geshi, Nobuo; Nemeth, Karoly; Noguchi, Rina; Oikawa, Teruki</p> <p>2016-04-01</p> <p>Combined analysis of the proximal deposit and exposed feeder-diatreme structure of the Suoana Crater of Miyakejima reveals the process of magma-water interaction controlled by the evolution of lateral fissure eruption in a stratovolcanic edifice. The Suoana Crater, an oval maar with 400 x 300 m across is one of the craters of the Suoana-Kazahaya crater chain which is formed during a fissure eruption in the 7th Century. The eruption fissure extends ~3 km from the summit area (~700 m asl) to the lower-flank area (~200m asl). The eruption fissure consists of upper maar-chain (>450 m asl) and lower scora-cone chain. As the wall of the 2000 AD caldera truncated at near the center of the Suoana Crater, the vertical section of the feeder dike - diatreme - maar system of the Suoana Crater is exposed in the caldera wall (Geshi et al., 2011). The ejected materials from the Suoana crater indicate the transition of eruption style from magmatic to phreatomagmatic. The juvenile clasts in the lower half of the deposit exhibit spatter-like shape, indicating the typical deposit from a vigorous fire fountain. Contrary, the juvenile clasts in the upper half are less vesiculated and exhibit cauliflower-shape, indicating the typical phreatomagmatic activity. This transition indicates that the magma-water interaction started at the middle of the eruption. Judging from the ratio of the thickness of the lower and upper parts, the contrast of the content of juvenile clasts, and bulk density of the deposit, the total ejected volume of magma is larger in the lower part compare to the upper part. The transition from magmatic to phreatomagmatic occurred only in the upper half of the eruption fissure, including the Suoana crater, whereas the lower half of the fissure continued dry magmatic eruption throughout their activity. The limited distribution of phreatomagmatic activity can be resulted by the magma extraction from the upper feeder dike system to the lower eruption fissure as it contributed to the general drop of magmatic pressure in the upper section of the fissure-fed conduit. The cross section of the Suoana diatreme indicates that the phreatomagmatic explosion occurred ~260 m below the original ground surface, corresponding to ~400 m above the present sea level. This elevation is clearly higher than that of the lower part of the eruption fissure which reached to the point ~ 200 m above sea level. The drop of magma flux and the general gravitational instability of the conduit resulted that ground water was able to access the still hot feeder dikes and initiate phreatomagmatic explosive eruptions (e.g., Geshi and Neri, 2014). The existence of buried summit caldera that can host large quantity of groundwater also contributes the limited distribution of phreatomagmatic activity in the summit area. We propose that this seemingly reversal trend from early magmatic to later phreatomagmatic explosive eruption style in top of large mafic caldera volcanoes in fissure fed volcanic islands is probably a far more common eruption mechanism and hence it needs to be considered in volcanic hazard scenario descriptions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009JVGR..184..367R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009JVGR..184..367R"><span>The 2005 eruption of Kliuchevskoi volcano: Chronology and processes derived from ASTER spaceborne and field-based data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rose, Shellie; Ramsey, Michael</p> <p>2009-07-01</p> <p>Kliuchevskoi volcano, located on the Kamchatka peninsula of eastern Russia, is one of the largest and most active volcanoes in the world. Its location and diversity of eruption styles make satellite-based monitoring and characterization of its eruptive activity essential. In 2005, the Kamchatka Volcano Emergency Response Team (KVERT) first reported that seismic activity of Kliuchevskoi increased above background levels on 12 January (Kamchatka Volcanic Eruption Response Team (KVERT) Report, 2005. Kliuchevskoi Volcano, 14 January through 13 May 2005. ( http://www.avo.alaska.edu/activity/avoreport.php?view=kam info&id=&month=January&year=2005). Cited January 2007). By 15 January Kliuchevskoi entered an explosive-effusive phase, which lasted for five months and produced basaltic lava flows, lahar deposits, and phreatic explosions along its northwestern flank. We present a comparison between field observations and multispectral satellite image data acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument in order to characterize the eruptive behavior. The ASTER instrument was targeted in an automated urgent request mode throughout the eruption timeline in order to collect data at the highest observation frequency possible. Brightness temperatures were calculated in all three ASTER wavelength regions during lava flow emplacement. The maximum lava flow brightness temperatures, calculated from the 15 m/pixel visible near infrared (VNIR) data, were in excess of 800 °C. The shortwave infrared (SWIR) data were radiometrically and geometrically corrected, normalized to the same gain settings, and used to estimate an eruptive volume of 2.35 × 10 - 2 km 3 at the summit. These data were also used to better constrain errors arising in the thermal infrared (TIR) data due to sub-pixel thermal heterogeneities. Based on all the ASTER data, the eruption was separated into three phases: an initial explosive phase (20 January-31 January), an explosive-effusive phase (1 February-8 March), and a subsequent cooling phase. Decorrelation stretch (DCS) images of the TIR data also suggested the presence of silicate ash, SO 2, and water vapor plumes that extended up to 300 km from the summit. The ASTER rapid-response program provided important multispectral, moderate spatial resolution information that was used to detect and monitor the eruptive activity of this remote volcano which can be applied to other eruptions worldwide.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li class="active"><span>2</span></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_2 --> <div id="page_3" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li class="active"><span>3</span></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="41"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018BVol...80...27L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018BVol...80...27L"><span>The violent Strombolian eruption of 10 ka Pelado shield volcano, Sierra Chichinautzin, Central Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lorenzo-Merino, A.; Guilbaud, M.-N.; Roberge, J.</p> <p>2018-03-01</p> <p>Pelado volcano is a typical example of an andesitic Mexican shield with a summital scoria cone. It erupted ca. 10 ka in the central part of an elevated plateau in what is today the southern part of Mexico City. The volcano forms a roughly circular, 10-km wide lava shield with two summital cones, surrounded by up to 2.7-m thick tephra deposits preserved up to a distance of 3 km beyond the shield. New cartographic, stratigraphic, granulometric, and componentry data indicate that Pelado volcano was the product of a single, continuous eruption marked by three stages. In the early stage, a > 1.5-km long fissure opened and was active with mild explosive activity. Intermediate and late stages were mostly effusive and associated with the formation of a 250-m high lava shield. Nevertheless, during these stages, the emission of lava alternated and/or coexisted with highly explosive events that deposited a widespread tephra blanket. In the intermediate stage, multiple vents were active along the fissure, but activity was centered at the main cone during the late stage. The final activity was purely effusive. The volcano emitted > 0.9 km3 dense-rock equivalent (DRE) of tephra and up to 5.6 km3 DRE of lavas. Pelado shares various features with documented "violent Strombolian" eruptions, including a high fragmentation index, large dispersal area, occurrence of plate tephra, high eruptive column, and simultaneous explosive and effusive activity. Our results suggest that the associated hazards (mostly tephra fallout and emplacement of lava) would seriously affect areas located up to 25 km from the vent for fallout and 5 km from the vent for lava, an important issue for large cities built near or on potentially active zones, such as Mexico City.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss013e66488.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss013e66488.html"><span>Earth Observations taken by the Expedition 13 crew</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2006-08-14</p> <p>ISS013-E-66488 (14 Aug. 2006) --- Ash cloud from Ubinas Volcano, Peru is featured in this image photographed by an Expedition 13 crewmember on the International Space Station (ISS). Subduction of the Nazca tectonic plate along the western coast of South America forms the high Peruvian Andes, and also produces magma feeding a chain of historically active volcanoes along the western front of the mountains. The most active of these volcanoes in Peru is Ubinas. A typical steep-sided stratovolcano comprised primarily of layers of silica-rich lava flows, it has a summit elevation of 5,672 meters. The volcanic cone appears distinctively truncated or flat-topped in profile -- the result of a relatively small eruption that evacuated a magma reservoir near the summit. Following removal of the magma, the summit material collapsed downwards to form the current 1.4 kilometer-wide summit caldera. This oblique image (looking at an angle from the ISS) captures an ash cloud first observed on satellite imagery at 11:00 GMT on Aug. 14, 2006; this image was acquired one hour and 45 minutes later. The ash cloud resulted in the issuing of an aviation hazard warning by the Buenos Aires Volcanic Ash Advisory Center. Modern activity at Ubinas is characterized by these minor to moderate explosive eruptions of ash and larger pumice - a volcanic rock characterized by low density and high proportion of gas bubbles formed as the explosively-erupted parent lava cools during its transit through the air. These materials blanket the volcanic cone and surrounding area, giving this image an overall gray appearance. Shadowing of the western flank of Ubinas throws several lava flows into sharp relief, and highlights the steep slopes at the flow fronts -- a common characteristic of silica-rich, thick, and slow-moving lavas. NASA researchers note that the most recent major eruption of Ubinas occurred in 1969, however the historical record of activity extends back to the 16th century.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.S13B0668B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.S13B0668B"><span>Swarms of small volcano-tectonic events preceding paroxysmal explosions of Tungurahua volcano (Ecuador)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Battaglia, J.; Hidalgo, S.; Douchain, J. M.; Pacheco, D. A.; Cordova, J.; Alvarado, A. P.; Parra, R.</p> <p>2017-12-01</p> <p>Tungurahua (5023 m a.s.l.) is an andesitic volcano located in Central Ecuador. It has been erupting since September 1999. It's activity transitioned in late 2008 towards the occurrence of distinct eruptive phases separated by periods of quiescence. These phases display a great variability of eruptive patterns. In particular the onsets of these phases are quite variable, ranging from progressive increase of surface activity to violent paroxysmal explosions eventually generating pyroclastic flows and plumes up to 13.000 m elevation. The volcano is monitored by the Instituto Geofisico in Quito whose permanent monitoring network include 6 broadband and 6 short period stations. These instruments record various signals related to eruptive processes as well as Long Period and volcano-tectonique (VT) events. However, most of the VT events are scattered around the volcano at depths up to 5-10 km b.s.l.. Their relationship with eruptive activity and precursory aspect are unclear. Since October 2013, we operate a temporary network of 13 broadband stations located up to 4275 m a.s.l., including on the Eastern flank which is remote. We examined data from a reference station located near the summit (3900 m a.s.l.) with a detection and classification procedure, searching for families of similar events. This processing enlights the presence of several families of small VTs previously poorly identified. We located manually some of these events and proceeded with similarity picking using cross-correlation and waveform similarity for nearly 400 events. Finally we applied precise relocation techniques. These events are located 2-3 km below the summit and define vertically elongated streaks. Their temporal evolution shows that they occur in swarms during the days or hours preceding the paroxysmal vent opening explosions in February and April 2014. These short-term precursors could indicate the rupturing of a barrier prior to the large explosions of Tungurahua.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70154994','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70154994"><span>High-resolution satellite and airborne thermal infrared imaging of precursory unrest and 2009 eruption of Redoubt Volcano, Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wessels, Rick L.; Vaughan, R. Greg; Patrick, Matthew R.; Coombs, Michelle L.</p> <p>2013-01-01</p> <p>A combination of satellite and airborne high-resolution visible and thermal infrared (TIR) image data detected and measured changes at Redoubt Volcano during the 2008–2009 unrest and eruption. The TIR sensors detected persistent elevated temperatures at summit ice-melt holes as seismicity and gas emissions increased in late 2008 to March 2009. A phreatic explosion on 15 March was followed by more than 19 magmatic explosive events from 23 March to 4 April that produced high-altitude ash clouds and large lahars. Two (or three) lava domes extruded and were destroyed between 23 March and 4 April. After 4 April, the eruption extruded a large lava dome that continued to grow until at least early July 2009.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss033e019822.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss033e019822.html"><span>Earth Observation taken by the Expedition 33 crew</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2012-11-09</p> <p>ISS033-E-019822 (9 Nov. 2012) --- An eruption plume from the Karymsky volcano on the Kamchatka Peninsula in the Russian Federation is visible in this image photographed by an Expedition 33 crew member on the International Space Station. The Karymsky stratovolcano stands 1,536 meters above sea level, with most eruptions and occasional lava flows originating from the summit. Karymsky is the most active of Kamchatka’s eastern volcanoes, with almost constant (on a geologic time scale) volcanism occurring since at least the late 18th century when the historical record for the region begins. In light of the high levels of volcanic activity on the Kamchatka Peninsula, the Kamchatka Volcanic Eruption Response Team (KVERT) monitors the activity levels of several volcanoes and issues updates including aviation alerts and webcams. KVERT reported moderate seismic activity at Karymsky during 2-9 Nov. 2012; such activity can indicate movement of magma beneath or within a volcanic structure and can indicate that an eruption is imminent. The Tokyo Volcanic Ash Advisory Center (VAAC) subsequently reported an explosive eruption at Karymsky on Nov. 9, 2012 at 22:15 GMT. This photograph of the resulting ash plume was taken approximately one hour and 35 minutes after the eruption began. The plume extends from the summit of Karymsky (bottom center) to the southeast, with brown ash deposits darkening the snow cover below the plume. The Akademia Nauk caldera – now filled with water to form the present-day Karymsky Lake - is located to the south of Karymsky volcano. Calderas are formed by explosive eruption and emptying of a volcano’s magma chamber – leading to collapse of the structure to form a large crater-like depression. Akademia Nauk last erupted in 1996.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70142775','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70142775"><span>Keeping watch over Colombia’s slumbering volcanoes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ordoñez, Milton; López, Christian; Alpala, Jorge; Narváez, Lourdes; Arcos, Dario; Battaglia, Maurizio</p> <p>2015-01-01</p> <p>Located in the Central Cordillera (Colombian Andes), Nevado del Ruiz is a volcanic complex, topped by glaciers, rising 5,321 m above sea level. A relatively small explosive eruption from Ruiz's summit crater on November 13, 1985, generated an eruption column and sent a series of pyroclastic flows and surges across the volcano's ice-covered summit. Pumice and meltwater produced by the hot pyroclastic flows and surges swept into gullies and channels on the slopes of Ruiz as a series of lahars. Within two hours of the beginning of the eruption, lahars had traveled 100 km and left behind a wake of destruction: more than 25,000 people were killed (23,000 in the town of Armero and 2,000 in the town of Chinchiná), about 5,000 injured, and more than 5,000 homes destroyed along the Chinchiná, Gualí, and Lagunillas rivers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70170792','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70170792"><span>Eruption style at Kīlauea Volcano in Hawai‘i linked to primary melt composition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Sides. I.R.,; Edmonds, M.; Maclennan, J.; Swanson, Don; Houghton, Bruce F.</p> <p>2014-01-01</p> <p>Explosive eruptions at basaltic volcanoes have been linked to gas segregation from magmas at shallow depths in the crust. The composition of primary melts formed at greater depths was thought to have little influence on eruptive style. Ocean island basaltic volcanoes are the product of melting of a geochemically heterogeneous mantle plume and are expected to give rise to heterogeneous primary melts. This range in primary melt composition, particularly with respect to the volatile components, will profoundly influence magma buoyancy, storage and eruption style. Here we analyse the geochemistry of a suite of melt inclusions from 25 historical eruptions at the ocean island volcano of Kīlauea, Hawai‘i, over the past 600 years. We find that more explosive styles of eruption at Kīlauea Volcano are associated statistically with more geochemically enriched primary melts that have higher volatile concentrations. These enriched melts ascend faster and retain their primary nature, undergoing little interaction with the magma reservoir at the volcano’s summit. We conclude that the eruption style and magma-supply rate at Kīlauea are fundamentally linked to the geochemistry of the primary melts formed deep below the volcano. Magmas might therefore be predisposed towards explosivity right at the point of formation in their mantle source region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70019506','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70019506"><span>Evidence for water influx from a caldera lake during the explosive hydromagmatic eruption of 1790, Kilauea volcano, Hawaii</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Mastin, L.G.</p> <p>1997-01-01</p> <p>In 1790 a major hydromagmatic eruption at the summit of Kilauea volcano, Hawaii, deposited up to 10 m of pyroclastic fall and surge deposits and killed several dozen Hawaiian natives who were crossing the island. Previous studies have hypothesized that the explosivity of this eruption was due to the influx of groundwater into the conduit and mixing of the groundwater with ascending magma. This study proposes that surface water, not groundwater, was the agent responsible for the explosiveness of the eruption. That is, a lake or pond may have existed in the caldera in 1790 and explosions may have taken place when magma ascended into the lake from below. That assertion is based on two lines of evidence: (1) high vesicularity (averaging 73% of more than 3000 lapilli) and high vesicle number density (105-107 cm-3 melt) of pumice clasts suggest that some phases of the eruption involved vigorous, sustained magma ascent; and (2) numerical calculations suggest that under most circumstances, hydrostatic pressure would not be sufficient to drive water into the eruptive conduit during vigorous magma ascent unless the water table were above the ground surface. These results are supported by historical data on the rate of infilling of the caldera floor during the early 1800s. When extrapolated back to 1790, they suggest that the caldera floor was below the water table.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013GeoRL..40.1279R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013GeoRL..40.1279R"><span>TerraSAR-X interferometry reveals small-scale deformation associated with the summit eruption of Kīlauea Volcano, Hawai`i</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Richter, Nicole; Poland, Michael P.; Lundgren, Paul R.</p> <p>2013-04-01</p> <p>On 19 March 2008, a small explosive eruption at the summit of Kīlauea Volcano, Hawai`i, heralded the formation of a new vent along the east wall of Halema`uma`u Crater. In the ensuing years, the vent widened due to collapses of the unstable rim and conduit wall; some collapses impacted an actively circulating lava pond and resulted in small explosive events. We used synthetic aperture radar data collected by the TerraSAR-X satellite, a joint venture between the German Aerospace Center (DLR) and EADS Astrium, to identify and analyze small-scale surface deformation around the new vent during 2008-2012. Lidar data were used to construct a digital elevation model to correct for topographic phase, allowing us to generate differential interferograms with a spatial resolution of about 3 m in Kīlauea's summit area. These interferograms reveal subsidence within about 100 m of the rim of the vent. Small baseline subset time series analysis suggests that the subsidence rate is not constant and, over time, may provide an indication of vent stability and potential for rim and wall collapse—information with obvious hazard implications. The deformation is not currently detectable by other space- or ground-based techniques.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70046824','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70046824"><span>TerraSAR-X interferometry reveals small-scale deformation associated with the summit eruption of Kilauea Volcano, Hawai‘i</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Richter, Nichole; Poland, Michael P.; Lundgren, Paul R.</p> <p>2013-01-01</p> <p>On 19 March 2008, a small explosive eruption at the summit of Kīlauea Volcano, Hawai‘i, heralded the formation of a new vent along the east wall of Halema‘uma‘u Crater. In the ensuing years, the vent widened due to collapses of the unstable rim and conduit wall; some collapses impacted an actively circulating lava pond and resulted in small explosive events. We used synthetic aperture radar data collected by the TerraSAR-X satellite, a joint venture between the German Aerospace Center (DLR) and EADS Astrium, to identify and analyze small-scale surface deformation around the new vent during 2008-2012. Lidar data were used to construct a digital elevation model to correct for topographic phase, allowing us to generate differential interferograms with a spatial resolution of about 3 m in Kīlauea's summit area. These interferograms reveal subsidence within about 100 m of the rim of the vent. Small baseline subset time series analysis suggests that the subsidence rate is not constant and, over time, may provide an indication of vent stability and potential for rim and wall collapse -- information with obvious hazard implications. The deformation is not currently detectable by other space- or ground-based techniques.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70162577','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70162577"><span>Preventing volcanic catastrophe; the U.S. International Volcano Disaster Assistance Program</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ewert, J.W.; Murray, T.L.; Lockhart, A. B.; Miller, C.D.</p> <p>1993-01-01</p> <p>Unfortunately, a storm on November 13, 1985, obscured the glacier-clad summit of Nevado del Ruiz. On that night an explosive eruption tore through the summit and spewed approximately 20 million cubic meters of hot ash and rocks across the snow-covered glacier. These materials were transported across the snow pack by avalanches of hot volcanic debris (pyroclastic flows) and fast-moving, hot, turbulent clouds of gas and ash (pyroclastic surges). The hot pyroclastic flows and surges caused rapid melting of the snow and ice and created large volumes of water that swept down canyons leading away from the summit. As these floods of water descended the volcano, they picked up loose debris and soil from the canyon floors and walls, growing both in volume and density, to form hot lahars. In the river valleys farther down the volcano's flanks, the lahars were as much as 40 m thick and traveled at velocities as fast as 50 km/h. Two and a half hours after the start of the eruption one of the lahars reachered Armero, 74 km from the explosion crater. In a few short minutes most of the town was swept away or buried in a torrent of mud and boulders, and three quaters of the townspeople perished.  </p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.V41B2790B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.V41B2790B"><span>Volcaniclastic stratigraphy of Gede volcano in West Java</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Belousov, A.; Belousova, M.; Zaennudin, A.; Prambada, O.</p> <p>2012-12-01</p> <p>Gede volcano (2958 m a.s.l.) and the adjacent Pangrango volcano (3019 m a.s.l.) form large (base diameter 35 km) volcanic massif 60 km south of Jakarta. While Pangrango has no recorded eruptions, Gede is one of the most active volcanoes in Indonesia: eruptions were reported 26 times starting from 1747 (Petroeschevsky 1943; van Bemmelen 1949). Historic eruptions were mildly explosive (Vulcanian) with at least one lava flow. Modern activity of the volcano includes persistent solfataric activity in the summit crater and periodic seismic swarms - in 1990, 1991, 1992, 1995, 1996, 1997, 2000, 2010, and 2012 (CVGHM). Lands around the Gede-Pangrango massif are densely populated with villages up to 1500-2000 m a.s.l. Higher, the volcano is covered by rain forest of the Gede-Pangrango Natural Park, which is visited every day by numerous tourists who camp in the summit area. We report the results of the detailed reinvestigation of volcaniclastic stratigraphy of Gede volcano. This work has allowed us to obtain 24 new radiocarbon dates for the area. As a result the timing and character of activity of Gede in Holocene has been revealed. The edifice of Gede volcano consists of main stratocone (Gumuruh) with 1.8 km-wide summit caldera; intra-caldera lava cone (Gede proper) with a 900 m wide summit crater, having 2 breaches toward N-NE; and intra-crater infill (lava dome/flow capped with 3 small craters surrounded by pyroclastic aprons). The Gumuruh edifice, composed mostly of lava flows, comprises more than 90% of the total volume of the volcano. Deep weathering of rocks and thick (2-4 m) red laterite soil covering Gumuruh indicates its very old age. Attempts to get 14C dates in 4 different locations of Gumuruh (including a large debris avalanche deposit on its SE foot) provided ages older than 45,000 years - beyond the limit for 14C dating. Outside the summit caldera, notable volumes of fresh, 14C datable volcaniclastic deposits were found only in the NNE sector of the volcano where they form a fan below the breached summit crater. The fan is composed of pyroclastic flows (PFs) and lahars of Holocene age that were deposited in 4 major stages: ~ 10 000 BP - voluminous PF of black scoria; ~ 4000 BP - two PFs of mingled grey/black scoria; ~ 1200 BP - multiple voluminous PFs strongly enriched by accidental material; ~ 1000 BP - a small scale debris avalanche (breaching of the crater wall) followed by small scale PFs of black scoria. The intra-crater lava dome/flow was erupted in 1840 (Petroeschevsky, 1943). Three small craters on the top of the lava dome were formed by multiple post-1840 small-scale phreatomagmatic eruptions. Ejected pyroclasts are lithic hydrothermally altered material containing a few breadcrust bombs. The Holocene eruptive history of Gede indicates that the volcano can produce moderately strong (VEI 3-4) explosive eruptions and send PFs and lahars onto the NE foot of the volcano.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70179211','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70179211"><span>Local infrasound observations of large ash explosions at Augustine Volcano, Alaska, during January 11–28, 2006</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Petersen, Tanja; De Angelis, Silvio; Tytgat, Guy; McNutt, Stephen R.</p> <p>2006-01-01</p> <p>We present and interpret acoustic waveforms associated with a sequence of large explosion events that occurred during the initial stages of the 2006 eruption of Augustine Volcano, Alaska. During January 11–28, 2006, 13 large explosion events created ash-rich plumes that reached up to 14 km a.s.l., and generated atmospheric pressure waves that were recorded on scale by a microphone located at a distance of 3.2 km from the active vent. The variety of recorded waveforms included sharp N-shaped waves with durations of a few seconds, impulsive signals followed by complex codas, and extended signals with emergent character and durations up to minutes. Peak amplitudes varied between 14 and 105 Pa; inferred acoustic energies ranged between 2×108 and 4×109 J. A simple N-shaped short-duration signal recorded on January 11, 2006 was associated with the vent-opening blast that marked the beginning of the explosive eruption sequence. During the following days, waveforms with impulsive onsets and extended codas accompanied the eruptive activity, which was characterized by explosion events that generated large ash clouds and pyroclastic flows along the flanks of the volcano. Continuous acoustic waveforms that lacked a clear onset were more common during this period. On January 28, 2006, the occurrence of four large explosion events marked the end of this explosive eruption phase at Augustine Volcano. After a transitional period of about two days, characterized by many small discrete bursts, the eruption changed into a stage of more sustained and less explosive activity accompanied by the renewed growth of a summit lava dome.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EP%26S...68...72K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EP%26S...68...72K"><span>2014 Mount Ontake eruption: characteristics of the phreatic eruption as inferred from aerial observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kaneko, Takayuki; Maeno, Fukashi; Nakada, Setsuya</p> <p>2016-05-01</p> <p>The sudden eruption of Mount Ontake on September 27, 2014, led to a tragedy that caused more than 60 fatalities including missing persons. In order to mitigate the potential risks posed by similar volcano-related disasters, it is vital to have a clear understanding of the activity status and progression of eruptions. Because the erupted material was largely disturbed while access was strictly prohibited for a month, we analyzed the aerial photographs taken on September 28. The results showed that there were three large vents in the bottom of the Jigokudani valley on September 28. The vent in the center was considered to have been the main vent involved in the eruption, and the vents on either side were considered to have been formed by non-explosive processes. The pyroclastic flows extended approximately 2.5 km along the valley at an average speed of 32 km/h. The absence of burned or fallen trees in this area indicated that the temperatures and destructive forces associated with the pyroclastic flow were both low. The distribution of ballistics was categorized into four zones based on the number of impact craters per unit area, and the furthest impact crater was located 950 m from the vents. Based on ballistic models, the maximum initial velocity of the ejecta was estimated to be 111 m/s. Just after the beginning of the eruption, very few ballistic ejecta had arrived at the summit, even though the eruption plume had risen above the summit, which suggested that a large amount of ballistic ejecta was expelled from the volcano several tens-of-seconds after the beginning of the eruption. This initial period was characterized by the escape of a vapor phase from the vents, which then caused the explosive eruption phase that generated large amounts of ballistic ejecta via sudden decompression of a hydrothermal reservoir.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JVGR..344..197W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JVGR..344..197W"><span>Surface deformation induced by magmatic processes at Pacaya Volcano, Guatemala revealed by InSAR</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wnuk, K.; Wauthier, C.</p> <p>2017-09-01</p> <p>Pacaya Volcano, Guatemala is a continuously active, basaltic volcano with an unstable western flank. Despite continuous activity since 1961, a lack of high temporal resolution geodetic surveying has prevented detailed modeling of Pacaya's underlying magmatic plumbing system. A new, temporally dense dataset of Interferometric Synthetic Aperture Radar (InSAR) RADARSAT-2 images, spanning December 2012 to March 2014, show magmatic deformation before and during major eruptions in January and March 2014. Inversion of InSAR surface displacements using simple analytical forward models suggest that three magma bodies are responsible for the observed deformation: (1) a 4 km deep spherical reservoir located northwest of the summit, (2) a 0.4 km deep spherical source located directly west of the summit, and (3) a shallow dike below the summit. Periods of heightened volcanic activity are instigated by magma pulses at depth, resulting in rapid inflation of the edifice. We observe an intrusion cycle at Pacaya that consists of deflation of one or both magma reservoirs followed by dike intrusion. Intrusion volumes are proportional to reservoir volume loss and do not always result in an eruption. Periods of increased activity culminate with larger dike-fed eruptions. Large eruptions are followed by inter-eruptive periods marked by a decrease in crater explosions and a lack of detected deformation. Co-eruptive flank motion appears to have initiated a new stage of volcanic rifting at Pacaya defined by repeated NW-SE oriented dike intrusions. This creates a positive feedback relationship whereby magmatic forcing from eruptive dike intrusions induce flank motion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.V53C3116W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.V53C3116W"><span>Temporal Evolution of Surface Deformation and Magma Sources at Pacaya Volcano, Guatemala Revealed by InSAR</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wnuk, K.; Wauthier, C.</p> <p>2016-12-01</p> <p>Pacaya Volcano, Guatemala is a persistently active volcano whose western flank is unstable. Despite continuous activity since 1961, a lack of high temporal resolution geodetic surveying has prevented detailed modeling of Pacaya's underlying magmatic plumbing system. A new, temporally dense dataset of Interferometric Synthetic Aperture Radar (InSAR) RADARSAT-2 images, spanning December 2012 to March 2014, shows magmatic deformation before and during major eruptions in January and March 2014. Inverse modeling of InSAR surface displacements suggest that three magma bodies are responsible for observed deformation: (1) a 3.7 km deep spherical reservoir located northwest of the summit, (2) a 0.4 km deep spherical source located directly west of the summit, and (3) a shallow dike below the summit that provides the primary transport pathway for erupted materials. Periods of heightened activity are brought on by magma pulses at depth, which result in rapid inflation of the edifice. We observe an intrusion cycle at Pacaya that consists of deflation of one or both magma reservoirs followed by dike intrusion. Intrusion volumes are proportional to reservoir volume loss, and do not always result in an eruption. Periods of increased activity culminate with larger dike fed eruptions. Large eruptions are followed by inter eruptive periods marked by a decrease in crater explosions and a lack of deformation. A full understanding of magmatic processes at Pacaya is required to assess potential impacts on other aspects of the volcano such as the unstable western flank. Co-eruptive flank motion appears to have initiated a new stage of volcanic rifting at Pacaya defined by repeated NW-SE dike intrusions. This creates a positive feedback relationship whereby magmatic forcing from eruptive dike intrusions induces flank motion</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.V21E2371O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.V21E2371O"><span>Risk-Free Volcano Observations Using an Unmanned Autonomous Helicopter: seismic observations near the active vent of Sakurajima volcano, Japan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ohminato, T.; Kaneko, T.; Koyama, T.; Yasuda, A.; Watanabe, A.; Takeo, M.; Honda, Y.; Kajiwara, K.; Kanda, W.; Iguchi, M.; Yanagisawa, T.</p> <p>2010-12-01</p> <p>Observations in the vicinity of summit area of active volcanoes are important not only for understanding physical processes in the volcanic conduit but also for eruption prediction and volcanic hazards mitigation. It is, however, challenging to install observation sensors near active vents because of the danger of sudden eruptions. We need safe and efficient ways of installing sensors near the summit of active volcanoes. We have been developing an volcano observation system based on an unmanned autonomous vehicle (UAV) for risk-free volcano observations. Our UAV is an unmanned autonomous helicopter manufactured by Yamaha-Motor Co., Ltd. The UAV is 3.6m long and weighs 84kg with maximum payload of 10kg. The UAV can aviate autonomously along a previously programmed path within a meter accuracy using real-time kinematics differential GPS equipment. The maximum flight time and distance from the operator are 90 minutes and 5km, respectively. We have developed various types of volcano observation techniques adequate for the UAV, such as aeromagnetic survey, taking infrared and visible images from onboard high-resolution cameras, volcanic ash sampling in the vicinity of active vents. Recently, we have developed an earthquake observation module (EOM), which is exclusively designed for the UAV installation in the vicinity of active volcanic vent. In order to meet the various requirements for UAV installation, the EOM is very compact, light-weight (5-6kg), and is solar-powered. It is equipped with GPS for timing, a communication device using cellular-phone network, and triaxial accelerometers. Our first application of the EOM installation using the UAV is one of the most active volcanoes in Japan, Sakurajima volcano. Since 2006, explosive eruptions have been continuing at the reopened Showa crater at the eastern flank near the summit of Sakurajima. Entering the area within 2 km from the active craters is prohibited, and thus there were no observation station in the vicinity of active vents at the summit area. From November 2nd to 12th, 2009, we could successfully install four EOMs in the summit area within 2km from the active craters by using the UAV. Although the state of communication was not perfect since the installation points were outside of the service area of the cellular-phone network, we succeeded in retrieving the seismic waveform data accompanying moderate eruptions at Showa crater. Except for contamination by the mechanical resonance of the frame of EOM around 35 Hz, the recorded waveforms of the explosive eruptions are as good as the best permanent stations in Sakurajima. Preliminary results of the analyses show that the source location distribution of the explosion earthquakes at Showa crater is improved by the inclusion of the near source stations newly installed by using the UAV.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/pp/p1615/p1615po.pdf#page=29','USGSPUBS'); return false;" href="https://pubs.usgs.gov/pp/p1615/p1615po.pdf#page=29"><span>Mount Mageik: A compound stratovolcano in Katmai National Park: A section in Geologic studies in Alaska by the U.S. Geological Survey, 1998</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hildreth, Wes; Fierstein, Judy; Lanphere, Marvin A.; Siems, David F.</p> <p>2000-01-01</p> <p>Mount Mageik is an ice-clad 2,165-m andesite-dacite stratovolcano in the Katmai volcanic cluster at the head of the Valley of Ten Thousand Smokes. New K-Ar ages indicate that the volcano is as old as 93±8 ka. It has a present-day volume of 20 km3 but an eruptive volume of about 30 km3, implying a longterm average volumetric eruption rate of about 0.33 km3 per 1,000 years. Mount Mageik consists of four overlapping edi- fices, each with its own central summit vent, lava-flow apron, and independent eruptive history. Three of them have small fragmental summit cones with ice-filled craters, but the fourth and highest is topped by a dacite dome. Lava flows predominate on each edifice; many flows have levees and ice-contact features, and many thicken downslope into piedmont lava lobes 50–200 m thick. Active lifetimes of two (or three) of the component edifices may have been brief, like that of their morphological and compositional analog just across Katmai Pass, the Southwest (New) Trident edifice of 1953–74. The North Summit edi- fice of Mageik may have been constructed very late in the Pleistocene and the East Summit edifice (along with nearby Mount Martin) largely or entirely in the Holocene. Substantial Holocene debris avalanches have broken loose from three sites on the south side of Mount Mageik, the youngest during the Novarupta fallout of 6 June 1912. The oldest one was especially mobile, being rich in hydrothermal clay, and is preserved for 16 km downvalley, probably having run out to the sea. Mageik's fumarolically active crater, which now contains a hot acid lake, was never a magmatic vent but was reamed by phreatic explosions through the edge of the dacite summit dome. There is no credible evidence of historical eruptions of Mount Mageik, but the historically persistent fumarolic plumes of Mageik and Martin have animated many spurious eruption reports. Lavas and ejecta of all four component edifices of Mageik are plagioclaserich, pyroxene-dacites and andesites (57–68 weight percent SiO2) that form a calcic, medium-K, typically low-Ti arc suite. The Southwest Summit edifice is larger, longer lived, and compositionally more complex than its companions. Compared to other centers in the Katmai cluster, products of Mount Mageik are readily distinguishable chemically from those of Mount Griggs, Falling Mountain, Mount Cerberus, and all prehistoric components of the Trident group, but some are similar to the products of Mount Martin, Southwest Trident, and Novarupta. The crater lake, vigorous superheated fumaroles, persistent seismicity, steep ice blanket, and numerous Holocene dacites warrant monitoring Mount Mageik as a potential source of explosive eruptions and derivative debris flows.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-sts064-71-037.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-sts064-71-037.html"><span>Mt. Etna, Sicily as seen from STS-64</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1994-09-19</p> <p>STS064-71-037 (9-20 Sept. 1994) --- Mt. Etna on Sicily displays a steam plume from its summit. Geologists attribute the volcano's existence to the collision of tectonic plates. Unlike the sudden, explosive eruption at Rabaul, Mt. Etna's activity is ongoing and is generally not explosive - Etna's slopes have been settled with villages and cultivated land for centuries. Other Mediterranean volcanoes (like Santorini) have experienced large catastrophic eruptions. Etna recently finished a two-year eruption (ending in 1993), marked by relatively gentle lava flows down the eastern flank. It has been continually degassing since then, according to the geologists, producing an omnipresent steam plume, as seen here. The 1993 flow is difficult to identify in this image because it lies within shadows on the eastern flank, but small cinder cones on the western flank mark earlier episodes of volcanic activity. Photo credit: NASA or National Aeronautics and Space Administration</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUSM.V21A..08S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUSM.V21A..08S"><span>Unusual Volcanic Products From the 2008 Eruption at Volcan Llaima, Chile</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sweeney, D. C.; Hughes, M.; Calder, E. S.; Cortes, J.; Valentine, G.; Whelley, P.; Lara, L.</p> <p>2009-05-01</p> <p>Volcan Llaima, a snow-covered basaltic andesite stratocone in southern Chile (38 41' S, 71 44' W, 3179 m a.s.l.), erupted on 1 January 2008 with a fire fountain display lasting 14 hours. Elevated activity continues to date with mild to moderate strombolian activity occurring from two nested scoria cones in the summit crater and with occasional lava flows from crater overflow. The eruption displayed contrasting styles of activity emanating from different parts of the edifice that may provide some unique insight into the upper level plumbing system. Furthermore, the activity has provided an excellent chance to study the transition of a normally passive degassing system into a violent eruptive cycle. A field study of the eruptive products from this eruption was completed in January 2009, where sampling was carried out from the tephra fall, lava flows, lahar deposits and even small pyroclastic flow deposits. The scoria samples collected suggest a mixture of two magmas involved in the initial violent, fire fountaining activity from the summit. Additionally, they exhibit a variety of unusual textures, including rapidly-quenched, dense lava 'balls' - generated at the front of the lava flows traveling through ice, as well as cauliflower-textured tephra from explosive eruptions though ice. This presentation comprises our observations and preliminary interpretations concerning the processes that occurred during this unique eruption.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li class="active"><span>3</span></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_3 --> <div id="page_4" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="61"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.V21E2537G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.V21E2537G"><span>Uranium-Series Isotopic Constraints on Recent Changes in the Eruptive Behaviour of Merapi Volcano, Java, Indonesia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gertisser, R.; Handley, H. K.; Reagan, M. K.; Berlo, K.; Barclay, J.; Preece, K.; Herd, R.</p> <p>2011-12-01</p> <p>Merapi volcano (Central Java) is one of the most active and deadly volcanoes in Indonesia. The 2010 eruption was the volcano's largest eruption since 1872 and erupted much more violently than expected. Prior to 2010, volcanic activity at Merapi was characterised by several months of slow dome growth punctuated by gravitational dome failures, generating small-volume pyroclastic density currents (Merapi-type nuées ardentes). The unforeseen, large-magnitude events in 2010 were different in many respects: pyroclastic density currents travelled > 15 km beyond the summit causing widespread devastation in proximal areas on Merapi's south flank and ash emissions from sustained eruption columns resulted in ash fall tens of kilometres away from the volcano. The 2010 events have proved that Merapi's relatively small dome-forming activity can be interrupted at relatively short notice by larger explosive eruptions, which appear more common in the geological record. We present new geochemical and Uranium-series isotope data for the volcanic products of both the 2006 and 2010 eruptions at Merapi to investigate the driving forces behind this unusual explosive behaviour and their timescales. An improved knowledge of these processes and of changes in the pre-eruptive magma system has important implications for the assessment of hazards and risks from future eruptive activity at Merapi.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.V53A3078P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.V53A3078P"><span>An Isotopic Perspective into the Magmatic Evolution and Architecture of the Rift Zones of Kīlauea Volcano</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pietruszka, A. J.; Marske, J. P.; Garcia, M. O.; Heaton, D. E.; Rhodes, M. M.</p> <p>2016-12-01</p> <p>We present Pb, Sr, and Nd isotope ratios for Kīlauea's historical rift zone lavas (n=50) to examine the magmatic evolution and architecture of the volcano's East Rift Zone (ERZ) and Southwest Rift Zone (SWRZ). Our results show that Kīlauea's historical eruptive period was preceded by the delivery of a major batch of magma from the summit reservoir to the ERZ. The timing of this intrusion, most likely in the late 17th century, was probably related to the 300-yr period of explosive eruptions that followed the formation of the modern caldera (Swanson et al., 2012; JVGR). This rift-stored magma was a component in lavas from lower ERZ (LERZ) eruptions in 1790(?), 1840, 1955, and 1960. The only other components in these LERZ lavas are related to summit lavas erupted (1) after the 1924 collapse of Halemáumáu and (2) during episodes of high fountaining at Kīlauea Iki in 1959. Thus, the intrusion of magma from the summit reservoir into the LERZ is a rare occurrence that is tied to major volcanological events. Intrusions from the summit reservoir in the 1960s likely flushed most older, stored magma from the upper ERZ (UERZ) and middle ERZ (MERZ), leaving large pockets of 1960s-era magma to serve as a dominant component in many subsequent rift lavas. An increase in the duration of pre-eruptive magma storage from the UERZ ( 0-7 yr) to the MERZ ( 0-19 yr) to the LERZ (up to 335 yr) is likely controlled by a decrease in the rate of magma supply to the more distal portions of the ERZ. Lavas from several UERZ eruptions in the 1960s and 1970s have a component of mantle-derived magma that bypassed the summit reservoir. There is no evidence for a summit bypass into the MERZ, LERZ, or the volcanically active portion of the SWRZ. These results support a recent model for Kīlauea's plumbing system (Poland et al., 2014; USGS Prof. Pap. 1801): the ERZ is connected to the deeper "South Caldera" magma body and the volcanic SWRZ is connected to the shallower Halemáumáu magma body.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1985EOSTr..66Q1209.','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1985EOSTr..66Q1209."><span>Ruiz Volcano: Preliminary report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p></p> <p></p> <p>Ruiz Volcano, Colombia (4.88°N, 75.32°W). All times are local (= GMT -5 hours).An explosive eruption on November 13, 1985, melted ice and snow in the summit area, generating lahars that flowed tens of kilometers down flank river valleys, killing more than 20,000 people. This is history's fourth largest single-eruption death toll, behind only Tambora in 1815 (92,000), Krakatau in 1883 (36,000), and Mount Pelée in May 1902 (28,000). The following briefly summarizes the very preliminary and inevitably conflicting information that had been received by press time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70018732','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70018732"><span>The Uwekahuna Ash Member of the Puna Basalt: product of violent phreatomagmatic eruptions at Kilauea volcano, Hawaii, between 2800 and 2100 14C years ago</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dzurisin, D.; Lockwood, J.P.; Casadevall, T.J.; Rubin, M.</p> <p>1995-01-01</p> <p>Kilauea volcano's reputation for relatively gentle effusive eruptions belies a violent geologic past, including several large phreatic and phreatomagmatic eruptions that are recorded by Holocene pyroclastic deposits which mantle Kilauea's summit area and the southeast flank of adjacent Mauna Loa volcano. The most widespread of these deposits is the Uwekahuna Ash Member, a basaltic surge and fall deposit emplaced during two or more eruptive episodes separated by a few decades to several centuries. It is infered that the eruptions which produced the Uwekahuna were driven by water interacting with a fluctuating magma column. The volume, extent and character of the Uwekahuna deposits underscore the hazards posed by relatively infrequent but potentially devastating explosive eruptions at Kilauea, as well as at other basaltic volcanoes. -from Authors</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.S51B0596R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.S51B0596R"><span>Infrasound as a Long Standing Tool for Monitoring Continental Ecuadorean Volcanoes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ruiz, M. C.; Ortiz, H. D.; Hernandez, S.; Palacios, P.; Anzieta, J. C.</p> <p>2017-12-01</p> <p>In the last 10 years, infrasound and seismic methods have been successfully used in the continuous monitoring of eruptive activity at Tunguruhua, Reventador, Sangay and Cotopaxi volcanoes. After a dormant period of 81 years, Tungurahua woke up in 1999 and has since been characterized by vulcanian and strombolian eruptions. Beginning in July 2006, a permanent seismo-infrasonic network with 5 collocated seismic and infrasound sensors was installed through a cooperation with Japan International Cooperation Agency (JICA). It recorded more than 6,000 explosions at Tungurahua with reduced amplitudes larger than 270 Pa at 1 km from the active crater, including 3 explosions greater than 6000 Pa associated with short-lived explosions. Major and long sustained eruptions (July 14-15, 2006; August 16-17, 2006; February 6-8, 2008, May 28, 2010; December 4, 2010; December 3-4, 2011; August 18, 2012) generated seismic and infrasound tremors with complex waveforms. In 2002, Reventador volcano produced the largest eruption in Ecuador in the last century (VEI-4). Since September 2012, alternating periods of strombolian activity and short-lived vulcanian explosions are monitored by seismic and microbarometer sensors located on the south-east border of the caldera rim. Non-steady activity with fluctuations between quiescence and frequent explosions, tremor, and chugging events is recorded. Infrasound of explosions ranges from 75 to 6350 Pa in reduced peak-to-peak amplitudes. Sangay, a remote and very active volcano, is monitored by a broadband seismometer and microbarometer collocated at 8 km from the summit. Active periods during the last few months are characterized by explosion events followed by lava flows and small ash emissions. In March 2016, more than 100 explosions were recorded in a single day. Finally, in 2015 Cotopaxi volcano began its recent eruptive period after 138 years of quiescence. One month after the initiation of its eruptive activity, 76 harmonic infrasound signals with a characteristic 5 sec. period were recorded between September and December 2015 that have been related to outgassing or explosive bubble bursts that excite resonance modes in unfilled craters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss013e23272.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss013e23272.html"><span>Earth Observations taken by the Expedition 13 crew</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2006-05-20</p> <p>ISS013-E-23272 (8 June 2006) --- Tenerife Island, Spain is featured in this image photographed by an Expedition 13 crewmember on the International Space Station. Tenerife is the largest of the Canary Islands, a Spanish possession located off the northwestern coast of Africa. According to scientists, the islands in the chain could have been produced by eruptions of basaltic shield volcanoes as the African tectonic plate moved over a stationary "hot spot" much like the formation of the Hawaiian Islands. A different hypothesis relates the Canary Islands to magma rise along underwater faults during the uplift of the Atlas Mountains in northern Africa. The island of Tenerife exhibits many excellent volcanic features. The central feature of this image is the elliptical depression of the Las Ca?adas caldera that measures 170 square kilometers in area. A caldera is typically formed when the magma chamber underneath a volcano is completely emptied (usually following a massive eruptive event), and the overlying materials collapse into the newly formed void beneath the surface. A large landslide may have also contributed to (or been the primary cause of) formation of the caldera structure. In this model, part of the original shield volcano forming the bedrock of the island collapsed onto the adjacent sea floor, forming the large depression of the caldera. According to scientists, following formation of the caldera approximately 0.17 million years ago, the composite volcanoes of Mount Teide and Pico Viejo formed. Teide is the highest peak in the Atlantic Ocean with a summit elevation of 3,715 meters. This type of volcano is formed by alternating layers of dense lava flows and more fragmented explosive eruption products, and can build high cones. Many linear flow levees are visible along the flanks of Teide volcano extending from the summit to the base, while a large circular explosion crater marks the summit of Pico Viejo. The floor of the Las Ca?adas caldera is covered with tan, red-brown, and black irregularly-lobed lava flows, the eruptions of which have been observed by settlers and seamen since 1402. The most recent eruption occurred in 1909. The island of Tenerife is actively monitored for further activity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUSM.V41A..04S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUSM.V41A..04S"><span>The activity of the Colima volcano and morphological changes in the summit between 2004 and 2013</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Suarez-Plascencia, C.; Nunez-Cornu, F. J.; Camarena Garcia, M. A.</p> <p>2013-05-01</p> <p>Colima Volcano, located in the West of the Volcanic Mexican Belt (19° 30.696 N, 103° 37.026 W), has shown a new cycle of explosive activity beginning May 30 1999, and reaching its maximum in March-April of 2005 and January 2013. In the 2005 the explosive activity increased gradually, having the largest event on May 23, when a new dome was created. Hours later this dome was destroyed by a strong explosion, forming an ash column 5.6 km high with subsequent pyroclastic flows that reached a distance of 4.2 km flowing along the ravines of the South sector. On May 30 the most intense explosion in 1999 occurred, when the plume reached heights in excess of 4.4 km above the crater, and pyroclastic flows were created. On the same year in July two explosive events occurred of characteristics similar to those in May. These constant explosions caused continuous morphological changes in the summit, the most significant being the collapse of the North and South walls of the crater, in the first week of June of 2005, and the creation of a new crater in July. In 2006 the most significant explosive activity took place during April, May and July, when the eruptive columns reached heights of more than 1500 meters above the crater, occasionally forming small pyroclastic flows. In May of 2007 morphological changes were observed in the summit. Among them a crater explosion on the East side, a dome was formed on the West side, with 20 m in high and 50 m in diameter. Since the end of 2008 to December of 2012 the volcano remained calm, with a dome diameter of 220 m and height of 60 m, in January 2013 three explosions occurred, destroying the dome and throwing a volume of 1.5 million cubic meters. The eruptive column reached a height of 3000 above the crater. It reported light ashfall to the NE to 100 km away from the volcano. The explosive events continue to date, but they have diminished in size and intensity. This activity was similar to the one observed in 1902-1903 and reported by Severo Diaz and J.M. Arreola (1906), but without reaching the maximum levels of activity reported for 1903, where it had levels of three to five maximum explosive events per day. The photographs and the digital mapping have provided detailed information to quantify the dynamic evolution of the volcanic structures that developed on the summit of the volcano in the course of the last for years. The cartographic and database information obtained will be the basis for updating the Operational Plan of the Colima Volcano by the State Civil & Fire Protection Unit of Jalisco, Mexico, and the urban development plans of surrounding municipalities, in order to reduce their vulnerability to the hazards of the volcanic activity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..1412231C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..1412231C"><span>Attaining high-resolution eruptive histories for active arc volcanoes with argon geochronology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Calvert, A. T.</p> <p>2012-04-01</p> <p>Geochronology of active arc volcanoes commonly illuminates eruptive behavior over tens to hundreds of thousands of years, lengthy periods of repose punctuated by short eruptive episodes, and spatial and compositional changes with time. Despite the >1 Gyr half-life of 40K, argon geochronology is an exceptional tool for characterizing Pleistocene to Holocene eruptive histories and for placing constraints on models of eruptive behavior. Reliable 40Ar/39Ar ages of calc-alkaline arc rocks with rigorously derived errors small enough (± 500 to 3,000 years) to constrain eruptive histories are attainable using careful procedures. Sample selection and analytical work in concert with geologic mapping and stratigraphic studies are essential for determining reliable eruptive histories. Preparation, irradiation and spectrometric techniques have all been optimized to produce reliable, high-precision results. Examples of Cascade and Alaska/Aleutian eruptive histories illustrating duration of activity from single centers, eruptive episodicity, and spatial and compositional changes with time will be presented: (1) Mt. Shasta, the largest Cascade stratovolcano, has a 700,000-year history (Calvert and Christiansen, 2011 Fall AGU). A similar sized and composition volcano (Rainbow Mountain) on the Cascade axis was active 1200-950 ka. The eruptive center then jumped west 15 km to the south flank of the present Mt. Shasta and produced a stratovolcano from 700-450 ka likely rivaling today's Mt. Shasta. The NW portion of that edifice failed in an enormous (>30 km3) debris avalanche. Vents near today's active summit erupted 300-135 ka, then 60-15 ka. A voluminous, but short-lived eruptive sequence occurred at 11 ka, including a summit explosion producing a subplinian plume, followed by >60 km3 andesite-dacite Shastina domes and flows, then by the flank dacite Black Butte dome. Holocene domes and flows subsequently rebuilt the summit and flowed to the north and east. (2) Mt. Veniaminof on the Alaska Peninsula is a ~350 km3 tholeiitic arc volcano with basalt early in its history (~250 ka) and basaltic andesite to dacite currently. Chemical variation is due principally to crystallization differentiation with little or no evidence for crustal contamination. The smooth increase with time of Veniaminof's most silicic products chronicles the development of an intrusive complex, also reflected in granitoid blocks expelled during Holocene explosive eruptions (Bacon et al., 2007 Geology). (3) The Three Sisters in the central Oregon Cascades are a cluster of small volcanoes with remarkable chemical diversity (basalt to high silica rhyolite) that mainly erupted in a short interval between 40-15 ka. This eruptive interval was unusual in its chemical diversity beginning bimodal (basaltic andesite and rhyolite), progressing to dacite then andesite, and back to basaltic andesite. Over eighty percent of mapped units are dated, enabling time-series displays of the chemical and spatial evolution of the volcanic field (Calvert et al., 2010 Fall AGU).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5604516-relation-summit-deformation-east-rift-zone-eruptions-kilauea-volcano-hawaii','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5604516-relation-summit-deformation-east-rift-zone-eruptions-kilauea-volcano-hawaii"><span>Relation of summit deformation to east rift zone eruptions on Kilauea Volcano, Hawaii</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Epp, D.; Decker, R.W.; Okamura, A.T.</p> <p>1983-07-01</p> <p>An inverse relationship exists between the summit deflation of Kilauea, as recorded by summit tilt, and the elevation of associated eruptive vents on the East Rift Zone. This relationship implies that East Rift eruptions drain the summit magma reservior to pressure levels that are dependent on the elevation of the eruptive vents.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21085177','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21085177"><span>Intrusion triggering of the 2010 Eyjafjallajökull explosive eruption.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sigmundsson, Freysteinn; Hreinsdóttir, Sigrún; Hooper, Andrew; Arnadóttir, Thóra; Pedersen, Rikke; Roberts, Matthew J; Oskarsson, Níels; Auriac, Amandine; Decriem, Judicael; Einarsson, Páll; Geirsson, Halldór; Hensch, Martin; Ofeigsson, Benedikt G; Sturkell, Erik; Sveinbjörnsson, Hjörleifur; Feigl, Kurt L</p> <p>2010-11-18</p> <p>Gradual inflation of magma chambers often precedes eruptions at highly active volcanoes. During such eruptions, rapid deflation occurs as magma flows out and pressure is reduced. Less is known about the deformation style at moderately active volcanoes, such as Eyjafjallajökull, Iceland, where an explosive summit eruption of trachyandesite beginning on 14 April 2010 caused exceptional disruption to air traffic, closing airspace over much of Europe for days. This eruption was preceded by an effusive flank eruption of basalt from 20 March to 12 April 2010. The 2010 eruptions are the culmination of 18 years of intermittent volcanic unrest. Here we show that deformation associated with the eruptions was unusual because it did not relate to pressure changes within a single magma chamber. Deformation was rapid before the first eruption (>5 mm per day after 4 March), but negligible during it. Lack of distinct co-eruptive deflation indicates that the net volume of magma drained from shallow depth during this eruption was small; rather, magma flowed from considerable depth. Before the eruption, a ∼0.05 km(3) magmatic intrusion grew over a period of three months, in a temporally and spatially complex manner, as revealed by GPS (Global Positioning System) geodetic measurements and interferometric analysis of satellite radar images. The second eruption occurred within the ice-capped caldera of the volcano, with explosivity amplified by magma-ice interaction. Gradual contraction of a source, distinct from the pre-eruptive inflation sources, is evident from geodetic data. Eyjafjallajökull's behaviour can be attributed to its off-rift setting with a 'cold' subsurface structure and limited magma at shallow depth, as may be typical for moderately active volcanoes. Clear signs of volcanic unrest signals over years to weeks may indicate reawakening of such volcanoes, whereas immediate short-term eruption precursors may be subtle and difficult to detect.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JVGR..261..171J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JVGR..261..171J"><span>Signs of magma ascent in LP and VLP seismic events and link to degassing: An example from the 2010 explosive eruption at Merapi volcano, Indonesia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jousset, Philippe; Budi-Santoso, Agus; Jolly, Arthur D.; Boichu, Marie; Surono; Dwiyono, S.; Sumarti, Sri; Hidayati, Sri; Thierry, Pierre</p> <p>2013-07-01</p> <p>The link between seismicity and degassing is investigated during the VEI 4 eruptions of Merapi volcano (Indonesia) in October and in early November 2010. Seismicity comprised a large number and variety of earthquakes including Volcano-Tectonic events, a sustained period of Long Period Seismicity (LPS), i.e., Long-Period events (LP), Very Long Period events (VLP) and tremor. LPS seismicity is ascribed to the excitation of fluid-filled cavity resonance and inertial displacement of fluids and magma. We investigate here LPS that occurred between 17 October and 4 November 2010 to obtain insights into the volcano eruption processes which preceded the paroxysmal phase of the eruption on 4-5 November. We proceed to the moment tensor inversion of a well-recorded large VLP event during the intrusion phase on 17 October 2010, i.e., before the first explosion on 26 October. By using two simplified models (crack and pipe), we find a shallow source for this VLP event at about 1 km to the south of the summit and less than 1 km below the surface. We analyze more than 90 LP events that occurred during the multi-phase eruption (29 October-4 November). We show that most of them have a dominant frequency in the range 0.2-4 Hz. We could locate 48 of those LP events; at least 3 clusters of LP events occurred successively. We interpret these observations as generated by different fluid-filled containers in the summit area that were excited while magma rose. We also observe significant variations of the complex frequency during the course of the eruption. We discuss these changes in terms of a variable ratio of fluid to solid densities and/or by possible conduit geometry change and/or permeability of the conduit or the edifice and/or by resonance of different fluid-containers during the release of more than 0.4 Tg of SO2 and large but unknown masses of other volcanic gases. Finally, we also discuss how the major explosions of the eruption were possibly triggered by passing waves resulting from regional tectonic earthquakes on 3 and 4 November.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1989BVol...51...51H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1989BVol...51...51H"><span>A facies model for a quaternary andesitic composite volcano: Ruapehu, New Zealand</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hackett, W. R.; Houghton, B. F.</p> <p>1989-01-01</p> <p>Ruapehu composite volcano is a dynamic volcanic-sedimentary system, characterised by high accumulation rates and by rapid lateral and vertical change in facies. Four major cone-building episodes have occurred over 250 Ka, from a variety of summit, flank and satellite vents. Eruptive styles include subplinian, strombolian, phreatomagmatic, vulcanian and dome-related explosive eruptions, and extrusion of lava flows and domes. The volcano can be divided into two parts: a composite cone of volume 110 km3, surrounded by an equally voluminous ring plain. Complementary portions of Ruapehu's history are preserved in cone-forming and ring plain environments. Cone-forming sequences are dominated by sheet- and autobrecciated-lava flows, which seldom reach the ring plain. The ring plain is built predominantly from the products of explosive volcanism, both the distal primary pyroclastic deposits and the reworked material eroded from the cone. Much of the material entering the ring plain is transported by lahars either generated directly by eruptions or triggered by the high intensity rain storms which characterise the region. Ring plain detritus is reworked rapidly by concentrated and hyperconcentrated streams in pulses of rapid aggradation immediately following eruptions and more gradually in the longer intervals between eruptions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.V41A2480G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.V41A2480G"><span>Geochemistry of glass and olivine from Keanakako`i Tephra at Kilauea Volcano, Hawai`i</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Garcia, M. O.; Mucek, A. E.; Swanson, D.</p> <p>2011-12-01</p> <p>Kilauea Volcano is well known for its frequent quiescent eruptions. However, it also has an underappreciated explosive past. Recent field work has documented many details of the Keanakako`i Tephra, which was generated during a period of explosive activity when few lava flows were erupted. The dominantly phreatomagmatic eruptions, which produced the Keanakako`i Tephra, began late in, or completely after, the formation of Kilauea Caldera (ca. 1500 CE) and continued sporadically until 1823. Thereafter, effusive eruptions outside the caldera resumed and have continued to the present.The Keanakako`i deposits provide an opportunity to examine the restoration of Kilauea's magmatic plumbing following caldera formation. Glassy products with variable amounts of olivine dominate from ca. 1500 A.D. to the late 1600 A.D., whereas lithic-rich deposits with sparse glass are common in the 1700 A.D. deposits, which include the deadly explosive activity of A.D. 1790. Glass compositions from tephra and basalt flows show remarkable MgO variations (4-11 wt percent), larger than those observed in glasses from subsequent eruptions. Some units have variable MgO indicating a zoned magma reservoir, whereas some others have variable incompatible element ratios suggesting magma mixing. The highest MgO values (>10 wt percent) are from 1500 A.D. and 1823 deposits. The range of parental magma compositions based on tephra glasses erupted over a 300 year period is comparable to those observed for the first 15 years of the Pu`u `O`o eruption and about half of the variation observed for summit eruptions from 1832 to 1982. The limited range in tephra parental magma compositions may be related to a lower magma production rate during the period the tephra was erupted.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70192430','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70192430"><span>Buckets of ash track tephra flux from Halema'uma'u Crater, Hawai'i</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Swanson, Don; Wooten, Kelly M.; Orr, Tim R.</p> <p>2009-01-01</p> <p>The 2008–2009 eruption at Kīlauea Volcano's summit made news because of its eight small discrete explosive eruptions and noxious volcanic smog (vog) created from outgassing sulfur dioxide. Less appreciated is the ongoing, weak, but continuous output of tephra, primarily ash, from the new open vent in Halema'uma'u Crater. This tephra holds clues to processes causing the eruption and forming the new crater-in-a-crater, and its flux is important to hazard evaluations.The setting of the vent–easily accessible from the Hawaiian Volcano Observatory (HVO)—is unusually favorable for neardaily tracking of tephra mass flux during this small prolonged basaltic eruption. Recognizing this, scientists from HVO are collecting ash and documenting how ejection masses, components, and chemical compositions vary through time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002JVGR..117....1Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002JVGR..117....1Z"><span>Overview of the 1997 2000 activity of Volcán de Colima, México</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zobin, V. M.; Luhr, J. F.; Taran, Y. A.; Bretón, M.; Cortés, A.; De La Cruz-Reyna, S.; Domínguez, T.; Galindo, I.; Gavilanes, J. C.; Muñíz, J. J.; Navarro, C.; Ramírez, J. J.; Reyes, G. A.; Ursúa, M.; Velasco, J.; Alatorre, E.; Santiago, H.</p> <p>2002-09-01</p> <p>This overview of the 1997-2000 activity of Volcán de Colima is designed to serve as an introduction to the Special Issue and a summary of the detailed studies that follow. New andesitic block lava was first sighted from a helicopter on the morning of 20 November 1998, forming a rapidly growing dome in the summit crater. Numerous antecedents to the appearance of the dome were recognized, starting more than a year in advance, including: (1) pronounced increases in S/Cl and δD values at summit fumaroles in mid-1997; (2) five earthquake swarms between November-December 1997 and October-November 1998, with hypocenters that ranged down to 8 km beneath the summit and became shallower as the eruption approached; (3) steady inflation of the volcano reflected in shortening of geodetic survey line lengths beginning in November-December 1997 and continuing until the start of the eruption; (4) air-borne correlation spectrometer measurements of SO 2 that increased from the background values of <30 tons/day recorded since 1995 to reach 400 tons/day on 30 October 1998 and 1600 tons/day on 18 November 1998; and (5) small ash emissions detected by satellite-borne sensors beginning on 22 November 1997. The seismic and other trends were the basis of a short-term forecast of an eruption, announced on 13 November 1998, with a forecast window of 16-18 November. Although the lava dome actually appeared on 20 November, this forecast is considered to have been a major success, and the first of its kind at Volcán de Colima. Based in part on this forecast, orderly evacuations of Yerbabuena, Juan Barragan, and other small proximal communities took place on 18 November. The lava dome grew rapidly (˜4.4 m 3/s) on 20 November, and was spilling over the SW rim of the crater by the morning of 21 November to feed block-and-ash flows (pyroclastic flows) ahead of an advancing lobe of andesitic block lava. The pyroclastic flows were initially generated at intervals of 3-5 min, reached speeds of 80-90 km/h, and extended out to 4.5 km from the crater. The block lava flow was already ˜150 m long by the afternoon of 21 November. It ultimately split into three lobes that flowed down the three branches of Barranca el Cordobán on the SSW flank of Volcán de Colima; the lava advanced atop previously emplaced pyroclastic-flow deposits from the same eruptive event, whose total volume is estimated as 24×10 5 m 3. The three lava lobes ultimately reached 2.8-3.8 km from the crater, had flow fronts ˜30 m high, and an estimated total volume of 39×10 6 m 3. By early February 1999 the lava flows were no longer being fed from the summit crater, but the flow fronts continued their slow advance driven by gravitational draining of their partially molten interiors. The 1998-1999 andesites continued a compositional trend toward relatively higher SiO 2 and lower MgO that began with the 1991 lava eruption, completing the reversal of an excursion to more mafic compositions (lower SiO 2 and higher MgO) that occurred during 1976-1982. Accordingly, the 1998-1999 andesites show no signs of a transition toward the more mafic magmas that have characterized the major explosive eruptions of Volcán de Colima, such as those of 1818 and 1913. A large explosion on 10 February 1999 blasted a crater through the 1998-1999 lava dome and marked the beginning of a new explosive stage of activity at Volcán de Colima. Incandescent blocks showered the flanks out to 5 km distance, forming impact craters and triggering numerous forest fires. Similar large explosions occurred on 10 May and 17 July 1999, interspersed with numerous smaller explosions of white steam or darker ash-bearing steam. Intermittent minor explosive activity continued through the year 2000, and another large explosion took place on 22 February, 2001.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1615545C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1615545C"><span>Video monitoring of the persistent strombolian activity of Stromboli volcano represents a window on its plumbing system and an opportunity for understanding the eruptive processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Coltelli, Mauro; Biale, Emilio; Ciancitto, Francesco; Pecora, Emilio; Prestifilippo, Michele</p> <p>2014-05-01</p> <p>Since 1994 a video-surveillance camera located on a peak just above the active volcanic vents of Stromboli island records the explosive activity of one of the few volcanoes on the world performing a persistent eruptive activity. From 2003, after one of the larger lava flow eruption of the last century, the video-surveillance system was enhanced with more stations having both thermal and visual cameras. The video-surveillance helps volcanologists to characterize the mild explosive activity of Stromboli named Strombolian and to distinguish between the frequent "ordinary" Strombolian explosions and the occasional "extraordinary" strong Strombolian explosions that periodically occur. A new class of extraordinary explosions was discovered filling the gap between the ordinary activity and the strong explosions named major explosions when the tephra fallout covers large areas on the volcano summit and paroxysmal ones when the bombs fall down to the inhabited area along the coast of the island. In order to quantify the trend of the ordinary Strombolian explosions and to understand the occurring of the extraordinary strong Strombolian explosions a computer assisted image analysis was developed to process the huge amount of thermal and visual images recorded in several years. The results of this complex analysis allow us to clarify the processes occurring in the upper plumbing system where the pockets/trains of bubbles coalesce and move into the active vent conduits producing the ordinary Strombolian activity, and to infer the process into the deeper part of the plumbing system where new magma supply and its evolution lead to the formation of the extraordinary strong Strombolian explosions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFMAE44A..08R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFMAE44A..08R"><span>Lighting Observations During the Mt. Augustine Volcanic Eruptions With the Portable Lightning Mapping Stations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rison, W.; Krehbiel, P.; Thomas, R.; Edens, H.; Aulich, G.; O'Connor, N.; Kieft, S.; McNutt, S.; Tytgat, G.; Clark, E.</p> <p>2006-12-01</p> <p>Following the initial eruptions of Mt. Augustine on January 11-17 2006, we quickly prepared and deployed a first contingent of two portable mapping stations. This was our first use of the newly-developed portable stations, and we were able to deploy them in time to observe the second set of explosive eruptions during the night of January~27-28. The stations were located 17~km apart on the west coast of the Kenai Peninsula, 100~km distant from Augustine on the far western side of Cook Inlet. The stations comprised a minimal network capable of determining the azimuthal direction of VHF radiation sources from electrical discharges, and thus the transverse location of the electrical activity relative to the volcano. The time series data from the southern, Homer station for the initial, energetic explosion at 8:31 pm on January~27 revealed the occurrence of spectacular lightning, which from the two-station data drifted southward from Augustine with time, in the same direction as the plume from the eruption. About 300 distinct lightning discharges occurred over an 11-minute time interval, beginning 2-3~min after the main explosion. The lightning quickly became increasingly complex with time and developed large horizontal extents. One of the final discharges of the sequence lasted 600~ms and had a transverse extent of 15~km, extending to 22~km south of Augustine's summit. In addition to this more usual form of lightning, continuous bursts of radio frequency radiation occurred during the explosion itself, indicating that the tephra was highly charged upon being ejected from the volcano. A completely unplanned and initially missed but one of several fortuitous aspects of the observations was that the Homer station functioned as a 'sea-surface interferometer' whose interference pattern can be used to determine the altitude variation with time for some discharges. The station's VHF antenna was located on the edge of a bluff 210~m above Cook Inlet and received both the direct and reflected signals from the water surface. A clear pattern of interference fringes was observed for the strongest lightning event during the explosive phase and has shown that it was an upward-triggered discharge that propagated upward from Augustine's summit and into the downwind plume. The radiation sources were characteristic of negative polarity breakdown into inferred positive charge in the plume. None of the lightning activity from the January~27-28 eruptions was observed visually due to stormy weather conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.S51B0598D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.S51B0598D"><span>Assessment of eruption intensity using infrasound waveform inversion at Mt. Etna, Italy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Diaz Moreno, A.; Iezzi, A. M.; Lamb, O. D.; Zuccarello, L.; Fee, D.; De Angelis, S.</p> <p>2017-12-01</p> <p>Mt. Etna, Italy, a 3,330 m stratovolcano, is one of the most active volcanoes in the world. It is topped by five craters: Voragine, Bocca Nuova, the North-East, South-East, and New South-East Crater. Its activity during the past decade can be separated into two main types: i) nearly-continuous degassing interspersed by mild-to-vigorous Strombolian activity within the summit craters, and ii) effusive flank eruptions. In June 2017, we deployed a large temporary network of 14 infrasound sensors (Chaparral UHP60) and 12 broadband seismometers (Guralp EX-120s). We also recorded Thermal Infrared (TIR) and Unmanned Aerial Vehicle images of activity at the summit vents. Our primary objective is to quantify the intensity and mechanisms of infrasound sources at Mt. Etna, and use these results to improve models of volcanic plumes. From June 2017 until the time of writing, the infrasound network detected signals associated with nearly-continuous degassing and discrete small-to-moderate explosions originating at two distinct locations within the Voragine Crater and the New South-East Crater, respectively. During periods of increased explosive activity, we recorded 20-30 discrete events/day with infrasonic amplitudes of up to 7.5 Pa at 1 km distance from the active vent. The explosions exhibited sinusoidal acoustic waveforms, often with similar characteristics, durations of 1-3 s, and a 2 Hz peak frequency. Due to the relatively dense station coverage and the azimuthal distribution of the network, our deployment offers an opportunity to characterize, with unprecedented resolution, infrasound sources at Mt. Etna. Here we present preliminary results of 3D acoustic wave-field simulations, using a Finite Difference Time Domain modelling scheme, and a preliminary assessment of volumetric eruption rates through acoustic waveform inversion. We investigate the effects of local topography and atmospheric winds on the propagation of the acoustic wavefield, and discuss the implications for infrasound-based assessments of eruption intensity. Our network will be deployed through August 2017, with the hopes of catching larger and more diverse eruptions as well.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70012877','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70012877"><span>Variations in tilt rate and harmonic tremor amplitude during the January-August 1983 east rift eruptions of Kilauea Volcano, Hawaii</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dvorak, J.J.; Okamura, A.T.</p> <p>1985-01-01</p> <p>During January-August 1983, a network of telemetered tiltmeters and seismometers recorded detailed temporal changes associated with seven major eruptive phases along the east rift of Kilauea Volcano, Hawaii. Each eruptive phase was accompanied by subsidence of the summit region and followed by reinflation of the summit to approximately the same level before renewal of eruptive activity. The cyclic summit tilt pattern and the absence of measurable tilt changes near the eruptive site suggest that conditions in the summit region controlled the timing of the last six eruptive phases. The rate of summit subsidence progressively increased from one eruptive phase to the next during the last six phases; the amplitude of harmonic tremor increased during the last four phases. The increases in subsidence rate and in tremor amplitude suggest that frequent periods of magma movement have reduced the flow resistance of the conduit system between the summit and the rift zone. ?? 1985.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26PSL.475..231B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26PSL.475..231B"><span>A new approach to investigate an eruptive paroxysmal sequence using camera and strainmeter networks: Lessons from the 3-5 December 2015 activity at Etna volcano</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bonaccorso, A.; Calvari, S.</p> <p>2017-10-01</p> <p>Explosive sequences are quite common at basaltic and andesitic volcanoes worldwide. Studies aimed at short-term forecasting are usually based on seismic and ground deformation measurements, which can be used to constrain the source region and quantify the magma volume involved in the eruptive process. However, during single episodes of explosive sequences, integration of camera remote sensing and geophysical data are scant in literature, and the total volume of pyroclastic products is not determined. In this study, we calculate eruption parameters for four powerful lava fountains occurring at the main and oldest Mt. Etna summit crater, Voragine, between 3 and 5 December 2015. These episodes produced impressive eruptive columns and plume clouds, causing lapilli and ash fallout to more than 100 km away. We analyse these paroxysmal events by integrating the images recorded by a network of monitoring cameras and the signals from three high-precision borehole strainmeters. From the camera images we calculated the total erupted volume of fluids (gas plus pyroclastics), inferring amounts from 1.9 ×109 m3 (first event) to 0.86 ×109 m3 (third event). Strain changes recorded during the first and most powerful event were used to constrain the depth of the source. The ratios of strain changes recorded at two stations during the four lava fountains were used to constrain the pyroclastic fraction for each eruptive event. The results revealed that the explosive sequence was characterized by a decreasing trend of erupted pyroclastics with time, going from 41% (first event) to 13% (fourth event) of the total erupted pyroclastic volume. Moreover, the volume ratio fluid/pyroclastic decreased markedly in the fourth and last event. To the best of our knowledge, this is the first time ever that erupted volumes of both fluid and pyroclastics have been estimated for an explosive sequence from a monitoring system using permanent cameras and high precision strainmeters. During future explosive paroxysmal sequences this new approach might help in monitoring their evolution also to understand when/if they are going to finish. Knowledge of the total gas and pyroclastic fractions erupted during each lava fountain episode would improve our understanding of their processes and eruptive behaviour.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_4 --> <div id="page_5" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="81"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.V34A..06P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.V34A..06P"><span>A refined model for Kilauea's magma plumbing system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Poland, M. P.; Miklius, A.; Montgomery-Brown, E. D.</p> <p>2011-12-01</p> <p>Studies of the magma plumbing system of Kilauea have benefitted from the volcano's frequent eruptive activity, ease of access, and particularly the century-long observational record made possible by the Hawaiian Volcano Observatory. The explosion of geophysical data, especially seismic and geodetic, collected since the first model of Kilauea's magmatic system was published in 1960 allows for a detailed characterization of Kilauea's magma storage areas and transport pathways. Using geological, geochemical, and geophysical observations, we propose a detailed model of Kilauea's magma plumbing that we hope will provide a refined framework for studies of Kilauea's eruptive and intrusive activity. Kilauea's summit region is underlain by two persistently active, hydraulically linked magma storage areas. The larger reservoir is centered at ~3 km depth beneath the south caldera and is connected to Kilauea's two rift zones, which radiate from the summit to the east and southwest. All magma that enters the Kilauea edifice passes through this primary storage area before intrusion or eruption. During periods of increased magma storage at the summit, as was the case during 2003-2007, uplift may occur above temporary magma storage volumes, for instance, at the intersection of the summit and east rift zone at ~3 km depth, and within the southwest rift zone at ~2 km depth. The east rift zone is the longer and more active of Kilauea's two rift zones and apparently receives more magma from the summit. Small, isolated pods of magma exist within both rift zones, as indicated by deformation measurements, seismicity, petrologic data, and geothermal drilling results. These magma bodies are probably relicts of past intrusions and eruptions and can be highly differentiated. Within the deeper part of the rift zones, between about 3 km and 9 km depth, magma accumulation is hypothesized based on surface deformation indicative of deep rift opening. There is no direct evidence for magma within the deep rift zones, however, suggesting the possibility that the region is "dry" and that the opening deformation is accommodated by processes other than filling by magma. A smaller summit magma storage area is located at 1-2 km depth beneath the east margin of Halema'uma'u Crater, near the center of the caldera. The smaller reservoir is connected to, but perched above, the larger south caldera reservoir and rift zones, and therefore has more hydraulic head and drains rapidly during rift zone intrusions and eruptions. Secondary, shallow (~1 km depth) rift systems branch from this magma reservoir, as indicated by alignments of eruptive vents and fracture systems to the east and west from Halema'uma'u Crater. Although usually inactive, large historical eruptions have occurred from these rift systems, including Kilauea Iki in 1959 (east) and Mauna Iki in 1919-20 (west).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.6881B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.6881B"><span>Dynamics and functional model of the 2012-13 flank fissure eruption of Tolbachik volcano in Kamchatka, Russia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Belousov, Alexander; Belousova, Marina; Edwards, Benjamin</p> <p>2017-04-01</p> <p>The 2012-13 flank fissure eruption of Tolbachik in Kamchatka Peninsula lasted more than nine months and discharged 0.55 cub.km DRE of basaltic trachyandesite magma. It is one of the most voluminous historical eruptions of mafic magma at subduction-related volcano globally, and is the second largest in Kamchatka. We present a broad overview of the eruption as well as a model for the magma storage and transport system of Plosky Tolbachik Volcano. The 2012-13 eruption was preceded by five months of elevated seismicity and ground inflation, both of which peaked a day before the eruption commenced on 27 November 2012. The batch of high-Al magma ascended from depths of 5-10 km; its apical part contained 54-55 wt.% SiO2, and the main body 52-53 wt.% SiO2. The eruption started by the opening of a 6 km-long radial fissure on the southwestern slope of the volcano that fed multi-vent phreatomagmatic and magmatic explosive activity, as well as intensive effusion of lava with an initial discharge of 440 cub.m/s. After 10 days the eruption continued only at the lower part of the fissure, where explosive and effusive activity of Hawaiian-Strombolian type occurred from a lava pond in the crater of the main growing scoria cone. The discharge rate for the nine month long, effusion-dominated eruption gradually declined from 140 to 18 cub.m/s and formed a compound lava field with a total area of 36 sq.km; the effusive activity evolved from high-discharge channel-fed 'a'a lavas to dominantly low-discharge tube-fed pahoehoe lavas. On 23 August, the effusion of lava ceased and the intra-crater lava pond drained. Weak Strombolian-type explosions continued for several more days on the crater bottom until the end of the eruption around 5 September 2013. The volcanic system, comprising the stratovolcano Plosky Tolbachik and its two radial volcanic rifts, produces alternating eruptions of two genetically related magma types: high-Al basalt (eruptions at the summit and along both rift zones) and high-Mg basalt (eruptions only along the southwest rift). The high-Al magma ascends to the surface from a magma storage zone at a depth of about 5 km below the summit of Plosky Tolbachik. During the 2012-13 eruption the high-Al magma first ascended along the central conduit of the volcano. Then the feeding dyke deviated from the conduit and propagated sub-horizontally along the southwest rift at a depth about 1 km below sea level. The 1975-76 Southern Breakthrough of the volcano was fed in a similar way. In contrast, the 1975-76 Northern Breakthrough of the volcano was fed by vertical dyke of high-Mg magma that ascended to the ground surface from the magma storage zone located directly below the area of the Breakthrough at a depth of approximately 20 km.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.8783G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.8783G"><span>Textural constraints on the dynamics of the 2000 Miyakejima eruption</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Garozzo, Ileana; Romano, Claudia; Giordano, Guido; Geshi, Nobuo; Vona, Alessandro</p> <p>2016-04-01</p> <p>Miyakejima Volcano is a basaltic-andesite stratovolcano active from ~10.000 years, located on the north of the Izu-Bonin arc. During the last 600 years the volcano has been characterized mainly by flank fissure activity, with explosive phreatomagmatic eruptions on the coastal areas. In the last century, the activity became more frequent and regular with intervals of 20 to 70 years (1940, 1962, 1983 and 2000). The last activity started on 27 June 2000, with a minor submarine eruption on the west coast of the volcano, and proceeded with six major summit eruptions from July 8 to August 29. The eruptions led to the formation of a collapse caldera ~1.6 km across. The total erupted tephra represents only 1.7% in volume of the caldera, the high fragmentation of magma produced mainly fine-grained volcanic ash. In order to improve the understanding on the triggering and dynamics of this explosive eruption, we carried out a detailed investigation of the erupted materials with particular attention to the textural features of juvenile pyroclasts (Vesicle and Crystal Size Distributions). The stratigraphic record can be divided into six fall units, corresponding to the six summit eruptions, although juvenile materials were identified only in 4 units (unit 2, 4, 5, 6). We selected about 100 juvenile grains sampled from the bottom to the top of each level, to be analyzed by scanning electron microscopy. The study of juvenile morphological features allowed us to recognize the existence of three characteristic morphotypes, showing marked differences in their external morphologies and internal textures (from poorly to highly crystallized and vesiculated clasts). The distribution of these morphotypes is non-homogeneous along the eruptive sequence indicating changes of dynamics during magma ascent. Juveniles do not show features inherited from the interaction with external water. Vesicle Volume Distributions of the selected ash grains show that the three types of pyroclasts experienced different nucleation and growth processes. Also the Vesicles Number Densities (VNDs) vary of about one order of magnitude in the different populations (from 107 to 108 cm-3), with values comparable with those commonly related to sub-Plinian and Plinian eruptions. Data from the CSD analysis show perfect agreement with the measured VNDs (crystal population densities increasing with VNDs), suggesting a link between the degassing history and the syn-eruptive crystallization. The results of the textural analysis are used to produce a conduit model for the 2000 Miyakejima eruption. Textural analysis and modeling data are presented to reconstruct the eruptive dynamics leading to this high - energetic eruption.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1995JVGR...69..217B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1995JVGR...69..217B"><span>Chronology and dispersal characteristics of recently (last 5000 years) erupted tephra of Cotopaxi (Ecuador): implications for long-term eruptive forecasting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barberi, F.; Coltelli, M.; Frullani, A.; Rosi, M.; Almeida, E.</p> <p>1995-12-01</p> <p>Cotopaxi, the highest active volcano on earth and one of the most dangerous of Ecuador is constituted by a composite cone made up of lava and tephra erupted from the summit crater. The activity of the present volcano begun with large-volume plinian eruptions followed by a succession of small-volume lava emissions and pyroclastic episodes which led to the edification of a symmetrical cone. The growth of the cone was broken by an episode of slope failure, the scar of which is now obliterated by recent and historical products. Volcanic history, eruptive frequency and characteristics of the activity were investigated by studying the stratigraphy of tephra and carrying out fifteen new 14C dating on paleosols and charcoals. The investigated period is comprised between the slope failure and the present. The deposit of the volcanic landside (dry debris avalanche of Rio Pita), previously believed to be between 13,000 and 25,000 yr B.P., is now considered to have an age slightly older than 5000 yr B.P. The stratigraphy of tephra of the last 2000 years reveals the existence of 22 fallout layers. Seven of them were dated with 14C whereas three were ascribed to the eruptions of 1534, 1768 and 1877 on the basis of comparison with historical information. Maximum clast size distribution (isopleths) of 9 tephra layers points out that the sustained explosive eruptions of Cotopaxi during the last 2000 years are characterized by very high dispersive power (plinian plumes with column heights between 28 and 39 km) and high intensity (peak mass discharges from 1.1 to 4.1 × 10 8kg/s). The magnitude (mass) of tephra fallout deposits calculated from distribution of thickness (isopaches) are, however, moderate (from 0.8 to 7.2 × 10 11 kg). The limited volume of magma erupted during each explosive episode is consistent with the lack of caldera collapses. Small-volume pyroclastic flows and surges virtually accompanied all identified tephra fallouts. During such an activity large scale snow/ice melting of the summit glacier produced devastating mudflows comparable in scale to those of 1877 eruption. By assuming a 1:1 correspondence between fallout episodes and generation of large-scale lahar, we have estimated an average recurrence of one explosive, lahartriggering event every 117 years over the last two millennia. This value compares well with that calculated by considering the period since Spanish Conquest. The probability of having an eruption like this in 100 or 200 years is respectively of 0.57 and 0.82. Such an high probability underscores the need for quick actions aimed at the mitigation of Cotopaxi lahar hazard along all the main valleys which originate from the volcano.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70115013','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70115013"><span>Primative components, crustal assimilation, and magmatic degassing of the 2008 Kilauea summit eruption</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rowe, Michael C.; Thornber, Carl R.; Orr, Tim R.</p> <p>2015-01-01</p> <p>Simultaneous summit and rift zone eruptions at Kīlauea starting in 2008 reflect a shallow eruptive plumbing system inundated by a bourgeoning supply of new magma from depth. Olivine-hosted melt inclusions, host glass, and bulk lava compositions of magma erupted at both the summit and east rift zone demonstrate chemical continuity at both ends of a well-worn summit-to-rift pipeline. Analysis of glass within dense-cored lapilli erupted from the summit in March – August 2008 show these are not samplings of compositionally distinct magmas stored in the shallow summit magma reservoir, but instead result from remelting and assimilation of fragments from conduit wall and vent blocks. Summit pyroclasts show the predominant and most primitive component erupted to be a homogenous, relatively trace-element-depleted melt that is a compositionally indistinguishable from east rift lava. Based on a “top-down” model for the geochemical variation in east rift zone lava over the past 30 years, we suggest that the apparent absence of a 1982 enriched component in melt inclusions, as well as the proposed summit-rift zone connectivity based on sulfur and mineral chemistry, indicate that the last of the pre-1983 magma has been flushed out of the summit reservoir during the surge of mantle-derived magma from 2003-2007.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.V33F..01O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.V33F..01O"><span>Low intensity hawaiian fountaining as exemplified by the March 2011, Kamoamoa eruption at Kilauea Volcano, Hawai`i (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Orr, T. R.; Houghton, B. F.; Poland, M. P.; Patrick, M. R.; Thelen, W. A.; Sutton, A. J.; Parcheta, C. E.; Thornber, C. R.</p> <p>2013-12-01</p> <p>The latest 'classic' hawaiian high-fountaining activity at Kilauea Volcano occurred in 1983-1986 with construction of the Pu`u `O`o pyroclastic cone. Since then, eruptions at Kilauea have been dominated by nearly continuous effusive activity. Episodes of sustained low hawaiian fountaining have occurred but are rare and restricted to short-lived fissure eruptions along Kilauea's east rift zone. The most recent of these weakly explosive fissure eruptions--the Kamoamoa eruption--occurred 5-9 March 2011. The Kamoamoa eruption was probably the consequence of a decrease in the carrying capacity of the conduit feeding the episode 58 eruptive vent down-rift from Pu`u `O`o in Kilauea's east rift zone. As output from the vent waned, Kilauea's summit magma storage and east rift zone transport system began to pressurize, as manifested by an increase in seismicity along the upper east rift zone, inflation of the summit and Pu`u `O`o, expansion of the east rift zone, and rising lava levels at both the summit and Pu`u `O`o. A dike began propagating towards the surface from beneath Makaopuhi Crater, 6 km west of Pu`u `O`o, at 1342 Hawaiian Standard Time (UTC - 10 hours) on 5 March. A fissure eruption started about 3.5 hours later near Nāpau Crater, 2 km uprift of Pu`u `O`o. Activity initially jumped between numerous en echelon fissure segments before centering on discrete vents near both ends of the 2.4-km-long fissure system for the final two days of the eruption. About 2.6 mcm of lava was erupted over the course of four days with a peak eruption rate of 11 m3/s. The petrologic characteristics of the fissure-fed lava indicate mixing between hotter mantle-derived magma and cooler rift-stored magma, with a greater proportion of the cooler component than was present in east rift zone lava erupting before March 2011. The fissure eruption was accompanied by the highest SO2 emission rates since 1986. Coincidentally, the summit and Pu`u `O`o deflated as magma drained away, causing expansion of the ERZ. The geological, geophysical, and geochemical datasets collected before, during, and after the Kamoamoa eruption provide an unprecedented account of what, at least in recent decades, is the 'normal' mode for hawaiian fountaining at Kilauea--that is, low intensity fissure-fed eruptions. This activity differs from high fountaining in that there is little physical coupling between melt and magmatic gas--for much of the Kamoamoa eruption lava ponded sluggishly over the vents and was weakly disrupted by bursts from trains of very closely spaced gas bubbles. Such eruptions enable us to examine the middle ground between strombolian and classical hawaiian behaviors at basaltic volcanoes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70170377','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70170377"><span>Explosive eruptive record in the Katmai region, Alaska Peninsula: an overview</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Fierstein, Judy</p> <p>2007-01-01</p> <p>At least 15 explosive eruptions from the Katmai cluster of volcanoes and another nine from other volcanoes on the Alaska Peninsula are preserved as tephra layers in syn- and post-glacial (Last Glacial Maximum) loess and soil sections in Katmai National Park, AK. About 400 tephra samples from 150 measured sections have been collected between Kaguyak volcano and Mount Martin and from Shelikof Strait to Bristol Bay (∼8,500 km2 ). Five tephra layers are distinctive and widespread enough to be used as marker horizons in the Valley of Ten Thousand Smokes area, and 140 radiocarbon dates on enclosing soils have established a time framework for entire soil–tephra sections to 10 ka; the white rhyolitic ash from the 1912 plinian eruption of Novarupta caps almost all sections. Stratigraphy, distribution and tephra characteristics have been combined with microprobe analyses of glass and Fe– Ti oxide minerals to correlate ash layers with their source vents. Microprobe analyses (typically 20–50 analyses per glass or oxide sample) commonly show oxide compositions to be more definitive than glass in distinguishing one tephra from another; oxides from the Kaguyak caldera-forming event are so compositionally coherent that they have been used as internal standards throughout this study. Other than the Novarupta and Trident eruptions of the last century, the youngest locally derived tephra is associated with emplacement of the Snowy Mountain summit dome (<250 14C years B.P.). East Mageik has erupted most frequently during Holocene time with seven explosive events (9,400 to 2,400 14C years B.P.) preserved as tephra layers. Mount Martin erupted entirely during the Holocene, with lava coulees (>6 ka), two tephras (∼3,700 and ∼2,700 14C years B.P.), and a summit scoria cone with a crater still steaming today. Mount Katmai has three times produced very large explosive plinian to sub-plinian events (in 1912; 12– 16 ka; and 23 ka) and many smaller pyroclastic deposits show that explosive activity has long been common there. Mount Griggs, fumarolically active and moderately productive during postglacial time (mostly andesitic lavas), has three nested summit craters, two of which are on top of a Holocene central cone. Only one ash has been found that is (tentatively) correlated with the most recent eruptive activity on Griggs (<3,460 14C years B.P.). Eruptions from other volcanoes NE and SW beyond the Katmai cluster represented in this area include: (1) coignimbrite ash from Kaguyak’s caldera-forming event (5,800 14C years B.P.); (2) the climactic event from Fisher caldera (∼9,100 14C years B.P.—tentatively correlated); (3) at least three eruptions most likely from Mount Peulik (∼700, ∼7,700 and ∼8,500 14C years B.P.); and (4) a phreatic fallout most likely from the Gas Rocks (∼2,300 14C years B.P.). Most of the radiocarbon dating has been done on loess, soil and peat enclosing this tephra. Ash correlations supported by stratigraphy and microprobe data are combined with radiocarbon dating to show that variably organics-bearing substrates can provide reliable limiting ages for ash layers, especially when data for several sites is available.>(<3,460 14C years B.P.).  Eruptions from other volcanoes NE and SW beyond the Katmai cluster represented in this area include: (1) coignimbrite ash from Kaguyak’s caldera-forming event (5,800 14C years B.P.); (2) the climactic event from Fisher caldera (∼9,100 14C years B.P.—tentatively correlated); (3) at least three eruptions most likely from Mount Peulik (∼700, ∼7,700 and ∼8,500 14C years B.P.); and (4) a phreatic fallout most likely from the Gas Rocks (∼2,300 14C years B.P.). Most of the radiocarbon dating has been done on loess, soil and peat enclosing this tephra. Ash correlations supported by stratigraphy and microprobe data are combined with radiocarbon dating to show that variably organics-bearing substrates can provide reliable limiting ages for ash layers, especially when data for several sites is available.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1712610D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1712610D"><span>Merapi's lava dome splitting explosion on 18 November 2013 observed by lidar and digital image correlation analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Darmawan, Herlan; Walter, Thomas; Nikkhoo, Mehdi; Richter, Nicole</p> <p>2015-04-01</p> <p>After the 2010 Merapi eruption, the lava dome in the summit of the volcano was firstly growing and then subject to gradual cooling and contraction. In November 2013, a major phreatomagmatic explosion occurred, which caused an eruption column rising over 2 km high and destroyed a number of monitoring instruments in the near field. Bombs were thrown out over 1 km distance. The eruption produced volcanic ash and very fine materials. Deformation data from tilt or EDM showed no wide inflation or deflation associated with this eruption. In addition, high resolution TerraSAR-X data analysis also showed no edifice-wide deformation (Walter et al., 2015). Here we further examine two datasets to determine the morphologic and structural effects of this eruption. First we exploit fixed installed monitoring cameras and use a digital image correlation method to investigate geometric changes before and after the eruption. Second we acquired a high resolution terrestrial Lidar data set after the explosion and compared this another lidar data set acquired before. The result shows details on the splitted dome, the volume of the eruption and thickness of the deposits, and suggests that a new block at the front of the dome is inherently unstable and might break off to form a block and ash flow in the near future. Reference: TR Walter, Subandriyo J, Kirbani S, Bathke H, Suryanto W, Aisyah N, Darmawan H, Jousset P, Lühr BG, Dahm T (2015) Volcano-tectonic control of Merapi's lava dome splitting: The November 2013 fracture observed from high resolution TerraSAR-X data. Tectonophysics 639, 12 January 2015, Pages 23-33. doi:10.1016/j.tecto.2014.11.007</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.V23C2851O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.V23C2851O"><span>Degassing system from the magma reservoir of Miyakejima volcano revealed by GPS observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oikawa, J.; Nakao, S.; Matsushima, T.</p> <p>2013-12-01</p> <p>Miyake-jima is a volcanic island located approximately 180 km south of Tokyo. The island is an active basaltic volcano that was dormant for a 17-year period between an eruption in 1983 and June 26, 2000, when it again became active. The volcanic activity that occurred in 2000 is divided into the following four stages: the magma intrusion stage, summit subsidence stage, summit eruptive stage, and degassing stage (Nakada et al., 2001). Earthquake swarm activity began on June 26, 2000, accompanied by large-scale crustal deformation. This led to a summit eruption on July 8, 2000. Based on the pattern of hypocenter migration and the nature of crustal deformation, it was estimated that magma migrated from beneath the summit of Miyake-jima to the northwest during the magma intrusion stage. The rapid collapse of the summit took place between July 8 and the beginning of August 2000 (summit subsidence stage). Large-scale eruptions took place on August 10, 18, and 29, 2000 (explosion stage). The eruptions largely ceased after August 29, followed by the release of large amounts of gas from the summit crater (degassing stage). In this study, we examined the location of the magma reservoir during the degassing stage based on crustal deformation observed by GPS. By comparing the amounts of degassing and volume change of the magma reservoir, as determined from crustal deformation, we determined the mechanism of degassing and the nature of the magma reservoir-vent system. According to observations by the Japan Meteorological Agency, a large amount of volcanic gas began to be released from Miyake-jima in September 2000 (Kazahaya et al., 2003). Approximately 42,000 tons/day of SO2 was released during the period between September 2000 and January 2001. Analysis of GPS data during the period [Figure 1] indicates a source of crustal deformation on the south side of the summit crater wall at a depth of 5.2 km. The rate of volume change was -3.8 x 106 m3/month [Figure 2]. As the volume is equivalent to the volume occupied by the volatile components such as SO2, H2O, CO2 dissolved in the magma, it is proposed that contraction of the magma reservoir reflects degassing of its volatile components. The observations indicate that the magma reservoir is connected to the summit crater by a magma-filled vent. Convection within the vent carries volatile-rich magma upward to the crater, where volcanic gas is released by degassing. The depleted magma is then carried into the magma reservoir, which contracts due to the loss of volume originally occupied by the volcanic gas. Figure 1 shows displacements per month. Vectors show the horizontal movements. Contours and shading indicate vertical displacement. Figure 2 shows theoretical displacement assuming the Mogi model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=10524&hterms=active+volcanoes&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dactive%2Bvolcanoes','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=10524&hterms=active+volcanoes&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dactive%2Bvolcanoes"><span>Eruption of Shiveluch Volcano, Kamchatka Peninsula</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2007-01-01</p> <p>On March 29, 2007, the Shiveluch Volcano on the Russian Federation's Kamchatka Peninsula erupted. According to the Alaska Volcano Observatory the volcano underwent an explosive eruption between 01:50 and 2:30 UTC, sending an ash cloud skyward roughly 9,750 meters (32,000 feet), based on visual estimates. The Moderate Resolution Imaging Spectroradiometer (MODIS) flying onboard NASA's Aqua satellite took this picture at 02:00 UTC on March 29. The top image shows the volcano and its surroundings. The bottom image shows a close-up view of the volcano at 250 meters per pixel. Satellites often capture images of volcanic ash plumes, but usually as the plumes are blowing away. Plumes have been observed blowing away from Shiveluch before. This image, however, is different. At the time the Aqua satellite passed overhead, the eruption was recent enough (and the air was apparently still enough) that the ash cloud still hovered above the summit. In this image, the bulbous cloud casts its shadow northward over the icy landscape. Volcanic ash eruptions inject particles into Earth's atmosphere. Substantial eruptions of light-reflecting particles can reduce temperatures and even affect atmospheric circulation. Large eruptions impact climate patterns for years. A massive eruption of the Tambora Volcano in Indonesia in 1815, for instance, earned 1816 the nickname 'the year without a summer.' Shiveluch is a stratovolcano--a steep-sloped volcano composed of alternating layers of solidified ash, hardened lava, and volcanic rocks. One of Kamchatka's largest volcanoes, it sports a summit reaching 3,283 meters (10,771 feet). Shiveluch is also one of the peninsula's most active volcanoes, with an estimated 60 substantial eruptions in the past 10,000 years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-sts077-715-037.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-sts077-715-037.html"><span>Earth observations taken during STS-77 mission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1996-05-28</p> <p>STS077-715-037 (19-29 May 1996) --- According to NASA scientists, Ruapehu, on New Zealand?s North Island, is one of the most active volcanoes in the South Pacific. Prior to the flight, crew members scheduled this site as one of their photographic targets. The volcano endured a significant eruption in late September, 1995. This view is the first image of the crater region since that eruption. Since then, numerous landslides and secondary explosions in the summit area has produced changes. In this view, recent mudflows extend from the summit region and down the mountain flank which is in the shadow. Ruapehu is also one of New Zealand?s high points - the mountain supports a glacier and permanent ice fields, and volcanic activity necessarily involves mixing hot volcanic products with snow and ice. Recent activity has produced destructive lahars (mudslides which are slurries of volcanic material with ice and water) downslope. A hazard warning to skiers is still in effect.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/fs/2011/3145/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/fs/2011/3145/"><span>Newberry Volcano—Central Oregon's Sleeping Giant</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Donnelly-Nolan, Julie M.; Stovall, Wendy K.; Ramsey, David W.; Ewert, John W.; Jensen, Robert A.</p> <p>2011-01-01</p> <p>Hidden in plain sight, Oregon's massive Newberry Volcano is the largest volcano in the Cascades volcanic arc and covers an area the size of Rhode Island. Unlike familiar cone-shaped Cascades volcanoes, Newberry was built into the shape of a broad shield by repeated eruptions over 400,000 years. About 75,000 years ago a major explosion and collapse event created a large volcanic depression (caldera) at its summit. Newberry last erupted about 1,300 years ago, and present-day hot springs and geologically young lava flows indicate that it could reawaken at any time. Because of its proximity to nearby communities, frequency and size of past eruptions, and geologic youthfulness, U.S. Geological Survey scientists are working to better understand volcanic activity at Newberry and closely monitor the volcano for signs of unrest.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.V23C2840S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.V23C2840S"><span>The 2013 Eruptions of Pavlof and Mount Veniaminof Volcanoes, Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schneider, D. J.; Waythomas, C. F.; Wallace, K.; Haney, M. M.; Fee, D.; Pavolonis, M. J.; Read, C.</p> <p>2013-12-01</p> <p>Pavlof Volcano and Mount Veniaminof on the Alaska Peninsula erupted during the summer of 2013 and were monitored by the Alaska Volcano Observatory (AVO) using seismic data, satellite and web camera images, a regional infrasound array and observer reports. An overview of the work of the entire AVO staff is presented here. The 2013 eruption of Pavlof Volcano began on May 13 after a brief and subtle period of precursory seismicity. Two volcano-tectonic (VT) earthquakes at depths of 6-8 km on April 24 preceded the onset of the eruption by 3 weeks. Given the low background seismicity at Pavlof, the VTs were likely linked to the ascent of magma. The onset of the eruption was marked by subtle pulsating tremor that coincided with elevated surface temperatures in satellite images. Activity during May and June was characterized by lava fountaining and effusion from a vent near the summit. Seismicity consisted of fluctuating tremor and numerous explosions that were detected on an infrasound array (450 km NE) and as ground-coupled airwaves at local and distant seismic stations (up to 650 km). Emissions of ash and sulfur dioxide were observed in satellite data extending as far as 300 km downwind at altitudes of 5-7 km above sea level. Ash collected in Sand Point (90 km E) were well sorted, 60-150 micron diameter juvenile glass shards, many of which had fluidal forms. Automated objective ash cloud detection and cloud height retrievals from the NOAA volcanic cloud alerting system were used to evaluate the hazard to aviation. A brief reconnaissance of Pavlof in July found that lava flows on the NW flank consist of rubbly, clast rich, 'a'a flows composed of angular blocks of agglutinate and rheomorphic lava. There are at least three overlapping flows, the longest of which extends about 5 km from the vent. Eruptive activity continued through early July, and has since paused or stopped. Historical eruptions of Mount Veniaminof volcano have been from an intracaldera cone within a 10-km summit caldera. Subtle pulsating tremor also signaled unrest at Veniaminof on June 7, a week prior to satellite observations of elevated surface temperatures within the caldera that indicated the presence of lava at the surface. Eruptive activity consisted of lava fountaining and effusion, and numerous explosive events that produced small ash clouds that typically reached only several hundred meters above the vent, and rarely were observed extending beyond the summit caldera. Seismicity was characterized by energetic tremor, and accompanied at times by numerous explosions that were heard by local residents at distances of 20-50 km, and detected as ground coupled airwaves at distant seismic stations (up to 200 km) and by an infrasound array (350 km distance). Because infrasound can propagate over great distances with little signal degradation or distortion, it was possible to correlate the ground-coupled airwaves between seismometers separated by 100's of km and thus identify their source. A helicopter fly over in July found that lava flows erupted from the intracaldera cone consist of 3-5 small lobes of rubbly spatter-rich lava up to 800 m in length on the southwest flank of the cone. The distal ends of the flows melted snow and ice adjacent to the cone to produce a water-rich plume, but there was no evidence for outflow of water from the caldera. Volcanic unrest has continued through early August, 2013.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006BVol...69..149B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006BVol...69..149B"><span>The exceptional activity and growth of the Southeast Crater, Mount Etna (Italy), between 1996 and 2001</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Behncke, Boris; Neri, Marco; Pecora, Emilio; Zanon, Vittorio</p> <p>2006-09-01</p> <p>Between 1971 and 2001, the Southeast Crater was the most productive of the four summit craters of Mount Etna, with activity that can be compared, on a global scale, to the opening phases of the Pu‘u ‘Ō‘ō-Kūpaianaha eruption of Kīlauea volcano, Hawai‘i. The period of highest eruptive rate was between 1996 and 2001, when near-continuous activity occurred in five phases. These were characterized by a wide range of eruptive styles and intensities from quiet, non-explosive lava emission to brief, violent lava-fountaining episodes. Much of the cone growth occurred during these fountaining episodes, totaling 105 events. Many showed complex dynamics such as different eruptive styles at multiple vents, and resulted in the growth of minor edifices on the flanks of the Southeast Crater cone. Small pyroclastic flows were produced during some of the eruptive episodes, when oblique tephra jets showered the steep flanks of the cone with hot bombs and scoriae. Fluctuations in the eruptive style and eruption rates were controlled by a complex interplay between changes in the conduit geometry (including the growth of a shallow magma reservoir under the Southeast Crater), magma supply rates, and flank instability. During this period, volume calculations were made with the aid of GIS and image analysis of video footage obtained by a monitoring telecamera. Between 1996 and 2001, the bulk volume of the cone increased by ~36×106 m3, giving a total (1971 2001) volume of ~72×106 m3. At the same time, the cone gained ~105 m in height, reaching an elevation of about 3,300 m. The total DRE volume of the 1996 2001 products was ~90×106m3. This mostly comprised lava flows (72×106 m3) erupted at the summit and onto the flanks of the cone. These values indicate that the productivity of the Southeast Crater increased fourfold during 1996 2001 with respect to the previous 25 years, coinciding with a general increase in the eruptive output rates and eruption intensity at Etna. This phase of intense summit activity has been followed, since the summer of 2001, by a period of increased structural instability of the volcano, marked by a series of important flank eruptions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70035238','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70035238"><span>Eruptive history of South Sister, Oregon Cascades</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Fierstein, J.; Hildreth, W.; Calvert, A.T.</p> <p>2011-01-01</p> <p>South Sister is southernmost and highest of the Three Sisters, three geologically dissimilar stratovolcanoes that together form a spectacular 20km reach along the Cascade crest in Oregon. North Sister is a monotonously mafic edifice as old as middle Pleistocene, Middle Sister a basalt-andesite-dacite cone built between 48 and 14ka, and South Sister is a basalt-free edifice that alternated rhyolitic and intermediate modes from 50ka to 2ka (largely contemporaneous with Middle Sister). Detailed mapping, 330 chemical analyses, and 42 radioisotopic ages show that the oldest exposed South Sister lavas were initially rhyolitic ~50ka. By ~37ka, rhyolitic lava flows and domes (72-74% SiO2) began alternating with radially emplaced dacite (63-68% SiO2) and andesite (59-63% SiO2) lava flows. Construction of a broad cone of silicic andesite-dacite (61-64% SiO2) culminated ~30ka in a dominantly explosive sequence that began with crater-forming andesitic eruptions that left fragmental deposits at least 200m thick. This was followed at ~27ka by growth of a steeply dipping summit cone of agglutinate-dominated andesite (56-60.5% SiO2) and formation of a summit crater ~800m wide. This crater was soon filled and overtopped by a thick dacite lava flow and then by >150m of dacitic pyroclastic ejecta. Small-volume dacite lavas (63-67% SiO2) locally cap the pyroclastic pile. A final sheet of mafic agglutinate (54-56% SiO2) - the most mafic product of South Sister - erupted from and drapes the small (300-m-wide) present-day summit crater, ending a summit-building sequence that lasted until ~22ka. A 20kyr-long-hiatus was broken by rhyolite eruptions that produced (1) the Rock Mesa coulee, tephra, and satellite domelets (73.5% SiO2) and (2) the Devils Chain of ~20 domes and short coulees (72.3-72.8% SiO2) from N-S vent alignments on South Sister's flanks. The compositional reversal from mafic summit agglutinate to recent rhyolites epitomizes the frequently changing compositional modes of the South Sister locus throughout its lifetime. South Sister is part of a reach of the Cascades unusually active in the last 50kyr, characterized by high vent density, N-S vent alignments, and numerous eruptive units of true rhyolite (≥ 72% SiO2) that distinguishes it from much of the Quaternary Cascade arc; these are eruptive expressions of the complex confluence of arc and intraplate magmatic-tectonic regimes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JVGR..207..145F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JVGR..207..145F"><span>Eruptive history of South Sister, Oregon Cascades</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fierstein, Judy; Hildreth, Wes; Calvert, Andrew T.</p> <p>2011-10-01</p> <p>South Sister is southernmost and highest of the Three Sisters, three geologically dissimilar stratovolcanoes that together form a spectacular 20 km reach along the Cascade crest in Oregon. North Sister is a monotonously mafic edifice as old as middle Pleistocene, Middle Sister a basalt-andesite-dacite cone built between 48 and 14 ka, and South Sister is a basalt-free edifice that alternated rhyolitic and intermediate modes from 50 ka to 2 ka (largely contemporaneous with Middle Sister). Detailed mapping, 330 chemical analyses, and 42 radioisotopic ages show that the oldest exposed South Sister lavas were initially rhyolitic ~ 50 ka. By ~ 37 ka, rhyolitic lava flows and domes (72-74% SiO 2) began alternating with radially emplaced dacite (63-68% SiO 2) and andesite (59-63% SiO 2) lava flows. Construction of a broad cone of silicic andesite-dacite (61-64% SiO 2) culminated ~ 30 ka in a dominantly explosive sequence that began with crater-forming andesitic eruptions that left fragmental deposits at least 200 m thick. This was followed at ~ 27 ka by growth of a steeply dipping summit cone of agglutinate-dominated andesite (56-60.5% SiO 2) and formation of a summit crater ~ 800 m wide. This crater was soon filled and overtopped by a thick dacite lava flow and then by > 150 m of dacitic pyroclastic ejecta. Small-volume dacite lavas (63-67% SiO 2) locally cap the pyroclastic pile. A final sheet of mafic agglutinate (54-56% SiO 2) - the most mafic product of South Sister - erupted from and drapes the small (300-m-wide) present-day summit crater, ending a summit-building sequence that lasted until ~ 22 ka. A 20 kyr-long-hiatus was broken by rhyolite eruptions that produced (1) the Rock Mesa coulee, tephra, and satellite domelets (73.5% SiO 2) and (2) the Devils Chain of ~ 20 domes and short coulees (72.3-72.8% SiO 2) from N-S vent alignments on South Sister's flanks. The compositional reversal from mafic summit agglutinate to recent rhyolites epitomizes the frequently changing compositional modes of the South Sister locus throughout its lifetime. South Sister is part of a reach of the Cascades unusually active in the last 50 kyr, characterized by high vent density, N-S vent alignments, and numerous eruptive units of true rhyolite (≥ 72% SiO 2) that distinguishes it from much of the Quaternary Cascade arc; these are eruptive expressions of the complex confluence of arc and intraplate magmatic-tectonic regimes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2001/0457/pdf/of2001-0457.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2001/0457/pdf/of2001-0457.pdf"><span>Lahar Hazards at Concepción volcano, Nicaragua</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Vallance, J.W.; Schilling, S.P.; Devoli, G.; Howell, M.M.</p> <p>2001-01-01</p> <p>Concepción is one of Nicaragua’s highest and most active volcanoes. The symmetrical cone occupies the northeastern half of a dumbbell shaped island called Isla Ometepa. The dormant volcano, Maderas, occupies the southwest half of the island. A narrow isthmus connects Concepción and Maderas volcanoes. Concepción volcano towers more than 1600 m above Lake Nicaragua and is within 5 to 10 km of several small towns situated on its aprons at or near the shoreline. These towns have a combined population of nearly 5,000. The volcano has frequently produced debris flows (watery flows of mud, rock, and debris—also known as lahars when they occur on a volcano) that could inundate these nearby populated areas. Concepción volcano has erupted more than 25 times in the last 120 years. Its first recorded activity was in AD 1883. Eruptions in the past century, most of which have originated from a small summit crater, comprise moderate explosions, ash that falls out of eruption plumes (called tephra), and occasional lava flows. Near the summit area, there are accumulations of rock that were emplaced hot (pyroclastic deposits), most of which were hot enough to stick together during deposition (a process called welding). These pyroclastic rocks are rather weak, and tend to break apart easily. The loose volcanic rock remobilizes during heavy rain to form lahars. Volcanic explosions have produced blankets of tephra that are distributed downwind, which on Isla Ometepe is mostly to the west. Older deposits at the west end of the island that are up to 1 m thick indicate larger explosive events have happened at Concepción volcano in prehistoric time. Like pyroclastic-flow deposits, loose tephra on the steep slopes of the volcano provides source material that heavy rainstorms and earthquakes can mobilize to trigger debris flow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.V11B2022S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.V11B2022S"><span>Human Footprints in Relation to the 1790 Eruption of Kilauea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Swanson, D. A.; Rausch, J.</p> <p>2008-12-01</p> <p>In 1790, a party of warriors and their families was decimated by an explosive eruption of Kilauea; fatality estimates range from about 80 to 5,405. In 1920, thousands of footprints made by barefoot walkers in wet accretionary lapilli ash were found within a few kilometers southwest of Kilauea's summit. In 1921, Jaggar related the footprints to survivors or rescuers of the 1790 eruption, mainly because he assumed that few people visited the supposedly forbidden area except in 1790. Archaeologists from Hawai'i Volcanoes National Park recently questioned whether the footprints were made at that time and by warriors, citing a wide range of directions that people were walking and evidence of extensive human use of the area. Forensic and anthropologic studies indicate that a human foot is about 15 percent of an individual's height. A man's foot may be slightly more that 15 percent, a women's slightly less, but nonetheless the height can be estimated to within a few centimeters. We measured the heel-big toe length of more than 400 footprints and calculated an average height of 1.5 m, including some children only a little more than 1 m tall. Few calculated heights are 1.75 m or more. Early Europeans described Hawaiian warriors as tall, one missionary estimating an average height of 1.78 m. A footprint may be larger than a foot, particularly in slippery, wet ash, so our estimates of heights are probably somewhat too large. The data indicate that most of the footprints were made by women and children, not by men, much less warriors. We traced the footprint-bearing ash into the tephra section on the southwest side of Kilauea's caldera. It occurs high in the section, resting on older explosive deposits. Its surface is indented by small lithic lapilli, which fell into the ash while it was still wet; a few even landed in footprints. The lithic lapilli are at the edge of a thick block and lapilli deposit that fell from a high eruption column; the column reached well into the jet stream, because its fallout was mainly dispersed east-southeastward by westerlies, a wind direction found only at high altitudes in Hawai'i. Surges associated with the high eruption column swept over the southwest and west rims of the caldera. These relations indicate that the accretionary lapilli (footprints) ash was an early stage of a powerful eruption involving both high columns and lithic surges. Hawaiian oral tradition says that the 1790 eruption was large, and Jaggar calculated a column height probably greater than 9 km (30,000 ft) based on observations of a pillar (eruption column) seen over Mauna Loa when viewed from the north. This is about halfway through the jet stream. Our work found two deposits of the late 1700s dispersed east of Kilauea's summit. The younger was probably erupted in 1790. A reconstruction of events in 1790 suggests that the accretionary lapilli ash fell early in the eruption, blown southwestward into areas where family groups, mainly women and children, were chipping glass from old pahoehoe for tools. They probably sought shelter while the ash was falling. but once it stopped, they slogged through the mud, leaving footprints in the 2-cm-thick deposit.. Meanwhile, the warriors and their families, camped at Kilauea's summit (supposedly for 3 days) waiting for the eruption to end, saw the sky clear following the ash eruption and started walking southwestward along the west side of the summit area. Then the most powerful stage of the eruption began, sending surges westward across the path of the doomed group, killing many. Afterwards, any survivors or rescuers who walked on the accretionary lapilli ash, by now dry, left no footprints that are preserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss038e012569.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss038e012569.html"><span>Earth observations taken by Expedition 38 crewmember</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2013-12-06</p> <p>ISS038-E-012569 (6 Dec. 2013) --- Sollipulli Caldera is featured in this image photographed by an Expedition 38 crew member on the International Space Station. While active volcanoes are obvious targets of interest from the standpoint of natural hazards, there are some dormant volcanoes that nevertheless warrant concern due to their geologic history of activity. One such volcano is Sollipulli, located in central Chile near the border with Argentina in the southern Andes Mountains of South America. The volcano is located within the Parque Nacional Villarica of Chile. This photograph highlights the summit (2,282 meters above sea level) of the volcano and the bare slopes above the tree line. Lower elevations are covered with the green forests indicative of Southern Hemisphere summer. The summit of the volcano is occupied by a four-kilometer-wide caldera, currently filled with a snow-covered glacier (center). While most calderas form following violent explosive eruptions, the types of volcanic rock and deposits associated with such an event have not been found at Sollipulli. The geologic evidence does indicate explosive activity 2,900 years before present, and production of lava flows approximately 700 years before present. Together with craters and scoria cones located along the outer flanks of the caldera, scientists say this history suggests that Sollipulli could experience violent eruptions again, presenting an immediate potential hazard to such towns as Melipeuco in addition to the greater region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JVGR..262..134M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JVGR..262..134M"><span>Magmatic controls on eruption dynamics of the 1950 yr B.P. eruption of San Antonio Volcano, Tacaná Volcanic Complex, Mexico-Guatemala</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mora, Juan Carlos; Gardner, James Edward; Macías, José Luis; Meriggi, Lorenzo; Santo, Alba Patrizia</p> <p>2013-07-01</p> <p>San Antonio Volcano, in the Tacaná Volcanic Complex, erupted ~ 1950 yr. B.P., with a Pelean type eruption that produced andesitic pyroclastic surges and block-and-ash flows destroying part of the volcano summit and producing a horse-shoe shaped crater open to the SW. Between 1950 and 800 yr B.P. the eruption continued with effusive andesites followed by a dacite lava flow and a summit dome, all from a single magma batch. All products consist of phenocrysts and microphenocrysts of zoned plagioclase, amphibole, pyroxene, magnetite ± ilmenite, set in partially crystallized groundmass of glass and microlites of the same mineral phases, except for the lack of amphibole. Included in the andesitic blocks of the block-and-ash flow deposit are basaltic andesite enclaves with elongated and ellipsoidal forms and chilled margins. The enclaves have intersertal textures with brown glass between microphenocrysts of plagioclase, hornblende, pyroxene, and olivine, and minor proportions of phenocrysts of plagioclase, hornblende, and pyroxene. A compositional range obtained of blocks and enclaves resulted from mixing between andesite (866 °C ± 22) and basaltic andesite (enclaves, 932 °C ± 22), which may have triggered the explosive Pelean eruption. Vestiges of that mixing are preserved as complex compositional zones in plagioclase and clinopyroxene-rich reaction rims in amphibole in the andesite. Whole-rock chemistry, geothermometry, experimental petrology and modeling results suggest that after the mixing event the eruption tapped hybrid andesitic magma (≤ 900 °C) and ended with effusive dacitic magma (~ 825 °C), all of which were stored at ~ 200 MPa water pressure. A complex open-system evolution that involved crustal end-members best explains the generation of effusive dacite from the hybrid andesite. Amphibole in the dacite is rimmed by reaction products of plagioclase, orthopyroxene, and Fe-Ti oxides produced by decompression during ascent. Amphibole in the andesite, however, lacks such rims. Because the andesite was at 866 ± 22 °C and the dacite was at ~ 825 °C, the reaction rims indicate that the andesitic magma ascended at 0.023 m s- 1 during the explosive phase of the eruption, whereas the dacitic magma rose more slowly at ~ 0.002-0.004 m s- 1.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_5 --> <div id="page_6" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="101"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss034e027139.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss034e027139.html"><span>Earth Observations taken by Expedition 34 crewmember</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2013-01-10</p> <p>ISS034-E-027139 (10 Jan. 2013) --- Sakurajima Volcano in Kyushu, Japan is featured in this image photographed by an Expedition 34 crew member on the International Space Station. This photograph highlights Sakurajima, one of Japan’s most active volcanoes (center). There are several eruption craters near the 1,117 meter summit of Sakurajima; according to scientists, Kita-dake to the north last erupted approximately 5,000 years ago, while Minami-dake and Showa crater to the south have been the site of frequent eruptions since at least the 8th century. The ash plume visible near the volcano summit and extending to the southeast may have originated from either Minami-dake or Showa craters. Scientists believe that Sakurajima began forming approximately 13,000 years ago; prior to 1914, the volcano was an island in Kagoshima Bay—it was joined to the mainland by volcanic material following a major eruption in 1914. The image highlights the proximity of several large urban areas (Aira, Kagoshima, Kanoya, Kirishima, and Miyakonojo are readily visible) to Sakurajima. This has prompted studies of potential health hazards presented by the volcanic ash (Hillman et al. 2012), which are particularly important if more powerful explosive eruptive activity resumes at the volcano. The Tokyo Volcanic Ash Advisory Center (VAAC) of the Japan Meteorological Agency issues advisories when eruptions occur. An advisory on the activity captured in this image was issued less than one hour before the crew member took the photograph, by which time the plume tail had encountered northeast-trending upper-level winds (bottom center).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70047248','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70047248"><span>Seismic observations of Redoubt Volcano, Alaska - 1989-2010 and a conceptual model of the Redoubt magmatic system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Power, John A.; Stihler, Scott D.; Chouet, Bernard A.; Haney, Matthew M.; Ketner, D.M.</p> <p>2013-01-01</p> <p>Seismic activity at Redoubt Volcano, Alaska, has been closely monitored since 1989 by a network of five to ten seismometers within 22 km of the volcano's summit. Major eruptions occurred in 1989-1990 and 2009 and were characterized by large volcanic explosions, episodes of lava dome growth and failure, pyroclastic flows, and lahars. Seismic features of the 1989-1990 eruption were 1) weak precursory tremor and a short, 23-hour-long, intense swarm of repetitive shallow long-period (LP) events centered 1.4 km below the crater floor, 2) shallow volcano-tectonic (VT) and hybrid earthquakes that separated early episodes of dome growth, 3) 13 additional swarms of LP events at shallow depths precursory to many of the 25 explosions that occurred over the more than 128 day duration of eruptive activity, and 4) a persistent cluster of VT earthquakes at 6 to 9 km depth. In contrast the 2009 eruption was preceded by a pronounced increase in deep-LP (DLP) events at lower crustal depths (25 to 38 km) that began in mid-December 2008, two months of discontinuous shallow volcanic tremor that started on January 23, 2009, a strong phreatic explosion on March 15, and a 58-hour-long swarm of repetitive shallow LP events. The 2009 eruption consisted of at least 23 major explosions between March 23 and April 5, again accompanied by shallow VT earthquakes, several episodes of shallow repetitive LP events and dome growth continuing until mid July. Increased VT earthquakes at 4 to 9 km depth began slowly in early April, possibly defining a mid-crustal magma source zone. Magmatic processes associated with the 2009 eruption seismically activated the same portions of the Redoubt magmatic system as the 1989-1990 eruption, although the time scales and intensity vary considerably among the two eruptions. The occurrence of precursory DLP events suggests that the 2009 eruption may have involved the rise of magma from lower crustal depths. Based on the evolution of seismicity during the 1989-1990 and 2009 eruptions the Redoubt magmatic system is envisioned to consist of a shallow system of cracks extending 1 to 2 km below the crater floor, a magma storage or source region at roughly 3 to 9 km depth, and a diffuse magma source region at 25 to 38 km depth. Close tracking of seismic activity allowed the Alaska Volcano Observatory to successfully issue warnings prior to many of the hazardous explosive events that occurred in 2009.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUSM.V44A..06V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUSM.V44A..06V"><span>Eruptive mechanism at Volcán de Colima: Interpreting transitions between styles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Varley, N.; James, M. R.; Hutchison, W.; Arámbula, R.; Reyes, G.</p> <p>2013-05-01</p> <p>In January 2013 eruptions resumed at Volcán de Colima, the previous activity having ceased in June 2011. This period represented the quietest the volcano has been since before the previous episode commenced in 1998. The new eruptive episode is showing differences compared to the 1998-2011 period, which are presenting a challenge to interpret. Lower gases fluxes coupled with lower fumaroles temperatures are consistent with the decreasing trend of volatile-contents but the two larger Vulcanian eruptions in January produced pyroclastic density currents with a greater degree of fragmentation than previous events. A dome has been growing within the newly formed crater within the previous dome. The 1998-2011 eruption included five periods of effusive activity, with little variation in composition. Domes grew with effusion rates covering more than 2 orders of magnitude. Both explosive and effusive activity was centred at multiple locations within the summit crater. The SO2 flux showed a general declining trend throughout this period and 2005 included the largest pyroclastic flows witnessed since the last Plinian eruption in 1913. Swarms of small amplitude long period events were detected prior to each larger eruption, these have been again witnessed in 2013. The characteristics of the swarms is being compared, the generation of events being related to brittle fracturing along the conduit margin. The episode terminated in June 2011 with an explosion which removed the upper portion of the most recent and extended period of dome growth, which was at a very slow rate from January 2007. Automated 3D computer vision reconstruction techniques (structure-from-motion and multi-view stereo, SfM-MVS) have permitted the estimation of dome volumes from 1 m resolution digital elevation models. A small decrease in volume (0.4×105 m3) was detected prior to the explosion, which was related to the formation of steps in the dome surface, related to localized zones of weakness. For the explosion, the region of greatest volume loss was observed to be not coincident with the assumed location of the conduit, suggesting and that heterogeneity within the dome was important during the June explosion. Analysis of thermal images taken during flights has permitted the detailed modelling of the dome emplacement processes. The onset of rockfalls on the W side once it reached the crater rim provoked a change in emplacement style from endogenic to exogenic. Monitoring the activity during the recent eruption has produced a wealth of data making it an excellent case study for modelling transitions between different regimes and the generating mechanism for Vulcanian explosions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.V31B3025S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.V31B3025S"><span>Is Kīlauea's East Rift Zone eruption running out of gas?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sutton, A. J.; Elias, T.; Orr, T. R.; Patrick, M. R.; Poland, M. P.; Thornber, C. R.</p> <p>2015-12-01</p> <p>Gases exsolving from magma are a key force that drives eruptive activity, and emissions from Kīlauea's East Rift Zone (ERZ) dominated the volcano's gas release from the beginning of the long-running and voluminous Pu'u 'Ō'ō eruption in 1983, through February 2008. In the months prior to the March 2008 onset of eruptive activity within Halema'uma'u Crater, however, SO2 degassing at the summit climbed substantially, and summit gas release has remained elevated since. These unprecedented emissions associated with the new summit eruption effectively began robbing gas from magma destined for Kīlauea's ERZ. As a result, ERZ SO2discharge, which had averaged 1,700 +-380 t/d for the previous 15 years, declined sharply and steadily beginning in September, 2008, and reached a new steady low of 380 +- 100 t/d by early 2011. This level persisted through mid-2015. In the years since the late 2008 downturn in ERZ SO2 emissions, there has been an overall slowdown in ERZ eruptive activity. Elevated emissions and effusive activity occurred briefly during the 2011 Kamoamoa fissure eruption and two other outbreaks at Pu'u 'Ō'ō , but otherwise ERZ eruptive activity had waned by 2010, when effusion rates were measured at about half of the long-term rate. Also, the sulfur preserved in ERZ olivine melt-inclusions, which provides a record of pre-eruptive SO2degassing, has steadily declined along with equilibration temperatures of host olivine phenocrysts, since 2008. We suggest that the drop in gas content of magma reaching the ERZ, owing to summit pre-eruptive degassing, has contributed significantly to the downturn in ERZ activity. While SO2 emissions from the ERZ have dropped to sustained levels lower than anything seen in the past 20 years, summit emissions have remained some of the highest recorded since regular measurements began at Kīlauea in 1979. Overall, average total SO2 discharge from Kīlauea in 2014, summit and ERZ, is still about 50% higher than for the 15 years prior to 2008. The effects of summit pre-eruptive degassing observed at Kilauea may have application at other summit-rift shield volcanoes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.8715L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.8715L"><span>The 2007 and 2014 eruptions of Stromboli at match: monitoring the potential occurrence of effusion-driven basaltic paroxysmal explosions from a volcanic CO2 flux perspective</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liuzzo, Marco; Aiuppa, Alessandro; Salerno, Giuseppe; Burton, Mike; Federico, Cinzia; Caltabiano, Tommaso; Giudice, Gaetano; Giuffrida, Giovanni</p> <p>2015-04-01</p> <p>The recent effusive unrests of Stromboli occurred in 2002 and 2007 were both punctuated by short-lived, violent paroxysmal explosions generated from the volcano's summit craters. When effusive activity recently resumed on Stromboli, on 6 August 2014, much concern was raised therefore on whether or not a paroxysm would have occurred again. The occurrence of these potentially hazardous events has stimulated research toward understanding the mechanisms through which effusive eruptions can perturb the volcano's plumbing system, to eventually trigger a paroxysm. The anomalously large CO2 gas emissions measured prior to the 15 March 2007 paroxysmal explosion of Stromboli [1] have first demonstrated the chance to predict days in advance the effusive-to-explosive transition. Here 2007 and 2014 volcanic CO2 flux records have been compared for exploring causes/conditions that had not triggered any paroxysm event in the 2014 case. We show that the 2007 and 2014 datasets shared both similarities and remarkable differences. The pre-eruptive trends of CO2 and SO2 flux emissions were strikingly similar in both 2007 and 2014, indicating similar conditions within the plumbing system prior to onset of both effusive crises. In both events, the CO2 flux substantially accelerated (relative to the pre-eruptive mean flux) after onset of the effusion. However, this CO2 flux acceleration was a factor 3 lower in 2014 than in 2007, and the excess CO2 flux (the fraction of CO2 not associated with the shallowly emplaced/erupted magma, and therefore contributed by the deep magmatic system) never returned to the very high levels observed prior to the 15 March 2007 paroxysm. We conclude therefore that, although similar quantities of magma were effusively erupted in 2007 and 2014, the deep magmatic system was far less perturbed in the most recent case. We speculate that the rate at which the deep magmatic system is decompressed, rather than the level of de-compression itself, determine if the deep Stromboli's plumbing system is prone to erupt in a paroxysm, or not. [1] A. Aiuppa et al., Geophys Res Lett, 2010.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70186951','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70186951"><span>Evidence for large compositional ranges in coeval melts erupted from Kīlauea's summit reservoir: Chapter 7</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Helz, Rosalind T.; Clague, David A.; Mastin, Larry G.; Rose, Timothy R.; Carey, Rebecca; Cayol, Valérie; Poland, Michael P.; Weis, Dominique</p> <p>2015-01-01</p> <p>Petrologic observations on Kīlauea's lavas include abundant microprobe analyses of glasses, which show the range of melts available in Kīlauea's summit reservoir over time. During the past two centuries, compositions of melts erupted within the caldera have been limited to MgO = 6.3–7.5 wt%. Extracaldera lavas of the 1959, 1971, and 1974 eruptions contain melts with up to 10.2, 8.9, and 9.2 wt% MgO, respectively, and the 1924 tephra contains juvenile Pele's tears with up to 9.1 wt% MgO. Melt compositions from explosive deposits at Kīlauea, including the Keanakāko‘i (A.D. 1500–1800), Kulanaokuaiki (A.D. 400–1000), and Pāhala (10–25 ka) tephra units, show large ranges of MgO contents. The range of melt MgO is 6.5–11.0 wt% for the Keanakāko‘i; the Kulanaokuaiki extends to 12.5% MgO and the Pāhala Ash includes rare shards with 13–14.5% MgO. The frequency distributions for MgO in the Keanakāko‘i and Kulanaokuaiki glasses are bimodal, suggesting preferential magma storage at two different depths. Kīlauea's summit reservoir contains melts ranging from 6.5 to at least 11.0 wt% MgO, and such melts were available for sampling near instantaneously and repeatedly over centuries. More magnesian melts are inferred to have risen directly from greater depth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011GeoRL..38.3302D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011GeoRL..38.3302D"><span>Determining the seismic source mechanism and location for an explosive eruption with limited observational data: Augustine Volcano, Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dawson, Phillip B.; Chouet, Bernard A.; Power, John</p> <p>2011-02-01</p> <p>Waveform inversions of the very-long-period components of the seismic wavefield produced by an explosive eruption that occurred on 11 January, 2006 at Augustine Volcano, Alaska constrain the seismic source location to near sea level beneath the summit of the volcano. The calculated moment tensors indicate the presence of a volumetric source mechanism. Systematic reconstruction of the source mechanism shows the source consists of a sill intersected by either a sub-vertical east-west trending dike or a sub-vertical pipe and a weak single force. The trend of the dike may be controlled by the east-west trending Augustine-Seldovia arch. The data from the network of broadband sensors is limited to fourteen seismic traces, and synthetic modeling confirms the ability of the network to recover the source mechanism. The synthetic modeling also provides a guide to the expected capability of a broadband network to resolve very-long-period source mechanisms, particularly when confronted with limited observational data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JVGR..301..238B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JVGR..301..238B"><span>Volcaniclastic stratigraphy of Gede Volcano, West Java, Indonesia: How it erupted and when</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Belousov, A.; Belousova, M.; Krimer, D.; Costa, F.; Prambada, O.; Zaennudin, A.</p> <p>2015-08-01</p> <p>Gede Volcano, West Java (Indonesia), is located 60 km south of Jakarta within one of the regions with highest population density in the world. Therefore, knowledge of its eruption history is necessary for hazard evaluation, because even a small eruption would have major societal and economic consequences. Here we report the results of the investigation of the stratigraphy of Gede (with the focus on its volcaniclastic deposits of Holocene age) and include 23 new radiocarbon dates. We have found that a major part of the volcanic edifice was formed in the Pleistocene when effusions of lavas of high-silica basalt dominated. During this period the volcano experienced large-scale lateral gravitational failure followed by complete reconstruction of the edifice, formation of the summit subsidence caldera and its partial refilling. After a repose period of > 30,000 years the volcanic activity resumed at the Pleistocene/Holocene boundary. In the Holocene the eruptions were dominantly explosive with magma compositions ranging from basaltic andesite to rhyodacite; many deposits show heterogeneity at the macroscopic hand specimen scale and also in the minerals, which indicates interactions between mafic (basaltic andesite) and silicic (rhyodacite) magmas. Significant eruptions of the volcano were relatively rare and of moderate violence (the highest VEI was 3-4; the largest volume of erupted pyroclasts 0.15 km3). There were 4 major Holocene eruptive episodes ca. 10,000, 4000, 1200, and 1000 yr BP. The volcanic plumes of these eruptions were not buoyant and most of the erupted products were transported in the form of highly concentrated valley-channelized pyroclastic flows. Voluminous lahars were common in the periods between the eruptions. The recent eruptive period of the volcano started approximately 800 years ago. It is characterized by frequent and weak VEI 1-2 explosive eruptions of Vulcanian type and rare small-volume extrusions of viscous lava. We estimate that during last 10,000 years, Gede erupted less than 0.3 km3 DRE (Dense Rock Equivalent) of magma. Such small productivity suggests that the likelihood of future large-volume (VEI ≥ 5) eruptions of the volcano is low, although moderately strong (VEI 3-4) explosive eruptions capable of depositing pyroclastic flows and lahars onto the NE foot of the volcano are more likely.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70193252','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70193252"><span>Photogrammetric monitoring of lava dome growth during the 2009 eruption of Redoubt Volcano</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Diefenbach, Angela K.; Bull, Katharine F.; Wessels, Rick; McGimsey, Robert G.</p> <p>2013-01-01</p> <p>The 2009 eruption of Redoubt Volcano, Alaska, began with a phreatic explosion on 15 March followed by a series of at least 19 explosive events and growth and destruction of at least two, and likely three, lava domes between 22 March and 4 April. On 4 April explosive activity gave way to continuous lava effusion within the summit crater. We present an analysis of post-4 April lava dome growth using an oblique photogrammetry approach that provides a safe, rapid, and accurate means of measuring dome growth. Photogrammetric analyses of oblique digital images acquired during helicopter observation flights and fixed-wing volcanic gas surveys produced a series of digital elevation models (DEMs) of the lava dome from 16 April to 23 September. The DEMs were used to calculate estimates of volume and time-averaged extrusion rates and to quantify morphological changes during dome growth.Effusion rates ranged from a maximum of 35 m3 s− 1 during the initial two weeks to a low of 2.2 m3 s− 1 in early summer 2009. The average effusion rate from April to July was 9.5 m3 s− 1. Early, rapid dome growth was characterized by extrusion of blocky lava that spread laterally within the summit crater. In mid-to-late April the volume of the dome had reached 36 × 106 m3, roughly half of the total volume, and dome growth within the summit crater began to be limited by confining crater walls to the south, east, and west. Once the dome reached the steep, north-sloping gorge that breaches the crater, growth decreased to the south, but the dome continued to inflate and extend northward down the gorge. Effusion slowed during 16 April–1 May, but in early May the rate increased again. This rate increase was accompanied by a transition to exogenous dome growth. From mid-May to July the effusion rate consistently declined. The decrease is consistent with observations of reduced seismicity, gas emission, and thermal anomalies, as well as declining rates of geodetic deflation or inflation. These trends suggest dome growth ceased by July 2009. The volume of the dome at the end of the 2009 eruption was about 72 × 106 m3, more than twice the estimated volume of the largest dome extruded during the 1989–1990 eruption. In total, the 2009 dome extends over 400 m down the glacial gorge on the north end of the crater, with a total length of 1 km, width of 500 m and an average thickness of 200 m.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70041411','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70041411"><span>Detecting hidden volcanic explosions from Mt. Cleveland Volcano, Alaska with infrasound and ground-couples airwaves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>De Angelis, Slivio; Fee, David; Haney, Matthew; Schneider, David</p> <p>2012-01-01</p> <p>In Alaska, where many active volcanoes exist without ground-based instrumentation, the use of techniques suitable for distant monitoring is pivotal. In this study we report regional-scale seismic and infrasound observations of volcanic activity at Mt. Cleveland between December 2011 and August 2012. During this period, twenty explosions were detected by infrasound sensors as far away as 1827 km from the active vent, and ground-coupled acoustic waves were recorded at seismic stations across the Aleutian Arc. Several events resulting from the explosive disruption of small lava domes within the summit crater were confirmed by analysis of satellite remote sensing data. However, many explosions eluded initial, automated, analyses of satellite data due to poor weather conditions. Infrasound and seismic monitoring provided effective means for detecting these hidden events. We present results from the implementation of automatic infrasound and seismo-acoustic eruption detection algorithms, and review the challenges of real-time volcano monitoring operations in remote regions. We also model acoustic propagation in the Northern Pacific, showing how tropospheric ducting effects allow infrasound to travel long distances across the Aleutian Arc. The successful results of our investigation provide motivation for expanded efforts in infrasound monitoring across the Aleutians and contributes to our knowledge of the number and style of vulcanian eruptions at Mt. Cleveland.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2018/5008/sir20185008.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2018/5008/sir20185008.pdf"><span>Lava lake activity at the summit of Kīlauea Volcano in 2016</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Patrick, Matthew R.; Orr, Tim R.; Swanson, Donald A.; Elias, Tamar; Shiro, Brian</p> <p>2018-04-10</p> <p>The ongoing summit eruption at Kīlauea Volcano, Hawai‘i, began in March 2008 with the formation of the Overlook crater, within Halema‘uma‘u Crater. As of late 2016, the Overlook crater contained a large, persistently active lava lake (250 × 190 meters). The accessibility of the lake allows frequent direct observations, and a robust geophysical monitoring network closely tracks subtle changes at the summit. These conditions present one of the best opportunities worldwide for understanding persistent lava lake behavior and the geophysical signals associated with open-vent basaltic eruptions. In this report, we provide a descriptive and visual summary of lava lake activity during 2016, a year consisting of continuous lava lake activity. The lake surface was composed of large black crustal plates separated by narrow incandescent spreading zones. The dominant motion of the surface was normally from north to south, but spattering produced transient disruptions to this steady motion. Spattering in the lake was common, consisting of one or more sites on the lake margin. The Overlook crater was continuously modified by the deposition of spatter (often as a thin veneer) on the crater walls, with frequent collapses of this adhered lava into the lake. Larger collapses, involving lithic material from the crater walls, triggered several small explosive events that deposited bombs and lapilli around the Halema‘uma‘u Crater rim, but these did not threaten public areas. The lava lake level varied over several tens of meters, controlled primarily by changes in summit magma reservoir pressure (in part driven by magma supply rates) and secondarily by fluctuations in spattering and gas release from the lake (commonly involving gas pistoning). The lake emitted a persistent gas plume, normally averaging 1,000–8,000 metric tons per day (t/d) of sulfur dioxide (SO2), as well as a constant fallout of small juvenile and lithic particles, including Pele’s hair and tears. The gas emissions created volcanic air pollution (vog) that affected large areas of the Island of Hawai‘i. The summit eruption has been a major attraction for visitors in Hawai‘i Volcanoes National Park. During 2016, the rising lake levels allowed the lake and its spattering to be more consistently visible from public viewing areas, enhancing the visitor experience. The U.S. Geological Survey’s Hawaiian Volcano Observatory (HVO) closely monitors the summit eruption and keeps emergency managers and the public informed of activity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://ngmdb.usgs.gov/Prodesc/proddesc_68269.htm','USGSPUBS'); return false;" href="http://ngmdb.usgs.gov/Prodesc/proddesc_68269.htm"><span>Geology of the Ugashik-Mount Peulik Volcanic Center, Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Miller, Thomas P.</p> <p>2004-01-01</p> <p>The Ugashik-Mount Peulik volcanic center, 550 km southwest of Anchorage on the Alaska Peninsula, consists of the late Quaternary 5-km-wide Ugashik caldera and the stratovolcano Mount Peulik built on the north flank of Ugashik. The center has been the site of explosive volcanism including a caldera-forming eruption and post-caldera dome-destructive activity. Mount Peulik has been formed entirely in Holocene time and erupted in 1814 and 1845. A large lava dome occupies the summit crater, which is breached to the west. A smaller dome is perched high on the southeast flank of the cone. Pyroclastic-flow deposits form aprons below both domes. One or more sector-collapse events occurred early in the formation of Mount Peulik volcano resulting in a large area of debris-avalanche deposits on the volcano's northwest flank. The Ugashik-Mount Peulik center is a calcalkaline suite of basalt, andesite, dacite, and rhyolite, ranging in SiO2 content from 51 to 72 percent. The Ugashik-Mount Peulik magmas appear to be co-genetic in a broad sense and their compositional variation has probably resulted from a combination of fractional crystallization and magma-mixing. The most likely scenario for a future eruption is that one or more of the summit domes on Mount Peulik are destroyed as new magma rises to the surface. Debris avalanches and pyroclastic flows may then move down the west and, less likely, east flanks of the volcano for distances of 10 km or more. A new lava dome or series of domes would be expected to form either during or within some few years after the explosive disruption of the previous dome. This cycle of dome disruption, pyroclastic flow generation, and new dome formation could be repeated several times in a single eruption. The volcano poses little direct threat to human population as the area is sparsely populated. The most serious hazard is the effect of airborne volcanic ash on aircraft since Mount Peulik sits astride heavily traveled air routes connecting the U.S. and Europe to Asia. Activity of the type described could produce eruption columns to heights of 15 km and result in significant amounts of ash 250-300 km downwind.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009JVGR..180..246N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009JVGR..180..246N"><span>Phreatomagmatic volcanic hazards where rift-systems meet the sea, a study from Ambae Island, Vanuatu</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Németh, Károly; Cronin, Shane J.</p> <p>2009-03-01</p> <p>Ambae Island is a mafic stratovolcano located in the northern Vanuatu volcanic arc and has a NE-SW rift-controlled elongated shape. Several hundred scoria cones and fissure-fed lava fields occur along its long axis. After many decades of quiescence, Ambae Island erupted on the 28th of November 2005, disrupting the lives of its 10,000 inhabitants. Its activity remained focused at the central (crater-lake filled) vent and this is where hazard-assessments were focused. These assessments initially neglected that maars, tephra cones and rings occur at each tip of the island where the eruptive activity occurred < 500 and < 300 yr B.P. The products of this explosive phreatomagmatic activity are located where the rift axis meets the sea. At the NE edge of the island five tephra rings occur, each comparable in size to those on the summit of Ambae. Along the NE coastline, a near-continuous cliff section exposes an up to 25 m thick succession of near-vent phreatomagmatic tephra units derived from closely spaced vents. This can be subdivided into two major lithofacies associations. The first association represents when the locus of explosions was below sea level and comprises matrix-supported, massive to weakly stratified beds of coarse ash and lapilli. These are dominant in the lowermost part of the sequence and commonly contain coral fragments, indicating that the loci of explosion were located within a reef or coral sediment near the syn-eruptive shoreline. The second type indicate more stable vent conditions and rapidly repeating explosions of high intensity, producing fine-grained tephra with undulatory bedding and cross-lamination as well as megaripple bedforms. These surge and fall beds are more common in the uppermost part of the succession and form a few-m-thick pile. An older tephra succession of similar character occurs below, and buried trees in growth position, as well as those flattened within base surge beds. This implies that the centre of this eruption was very near the coastline. The processes implied by these deposits are amongst the most violent forms of volcanism on this island. In addition, the lowland and coastal areas affected by these events are the most heavily populated. This circumstance is mirrored on many similar volcanic islands, including the nearby SW Pacific examples of Taveuni (Fiji), Upolu and Savai'i (Samoa), and Ambrym (Vanuatu). These locations are paradoxically often considered safe areas during summit/central-vent eruptions, simply because they are farthest from the central sources of ash-fall and lahar hazard. The observations presented here necessitate a revision of this view.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70017664','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70017664"><span>The 1989-1990 eruptions of Redoubt Volcano: an introduction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Miller, T.P.; Chouet, B.A.</p> <p>1994-01-01</p> <p>Redoubt Volcano, located on the west side of Cook Inlet in south-central Alaska, erupted explosively on over 20 separate occasions between December 14, 1989 and April 21, 1990. Fourteen lava domes were emplaced in the summit area, thirteen of which were subsequently destroyed. The eruption caused economic losses estimated at over $160,000,000 making this the second most costly eruption in U.S. history. This economic impact provided the impetus for a integrated comprehensive account of an erupting volcano using both modern and classical research and modern techniques which in turn led to advances in eruption monitoring and interpretation. Research on such topics as dome formation and collapse and the resulting pyroclastic flows, elutriated ash, lightning, tephra, and flooding was blended with the rapid communication of associated hazards to a large user group. The seismology successes in predicting and monitoring eruption dynamics were due in part to (1) the recognition of long-period seismic events as indicators of the readiness of the volcano to erupt, and (2) to the development of new tools that allowed the seismicity to be assessed instantaneously. Integrated studies of the petrology of erupted products and volatile content over time gave clues as to the progress of the eruption towards completion. ?? 1994.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss026e017074.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss026e017074.html"><span>Earth Observations taken by Expedition 26 crewmember</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2011-01-11</p> <p>ISS026-E-017074 (11 Jan. 2011) --- Emi Koussi volcano in Chad is featured in this image photographed by an Expedition 26 crew member on the International Space Station. The large Emi Koussi volcano is located in northern Chad at the southeastern end of the Tibesti Range. The dark volcanic rocks of the volcano provide a sharp contrast to the underlying tan and light brown sandstones exposed to the west, south, and east. Emi Koussi is a shield volcano formed from relatively low viscosity lavas—flowing more like motor oil as opposed to toothpaste—and explosively-erupted ignimbrites that produce a characteristic low and broad structure that covers a wide area (approximately 60 x 80 kilometers). This photograph highlights the entire volcanic structure; at 3,415 meters above sea level, Emi Koussi is the highest summit of the Sahara region. The summit area contains three calderas formed by powerful eruptions. Two older, and overlapping, calderas form a depression approximately 12 x 15 kilometers in area bounded by a distinct rim (center). According to scientists, the youngest and smallest caldera, Era Kohor, formed as a result of eruptive activity that occurred within the past 2 million years. Young volcanic features including lava flows and scoria cones are also thought to be less than 2 million years old. There are no historical records of eruptive activity at Emi Koussi, but there is an active thermal area on the southern flank of the volcano.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GSFC_20171208_Archive_e001648.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GSFC_20171208_Archive_e001648.html"><span>Ash Plume from Shiveluch</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2012-10-09</p> <p>When NASA’s Terra satellite passed over Russia’s Kamchatka Peninsula at noon local time (00:00 Universal Time) on October 6, 2012, Shilveluch Volcano was quiet. By the time NASA’s Aqua satellite passed over the area two hours later (bottom image), the volcano had erupted and sent a plume of ash over the Kamchatskiy Zaliv. The plume traveled about 90 kilometers (55 miles) toward the south-southeast, where a change in wind direction began pushing the plume toward the east. On October 6, 2012, the Kamchatka Volcanic Emergency Response Team (KVERT) reported that the ash plume from Shiveluch reached an altitude of 3 kilometers (9,800 feet) above sea level, and had traveled some 220 kilometers (140 miles) from the volcano summit. Shiveluch (also spelled Sheveluch) ranks among the biggest and most active volcanoes on the Kamchatka Peninsula. Rising to 3,283 meters (10,771 feet) above sea level, Shiveluch is a stratovolcano composed of alternating layers of hardened lava, compacted ash, and rocks ejected by previous eruptions. The beige-colored expanse of rock on the volcano’s southern slopes (visible in both images) is due to an explosive eruption that occurred in 1964. Part of Shiveluch’s southern flank collapsed, and the light-colored rock is avalanche debris left by that event. High-resolution imagery of Shiveluch shows very little vegetation within that avalanche zone. On October 6, 2012, KVERT cited observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on Terra and Aqua in detecting the Shiveluch eruption. This was not the first time that MODIS observed a Shiveluch eruption shortly after it started. In 2007, MODIS captured an image within minutes of the eruption’s start, before winds could blow the ash away from the summit. When NASA’s Terra satellite passed over Russia’s Kamchatka Peninsula at noon local time (00:00 Universal Time) on October 6, 2012, Shilveluch Volcano was quiet (top image). By the time NASA’s Aqua satellite passed over the area two hours later (bottom image), the volcano had erupted and sent a plume of ash over the Kamchatskiy Zaliv. The plume traveled about 90 kilometers (55 miles) toward the south-southeast, where a change in wind direction began pushing the plume toward the east. On October 6, 2012, the Kamchatka Volcanic Emergency Response Team (KVERT) reported that the ash plume from Shiveluch reached an altitude of 3 kilometers (9,800 feet) above sea level, and had traveled some 220 kilometers (140 miles) from the volcano summit. Shiveluch (also spelled Sheveluch) ranks among the biggest and most active volcanoes on the Kamchatka Peninsula. Rising to 3,283 meters (10,771 feet) above sea level, Shiveluch is a stratovolcano composed of alternating layers of hardened lava, compacted ash, and rocks ejected by previous eruptions. The beige-colored expanse of rock on the volcano’s southern slopes (visible in both images) is due to an explosive eruption that occurred in 1964. Part of Shiveluch’s southern flank collapsed, and the light-colored rock is avalanche debris left by that event. High-resolution imagery of Shiveluch shows very little vegetation within that avalanche zone. On October 6, 2012, KVERT cited observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on Terra and Aqua in detecting the Shiveluch eruption. This was not the first time that MODIS observed a Shiveluch eruption shortly after it started. In 2007, MODIS captured an image within minutes of the eruption’s start, before winds could blow the ash away from the summit. Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003AGUFM.V22A0571B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003AGUFM.V22A0571B"><span>Spreading of Somma-Vesuvio Volcanic Complex: is the Hazard for Plinian Eruptions being reduced?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Borgia, A.; Tizzani, P.; Solaro, G.; Luongo, G.; Fusi, N.</p> <p>2003-12-01</p> <p>Contrary to what is the common knowledge, a detailed structural study of active faulting and rifting of the summit area of Somma-Vesuvio volcanic complex, combined with INSAR, levelling data and seismic profiling at sea suggests that the present-day long-term dynamic behaviour of the complex and of its summit caldera is characterized by volcanic spreading. The structural evolution is controlled by a number of asymmetric, intersecting leaf-grabens. The boundary faults of these grabens intersect at different angles the Somma caldera walls generating a set of wedge-horsts. While normal faulting characterizes the Somma caldera walls, the lavas of the past 150 years, infilling the caldera, have been rifted all around the southern, eastern and northern base of Vesuvio's cone, which, in turn, is being displaced seaward. Associated to the subsidence and extension of the summit area, relative uplift occurs along the coast; in addition, deformation of recent sediments 6-18 km offshore also indicate compression and uplift, which appears to be unrelated to regional tectonics. A preliminary evaluation indicates that rifting of the lavas is in the order of 1-2 mm/a with a southwestward average direction of displacement. Based on these data, we suggest that a wide sector of Somma-Vesuvio is spreading on its plastic sedimentary substratum, which have been identified by drilling. Volcanic spreading appears to have controlled the magmatic evolution and the energy decrease of major historic explosive eruptions since 79 AD. If our interpretation is correct, major plinian eruptions should not occur in the near future. On the other hand, rifting around the caldera suggests that volcanic activity could soon be renewed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.V41A2491W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.V41A2491W"><span>Campaign gravity results From kilauea volcano, hawaii, 2009-2011</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wilkinson, S. K.; Poland, M. P.; Battaglia, M.</p> <p>2011-12-01</p> <p>The gravity and leveling networks at Kilauea's summit caldera consist of approximately 60 benchmarks that are measured with a gravimeter as well as leveled for elevation data. Gravity data were collected in December 2009, June 2010 and March 2011. Elevation data were collected in 2009 and 2010. For the gravity survey completed in March 2011, we use InSAR and GPS data to assess elevation changes at the time of the gravity survey. During December 2009-March 2011, Kilauea's summit was characterized by minor deflation, following trends established in mid-2007. In mid-2010, however, the summit began to inflate, with a rate that increased significantly in October 2010. This inflation was associated with a decrease in the effusion rate from the volcano's east rift zone eruptive vents, suggesting that Kilauea's magma plumbing system was backing up. On March 5, 2011, a 2-km-long fissure eruption began about 3 km west of Pu`u `O`o, causing rapid summit deflation as magma drained from beneath the summit to feed the new eruptive vents. The fissure eruption ended on March 9, at which time the summit began to reinflate. Preliminary analysis of gravity data collected before and after the fissure eruption indicates a complex pattern of mass flow beneath the summit caldera. Net summit deformation was negligible between December 2009 and June 2010, but there is a residual gravity high centered near Halema'uma'u Crater. For the December 2009 to March 2011 time period, the caldera shows net subsidence. A positive residual gravity anomaly is located southeast of Halema'uma'u Crater while a negative residual gravity anomaly exists north of Halema'uma'u Crater. These patterns are somewhat unexpected, given the sudden draining of magma from beneath the summit during the March 5-9 fissure eruption. We conclude that the campaign gravity data were not collected at the optimal times to "catch" this event. Nevertheless, the data can still be used to assess different aspects of Kilauea's magma system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015E%26PSL.413...90P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015E%26PSL.413...90P"><span>Two magma bodies beneath the summit of Kīlauea Volcano unveiled by isotopically distinct melt deliveries from the mantle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pietruszka, Aaron J.; Heaton, Daniel E.; Marske, Jared P.; Garcia, Michael O.</p> <p>2015-03-01</p> <p>The summit magma storage reservoir of Kīlauea Volcano is one of the most important components of the magmatic plumbing system of this frequently active basaltic shield-building volcano. Here we use new high-precision Pb isotopic analyses of Kīlauea summit lavas-from 1959 to the active Halema'uma'u lava lake-to infer the number, size, and interconnectedness of magma bodies within the volcano's summit reservoir. From 1971 to 1982, the 206Pb/204Pb ratios of the lavas define two separate magma mixing trends that correlate with differences in vent location and/or pre-eruptive magma temperature. These relationships, which contrast with a single magma mixing trend for lavas from 1959 to 1968, indicate that Kīlauea summit eruptions since at least 1971 were supplied from two distinct magma bodies. The locations of these magma bodies are inferred to coincide with two major deformation centers identified by geodetic monitoring of the volcano's summit region: (1) the main locus of the summit reservoir ∼2-4 km below the southern rim of Kīlauea Caldera and (2) a shallower magma body <2 km below the eastern rim of Halema'uma'u pit crater. Residence time modeling suggests that the total volume of magma within Kīlauea's summit reservoir during the late 20th century (1959-1982) was exceedingly small (∼0.1-0.5 km3). Voluminous Kīlauea eruptions, such as the ongoing, 32-yr old Pu'u 'Ō'ō rift eruption (>4 km3 of lava erupted), must therefore be sustained by a nearly continuous supply of new melt from the mantle. The model results show that a minimum of four compositionally distinct, mantle-derived magma batches were delivered to the volcano (at least three directly to the summit reservoir) since 1959. These melt inputs correlate with the initiation of energetic (1959 Kīlauea Iki) and/or sustained (1969-1974 Mauna Ulu, 1983-present Pu'u 'Ō'ō and 2008-present Halema'uma'u) eruptions. Thus, Kīlauea's eruptive behavior is partly tied to the delivery of new magma batches from the volcano's source region within the Hawaiian mantle plume.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012GeoRL..3911302T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012GeoRL..3911302T"><span>Crustal CO2 liberation during the 2006 eruption and earthquake events at Merapi volcano, Indonesia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Troll, Valentin R.; Hilton, David R.; Jolis, Ester M.; Chadwick, Jane P.; Blythe, Lara S.; Deegan, Frances M.; Schwarzkopf, Lothar M.; Zimmer, Martin</p> <p>2012-06-01</p> <p>High-temperature volcanic gas is widely considered to originate from ascending, mantle-derived magma. In volcanic arc systems, crustal inputs to magmatic gases mainly occur via subducted sediments in the mantle source region. Our data from Merapi volcano, Indonesia imply, however, that during the April-October 2006 eruption significant quantities of CO2 were added from shallow crustal sources. We show that prior to the 2006 events, summit fumarole gas δ13C(CO2) is virtually constant (δ13C1994-2005 = -4.1 ± 0.3‰), but during the 2006 eruption and after the shallow Yogyakarta earthquake of late May, 2006 (M6.4; hypocentres at 10-15 km depth), carbon isotope ratios increased to -2.4 ± 0.2‰. This rise in δ13C is consistent with considerable addition of crustal CO2 and coincided with an increase in eruptive intensity by a factor of ˜3 to 5. We postulate that this shallow crustal volatile input supplemented the mantle-derived volatile flux at Merapi, intensifying and sustaining the 2006 eruption. Late-stage volatile additions from crustal contamination may thus provide a trigger for explosive eruptions independently of conventional magmatic processes.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_6 --> <div id="page_7" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="121"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA.....6590C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA.....6590C"><span>On-line image analysis of the stromboli volcanic activity recorded by the surveillance camera helps the forecasting of the major eruptive events.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cristaldi, A.; Coltelli, M.; Mangiagli, S.; Pecora, E.</p> <p>2003-04-01</p> <p>The typical activity of Stromboli consists of intermittent mild explosions lasting a few seconds, which take place at different vents and at variable intervals, the most common time interval being 10-20 minutes. However, the routine activity can be interrupted by more violent, paroxysmal explosions, that eject m-sized scoriaceous bombs and lava blocks to a distance of several hundreds of meters from the craters, endangering the numerous tourists that watch the spectacular activity from the volcano's summit located about two hundreds meters from the active vents. On average, 1-2 paroxysmal explosions occurred per year over the past century, but this statistic may be underestimated in absence of continuous monitoring. For this reason from summer 1996 a remote surveillance camera works on Stromboli recording continuously the volcanic activity. It is located on Pizzo Sopra la Fossa, 100 metres above the crater terrace where are the active vents. Using image analysis we seeks to identify any change of the explosive activity trend that could precede a particular eruptive event, like paroxysmal explosions, fire fountains, lava flows. From the day of the camera installation up to present 12 paroxysmal events and lava flows occurred. The analysis include the counting of the explosions occurred at the different craters and the parameterization in classes of intensity for each explosion on the base of tephra dispersion and kinetics energy. The plot of dissipated energy by each crater versus time shows a cyclic behavior with max and min of explosive activity ranging from a few days to a month. Often the craters show opposite trends so when the activity decreases in a crater, increases in the other. Before every paroxysmal explosions recorded, the crater that produced the event decreased and then stopped its activity from a few days to weeks before. The other crater tried to compensate increasing its activity and when it declined the paroxysmal explosion occurred suddenly at the former site. From September 2001 an on-line image analyzer called VAMOS (Volcanic Activity MOnitoring System) operates detection and classification of explosive events in quasi real-time. The system has automatically recorded and analyzed the change in the energetic trend that preceded the 20 October 2001 paroxysmal explosion that killed a woman and the strong explosive activity that preceded the onset of 28 December 2002 lava flow eruption.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.G53B0883M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.G53B0883M"><span>Recent Inflation of Kilauea Volcano During the Ongoing Eruption - Harbinger of Change?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Miklius, A.</p> <p>2005-12-01</p> <p>Since the start of the Pu`u `O`o-Kupaianaha eruption on Kilauea's east rift zone in 1983, the volcano's summit has subsided over 1.5 m. Over the last two years, however, leveling and GPS networks have recorded substantial inflation of the summit magma system. Since late 2003, the summit has extended almost 20 cm and risen about 5 cm. Leveling surveys suggest that the locus of inflation has been variable, with maximum uplift shifting from an area in the caldera near Halemaumau to an area in the southeastern part of the caldera, near Keanakako`i crater. Inflation rates have also been highly variable. Starting in mid-January 2005, the inflation rate accelerated for approximately a month, with extension rates across the summit reaching over 60 cm/yr. During this accelerated inflation, on January 25, a brief inflation-deflation transient was recorded on the tiltmeter network, accompanied by volcanic tremor. This event was followed by rapid slip of Kilauea's south flank, raising intriguing possibilities about the relationship between the magmatic system and the rapid slip events. Tiltmeters at the eruption site also recorded inflation, but only until early February, when a deflationary trend began, accompanied by increased eruptive output. The summit continued to inflate until late February, deflated slightly, then resumed inflation in April. These observations suggest that the high inflation rate in January-February was a result of increased magma supply to the summit magma system. In contrast, the most recent previous episode of inflation in 2002 was related to decreased outflow at the eruption site, effectively backing up pressure in the system. That inflation episode ended with the opening of new vents on the flank of Pu`u `O`o that produced high volumes of lava. The two previous, prolonged periods of uplift at the summit were in 1985-1986, before the eruption moved downrift from Pu`u `O`o to Kupaianaha, and 1990-1992, when eruptive activity shifted back to Pu`u `O`o. The current inflation of Kilauea is likely a combination of decreased efficiency of the transport system from the summit to the eruption site and an increase in magma supply. Past behavior of the volcano suggests that such conditions favor a shift in the location of the eruptive vent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050214412','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050214412"><span>The Diversity of Martian Volcanic features as Seen in the MOC, THEMIS, and MOM Data Sets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mouginis-Mark, Peter J.</p> <p>2005-01-01</p> <p>This one-year project (which included one-year no-cost tension) focused on the evolution of the summit areas of Martian volcanoes. It extended the studies conducted under an earlier MDAP project (Grant NAG5-9576, Principal Investigator P. Mouginis- Mark). By using data collected from the Mars Orbiter Camera (MOC), Thermal Emission Imaging System (THEMIS), and the Mars Orbiter Laser Altimeter (MOLA) instruments, we tried to better understand the diversity of constructional volcanism on Mars, and hence further understand the eruption processes. By inspecting THEMIS and MOC data, we explored the following four questions: (1) Where might near-surface volatiles have been released at the summits of the Tharsis volcanoes? Is the trapping and subsequent remobilization of degassed volatiles [Scott and Wilson, 19991 adequate to produce eruptions responsible for extensive deposits such as the ones identified on Arsia Mons [Mouginis-Mark, 2002]? To answer this question, we investigated the diversity of eruption styles by studying the summit areas of Arsia, Pavonis and Ascraeus Montes. (2) What are the geomorphic characteristics of the valley system on Hecates Tholus, a volcano that we have previously proposed experienced explosive activity [Mouginis-Murk et al., 1982]? Our inspection of THEMIS data suggests that water release on the volcano took place over an extended period of time, suggesting that hydrothermal activity may have taken place here. (3) How similar are the collapse processes observed at Martian and terrestrial calderas? New THEMIS data provide a more complete view of the entire Olympus Mons caldera, thereby enabling the comparison with the collapse features at Masaya volcano, Nicaragua, to be investigated. (4) What can we learn about the emplacement of long lava flows in the lava plains of Eastern Tharsis? The result of this work provided a greater understanding of the temporal and spatial variations in the eruptive history of volcanoes on Mars, and the influence of the volatiles within the top few kilometers of the volcanic edifice. This relationship in turn pertains to the availability of volatiles (both juvenile magmatic volatiles and ground water contained within the near-surface rocks) and to magma supply rates at appreciable distances (tens to hundreds of kilometers) from the centers of volcanoes. Explosive volcanism on Mars, a major factor in the release of water at the surface, may have been driven not only by volatiles within the parental melt, but also by magma encountering water or ice at shallow depth within the volcano [Mouginis-Mark et al., 1982, 1988; Crown and Greeley, 1993; Robinson et al., 19931.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JVGR..335..113W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JVGR..335..113W"><span>Eruption of magmatic foams on the Moon: Formation in the waning stages of dike emplacement events as an explanation of ;irregular mare patches;</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wilson, Lionel; Head, James W.</p> <p>2017-04-01</p> <p>Volcanic eruptions on the Moon take place in conditions of low gravity and negligible atmospheric pressure, very different from those on Earth. These differences lead to characteristic lunar versions of hawaiian and strombolian explosive activity, and to the production of unusual eruption products neither predicted nor observed on Earth in the terminal stages of eruptions. These include the unusual mounds and rough (hummocky, blocky) floors of some small-shield summit pit crater floors, elongate depressions and mare flows (similar to those named ;irregular mare patches;, IMPs, by Braden et al., 2014). We examine the ascent and eruption of magma in the waning stages of the eruptive process in small-shield summit pit crater floors and show that many IMP characteristics can be plausibly explained by basaltic magma behavior as the rise rate of the ascending magma slows to zero, volatiles exsolve in the dike and lava lake to form a very vesicular foam, and the dike begins to close. Stresses in the very vesicular and porous lava lake crust produce fractures through which the foam extrudes at a rate determined by its non-Newtonian rheology. Waning-stage extrusion of viscous magmatic foams to the surface produces convex mounds whose physical properties inhibit typical impact crater formation and regolith development, creating an artificially young crater retention age. This mechanism for the production and extrusion of very vesicular magmatic foams is also applicable to waning-stage dike closure associated with pit craters atop dikes, and fissure eruptions in the lunar maria, providing an explanation for many irregular mare patches. This mechanism implies that IMPs and associated mare structures (small shields, pit craters and fissure flows) formed synchronously billions of years ago, in contrast to very young ages (less than 100 million years) proposed for IMPs by some workers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JVGR..351...75A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JVGR..351...75A"><span>Seismic monitoring of effusive-explosive activity and large lava dome collapses during 2013-2015 at Volcán de Colima, Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arámbula-Mendoza, Raúl; Reyes-Dávila, Gabriel; Vargas-Bracamontes Dulce, M.; González-Amezcua, Miguel; Navarro-Ochoa, Carlos; Martínez-Fierros, Alejandro; Ramírez-Vázquez, Ariel</p> <p>2018-02-01</p> <p>Volcán de Colima, the most active volcano in Mexico, started a new eruptive cycle in January 2013. Since this date, the volcano has presented effusive and explosive activity. The beginning of the cycle was marked by a moderate Vulcanian explosion which had hyperbolical behavior in its precursory seismicity, possibly related to a shallow rupture process. Then, during the whole eruptive stage, the effusive activity was accompanied by low to moderate explosions. The explosions had energies mainly of 106 joules and were located between 0 and 1600 m below the crater, whereas the locations of tremor sources were found to be deeper, reaching up to 3800 m beneath the crater. Very-long-period signals (VLPs) have been observed with Vulcanian explosions that produce pyroclastic flows. A few number of volcano-tectonic events (VTs) were recognized during the studied period (2013-2015), indicating that the volcano is an open system. This was particularly evidenced in July 2015, when a new batch of magma rose rapidly without large precursors, only an accelerated increase in the number of rockfalls and associated RSEM. This event generated two large lava dome collapses with several pulses of material and pyroclastic flows that travelled up to 10.3 km from the summit. The seismic monitoring of Volcán de Colima is currently the only tool in real-time employed to assess the state of the volcanic activity. It is thus necessary to integrate new seismic methods as well as other geophysical monitoring techniques able to detect precursory signals of an impending hazardous event.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70013407','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70013407"><span>An estimate of gas emissions and magmatic gas content from Kilauea volcano</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Greenland, L.P.; Rose, William I.; Stokes, J.B.</p> <p>1985-01-01</p> <p>Emission rates of CO2 have been measured at Kilauea volcano, Hawaii, in the east-rift eruptive plume and CO2 and SO2 have been measured in the plume from the noneruptive fumaroles in the summit caldera. These data yield an estimate of the loading of Kilauean eruptive gases to the atmosphere and suggest that such estimates may be inferred directly from measured lava volumes. These data, combined with other chemical and geologic data, suggest that magma arrives at the shallow summit reservoir containing (wt.%) 0.32% H2O, 0.32% CO2 and 0.09% S. Magma is rapidly degassed of most of its CO2 in the shallow reservoir before transport to the eruption site. Because this summit degassing yields a magma saturated and in equilibrium with volatile species and because transport of the magma to the eruption site occurs in a zone no shallower than the summit reservoir, we suggest that eruptive gases from Kilauea characteristically should be one of two types: a 'primary' gas from fresh magma derived directly from the mantle and a carbon-depleted gas from magma stored in the summit reservoir. ?? 1995.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/pp/1762/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/pp/1762/"><span>Volcanic Processes and Geology of Augustine Volcano, Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Waitt, Richard B.; Beget, James E.</p> <p>2009-01-01</p> <p>Augustine Island (volcano) in lower Cook Inlet, Alaska, has erupted repeatedly in late-Holocene and historical times. Eruptions typically beget high-energy volcanic processes. Most notable are bouldery debris avalanches containing immense angular clasts shed from summit domes. Coarse deposits of these avalanches form much of Augustine's lower flanks. A new geologic map at 1:25,000 scale depicts these deposits, these processes. We correlate deposits by tephra layers calibrated by many radiocarbon dates. Augustine Volcano began erupting on the flank of a small island of Jurassic clastic-sedimentary rock before the late Wisconsin glaciation (late Pleistocene). The oldest known effusions ranged from olivine basalt explosively propelled by steam, to highly explosive magmatic eruptions of dacite or rhyodacite shed as pumice flows. Late Wisconsin piedmont glaciers issuing from the mountainous western mainland surrounded the island while dacitic eruptive debris swept down the south volcano flank. Evidence is scant for eruptions between the late Wisconsin and about 2,200 yr B.P. On a few south-flank inliers, thick stratigraphically low pumiceous pyroclastic-flow and fall deposits probably represent this period from which we have no radiocarbon dates on Augustine Island. Eruptions between about 5,350 and 2,200 yr B.P. we know with certainty by distal tephras. On Shuyak Island 100 km southeast of Augustine, two distal fall ashes of Augustinian chemical provenance (microprobe analysis of glass) date respectively between about 5,330 and 5,020 yr B.P. and between about 3,620 and 3,360 yr B.P. An Augustine ash along Kamishak Creek 70 km southwest of Augustine dates between about 3,850 and 3,660 yr B.P. A probably Augustinian ash lying within peat near Homer dates to about 2,275 yr B.P. From before 2,200 yr B.P. to the present, Augustine eruptive products abundantly mantle the island. During this period, numerous coarse debris avalanches swept beyond Augustine's coast, most recently in A.D. 1883. The decapitated summit after the 1883 eruption, replaced by andesite domes of six eruptions since, shows a general process: collapse of steep summit domes, then the summit regrown by later dome eruptions. The island's stratigraphy is based on six or seven coarse-pumice tephra 'marker beds'. In upward succession they are layers G (2,100 yr B.P.), I (1,700 yr B.P.), H (1,400 yr B.P.), C (1,200-1,000 yr B.P.), M (750 yr B.P.), and B (390 yr B.P.). A coarse, hummocky debris-avalanche deposit older than about 2,100 yr B.P. - or perhaps a stack of three of them - lies along the east coast, the oldest exposed such bouldery diamicts on Augustine Island. Two large debris avalanches swept east and southeast into the sea between about 2,100 and 1,800 yr B.P. A large debris avalanche shed east and east-northeast into the sea between 1,700 and 14,00 yr B.P. Between about 1,400 and 1,100 yr B.P. debris avalanches swept into the sea on the volcano's south, southwest, and north-northwest. Pumiceous pyroclastic fans spread to the southeast and southwest, lithic pyroclastic flows and lahars (?) to the south and southeast. Pyroclastic flows, pyroclastic surges, and lahars swept down the west and south flanks between about 1,000 and 750 yr B.P. A debris avalanche swept into the sea on the west, and a small one on the south-southeast, between about 750 and 400 yr B.P. Large lithic pyroclastic flows shed to the southeast; smaller ones descended existing swales on the southwest and south. Between about 400 yr B.P. and historical time (late 1770s), three debris avalanches swept into the sea on the west-northwest, north-northwest, and north flanks. One of them (West Island) was large and fast: most of it rode to sea far beyond a former sea cliff, and its surface includes geomorphic evidence of having initiating a tsunami. Augustine's only conspicuous lava flow erupted on the north flank. During this prehistoric period numerous domes grew at th</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.V21B2771P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.V21B2771P"><span>A Foamy Lava Lake at Kilauea Volcano, Hawai`i</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Poland, M. P.; Carbone, D.</p> <p>2012-12-01</p> <p>Kilauea Volcano, in Hawai`i, is currently erupting from two locations simultaneously: along the east rift zone and at the summit. The east rift zone eruption began in 1983 and is characterized by lava effusion from the Pu`u `O`o and nearby vents, while the summit eruptive vent, which opened in 2008, persistently emits gas and small amounts of ash while hosting a lava lake. On March 5, 2011, a dike initiated from the east rift zone magma conduit and reached the surface, resulting in the 4.5-day-long Kamoamoa fissure eruption just uprift of Pu`u `O`o. The eruption was accompanied by summit deflation as magma withdrew from subsurface reservoirs to feed the fissure eruption. The level of the summit lava lake dropped as the summit deflated. A continuously recording gravimeter located at Kilauea's summit (about 150 m east of the center of the summit eruptive vent, 80 m above the vent rim, and about 140 m above the highest level reached by the lava lake) measured a gravity decrease of about 150 μGal during the lava level drop, after taking into account corrections for the solid Earth tide. The gravity signal is caused by a combination of three processes. First, subsidence of 15 cm due to summit deflation moved the gravimeter closer to the center of the Earth, resulting in a gravity increase. Second, mass removal from the subsurface magma reservoir at a depth of 1.4 km (based on a model from GPS and InSAR data) caused a gravity decrease. Third, the drop in the level of the lava lake, which reached a maximum of about 150 m, led to a gravity decrease. Assuming a simple point source of pressure change and a typical density for basaltic magma (2.3-2.7 g/cm3), the first two processes can only explain a small percent of the observed gravity decrease, which must therefore be mainly due to the drop in the level of the lava lake. We developed a numerical model of the summit eruptive vent that takes into account its complex geometry (as deduced from geological observations). Using the change in lava level over time (data courtesy of Matt Patrick), we estimated that a lava density of about 0.8 g/cm3 is required to fit the gravity time series. Gravity results, therefore, argue that the upper part of the vent is occupied by a low-density lava foam (in agreement with models of Kilauea's summit eruption from seismic, gas, and geologic data by Tim Orr and Matt Patrick) and provide the only means of quantifying the lava lake density.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.V41C..03C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.V41C..03C"><span>Multispectral Observations of Explosive Gas Emissions from Santiaguito, Guatemala</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carn, S. A.; Watson, M.; Thomas, H.; Rodriguez, L. A.; Campion, R.; Prata, F. J.</p> <p>2016-12-01</p> <p>Santiaguito volcano, Guatemala, has been persistently active for decades, producing frequent explosions from its actively growing lava dome. Repeated release of volcanic gases contains information about conduit processes during the cyclical explosions at Santiaguito, but the composition of the gas phase and the amount of volatiles released in each explosion remains poorly constrained. In addition to its persistent activity, Santiaguito offers an exceptional opportunity to investigate lava dome degassing processes since the upper surface of the active lava dome can be viewed from the summit of neighboring Santa Maria. In January 2016 we conducted multi-spectral observations of Santiaguito's explosive eruption plumes and passive degassing from multiple perspectives as part of the first NSF-sponsored `Workshop on Volcanoes' instrument deployment. Gas measurements included open-path Fourier-Transform infrared (OP-FTIR) spectroscopy from the Santa Maria summit, coincident with ultraviolet (UV) and infrared (IR) camera and UV Differential Optical Absorption Spectroscopy (DOAS) from the El Mirador site below Santiaguito's active Caliente lava dome. Using the OP-FTIR in passive mode with the Caliente lava dome as the source of IR radiation, we were able to collect IR spectra at high temporal resolution prior to and during two explosions of Santiaguito on 7-8 January, with volcanic SO2 and H2O emissions detected. UV and IR camera data provide constraints on the total SO2 burden in the emissions (and potentially the volcanic ash burden), which coupled with the FTIR gas ratios provides new constraints on the mass and composition of volatiles driving explosions at Santiaguito. All gas measurements indicate significant volatile release during explosions with limited degassing during repose periods. In this presentation we will present ongoing analysis of the unique Santiaguito gas dataset including estimation of the total volatile mass released in explosions and an intercomparison of SO2 amounts recorded by the UV and IR instruments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JGRD..11914180S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JGRD..11914180S"><span>Assessing hazards to aviation from sulfur dioxide emitted by explosive Icelandic eruptions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schmidt, Anja; Witham, Claire S.; Theys, Nicolas; Richards, Nigel A. D.; Thordarson, Thorvaldur; Szpek, Kate; Feng, Wuhu; Hort, Matthew C.; Woolley, Alan M.; Jones, Andrew R.; Redington, Alison L.; Johnson, Ben T.; Hayward, Chris L.; Carslaw, Kenneth S.</p> <p>2014-12-01</p> <p>Volcanic eruptions take place in Iceland about once every 3 to 5 years. Ash emissions from these eruptions can cause significant disruption to air traffic over Europe and the North Atlantic as is evident from the 2010 eruption of Eyjafjallajökull. Sulfur dioxide (SO2) is also emitted by volcanoes, but there are no criteria to define when airspace is considered hazardous or nonhazardous. However, SO2 is a well-known ground-level pollutant that can have detrimental effects on human health. We have used the United Kingdom Met Office's NAME (Numerical Atmospheric-dispersion Modelling Environment) model to simulate SO2 mass concentrations that could occur in European and North Atlantic airspace for a range of hypothetical explosive eruptions in Iceland with a probability to occur about once every 3 to 5 years. Model performance was evaluated for the 2010 Eyjafjallajökull summit eruption against SO2 vertical column density retrievals from the Ozone Monitoring Instrument and in situ measurements from the United Kingdom Facility for Airborne Atmospheric Measurements research aircraft. We show that at no time during the 2010 Eyjafjallajökull eruption did SO2 mass concentrations at flight altitudes violate European air quality standards. In contrast, during a hypothetical short-duration explosive eruption similar to Hekla in 2000 (emitting 0.2 Tg of SO2 within 2 h, or an average SO2 release rate 250 times that of Eyjafjallajökull 2010), simulated SO2 concentrations are greater than 1063 µg/m3 for about 48 h in a small area of European and North Atlantic airspace. By calculating the occurrence of aircraft encounters with the volcanic plume of a short-duration eruption, we show that a 15 min or longer exposure of aircraft and passengers to concentrations ≥500 µg/m3 has a probability of about 0.1%. Although exposure of humans to such concentrations may lead to irritations to the eyes, nose and, throat and cause increased airway resistance even in healthy individuals, the risk is very low. However, the fact that volcanic ash and sulfur species are not always collocated and that passenger comfort could be compromised might be incentives to provide real-time information on the presence or absence of volcanic SO2. Such information could aid aviation risk management during and after volcanic eruptions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.V41B2800C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.V41B2800C"><span>Hydroacoustic Recordings of Explosion-Induced Tremor at NW Rota-1 Volcano, Marianas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Caplan-Auerbach, J.; Dziak, R. P.; Lau, T. A.</p> <p>2013-12-01</p> <p>Hydroacoustic data recorded during the long-term eruption of NW Rota-1 submarine volcano (Marianas) reveal a wide variety of explosion and tremor signals. Data from a moored hydrophone deployed near the summit of NW Rota-1 from February 2009 to April 2010 confirm that NW Rota-1 was nearly continuously active during this time. Explosion acoustic signals have a wide range of frequencies: some carry energy that is bandlimited between 5-25 Hz while others show broadband signal strength between 5-200 Hz (even higher frequencies may be attenuated by the hydrophone's anti-aliasing filter at 220 Hz). The signal is observed to switch rapidly between low frequency and broadband explosion types. In many cases the explosion signals repeat at a high rate, with recurrence intervals between 0.1-0.5 seconds. In such instances the explosions blend into tremor, exhibiting a large number of spectral harmonics that we attribute to the Dirac comb effect. The presence of these harmonics indicates that explosion recurrence intervals are highly regular, although subtle gliding within the harmonic frequencies suggests that there is some variability in the timing between explosions. This suggests a strongly repeatable explosion source. The frequency of explosions at NW Rota-1 is confirmed by ROV observations of eruption plume dynamics (Chadwick et al., 2008; Deardorff et al., 2008). We also observe a strong low-frequency (< 5 Hz) tremor signal that does not correlate with the explosion tremor, as well as strongly harmonic tremor that is not obviously composed of repeating explosions. These signals may reflect processes deeper within the conduit, yet still capable of coupling into the water column. Video footage collected during ROV dives in 2009 shows multiple instances in which the ground is observed to move, but these signals do not clearly correlate with hydroacoustic pulses. Deeper study into the source of these signals requires seismic instrumentation on and around NW Rota-1.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JVGR..354...74M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JVGR..354...74M"><span>Storage conditions of the mafic and silicic magmas at Cotopaxi, Ecuador</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martel, Caroline; Andújar, Joan; Mothes, Patricia; Scaillet, Bruno; Pichavant, Michel; Molina, Indira</p> <p>2018-04-01</p> <p>The 2015 reactivation of the Cotopaxi volcano urges us to understand the complex eruptive dynamics of Cotopaxi for better management of a potential major crisis in the near future. Cotopaxi has commonly transitioned from andesitic eruptions of strombolian style (lava flows and scoria ballistics) or nuées ardentes (pyroclastic flows and ash falls) to highly explosive rhyolitic ignimbrites (pumiceous pyroclastic flows), which entail drastically different risks. To better interpret geophysical and geochemical signals, Cotopaxi magma storage conditions were determined via existing phase-equilibrium experiments that used starting materials chemically close to the Cotopaxi andesites and rhyolites. The results suggest that Cotopaxi's most mafic andesites (last erupted products) can be stored over a large range of depth from 7 km to ≥16 km below the summit (pressure from 200 to ≥400 MPa), 1000 °C, NNO +2, and contain 4.5-6.0±0.7 wt% H2O dissolved in the melt in equilibrium with 30-40% phenocrysts of plagioclase, two pyroxenes, and Fe-Ti oxides. These mafic andesites sometimes evolve towards more silicic andesites by cooling to 950 °C. Rhyolitic magmas are stored at 200-300 MPa (i.e. 7-11 km below the summit), 750 °C, NNO +2, and contain 6-8 wt% H2O dissolved in a nearly aphyric melt (<5% phenocrysts of plagioclase, biotite, and Fe-Ti oxides). Although the andesites produce the rhyolitic magmas by fractional crystallization, the Cotopaxi eruptive history suggests reactivation of either reservoirs at distinct times, likely reflecting flux or time fluctuations during deep magma recharge.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JGRB..120.1142U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JGRB..120.1142U"><span>Volcanic tremor and frequency gliding during dike intrusions at Kı¯lauea—A tale of three eruptions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Unglert, K.; Jellinek, A. M.</p> <p>2015-02-01</p> <p>To characterize syneruptive/intrusive deviations from background volcanic tremor at Kı¯lauea, Hawai`i, we analyze the spatial and temporal properties of broadband tremor during dike intrusions into the East Rift Zone (ERZ) in 2007 and 2011, as well as during explosive eruptive activity at Kı¯lauea's summit in 2008. Background tremor was similar for each event, and the 2008 explosions did not affect its properties. In contrast, the intrusions were accompanied by departures from this background in the form of two phases of seismicity that were separated in space and time. In both 2007 and 2011, Phase I was characterized by a quick succession of discrete events, which were most intense at the onset of intrusion near the presumed locations of the dikes intruding into the ERZ. Phase II, marked by continuous broadband tremor around the summit, followed 10-14 h later. In 2007, Phase II tremor was accompanied by a monotonic downward shift (glide) of spectral peaks between ˜0.6 and 1.5 Hz over at least 15 h. During Phase II in 2011, a gradual upward and subsequent symmetric downward glide between ˜0.6 and 6.6 Hz occurred over 5-10 h, respectively. The spectra during both phases differed from the background and 2008, as well as from each other, indicating different physical mechanisms. Phase I in 2007 and 2011 is probably related to the mechanics of dike intrusion. Phase II tremor may be characteristic for evolving magma-bubble dynamics related to the geometry of the plumbing system and the style of magma flow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.V43A4845L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.V43A4845L"><span>Transient Source Processes Prior to the March 2011 Kamoamoa Fissure Eruption, Kīlauea Volcano, Hawaíi</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lundgren, P.; Poland, M. P.; Miklius, A.; Anderson, K. R.</p> <p>2014-12-01</p> <p>Interferometric synthetic aperture radar (InSAR) and continuous GPS observations at the summit of Kīlauea Volcano, Hawaíi, show spatially and temporally transient surface displacements in the months and weeks before the 5-9 March 2011 Kamoamoa fissure eruption. Interferograms computed from the Italian Space Agency's COSMO-SkyMed satellites and the German Aerospace Center's TerraSAR-X satellite show a distinctive triangular pattern of surface deformation that extends to the SE of Kīlauea Caldera starting approximately one month prior to the Kamoamoa eruption. GPS and electronic tilt meter time series for sites in the vicinity of this deformation show that this inflation transient is superimposed on the longer (~4-6 month) summit inflation. We examine and model the spatiotemporal evolution of the summit deformation. InSAR data from ascending and descending tracks are used to constrain models of the transient. To achieve low-levels of atmospheric phase noise required interferograms spanning four months prior to the eruption, thus involving multiple sources within the summit region (see figure). To solve for model parameters we use a Markov Chain Monte Carlo optimization approach. First, we model the co-eruption summit deflation to isolate the intra-caldera sources, consisting of a steeply dipping tensile dislocation (D) beneath the western edge of the caldera and a sub-horizontal, NE trending spheroidal pressure source (Y) in the center of the caldera at 1.5 km depth. We use these sources as starting models for the pre-eruption transient, which requires the addition of a sill (S) to explain the deformation that extends to the SE of the caldera. In a third step we add a simplified model for Kīlauea's rifts and basal detachment system to explain the coupled summit and south flank motion. Modeled at over 3 km beneath the surface, the transient sill source inflates over the month before the eruption and deflates during the four-day eruption. The sill runs parallel to and to the west of upper East Rift Zone (ERZ) seismicity, considered to delineate the primary magma conduit to the ERZ at 3 km depth. The deflation of the sill during the eruption fits with the current standard model for Kīlauea: response to the overall depressurization of the summit and ERZ conduit system due to the Kamoamoa dike intrusion and eruption.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1995GMS....92...81L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1995GMS....92...81L"><span>Mauna Loa eruptive history—The preliminary radiocarbon record</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lockwood, John P.</p> <p></p> <p>Radiocarbon dating of charcoal from beneath lava flows of Mauna Loa has provided the most detailed prehistoric eruptive chronology of any volcano on Earth. Three hundred and fifty-five 14C dates have been reviewed, stratigraphically contradictory dates have been rejected, and multiple dates on single flows averaged to give "reliable" ages on 170 separate lava flows (about 35% of the total number of prehistoric Mauna Loa flows mapped to date). The distribution of these ages has revealed fundamental variations in the time and place of Mauna Loa eruptive activity, particularly for Holocene time. As lava flow activity from Mauna Loa's summit waxes, activity on the rift zones wanes. A cyclic model is proposed which involves a period of concentrated summit shield-building activity associated with long-lived lava lakes and frequent overflows of pahoehoe lavas on the north and southeast flanks. At this time, compressive stresses across Mauna Loa's rift zones are relatively high, inhibiting eruptions in these areas. This period is then followed by a relaxation of stresses across Mauna Loa's rift zones and a long period of frequent rift zone eruptions as magma migrates downrift. This change of eruptive style is marked by summit caldera collapse (possibly associated with massive eruptions of picritic lavas low on the rift zones). Concurrent with this increased rift zone activity, the summit caldera is gradually filled by repeated summit eruptions, stress across the rift zones increases, magma rises more easily to the summit, rift activity wanes, and the cycle repeats itself. Two such cycles are suggested within the late Holocene, each lasting 1,500-2,000 years. Earlier evidence for such cycles is obscure. Mauna Loa appears to have been quiescent between 6-7 ka, for unknown reasons. A period of increased eruptive activity marked the period 8-11 ka, coincident with the Pleistocene-Holocene boundary. Other volcanoes on the Island of Hawaii for which (limited) radiocarbon dating are available show no evidence of similar cyclicity or repose. Mauna Loa may be presently nearing the end of a thousand-year-long period of increased rift zone activity, and sustained summit eruptions may characterize the volcano's most typical behavior in the millennium to come. Such a shift could eventually alter the nature of volcanic risk for future populations on Hawaii.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70164312','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70164312"><span>Post-eruptive inflation of Okmok Volcano, Alaska, from InSAR, 2008–2014</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Qu, Feifei; Lu, Zhong; Poland, Michael; Freymueller, Jeffrey T.; Zhang, Qin; Jung, Hyung-Sup</p> <p>2016-01-01</p> <p>Okmok, a ~10-km wide caldera that occupies most of the northeastern end of Umnak Island, is one of the most active volcanoes in the Aleutian arc. The most recent eruption at Okmok during July-August 2008 was by far its largest and most explosive since at least the early 19th century. We investigate post-eruptive magma supply and storage at the volcano during 2008–2014 by analyzing all available synthetic aperture radar (SAR) images of Okmok acquired during that time period using the multi-temporal InSAR technique. Data from the C-band Envisat and X-band TerraSAR-X satellites indicate that Okmok started inflating very soon after the end of 2008 eruption at a time-variable rate of 48-130 mm/y, consistent with GPS measurements. The “model-assisted” phase unwrapping method is applied to improve the phase unwrapping operation for long temporal baseline pairs. The InSAR time-series is used as input for deformation source modeling, which suggests magma accumulating at variable rates in a shallow storage zone at ~3.9 km below sea level beneath the summit caldera, consistent with previous studies. The modeled volume accumulation in the 6 years following the 2008 eruption is ~75% of the 1997 eruption volume and ~25% of the 2008 eruption volume.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMNH41E..03O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMNH41E..03O"><span>Observations at Kuchinoerabu-jima volcano, southern Kyushu, Japan, by using unmanned helicopter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ohminato, T.; Kaneko, T.; Koyama, T.; Watanabe, A.; Kanda, W.; Tameguri, T.; Kazahaya, R.</p> <p>2015-12-01</p> <p>Kuchinoerabu-jima, volcano is a volcanic island located southern Kyushu, Japan. In 3 August, 2014, a small eruption at active summit crater, Shin-dake, destroyed all the observation stations near the summit. Since then, this volcano was only poorly monitored. After the eruption, entering within 2km from Shin-dake crater was strictly prohibited and thus it was impossible to fix summit stations on site. In April, 2015, we conducted seismic sensor installation by using unmanned helicopter (RMAX-G1 manufactured by Yamaha) so as to reestablish the seismic monitoring network near the summit area. We installed four seismic stations in the summit area. We also conducted various types of near-summit observations including an aero-magnetic measurement over the summit area, taking visual and infra-red images from low altitude, and volcanic gas sampling. We present preliminary results of the near summit observations using unmanned helicopter. The light-weight (5kg) and solar-powered seismic stations were designed exclusively for helicopter installation. They transmit seismic data every 10 minutes by using mobile data communication network. We could install them within 500m from the summit crater on 17, April. On 29 May, Shin-dake crater erupted again and the newly installed seismic stations were all destroyed by this eruption. The seismic stations could transmit data until just before the eruption. These data made us possible to evaluate the change in seismic activity leading up to the eruption. An aero-magnetic survey was conducted on 17 and 18 April. The flight altitude was between 100m and 150m above the ground (i.e a draped magnetic survey) . Path interval is 100m and the total flight path length is 80km. The magnetic intensity data were converted to magnetization of the edifice of Shin-dake. Comparison between the result this time with that obtained in 2001 shows demagnetization near the summit area. Temperature measurement over the summit area detected 368ºC at the fissure on the western flank. Chemical composition of the volcanic gas was measured. Maximum concentration of SO2 was 28ppm and the apparent equilibrium temperature estimated from the gas composition was 550 ºC. CO2/SO2 ratio did not change significantly but a large variation in SO2/H2S ratio was observed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70136288','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70136288"><span>Two magma bodies beneath the summit of Kilauea Volcano unveiled by isotopically distinct melt deliveries from the mantle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Pietruszka, Aaron J.; Heaton, Daniel E.; Marske, Jared P.; Garcia, Michael O.</p> <p>2015-01-01</p> <p>The summit magma storage reservoir of Kīlauea Volcano is one of the most important components of the magmatic plumbing system of this frequently active basaltic shield-building volcano. Here we use new high-precision Pb isotopic analyses of Kīlauea summit lavas—from 1959 to the active Halema‘uma‘u lava lake—to infer the number, size, and interconnectedness of magma bodies within the volcano's summit reservoir. From 1971 to 1982, the 206Pb/204Pb ratios of the lavas define two separate magma mixing trends that correlate with differences in vent location and/or pre-eruptive magma temperature. These relationships, which contrast with a single magma mixing trend for lavas from 1959 to 1968, indicate that Kīlauea summit eruptions since at least 1971 were supplied from two distinct magma bodies. The locations of these magma bodies are inferred to coincide with two major deformation centers identified by geodetic monitoring of the volcano's summit region: (1) the main locus of the summit reservoir ∼2–4 km below the southern rim of Kīlauea Caldera and (2) a shallower magma body <2 km below the eastern rim of Halema‘uma‘u pit crater. Residence time modeling suggests that the total volume of magma within Kīlauea's summit reservoir during the late 20th century (1959–1982) was exceedingly small (∼0.1–0.5 km3). Voluminous Kīlauea eruptions, such as the ongoing, 32-yr old Pu‘u ‘Ō‘ō rift eruption (>4 km3 of lava erupted), must therefore be sustained by a nearly continuous supply of new melt from the mantle. The model results show that a minimum of four compositionally distinct, mantle-derived magma batches were delivered to the volcano (at least three directly to the summit reservoir) since 1959. These melt inputs correlate with the initiation of energetic (1959 Kīlauea Iki) and/or sustained (1969–1974 Mauna Ulu, 1983-present Pu‘u ‘Ō‘ō and 2008-present Halema‘uma‘u) eruptions. Thus, Kīlauea's eruptive behavior is partly tied to the delivery of new magma batches from the volcano's source region within the Hawaiian mantle plume.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JVGR..259....2B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JVGR..259....2B"><span>An overview of the 2009 eruption of Redoubt Volcano, Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bull, Katharine F.; Buurman, Helena</p> <p>2013-06-01</p> <p>In March 2009, Redoubt Volcano, Alaska erupted for the first time since 1990. Explosions ejected plumes that disrupted international and domestic airspace, sent lahars more than 35 km down the Drift River to the coast, and resulted in tephra fall on communities over 100 km away. Geodetic data suggest that magma began to ascend slowly from deep in the crust and reached mid- to shallow-crustal levels as early as May, 2008. Heat flux at the volcano during the precursory phase melted ~ 4% of the Drift glacier atop Redoubt's summit. Petrologic data indicate the deeply sourced magma, low-silica andesite, temporarily arrested at 9-11 km and/or at 4-6 km depth, where it encountered and mixed with segregated stored high-silica andesite bodies. The two magma compositions mixed to form intermediate-silica andesite, and all three magma types erupted during the earliest 2009 events. Only intermediate- and high-silica andesites were produced throughout the explosive and effusive phases of the eruption. The explosive phase began with a phreatic explosion followed by a seismic swarm, which signaled the start of lava effusion on March 22, shortly prior to the first magmatic explosion early on March 23, 2009 (UTC). More than 19 explosions (or “Events”) were produced over 13 days from a single vent immediately south of the 1989-90 lava domes. During that period multiple small pyroclastic density currents flowed primarily to the north and into glacial ravines, three major lahars flooded the Drift River Terminal over 35 km down-river on the coast, tephra fall deposited on all aspects of the edifice and on several communities north and east of the volcano, and at least two, and possibly three lava domes were emplaced. Lightning accompanied almost all the explosions. A shift in the eruptive character took place following Event 9 on March 27 in terms of infrasound signal onsets, the character of repeating earthquakes, and the nature of tephra ejecta. More than nine additional explosions occurred in the next two days, followed by a hiatus in explosive activity between March 29 and April 4. During this hiatus effusion of a lava dome occurred, whose growth slowed on or around April 2. The final explosion pulverized the very poorly vesicular dome on April 4, and was immediately followed by the extrusion of the final dome that ceased growing by July 1, 2009, and reached 72 M m3 in bulk volume. The dome remains as of this writing. Effusion of the final dome in the first month produced blocky intermediate- to high-silica andesite lava, which then expanded by means of lava injection beneath a fracturing and annealing, cooling surface crust. In the first week of May, a seismic swarm accompanied extrusion of an intermediate- to high-silica andesite from the apex of the dome that was highly vesicular and characterized by lower P2O5 content. The dome remained stable throughout its growth period likely due to combined factors that include an emptied conduit system, steady degassing through coalesced vesicles in the effusing lava, and a large crater-pit created by the previous explosions. We estimate the total volume of erupted material from the 2009 eruption to be between ~ 80 M and 120 M m3 dense-rock equivalent (DRE). The aim of this report is to synthesize the results from various datasets gathered both during the eruption and retrospectively, and which are represented by the papers in this publication. We therefore provide an overall view of the 2009 eruption and an introduction to this special issue publication.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://ngmdb.usgs.gov/Prodesc/proddesc_62430.htm','USGSPUBS'); return false;" href="http://ngmdb.usgs.gov/Prodesc/proddesc_62430.htm"><span>Preliminary geologic map of Kanaga Volcano, Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Miller, T.P.; Waythomas, C.F.; Nye, C.J.</p> <p>2003-01-01</p> <p>Kanaga Volcano is a 1,300 m (4,287-foot) high, historically active cone-shaped stratovolcano located on the north end of Kanaga Island in the Andreanof Islands Group of the Aleutian Islands. The volcano is undissected, symmetrical in profile, and is characterized by blocky andesitic lava flows, with well-developed levees and steep flow fronts, that emanate radially from, or near, the 200-m-wide summit crater. The lack of dissection of the cone suggests the entire edifice was constructed in post-glacial Holocene time. Historical eruptions were reported in 1791, 1827, 1829, 1904-1906, and 1993-95 (Miller and others, 1998); questionable eruptions occurred in 1763, 1768, 1786, 1790, and 1933. The upper flanks of the cone are very steep (>30°) and flows moving down these steep flows commonly fragment into breccias and lahars. A non-vegetated lahar, or group of lahars, extends from high on the southeast flank of the cone down to the northeast shore of the intracaldera lake. This lahar deposit was observed in 1999 but does not appear to be present on aerial photos taken in 1974 and is assumed to be part of the 1994-95 eruption. Most recent eruptions of Kanag a, including the 1994-95 eruption, were primarily effusive in character with a subordinate explosive component. Lava was extruded from, or near, the summit vent and moved down the flank of the cone in some cases reaching the ocean. In 1994, lava flows going down the very steep north and west flanks broke up into incandescent avalanches tumbling over steep truncated sea cliffs into the Bering Sea. A common feature of Kanaga central vent eruptions is the occurrence of widespread ballistics and accompanying craters. Steam and fine ash plumes rose to 7.5 km ASL and drifted a few tens of kilometers downwind. Plumes such as these are unlikely to deposit significant (i.e., sufficiently thick to leave a permanent record) tephras on other islands downwind.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_7 --> <div id="page_8" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="141"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V23E0513H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V23E0513H"><span>New Insights into the Seismicity and SO2 Degassing at Cotopaxi Volcano (Ecuador) During the 2015 Unrest and Eruptive Period</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hidalgo, S.; Battaglia, J.</p> <p>2017-12-01</p> <p>Cotopaxi (5897 m) had an unrest and eruption between April and November 2015. Seismic signals and SO2 emissions were recorded by the monitoring network of the Instituto Geofísico. The network includes 11 seismic stations, 6 broad band and 5 short period; and 4 NOVAC-Type 1 DOAS permanent instruments.We reviewed the seismic records to better understand the link between seismicity and SO2 emissions. Transient events detected include Volcano-Tectonic (VT), Long-Period (LP) events and Explosion Quakes (EQ), but also Ice Quakes (IQ) with various spectral signatures related to the glacier covering the volcano summit. An event-per-event exhaustive identification is, however, impossible because of the very large number of events and the wide range of signals, with variable spectral characteristics. Therefore, to identify the different types of events activated previous and during the eruption, we choose an approach based on the search of families of repeating events. Looking at the temporal evolution of these families, we determined 4 characteristic types. The first and more frequent, Type 1, is mainly composed by IQ. Type 2, mainly LPs appeared only in April and May 2015. Interestingly, its rate of occurrence starts increasing the first days of April, is maximum about mid-May when SO2 appears and then progressively drops to totally stop on June 4, replaced by tremor. Since then, and until the hydromagmatic explosions opening the system, SO2 emissions between 3000 and 5000 t/day were directly linked to seismic tremor. Type 3 families, are dominated by VTs, and are only active on 13 and 14 August, before and during the hydromagmatic explosions. These events should be considered as short term seismic precursors. Type 4 families starts at the beginning of September and included only few VTs. Nevertheless, since September, most of the observed events belong to Type 1 families, mainly IQ, hence the seismicity related to volcanic activity after the hydromagmatic explosions was mostly tremor. The post-eruptive tremor was accompanied by ash and gas emissions with SO2 fluxes oscillating according to the median seismic amplitude of the signal. Magma volume estimated on the basis of the 470 kt of SO2 measured during unrest and eruption exceeds in more than 99% the total volume of erupted solid material.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70111246','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70111246"><span>Petrologic testament to changes in shallow magma storage and transport during 30+ years of recharge and eruption at Kīlauea Volcano, Hawai‘i: Chapter 8</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Thornber, Carl R.; Orr, Tim R.; Heliker, Christina; Hoblitt, Richard P.; Carey, Rebecca; Cayol, Valérie; Poland, Michael P.; Weis, Dominique</p> <p>2015-01-01</p> <p>Petrologic monitoring of Kīlauea Volcano from January 1983 to October 2013 has yielded an extensive record of glass, phenocryst, melt inclusion, and bulk-lava chemistry from well-quenched lava. When correlated with 30+ years of geophysical and geologic monitoring, petrologic details testify to physical maturation of summit-to-rift magma plumbing associated with sporadic intrusion and prolonged magmatic overpressurization. Changes through time in bulk-lava major- and trace-element compositions, along with glass thermometry, record shifts in the dynamic balance of fractionation, mixing, and assimilation processes inherent to magma storage and transport during near-continuous recharge and eruption. Phenocryst composition, morphology, and texture, along with the sulfur content of melt inclusions, constrain coupled changes in eruption behavior and geochemistry to processes occurring in the shallow magmatic system. For the first 17 years of eruption, magma was steadily tapped from a summit reservoir at 1–4 km depth and circulating between 1180 and 1200°C. Furthermore, magma cooled another 30°C while flowing through the 18 km long rift conduit, before erupting olivine-spinel-phyric lava at temperatures of 1150–1170°C in a pattern linked with edifice deformation, vent formation, eruptive vigor, and presumably the flux of magma into and out of the summit reservoir. During 2000–2001, a fundamental change in steady state eruption petrology to that of relatively low-temperature, low-MgO, olivine(-spinel)-clinopyroxene-plagioclase-phryic lava points to a physical transformation of the shallow volcano plumbing uprift of the vent. Preeruptive comagmatic mixing between hotter and cooler magma is documented by resorption, overgrowth, and compositional zonation in a mixed population of phenocrysts grown at higher and lower temperatures. Large variations of sulfur (50 to >1000 ppm) in melt inclusions within individual phenocrysts and among phenocrysts in most samples provide an unequivocal glimpse of rapid crystal growth amid sulfur degassing at <30 MPa in a turbulent preeruptive environment. We speculate that, during the last decade, one or more shallow open-system reservoirs developed along the conduit between the summit and Pu‘u ‘Ō‘ō and now serve to buffer the magmatic throughput associated with ongoing recharge and eruption. Lava with identical trace-element signatures erupted simultaneously at the summit and at Pu‘u ‘Ō‘ō from 2008 to 2013 confirms magmatic continuity between the vents. Complementary changes in compositions of matrix glasses, phenocrysts, and melt inclusions of summit tephra are mirrored by similar changes in contemporaneous rift lava at eruption temperatures 20–35°C lower than those at the summit. Petrologic parameters measured at opposite ends of the shallow magmatic plumbing system are both correlated with summit deformation, demonstrating that effects of summit magma chamber pressurization are translated throughout interconnected magma pathways in the shallow edifice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.8046S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.8046S"><span>Emission of gas and atmospheric dispersion of SO2 during the December 2013 eruption at San Miguel volcano (El Salvador)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Salerno, Giuseppe G.; Granieri, Domenico; Liuzzo, Marco; La Spina, Alessandro; Giuffrida, Giovanni B.; Caltabiano, Tommaso; Giudice, Gaetano; Gutierrez, Eduardo; Montalvo, Francisco; Burton, Michael; Papale, Paolo</p> <p>2016-04-01</p> <p>San Miguel volcano, also known as Chaparrastique, is a basaltic volcano along the Central American Volcanic Arc (CAVA). Volcanism is induced by the convergence of the Cocos Plate underneath the Caribbean Plate, along a 1200-km arc, extending from Guatemala to Costa Rica and parallel to the Central American Trench. The volcano is located in the eastern part of El Salvador, in proximity to the large communities of San Miguel, San Rafael Oriente, and San Jorge. Approximately 70,000 residents, mostly farmers, live around the crater and the city of San Miguel, the second largest city of El Salvador, ten km from the summit, has a population of ~180,000 inhabitants. The Pan-American and Coastal highways cross the north and south flanks of the volcano.San Miguel volcano has produced modest eruptions, with at least 28 VEI 1-2 events between 1699 and 1967 (datafrom Smithsonian Institution http://www.volcano.si.edu/volcano.cfm?vn=343100). It is characterized by visible milddegassing from a summit vent and fumarole field, and by intermittent lava flows and Strombolian activity. Since the last vigorous fire fountaining of 1976, San Miguel has only experienced small steam explosions and gas emissions, minor ash fall and rock avalanches. On 29 December 2013 the volcano erupted producing an eruption that has been classified as VEI 2. While eruptions tend to be low-VEI, the presence of major routes and the dense population in the surrounding of the volcano increases the risk that weak explosions with gas and/or ash emission may pose. In this study, we present the first inventory of SO2, CO2, HCl, and HF emission rates on San Miguel volcano, and an analysis of the hazard from volcanogenic SO2 discharged before, during, and after the December 2013 eruption. SO2 was chosen as it is amongst the most critical volcanogenic pollutants, which may cause acute and chronicle disease to humans. Data were gathered by the geochemical monitoring network managed by the Ministerio de Medio Ambiente y Recursos Naturales (MARN) of El Salvador and by a network of geophysical and geochemical stations established on the volcano by the Italian Istituto Nazionale di Geofisica e Vulcanologia (INGV), immediately after the December 2013 eruption, on the request of MARN. During the eruption, SO2 emissions increased from a background level of ~330 t d-1 to 2200 t d-1, dropping after the eruption to an average level of 680 t d-1. Wind measurements and SO2 fluxes during the pre-, syn- and post-eruptive stages were used to model SO2 dispersion around the volcano. Air SO2 concentration exceeds the dangerous threshold of 5 ppm in the crater region, and in some middle sectors of the highly visited volcanic cone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V23A0455R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V23A0455R"><span>Geomorphological mapping using drones into the eruptive summit of Turrialba volcano, Costa Rica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ruiz, P.; Mora, M.; Soto, G. J.; Vega, P.; Barrantes, R.</p> <p>2017-12-01</p> <p>We produced and compared two detailed topographic datasets of the SW active crater on the summit of Turrialba volcano (03/2016 and 06/2017). These datasets are based on hundreds of orthophotos obtained by low-height flights by drones (Phantom-3, and Inspire-1) to collect the aerial data, and ground control points from RTK-GPS surveys (for ground survey and control points, we used reflective marks and local stations). Photogrammetry software and GIS were used to processes the data for creating DEMs. Using these data, we have been able to document the geomorphological changes generated by eruptions. We have learned the processes involved in the crater evolution during an eruption period passing from a close-system to an open one. Turrialba has been erupting since 2010, when a phreatic explosion opened a small vent on the SW crater. Further minor phreatic eruptions occurred in 2011-2013 with a slow increase of juvenile content in its products, until it clearly evolved to phreatomagmatism in 2014 and an open-system in mid-2016. We recorded significant changes in the morphology of the active crater in the latest period of eruption. These changes are the result of stronger eruptions between 04/2016 and 01/2017, finally clearing the main conduit that opened the system and favored the rise of magma up to the surface. Lava now lies on the bottom of the crater, forming a small lava pool (25m x 15m). We found that in the 15-month period during the opening of the volcanic system, the active crater got 100 m deeper and wider at the bottom (in 06/2017, depth was 230 m, and the empty volume of the crater 2.5x106m3. These observations are consistent with the seismic records through the opening of the system and the eruption style. Aerial dataset from low-height flights by drones are a powerful tool to understand the evolution of volcanoes from close to open systems and for volcano hazard assessments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMNH13B..04W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMNH13B..04W"><span>Volcanic ash: a potential hazard for aviation in Southeast Asia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Whelley, P. L.; Newhall, C. G.</p> <p>2012-12-01</p> <p>There are more than 400 volcanoes in Southeast Asia. Ash from eruptions of Volcanic Explosivity Index 3 (VEI 3) and larger pose local hazards and eruptions of VEI 4 or greater could disrupt trade, travel, and daily life in large parts of the region. To better manage and understand the risk volcanic ash poses to Southeast Asia, this study quantifies the long-term probability of a large eruption sending ash into the Singapore Flight Information Region (FIR), which is a 1,700 km long, quasi-rectangular zone from the Strait of Malacca to the South China Sea. Southeast Asian volcanoes are classified into 6 groups, using satellite data, by their morphology, and where known, their eruptive history. 'Laguna' type are fields of maars, cinder cones and spatter cones, named for the Laguna Volcanic Field, Philippines (13.204, 123.525). 'Kembar' type are broad, gently sloping shield volcanoes with extensive lava flows (Kembar Volcano, Indonesia: 3.850, 097.664). 'Mayon' type volcanoes are open-vent, frequently active, steep sided stratocones with small summit craters, spatter ramparts, small pyroclastic fans (typically < 3 km but up to 5 km) and lava flows (Mayon Volcano, Philippines: 13.257, 123.685). 'Kelut' type are semi-plugged composite cones with dome complexes, pyroclastic fans, and/or debris avalanche deposits (Kelut Volcano, Indonesia: -7.933, 112.308). 'Pinatubo' type are large plugged stratovolcanoes with extensive (tens of km) pyroclastic fans and large summit craters or calderas up to 5 km in diameter (Pinatubo Volcano, Philippines: 15.133, 120.350). 'Toba' type are calderas with long axes > 5 km and surrounded by ignimbrite sheets (Toba Caldera, Indonesia: 02.583, 098.833). In addition silicic dome complexes that might eventually produce large caldera-forming eruptions are also classified as Toba type. The eruptive histories of most volcanoes in Southeast Asia are poorly constrained. Assuming that volcanoes with similar morphologies have had similar eruption histories, we use eruption histories of well-studied examples of each morphologic category as proxy histories for all volcanoes in the class. Results from this work will be used to model volcanic ash contamination scenarios for the Singapore FIR.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70073903','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70073903"><span>Late Holocene Peléan-style eruption at Tacaná volcano, Mexico and Guatemala: past, present, and future hazards</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Macías, J. L.; Espíndola, J. M.; Garcia-Palomo, A.; Scott, K.M.; Hughes, S.; Mora, J C.</p> <p>2000-01-01</p> <p>Tacaná volcano, located on the border between Mexico and Guatemala, marks the northern extent of the Central American volcanic chain. Composed of three volcanic structures, it is a volcanic complex that has had periodic explosive eruptions for at least the past 40 k.y. The most recent major eruption occurred at the San Antonio volcano, the youngest volcanic edifice forming the complex, about 1950 yr ago. The Peléan style eruption, issued from the southwest part of the dome, and swept a 30° sector with a hot block and ash flow that traveled about 14 km along the Cahoacán ravine. Deposits from this event are well exposed around the town of Mixcun and were therefore given the name of that town, the Mixcun flow deposit. The Mixcun flow deposit is, in the channel facies, a light gray, massive, thick (>10 m), matrix-supported unit with dispersed lithic clasts of gravel to boulder size, divisible in some sections into a variable number of flow units. The overbank facies is represented by a thin (2 and has a minimum estimated volume of 0.12 km3. Basaltic-andesite inclusions (54% SiO2) and various signs of disequilibrium in the mineral assemblage of the two-pyroxene andesitic products (60%–63% SiO2) suggest that magma mixing may have triggered the eruption. Following deposition of the Mixcun flow deposit andesitic to dacitic (62%–64% SiO2) lava flows were extruded and a dacitic dome (64.4% SiO2) at the San Antonio summit formed. Syn-eruptive and posteruptive lahars flooded the main drainages of the Cahoacán and Izapa-Mixcun valleys in the area of the present city of Tapachula (population 250000) and the pre-Hispanic center of Izapa. Three radiocarbon ages date this event between A.D. 25 and 72 (range ±1σ, 38 B.C.–A.D. 216), which correlates with a halt in construction at Izapa (Hato phase of ca. 50 B.C.–A.D. 100), probably due to temporary abandonment of the city caused by lahars. Another similar event would produce extensive damage to the towns (population of about 68,000 people) now built upon the Mixcun flow deposit. The main summit of Tacaná volcano continues to show signs of fumarolic activity; the most recent period of activity in 1985–1986 culminated in a minor phreatic explosion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.7582C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.7582C"><span>Joint analysis of deformation, gravity, and lava lake elevation reveals temporal variations in lava lake density at Kilauea Volcano, Hawaii</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carbone, Daniele; Poland, Michael; Patrick, Matthew</p> <p>2015-04-01</p> <p>We find a tight correlation between (i) changes in lava level within the summit eruptive vent at Kilauea Volcano, Hawaii, observed for at least 2 years since early 2011, and (ii) ground deformation in the vicinity of the vent. The observed correlation indicates that changing pressure within the shallow magma reservoir feeding the lava lake influences both deformation and lava level. However, those two parameters are related to chamber pressure through different properties, namely, the density of the lava filling the vent (for the lava level) and the size/position of the reservoir plus the elastic parameters of the host rock (for the deformation). Joint analyses in the time and frequency domains of lava level (determined from thermal camera imagery of the lava lake) and tilt measured on a borehole instrument (~2 km from the summit vent) reveal a good correlation throughout the studied period. The highest correlation occurs over periods ranging between 1 and 20 days. The ratio between lava level and tilt is not constant over time, however. Using data from a continuously recording gravimeter located near the rim of the summit eruptive vent, we demonstrate that the tilt-lava level ratio is controlled by the fluctuations in the density of the lava inside the vent (i.e., its degree of vesicularity). A second continuous gravimeter was installed near the summit eruptive vent in 2014, providing a new observation point for gravity change associated with summit lava lave activity to test models developed from the previously existing instrument. In addition, a continuous gravimeter was installed on the rim of the Puu Oo eruptive vent on Kilauea's East Rift Zone in 2013. Puu Oo is connected via the subvolcanic magma plumbing system to the summit eruptive vent and often deforms in concert with the summit. This growing network of continuously recording gravimeters at Kilauea can be used to examine correlations in gravity change associated with variations in eruptive activity across the volcano.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70012418','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70012418"><span>Geophysical observations of Kilauea Volcano, Hawaii, 2. Constraints on the magma supply during November 1975-September 1977</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dzurisin, D.; Anderson, L.A.; Eaton, G.P.; Koyanagi, R.Y.; Lipman, P.W.; Lockwood, J.P.; Okamura, R.T.; Puniwai, G.S.; Sako, M.K.; Yamashita, K.M.</p> <p>1980-01-01</p> <p>Following a 22-month hiatus in eruptive activity, Kilauea volcano extruded roughly 35 ?? 106 m3 of tholeiitic basalt from vents along its middle east rift zone during 13 September-1 October, 1977. The lengthy prelude to this eruption began with a magnitude 7.2 earthquake on 29 November, 1975, and included rapid summit deflation episodes in June, July, and August 1976 and February 1977. Synthesis of seismic, geodetic, gravimetric, and electrical self-potential observations suggests the following model for this atypical Kilauea eruptive cycle. Rapid summit deflation initiated by the November 1975 earthquake reflected substantial migration of magma from beneath the summit region of Kilauea into the east and southwest rift zones. Simultaneous leveling and microgravity observations suggest that 40-90 ?? 106 m3 of void space was created within the summit magma chamber as a result of the earthquake. If this volume was filled by magma from depth before the east rift zone intrusive event of June 1976, the average rate of supply was 6-13 ?? 106 m3/month, a rate that is consistent with the value of 9 ?? 106 m3/month suggested from observations of long-duration Kilauea eruptions. Essentially zero net vertical change was recorded at the summit during the 15-month period beginning with the June 1976 intrusion and ending with the September 1977 eruption. This fact suggests that most magma supplied from depth during this interval was eventually delivered to the east rift zone, at least in part during four rapid summit deflation episodes. Microearthquake epicenters migrated downrift to the middle east rift zone for the first time during the later stages of the February 1977 intrusion, an occurrence presumably reflecting movement of magma into the eventual eruptive zone. This observation was confirmed by tilt surveys in May 1977 that revealed a major inflation center roughly 30 km east of the summit in an area of anomalous steaming and forest kill first noted in March 1976. ?? 1980.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.V33E..08T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.V33E..08T"><span>Dueling Volcanoes: How Activity Levels At Kilauea Influence Eruptions At Mauna Loa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Trusdell, F.</p> <p>2011-12-01</p> <p>The eruption of Kilauea at Pu`u `O`o is approaching its 29th anniversary. During this time, Mauna Loa has slowly inflated following its most recent eruption in 1984. This is Mauna Loa's longest inter-eruptive interval observed in HVO's 100 years of operation. When will the next eruption of Mauna Loa take place? Is the next eruption of Mauna Loa tied to the current activity at Kilauea? Historically, eruptive periods at Kilauea and Mauna Loa volcanoes appear to be inversely correlated. In the past, when Mauna Loa was exceptionally active, Kilauea Volcano was in repose, recovery, or in sustained lava lake activity. Swanson and co-workers (this meeting) have noted that explosive activity on Kilauea, albeit sporadic, was interspersed between episodes of effusive activity. Specifically, Swanson and co-workers note as explosive the time periods between 300 B.C.E.-1000 C.E and 1500-1800 C.E. They also point to evidence for low magma supply to Kilauea during these periods and few flank eruptions. During the former explosive period, Mauna Loa was exceedingly active, covering approximately 37% of its surface or 1882 km2, an area larger than Kilauea. This period is also marked by summit activity at Mauna Loa sustained for 300 years. In the 1500-1800 C.E. period, Mauna Loa was conspicuously active with 29 eruptions covering an area of 446 km2. In the late 19th and early 20th century, Kilauea was dominated by nearly continuous lava-lake activity. Meanwhile Mauna Loa was frequently active from 1843 C.E. to 1919 C.E., with 24 eruptions for an average repose time of 3.5 years. I propose that eruptive activity at one volcano may affect eruptions at the other, due to factors that impact magma supply, volcanic plumbing, and flank motion. This hypothesis is predicated on the notion that when the rift zones of Kilauea, and in turn its mobile south flank, are active, Mauna Loa's tendency to erupt is diminished. Kilauea's rift zones help drive the south flank seaward, in turn, as Mauna Loa inflates its flank is not buttressed on the southeast. Consequently, asymmetrical spreading occurs resulting in dilation of the shallow magma storage centers, which ultimately culminates in decreased magma pressure and therefore lessened ability to erupt. Whether or not this hypothesis is accurate, there is growing geologic evidence for inverse activity levels at both volcanoes. This hypothesis is readily testable and can have profound implications on how we monitor shield volcanoes, which impacts our ability to forecast eruptions, conduct hazard assessments, and risk analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.V53A3074S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.V53A3074S"><span>Kilauea's double eruption, 2008-2016: volatile budget and associated hazards</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sutton, A. J.; Elias, T.</p> <p>2016-12-01</p> <p>After 20 years of effusive behavior on Kilauea's East Rift Zone, a surge in magma supply brought about eruptive changes that significantly improved our understanding of volcanic processes and associated hazards. The volcano's summit deformation changes and increase in CO2 emissions signaled the supply surge beginning in 2003, and heralded the opening of the Overlook Vent in 2008. Along with the supply surge and vent opening came a dramatic spike in gas release. Summit SO2 emissions climbed from 0.2 kt/d to over 10 kt/d while East Rift discharge rose from 2 kt/d to about 6 kt/d before both summit and rift emissions began an overall decline in late 2008. In spite of the emissions decline, however, overall gas release from Kilauea remained well above the previous 20-year average through early 2014. Beginning in 2008, the annual gas budget released from the summit and rift combined, was more than 830 kt, 6.7 kt, and 3.7 kt of SO2, HCl, and HF, respectively. Effects of these elevated emissions sustained ongoing human health concerns and caused a multi-year agricultural disaster designation for the Island. The current activity of Kīlauea consists of a predominant summit gas eruption (where lava and ash discharge are trivial compared to gas release) and a more typical rift lava eruption with sufficient lava effusion to reach a community 20 km from the eruptive vent. An updated gas-based lava effusion estimate shows that Kilauea continued to erupt an average of 0.11 km^3 yr^-1 of dense rock equivalent lava between early 2012 and mid-2016. This value shows that despite the new regime of erupting most of its gas budget at the volcano's summit, the Kilauea system is still capable of pushing magma out of its rift at a rate consistent with the long term average.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss023e027737.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss023e027737.html"><span>Earth Observations taken by the Expedition 23 Crew</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2010-04-23</p> <p>ISS023-E-027737 (23 April 2010) --- Nevado del Ruiz volcano in Colombia is featured in this image photographed by an Expedition 23 crew member on the International Space Station. The large Nevado del Ruiz volcano (center) is located approximately 140 kilometers to the northwest of the capital city of Bogota and covers an area of over 200 square kilometers. Nevado del Ruiz is a stratovolcano – a type of volcano built from successive layers of lava, ash, and pyroclastic flow deposits – formed by magma generated above the boundary between the subducting Nazca and overriding South American tectonic plates. The historical record of eruptions extends back to 1570, but the most damaging eruption in recent times took place in 1985. On Nov. 13, 1985, an explosive eruption at the Arenas Crater (center) melted ice and snow at the summit of the volcano. This lead to the formation of mudflows (or lahars) that swept tens of kilometers down river valleys along the volcano’s flanks, resulting in the deaths of at least 23,000 people. Most of the fatalities occurred in the town of Armero which was completely inundated by lahars. Eruptive activity at Nevado del Ruiz may have occurred in 1994, but this is not confirmed. The volcano’s summit and upper flanks are covered by several glaciers that appear as a white mass surrounding the one-kilometer-wide Arenas Crater; meltwater from these glaciers has incised the gray to tan ash and pyroclastic flow deposits mantling the lower slopes. A well-defined lava flow is visible at lower right. This photograph was taken at approximately 7:45 a.m. local time when the sun was still fairly low above the horizon, leading to shadowing to the west of topographic high points.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AGUFM.V31A0950G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AGUFM.V31A0950G"><span>Diffuse Emission of Carbon Dioxide From Irazú Volcano, Costa Rica, Central America</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Galindo, I.; Melian, G.; Ramirez, C.; Salazar, J.; Hernandez, P.; Perez, N.; Fernandez, M.; Notsu, K.</p> <p>2001-12-01</p> <p>Irazú (3,432 m) is a stratovolcano situated 50 Km east of San José, the capital of Costa Rica. Major geomorphological features at Irazú are five craters (Main Crater, Diego de La Haya, Playa Hermosa, La Laguna and El Piroclástico), and at least 10 satellitic cones which are located on its southern flank. Its eruptive history is known from 1723. Since then, have ocurred at least 23 eruptions. All known Holocene eruptions have been explosive. The focus of eruptions at the summit crater complex has migrated to the west towards the historically active crater from 1963 to 1965. Diffuse degassing studies are becoming an additional geochemical tool for volcanic surveillance. The purpose of this study is to evaluate the spatial distribution of diffuse CO2 emission as well as CO2 efflux from Irazú volcano. A soil CO2 flux survey of 201 sampling sites was carried out at the summit of Irazú volcano in March 2001. Sampling site distribution covered an area of 3.5 Km2. Soil CO2 efflux measurements were performed by means of a portable NDIR sensor LICOR-800. Soil CO2 efflux values ranged from non-detectable values to 316.1 gm-2d-1 Statistical-graphical analysis of the data showed three overlapping geochemical populations. The background mean is 3 gm-2d-1 and represents 91.3 % of the total data. Peak group showed a mean of 18 gm-2d-1 and represented 1.2 % of the data. Anomalous CO2 flux values are mainly detected in the South sector of the main crater, where landslides have previously occurred. Diffuse CO2 degassing rate of the study area yields 44.2 td-1.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.V41A2486K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.V41A2486K"><span>Magma transport and storage at Kilauea volcano, Hawaii II: 1952-2008</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Klein, F.; Wright, T. L.</p> <p>2011-12-01</p> <p>We trace the evolution of Kilauea between the Halemaumau eruptions of 1952 and 2008. The magma supply path from the mantle is defined by the distribution of earthquakes deeper than 20 km. We compared the accumulated moment release from deep magma supply, south flank and rift zone earthquakes. We identified every intrusion and eruption in time plots of summit tilt and seismic activity in all regions, and plotted the earthquake distribution for ~ 1 week covering the period prior to, during and following the event. The establishment and continued growth of modern seismic and geodetic networks allow us to define three types of intrusions. 'Normal' intrusions occur with or without eruption and are accompanied by sharp tilt deflation at Kilauea's summit. 'Inflationary' intrusions occur during periods of summit inflation accompanied by rift earthquake swarms in the near-summit parts of both rift zones. 'Slow' intrusions are defined by isolated swarms of south flank earthquakes distributed perpendicular to the rift zones. Magnitudes of inflation and deflation shown by the daily tilt record at Kilauea's summit are converted to volume using a factor determined by previous workers. Magma supply rates are determined by summation of the volumes in cubic kilometers of (1) net summit inflation (2) sharp summit deflation accompanying rift activity and (3) summit and long continuous rift eruptions, divided by the elapsed time in years. Eruption efficiency is calculated by comparing the volumes of rift eruption and summit deflation. In this study we have reached the following conclusions: 1) Magma supply rates have increased from the pre-1952 value of 0.062 km3/yr to 0.1 km3/yr during the Mauna Ulu eruption of 1969-74 to 0.2 km3/yr during much of the eruption that began in 1983. 2) Eruption efficiencies show cyclic increases with increased activity, culminating in an efficiency averaging 100% during episodes of high fountaining in the period 1983-86. 3) Some south flank earthquake swarms herald rift earthquake swarms associated with rift eruption and intrusion by minutes to hours, consistent with the existence of a deep pressure-transmitting magma system beneath the rift zones. 4) Seaward movement and rift dilation during the M 7.2 earthquake on Nov. 29, 1975 changed the volcano's behavior. Before the 1975 earthquake, magma supply drove flank spreading. Following the earthquake, spreading rates were similar to the time before the earthquake but the magma supply rate increased partly because the flank was de-stressed and new magma was unconstrained by the flank. 5) Recent slow intrusions have a seismic signature that matches 'slow' or 'silent' earthquakes and we suggest that such events date from the 1960s. 6) The effects of Mauna Loa on Kilauea and vice versa are manifested in the increased magma supply rate at Kilauea since 1952 and the decreased Mauna Loa activity since 1950, a pattern also seen in the 19th century and earlier. This relationship is further emphasized by the lack of any Mauna Loa eruption since Kilauea began continuous eruption in 1983. We interpret Kilauea's long history as one of crisis and recovery. Crises are anticipated by increased seismic activity and recovery is associated with major changes in volcano behavior.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss005e18511.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss005e18511.html"><span>Crew Earth Observations (CEO) by Expedition Five Crew</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2002-10-25</p> <p>ISS005-E-18511 (25 October 2002) --- Mount Saint Helens, Washington, is featured in this image photographed by an Expedition 5 crewmember on the International Space Station (ISS). On May 18, 1980, Mount Saint Helens volcano erupted. A series of earthquakes preceded the eruption, triggering a collapse of the north side of the mountain into a massive landslide. This avalanche coincided with a huge explosion that destroyed over 270 square miles of forest in a few seconds, and sent a billowing cloud of ash and smoke 80,000 feet into the atmosphere. The crewmembers on the Station captured this detailed image of the volcano’s summit caldera. In the center of the crater sits a lava dome that is 876 feet above the crater floor and is about 3,500 feet in diameter. The upper slopes of the 1980 blast zone begin at the gray colored region that extends north (upper left) from the summit of the volcano. The deeply incised valley to the left (west) is the uppermost reach of the South Fork of the Toutle River. Devastating mudslides buried the original Toutle River Valley to an average depth of 150 feet, but in places up to 600 feet. The dark green area south of the blast zone is the thickly forested region of the Gifford Pinchot National Forest.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1993JVGR...59....1S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1993JVGR...59....1S"><span>Major Holocene block-and-ash fan at the western slope of ice-capped Pico de Orizaba volcano, México: Implications for future hazards</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Siebe, Claus; Abrams, Michael; Sheridan, Michael F.</p> <p>1993-12-01</p> <p>A major block-and-ash fan extends more than 14 km westward from the summit of Pico de Orizaba volcano in the eastern part of the Trans-Mexican Volcanic Belt. Radiocarbon dating of charcoal within the fan deposits yielded Holocene ages that range between 4040 ± 80 and 4660 ± 100 y.B.P. Stratigraphical, sedimentological, geochemical, and scanning electron microscope studies indicate that this fan originated within a relatively short time-span by multiple volcanic explosions at the summit crater. This activity produced a series of pyroclastic flows (mainly block-and-ash flows) and lahars which were channelized by a glacial cirque and connecting U-shaped valleys as they descended toward the base of the volcano. A recurrence of a similar eruption today would pose severe hazards to the population of more than 50,000 people, who live in a potentially dangerous zone. A detailed reconstruction of the sequence of events that led to the formation of the block-and-ash fan is presented to help mitigate the risk. Special attention is given to the effects of an ice-cap and the role of pre-existing glacial morphology on the distribution of products from such an eruption.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.V12A..04S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.V12A..04S"><span>Aligning petrology with geophysics: the Father's Day intrusion and eruption, Kīlauea Volcano, Hawai`i</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Salem, L. C.; Edmonds, M.; Maclennan, J.; Houghton, B. F.; Poland, M. P.</p> <p>2016-12-01</p> <p>The Father's Day 2007 eruption at Kīlauea Volcano, Hawai`i, is an unprecedented opportunity to align geochemical techniques with the exceptionally detailed volcano monitoring data collected by the Hawaiian Volcano Observatory (HVO). Increased CO2 emissions were measured during a period of inflation at the summit of Kilauea in 2003-2007, suggesting that the rate of magma supply to the summit had increased [Poland et al., 2012]. The June 2007 Father's Day eruption in the East Rift Zone (ERZ) occurred at the peak of the summit inflation. It offers the potential to sample magmas that have ascended on short timescales prior to 2007 from the lower crust, and perhaps mantle, with limited fractionation in the summit reservoir. The bulk rock composition of the lavas erupted are certainly consistent with this idea, with >8.5 wt% MgO compared to a typical 7.0-7.5 wt% for contemporaneous Pu`u`O`o ERZ lavas. However, our analysis of the major and trace element chemistry of olivine-hosted melt inclusions shows that the melts are in fact relatively evolved, with Mg# <53, compared to up to 63 for some high fountaining eruptions, e.g. Kīlauea Iki. The magma evidently entrained a crystal cargo of more primitive olivines, compositionally typical of summit eruption magma (with 81-84 mol% Fo). The melt inclusion chemistry shows homogenized and narrowly distributed trace element ratios, medium/low CO2 abundances and high concentrations of sulfur (unlike typical ERZ magmas). However, the chemistry is unlike melts that have partially bypassed the summit reservoir, e.g. those erupted at Kīlauea Iki, Mauna Ulu. We suggest that the Father's Day magma had been resident in the magma reservoir prior to the 2003-2007 inflation, and was evacuated from the reservoir into the ERZ in response to the increased rate of intrusion of magma from depth. Dissolved volatile contents along profiles in embayments ("open" melt inclusions) were measured and compared to diffusion models to predict timescales of magma decompression prior to eruption. These are compared to timescales of lateral dike intrusion measured using tilt, GPS and seismology to refine our understanding of horizontal and vertical magma flow in dikes between the summit reservoir and ERZ.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss019e005286.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss019e005286.html"><span>Earth Observations by the Expedition 19 crew</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2009-04-08</p> <p>ISS019-E-005286 (8 April 2009) --- Mount Fuji, Japan is featured in this image photographed by an Expedition 19 crew member on the International Space Station. The 3,776 meters high Mount Fuji volcano, located on the island of Honshu in Japan, is one of the world?s classic examples of a stratovolcano. The volcano?s steep, conical profile is the result of numerous interlayered lava flows and explosive eruption products ? such as ash, cinders, and volcanic bombs ? building up the volcano over time. The steep profile is possible because of the relatively high viscosity of the volcanic rocks typically associated with stratovolcanoes. This leads to thick sequences of lava flows near the eruptive vent that build the cone structure, rather than low viscosity flows that spread out over the landscape and build lower-profile shield volcanoes. According to scientists, Mount Fuji, or Fuji-san in Japan, is actually comprised of several overlapping volcanoes that began erupting in the Pleistocene Epoch (1.8 million to approximately 10,000 years ago). Scientists believe that the currently active volcano, known as Younger Fuji, began forming approximately 11,000 to 8,000 years ago. The most recent explosive activity occurred in 1707, creating Hoei Crater on the southeastern flank of the volcano (center). This eruption deposited ash on Edo (present-day Tokyo) located 95 kilometers to the northeast. While there have been no further eruptions of Mount Fuji, steam was observed at the summit during 1780?1820, and the volcano is considered active. This oblique photograph illustrates the snow-covered southeastern flank of the volcano; the northeastern flank can be seen here. A representation of the topography of Mt. Fuji and its surroundings can be viewed here.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://link.springer.com/article/10.1007%2Fs00445-014-0862-2','USGSPUBS'); return false;" href="http://link.springer.com/article/10.1007%2Fs00445-014-0862-2"><span>The 2013 eruption of Pavlof Volcano, Alaska: a spatter eruption at an ice- and snow-clad volcano</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Waythomas, Christopher F.; Haney, Matthew M.; Fee, David; Schneider, David J.; Wech, Aaron G.</p> <p>2014-01-01</p> <p>The 2013 eruption of Pavlof Volcano, Alaska began on 13 May and ended 49 days later on 1 July. The eruption was characterized by persistent lava fountaining from a vent just north of the summit, intermittent strombolian explosions, and ash, gas, and aerosol plumes that reached as high as 8 km above sea level and on several occasions extended as much as 500 km downwind of the volcano. During the first several days of the eruption, accumulations of spatter near the vent periodically collapsed to form small pyroclastic avalanches that eroded and melted snow and ice to form lahars on the lower north flank of the volcano. Continued lava fountaining led to the production of agglutinate lava flows that extended to the base of the volcano, about 3–4 km beyond the vent. The generation of fountain-fed lava flows was a dominant process during the 2013 eruption; however, episodic collapse of spatter accumulations and formation of hot spatter-rich granular avalanches was a more efficient process for melting snow and ice and initiating lahars. The lahars and ash plumes generated during the eruption did not pose any serious hazards for the area. However, numerous local airline flights were cancelled or rerouted, and trace amounts of ash fall occurred at all of the local communities surrounding the volcano, including Cold Bay, Nelson Lagoon, Sand Point, and King Cove.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008JVGR..177..578P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008JVGR..177..578P"><span>Geology of the Side Crater of the Erebus volcano, Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Panter, Kurt S.; Winter, Brian</p> <p>2008-11-01</p> <p>The summit cone of the Erebus volcano contains two craters. The Main crater is roughly circular (˜ 500 m diameter) and contains an active persistent phonolite lava lake ˜ 200 m below the summit rim. The Side Crater is adjacent to the southwestern rim of the Main Crater. It is a smaller spoon-shaped Crater (250-350 m diameter, 50-100 m deep) and is inactive. The floor of the Side Crater is covered by snow/ice, volcanic colluvium or weakly developed volcanic soil in geothermal areas (a.k.a. warm ground). But in several places the walls of the Side Crater provide extensive vertical exposure of rock which offers an insight into the recent eruptive history of Erebus. The deposits consist of lava flows with subordinate volcanoclastic lithologies. Four lithostratigraphic units are described: SC 1 is a compound lava with complex internal flow fabrics; SC 2 consists of interbedded vitric lavas, autoclastic and pyroclastic breccias; SC 3 is a thick sequence of thin lavas with minor autoclastic breccias; SC 4 is a pyroclastic fall deposit containing large scoriaceous lava bombs in a matrix composed primarily of juvenile lapilli-sized pyroclasts. Ash-sized pyroclasts from SC 4 consist of two morphologic types, spongy and blocky, indicating a mixed strombolian-phreatomagmatic origin. All of the deposits are phonolitic and contain anorthoclase feldspar. The stratigraphy and morphology of the Side Crater provides a record of recent volcanic activity at the Erebus volcano and is divided into four stages. Stage I is the building of the main summit cone and eruption of lavas (SC 1 and SC 3) from Main Crater vent(s). A secondary cone was built during Stage II by effusive and explosive activity (SC 2) from the Side Crater vent. A mixed strombolian and phreatomagmatic eruption (SC 4) delimits Stage III. The final stage (IV) represents a period of erosion and enlargement of the Side Crater.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JVGR..352...55C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JVGR..352...55C"><span>The glaciovolcanic evolution of an andesitic edifice, South Crater, Tongariro volcano, New Zealand</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cole, R. P.; White, J. D. L.; Conway, C. E.; Leonard, G. S.; Townsend, D. B.; Pure, L. R.</p> <p>2018-02-01</p> <p>Unusual deposits, mapped and logged in detail, around the summit area of Tongariro volcano, Tongariro Volcanic Centre, New Zealand indicate that the construction and evolution of a substantial portion of this andesitic stratovolcano was beneath a significant ice cap or summit glacier. As the edifice was built under and through the overlying ice, the style of volcanism evolved in a complex history of growth. Initially, a ≥ 100 m thick, widespread hyaloclastite deposit was emplaced within a subglacial, eruption-formed meltwater lake. This was followed by several phases of effusive and explosive eruptions, producing lava flows and primary volcaniclastic deposits emplaced along channels carved into the ice by heated meltwater. The clastic deposits contain quenched bombs and structural features that indicate waterlain transport and emplacement, and soft sediment deformation. Such accumulation of water on a steep-sided edifice without evidence for a subaerial crater lake, along with lava flow features indicating confinement, suggest that a substantial summit glacier was responsible for the production and retention of water, and the architecture of these deposits. Recent studies at nearby Ruapehu volcano have provided good evidence for glaciovolcanic interactions during the last glacial period. However, until now, little was known of the physical lava-ice interactions in the Centre during the last interglacial period and the earlier part of the last glacial period (110-64 ka). These new data support a reinterpretation for the volcanic evolution of the older Tongariro edifice and the emplacement mechanisms of primary volcaniclastic deposits. They also help to constrain local ice thicknesses and extents at the times of eruption. In addition, this study contributes to a sparse global catalogue of glaciovolcanic deposits of andesitic composition, particularly of primary volcaniclastics preserved at mid-latitude stratovolcanoes. The variety of deposit types indicates a volcano building and evolving with glaciation and is an outstanding example of the types of glaciovolcanic interaction that can occur at one volcano.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70036848','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70036848"><span>Kulanaokuaiki Tephra (ca, A.D. 400-1000): Newly recognized evidence for highly explosive eruptions at Kilauea Volcano, Hawai'i</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Fiske, R.S.; Rose, T.R.; Swanson, D.A.; Champion, D.E.; McGeehin, J.P.</p> <p>2009-01-01</p> <p>K??lauea may be one of the world's most intensively monitored volcanoes, but its eruptive history over the past several thousand years remains rather poorly known. Our study has revealed the vestiges of thin basaltic tephra deposits, overlooked by previous workers, that originally blanketed wide, near-summit areas and extended more than 17 km to the south coast of Hawai'i. These deposits, correlative with parts of tephra units at the summit and at sites farther north and northwest, show that K??lauea, commonly regarded as a gentle volcano, was the site of energetic pyroclastic eruptions and indicate the volcano is significantly more hazardous than previously realized. Seventeen new calibrated accelerator mass spectrometry (AMS) radiocarbon ages suggest these deposits, here named the Kulanaokuaiki Tephra, were emplaced ca. A.D. 400-1000, a time of no previously known pyroclastic activity at the volcano. Tephra correlations are based chiefly on a marker unit that contains unusually high values of TiO2 and K2O and on paleomagnetic signatures of associated lava flows, which show that the Kulanaokuaiki deposits are the time-stratigraphic equivalent of the upper part of a newly exhumed section of the Uw??kahuna Ash in the volcano's northwest caldera wall. This section, thought to have been permanently buried by rockfalls in 1983, is thicker and more complete than the previously accepted type Uw??kahuna at the base of the caldera wall. Collectively, these findings justify the elevation of the Uw??kahuna Ash to formation status; the newly recognized Kulanaokuaiki Tephra to the south, the chief focus of this study, is defined as a member of the Uw??kahuna Ash. The Kulanaokuaiki Tephra is the product of energetic pyroclastic falls; no surge- or pyroclastic-flow deposits were identified with certainty, despite recent interpretations that Uw??kahuna surges extended 10-20 km from K??lauea's summit. ?? 2009 Geological Society of America.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.V52C..04P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.V52C..04P"><span>Controls on lava lake level at Halema`uma`u Crater, Kilauea Volcano</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Patrick, M. R.; Orr, T. R.</p> <p>2013-12-01</p> <p>Lava level is a fundamental measure of lava lake activity, but very little continuous long-term data exist worldwide to explore this aspect of lava lake behavior. The ongoing summit eruption at Kilauea Volcano began in 2008 and is characterized by an active lava lake within the eruptive vent. Lava level has been measured nearly continuously at Kilauea for several years using a combination of webcam images, laser rangefinder, and terrestrial LIDAR. Fluctuations in lava level have been a common aspect of the eruption and occur over several timescales. At the shortest timescale, the lava lake level can change over seconds to hours owing to two observed shallow gas-related processes. First, gas pistoning is common and is driven by episodic gas accumulation and release from the surface of the lava lake, causing the lava level to rise and fall by up to 20 m. Second, rockfalls into the lake trigger abrupt gas release, and lava level may drop as much as 10 m as a result. Over days, cyclic changes in lava level closely track cycles of deflation-inflation (DI) deformation events at the summit, leading to level changes up to 50 m. Rift zone intrusions have caused large (up to 140 m) drops in lava level over several days. On the timescale of weeks to months, the lava level follows the long-term inflation and deflation of the summit region, resulting in level changes up to 140 m. The remarkable correlation between lava level and deflation-inflation cycles, as well as the long-term deformation of the summit region, indicates that the lava lake acts as a reliable 'piezometer' (a measure of liquid pressure in the magma plumbing system); therefore, assessments of summit pressurization (and rift zone eruption potential) can now be carried out with the naked eye. The summit lava lake level is closely mirrored by the lava level within Pu`u `O`o crater, the vent area for the 30-year-long eruption on Kilauea's east rift zone, which is 20 km downrift of the summit. The coupling of these lava levels implies an efficient hydraulic connection between the summit and east rift zone vents. This connection has been indicated previously with geophysical data and is reinforced in a new quantitative manner with lava level data. Lastly, the current lava level at the summit is significantly lower than the mean level measured in the crater during continuous lava lake activity in the early 1900s. This is probably because the ongoing eruption at Pu`u `O`o 'taps' the magma supplied to the summit reservoir. Should the Pu`u `O`o eruption stop, the lava level at the summit would certainly rise in response. The precise correspondence between lava lake level and deformation of the summit implies that the lake level is a good indication of the pressure state of the magma reservoir. Tracking lava level over time may therefore provide an indication of the potential for future changes in eruptive activity. Such an observation has clear relevance for monitoring analogous open-vent basaltic volcanoes, especially where other measures of volcanic activity, like seismic or deformation measurements, may be lacking.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.V43B2869K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.V43B2869K"><span>Monitoring lava dome changes by means of differential DEMs from TanDEM-X interferometry: Examples from Merapi, Indonesia and Volcán de Colima, Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kubanek, J.; Westerhaus, M.; Heck, B.</p> <p>2013-12-01</p> <p>Estimating the amount of erupted material during a volcanic crisis is one of the major challenges in volcano research. One way to do this and to discriminate between juvenile and non-juvenile fraction is to assess topographic changes before and after an eruption while using area-wide 3D data. LiDAR or other airborne systems may be a good source, but the recording fails when clouds due to volcanic activity obstruct the sight. In addition, costs as well as logistics are high for local observatories. When dealing with dome-building volcanoes, acquiring the data gets further complicated. As the volcano dome can change rapidly in active phases, it is nearly impossible to collect data at the right time. However, when dealing with gross volume change estimates, at least two data sets - taken directly before and after the eruption - are essential. The innovative German Earth observation mission TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurement) is of great importance to overcome some of these problems. The two almost identical radar satellites TerraSAR-X and TanDEM-X fly in a close formation, thus recording images of the same place on the Earth surface at the same time (bistatic mode). As the radar signal penetrates clouds, digital elevation models (DEMs) of the area of investigation can be generated without problems even with cloud cover. A time series analysis of the differential DEMs therefore opens the possibility to assess volume changes at active lava domes. We choose Merapi in Indonesia and Volcán de Colima in Mexico as test sites. Both volcanoes reside in a state of long term effusive eruption, interrupted every few years by phases of dome destruction, generation of pyroclastic flows and deposition of volcanic material. The availability of extensive ground truth data for both test sites further enables to validate the spaceborne data and results. Here, we analyze lava dome changes due to the hazardous Merapi 2010 eruption. We show a series of DEMs derived by TanDEM-X interferometry taken before and after the eruption. Our results reveal that the eruption had led to a topographic change of up to 200 m in the summit area of Merapi. We further show the ability of the TanDEM-X data to observe much smaller topographic changes using Volcán de Colima as second test site. An explosion at the crater rim signaled the end of magma ascent in June 2011. The bistatic TanDEM-X data give important information on this explosion as we can observe topographic changes of up to 20 m and less in the summit area when comparing datasets taken before and after the event. We further analyzed datasets from the beginning of the year 2013 when Colima got active again after a dormant period. Our results indicate that repeated DEMs with great detail and good accuracy are obtainable, enabling a quantitative estimation of volume changes in the summit area of the volcano. As the TanDEM-X mission is an innovative mission, the present study serves as a test to employ data of a new satellite mission in volcano research. An error analysis of the DEMs to evaluate the volume quantifications was therefore also conducted.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1910693P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1910693P"><span>Mt. Etna: rationale and implementation of a Supersite</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Puglisi, Giuseppe</p> <p>2017-04-01</p> <p>Mt. Etna is one of the most active volcanoes on Earth and, in the past few decades, has erupted virtually every year. The volcanism of Mt. Etna results from the interaction between magma ascent in the rather complex plumbing feeding system and the local tectonic regime controlled by the volcano edifice's eastern flank instability, whose driving conditions (e.g., structural setting, tectonic forces) and cause-effect relationships are not yet completely understood. At the surface, the combination of the two factors produces eruptions that might consist of either strongly explosive (e.g., 2002; 2011) and produce volcanic ash plumes likely to disrupt air traffic for hours to weeks (e.g., 5 January 2012), including powerful summit paroxysms in the 2012-2013 time span or lava flows capable of invading the populated sectors, that can threat human property and vital infrastructures. Mt. Etna presents many characteristics that make it prone to be a Geohazard Supersite. The volcano consists of an open-vent system characterised by continuous degassing from the volcano summit craters and frequent eruptive summit and flank eruptions. Eruptions can be of different kinds passing from violent short-lasting explosive events to long-lasting lava output, thus producing different kinds of impacts on the surrounding environment, and especially on the large number of people living around the volcano foot. Over time, the frequency and variety of Mt. Etna's eruptive activity have made the volcano one of the most well-studied and monitored worldwide. At Mt. Etna volcanic activity produces a wide spectrum of signals, spanning from seismic and geodetic to geochemical and radiometric signals, which are tracked in continuous and in real-and quasi-real time by the automatic multi-disciplinary monitoring systems deployed by INGV. The huge amount of ground-based collected data sets enforces the vision of Mt. Etna supersite as a Geohazard Supersite where applying the overarching criteria of the Geohazard supersite initiative of enriching the knowledge on geohazards, and promoting the co-operation between space and in situ data providers and data cross-domain sharing. In particular the Mt. Etna volcano supersite offers the chance to: • achieve new scientific results based on the use of available unprecedented data sets; • develop and transfer timely scientific knowledge on volcanic crises; • develop sustainable long-term Earth observation strategies following eruption. • establish user requirements for the Global Earth Observation System of Systems (GEOSS) The interest of the international volcanological community on Mt. Etna, as well as the growing role as laboratory for hazard assessment during the 20th century, is testified by the inclusion of Mt. Etna in the list of "Decades Volcanoes" identified by the IAVCEI commission during the International Decade for the Natural Disaster Reduction of the UN, and by the great amount of scientific publications (e.g., more than 70 per year, on average, on Mt. Etna over the last ten years). The EC FP7 MED-SUV project allowed making operational the Mt. Etna Supersite by integrating in-situ and EO data sets, by fostering cut-crossing research activities on the internal and superficial volcanic processes, by improving the capability of the hazard assessment and by implementing an e-Infrastructure for the sharing of the data and products.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.4771K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.4771K"><span>Temporal variations of randomness in seismic noise during the 2009 Redoubt volcano eruption, Cook Inlet, Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Konstantinou, Konstantinos; Glynn, Chagnon</p> <p>2017-04-01</p> <p>Redoubt volcano is a stratovolcano in the Cook Inlet, south-central Alaska, that has erupted several times in the last fifty years. Its latest eruption in March 2009 was preceded first by volcanic tremor, which was immediately followed by a swarm of low-frequency earthquakes. Due to its proximity to sensitive infrastructure (oil platforms and storage facilities) and the fact that it lies in the way of air traffic routes, Redoubt has been closely monitored by permanent and temporary seismic stations. One of these stations (REF) equipped with a short-period, vertical component sensor was located very near the summit and was continuously recording before, during and after the 2009 eruption. Here we quantify the randomness levels of the continuous seismic signal at REF by calculating Permutation Entropy (PE), which is a nonlinear statistical measure of the amount of randomness in a time series. The time window for this calculation starts 1 January 2009 about two months before the first earthquake swarm, and ends 2 May 2009 when the main explosive activity ceased. The temporal variation of PE during this period shows two significant features: (1) a large decrease about 20 days prior to the onset of the earthquake swarm of 26 February, and (2) smaller decreases that occur shortly (few hours to a day) before phreatic/magmatic explosions. These decreases in PE also coincide with depletion of higher frequencies (> 6 Hz) in the seismic signal, confirming previous findings where reduced randomness in seismic noise may indicate increased absorption losses as hot magmatic fluids reach shallow levels within the volcano edifice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss013e24184.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss013e24184.html"><span>Aleutian volcanic eruption taken by Expedition 13 crewmember</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2006-05-23</p> <p>ISS013-E-24184 (23 May 2006) --- Eruption of Cleveland Volcano, Aleutian Islands, Alaska is featured in this image photographed by an Expedition 13 crewmember on the International Space Station. This most recent eruption was first reported to the Alaska Volcano Observatory by astronaut Jeffrey N. Williams, NASA space station science officer and flight engineer, at 3:00 p.m. Alaska Daylight Time (23:00 GMT). This image, acquired shortly after the beginning of the eruption, captures the ash plume moving west-southwest from the summit vent. The eruption was short-lived; the plume had completely detached from the volcano summit two hours later.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24126286','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24126286"><span>A large hydrothermal reservoir beneath Taal Volcano (Philippines) revealed by magnetotelluric observations and its implications to the volcanic activity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Alanis, Paul K B; Yamaya, Yusuke; Takeuchi, Akihiro; Sasai, Yoichi; Okada, Yoshihiro; Nagao, Toshiyasu</p> <p>2013-01-01</p> <p>Taal Volcano is one of the most active volcanoes in the Philippines. The magnetotelluric 3D forward analyses indicate the existence of a large high resistivity anomaly (∼100 Ω·m) with a volume of at least 3 km×3 km×3 km, which is capped by a conductive layer (∼10 Ω·m), beneath the Main Crater. This high resistivity anomaly is hypothesized to be a large hydrothermal reservoir, consisting of the aggregate of interconnected cracks in rigid and dense host rocks, which are filled with hydrothermal fluids coming from a magma batch below the reservoir. The hydrothermal fluids are considered partly in gas phase and liquid phase. The presence of such a large hydrothermal reservoir and the stagnant magma below may have influences on the volcano's activity. Two possibilities are presented. First, the 30 January 1911 explosion event was a magmatic hydrothermal eruption rather than a base-surge associated with a phreato-magmatic eruption. Second, the earlier proposed four eruption series may be better interpreted by two cycles, each consisting of series of summit and flank eruptions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3832744','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3832744"><span>A large hydrothermal reservoir beneath Taal Volcano (Philippines) revealed by magnetotelluric observations and its implications to the volcanic activity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>ALANIS, Paul K. B.; YAMAYA, Yusuke; TAKEUCHI, Akihiro; SASAI, Yoichi; OKADA, Yoshihiro; NAGAO, Toshiyasu</p> <p>2013-01-01</p> <p>Taal Volcano is one of the most active volcanoes in the Philippines. The magnetotelluric 3D forward analyses indicate the existence of a large high resistivity anomaly (∼100 Ω·m) with a volume of at least 3 km × 3 km × 3 km, which is capped by a conductive layer (∼10 Ω·m), beneath the Main Crater. This high resistivity anomaly is hypothesized to be a large hydrothermal reservoir, consisting of the aggregate of interconnected cracks in rigid and dense host rocks, which are filled with hydrothermal fluids coming from a magma batch below the reservoir. The hydrothermal fluids are considered partly in gas phase and liquid phase. The presence of such a large hydrothermal reservoir and the stagnant magma below may have influences on the volcano’s activity. Two possibilities are presented. First, the 30 January 1911 explosion event was a magmatic hydrothermal eruption rather than a base-surge associated with a phreato-magmatic eruption. Second, the earlier proposed four eruption series may be better interpreted by two cycles, each consisting of series of summit and flank eruptions. PMID:24126286</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.V21C2347S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.V21C2347S"><span>Satellite thermal and tilt measurements of the 2007 - 2008 eruptive period at Kilauea volcano: Implications for down rift magma transport</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Steffke, A. M.; Harris, A. J.</p> <p>2010-12-01</p> <p>The 2007-2008 eruptive period at Kilauea volcano, Hawai‘i, was characterized by frequent changes in style, location and intensity of effusive activity. We use thermal data from the GOES-Imager and MODIS to investigate three particularly interesting eruptive periods: (1) June 17 - July 4, 2007 (the Father’s Day eruption), (2) July 21 - August 5, 2007, and (3) August 6 - 11, 2008. Each of these eruptive periods were accompanied by deflation-inflation events (DI events) at the summit of Kilauea, with a delayed increase in activity at Pu `u `O`o, indicating the arrival of new magma at the eruption sites, some 20 km distant from the summit, following each DI event. Arrival of new magma, and the associated increase in effusive activity, is apparent in the satellite data as an increase in the thermal intensity of the recorded hot spot. This allows us to time the arrival of new magma (or its pressure pulse) down the rift zone that connects the summit and the eruption site over a time scale of hours, or in the case of GOES data - 15 minutes. We can compare the satellite-derived thermal intensity time series with the deflation and inflation events occurring at the summit to determine transit times for the response down rift. Using both the satellite and tilt measurements, the volumes of magma entering and exiting the system can also be compared, with the satellite data giving the volume subsequently erupted down rift at Pu`u `O`o and across the active lava flow field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70020433','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70020433"><span>The interplinian activity at Somma-Vesuvius in the last 3500 years</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rolandi, G.; Petrosino, P.; Mc, Geehin J.</p> <p>1998-01-01</p> <p>Between 1884 B.C. and A.D. 472, eruptive activity at Somma-Vesuvius was dominated by the three plinian eruptions of Avellino (3550 yr B.P.), Pompei (A.D. 79) and A.D. 472 and, as a result, little attention has been given to the intervening interplinian activity. The interplinian events are here reconstructed using new data from twenty stratigraphic sections around the lower flanks of the volcano. Three main eruptions have been identified fro the protohistoric period (3550 yr B.P.-A.D. 79). The first two occurred shortly after the Avellino event and both show a progression from magmatic to phreatomagmatic behaviour. The third eruption (2700 B.P.) consisted of five phreatomagmetic episodes separated by the emplacement of mud flows. Only one event, the explosive erupton of A.D. 203, has been identified for the ancient historic period (A.D. 79-472). In contrast, the A.D. 472 eruption was followed during the medievel period (A.D. 472-1631) by comparatively vigorous interplinian activity, including four strombolian-phreatomagmatic events and extensive lava effusion, which formed a summit cone (destroyed in A.D. 1631) similar to that on Vesuvius today. Such regular alternations of plinian and interplinian events are evident only since 3550 yr B.P. and provide important constraints for forecasting future behaviour at Somma-Vesuvius.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=STS051-102-085&hterms=Hawaii+Kilauea+volcano&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DHawaii%2BKilauea%2Bvolcano','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=STS051-102-085&hterms=Hawaii+Kilauea+volcano&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DHawaii%2BKilauea%2Bvolcano"><span>Kilauea volcano eruption seen from orbit</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1993-01-01</p> <p>The STS-51 crew had a clear view of the erupting Kilauea volcano during the early morning pass over the Hawaiian islands. Kilauea, on the southwest side of the island of Hawaii, has been erupting almost continuously since January, 1983. Kilauea's summit caldera, with the smaller Halemaumau crater nestled within, is highlighted in the early morning sun (just above the center of the picture). The lava flows which covered roads and subdivisions in 1983-90 can be seen as dark flows to the east (toward the upper right) of the steam plumes on this photo. The summit crater and lava flows of Mauna Loa volcano make up the left side of the photo. Features like the Volcano House and Kilauea Visitor Center on the edge of the caldera, the small subdivisions east of the summit, Ola's Rain Forest north of the summit, and agricultural land along the coast are easily identified.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1984JVGR...20..117D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1984JVGR...20..117D"><span>Geology of El Chichon volcano, Chiapas, Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Duffield, Wendell A.; Tilling, Robert I.; Canul, Rene</p> <p>1984-03-01</p> <p>The (pre-1982) 850-m-high andesitic stratovolcano El Chichón, active during Pleistocene and Holocene time, is located in rugged, densely forested terrain in northcentral Chiapas, México. The nearest neighboring Holocene volcanoes are 275 km and 200 km to the southeast and northwest, respectively. El Chichón is built on Tertiary siltstone and sandstone, underlain by Cretaceous dolomitic limestone; a 4-km-deep bore hole near the east base of the volcano penetrated this limestone and continued 770 m into a sequence of Jurassic or Cretaceous evaporitic anhydrite and halite. The basement rocks are folded into generally northwest-trending anticlines and synclines. El Chichón is built over a small dome-like structure superposed on a syncline, and this structure may reflect cumulative deformation related to growth of a crustal magma reservoir beneath the volcano. The cone of El Chichón consists almost entirely of pyroclastic rocks. The pre-1982 cone is marked by a 1200-m-diameter (explosion?) crater on the southwest flank and a 1600-m-diameter crater apparently of similar origin at the summit, a lava dome partly fills each crater. The timing of cone and dome growth is poorly known. Field evidence indicates that the flank dome is older than the summit dome, and K-Ar ages from samples high on the cone suggest that the flank dome is older than about 276,000 years. At least three pyroclastic eruptions have occurred during the past 1250 radiocarbon years. Nearly all of the pyroclastic and dome rocks are moderately to highly porphyritic andesite, with plagioclase, hornblende and clinopyroxene the most common phenocrysts. Geologists who mapped El Chichón in 1980 and 1981 warned that the volcano posed a substantial hazard to the surrounding region. This warning was proven to be prophetic by violent eruptions that occurred in March and April of 1982. These eruptions blasted away nearly all of the summit dome, blanketed the surrounding region with tephra, and sent pyroclastic flows down radial drainages on the flanks of the cone; about 0.3 km 3 of material (density of all products normalized to 2.6 g cm -3) was erupted. More debris entered the stratosphere than from any other volcanic eruption within at least the past two decades. Halite and a calcium sulfate mineral (anhydrite?) recovered from the stratospheric cloud, and anhydrite as a common accessory mineral in 1982 juvenile erupted products may reflect contamination of El Chichón magma by the evaporite sequence revealed by drilling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70014011','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70014011"><span>Geology of El Chichon volcano, Chiapas, Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Duffield, W.A.; Tilling, R.I.; Canul, R.</p> <p>1984-01-01</p> <p>The (pre-1982) 850-m-high andesitic stratovolcano El Chicho??n, active during Pleistocene and Holocene time, is located in rugged, densely forested terrain in northcentral Chiapas, Me??xico. The nearest neighboring Holocene volcanoes are 275 km and 200 km to the southeast and northwest, respectively. El Chicho??n is built on Tertiary siltstone and sandstone, underlain by Cretaceous dolomitic limestone; a 4-km-deep bore hole near the east base of the volcano penetrated this limestone and continued 770 m into a sequence of Jurassic or Cretaceous evaporitic anhydrite and halite. The basement rocks are folded into generally northwest-trending anticlines and synclines. El Chicho??n is built over a small dome-like structure superposed on a syncline, and this structure may reflect cumulative deformation related to growth of a crustal magma reservoir beneath the volcano. The cone of El Chicho??n consists almost entirely of pyroclastic rocks. The pre-1982 cone is marked by a 1200-m-diameter (explosion?) crater on the southwest flank and a 1600-m-diameter crater apparently of similar origin at the summit, a lava dome partly fills each crater. The timing of cone and dome growth is poorly known. Field evidence indicates that the flank dome is older than the summit dome, and K-Ar ages from samples high on the cone suggest that the flank dome is older than about 276,000 years. At least three pyroclastic eruptions have occurred during the past 1250 radiocarbon years. Nearly all of the pyroclastic and dome rocks are moderately to highly porphyritic andesite, with plagioclase, hornblende and clinopyroxene the most common phenocrysts. Geologists who mapped El Chicho??n in 1980 and 1981 warned that the volcano posed a substantial hazard to the surrounding region. This warning was proven to be prophetic by violent eruptions that occurred in March and April of 1982. These eruptions blasted away nearly all of the summit dome, blanketed the surrounding region with tephra, and sent pyroclastic flows down radial drainages on the flanks of the cone; about 0.3 km3 of material (density of all products normalized to 2.6 g cm-3) was erupted. More debris entered the stratosphere than from any other volcanic eruption within at least the past two decades. Halite and a calcium sulfate mineral (anhydrite?) recovered from the stratospheric cloud, and anhydrite as a common accessory mineral in 1982 juvenile erupted products may reflect contamination of El Chicho??n magma by the evaporite sequence revealed by drilling. ?? 1984.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70046825','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70046825"><span>Evolution of dike opening during the March 2011 Kamoamoa fissure eruption, Kīlauea Volcano, Hawai`i</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lundgren, Paul; Poland, Michael; Miklius, Asta; Orr, Tim R.; Yun, Sang-Ho; Fielding, Eric; Liu, Zhen; Tanaka, Akiko; Szeliga, Walter; Hensley, Scott; Owen, Susan</p> <p>2013-01-01</p> <p>The 5–9 March 2011 Kamoamoa fissure eruption along the east rift zone of Kīlauea Volcano, Hawai`i, followed months of pronounced inflation at Kīlauea summit. We examine dike opening during and after the eruption using a comprehensive interferometric synthetic aperture radar (InSAR) data set in combination with continuous GPS data. We solve for distributed dike displacements using a whole Kīlauea model with dilating rift zones and possibly a deep décollement. Modeled surface dike opening increased from nearly 1.5 m to over 2.8 m from the first day to the end of the eruption, in agreement with field observations of surface fracturing. Surface dike opening ceased following the eruption, but subsurface opening in the dike continued into May 2011. Dike volumes increased from 15, to 16, to 21 million cubic meters (MCM) after the first day, eruption end, and 2 months following, respectively. Dike shape is distinctive, with a main limb plunging from the surface to 2–3 km depth in the up-rift direction toward Kīlauea's summit, and a lesser projection extending in the down-rift direction toward Pu`u `Ō`ō at 2 km depth. Volume losses beneath Kīlauea summit (1.7 MCM) and Pu`u `Ō`ō (5.6 MCM) crater, relative to dike plus erupted volume (18.3 MCM), yield a dike to source volume ratio of 2.5 that is in the range expected for compressible magma without requiring additional sources. Inflation of Kīlauea's summit in the months before the March 2011 eruption suggests that the Kamoamoa eruption resulted from overpressure of the volcano's magmatic system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JGRB..118..897L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JGRB..118..897L"><span>Evolution of dike opening during the March 2011 Kamoamoa fissure eruption, Kīlauea Volcano, Hawai`i</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lundgren, Paul; Poland, Michael; Miklius, Asta; Orr, Tim; Yun, Sang-Ho; Fielding, Eric; Liu, Zhen; Tanaka, Akiko; Szeliga, Walter; Hensley, Scott; Owen, Susan</p> <p>2013-03-01</p> <p>5-9 March 2011 Kamoamoa fissure eruption along the east rift zone of Kīlauea Volcano, Hawai`i, followed months of pronounced inflation at Kīlauea summit. We examine dike opening during and after the eruption using a comprehensive interferometric synthetic aperture radar (InSAR) data set in combination with continuous GPS data. We solve for distributed dike displacements using a whole Kīlauea model with dilating rift zones and possibly a deep décollement. Modeled surface dike opening increased from nearly 1.5 m to over 2.8 m from the first day to the end of the eruption, in agreement with field observations of surface fracturing. Surface dike opening ceased following the eruption, but subsurface opening in the dike continued into May 2011. Dike volumes increased from 15, to 16, to 21 million cubic meters (MCM) after the first day, eruption end, and 2 months following, respectively. Dike shape is distinctive, with a main limb plunging from the surface to 2-3 km depth in the up-rift direction toward Kīlauea's summit, and a lesser projection extending in the down-rift direction toward Pu`u `Ō`ō at 2 km depth. Volume losses beneath Kīlauea summit (1.7 MCM) and Pu`u `Ō`ō (5.6 MCM) crater, relative to dike plus erupted volume (18.3 MCM), yield a dike to source volume ratio of 2.5 that is in the range expected for compressible magma without requiring additional sources. Inflation of Kīlauea's summit in the months before the March 2011 eruption suggests that the Kamoamoa eruption resulted from overpressure of the volcano's magmatic system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA20239.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA20239.html"><span>Mt. Erebus, Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2016-01-15</p> <p>This image from NASA Terra spacecraft shows Mount Erebus, the world southernmost historically active volcano, overlooking the McMurdo research station on Ross Island. The 3794-m-high Erebus is the largest of three major volcanoes forming the crudely triangular Ross Island. An elliptical 500 x 600 m wide, 110-m-deep crater truncates the summit and contains an active lava lake within a 250-m-wide, 100-m-deep inner crater. The glacier-covered volcano was erupting when first sighted by Captain James Ross in 1841. Continuous lava-lake activity with minor explosions, punctuated by occasional larger strombolian explosions that eject bombs onto the crater rim, has been documented since 1972, but has probably been occurring for much of the volcano's recent history. The image was acquired December 31, 2013, covers an area of 63 x 73 km, and is located at 77.5 degrees south, 167.1 degrees east. http://photojournal.jpl.nasa.gov/catalog/PIA20239</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.V43F..01T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.V43F..01T"><span>Application of Microbeam Techniques to Identifying and Assessing Comagmatic Mixing Between Summit and Rift Eruptions at Kilauea Volcano (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thornber, C. R.; Rowe, M. C.; Adams, D. T.; Orr, T. R.</p> <p>2010-12-01</p> <p>Near-continuous eruption of Kilauea Volcano since 1983 has yielded an extensive record of glass, phenocryst and melt-inclusion chemistry from well-quenched lava that can be correlated with geophysical and geological monitoring data. Eruption temperatures are determined using glass thermometry. Microbeam evaluation of phenocryst mineralogy, morphology, texture, zoning and melt inclusions helps to constrain magma storage and transport within the edifice and to track the evolution of shallow magmatic plumbing during this prolonged eruptive era. For most of this eruption up to April 2001, east rift lava was olivine-phyric and olivine-liquid relations indicated equilibrium crystallization during summit-to-rift magma transport. From 2001 to present, most lava erupted from vents near Pu`u O`o has been a relatively low-temperature “hybrid”, characterized by a disequilibrium low-pressure phenocryst assemblage. Olivine (Fo81.5-80.5) coexists with phenocrysts of lower temperature clinopyroxene (±plagioclase, ±Fe-rich olivine). Mixing between hotter and cooler magma is texturally documented by complex pyroxene zoning and resorption and olivine overgrowths on resorbed pyroxene. The co-magmatic mixing is not apparent in bulk lava analyses, since both components are fractionates of parent magmas with indistinguishable trace-element signatures. Post-2001 rift-zone lava indicates perpetual flushing of stored magma by hotter recharge magma rising from the mantle source. Geophysical and gas monitoring data confirm an increase in magma supply to Kilauea Volcano between 2001 and 2008, which we have interpreted as increasing the efficiency of the flushing process. Since March 2008, the petrology of the new summit lava lake and contemporaneously erupted rift zone lava provides new perspective on complexities of magma degassing, crystallization and mixing prior to rift eruption. Bulk lava chemistry, SIMS and LA-ICPMS analyses of matrix glasses and olivine melt-inclusions in both rift zone lava and summit tephra reveal identical trace-element concentrations, thus confirming that both eruption sites share a common magma source. Because Kilauea magma degasses all of its primary sulfur (~1200 to 1500 ppm) at pressures less than 100 bars, shallow summit-to-rift magma mixing and crystallization is quantified by study of relative sulfur concentrations in melt inclusions. For higher temperature magma at the summit, olivine (Fo82.0-83.5) contains melt inclusions with 600-1400 ppm S. A small population of rift zone phenocrysts have similar sulfur contents, while typical rift zone olivine inclusions contain 300-700 ppm S. Complex zoned pyroxene phenocrysts with multiple inclusions have trapped melts of low to high sulfur concentrations ranging from100 to 1000 ppm. Collectively, these microbeam observations provide evidence for dynamic pre-eruptive comingling between hotter, sulfur-rich magma rising beneath the summit with a denser, cooler and degassed pyroxene-bearing magma mush, prior to eruption on the east rift.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.V43B3151A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.V43B3151A"><span>Time-variable magma pressure at Kīlauea Volcano yields constraint on the volume and volatile content of shallow magma storage</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Anderson, K. R.; Patrick, M. R.; Poland, M. P.; Miklius, A.</p> <p>2015-12-01</p> <p>Episodic depressurization-pressurization cycles of Kīlauea Volcano's shallow magma system cause variations in ground deformation, eruption rate, and surface height of the active summit lava lake. The mechanism responsible for these pressure-change cycles remains enigmatic, but associated monitoring signals often show a quasi-exponential temporal history that is consistent with a temporary reduction (or blockage) of supply to Kīlauea's shallow magma storage area. Regardless of their cause, the diverse signals produced by these deflation-inflation (DI) cycles offer an unrivaled opportunity to constrain properties of an active volcano's shallow magma reservoir and relation to its eruptive vents. We model transient behavior at Kīlauea Volcano using a simple mathematical model of an elastic reservoir that is coupled to magma flux through Kīlauea's East Rift Zone (ERZ) at a rate proportional to the difference in pressure between the summit reservoir and the ERZ eruptive vent (Newtonian flow). In this model, summit deflations and ERZ flux reductions are caused by a blockage in supply to the reservoir, while re-inflations occur as the system returns to a steady-state flux condition. The model naturally produces exponential variations in pressure and eruption rate which reasonably, albeit imperfectly, match observations during many of the transient events at Kīlauea. We constrain the model using a diverse range of observations including time-varying summit lava lake surface height and volume change, the temporal evolution of summit ground tilt, time-averaged eruption rate derived from TanDEM-X radar data, and height difference between the summit lava lake and the ERZ eruptive vent during brief eruptive pauses (Patrick et al., 2015). Formulating a Bayesian inverse and including independent prior constraint on magma density, host rock strength, and other properties of the system, we are able to place probabilistic constraints on the volume and volatile content of shallow magma storage, as well as properties of the ERZ conduit and influx of magma into Kīlauea's shallow magma reservoir. Reservoir influx parameters cannot in general be uniquely resolved, but reservoir volume and exsolved volatile content are well constrained; ERZ conduit radius may also be estimated given some simplifying assumptions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009JVGR..184..473M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009JVGR..184..473M"><span>Correlations of volcanic ash texture with explosion earthquakes from vulcanian eruptions at Sakurajima volcano, Japan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Miwa, T.; Toramaru, A.; Iguchi, M.</p> <p>2009-07-01</p> <p>We compare the texture of volcanic ash with the maximum amplitude of explosion earthquakes ( Aeq) for vulcanian eruptions from Sakurajima volcano. We analyze the volcanic ash emitted by 17 vulcanian eruptions from 1974 to 1987. Using a stereoscopic microscope, we classify the glassy particles into smooth surface particles (S-type particles) and non-smooth surface particles (NS-type particles) according to their surface conditions—gloss or non-gloss appearance—as an indicator of the freshness of the particles. S-type particles are further classified into V-type particles (those including vesicles) and NV-type particles (those without vesicles) by means of examinations under a polarized microscopic of polished thin sections. Cross-correlated examinations against seismological data show that: 1) the number fraction of S-type particles (S-fraction) has a positive correlation with Aeq, 2) the number ratio of NV-type particles to V-type particles (the N/V number ratio) has a positive correlation with Aeq, and 3) for explosions accompanied with BL-type earthquake swarms, the N/V number ratio has a negative correlation with the duration of the BL-Swarms. BL-Swarms refer to the phenomenon of numerous BL-type earthquakes occurring within a few days, prior to an increase in explosive activity [Kamo, K., 1978. Some phenomena before the summit crater eruptions at Sakura-zima volcano. Bull. Volcanol. Soc. Japan., 23, 53-64]. The positive correlation between the N/V number ratio and Aeq could indicate that a large amount of separated gas from fresh magma results in a large Aeq. Plagioclase microlite textual analysis of NV-type particles from five explosive events without BL-Swarms shows that the plagioclase microlite number density (MND) and the L/ W (length/width) ratio have a positive correlation with Aeq. A comparison between textural data (MND, L/ W ratio, crystallinity) and the result of a decompression-induced crystallization experiment [Couch, S., Sparks, R.S.J., Carroll, M.R., 2003. The kinetics of degassing-induced crystallization at Soufriere Hills volcano, Montserrat. J. Petrol., 44, 1477-1502.] suggests that a plagioclase microlite texture of volcanic ash from eruptions without BL-Swarms could be generated by a decompression of 100-160 MPa. If the MND is controlled by the water exsolution rate from melt, the positive correlation between the MND and Aeq may suggest that Aeq becomes large when the effective decompression is large and the water exsolution rate is high (from 6.2 × 10 - 5 to 1.9 × 10 - 4 wt.%/s). The estimated magma ascent rate ranges from 0.11 to 0.35 m/s, which is one order of magnitude faster than that of an effusive eruption, and one to three orders slower than those for a (sub-) plinian eruption. This suggests that the ascent rate of magma plays an important role in the occurrence of vulcanian eruptions. We propose a simple model for vulcanian eruptions at Sakurajima volcano that takes into account the correlation between the S-fraction and Aeq.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.V53B1561S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.V53B1561S"><span>Late Holocene Andesitic Eruptions at Mount Rainier</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sisson, T. W.; Vallance, J. W.</p> <p>2005-12-01</p> <p>Holocene Mt. Rainier erupted much more frequently than is recorded by its 11 pumiceous tephras. In the 2.6-2.2 ka Summerland eruptive period, 6 groups of thin (1-5 mm) Sparsely Vesicular Glassy (SVG) ashes were deposited (S1-S6), followed by the 0.3 km3 C-tephra. Two groups of andesitic lava flows and one andesitic block-and-ash flow (2.45 ka) also erupted in the Summerland period (ice conceals any other products). Based on glass composition the pyroclastic flow correlates with S4 ashes that also contain pumiceous grains and rare pumice lapilli. The first of the lava groups, exposed in windows through the Emmons and Winthrop glaciers, is Sr-rich for Mt. Rainier eruptives and correlates with S5 & S6 ashes based on similar high-Sr plagioclase. The ensuing C-tephra formed by plinian eruption of mixed and mingled magma comprising 4 juvenile components: mixed porphyritic andesite pumice, crystal-poor andesite scoria, vesicular high-Sr dacite blebs in pumice and scoria, and poorly inflated crystal-rich high-Sr dacite. High-Sr components were probably entrained conduit linings and segregations from the preceding high-Sr eruptions. The youngest lava group, exposed at the summit, is normal-Sr andesite lacking mixing textures of the C-tephra, and represents eruption of another small batch of andesitic magma perhaps just after the C event. SVG ash grains have blocky-to-fluidal shapes, are rich in plagioclase microlites, and their glasses are high-SiO2 (66-78%) and low-Al2O3 (15-11%). Melting experiments yield apparent equilibration pressures <50MPa for SVG liquids. SVG ashes likely result from shallow hydromagmatic explosions as largely degassed magmas transited the upper-edifice hydrothermal system during effusive eruptions. Rare pumice lapilli codeposited with S1, S2, and S4 ashes have microlite-free dacitic glasses, one with nonreacted hbl phenocrysts. These pumice formed from magmas that ascended rapidly from reservoir depths, synchronous with or closely between effusive-hydromagmatic eruptions. Mt. Rainier's late Holocene activity was typified by repeated arrival and eruption of slightly different andesitic magmas. Most eruptions were effusions of largely degassed magma, accompanied by near-surface explosions that blanketed the proximal region with fine-grained glassy ash. Associated rapidly ascended magma led to sparse pumice, pyroclastic flows, or plinian tephra fall, depending on amount.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70034648','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70034648"><span>Shallow degassing events as a trigger for very-long-period seismicity at Kīlauea Volcano, Hawai‘i</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Patrick, Matthew; Wilson, David; Fee, David; Orr, Tim R.; Swanson, Donald A.</p> <p>2011-01-01</p> <p>The first eruptive activity at Kīlauea Volcano’s summit in 25 years began in March 2008 with the opening of a 35-m-wide vent in Halema‘uma‘u crater. The new activity has produced prominent very-long-period (VLP) signals corresponding with two new behaviors: episodic tremor bursts and small explosive events, both of which represent degassing events from the top of the lava column. Previous work has shown that VLP seismicity has long been present at Kīlauea’s summit, and is sourced approximately 1 km below Halema‘uma‘u. By integrating video observations, infrasound and seismic data, we show that the onset of the large VLP signals occurs within several seconds of the onset of the degassing events. This timing indicates that the VLP is caused by forces—sourced at or very near the lava free surface due to degassing—transmitted down the magma column and coupling to the surrounding rock at 1 km depth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70018451','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70018451"><span>Origin and depositional environment of clastic deposits in the Hilo drill hole, Hawaii</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Beeson, M.H.; Clague, D.A.; Lockwood, J.P.</p> <p>1996-01-01</p> <p>Volcaniclastic units cored at depths of about 87, 164, 178, 226, and 246 m below sea level and carbonate units located between depths of 27 and 53 m below sea level in the Hilo drill core were found to be deposited at or near sea level. Four of these units are hydroclastic deposits, formed when subaerially erupted Mauna Loa lava flows entered the ocean and fragmented to produce quenched, glassy fragments during hydrovolcanic explosions. Ash units 24 and 26, at 178 m depth, accumulated at sea level in a freshwater bog. They contain pyroxenes crystallized from tholeiitic magma that we infer erupted explosively at the summit of Kilauea volcano. Two carbon-rich layers from these ashes have a weighted average radiocarbon age of 38.6 ?? 0.9 ka; the ashes probably correlate with the oldest and thickest part of the Pahala ash. Ash unit 44, at the transition from Mauna Kea to Mauna Loa lava flows, was probably nearly 3.2 m thick and is inferred to be equivalent to the lower thick part of the composite Homelani ash mapped in Hilo and on the flanks of Mauna Kea. The age of this part of Homelani ash is between 128 ?? 33 and 200 ?? 10 ka; it may have erupted subglacially during the Pohakuloa glacial maxima on Mauna Kea. Beach sand units 12 and 22 were derived from nearby Mauna Loa and Mauna Kea lava flows. The middle of beach sand unit 38 was derived mainly from lava erupted near the distal end of the subaerial east rift zone of Kilauea volcano; these sands were transported about 33 km northwest to Hilo Bay by prevailing longshore currents. Combined age, depth, and sea level markers in the core allow us to determine that lava flow recurrence intervals averaged one flow every 4 kyr during the past 86 kyr and one flow every 16 kyr between 86 and 200 ka at the drill site and that major explosive eruptions that deposit thick ash in Hilo have occurred only twice in the last 400 kyr. These recurrence intervals support the moderate lava flow hazard zonation (zone 3) for coastal Hilo previously determined from surficial mapping.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AGUFM.V71A1253T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AGUFM.V71A1253T"><span>Magma Reservoir Processes Revealed by Geochemistry of the Ongoing East Rift Zone Eruption, Kilauea Volcano, Hawaii</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thornber, C. R.</p> <p>2002-12-01</p> <p>Geochemical data were examined for a suite of 1,000 near-vent lava samples from the Pu`u `O`o-Kupaianaha eruption of Kilauea, collected from January 1983 through October 2001. Bulk lava and glass compositions reveal short- and long-term changes in pre-eruptive magma conditions that can be correlated with changes in edifice deformation, shallow magma transfer and eruptive behavior. Two decades of eruption on Kilauea's east rift zone has yielded ~2 km3 of lava, 97% of which is sparsely olivine-phyric with an MgO range of 6.8 to 9.6 wt%. During separate brief intervals of low-volume, fissure eruption (episodes 1 to 3 and 54), isolated rift-zone reservoirs with lower-MgO and olv-cpx-plg-phryic magma were incorporated by more mafic magma immediately prior to eruption. During prolonged, near-continuous eruption(e.g.,episodes 48-53 and most of 55), steady-state effusion is marked by cyclic variations in olivine-saturated magma chemistry. Bulk lava MgO and eruption temperature vary in cycles of monthly to bi-annual frequency, while olivine-incompatible elements vary inversely to these cycles. However, MgO-normalized values and ratios of highly to moderately incompatible elements (HINCE/MINCE), which nullify olivine fractionation effects, reveal cycles in magma chemistry that occur prior to olivine crystallization over the magmatic temperature range that is tapped by this eruption (1205-1155°C). These short-term cycles are superimposed on a long-term decrease of HINCE/MINCE, which is widely thought to reflect a 20-year change in mantle-source conditions. While HINCE/MINCE variation in primitive recharge magma cannot be ruled out, the short-term fluctuations of this signature may require unreasonably complex mantle variations. Alternatively, the correspondence of HINCE/MINCE cycles with edifice deformation and eruptive behavior suggests that the long-term evolving magmatic condition is a result of prolonged succession of short-term shallow magmatic events. The consistent limits of repeated MgO and temperature variation imply end-member magma conditions that are regulated by open-system recharge of the shallow magmatic plumbing system. The low-end of MgO variation (7 wt%) approaches the low-pressure multiphase cotectic, which is maintained by open-system replenishment of a persistent magma reservoir. The high-temperature end-member (10 wt% MgO) is probably regulated by olivine fractionation in a zone of turbulent mixing between primitive recharge magma (15 wt% MgO) and resident cotectic magma. The highest temperature magmas are associated with eruption pulses that occur in response to intrusive events at the summit and initiate short-term increases of HINCE/MINCE. Subsequent changes toward lower magmatic temperatures are associated with periods of overall summit deflation, relatively low-level effusion, and frequent eruptive pauses. The long-term trends can be explained by episodic mixing of chemically uniform recharge melt with diminishing proportions of pre-1983 summit magma (maintained at cotectic conditions). Decreasing HINCE/MINCE may signify that a greater proportion of recharge magma is being diverted directly to Pu`u `O`o with minimal summit interaction or that the mass ratio of those mixing end-members has changed due to a depleted summit chamber (or both). The coincidence of long-term summit deflation since the 1982 summit eruption suggests that shallow processes related to summit reservoir depletion may be responsible for decreasing HINCE/MINCE and Pb isotopes in post-1982 steady-state eruption products. Magma derived from a uniform mantle-source, after having flushed out older resident magma, may now completely occupy the shallow magmatic plumbing system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JVGR..261..260K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JVGR..261..260K"><span>Paroxysmal dome explosion during the Merapi 2010 eruption: Processes and facies relationships of associated high-energy pyroclastic density currents</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Komorowski, Jean-Christophe; Jenkins, Susanna; Baxter, Peter J.; Picquout, Adrien; Lavigne, Franck; Charbonnier, Sylvain; Gertisser, Ralf; Preece, Katie; Cholik, Noer; Budi-Santoso, Agus; Surono</p> <p>2013-07-01</p> <p>An 11-minute sequence of laterally-directed explosions and retrogressive collapses on 5 November 2010 at Merapi (Indonesia) destroyed a rapidly-growing dome and generated high-energy pyroclastic density currents (PDCs) spreading over 22 km2 with a runout of 8.4 km while contemporaneous co-genetic valley-confined PDCs reached 15.5 km. This event formed Stage 4 of the multi-stage 2010 eruption, the most intense eruptive episode at Merapi since 1872. The deposits and the widespread devastating impact of associated high-energy PDCs on trees and buildings show striking similarities with those from historical volcanic blasts (Montagne Pelée, Martinique, Bezymianny, Russia, Mount St. Helens, USA, Soufrière Hills, Montserrat). We provide data from stratigraphic and sedimentologic analyses of 62 sections of the first unequivocal blast-like deposits in Merapi's recent history. We used high resolution satellite imagery to map eruptive units and flow direction from the pattern of extensive tree blowdown. The stratigraphy of Stage 4 consists of three depositional units (U0, U1, U2) that we correlate to the second, third and fourth explosions of the seismic record. Both U1 and U2 show a bi-partite layer stratigraphy consisting each of a lower L1 layer and an upper L2 layer. The lower L1 layer is typically very coarse-grained, fines-poor, poorly-sorted and massive, and was deposited by the erosive waxing flow head. The overlying L2 layer is much finer grained, fines-rich, moderately to well-sorted, with laminar to wavy stratification. L2 was deposited from the waning upper part and wake of the PDC. Field observations indicate that PDC height reached ~ 330 m with an internal velocity of ~ 100 m s- 1 within 3 km from the source. The summit's geometry and the terrain morphology formed by a major transversal ridge and a funneling deep canyon strongly focused PDC mass towards a major constriction, thereby limiting the loss of kinetic energy. This favored elevated PDC velocities and high particle concentration, promoted overspilling of PDCs across high ridges into other river valleys, and generated significant dynamic pressures to distances of 6 km that caused total destruction of buildings and the forest. The Merapi 2010 eruption highlights that explosive and gravitational disintegration of a rapidly growing dome can generate devastating high-energy, high-velocity PDCs. This constitutes a credible high impact scenario for future multi-stage eruptions at Merapi and at other volcanoes that pose particular monitoring, crisis response, and risk reduction challenges.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003AGUFM.V52C..04C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003AGUFM.V52C..04C"><span>Energetic Trend in Explosive Activity of Stromboli</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Coltelli, M.; Cristaldi, A.; Mangiagli, S.; Nunnari, G.; Pecora, E.</p> <p>2003-12-01</p> <p>The typical activity of Stromboli consists of intermittent mild explosions lasting a few seconds, which take place at different vents and at variable intervals, the most common time interval being 10-20 minutes. However, the routine activity can be interrupted by more violent, paroxysmal explosions, that eject m-sized scoriaceous bombs and lava blocks to a distance of several hundreds of meters from the craters, endangering the numerous tourists that watch the spectacular activity from the volcano's summit located about two hundreds meters from the active vents. On average, 1-2 paroxysmal explosions occurred per year over the past century, but this statistic may be underestimated in absence of continuous monitoring. For this reason from summer 1996 a remote surveillance camera works on Stromboli recording continuously the volcanic activity. It is located on Pizzo Sopra la Fossa, 100 metres above the crater terrace where are the active vents. Using image analysis we seeks to identify any change of the explosive activity trend that could precede a particular eruptive event, like paroxysmal explosions, fire fountains, lava flows. The analysis include the counting of the explosions occurred at the different craters and the parameterization in classes of intensity for each explosion on the base of tephra dispersion and kinetics energy. Associating at each class a corresponding Index of energy in order to compute an heuristic value of the Average Daily Energy Released (ADER) of the explosive activity at Stromboli and plotting this value for each crater versus time, the diagram shows a cyclic behavior with max and min of explosive activity ranging from a few days to a month. Often the craters show opposite trends so when the activity decreases in a crater, increases in the other. Before every paroxysmal explosions recorded, the crater that produced the event decreased and then stopped its activity from a few days to weeks before. The other crater tried to compensate increasing its activity and when it declined the paroxysmal explosion occurred suddenly at the former site. From September 2001 an on-line image analyzer called VAMOS (Volcanic Activity MOnitoring System) operates detection and classification of explosive events in real-time. The system has automatically recorded and analyzed the change in the energetic trend that preceded the 20 October 2001 paroxysmal explosion that killed a woman and the strong explosive activity that preceded the onset of 28 December 2002 lava flow eruption.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70016260','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70016260"><span>Deformation monitoring at Nevado del Ruiz, Colombia - October 1985 - March 1988</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Banks, N.G.; Carvajal, C.; Mora, H.; Tryggvason, E.</p> <p>1990-01-01</p> <p>Deformation studies began at Nevado del Ruiz 23 days before the devastating 13 November 1985 eruption, at least 12 months after precursory seismicity and fumarolic activity began. The late start in geodetic monitoring, limited number of stations in the pre-eruption network, and inconsistent patterns in the observed deformation limit conclusions about intrusive activity in the months and weeks prior to the eruption. However, the data require that the magma source of the devastating eruption was either deeper than 7 km or, if shallow, recovered the same volume and position within one week of the eruption. Geodetic monitoring resumed 1 week after the eruption and, by April 1986, included 11 tilt-leveling stations, 38 EDM lines, and 7 short leveling lines - a network capable of detecting emplacement or movement of magma volumes as small as 3 MCM (3 ?? 106 m3) to a depth of 2-3 km (using a point-source model), 10 MCM to 7 km, 50 MCM to 10 km, and 200 MCM to 15 km beneath Ruiz. In addition, 4 telemetered tiltmeters provided the capability of detecting, in real time, the fairly rapid ascent of much smaller magma bodies. Stations established to detect instability of the summit ice cap after the eruption were discontinued in early 1986. The data collected from the geodetic networks have higher than normal variance but demonstrate that little or no cumulative deformation of Ruiz occurred from October 1985 through March 1988. Thus, little, if any, magma intruded above 5 km beneath the summit during or after the 13 November 1985 eruption. This lack of significant intrusive activity agrees with the surprisingly low seismic energy release under Ruiz and makes direct degassing of a large batholith an improbable explanation of the large sulfur flux to date at Ruiz. Part of the variance in the geodetic data results from real but noncumulative deformation that may in part be pressure-buffered by a fairly large geothermal water-gas mixture for which abundant physical evidence exists. Part of the noncumulative deformation, some of the fairly dispersed and low-level seismicity under Ruiz, and some phreatic events appear to correlate with seasonal precipitation patterns. Hence rain/snow-loading and groundwater interaction may cause deformation events and possibly help trigger some phreatic explosions and seismic events at Ruiz and, as search of the literature reveals, at other volcanoes in metastable states. ?? 1990.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70019629','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70019629"><span>A dynamic balance between magma supply and eruption rate at Kilauea volcano, Hawaii</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Denlinger, R.P.</p> <p>1997-01-01</p> <p>The dynamic balance between magma supply and vent output at Kilauea volcano is used to estimate both the volume of magma stored within Kilauea volcano and its magma supply rate. Throughout most of 1991 a linear decline in volume flux from the Kupaianaha vent on Kilauea's east rift zone was associated with a parabolic variation in the elevation of Kilauea's summit as vent output initially exceeded then lagged behind the magma supply to the volcano. The correspondence between summit elevation and tilt established with over 30 years of data provided daily estimates of summit elevation in terms of summit tilt. The minimum in the parabolic variation in summit tilt and elevation (or zero elevation change) occurs when the magma supply to the reservoir from below the volcano equals the magma output from the reservoir to the surface, so that the magma supply rate is given by vent flux on that day. The measurements of vent flux and tilt establish that the magma supply rate to Kilauea volcano on June 19, 1991, was 217,000 ?? 10,000 m3/d (or 0.079 ?? 0.004 km3/yr). This is close to the average eruptive rate of 0.08 km3/yr between 1958 and 1984. In addition, the predictable response of summit elevation and tilt to each east rift zone eruption near Puu Oo since 1983 shows that summit deformation is also a measure of magma reservoir pressure. Given this, the correlation between the elevation of the Puu Oo lava lake (4 km uprift of Kupaianaha and 18 km from the summit) and summit tilt provides an estimate for magma pressure changes corresponding to summit tilt changes. The ratio of the change in volume to the change in reservoir pressure (dV/dP) during vent activity may be determined by dividing the ratio of volume erupted to change in summit tilt (dV/dtilt) by the ratio of pressure change to change in summit tilt (dP/dtilt). This measure of dV/dP, when combined with laboratory measurements of the bulk modulus of tholeitic melt, provides an estimate of 240 ?? 50 km3 for the volume of Kilauea's magma reservoir. This estimate is much larger than traditional estimates but consistent with seismic tomographic imaging and geophysical modeling of Kilauea's magma system. Copyright 1997 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997JGR...10218091D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997JGR...10218091D"><span>A dynamic balance between magma supply and eruption rate at Kilauea volcano, Hawaii</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Denlinger, Roger P.</p> <p>1997-08-01</p> <p>The dynamic balance between magma supply and vent output at Kilauea volcano is used to estimate both the volume of magma stored within Kilauea volcano and its magma supply rate. Throughout most of 1991 a linear decline in volume flux from the Kupaianaha vent on Kilauea's east rift zone was associated with a parabolic variation in the elevation of Kilauea's summit as vent output initially exceeded then lagged behind the magma supply to the volcano. The correspondence between summit elevation and tilt established with over 30 years of data provided daily estimates of summit elevation in terms of summit tilt. The minimum in the parabolic variation in summit tilt and elevation (or zero elevation change) occurs when the magma supply to the reservoir from below the volcano equals the magma output from the reservoir to the surface, so that the magma supply rate is given by vent flux on that day. The measurements of vent flux and tilt establish that the magma supply rate to Kilauea volcano on June 19, 1991, was 217,000±10,000 m3/d (or 0.079±0.004 km3/yr). This is close to the average eruptive rate of 0.08 km3/yr between 1958 and 1984. In addition, the predictable response of summit elevation and tilt to each east rift zone eruption near Puu Oo since 1983 shows that summit deformation is also a measure of magma reservoir pressure. Given this, the correlation between the elevation of the Puu Oo lava lake (4 km uprift of Kupaianaha and 18 km from the summit) and summit tilt provides an estimate for magma pressure changes corresponding to summit tilt changes. The ratio of the change in volume to the change in reservoir pressure (dV/dP) during vent activity may be determined by dividing the ratio of volume erupted to change in summit tilt (dV/dtilt) by the ratio of pressure change to change in summit tilt (dP/dtilt). This measure of dV/dP, when combined with laboratory measurements of the bulk modulus of tholeitic melt, provides an estimate of 240±50 km3 for the volume of Kilauea's magma reservoir. This estimate is much larger than traditional estimates but consistent with seismic tomographic imaging and geophysical modeling of Kilauea's magma system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V23E0525M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V23E0525M"><span>Understanding the eruption mechanisms of the explosive Bellecombe Eruptions on Piton de la Fournaise, La Réunion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Morgan, K.; Ort, M. H.; Di Muro, A.; Parnell, R. A.; Huff, W. D.</p> <p>2017-12-01</p> <p>Piton de la Fournaise (PdF) is an active basaltic volcano on La Réunion island. The Bellecombe Tephra was deposited from at least three unusually explosive eruptions between 3000-5000 ka. The Bellecombe eruptions were interpreted recently to have been due to rapid depressurization of the hydrothermal system when a deep fracture opened after lateral, seaward-directed sliding of the eastern flank, late in a large effusive eruption. This project tests this hypothesis by physically, mineralogically, and chemically characterizing the Bellecombe Tephra to look for evidence of the involvement of the PdF hydrothermal system in the eruptions and understand where the eruptions initiated. The Bellecombe tephra consists of three units separated by incipient soils. Both the Upper and Lower Bellecombe deposits are mostly medium to very fine ash. Lower Bellecombe deposits, from the first two eruptions, are mostly beds of glassy ash containing minor lithic grains and olivine crystals. Hydrothermal minerals, mostly smectite, are present in a few Lower Bellecombe beds. Since these minerals are only present in some beds, the smectite formed before deposition rather than as a product of surficial alteration. The Upper Bellecombe deposits record a third eruption and vary between clast-supported crystal- and lithic-rich lapilli beds and ash beds with abundant ash pellets. The crystals are mostly olivine, with lesser pyroxene and plagioclase and sparse hydrothermal quartz. Gabbro and oceanite clasts are abundant and trachytic pumice rare in these deposits. Hydrothermal minerals are common in most Upper Bellecombe beds. The presence of smectite in some of the Lower Bellecombe beds suggests these deposits came from a system below 200 ºC. Clays in the Upper Bellecombe beds - smectite and mixed layer R0 illite/smectite - imply a system at 40-140 ºC. The hydrothermal system was involved, but might not have been the primary impetus for these eruptions, since hydrothermal minerals are not present in all of the beds, but we find no evidence of high temperatures. The lower Bellecombe vent was near the active summit whereas the Upper Bellecombe vent was from a previously more active area, and this may be reflected in the temperatures of the hydrothermal system. The abundant olivine crystals confirm a relation to a large effusive oceanite eruption.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss018e028898.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss018e028898.html"><span>Earth Observations taken by the Expedition 18 Crew</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2009-02-07</p> <p>ISS018-E-028898 (7 Feb. 2009) --- The summit of Popocatepetl Volcano in Mexico is featured in this image photographed by an Expedition 18 crewmember on the International Space Station. Volcano Popocatepetl, a large stratovolcano located approximately 70 kilometers to the southeast of Mexico City, is considered by many volcanologists to be ?the planet?s riskiest volcano?. The volcano warrants this distinction because of its proximity to one of the most densely populated megacities on Earth (population near 23 million in 2009). The variety of potential volcanic hazards at Popocatepetl is also considerable, including explosive eruptions of ash, pyroclastic flows (hot, fluidized masses of rock and gas that flow rapidly downhill), and debris avalanches. This detailed photograph of the summit crater of Popocatepetl (center) also highlights Ventorillo and Noroccidental Glaciers ? together with ice on nearby Iztaccihuatl Volcano and Pico de Orizaba (Mexico?s highest peak and the highest volcano in North America), these are the only mountain glaciers in tropical North America. The presence of glaciers on Popocatepetl is also connected with another volcanic hazard ? the creation of dangerous mudflows, or lahars, should the ice melt during eruptive activity. At the time this image was taken, steam and ash plumes were observed at the volcano ? a faint white steam plume is visible against gray ash deposits on the eastern and southern flanks of the volcano.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EP%26S...68...79O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EP%26S...68...79O"><span>Reconstruction of the 2014 eruption sequence of Ontake Volcano from recorded images and interviews</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oikawa, Teruki; Yoshimoto, Mitsuhiro; Nakada, Setsuya; Maeno, Fukashi; Komori, Jiro; Shimano, Taketo; Takeshita, Yoshihiro; Ishizuka, Yoshihiro; Ishimine, Yasuhiro</p> <p>2016-05-01</p> <p>A phreatic eruption at Mount Ontake (3067 m) on September 27, 2014, led to 64 casualties, including missing people. In this paper, we clarify the eruption sequence of the 2014 eruption from recorded images (photographs and videos obtained by climbers) and interviews with mountain guides and workers in mountain huts. The onset of eruption was sudden, without any clear precursory surface phenomena (such as ground rumbling or strong smell of sulfide). Our data indicate that the eruption sequence can be divided into three phases. Phase 1: The eruption started with dry pyroclastic density currents (PDCs) caused by ash column collapse. The PDCs flowed down 2.5 km SW and 2 km NW from the craters. In addition, PDCs moved horizontally by approximately 1.5 km toward N and E beyond summit ridges. The temperature of PDCs at the summit area partially exceeded 100 °C, and an analysis of interview results suggested that the temperature of PDCs was mostly in the range of 30-100 °C. At the summit area, there were violent falling ballistic rocks. Phase 2: When the outflow of PDCs stopped, the altitude of the eruption column increased; tephra with muddy rain started to fall; and ambient air temperature decreased. Falling ballistic rocks were almost absent during this phase. Phase 3: Finally, muddy hot water flowed out from the craters. These models reconstructed from observations are consistent with the phreatic eruption models and typical eruption sequences recorded at similar volcanoes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70113377','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70113377"><span>Kilauea's 5-9 March 2011 Kamoamoa fissure eruption and its relation to 30+ years of activity from Pu'u 'Ō'ō: Chapter 18</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Orr, Tim R.; Poland, Michael P.; Patrick, Matthew R.; Thelen, Weston A.; Sutton, A.J.; Elias, Tamar; Thornber, Carl R.; Parcheta, Carolyn; Wooten, Kelly M.; Carey, Rebecca; Cayol, Valérie; Poland, Michael P.; Weis, Dominique</p> <p>2015-01-01</p> <p>Lava output from Kīlauea's long-lived East Rift Zone eruption, ongoing since 1983, began waning in 2010 and was coupled with uplift, increased seismicity, and rising lava levels at the volcano's summit and Pu‘u ‘Ō‘ō vent. These changes culminated in the four-day-long Kamoamoa fissure eruption on the East Rift Zone starting on 5 March 2011. About 2.7 × 106 m3 of lava erupted, accompanied by ˜15 cm of summit subsidence, draining of Kīlauea's summit lava lake, a 113 m drop of Pu‘u ‘Ō‘ō's crater floor, ˜3 m of East Rift Zone widening, and eruptive SO2 emissions averaging 8500 tonnes/day. Lava effusion resumed at Pu‘u ‘Ō‘ō shortly after the Kamoamoa eruption ended, marking the onset of a new period of East Rift Zone activity. Multiparameter monitoring before and during the Kamoamoa eruption suggests that it was driven by an imbalance between magma supplied to and erupted from Kīlauea's East Rift Zone and that eruptive output is affected by changes in the geometry of the rift zone plumbing system. These results imply that intrusions and eruptive changes during ongoing activity at Kīlauea may be anticipated from the geophysical, geological, and geochemical manifestations of magma supply and magma plumbing system geometry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70197333','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70197333"><span>Gas and ash emissions associated with the 2010–present activity of Sinabung Volcano, Indonesia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Primulyana, Sofyan; Kern, Christoph; Lerner, Allan; Saing, Ugan; Kunrat, Syegi; Alfianti, Hilma; Marlia, Mitha</p> <p>2017-01-01</p> <p>Sinabung Volcano (Sumatra, Indonesia) awoke from over 1200 years of dormancy with multiple phreatic explosions in 2010. After a period of quiescence, Sinabung activity resumed in 2013, producing frequent explosions, lava dome extrusion, and pyroclastic flows from dome collapses, becoming one of the world's most active volcanoes and displacing over 20,000 citizens. This study presents a compilation of the geochemical datasets collected by the Indonesian Center for Volcanology and Geological Hazard Mitigation (CVGHM) from 2010 - current (2016), which provides insights into the evolution of the eruption. Based on observations of SO2 emissions, ash componentry, leachate chemistry, and bulk ash geochemistry, the eruption can be split into five distinct phases. The initial stage of phreatic summit explosions occurred from August - October 2010, during which background SO2 emissions averaged ~550 ± 180 t/d (1 s.d.). An eruptive pause (phase two) starting in October 2010 abruptly ended in September 2013 with a resumption of conduit-clearing eruptions. This third phase had a relatively modest background SO2 emission rate (avg. ~410 ± 275 t/d) and produced ash consisting entirely of accidental ejecta with high S/Cl leachate ratios (up to 30), suggestive of deep-sourced magma and the incorporation of hydrothermal sulfur-bearing phases. The most intense phase of the eruption (phase four) occurred from December 2013 to February 2014, when juvenile magma first reached the surface. This period included dozens of large eruptions per day, high SO2 emission rates (average: 1,120 ± 1,030 t/d, peak: ~3,800 t/d), the onset of lava dome extrusion, and a dramatic drop in S/Cl ash leachates to ratios < 5, all reflecting increased degassing from shallow magma and the clearing out of sulfurous phases from the old hydrothermal system. From late February 2014 through the time of writing (September 2016), Sinabung settled into a relatively steady state of lower activity (phase five). Ash emissions now consist of dominantly juvenile material, and background SO2 emission rates have been progressively decreasing to an average of ~250 - 300 t/d. Starting August 2016, SO2 emissions started being measured in a continuous manner using a network of permanent scanning DOAS instruments. We find that long-term SO2 emission rates have been gradually declining at Sinabung since early 2014, consistent with an apparent decrease in magma supply. Our degassing model suggests that large explosions and pyroclastic flows could continue in the near-term owing to conduit plugging and dome collapses, remaining a major threat until the magma supply rate decreases further and the eruption ends.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.5074D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.5074D"><span>Eruption and degassing dynamics of the major August 2015 Piton de la Fournaise eruption</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Di Muro, Andrea; Arellano, Santiago; Aiuppa, Alessandro; Bachelery, Patrick; Boudoire, Guillaume; Coppola, Diego; Ferrazzini, Valerie; Galle, Bo; Giudice, Gaetano; Gurioli, Lucia; Harris, Andy; Liuzzo, Marco; Metrich, Nicole; Moune, Severine; Peltier, Aline; Villeneuve, Nicolas; Vlastelic, Ivan</p> <p>2016-04-01</p> <p>Piton de la Fournaise (PdF) shield volcano is one of the most active basaltic volcanoes in the World with one eruption every nine months, on average. This frequent volcanic activity is broadly bimodal, with frequent small volume, short lived eruptions (< 30 Mm3, most being < 10 Mm3) and less frequent relatively large (50-210 Mm3) and long lasting (months) eruptions. After the major caldera forming event of 2007, the volcano produced several short lived small volume summit to proximal eruptions of relatively evolved cotectic magmas and relatively long repose periods (up to 3.5 years between 2010 and 2014). The August 2015 eruption was the first large (45±15 Mm3) and long lasting (2 months) eruption since 2007 and the only event to be fully monitored by the new gas geochemical network of Piton de la Fournaise volcanological observatory (DOAS, MultiGaS, diffuse CO2 soil emissions). Regular lava and tephra sampling was also performed for geochemical and petrological analysis. The eruption was preceded by a significant increase in CO2 soil emissions at distal soil stations (ca. 15 km from the summit), with CO2 enrichment also being recorded at summit low temperature fumaroles. Eruptive products were spectacularly zoned, with plagioclase and pyroxene being abundant in the early erupted products and olivine being the main phase in the late-erupted lavas. Total gas emissions at the eruptive vent underwent a decrease during the first half of the eruption and then an increase, mirroring the time evolution of magma discharge rate (from 5-10 m3/s in September to 15-30 m3/s in late-October) and the progressive change in magma composition. In spite of significant evolution in magma and gas output, CO2/SO2 ratios in high temperature gases remained quite low (< 0.3) and with little temporal change. Geochemical data indicated that this relatively long-lived eruption corresponded to the progressive drainage of most of the shallow part of PdF plumbing system, triggered by a new pulse of deep magma. While erupted magma and high temperature gases were mostly provided by the shallow part of the system, distal sites and summit low temperature fumaroles recorded a deeper triggering mechanism.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.V51H..08S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.V51H..08S"><span>Setting of the Father's Day Eruption at Kilauea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Swanson, D. A.</p> <p>2007-12-01</p> <p>The Father's Day eruption and associated intrusion took place within a 10-km segment of Kilauea's east rift zone between Hi`iaka and Napau Craters--a segment that has had more numerous eruptions and intrusions than any other of comparable length during the past 200, probably the past 1000, years. Fifteen known eruptions started in this area in the past 200 years: 1840, 1922, 1923, 1962, August and October 1963, March and December 1965, August and October 1968, February and May 1969, May and November 1973, and March 1980 (only 3 cubic meters!). Three others, not previously designated as distinct eruptions despite having all the appropriate characteristics, took place during on-going eruptions: two in `Alo`i Crater in 1970 and 1972, and one in Napau Crater in 1997. Two of the largest shields on the east rift zone formed during long-lasting eruptions within this area--Kane Nui o Hamo at an unknown date, perhaps the 11-12th century, and Mauna Ulu (1969-1974). In addition, many small intrusions without eruptions are known. Seven short eruptions punctuated a prolonged eruption: four within the segment during the Mauna Ulu eruption, two at the summit and southwest rift zone during that same eruption, and one in Napau Crater in 1997 during the Pu`u `O`o eruption. Thus the Father's Day eruption is not unique by virtue of taking place during an ongoing eruption elsewhere along the rift zone. The increased frequency of activity in the segment during the 20th century is obvious, particularly after 1962. For most of the past 1,000 years, eruptions were centered at Kilauea's summit, with significant but lesser activity along the rift zones. A large summit deflation in 1924 ended the nearly continuous lava lake in Halemaumau, eventually leading to the past 5 decades of dominantly east rift zone activity. This segment of the rift zone contains most of the pit craters on Kilauea and gradually changes from a SE trend near the caldera to an ENE trend that characterizes the rest of the zone. The Koa`e fault system joins the east rift zone at the curve. The complex structural setting likely affects the frequency of magmatic activity in the segment. All of the eruptive and intrusive activity results in storage of isolated magma bodies. Not surprisingly, petrologists find evidence that summit magma mixes with stored, fractionated magma. The area near Makaopuhi Crater and Kane Nui o Hamo is a particular focus, inferred since the mid-1960s to harbor a shallow magma reservoir. All of the eruptions and intrusions are accompanied by sharp deflation and shallow seismicity at the summit and shallow seismicity and uplift along the intrusion or eruptive fissures. Most often, no seismicity occurs between the summit and the area of intrusion or eruption. Within that area, seismicity commonly migrates downrift but occasionally uprift. Similarly, crack opening generally progresses downrift, with a few exceptions. Cracks generally trend about 65 degrees and can be either left- or right-stepping. Cracks open along azimuths of 155-175, with local exceptions. There is no structural difference between eruptive cracks (fissures) and non- eruptive cracks. Single eruptive fissures rarely exceed 200 m in length, instead stepping within en echelon zones above a presumably linear dike. Since the late 1960s, widening has been measured across the active area during eruptions and intrusions, first by EDM and then by satellite-based systems. The opening is nearly symmetrical within the rift zone, but farther out the north flank barely responds whereas the south flank moves seaward. Available leveling data show uplift on either side of the dike and subsidence along the crest. Examples of deformation in the 1960s and 1970s will be presented, and bibliographic references to past activity will be available.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70019495','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70019495"><span>Source and path effects in the wave fields of tremor and explosions at Stromboli Volcano, Italy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Chouet, B.; Saccorotti, G.; Martini, M.; Dawson, P.; De Luca, G.; Milana, G.; Scarpa, R.</p> <p>1997-01-01</p> <p>The wave fields generated by Strombolian activity are investigated using data from small-aperture seismic arrays deployed on the north flank of Stromboli and data from seismic and pressure transducers set up near the summit crater. Measurements of slowness and azimuth as a function of time clearly indicate that the sources of tremor and explosions are located beneath the summit crater at depths shallower than 200 m with occasional bursts of energy originating from sources extending to a depth of 3 km. Slowness, azimuth, and particle motion measurements reveal a complex composition of body and surface waves associated with topography, structure, and source properties. Body waves originating at depths shallower than 200 m dominate the wave field at frequencies of 0.5-2.5 Hz, and surface waves generated by the surficial part of the source and by scattering sources distributed around the island dominate at frequencies above 2.5 Hz. The records of tremor and explosions are both dominated by SH motion. Far-field records from explosions start with radial motion, and near-field records from those events show dominantly horizontal motion and often start with a low-frequency (1-2 Hz) precursor characterized by elliptical particle motion, followed within a few seconds by a high-frequency radial phase (1-10 Hz) accompanying the eruption of pyroclastics. The dominant component of the near- and far-field particle motions from explosions, and the timing of air and body wave phases observed in the near field, are consistent with a gaspiston mechanism operating on a shallow (<200 m deep), vertical crack-like conduit. Models of a degassing fluid column suggest that noise emissions originating in the collective oscillations of bubbles ascending in the magma conduit may provide an adequate self-excitation mechanism for sustained tremor generation at Stromboli. Copyright 1997 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70011736','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70011736"><span>Storage, migration, and eruption of magma at Kilauea volcano, Hawaii, 1971-1972</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Duffield, W.A.; Christiansen, R.L.; Koyanagi, R.Y.; Peterson, D.W.</p> <p>1982-01-01</p> <p>The magmatic plumbing system of Kilauea Volcano consists of a broad region of magma generation in the upper mantle, a steeply inclined zone through which magma rises to an intravolcano reservoir located about 2 to 6 km beneath the summit of the volcano, and a network of conduits that carry magma from this reservoir to sites of eruption within the caldera and along east and southwest rift zones. The functioning of most parts of this system was illustrated by activity during 1971 and 1972. When a 29-month-long eruption at Mauna Ulu on the east rift zone began to wane in 1971, the summit region of the volcano began to inflate rapidly; apparently, blockage of the feeder conduit to Mauna Ulu diverted a continuing supply of mantle-derived magma to prolonged storage in the summit reservoir. Rapid inflation of the summit area persisted at a nearly constant rate from June 1971 to February 1972, when a conduit to Mauna Ulu was reopened. The cadence of inflation was twice interrupted briefly, first by a 10-hour eruption in Kilauea Caldera on 14 August, and later by an eruption that began in the caldera and migrated 12 km down the southwest rift zone between 24 and 29 September. The 14 August and 24-29 September eruptions added about 107 m3 and 8 ?? 106 m3, respectively, of new lava to the surface of Kilauea. These volumes, combined with the volume increase represented by inflation of the volcanic edifice itself, account for an approximately 6 ?? 106 m3/month rate of growth between June 1971 and January 1972, essentially the same rate at which mantle-derived magma was supplied to Kilauea between 1952 and the end of the Mauna Ulu eruption in 1971. The August and September 1971 lavas are tholeiitic basalts of similar major-element chemical composition. The compositions can be reproduced by mixing various proportions of chemically distinct variants of lava that erupted during the preceding activity at Mauna Ulu. Thus, part of the magma rising from the mantle to feed the Mauna Ulu eruption may have been stored within the summit reservoir from 4 to 20 months before it was erupted in the summit caldera and along the southwest rift zone in August and September. The September 1971 activity was only the fourth eruption on the southwest rift zone during Kilauea's 200 years of recorded history, in contrast to more than 20 eruptions on the east rift zone. Order-of-magnitude differences in topographic and geophysical expression indicate greatly disparate eruption rates for far more than historic time and thus suggest a considerably larger dike swarm within the east rift zone than within the southwest rift zone. Characteristics of the historic eruptions on the southwest rift zone suggest that magma may be fed directly from active lava lakes in Kilauea Caldera or from shallow cupolas at the top of the summit magma reservoir, through fissures that propagate down rift from the caldera itself at the onset of eruption. Moreover, emplacement of this magma into the southwest rift zone may be possible only when compressive stress across the rift is reduced by some unknown critical amount owing either to seaward displacement of the terrane south-southeast of the rift zone or to a deflated condition of Mauna Loa Volcano adjacent to the northwest, or both. The former condition arises when the forceful emplacement of dikes into the east rift zone wedges the south flank of Kilauea seaward. Such controls on the potential for eruption along the southwest rift zone may be related to the topographic and geophysical constrasts between the two rift zones. ?? 1982.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.V32A..05M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.V32A..05M"><span>Transmission of magmatic pressure changes at Kilauea volcano</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Montagna, C. P.; Gonnermann, H. M.</p> <p>2012-12-01</p> <p>Volcanic eruptions are often accompanied by spatiotemporal migration of ground deformation, a consequence of pressure changes within magma reservoirs and pathways. We have modeled the propagation of such pressure variations, caused by eruptive magma withdrawal during the early eruptive episodes of the ongoing Pu`u `O`o-Kupaianaha eruption of Kilauea volcano. Tilt measurements show that the onset of eruptive episodes at Pu`u `O`o was typically accompanied by abrupt deflation and followed by a sudden onset of gradual re-inflation, once the eruptive episode ended. Tilt of Kilauea's summit underwent similar patterns of deflation and inflation, albeit with a time delay of several hours during most episodes. The observed delay times can be reproduced by a numerical model of pressure variations within an elastic-walled dike that connects Kilauea's summit to its east rift zone. As pressure changes travel through the dike, the interplay between elastic response of the dike wall and viscous resistance of the fluid determines the delay time. An example of the ability of the model to reproduce observed tilt data is presented in Figure 1, which shows measured tilt at Pu`u `O`o during episode 18, together with measured and modeled tilt at Kilauea's summit. Magma withdrawal beneath Pu`u `O`o causes a decrease in pressure and deflation. This pressure change is estimated from observed ground deformation, and it constitutes the time-dependent model boundary condition at Pu`u `O`o, which propagates to Kilauea's summit. The resultant increase in magma flux causes deflation of Kilauea's Halema`uma`u magma reservoir and the change and time delay of tilt are reproduced by the model. The time delay depends on elasticity of the wall rock, dike dimensions, magma viscosity, as well as magnitude and duration of the pressure variations themselves. In addition, these parameters also affect the attenuation of the amplitude of the pressure variation, as it travels between Puu Oo and summit. Pressure changes propagate noticeably faster (slower) in a slightly wider (narrower) dike, as a consequence of smaller (larger) viscous dissipation. Time delays and amplitude of deflation-inflation events at Kilauea have the potential to provide information on effective transport properties of magmatic pathways and changes thereof over time.bserved and modeled change in normalized tilt at Pu`u `O`o and summit for episode 18 of the Pu`u `O`o eruption</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70011374','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70011374"><span>Thermal areas on Kilauea and Mauna Loa Volcanoes, Hawaii</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Casadevall, Thomas J.; Hazlett, Richard W.</p> <p>1983-01-01</p> <p>Active thermal areas are concentrated in three areas on Mauna Loa and three areas on Kilauea. High-temperature fumaroles (115-362°C) on Mauna Loa are restricted to the summit caldera, whereas high-temperature fumaroles on Kilauea are found in the upper East Rift Zone (Mauna Ulu summit fumaroles, 562°C), middle East Rift Zone (1977 eruptive fissure fumaroles), and in the summit caldera. Solfataric activity that has continued for several decades occurs along border faults of Kilauea caldera and at Sulphur Cone on the southwest rift zone of Mauna Loa. Solfataras that are only a few years old occur along recently active eruptive fissures in the summit caldera and along the rift zones of Kilauea. Steam vents and hot-air cracks also occur at the edges of cooling lava ponds, on the summits of lava shields, along faults and graben fractures, and in diffuse patches that may reflect shallow magmatic intrusions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70035730','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70035730"><span>Magma degassing triggered by static decompression at Kīlauea Volcano, Hawai‘i</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Poland, Michael P.; Jeff, Sutton A.; Gerlach, Terrence M.</p> <p>2009-01-01</p> <p>During mid-June 2007, the summit of Kīlauea Volcano, Hawai‘i, deflated rapidly as magma drained from the subsurface to feed an east rift zone intrusion and eruption. Coincident with the deflation, summit SO2 emission rates rose by a factor of four before decaying to background levels over several weeks. We propose that SO2 release was triggered by static decompression caused by magma withdrawal from Kīlauea's shallow summit reservoir. Models of the deflation suggest a pressure drop of 0.5–3 MPa, which is sufficient to trigger exsolution of the observed excess SO2 from a relatively small volume of magma at the modeled source depth beneath Kīlauea's summit. Static decompression may also explain other episodes of deflation accompanied by heightened gas emission, including the precursory phases of Kīlauea's 2008 summit eruption. Hazards associated with unexpected volcanic gas emission argue for increased awareness of magma reservoir pressure fluctuations.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JVGR..348...82C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JVGR..348...82C"><span>Intra-cone plumbing system and eruptive dynamics of small-volume basaltic volcanoes: A case study in the Calatrava Volcanic Field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carracedo-Sánchez, M.; Sarrionandia, F.; Ábalos, B.; Errandonea-Martin, J.; Gil Ibarguchi, J. I.</p> <p>2017-12-01</p> <p>The Manoteras volcano (Tortonian to Pleistocene, Calatrava Volcanic Field, Spain) is composed of a scoria and spatter cone surrounded by a field of pahoehoe lava. The volcanic cone is made essentially of vitreous lapilli-tuffs with intercalations of vitreous tuffs and spatter deposits, without any intercalations of lava flows. Erosion has uncovered an intra-cone plumbing system formed by coherent dykes and pyroclastic dykes (mixed-type dykes). This dyke swarm reflects processes of intrusion at the end of the eruption or even post-eruption. All the volcanic products are nephelinitic in composition. The main dyke is up to 3.4 m thick and has an exposed length of 1000 m. It is composed mostly of coherent nephelinite with some pyroclastic sections at its northern extremity. This dyke is regarded as a feeder dyke of the volcano, although the upper parts of the dike have been eroded, which prevents the observation of the characteristics and nature of the possible overlying vent(s). Mixed-type dykes could also have acted as small linear vents and indicate that the magma fragmentation level during final waning stages of the eruption was located inside the volcanic cone. The pyroclastic deposits that make up the volcanic cone at the current exposure level were probably developed during a major phase of violent Strombolian style that formed the scoria cone, followed by a Hawaiian phase that formed the summital intracrater spatter deposit. Three central-type vents have been identified: one at the highest point of the remnant volcanic cone (summital vent), from where the earlier explosive eruptions took place, and the other two at the fringe of the cone base, from where emissions were only effusive. The lava flows were emitted from these boccas through the scoria cone feeding the lava field. The results obtained, based on careful field observations, add substantial complexity to the proposed eruptive models for small-volume basaltic volcanoes as it appears evident that there may exist and evolution through time from central conduit settings to fissure eruptions. Moreover, it is shown that intracone plumbing systems can integrate coherent and clastic dykes of variable thicknesses, which, in some cases could represent feeder dykes. Table 2. Petrographic characteristics of the coherent rocks (dykes and lava flows) from the Manoteras volcano. See Fig. 2 supplementary.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.T13B2193W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.T13B2193W"><span>Transport of Fine Ash Through the Water Column at Erupting Volcanoes - Monowai Cone, Kermadec-Tonga Arc</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Walker, S. L.; Baker, E. T.; Leybourne, M. I.; de Ronde, C. E.; Greene, R.; Faure, K.; Chadwick, W.; Dziak, R. P.; Lupton, J. E.; Lebon, G.</p> <p>2010-12-01</p> <p>Monowai cone is a large, active, basaltic stratovolcano, part of the submarine Monowai volcanic center (MVC) located at ~26°S on the Kermadec-Tonga arc. At other actively erupting submarine volcanoes, magma extrusions and hydrothermal vents have been located only near the summit of the edifice, generating plumes enriched with hydrothermal components and magmatic gasses that disperse into the ocean environment at, or shallower than, the summit depth. Plumes found deeper than summit depths are dominated by fresh volcaniclastic ash particles, devoid of hydrothermal tracers, emplaced episodically by down-slope gravity flows, and transport fine ash to 10’s of km from the active eruptions. A water column survey of the MVC in 2004 mapped intensely hydrothermal-magmatic plumes over the shallow (~130 m) summit of Monowai cone and widespread plumes around its flanks. Due to the more complex multiple parasitic cone and caldera structure of MVC, we analyzed the dissolved and particulate components of the flank plumes for evidence of additional sources. Although hydrothermal plumes exist within the adjacent caldera, none of the parasitic cones on Monowai cone or elsewhere within the MVC were hydrothermally or volcanically active. The combination of an intensely enriched summit plume, sulfur particles and bubbles at the sea surface, and ash-dominated flank plumes indicate Monowai cone was actively erupting at the time of the 2004 survey. Monowai cone is thus the fourth erupting submarine volcano we have encountered, and all have had deep ash plumes distributed around their flanks [the others are: Kavachi (Solomon Island arc), NW Rota-1 (Mariana arc) and W Mata (NE Lau basin)]. These deep ash plumes are a syneruptive phenomenon, but it is unknown how they are related to eruptive style and output, or to the cycles of construction and collapse that occur on the slopes of submarine volcanoes. Repeat multibeam bathymetric surveys have documented two large-scale sector collapse events at Monowai and one at NW Rota-1, as well as constructional deposits extending down the flanks of these volcanoes. Acoustic records at Monowai and NW Rota-1 suggest sector collapse events are infrequent while eruptions, and the resulting supply of depositional material, have been nearly continuous. The sector collapse events occurred at times remote from our plume surveys, so, large landslide events are not a prerequisite for the presence of deep ash plumes. Despite a wide range of summit depths (<10 m at Kavachi to 1500 m at W Mata), lava types (basaltic-andesite, boninite, and basalt), and eruptive styles (Surtseyan, Strombolian, and effusive flows with active pillow formation), the deep particle plumes at each of these volcanoes are remarkably similar in their widespread distribution (to 10’s of km from the summit and at multiple depths down the flanks) and composition (dominantly fresh volcanic ash). Moderate eruption rates, lava-seawater interaction and steep slopes below an eruptive vent may be sufficient to initiate the transport of fine ash into the ocean environment and distal sediments via these types of plumes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.V51G..01P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.V51G..01P"><span>Repeated deflation-inflation events at Kilauea Volcano, Hawai'i: What's up (and down) with that?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Poland, M. P.; Miklius, A.; Lundgren, P.; Sutton, A. J.</p> <p>2011-12-01</p> <p>Cyclic deflation-inflation ("DI") events are a common occurrence at Kilauea Volcano. Most DI events begin with deflation at the summit that generally lasts 12-72 hours and accumulate ~1-5 microradians of tilt as measured on the rim of Kilauea caldera, followed by inflation that is initially rapid but wanes as the net deformation approaches pre-event levels over the course of 12-48 hours. In rare cases, the initial deflation is followed by large-magnitude (~20 microradians) inflation over a few hours followed by hours to days of deflation to pre-event levels. Such DID events have only been recorded during 2000-2004. DI events are also manifested at the Pu'u 'O'o eruptive vent on Kilauea's east rift zone, about 15 km from the summit, and lag summit deformation by about 1-2 hours. For DI events with relatively large-magnitudes (i.e., several microradians) and long-durations (i.e., several days), deformation is manifested along the east rift zone between Pu'u 'O'o and the summit, and eruptive activity at Pu'u 'O'o is impacted with long periods of deflation and inflation associated with eruptive pauses and surges, respectively. During a period of increased magma transport between the summit and Pu'u 'O'o in 2005-2007, DI events recorded at the summit were not detected at Pu'u 'O'o. Since the March 2008 start of Kilauea's ongoing summit eruption, the number of DI events per year has increased from about 5-10 to about 50-60. The level of the summit lava column (continuously visible since early 2010), has generally tracked DI deformation. Surface deformation associated with DI events is measured by tilt, GPS, and InSAR. At the summit, preliminary source models suggest a depth of 1-2 km and a sill-like geometry beneath the center of the caldera, with volume loss and subsequent recovery on the order of tens of thousands of cubic meters with each DI cycle. The localized nature of the DI signal at Pu'u 'O'o argues for a shallow source that is probably less than 1 km deep. At least two mechanisms are consistent with the occurrence of DI events at Kilauea. First, blockage and subsequent clearing of the transport pathway that feeds the shallow summit magma system and conduit to Pu'u 'O'o could cause the observed deformation. A second possibility is that DI events represent convective overturns caused by replacement of degassed magma with gas-rich magma. Such a model is consistent with the increased number of DI events following the onset of Kilauea's summit eruption, when summit gas emissions increased by a factor of about 5, but there have been no changes in degassing rates during periods of frequent (i.e., daily) or rare (i.e., monthly) DI events during 2008-2011. The source of DI events therefore remains a target of continued study.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.7755R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.7755R"><span>Recurrent patterns in fluid geochemistry data prior to phreatic eruptions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rouwet, Dmitri; Sandri, Laura; Todesco, Micol; Tonini, Roberto; Pecoraino, Giovannella; Diliberto, Iole Serena</p> <p>2016-04-01</p> <p>Not all volcanic eruptions are magma-driven: the sudden evaporation and expansion of heated groundwater may cause phreatic eruptions, where the magma involvement is absent or negligible. Active crater lakes top some of the volcanoes prone to phreatic activity. This kind of eruption may occur suddenly, and without clear warning: on September 27, 2014 a phreatic eruption of Ontake, Japan, occurred without timely precursors, killing 57 tourists near the volcano summit. Phreatic eruptions can thus be as fatal as higher VEI events, due to the lack of recognised precursory signals, and because of their explosive and violent nature. In this study, we tackle the challenge of recognising precursors to phreatic eruptions, by analysing the records of two "phreatically" active volcanoes in Costa Rica, i.e. Poás and Turrialba, respectively with and without a crater lake. These volcanoes cover a wide range of time scales in eruptive behaviour, possibly culminating into magmatic activity, and have a long-term multi-parameter dataset mostly describing fluid geochemistry. Such dataset is suitable for being analysed by objective pattern recognition techniques, in search for recurrent schemes. The aim is to verify the existence and nature of potential precursory patterns, which will improve our understanding of phreatic events, and allow the assessment of the associated hazard at other volcanoes, such as Campi Flegrei or Vulcano, in Italy. Quantitative forecast of phreatic activity will be performed with BET_UNREST, a Bayesian Event Tree tool recently developed within the framework of FP7 EU VUELCO project. The study will combine the analysis of fluid geochemistry data with pattern recognition and phreatic eruption forecast on medium and short-term. The study will also provide interesting hints on the features that promote or hinder phreatic activity in volcanoes that host well-developed hydrothermal circulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.V41C..01J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.V41C..01J"><span>Workshops on Volcanoes at Santiaguito (Guatemala): A community effort to inform and highlight the outstanding science opportunities at an exceptional laboratory volcano</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Johnson, J. B.; Escobar-Wolf, R. P.; Pineda, A.</p> <p>2016-12-01</p> <p>Santiaguito is one of Earth's most reliable volcanic spectacles and affords opportunity to investigate dome volcanism, including hourly explosions, pyroclastic flows, block lava flows, and sporadic paroxysmal eruptions. The cubic km dome, active since 1922, comprises four coalescing structures. Lava effusion and explosions are ideally observed from a birds-eye perspective at the summit of Santa Maria volcano (1200 m above and 2700 km from the active Caliente vent). Santiaguito is also unstable and dangerous. Thousands of people in farms and local communities are exposed to hazards from frequent lahars, pyroclastic flows, and potentially large sector-style dome collapses. In January 2016 more than 60 volcano scientists, students, postdocs, and observatory professionals traveled to Santiaguito to participate in field study and discussion about the science and hazards of Santiaguito. The event facilitated pre- and syn-workshop field experiments, including deployment of seismic, deformation, infrasound, multi-spectral gas and thermal sensing, UAV reconnaissance, photogrammetry, and petrologic and rheologic sampling. More than 55 participants spent the night on the 3770-m summit of Santa Maria to partake in field observations. The majority of participants also visited lahar and pyroclastic flow-impacted regions south of the volcano. A goal of the workshop was to demonstrate how multi-disciplinary observations are critical to elucidate volcano eruption dynamics. Integration of geophysical and geochemical observation, and open exchange of technological advances, is vital to achieve the next generation of volcano discovery. Toward this end data collected during the workshop are openly shared within the broader volcanological community. Another objective of the workshop was to bring attention to an especially hazardous and little-studied volcanic system. The majority of workshop attendees had not visited the region and their participation was hoped to seed future collaboration and study in Guatemala. This presentation highlights both the multi-disciplinary science and scientists' experiences at Santiaguito and argues for future similar meetings at other open-vent volcanoes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1991E%26PSL.107..318C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1991E%26PSL.107..318C"><span>Gas-rich submarine exhalations during the 1989 eruption of Macdonald Seamount</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>C´e, J.-L.; Stoffers, P.; McMurtry, G.; Richnow, H.; Puteanus, D.; Sedwick, P.</p> <p>1991-11-01</p> <p>In January 1989 we observed submarine eruptions on the summit of Macdonald volcano during a French-German diving programme with the IFREMER submersible Cyana. Gas-streaming of large amounts of CH 4, CO 2 and SO 2 from summit vents, inferred from water column anomalies and observed by submersible, was accompanied on the sea surface by steam bursts, turbulence, red-glowing gases, and black bubbles comprising volcanic ash, sulphur and sulphides. Chloride depletion of water sampled on the floor of an actively degassing summit crater suggests either boiling and phase separation or additions of magmatic water vapour. Submersible observations, in-situ sampling and shipboard geophysical and hydrographic measurements show that the hydrothermal system of this hotspot volcano is distinguished by the influence of magmatic gases released from its shallow summit.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1914514S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1914514S"><span>Tracking the hidden growth of a lava flow field: the 2014-15 eruption of Fogo volcano (Cape Verde)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Silva, Sonia; Calvari, Sonia; Hernandez, Pedro; Perez, Nemesio; Ganci, Gaetana; Alfama, Vera; Barrancos, José; Cabral, Jeremias; Cardoso, Nadir; Dionis, Samara; Fernandes, Paulo; Melian, Gladys; Pereira, José; Semedo, Hélio; Padilla, German; Rodriguez, Fatima</p> <p>2017-04-01</p> <p>Fogo volcano erupted in 2014-15 producing an extensive lava flow field in the summit caldera that destroyed two villages, Portela and Bangaeira. The eruption started with powerful explosive activity, lava fountaining, and a substantial ash column accompanying the opening of an eruptive fissure. Lava flows spreading from the base of the eruptive fissure produced three arterial lava flows, spreading S (Flow 1), N-NW (Flow 2) and W (Flow 3). By a week after the start of the eruption, a master lava tube had already developed within the eruptive fissure and along Flow 2. When Flow 2 front stopped against the N caldera cliff, the whole flow field behind it inflated, and eventually its partial drainage produced a short tube that fed Flow 3, but no lava tube formed within Flow 1. Here we analyze the emplacement processes on the basis of observations carried out directly on the lava flow field and through satellite image, in order to unravel the key factors leading to the development of lava tubes. These tubes were responsible for the rapid expansion of lava for the 7.9 km length of the flow field, as well as the destruction of the Portela and Bangaeira villages. Comparing time-averaged effusion rates (TADR) obtained from satellite and Supply Rate (SR) derived from SO2 flux data, we estimate the amount and timing of the lava flow field endogenous growth, with the aim of developing a tool that could be used for risk mitigation at this and other volcanoes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA03371.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA03371.html"><span>Perspective View, Mt. Etna, Italy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2002-11-01</p> <p>Italy's Mount Etna is the focus of this perspective view made from an Advanced Spaceborne Thermal and Emission Radiometer (ASTER) image from NASA's Terra spacecraft overlaid on Shuttle Radar Topography Mission (SRTM) topography. The image is looking south with dark lava flows from the 1600's (center) to 1981 (long flow at lower right) visible in the foreground and the summit of Etna above. The city of Catania is barely visible behind Etna on the bay at the upper left. In late October 2002, Etna erupted again, sending lava flows down the north and south sides of the volcano. The north flows are near the center of this view, but the ASTER image is from before the eruption. In addition to the terrestrial applications of these data for understanding active volcanoes and hazards associated with them such as lava flows and explosive eruptions, geologists studying Mars find these data useful as an analog to martian landforms and geologic processes. In late September 2002, a field conference with the theme of Terrestrial Analogs to Mars focused on Mount Etna, allowing Mars geologists to see in person the types of features they can only sample remotely. http://photojournal.jpl.nasa.gov/catalog/PIA03371</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.V34A..07L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.V34A..07L"><span>Source models for the March 5-9, 2011 Kamoamoa fissure eruption, Kilauea Volcano, Hawai`i, constrained by InSAR and in-situ observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lundgren, P.; Poland, M. P.; Miklius, A.; Yun, S.; Fielding, E. J.; Liu, Z.; Tanaka, A.; Szeliga, W. M.; Hensley, S.</p> <p>2011-12-01</p> <p>On March 5, 2011, the Kamoamoa fissure eruption began along the east rift zone (ERZ) of Kilauea Volcano. It followed several months of pronounced inflation at Kilauea's summit and was the first dike intrusion into the ERZ since June 2007. The eruption began in the late afternoon of March 5, 2011 (Hawaii Standard Time; UTC-10:00 hrs) with rapid deflation beginning at Pu'u 'O'o crater along the ERZ and followed about 30 minutes later at the summit. Magma from both locations fed the intrusion and an eruption that included lava fountaining along a set of discontinuous eruptive fissures ~2 km in length located between Napau and Pu'u 'O'o craters. Eruptive activity jumped between fissure segments until it ended on the night of March 9. A rich InSAR data set exists for this eruption from the COSMO-SkyMed (CSK), TerraSAR-X (TSX), ALOS PALSAR, and UAVSAR sensors. CSK data acquired on March 7 and processed that same day provided the earliest, quasi-real-time SAR data for this event. By March 10, after the eruption had ended, we had three CSK acquisitions and one ALOS scene acquired and processed. At present we have the following satellite data (UTC dates): ALOS March 6, 9, 11; CSK March 7, 10, 11; TSX March 11; from a mixture of ascending and descending tracks. UAVSAR airborne SAR data were acquired in early May 2011. Preliminary UAVSAR results are encouraging and complete processing should provide high-resolution data from four viewing directions. SAR data were acquired on all days of the eruption but March 8, allowing us to examine the progression of the dike opening beneath the surface with excellent spatial and temporal resolution. We use a combination of unwrapped interferograms, azimuthal pixel offsets, and in-situ data from GPS and electronic tiltmeters to model dike opening and summit deflation. GPS data are from the Hawaiian Volcano Observatory (HVO) continuous GPS network augmented by campaign occupations closer to the eruption area. Continuous tilt measurements are concentrated near Kilauea's summit and Pu'u 'O'o crater, with one site in between to help constrain dike propagation. To model the sources we use a Markov Chain Monte Carlo (MCMC) optimization to solve for Kilauea caldera source(s) and for the Kamoamoa dike dip, where we fixed the surface location of the dike based on field observations and solved for the opening distribution using Laplacian smoothing for a multi-patch dike. Preliminary models of the dike show 1-2 meters of dike opening at the beginning of the eruption, reaching 2-3 meters of opening by the end of the eruption. Preliminary results for the caldera favor a shallow source centered at roughly 1.5 km depth and extending in a SW-NE direction. Initial estimates of the volume changes show less than a 2 MCM (million cubic meters) decrease at the summit compared to a roughly 10 MCM increase for the dike. This difference suggests that much of the magma came from sources other than the shallow Kilauea summit source.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss020e021140.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss020e021140.html"><span>Earth Observation taken by the Expedition 20 crew</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2009-07-15</p> <p>ISS020-E-021140 (15 July 2009) --- Teide Volcano on the Canary Islands of Spain is featured in this image photographed by an Expedition 20 crew member on the International Space Station. This detailed photograph features two stratovolcanoes ? Pico de Teide and Pico Viejo ? located on Tenerife Island, part of the Canary Islands of Spain. Stratovolcanoes are steep-sided; typically conical structures formed by interlayered lavas and fragmented rock material from explosive eruptions. Pico de Teide has a relatively sharp peak, whereas an explosion crater forms the summit of Pico Viejo. The two stratovolcanoes formed within an even larger volcanic structure known as the Las Ca?adas caldera ? a large collapse depression typically formed when a major eruption completely empties the underlying magma chamber of a volcano. The last eruption of Teide occurred in 1909. NASA scientists point out sinuous flow levees marking individual lava flows. The scientists consider the flow levees as perhaps the most striking volcanic features visible in the image. Flow levees are formed when the outer edges of a channelized lava flow cool and harden while the still-molten interior continues to flow downhill ? numerous examples radiate outwards from the peaks of both Pico de Teide and Pico Viejo. Brown to tan overlapping lava flows and domes are visible to the east-southeast of the Teide stratovolcano. Increased seismicity, carbon dioxide emissions, and fumarolic activity within the Las Ca?adas caldera and along the northwestern flanks of the volcano were observed in 2004. Monitoring of the volcano to detect renewal of activity is ongoing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70023280','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70023280"><span>Implications for eruptive processes as indicated by sulfur dioxide emissions from Kilauea Volcano, Hawai'i, 1979-1997</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Sutton, A.J.; Elias, T.; Gerlach, T.M.; Stokes, J.B.</p> <p>2001-01-01</p> <p>Kı̄lauea Volcano, Hawai‘i, currently hosts the longest running SO2 emission-rate data set on the planet, starting with initial surveys done in 1975 by Stoiber and his colleagues. The 17.5-year record of summit emissions, starting in 1979, shows the effects of summit and east rift eruptive processes, which define seven distinctly different periods of SO2 release. Summit emissions jumped nearly 40% with the onset (3 January 1983) of the Pu`u `Ō`ō-Kūpaianaha eruption on the east rift zone (ERZ). Summit SO2 emissions from Kı̄lauea showed a strong positive correlation with short-period, shallow, caldera events, rather than with long-period seismicity as in more silicious systems. This correlation suggests a maturation process in the summit magma-transport system from 1986 through 1993. During a steady-state throughput-equilibrium interval of the summit magma reservoir, integration of summit-caldera and ERZ SO2 emissions reveals an undegassed volume rate of effusion of 2.1×105 m3/d. This value corroborates the volume-rate determined by geophysical methods, demonstrating that, for Kı̄lauea, SO2 emission rates can be used to monitor effusion rate, supporting and supplementing other, more established geophysical methods. For the 17.5 years of continuous emission rate records at Kı̄lauea, the volcano has released 9.7×106 t (metric tonnes) of SO2, 1.7×106 t from the summit and 8.0×106 t from the east rift zone. On an annual basis, the average SO2 release from Kı̄lauea is 4.6×105 t/y, compared to the global annual volcanic emission rate of 1.2×107 t/y.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.V41B2789P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.V41B2789P"><span>Edifice strength and magma transfer modulation at Piton de la Fournaise volcano</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Peltier, A.; Got, J.; Staudacher, T.; Kowalski, P.; Boissier, P.</p> <p>2013-12-01</p> <p>From 2003 to 2007, eruptive activity at Piton de la Fournaise followed cycles, comprising many summit/proximal eruptions and finishing by a distal eruption. GPS measurements evidenced striking asymmetric deformation between its western and eastern flanks. Horizontal displacements recorded during inter-distal periods showed a characteristic amplitude at the top of the eastern flank. Displacements recorded at the base of the summit cone showed a bimodal distribution, with low amplitudes during inter-distal periods and large ones during distal eruptions. To account for displacement asymmetry, characteristic amplitude and large flank displacement, we modeled the volcanic edifice using a Drücker-Prager elasto-plastic rheology. Friction angles of 15° and >30° were needed to model the displacements respectively during distal eruptions and inter-distal periods; this change shows that strain weakening occurred during distal events. Large plastic displacement that occurred in the eastern flank during distal eruptions relaxed the horizontal elastic stress accumulated during inter-distal periods; it triggered summit deflation, horizontal magma transfer and distal flank eruption, and reset the eruptive cycle. Our elasto-plastic models also show that simple source geometries may induce large eastern flank displacements that would be explained by a complex geometry in a linear elastic edifice. Magma supply is often thought to control volcano's eruptive activity, with surface deformation reflecting changes in magma supply rate, the volcano's response being linear. Our results bring some evidences that on Piton de la Fournaise time-space discretization of magma transfer may be the result of the edifice's non-linear response, rather than changes in magma supply.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/14647379','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/14647379"><span>Explosive volcanism may not be an inevitable consequence of magma fragmentation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gonnermann, Helge M; Manga, Michael</p> <p>2003-11-27</p> <p>The fragmentation of magma, containing abundant gas bubbles, is thought to be the defining characteristic of explosive eruptions. When viscous stresses associated with the growth of bubbles and the flow of the ascending magma exceed the strength of the melt, the magma breaks into disconnected fragments suspended within an expanding gas phase. Although repeated effusive and explosive eruptions for individual volcanoes are common, the dynamics governing the transition between explosive and effusive eruptions remain unclear. Magmas for both types of eruptions originate from sources with similar volatile content, yet effusive lavas erupt considerably more degassed than their explosive counterparts. One mechanism for degassing during magma ascent, consistent with observations, is the generation of intermittent permeable fracture networks generated by non-explosive fragmentation near the conduit walls. Here we show that such fragmentation can occur by viscous shear in both effusive and explosive eruptions. Moreover, we suggest that such fragmentation may be important for magma degassing and the inhibition of explosive behaviour. This implies that, contrary to conventional views, explosive volcanism is not an inevitable consequence of magma fragmentation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.V11C2800T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.V11C2800T"><span>An Integrative Approach for Defining Plinian and Sub-Plinian Eruptive Scenarios at Andesitic Volcanoes: Event-Lithostratigraphy, Eruptive Parameters and Pyroclast Textural Variations of the Largest Late-Holocene Eruptions of Mt. Taranaki, New Zealand.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Torres-Orozco, R.; Cronin, S. J.; Damaschke, M.; Kosik, S.; Pardo, N.</p> <p>2016-12-01</p> <p>Three eruptive scenarios were determined based on the event-lithostratigraphic reconstruction of the largest late-Holocene eruptions of the andesitic Mt. Taranaki, New Zealand: a) sustained dome-effusion followed by sudden stepwise collapse and unroofing of gas-rich magma; b) repeated plug and burst events generated by transient open-/closed-vent conditions; and c) open-vent conditions of more mafic magmas erupting from a satellite vent. Pyroclastic density currents (PDCs) are the most frequent outcome in every scenario. They can be produced in any/every eruption phase by formation and either repetitive-partial or total gravity-driven collapse of lava domes in the summit crater (block-and-ash flows), frequently followed by sudden magma decompression and violent, highly unsteady to quasi-steady lateral expansion (blast-like PDCs); by collapse or single-pulse fall-back of unsteady eruption columns (pyroclastic flow- and surge-type currents); or during highly unsteady and explosive hydromagmatic phases (wet surges). Fall deposits are produced during the climatic phase of each eruptive scenario by the emplacement of (i) high, sustained and steady, (ii) sustained and height-oscillating, (iii) quasi-steady and pulsating, or (iv) unsteady and totally collapsing eruption columns. Volumes, column heights and mass- and volume-eruption rates indicate that these scenarios correspond to VEI 4-5 plinian and sub-plinian multi-phase and style-shifting episodes, similar or larger than the most recent 1655 AD activity, and comparable to plinian eruptions of e.g. Apoyeque, Colima, Merapi and Tarawera volcanoes. Whole-rock chemistry, textural reconstructions and density-porosity determinations suggest that the different eruptive scenarios are mainly driven by variations in the density structure of magma in the upper conduit. Assuming a simple single conduit model, the style transitions can be explained by differing proportions of alternating gas-poor/degassed and gas-rich magma.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA22155.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA22155.html"><span>Investigating Mars: Arsia Mons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2018-01-01</p> <p>The three large aligned Tharsis volcanoes are Arsia Mons, Pavonis Mons and Ascreaus Mons (from south to north). There are collapse features on all three volcanoes, on the southwestern and northeastern flanks. This alignment may indicate a large fracture/vent system was responsible for the eruptions that formed all three volcanoes. The flows originating from Arsia Mons are thought to be the youngest of the region. This VIS image shows part of the northeastern flank of Arsia Mons at the summit caldera. In this region the summit caldera does not have a steep margin most likely due to renewed volcanic flows within this region of the caldera. The scalloped depressions at the top of the image are most likely created by collapse of the roof of lava tubes. Lava tubes originate during eruption event, when the margins of a flow harden around a still flowing lava stream. When an eruption ends these can become hollow tubes within the flow. With time, the roof of the tube may collapse into the empty space below. The tubes are linear, so the collapse of the roof creates a linear depression. Arsia Mons is the southernmost of the Tharsis volcanoes. It is 270 miles (450km) in diameter, almost 12 miles (20km) high, and the summit caldera is 72 miles (120km) wide. For comparison, the largest volcano on Earth is Mauna Loa. From its base on the sea floor, Mauna Loa measures only 6.3 miles high and 75 miles in diameter. A large volcanic crater known as a caldera is located at the summit of all of the Tharsis volcanoes. These calderas are produced by massive volcanic explosions and collapse. The Arsia Mons summit caldera is larger than many volcanoes on Earth. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 17716 Latitude: -8.11179 Longitude: 240.245 Instrument: VIS Captured: 2005-12-12 00:29 https://photojournal.jpl.nasa.gov/catalog/PIA22155</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70036224','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70036224"><span>The Augustine magmatic system as revealed by seismic tomography and relocated earthquake hypocenters from 1994 through 2009</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Syracuse, E.M.; Thurber, C.H.; Power, J.A.</p> <p>2011-01-01</p> <p>We incorporate 14 years of earthquake data from the Alaska Volcano Observatory with data from a 1975 controlled-source seismic experiment to obtain the three-dimensional P and S wave velocity structure and the first high-precision earthquake locations at Augustine Volcano to be calculated in a fully three-dimensional velocity model. Velocity tomography shows two main features beneath Augustine: a narrow, high-velocity column beneath the summit, extending from ???2 km depth to the surface, and elevated velocities on the south flank. Our relocation results allow a thorough analysis of the spatio-temoral patterns of seismicity and the relationship to the magmatic and eruptive activity. Background seismicity is centered beneath the summit at an average depth of 0.6 km above sea level. In the weeks leading to the January 2006 eruption of Augustine, seismicity focused on a NW-SE line along the trend of an inflating dike. A series of drumbeat earthquakes occurred in the early weeks of the eruption, indicating further magma transport through the same dike system. During the six months following the onset of the eruption, the otherwise quiescent region 1 to 5 km below sea level centered beneath the summit became seismically active with two groups of earthquakes, differentiated by frequency content. The deep longer-period earthquakes occurred during the eruption and are interpreted as resulting from the movement of magma toward the summit, and the post-eruptive shorter-period earthquakes may be due to the relaxation of an emptied magma tube. The seismicity subsequently returned to its normal background rates and patterns. Copyright 2011 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70036696','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70036696"><span>Pigeonholing pyroclasts: Insights from the 19 March 2008 explosive eruption of Kīlauea volcano</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Houghton, Bruce F.; Swanson, D.A.; Carey, R.J.; Rausch, J.; Sutton, A.J.</p> <p>2011-01-01</p> <p>We think, conventionally, of volcanic explosive eruptions as being triggered in one of two ways: by release and expansion of volatiles dissolved in the ejected magma (magmatic explosions) or by transfer of heat from magma into an external source of water (phreatic or phreatomagmatic explosions). We document here an event where neither magma nor an external water source was involved in explosive activity at K??lauea. Instead, the eruption was powered by the expansion of decoupled magmatic volatiles released from deeper magma, which was not ejected by the eruption, and the trigger was a collapse of near-surface wall rocks that then momentarily blocked that volatile flux. Mapping of the advected fall deposit a day after this eruption has highlighted the difficulty of constraining deposit edges from unobserved or prehistoric eruptions of all magnitudes. Our results suggest that the dispersal area of advected fall deposits could be miscalculated by up to 30% of the total, raising issues for accurate hazard zoning and assessment. Eruptions of this type challenge existing classification schemes for pyroclastic deposits and explosive eruptions and, in the past, have probably been interpreted as phreatic explosions, where the eruptive mechanism has been assumed to involve flashing of groundwater to steam. ?? 2011 Geological Society of America.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JSAES..79...12T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JSAES..79...12T"><span>The Quaternary history of effusive volcanism of the Nevado de Toluca area, Central Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Torres-Orozco, R.; Arce, J. L.; Layer, P. W.; Benowitz, J. A.</p> <p>2017-11-01</p> <p>Andesite and dacite lava flows and domes, and intermediate-mafic cones from the Nevado de Toluca area were classified into five groups using field data and 40Ar/39Ar geochronology constraints. Thirty-four lava units of diverse mineralogy and whole-rock major-element geochemistry, distributed between the groups, were identified. These effusive products were produced between ∼1.5 and ∼0.05 Ma, indicating a mid-Pleistocene older-age for Nevado de Toluca volcano, coexisting with explosive products that suggest a complex history for this volcano. A ∼0.96 Ma pyroclastic deposit attests for the co-existence of effusive and explosive episodes in the mid-Pleistocene history. Nevado de Toluca initiated as a composite volcano with multiple vents until ∼1.0 Ma, when the activity began to centralize in an area close to the present-day crater. The modern main edifice reached its maximum height at ca. 50 ka after bulky, spiny domes erupted in the current summit of the crater. Distribution and geochemical behavior in major elements of lavas indicate a co-magmatic relationship between different andesite and dacite domes and flows, although unrelated to the magmatism of the monogenetic volcanism. Mafic-intermediate magma likely replenished the system at Nevado de Toluca since ca. ∼1.0 Ma and contributed to the eruption of new domes, cones, as well as effusive-explosive activity. Altogether, field and laboratory data suggest that a large volume of magma was ejected around 1 Ma in and around the Nevado de Toluca.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70196639','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70196639"><span>Joint 3-D tomographic imaging of Vp, Vs and Vp/Vs and hypocenter relocation at Sinabung volcano, Indonesia from November to December 2013</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Nugraha, Andri Dian; Indrastuti, Novianti; Kusnandar, Ridwan; Gunawan, Hendra; McCausland, Wendy A.; Aulia, Atin Nur; Harlianti, Ulvienin</p> <p>2018-01-01</p> <p>We conducted travel time tomography using P- and S-wave arrival times of volcanic-tectonic (VT) events that occurred between November and December 2013 to determine the three-dimensional (3D) seismic velocity structure (Vp, Vs, and Vp/Vs) beneath Sinabung volcano, Indonesia in order to delineate geological subsurface structure and to enhance our understanding of the volcanism itself. This was a time period when phreatic explosions became phreatomagmatic and then magma migrated to the surface forming a summit lava dome. We used 4846 VT events with 16,138 P- and 16,138 S-wave arrival time phases recorded by 6 stations for the tomographic inversion. The relocated VTs collapse into three clusters at depths from the surface to sea level, from 2 to 4 km below sea level, and from 5 to 8.5 km below sea level. The tomographic inversion results show three prominent regions of high Vp/Vs (~ 1.8) beneath Sinabung volcano at depths consistent with the relocated earthquake clusters. We interpret these anomalies as intrusives associated with previous eruptions and possibly surrounding the magma conduit, which we cannot resolve with this study. One anomalous region might contain partial melt, at sea level and below the eventual eruption site at the summit. Our results are important for the interpretation of a conceptual model of the “plumbing system” of this hazardous volcano.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1995GMS....92..199M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1995GMS....92..199M"><span>Recent inflation and flank movement of Mauna Loa Volcano</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Miklius, Asta; Lisowski, Michael; Delaney, Paul T.; Denlinger, Roger P.; Dvorak, John J.; Okamura, Arnold T.; Sakol, Maurice K.</p> <p></p> <p>Geodetic measurements on the summit of Mauna Loa reveal that since the last eruption in 1984, the shallow summit magma chamber has inflated approximately the same amount as between the 1975 and 1984 eruptions. However, it does not appear to have recovered the entire volume withdrawn during the 1984 eruption. Together with the lack of increased shallow earthquake activity, this observation suggests that, as of June 1995, the next eruption of Mauna Loa is not yet imminent. Global Positioning System measurements in 1993 and 1994 show southeastward movement of the southeast flank of over 4 cm/year, comparable to displacements measured on adjacent Kilauea Volcano's south flank over the same interval. The upper west flank appears to be stable, producing a strong asymmetry of motion about the summit. Gradients of motion on the southeast flank result in about one microstrain/year of compression and shear across the Kaoiki seismic zone, an area of persistent seismicity that has produced large historic earthquakes. The flank motions observed between 1993 and 1994 could be caused by the combined effects of slip along the basal Kaoiki decollement and inflation of a deep source.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.V11B0587W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.V11B0587W"><span>Estimating the magma supply rate at Kilauea volcano, Hawaii</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wright, T. L.; Klein, F. W.</p> <p>2006-12-01</p> <p>A frequent question is whether the magma supply rate to Kilauea is constant. Before seaward spreading of the south flank of Kilauea was demonstrated by the slip on a basal decollement that accompanied the M7.2 1975 south flank earthquake, the magma supply rate was equated to the identical eruption rates for three long-lived eruptions (3). Later, a continuous tilt record at Kilauea's summit was used to derive the volume of magma transported during deflations associated with rift eruptions (2), concluding that over a 30-year period about 38% of Kilauea's magma supply was left underground, but agreeing with the equivalency of overall magma supply and sustained eruption rates. Recent modeling of geodetic data gathered during Kilauea's current eruption (1) estimated a supply rate to accommodate spreading at 1.5 times the eruption rate. We approach the problem of magma supply, making two assumptions: 1. Eruption rates are controlled by the capacity of the underground transport paths to deliver magma to the surface. 2. Spreading of Kilauea's south flank is magma-driven and all space created during spreading is filled with new magma. On these premises, and in consideration of the physical properties of magma, eruption rates would have to be less than the supply rate; equivalence would imply a rigid edifice in which an open channel could deliver magma as if it were water. We are working to establish a third indicator of magma supply, the occurrence of seismic swarms in the stressed south flank. Many such swarms have been previously identified in association with documented eruptions and intrusions, but other swarms occur independently and may be associated with passive intrusion filling the room created during spreading. We contrast the seismic and geodetic data gathered during Kilauea's two longest monitored eruptions, Mauna Ulu (1969-1974) and Pu'u `O'o-Kupaianaha (1983-ongoing). For episodic high-fountaining episodes we calculate eruption efficiency as the ratio of erupted lava corrected for 20% vesicularity to the volume of magma calculated from summit deflation (2). Eruption rates (km3/yr) during these periods are .1068 and .1267, respectively, with eruption efficiencies of .7 and >1. Individual episodes vary in south flank seismic activity, suggesting short-term variability of the magma supply. Mauna Ulu was characterized by overall inflation of Kilauea's summit, including during continuous eruption, and by the occurrence of intrusions and eruptions elsewhere on the volcano. We interpret this as indicating a supply rate that exceeded the capacity of the plumbing to deliver magma to the surface. In contrast, the current eruption had nearly twenty years of summit deflation and almost no intrusions or eruptions elsewhere, indicating that magma was being mined from overall storage. With continuously recording GPS, a major component of magma supply can be equated to a modeled dilation associated with spreading, augmented by erupted volumes and summit inflation to ascertain the variability of supply rate. Correlation with south flank seismicity may allow even better discrimination of rates. 1. Cayol, V., et al., 2000, Science, v. 288, p. 2343-2346. 3. Dvorak, J.J., and Dzurisin, D., 1993, Jour. Geophys. Res., v. 98, no. B12, p. 22,255-22,268. 3. Swanson, D.A., 1972, Science, v. 175, no. 4018, p. 169-170.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA22153.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA22153.html"><span>Investigating Mars: Arsia Mons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-28</p> <p>This VIS image shows part of the northwestern margin of the summit caldera. Along with the faults caused by the collapse of the summit materials into the void of the emptied magma chamber, there are many small lobate lava flows and collapse features. The scalloped depressions are most likely created by collapse of the roof of lava tubes. Lava tubes originate during eruption event, when the margins of a flow harden around a still flowing lava stream. When an eruption ends these can become hollow tubes within the flow. With time, the roof of the tube may collapse into the empty space below. The tubes are linear, so the collapse of the roof creates a linear depression. This image illustrates the many processes that occurred in the formation of the volcano. Arsia Mons is the southernmost of the Tharsis volcanoes. It is 270 miles (450km) in diameter, almost 12 miles (20km) high, and the summit caldera is 72 miles (120km) wide. For comparison, the largest volcano on Earth is Mauna Loa. From its base on the sea floor, Mauna Loa measures only 6.3 miles high and 75 miles in diameter. A large volcanic crater known as a caldera is located at the summit of all of the Tharsis volcanoes. These calderas are produced by massive volcanic explosions and collapse. The Arsia Mons summit caldera is larger than many volcanoes on Earth. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 17117 Latitude: -8.43321 Longitude: 239.488 Instrument: VIS Captured: 2005-10-23 16:52 https://photojournal.jpl.nasa.gov/catalog/PIA22153</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.V41A2771S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.V41A2771S"><span>Constraining the Dynamics of Periodic Behavior at Mt. Semeru, Indonesia, Combining Numerical Modeling and Field Measurements of Gas emission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smekens, J.; Clarke, A. B.; De'Michieli Vitturi, M.; Moore, G. M.</p> <p>2012-12-01</p> <p>Mt. Semeru is one of the most active explosive volcanoes on the island of Java in Indonesia. The current eruption style consists of small but frequent explosions and/or gas releases (several times a day) accompanied by continuous lava effusion that sporadically produces block-and-ash flows down the SE flank of the volcano. Semeru presents a unique opportunity to investigate the magma ascent conditions that produce this kind of persistent periodic behavior and the coexistence of explosive and effusive eruptions. In this work we use DOMEFLOW, a 1.5D transient isothermal numerical model, to investigate the dynamics of lava extrusion at Semeru. Petrologic observations from tephra and ballistic samples collected at the summit help us constrain the initial conditions of the system. Preliminary model runs produced periodic lava extrusion and pulses of gas release at the vent, with a cycle period on the order of hours, even though a steady magma supply rate was prescribed at the bottom of the conduit. Enhanced shallow permeability implemented in the model appears to create a dense plug in the shallow subsurface, which in turn plays a critical role in creating and controlling the observed periodic behavior. We measured SO2 fluxes just above the vent, using a custom UV imaging system. The device consists of two high-sensitivity CCD cameras with narrow UV filters centered at 310 and 330 nm, and a USB2000+ spectrometer for calibration and distance correction. The method produces high-frequency flux series with an accurate determination of the wind speed and plume geometry. The model results, when combined with gas measurements, and measurements of sulfur in both the groundmass and melt inclusions in eruptive products, could be used to create a volatile budget of the system. Furthermore, a well-calibrated model of the system will ultimately allow the characteristic periodicity and corresponding gas flux to be used as a proxy for magma supply rate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.1934P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.1934P"><span>Analysis of five years of continuous GPS recording at Piton de La Fournaise (R</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Peltier, A.; Staudacher, T.; Boissier, P.; Lauret, F.; Kowalski, P.</p> <p>2009-04-01</p> <p>A network of twelve permanent GPS stations has been implemented since 2004 at Piton de La Fournaise (hot spot basaltic volcano of La Réunion Island, Indian Ocean) to follow the ground deformation associated with its high eruptive activity. During the period covered by the continuous GPS recording, 12 eruptions occurred. The compilation of the data recorded between 2004 and 2008 allows us to define two time scales of ground deformation systematically associated with this eruptive activity: (1) Large short-term displacements, reaching up to 14 mm/min, monitored a few min to hours prior each eruption during magma injections toward the surface (co-eruptive deformation); (2) But also, small long-term ground displacements recorded during inter-eruptive periods. Between 2 weeks and 5 months before each eruption a slight summit inflation occurs (0.4-0.7 mm/day); whereas a post-eruptive summit deflation lasting 1 to 3 months is only recorded after the largest distal eruptions (0.3 - 1.3 mm/day). These two time scales ground deformation precursors allowed us to forecast all eruptions up to five months in advance. And the follow up of the large short-term displacement in real-time allowed us to evaluated the approximate location of the eruptive fissure a few min to hours before its opening (i.e. inside the summit crater, northern flank or southern flank). The large short-term ground displacements have been attributed to the dyke propagation toward the surface, whereas the long-term ground displacements, which were also recorded by the extensometer network since 2000, have been attributed to a continuous over pressurization of the shallow magma reservoir located at about 2300m depth. The continuous over-pressurization of the shallow magma reservoir would explain the high eruptive activity observed since 1998; 27 eruptions in 10 years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.V32A..04J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.V32A..04J"><span>Investigating the Source Mechanisms of Deflation-Inflation Events at Kilauea Volcano, Hawai`i</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Johnson, J. H.; Anderson, K. R.; Poland, M. P.; Miklius, A.</p> <p>2012-12-01</p> <p>At Kilauea Volcano, Hawai`i, cyclic deflation-inflation ("DI") events have been observed on tiltmeters since 1988. Most DI events begin with deflation at the summit that generally lasts 12-72 hours and accumulate ~1-5 microradians of tilt as measured on the rim of Kilauea Caldera, followed by inflation that is initially rapid but wanes over the course of 12-48 hours as the net deformation approaches pre-event levels. This gives the tilt events a V- or U-shaped appearance in the tilt time series, depending on the onset deflation rates. DI events are also manifested at the Pu`u `O`o eruptive vent on Kilauea's east rift zone, about 20 km along the rift from the summit, and lag summit deformation by approximately 30-90 minutes (except during 2005-2007, when summit DI events were not detected at Pu`u `O`o). The temporal correlation of tilt at the caldera and east rift zone indicates that these events affect much of Kilauea's magma plumbing system, from the summit magma reservoir to the eruption site. Large-magnitude DI events are visible in data from continuously-recording GPS stations both at Kilauea's summit and at Pu`u `O`o, and some DI events have been imaged using InSAR. Tilt events with long-lived (several days) deflation phases are usually associated with decreases in lava effusion or even eruptive pauses on the east rift zone, while large inflationary phases are often accompanied by surges in lava effusion, new breakouts, and thus increased lava flow hazard. The lava level within the summit eruptive vent, which has been continuously visible since early 2010, correlates with tilt deformation associated with DI events. Seismic tremor levels measured at Kilauea summit at times also display a relation with DI events, sometimes correlated and sometimes anti-correlated. Tilt events have become more common since the onset of Kilauea's summit eruption in March 2008, increasing from about 5-10 per year before 2008 to more than 80 in the 8 months of 2012. Two possibly inter-related mechanisms have been suggested to explain the DI events: (1) blockage and subsequent clearing of the transport pathway that feeds the shallow summit magma system and conduit to Pu`u `O`o, and (2) convective overturns caused by replacement of degassed magma with gas-rich magma. Using a simple kinematic forward model, we invert deformation data from more than 400 DI events to estimate the location and volume change of the shallow summit source generating the ground tilt, and look for changes associated with the evolution of eruptive behaviour at Kilauea. More insight into the DI events can be gained by developing a physics-based model capable of linking magmatic processes with the temporal evolution of individual DI events. We will construct multiphysics finite element models (FEMs) to simulate deformation caused by the two proposed mechanisms to link the observations to the physical processes that drive DI events. The FEMs allow us to investigate complicated model configurations that account for 3D geometric configurations, distributions of rheologic properties, and multiple deformation sources. Crucially, the models also allow for temporal variation of fluid flow and subsurface pressurization, which will provide insights into the unique patterns of tilt observed at Kilauea.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=STS066-100-027&hterms=active+volcanoes&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dactive%2Bvolcanoes','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=STS066-100-027&hterms=active+volcanoes&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dactive%2Bvolcanoes"><span>Sakura-jima volcano in Japan as seen from STS-66 Atlantis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1994-01-01</p> <p>One of the world's most active volcanoes, Sakura-jima in southern-most Kyushu, Japan, erupts dozens of times a year. Volcanic eruptions are so much a part of of daily life in the city of Kagoshima (across the bay and west of Sakura-jima), that school children wear hard hats to school. This photo provides a nice clear view of Sakura-jima on a quiet day - only a plume of steam rises from the summit crater. The summit region is covered with gray ash from the frequent eruptions, and some of the rivers cutting down the mountain (especially the western drainages) appear to be filled with volcanic debris.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-sts066-100-027.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-sts066-100-027.html"><span>Sakura-jima volcano in Japan as seen from STS-66 Atlantis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1994-11-14</p> <p>One of the world's most active volcanoes, Sakura-jima in southern-most Kyushu, Japan, erupts dozens of times a year. Volcanic eruptions are so much a part of of daily life in the city of Kagoshima (across the bay and west of Sakura-jima), that school children wear hard hats to school. This photo provides a nice clear view of Sakura-jima on a quiet day - only a plume of steam rises from the summit crater. The summit region is covered with gray ash from the frequent eruptions, and some of the rivers cutting down the mountain (especially the western drainages) appear to be filled with volcanic debris.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.V11B4723M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.V11B4723M"><span>H2O Contents of Submarine and Subaerial Silicic Pyroclasts from Oomurodashi Volcano, Northern Izu-Bonin Arc</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McIntosh, I. M.; Tani, K.; Nichols, A. R.</p> <p>2014-12-01</p> <p>Oomurodashi volcano is an active shallow submarine silicic volcano in the northern Izu-Bonin Arc, located ~20 km south of the inhabited active volcanic island of Izu-Oshima. Oomurodashi has a large (~20km diameter) flat-topped summit located at 100 - 150 metres below sea level (mbsl), with a small central crater, Oomuro Hole, located at ~200 mbsl. Surveys conducted during cruise NT12-19 of R/V Natsushima in 2012 using the remotely-operated vehicle (ROV) Hyper-Dolphin revealed that Oomuro Hole contains numerous active hydrothermal vents and that the summit of Oomurodashi is covered by extensive fresh rhyolitic lava and pumice clasts with little biogenetic or manganese cover, suggesting recent eruption(s) from Oomuro Hole. Given the shallow depth of the volcano summit, such eruptions are likely to have generated subaerial eruption columns. A ~10ka pumiceous subaerial tephra layer on the neighbouring island of Izu-Oshima has a similar chemical composition to the submarine Oomurodashi rocks collected during the NT12-19 cruise and is thought to have originated from Oomurodashi. Here we present FTIR measurements of the H2O contents of rhyolitic pumice from both the submarine deposits sampled during ROV dives and the subaerial tephra deposit on Izu-Oshima, in order to assess magma degassing and eruption processes occurring during shallow submarine eruptions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss033e018010.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss033e018010.html"><span>Earth Observation taken by the Expedition 33 crew</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2012-11-03</p> <p>ISS033-E-018010 (3 Nov. 2012) --- Volcanoes in central Kamchatka are featured in this image photographed by an Expedition 33 crew member on the International Space Station. The snow-covered peaks of several volcanoes of the central Kamchatka Peninsula are visible standing above a fairly uniform cloud deck that obscures the surrounding lowlands. In addition to the rippled cloud patterns caused by interactions of air currents and the volcanoes, a steam and ash plume is visible at center extending north-northeast from the relatively low summit (2,882 meters above sea level) of Bezymianny volcano. Volcanic activity in this part of Russia is relatively frequent, and well monitored by Russia’s Kamchatka Volcanic Eruption Response Team (KVERT). The KVERT website provides updated information about the activity levels on the peninsula, including aviation alerts and webcams. Directly to the north and northeast of Bezymianny, the much larger and taller stratovolcanoes Kamen (4,585 meters above sea level) and Kliuchevskoi (4,835 meters above sea level) are visible. Kliuchevskoi, Kamchatka’s most active volcano, last erupted in 2011 whereas neighboring Kamen has not erupted during the recorded history of the region. An explosive eruption from the summit of the large volcanic massif of Ushkovsky (3,943 meters above sea level; left) northwest of Bezymianny occurred in 1890; this is the most recent activity at this volcano. To the south of Bezymianny, the peaks of Zimina (3,081 meters above sea level) and Udina (2,923 meters above sea level) volcanoes are just visible above the cloud deck; no historical eruptions are known from either volcanic center. While the large Tobalchik volcano to the southwest (bottom center) is largely formed from a basaltic shield volcano, its highest peak (3,682 meters above sea level) is formed from an older stratovolcano. Tobalchik last erupted in 1976. While this image may look like it was taken from the normal altitude of a passenger jet, the space station was located approximately 417 kilometers above the southeastern Sea of Okhotsk; projected downwards to Earth’s surface, the space station was located over 700 kilometers to the southwest of the volcanoes in the image. The combination of low viewing angle from the orbital outpost, shadows, and height and distance from the volcanoes contributes to the appearance of topographic relief visible in the image.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70016247','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70016247"><span>Carbon isotope constraints on degassing of carbon dioxide from Kilauea Volcano</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Gerlach, T.M.; Taylor, B.E.</p> <p>1990-01-01</p> <p>We examine models for batch-equilibrium and fractional-equilibrium degassing of CO2 from magma at Kilauea Volcano. The models are based on 1. (1) the concept of two-stage degassing of CO2 from magma supplied to the summit chamber, 2. (2) C isotope data for CO2 in eruptive and noneruptive (quiescent) gases from Kilauea and 3. (3) data for the isotopic fractionation of C between CO2 and C dissolved in tholeiitic basalt melt. The results of our study indicate that 1. (1) both eruptive and noneruptive degassing of CO2 most closely approach a batch equilibrium process, 2. (2) the ??13C of parental magma supplied to the summit chamber is in the range -4.1 to-3.4??? and 3. (3) the ??13C of melt after summit chamber degassing is in the range -7 to -8???, depending upon the depth of equilibration. We also present ??13C data for CO2 in eruptive gases from the current East Rift Zone eruption. These are the first C isotope data for CO2 in high-temperature (>900??C) eruptive gases from Kilauea; they have a mean ??13C value of -7.82 ?? 0.24??? and are similar to those predicted for the melt after summit chamber degassing. The minor role played by fractional degassing of ascending magma at Kilauea means that exsolved CO2 tends to remain entrained in and coherent with its host melt during ascent from both mantle source regions and crustal magma reservoirs. This has important implications for magma dynamics at Kilauea. ?? 1990.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008JVGR..175..325B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008JVGR..175..325B"><span>Incorporating the eruptive history in a stochastic model for volcanic eruptions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bebbington, Mark</p> <p>2008-08-01</p> <p>We show how a stochastic version of a general load-and-discharge model for volcanic eruptions can be implemented. The model tracks the history of the volcano through a quantity proportional to stored magma volume. Thus large eruptions can influence the activity rate for a considerable time following, rather than only the next repose as in the time-predictable model. The model can be fitted to data using point-process methods. Applied to flank eruptions of Mount Etna, it exhibits possible long-term quasi-cyclic behavior, and to Mauna Loa, a long-term decrease in activity. An extension to multiple interacting sources is outlined, which may be different eruption styles or locations, or different volcanoes. This can be used to identify an 'average interaction' between the sources. We find significant evidence that summit eruptions of Mount Etna are dependent on preceding flank eruptions, with both flank and summit eruptions being triggered by the other type. Fitted to Mauna Loa and Kilauea, the model had a marginally significant relationship between eruptions of Mauna Loa and Kilauea, consistent with the invasion of the latter's plumbing system by magma from the former.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999BVol...61..207C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999BVol...61..207C"><span>Pyroclastic deposits as a guide for reconstructing the multi-stage evolution of the Somma-Vesuvius Caldera</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cioni, Raffaello; Santacroce, Roberto; Sbrana, Alessandro</p> <p></p> <p>The evolution of the Somma-Vesuvius caldera has been reconstructed based on geomorphic observations, detailed stratigraphic studies, and the distribution and facies variations of pyroclastic and epiclastic deposits produced by the past 20,000years of volcanic activity. The present caldera is a multicyclic, nested structure related to the emptying of large, shallow reservoirs during Plinian eruptions. The caldera cuts a stratovolcano whose original summit was at 1600-1900m elevation, approximately 500m north of the present crater. Four caldera-forming events have been recognized, each occurring during major Plinian eruptions (18,300 BP "Pomici di Base", 8000 BP "Mercato Pumice", 3400 BP "Avellino Pumice" and AD 79 "Pompeii Pumice"). The timing of each caldera collapse is defined by peculiar "collapse-marking" deposits, characterized by large amounts of lithic clasts from the outer margins of the magma chamber and its apophysis as well as from the shallow volcanic and sedimentary units. In proximal sites the deposits consist of coarse breccias resulting from emplacement of either dense pyroclastic flows (Pomici di Base and Pompeii eruptions) or fall layers (Avellino eruption). During each caldera collapse, the destabilization of the shallow magmatic system induced decompression of hydrothermal-magmatic and hydrothermal fluids hosted in the wall rocks. This process, and the magma-ground water interaction triggered by the fracturing of the thick Mesozoic carbonate basement hosting the aquifer system, strongly enhanced the explosivity of the eruptions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.S53E..06B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.S53E..06B"><span>Relative velocity changes using ambient seismic noise at Okmok and Redoubt volcanoes, Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bennington, N. L.; Haney, M. M.; De Angelis, S.; Thurber, C. H.</p> <p>2013-12-01</p> <p>Okmok and Redoubt are two of the most active volcanoes in the Aleutian Arc. Leading up to its most recent eruption, Okmok, a shield volcano on Umnak Island, showed precursors to volcanic activity only five hours before it erupted explosively in July 2008. Redoubt, a stratovolcano located along the Cook Inlet, displayed several months of precursory activity leading up to its March 2009 eruption. Frequent activity at both volcanoes poses a major hazard due to heavy traffic along the North Pacific air routes. Additionally, Okmok is adjacent to several of the world's most productive fisheries and Redoubt is located only 110 miles SW of Anchorage, the major population center of Alaska. For these reasons, it is imperative that we improve our ability to detect early signs of unrest, which could potentially lead to eruptive activity at these volcanoes. We take advantage of continuous waveforms recorded on seismic networks at Redoubt and Okmok in an attempt to identify seismic precursors to the recent eruptions at both volcanoes. We perform seismic interferometry using ambient noise, following Brenguier et al. (2008), in order to probe the subsurface and determine temporal changes in relative seismic velocity from pre- through post-eruption, for the 2008 Okmok and 2009 Redoubt eruptions. In a preliminary investigation, we analyzed 6 months of noise cross-correlation functions averaged over 10-day intervals leading up to the 2009 eruption at Redoubt. During February 2009, station pairs RSO-DFR and RDN-RSO showed a decrease in seismic velocity of ~0.02%. By the beginning of March, the relative velocity changes returned to background levels. Stations RSO and RDN are located within the summit breach, and station DFR is to the north. Although these results are preliminary, it is interesting to note that the decrease in seismic velocity at both station pairs overlaps with the time period when Grapenthin et al. (2012) hypothesize magma in the mid-to-deep crustal reservoir was reheated and migrated to a second shallow reservoir between 2 and 4.5 km depth. This hypothesized shallow magma reservoir is within the sensitivity depth of our ambient noise analysis, and thus the decrease in seismic velocity may be associated with magma movement at shallow depths underneath Redoubt. At the onset of eruption, the relative velocity change at station pair RDN-RSO decreased by ~0.03% while that at RSO-DFR remained at background levels. Notably, this decrease in seismic velocity is observed only at the station pair with a propagation path that traverses the summit breach. Our investigation continues as we search for time variations in the ambient seismic noise signal preceding and following the 2008 Okmok and 2009 Redoubt eruptions and endeavor to identify what those changes may represent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.V23A3076V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.V23A3076V"><span>Seismic time-frequency analysis of the recent 2015 eruptive activity of Volcán de Colima, Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vargas-Bracamontes, D. M.; Nava Pichardo, F. A.; Reyes Dávila, G. A.; Arámbula-Mendoza, R.; Martínez Fierros, A.; Ramírez Vázquez, A.; González Amezcua, M.</p> <p>2015-12-01</p> <p>Volcán de Colima is an andesitic stratovolcano located in western Mexico. It is considered the most active volcano in Mexico, with activity characterized mainly by intermittent effusive and explosive episodes. On July 10th-12th 2015, Volcán de Colima underwent its most intense eruptive phase since its Plinian eruption in 1913. A partial collapse of the dome and of the crater wall generated several pyroclastic flows, the largest of which reached almost 10 km to the south of the volcano. Lava flows along with incandescent rockfalls descended through various flanks of the volcanic edifice. Ashfall affected people up to 40 km from the volcano's summit. Inhabitants from the small villages closest to the volcano were evacuated and authorities sealed off a 12 km area. We present an overview of the seismic activity that preceded and accompanied this eruptive phase, with data from the closest broadband and short period seismic stations of the Volcán de Colima monitoring network. We focus on the search of temporal information within the spectral content of the seismic signals. We first employ common time-frequency representations such as Fourier and wavelet transforms, but we also apply more recent techniques proposed for the analysis of non-stationary signals, such as empirical mode decomposition and the synchrosqueezing transform. We present and discuss the performances of these various methods characterizing and quantifying spectral changes which could be used to forecast future eruptive events and to evaluate the course of volcanic processes during ongoing eruptions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=MSFC-0203323&hterms=active+volcanoes&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dactive%2Bvolcanoes','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=MSFC-0203323&hterms=active+volcanoes&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dactive%2Bvolcanoes"><span>Erupting Volcano Mount Etna</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2002-01-01</p> <p>Expedition Five crew members aboard the International Space Station (ISS) captured this overhead look at the smoke and ash regurgitated from the erupting volcano Mt. Etna on the island of Sicily, Italy in October 2002. Triggered by a series of earthquakes on October 27, 2002, this eruption was one of Etna's most vigorous in years. This image shows the ash plume curving out toward the horizon. The lighter-colored plumes down slope and north of the summit seen in this frame are produced by forest fires set by flowing lava. At an elevation of 10,990 feet (3,350 m), the summit of the Mt. Etna volcano, one of the most active and most studied volcanoes in the world, has been active for a half-million years and has erupted hundreds of times in recorded history.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.V43A3138H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.V43A3138H"><span>Swarms of small earthquakes on Marapi Volcano, West Sumatra, Indonesia: are these precursors to explosion event?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hidayat, D.; Patria, C.; Adi, S.; Gunawan, H.; Taisne, B.; Nurfiani, D.; Tan, C. T.</p> <p>2016-12-01</p> <p>Marapi Volcano's activity is characterized by Strombolian to small Vulcanian explosions with occasional VEI 2 producing tephra and pyroclastic flows. Currently in collaboration between Earth Observatory of Singapore (EOS) and Centre for Volcanology and Geological Hazard Mitigation (CVGHM) the volcano is seismically monitored with 7 broadband stations, and 2 short-period stations. In addition, we deployed 2 tiltmeters and an experimental soil CO2 sensor. These stations are telemetered by 5.8GHz radio to Marapi Observatory Post where data are archived and displayed for Marapi observers for their daily volcano activity monitoring work. We also archive the data in the EOS and CVGHM main offices. Data are being utilized by volcano scientists of CVGHM and researchers in both institutes as well as university students in and around them. We presented seismic earthquake sequences (swarm) prior to small explosion on Marapi in July 2016. These earthquakes are small, better identified after the deployment of seismic stations at summit, and located at depths < 1km near the volcano active vents. Similar swarms occurred prior to small explosions of Marapi. We also presented VLP-LP signals associated with an explosion which can be explained as volumetric change of sub-vertical crack at depth similar to the occurrence of small earthquake swarms. Our study attempt to understand the state of the volcano based on monitoring data and enable us to better estimate the hazards associated with future small explosions or eruptions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss020e009048.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss020e009048.html"><span>Earth Observations taken by the Expedition 20 crew</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2009-06-12</p> <p>ISS020-E-009048 (12 June 2009) --- Sarychev Peak Volcano eruption, Kuril Islands, is featured in this image photographed by an Expedition 20 crew member on the International Space Station. A fortuitous orbit of the International Space Station allowed the astronauts this striking view of Sarychev volcano (Russia?s Kuril Islands, northeast of Japan) in an early stage of eruption on June 12, 2009. Sarychev Peak is one of the most active volcanoes in the Kuril Island chain and is located on the northwestern end of Matua Island. Prior to June 12, the last explosive eruption had occurred in 1989 with eruptions in 1986, 1976, 1954, and 1946 also producing lava flows. Ash from the June 2009 eruption has been detected 2407 kilometers ESE and 926 kilometers WNW of the volcano, and commercial airline flights are being diverted away from the region to minimize the danger of engine failures from ash intake. This detailed photograph is exciting to volcanologists because it captures several phenomena that occur during the earliest stages of an explosive volcanic eruption. The main column is one of a series of plumes that rose above Matua Island (48.1 degrees north latitude and 153.2 degrees east longitude) on June 12. The plume appears to be a combination of brown ash and white steam. The vigorously rising plume gives the steam a bubble-like appearance; the surrounding atmosphere has been shoved up by the shock wave of the eruption. The smooth white cloud on top may be water condensation that resulted from rapid rising and cooling of the air mass above the ash column, and is probably a transient feature (the eruption plume is starting to punch through). The structure also indicates that little to no shearing winds were present at the time to disrupt the plume. Another series of images, acquired 2-3 days after the start of eruptive activity, illustrate the effect of shearing winds on extent of the ash plumes across the Pacific Ocean. By contrast, a cloud of denser, gray ash ? most probably a pyroclastic flow -- appears to be hugging the ground, descending from the volcano summit. The rising eruption plume casts a shadow to the northwest of the island (bottom center). Brown ash at a lower altitude of the atmosphere spreads out above the ground at upper right. Low-level stratus clouds approach Matua Island from the east, wrapping around the lower slopes of the volcano. Only about 1.5 kilometers of the coastline of Matua Island (upper center) can be seen beneath the clouds and ash.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://ngmdb.usgs.gov/Prodesc/proddesc_68315.htm','USGSPUBS'); return false;" href="http://ngmdb.usgs.gov/Prodesc/proddesc_68315.htm"><span>Geologic Map of the Summit Region of Kilauea Volcano, Hawaii</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Neal, Christina A.; Lockwood, John P.</p> <p>2003-01-01</p> <p>This report consists of a large map sheet and a pamphlet. The map shows the geology, some photographs, description of map units, and correlation of map units. The pamphlet gives the full text about the geologic map. The area covered by this map includes parts of four U.S. Geological Survey 7.5' topographic quadrangles (Kilauea Crater, Volcano, Ka`u Desert, and Makaopuhi). It encompasses the summit, upper rift zones, and Koa`e Fault System of Kilauea Volcano and a part of the adjacent, southeast flank of Mauna Loa Volcano. The map is dominated by products of eruptions from Kilauea Volcano, the southernmost of the five volcanoes on the Island of Hawai`i and one of the world's most active volcanoes. At its summit (1,243 m) is Kilauea Crater, a 3 km-by-5 km collapse caldera that formed, possibly over several centuries, between about 200 and 500 years ago. Radiating away from the summit caldera are two linear zones of intrusion and eruption, the east and the southwest rift zones. Repeated subaerial eruptions from the summit and rift zones have built a gently sloping, elongate shield volcano covering approximately 1,500 km2. Much of the volcano lies under water; the east rift zone extends 110 km from the summit to a depth of more than 5,000 m below sea level; whereas the southwest rift zone has a more limited submarine continuation. South of the summit caldera, mostly north-facing normal faults and open fractures of the Koa`e Fault System extend between the two rift zones. The Koa`e Fault System is interpreted as a tear-away structure that accommodates southward movement of Kilauea's flank in response to distension of the volcano perpendicular to the rift zones.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70175543','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70175543"><span>Fundamental changes in the activity of the natrocarbonatite volcano Oldoinyo Lengai, Tanzania</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kervyn, M.; Ernst, G.G.J.; Keller, J.; Vaughan, R. Greg; Klaudius, J.; Pradal, E.; Belton, F.; Mattsson, H.B.; Mbede, E.; Jacobs, P.M.</p> <p>2010-01-01</p> <p>On September 4, 2007, after 25 years of effusive natrocarbonatite eruptions, the eruptive activity of Oldoinyo Lengai (OL), N Tanzania, changed abruptly to episodic explosive eruptions. This transition was preceded by a voluminous lava eruption in March 2006, a year of quiescence, resumption of natrocarbonatite eruptions in June 2007, and a volcano-tectonic earthquake swarm in July 2007. Despite the lack of ground-based monitoring, the evolution in OL eruption dynamics is documented based on the available field observations, ASTER and MODIS satellite images, and almost-daily photos provided by local pilots. Satellite data enabled identification of a phase of voluminous lava effusion in the 2 weeks prior to the onset of explosive eruptions. After the onset, the activity varied from 100 m high ash jets to 2–15 km high violent, steady or unsteady, eruption columns dispersing ash to 100 km distance. The explosive eruptions built up a ∼400 m wide, ∼75 m high intra-crater pyroclastic cone. Time series data for eruption column height show distinct peaks at the end of September 2007 and February 2008, the latter being associated with the first pyroclastic flows to be documented at OL. Chemical analyses of the erupted products, presented in a companion paper (Keller et al.2010), show that the 2007–2008 explosive eruptions are associated with an undersaturated carbonated silicate melt. This new phase of explosive eruptions provides constraints on the factors causing the transition from natrocarbonatite effusive eruptions to explosive eruptions of carbonated nephelinite magma, observed repetitively in the last 100 years at OL.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70023787','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70023787"><span>Constraints on dike propagation from continuous GPS measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Segall, P.; Cervelli, Peter; Owen, S.; Lisowski, M.; Miklius, Asta</p> <p>2001-01-01</p> <p>The January 1997 East Rift Zone eruption on Kilauea volcano, Hawaii, occurred within a network of continuous Global Positioning System (GPS) receivers. The GPS measurements reveal the temporal history of deformation during dike intrusion, beginning ??? 8 hours prior to the onset of the eruption. The dike volume as a function of time, estimated from the GPS data using elastic Green's functions for a homogeneous half-space, shows that only two thirds of the final dike volume accumulated prior to the eruption and the rate of volume change decreased with time. These observations are inconsistent with simple models of dike propagation, which predict accelerating dike volume up to the time of the eruption and little or no change thereafter. Deflationary tilt changes at Kilauea summit mirror the inferred dike volume history, suggesting that the rate of dike propagation is limited by flow of magma into the dike. A simple, lumped parameter model of a coupled dike magma chamber system shows that the tendency for a dike to end in an eruption (rather than intrusion) is favored by high initial dike pressures, compressional stress states, large, compressible magma reservoirs, and highly conductive conduits linking the dike and source reservoirs. Comparison of model predictions to the observed dike volume history, the ratio of erupted to intruded magma, and the deflationary history of the summit magma chamber suggest that most of the magma supplied to the growing dike came from sources near to the eruption through highly conductive conduits. Interpretation is complicated by the presence of multiple source reservoirs, magma vesiculation and cooling, as well as spatial variations in dike-normal stress. Reinflation of the summit magma chamber following the eruption was measured by GPS and accompanied a rise in the level of the Pu'u O'o lava lake. For a spheroidal chamber these data imply a summit magma chamber volume of ??? 20 km3, consistent with recent estimates from seismic tomography. Continuous deformation measurements can be used to image the spatiotemporal evolution of propagating dikes and to reveal quantitative information about the volcanic plumbing systems. Copyright 2001 by the American Geophysical Union.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001JGR...10619301S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001JGR...10619301S"><span>Constraints on dike propagation from continuous GPS measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Segall, Paul; Cervelli, Peter; Owen, Susan; Lisowski, Mike; Miklius, Asta</p> <p>2001-09-01</p> <p>The January 1997 East Rift Zone eruption on Kilauea volcano, Hawaii, occurred within a network of continuous Global Positioning System (GPS) receivers. The GPS measurements reveal the temporal history of deformation during dike intrusion, beginning ˜8 hours prior to the onset of the eruption. The dike volume as a function of time, estimated from the GPS data using elastic Green's functions for a homogeneous half-space, shows that only two thirds of the final dike volume accumulated prior to the eruption and the rate of volume change decreased with time. These observations are inconsistent with simple models of dike propagation, which predict accelerating dike volume up to the time of the eruption and little or no change thereafter. Deflationary tilt changes at Kilauea summit mirror the inferred dike volume history, suggesting that the rate of dike propagation is limited by flow of magma into the dike. A simple, lumped parameter model of a coupled dike magma chamber system shows that the tendency for a dike to end in an eruption (rather than intrusion) is favored by high initial dike pressures, compressional stress states, large, compressible magma reservoirs, and highly conductive conduits linking the dike and source reservoirs. Comparison of model predictions to the observed dike volume history, the ratio of erupted to intruded magma, and the deflationary history of the summit magma chamber suggest that most of the magma supplied to the growing dike came from sources near to the eruption through highly conductive conduits. Interpretation is complicated by the presence of multiple source reservoirs, magma vesiculation and cooling, as well as spatial variations in dike-normal stress. Reinflation of the summit magma chamber following the eruption was measured by GPS and accompanied a rise in the level of the Pu'u O'o lava lake. For a spheroidal chamber these data imply a summit magma chamber volume of ˜20 km3, consistent with recent estimates from seismic tomography. Continuous deformation measurements can be used to image the spatiotemporal evolution of propagating dikes and to reveal quantitative information about the volcanic plumbing systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.V31E0715S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.V31E0715S"><span>Study New Pregress on Volcanic Phreatomagmatic Eruption</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sun, Q.; Fan, Q.; Li, N.</p> <p>2007-12-01</p> <p>As an essential and important type of volcanic eruption on earth, phreatomagmatic eruption is characterized by groundwater-related explosive eruption and subsequent base surge deposit and maar lakes. Base surge deposit and maar lakes are widely distributed all over the world, and also in the Northeast China and the southern China. Study of phreatomagmatic eruption maybe dated back to 1921, and in the following over 80 years, many works have been done on phreatomagmatic eruption, using various of methods of volcanic geology, petrology, sedimentology, physical volcanology and digital modeling, to discuss its origin and mechanism. In this paper, we focus on the geological feature of the base surge deposit and dynamic mechanism of the phreatomagmatic eruption. When ascending basaltic magma meets with ground ( surface ) water, violent explosion would occur, this action was called phreatomagmatic eruption. The main product of this kind of eruption are maars and base surge. As to the base surge, it has long been treated as sedimentary tuff by mistake. Usually, base surge is distributed around maar, different from the distribution of sedimentary tuff. Typical phenomena of base surge caused by phreatomagmatic eruption can be observed through the detail field work, such as large-scale and low-angle cross-bedding, slaty-bedding, current-bedding and distal facies accretionary lapilli. In order to explain the dynamic mechanism of phreatomagmatic eruption thoroughly, we propose a simple model in this paper in light of the elasticity theory. Some conclusions can be drawn as follows: the larger the radius of maar, the larger the explosive wallop needed for the formation of maar is; provided that the radius of maar and depth of explosive point are limited, then the larger the area of contact surface between magma and groundwater, the stronger the explosive energy will be; if the explosive energy and area of explosive point are restricted, the larger the radius of maar, the greater the depth of explosive point can be inferred; when the explosive energy and radius of maar are qualified, the depth of explosive point decreases with increasing of the area of contact surface between magma and groundwater. As for the maximum stress, undoubtedly it should occur on the surface of the overlying formation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2003/0112/pdf/of03-112.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2003/0112/pdf/of03-112.pdf"><span>Preliminary volcano-hazard assessment for Great Sitkin Volcano, Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Waythomas, Christopher F.; Miller, Thomas P.; Nye, Christopher J.</p> <p>2003-01-01</p> <p>Great Sitkin Volcano is a composite andesitic stratovolcano on Great Sitkin Island (51°05’ N latitude, 176°25’ W longitude), a small (14 x 16 km), circular volcanic island in the western Aleutian Islands of Alaska. Great Sitkin Island is located about 35 kilometers northeast of the community of Adak on Adak Island and 130 kilometers west of the community of Atka on Atka Island. Great Sitkin Volcano is an active volcano and has erupted at least eight times in the past 250 years (Miller and others, 1998). The most recent eruption in 1974 caused minor ash fall on the flanks of the volcano and resulted in the emplacement of a lava dome in the summit crater. The summit of the composite cone of Great Sitkin Volcano is 1,740 meters above sea level. The active crater is somewhat lower than the summit, and the highest point along its rim is about 1,460 meters above sea level. The crater is about 1,000 meters in diameter and is almost entirely filled by a lava dome emplaced in 1974. An area of active fumaroles, hot springs, and bubbling hot mud is present on the south flank of the volcano at the head of Big Fox Creek (see the map), and smaller ephemeral fumaroles and steam vents are present in the crater and around the crater rim. The flanking slopes of the volcano are gradual to steep and consist of variously weathered and vegetated blocky lava flows that formed during Pleistocene and Holocene eruptions. The modern edifice occupies a caldera structure that truncates an older sequence of lava flows and minor pyroclastic rocks on the east side of the volcano. The eastern sector of the volcano includes the remains of an ancestral volcano that was partially destroyed by a northwest-directed flank collapse. In winter, Great Sitkin Volcano is typically completely snow covered. Should explosive pyroclastic eruptions occur at this time, the snow would be a source of water for volcanic mudflows or lahars. In summer, much of the snowpack melts, leaving only a patchy distribution of snow on the volcano. Glacier ice is no longer present on the volcano or on other parts of Great Sitkin Island as previously reported by Simons and Mathewson (1955). Great Sitkin Island is presently uninhabited and is part of the Alaska Maritime National Wildlife Refuge, managed by the U.S. Fish and Wildlife Service.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70009726','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70009726"><span>InSAR observations of deformation associated with new episodes of volcanism at Kilauea Volcano, Hawai'i, 2007</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Poland, Michael P.</p> <p>2008-01-01</p> <p>In June 2007, the Pu'u 'Ō'ō-Kūpaianaha eruption of Kīlauea Volcano was interrupted when magma intruded the east rift zone (ERZ), resulting in a small extrusion of lava near Makaopuhi Crater. Deformation associated with the activity was exceptionally well-documented by ASAR interferometry, which indicates deflation of the summit and uplift and extension of the ERZ. Models of co-intrusion interferograms suggest that the dike was emplaced in two distinct segments. The modeled volume of the dike greatly exceeds that of the deflation source, raising the possibility that magma from the downrift Pu'u 'Ō'ō vent (dominant extrusion site at Kīlauea since 1983) contributed to the eruption near Makaopuhi, or that the magma that fed the eruption from the summit was compressible. A month following the Makaopuhi eruption, an eruptive fissure opened on the east flank of Pu'u 'Ō'ō. Interferograms, processed within 48 hours of the event, were critical in demonstrating that the magma source feeding the eruption was shallow. The eruption probably resulted from overpressure in Pu'u 'Ō'ō's magmatic system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.V12B..06R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.V12B..06R"><span>3-D Resistivity Structure of La Soufrière Volcano (Guadeloupe): New Insights into the Hydrothermal System and Associated Hazards</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rosas-Carbajal, M.; Nicollin, F.; Komorowski, J. C.; Gibert, D.; Deroussi, S.</p> <p>2015-12-01</p> <p>The 3-D electrical resistivity model of the dome of La Soufrière of Guadeloupe volcano was obtained by inverting more than 23000 electrical resistivity tomography (ERT) and mise-a-la-masse data points. Data acquisition involved 2-D and 3-D protocols, including several pairs of injection electrodes located on opposite sides of the volcano. For the mise-a-la-masse measurements, the contact with a conductive mass was achieved by immersing one of the current electrodes in the Tarissan acid pond (~25 Siemens/m) located in the volcano's summit. The 3-D inversion was performed using a deterministic smoothness-constrained least-squares algorithm with unstructured grid modeling to accurately account for topography. Resistivity contrasts of more than 4 orders of magnitude are observed. A thick and high-angle conductive structure is located in the volcano's southern flank. It extends from the Tarissan Crater's acid pond on the summit to a hot spring region located close to the dome's southern base. This suggests that a large hydrothermal reservoir is located below the southern base of the dome, and connected to the acid pond of the summit's main crater. Therefore, the steep southern flanks of the volcano could be resting on a low-strength, high-angle discontinuity saturated with circulating and possibly pressurized hydrothermal fluids. This could favor partial edifice collapse and lateral directed explosions as shown recurrently in the volcano's history. The resistivity model also reveals smaller hydrothermal reservoirs in the south-east and northern flanks that are linked to the main historical eruptive fractures and to ancient collapse structures such as the Cratère Amic structure. We discuss the main resistivity structures in relation with the geometry of observed faults, historical eruptive fractures, the dynamics of the near surface hydrothermal system manifestations on the dome and the potential implications for future hazards scenarios .</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMNH13B1377S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMNH13B1377S"><span>Hazard maps of Colima volcano, Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Suarez-Plascencia, C.; Nunez-Cornu, F. J.; Escudero Ayala, C. R.</p> <p>2011-12-01</p> <p>Colima volcano, also known as Volcan de Fuego (19° 30.696 N, 103° 37.026 W), is located on the border between the states of Jalisco and Colima and is the most active volcano in Mexico. Began its current eruptive process in February 1991, in February 10, 1999 the biggest explosion since 1913 occurred at the summit dome. The activity during the 2001-2005 period was the most intense, but did not exceed VEI 3. The activity resulted in the formation of domes and their destruction after explosive events. The explosions originated eruptive columns, reaching attitudes between 4,500 and 9,000 m.a.s.l., further pyroclastic flows reaching distances up to 3.5 km from the crater. During the explosive events ash emissions were generated in all directions reaching distances up to 100 km, slightly affected nearby villages as Tuxpan, Tonila, Zapotlán, Cuauhtemoc, Comala, Zapotitlan de Vadillo and Toliman. During the 2005 this volcano has had an intense effusive-explosive activity, similar to the one that took place during the period of 1890 through 1900. Intense pre-plinian eruption in January 20, 1913, generated little economic losses in the lower parts of the volcano due to low population density and low socio-economic activities at the time. Shows the updating of the volcanic hazard maps published in 2001, where we identify whit SPOT satellite imagery and Google Earth, change in the land use on the slope of volcano, the expansion of the agricultural frontier on the east and southeast sides of the Colima volcano, the population inhabiting the area is approximately 517,000 people, and growing at an annual rate of 4.77%, also the region that has shown an increased in the vulnerability for the development of economic activities, supported by the construction of highways, natural gas pipelines and electrical infrastructure that connect to the Port of Manzanillo to Guadalajara city. The update the hazard maps are: a) Exclusion areas and moderate hazard for explosive events (rockfall) and pyroclastic flows, b) Hazard map of lahars and debris flow, and c) Hazard map of ash-fall. The cartographic and database information obtained will be the basis for updating the Operational Plan of the Colima Volcano by the State Civil & Fire Protection Unit of Jalisco, Mexico, and the urban development plans of surrounding municipalities, in order to reduce their vulnerability to the hazards of the volcanic activity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMPA43C2208H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMPA43C2208H"><span>Can North Korean Nuclear Explosions Stir Baekdu (Changbai) Volcano to be Erupted?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hong, T. K.; Choi, E.; Park, S.; Shin, J. S.</p> <p>2015-12-01</p> <p>Potential volcanic eruption in Mt. Baekdu (Changbai) hasbeen a long-lasting concern in the far-eastern Asia.There were several explosive eruptions historically. Themost recent eruption was made in 1903. The eruption in969 is believed to be the most violent with volcanicexplosivity index of 7. The volcano is located in ~130 kmaway from the North Korean nuclear explosion test sitewhere three moderate-size nuclear explosions withmagnitudes of 4.3, 4.7 and 5.1 were conducted in 2006,2009 and 2013. There is increasing concern that a largenuclear explosion may trigger volcanic eruption. Seismicwaveforms are subtle to vary with the crustal structure.The strong ground motions generated by a potential largenuclear explosion are difficult to be simulated forvolcanic regions where complex crustal structures areexpected. We calculate the ground motions by hypotheticallarge nuclear explosions using a nuclear-explosion sourcemodel and the seismic waveforms of prior nuclearexplosions. The validity of the method is examined bycomparing the observed and quasi-synthetic seismicwaveforms of prior nuclear explosions. The peak groundaccelerations (PGA) around the volcano are estimated froma PGA attenuation equation that was determined based onseismic waveforms from natural earthquakes. Thehorizontal and vertical PGAs by an M7.0 undergroundnuclear explosion are expected to reach 0.14 and 0.11m/s2 at the volcano, inducing a dynamic stress in themagma chamber. The induced pressure change in the magmachamber is verified by numerical modeling of dynamicstress changes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.V52B..01P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.V52B..01P"><span>The Consequences of Increased Magma Supply to Kilauea Volcano, Hawai`i</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Poland, M.; Miklius, A.; Sutton, A. J.; Orr, T.</p> <p>2007-12-01</p> <p>The summer of 2007 was a time of intense activity at Kilauea. By mid-2007, ~4 years of summit inflation had uplifted and extended the caldera by 30 cm and 55 cm, respectively. Lava continued to erupt from the Pu`u `O`o vent on the east rift zone (ERZ) during the inflation. On May 24, 2007, two M4+ normal-faulting earthquakes occurred on caldera-bounding faults southeast of the summit. The seismicity did not affect summit inflation, which continued until June 17 when a dike intruded the upper and middle ERZ, causing a pause in the eruption, collapse of Pu`u `O`o's floor, and a small eruption 6 km uprift of Pu`u `O`o. The inflated state of the summit, relative timing of summit deflation and east rift zone extension, and abundant co-intrusive earthquake activity suggest forcible intrusion of magma. Lava returned to Pu`u `O`o by July 2, forming a lake that gradually refilled much of the collapsed crater. Early on July 21, the lake drained suddenly, the cone began to collapse, and a 2-km-long series of discontinuous eruptive fissures opened on and beyond the east flank of Pu`u `O`o. Sesimicity in Kilauea's south flank has been elevated since June and several M3+ earthquakes have occurred there, including a M5.4 on August 13. An increase in magma supply to Kilauea's shallow magmatic system is the probable cause for the events of summer 2007. Summit inflation since 2003 occurred during a period of constant or increasing magma supply to Pu`u `O`o, based on SO2 emissions from the ERZ. The rate of inflation increased markedly in early 2006, and uplift also began in the southwest rift zone. CO2 emissions at the summit, indicative of the quantity of magma degassing beneath Kilauea's caldera, more than doubled between 2003 and 2006. Also since 2003, the ERZ immediately downrift of Pu`u `O`o extended, and subsidence in the lower ERZ ceased. Together, these factors suggest that the magma supply rate to Kilauea's shallow magmatic system (the summit and rift zones above about 5 km depth) approximately doubled between 2003 and 2006. Subsequent volcanic and earthquake activity, including the events of mid-2007, are probably a result (either directly or indirectly) of this increase.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JVGR..332..109N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JVGR..332..109N"><span>Holocene tephra succession of Puyehue-Cordón Caulle and Antillanca/Casablanca volcanic complexes, southern Andes (40-41°S)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Naranjo, J. A.; Singer, B. S.; Jicha, B. R.; Moreno, H.; Lara, L. E.</p> <p>2017-02-01</p> <p>Puyehue-Cordón Caulle and Antillanca volcanic complexes are two of at least 50 active frontal arc volcanoes that define the 1400 km-long Southern Volcanic Zone of Chile. Holocene tephra deposits in Chile and Argentina (40-41°S) up to 100 km east of these volcanoes comprise at least five voluminous ( 1 to 8 km3) pyroclastic-fall layers that preceded several recently deposited Cordón Caulle pumice fallouts. Field observations of proximal, medium, and distal facies of the deposits, in conjunction with geochronology and geochemistry of the volcanic complexes, indicate that three fall layers are derived from Puyehue volcano (Puyehue 1 and 2, and Mil Hojas), whereas two are sourced from the Antillanca complex (Playas Blanca-Negra, and Nahuel Huapi Tephra), 20 km to the south. The oldest tephra (calibrated 14C age 10.49 ± 0.12 ka, 2σ), found only at medium-distal facies, is deposited directly on granitic moraine boulders and consists of deeply weathered, orange dacitic pumice lapilli. The next prominent tephra at 7 ka comprises dacitic pumice and its age is equivalent to a rhyodacitic dome exposed in the Puyehue summit crater. Above these deposits there are phases of a complex eruption consisting of a conspicuous compositionally-zoned tephra. It also comprises a pyroclastic density current, together with lithic rich and scoriaceous fallout deposits. Mineralogical, geochemical, and Sr isotope evidence, plus the isopach maps, confirm that this sequence of eruptive events is sourced from Antillanca at 1932 ± 68 yrBP. The total volume of this eruptive sequence exceeds 8 km3, making it the largest Holocene eruption from either volcanic complex. This eruption was likely responsible for the destruction of an ancestral Antillanca volcano and the formation of a 4.5 km diameter caldera. A distinctive younger unit in the region is a voluminous rhyodacitic pumice fall (calibrated 14C age 1.11 ± 0.07 ka), above which a series of several alternating dark lithic and pumice lapilli beds accumulated. Correlation with proximal deposits indicates that the 1.11 ka eruption was derived from Puyehue and destroyed 3 km3 of rhyodacitic domes at this volcano summit. Historic explosive activity at the nascent Casablanca volcano and along Cordón Caulle, including the 2011-2012 eruption ( 1 km3 of uncompacted pumice), the largest from this fissural zone, emphasizes an increased risk for volcanic hazards in central Chile and Argentina.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70027989','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70027989"><span>Seismic signature of a phreatic explosion: Hydrofracturing damage at Karthala volcano, Grande Comore Island, Indian Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Savin, C.; Grasso, J.-R.; Bachelery, P.</p> <p>2005-01-01</p> <p>Karthala volcano is a basaltic shield volcano with an active hydrothermal system that forms the southern two-thirds of the Grande Comore Island, off the east coat of Africa, northwest of Madagascar. Since the start of volcano monitoring by the local volcano observatory in 1988, the July 11th, 1991 phreatic eruption was the first volcanic event seismically recorded on this volcano, and a rare example of a monitored basaltic shield. From 1991 to 1995 the VT locations, 0.5<Ml<4.3, show a crack shaped pattern (3 km long, 1 km wide) within the summit caldera extending at depth from -2 km to +2 km relative to sea level. This N-S elongated pattern coincides with the direction of the regional maximum horizontal stress as deduced from regional focal mechanism solutions. This brittle signature of the damage associated with the 1991 phreatic eruption is a typical pattern of the seismicity induced by controlled fluid injections such as those applied at geothermal fields, in oil and gas recovery, or for stress measurements. It suggests the 1991 phreatic eruption was driven by hydraulic fracturing induced by forced fluid flow. We propose that the extremely high LP and VT seismicity rates, relative to other effusive volcanoes, during the climax of the 1991 phreatic explosion, are due to the activation of the whole hydrothermal system, as roughly sized by the distribution of VT hypocenters. The seismicity rate in 1995 was still higher than the pre-eruption seismicity rate, and disagrees with the time pattern of thermo-elastic stress readjustment induced by single magma intrusions at basaltic volcanoes. We propose that it corresponds to the still ongoing relaxation of pressure heterogeneity within the hydrothermal system as suggested by the few LP events that still occurred in 1995. ?? Springer-Verlag 2005.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JVGR..340..170L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JVGR..340..170L"><span>Evidences of volcanic unrest on high-temperature fumaroles by satellite thermal monitoring: The case of Santa Ana volcano, El Salvador</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Laiolo, M.; Coppola, D.; Barahona, F.; Benítez, J. E.; Cigolini, C.; Escobar, D.; Funes, R.; Gutierrez, E.; Henriquez, B.; Hernandez, A.; Montalvo, F.; Olmos, R.; Ripepe, M.; Finizola, A.</p> <p>2017-06-01</p> <p>On October 1st, 2005, Santa Ana volcano (El Salvador) underwent a VEI 3 phreatomagmatic eruption after approximately one century of rest. Casualties and damages to some of the local infrastructures and surrounding plantations were followed by the evacuation of the nearby communities. The analysis of MODIS (Moderate Resolution Imaging Spectroradiometer) infrared data reveals that the main explosion was preceded by a one-year-long thermal unrest, associated to the development of a fumaroles field, located at the western rim of the summit crater lake. By combining space-based thermal flux and ground-based measurements (seismicity, sulfur emissions and lake temperatures), we suggest that the activity observed at Santa Ana between 2004 and 2005 was driven by the gradual intrusion of an undegassed magma body at a very shallow depth. Magma injection induced thermal anomalies associated with sustained degassing from the fumaroles field and promoted the interaction between the magmatic-hydrothermal system and the overlying water table. This process culminated into the VEI 3 phreatomagmatic eruption of October 2005 that strongly modified the shallow structure of the crater area. The subsequent three-years-long activity resulted from self-sealing of the fracture system and by the opening of a new fracture network directly connecting the deeper hydrothermal system with the crater lake. Our results show that satellite-based thermal data allow us to detect the expansion of the high-temperature fumarolic field. This may precede an explosive eruption and/or a lava dome extrusion. In particular, we show that thermal records can be analyzed with other geochemical (i.e. SO2 emissions) and geophysical (seismicity) data to track a shallow magmatic intrusion interacting with the surrounding hydrothermal system. This provides a remarkable support for volcano monitoring and eruption forecasting, particularly in remote areas where permanent ground data acquisition is hazardous, expensive and difficult.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFMIN11B1033P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFMIN11B1033P"><span>Information Modeling to Assess Eruptive Behavior and Possible Threats on Mt. Etna, Italy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pshenichny, C.; Behncke, B.</p> <p>2008-12-01</p> <p>One of the best-studied volcanoes of the world, Mt. Etna in Sicily repeatedly exhibits eruptive scenarios that depart from the behavior considered typical for this volcano. Episodes of intense explosive activity, pyroclastic density currents, dome growth, cone collapse, and phreatomagmatic explosions pose a variety of previously underestimated threats to human lives in the summit area of the volcano. However, retrospective analysis of these events shows that they were likely caused by the same very sets of premises and starting conditions as "normal" effusive eruptions, yet combined in an unexpected, probably unique, way. Physical modeling tells us what may happen in terms of physical parameters but not what events we will actually see on a volcano. Bayesian modeling of volcanoes can unite physical parameters and observed events but, unlike physics, it lacks strictness of terms used to describe the events and, hence, may fail to provide a reasonably impartial, complete and self-consistent set of possible scenarios to be expected. Therefore, a tool is needed to process the observational knowledge as strictly as physical matters are treated by mathematics to provide an appropriate event-based framework for assessment of natural hazards during volcanic eruptions. This task requires a modeling not of the volcano itself but of our knowledge of it, and therefore falls into the field of informatis, knowledge engineering, and artificial intelligence. We involved an approach of artificial intelligence developed specially for the needs of geoscience, the method of event bush. Scenarios inferred from event bush fit the observed ones and allow one to foresee other low-probable events that may occur at the volcano. Application of the event bush provides a more impartial vision of volcanic phenomena and may serve as an intermediary between physical modeling, the expert knowledge and numerical assessment, e.g., by means of Bayesian belief networks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70186482','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70186482"><span>Variations in magma supply rate at Kilauea Volcano, Hawaii</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dvorak, John J.; Dzurisin, Daniel</p> <p>1993-01-01</p> <p>When an eruption of Kilauea lasts more than 4 months, so that a well-defined conduit has time to develop, magma moves freely through the volcano from a deep source to the eruptive site at a constant rate of 0.09 km3/yr. At other times, the magma supply rate to Kilauea, estimated from geodetic measurements of surface displacements, may be different. For example, after a large withdrawal of magma from the summit reservoir, such as during a rift zone eruption, the magma supply rate is high initially but then lessens and exponentially decays as the reservoir refills. Different episodes of refilling may have different average rates of magma supply. During four year-long episodes in the 1960s, the annual rate of refilling varied from 0.02 to 0.18 km3/yr, bracketing the sustained eruptive rate of 0.09 km3/yr. For decade-long or longer periods, our estimate of magma supply rate is based on long-term changes in eruptive rate. We use eruptive rate because after a few dozen eruptions the volume of magma that passes through the summit reservoir is much larger than the net change of volume of magma stored within Kilauea. The low eruptive rate of 0.009 km3/yr between 1840 and 1950, compared to an average eruptive rate of 0.05 km3/yr since 1950, suggests that the magma supply rate was lower between 1840 and 1950 than it has been since 1950. An obvious difference in activity before and since 1950 was the frequency of rift zone eruptions: eight rift zone eruptions occurred between 1840 and 1950, but more than 20 rift zone eruptions have occurred since 1950. The frequency of rift zone eruptions influences magma supply rate by suddenly lowering pressure of the summit magma reservoir, which feeds magma to rift zone eruptions. A temporary drop of reservoir pressure means a larger-than-normal pressure difference between the reservoir and a deeper source, so magma is forced to move upward into Kilauea at a faster rate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.8723S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.8723S"><span>The 2009 and 2010 eruptions and shallow intrusions at Piton de la Fournaise, La Réunion Island, seen by cGPS measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Staudacher, Thomas; Peltier, Aline; Boissier, Patrice; di Muro, Andrea</p> <p>2010-05-01</p> <p>The Piton de la Fournaise volcano at La Réunion Island in the western Indian Ocean is one of the most active volcanoes in the world. Its average eruption rate over the last 2 centuries is one eruption every 9 months. Between 1998 and 2010 thirty eruptions occurred and produced some 300×106 m3 of lava flows. Since the 2007 collapse of 340 m of the Dolomieu caldera, the eruptive activity of the volcano changed with mainly the occurrence of numerous shallow intrusions preceding days or weeks small summit eruptions. In 2009-2010, Piton de la Fournaise erupted successively in November 5, December 14, 2009 and in January 2, 2010. The one day lasting November and December 2009 eruptions started from en echelon fissures close to the summit around its eastern and southern rims, respectively, whereas the January 2010 eruptive fissure opened on the western flank inside of the Dolomieu crater. These three eruptions produced less than 106 m3 of lava, but generated large ground deformation, of up to 70 cm, recorded by the cGPS network of the volcano observatory and by cinematic GPS measurements. The long term survey showed a small extent of the ground deformation field and the small ratios of base/summit displacements and vertical/horizontal displacements reveal the involvement of shallow dykes to fed these successive eruptions. The cGPS network allowed us to follow up precisely the pre eruptive ground deformations, the 40 to 90 minutes dyke propagation toward the surface, as well as the ground deformations after the vent opening. For the November and December 2009 eruptions, the dyke started below the western part of the Dolomieu crater, before propagating to the east and the south, respectively. For the January eruption, the dyke propagated along a more or less vertical pathway directly to the western part of the Dolomieu crater. The two previous dyke injections of November and December had increased the horizontal compressive stress of the eastern side of the Dolomieu crater and did not favoured a new propagation to the east.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GGG....18.1761C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GGG....18.1761C"><span>Explosive processes during the 2015 eruption of Axial Seamount, as recorded by seafloor hydrophones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Caplan-Auerbach, J.; Dziak, R. P.; Haxel, J.; Bohnenstiehl, D. R.; Garcia, C.</p> <p>2017-04-01</p> <p>Following the installation of the Ocean Observatories Initiative cabled array, the 2015 eruption of Axial Seamount, Juan de Fuca ridge, became the first submarine eruption to be captured in real time by seafloor seismic and acoustic instruments. This eruption also marked the first instance where the entire eruption cycle of a submarine volcano, from the previous eruption in 2011 to the end of the month-long 2015 event, was monitored continuously using autonomous ocean bottom hydrophones. Impulsive sounds associated with explosive lava-water interactions are identified within hydrophone records during both eruptions. Explosions within the caldera are acoustically distinguishable from those occurring in association with north rift lava flows erupting in 2015. Acoustic data also record a series of broadband diffuse events, occurring in the waning phase of the eruption, and are interpreted as submarine Hawaiian explosions. This transition from gas-poor to gas-rich eruptive activity coincides with an increase in water temperature within the caldera and with a decrease in the rate of deflation. The last recorded diffuse events coincide with the end of the eruption, represented by the onset of inflation. All the observed explosion signals couple strongly into the water column, and only weakly into the solid Earth, demonstrating the importance of hydroacoustic observations as a complement to seismic and geodetic studies of submarine eruptions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006JVGR..153..148M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006JVGR..153..148M"><span>From Vulcanian explosions to sustained explosive eruptions: The role of diffusive mass transfer in conduit flow dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mason, R. M.; Starostin, A. B.; Melnik, O. E.; Sparks, R. S. J.</p> <p>2006-05-01</p> <p>Magmatic explosive eruptions are influenced by mass transfer processes of gas diffusion into bubbles caused by decompression. Melnik and Sparks [Melnik, O.E., Sparks, R.S.J. 2002, Modelling of conduit flow dynamic during explosive activity at Soufriere Hills Volcano, Montserrat. In: Druitt, T.H., Kokelaar, B.P. (eds). The Eruption of Soufriere Hills Volcano, Montserrat, from 1995 to 1999. Geological Society, London, Memoirs, 21, 307-317] proposed two end member cases corresponding to complete equilibrium and complete disequilibrium. In the first case, diffusion is fast enough to maintain the system near equilibrium and a long-lived explosive eruption develops. In the latter case, pre-existing bubbles expand under conditions of explosive eruption and decompression, but diffusive gas transfer is negligible. This leads to a much shorter eruption. Here we develop this model to consider the role of mass transfer by investigating transient flows at the start of an explosive eruption triggered by a sudden decompression. The simulations reveal a spectrum of behaviours from sustained to short-lived highly non-equilibrium Vulcanian-style explosions lasting a few tens of seconds, through longer lasting eruptions that can be sustained for tens of minutes and finally to eruptions that can last hours or even days. Behaviour is controlled by a mass-transfer parameter, ω, which equals n*2/3D, where n* is the bubble number density and D is the diffusivity. The parameter ω is expected to vary between 10 - 5 and 1 s - 1 in nature and reflects a time-scale for efficient diffusion. The spectrum of model behaviours is consistent with variations in styles of explosive eruptions of silicic volcanoes. In the initial stages peak discharges occur over 10-20 s and then decline to low discharges. If a critical bubble overpressure is assumed to be the criterion for fragmentation then fragmentation may stop and start several times in the declining period causing several pulses of high-intensity discharge. For the cases of strong disequilibria, the fluxes can decrease to negligible values where other processes, such as gas escape through permeable magma, prevents explosive conditions becoming re-established so that explosive activity stops and dome growth can start. For cases closer to the equilibrium the eruption can evolve towards a quasi-steady sustained flow, never declining sufficiently for gas escape to become dominant.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011E%26PSL.310..161C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011E%26PSL.310..161C"><span>A stress-controlled mechanism for the intensity of very large magnitude explosive eruptions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Costa, A.; Gottsmann, J.; Melnik, O.; Sparks, R. S. J.</p> <p>2011-10-01</p> <p>Large magnitude explosive eruptions are the result of the rapid and large-scale transport of silicic magma stored in the Earth's crust, but the mechanics of erupting teratonnes of silicic magma remain poorly understood. Here, we demonstrate that the combined effect of local crustal extension and magma chamber overpressure can sustain linear dyke-fed explosive eruptions with mass fluxes in excess of 10 10 kg/s from shallow-seated (4-6 km depth) chambers during moderate extensional stresses. Early eruption column collapse is facilitated with eruption duration of the order of few days with an intensity of at least one order of magnitude greater than the largest eruptions in the 20th century. The conditions explored in this study are one way in which high mass eruption rates can be achieved to feed large explosive eruptions. Our results corroborate geological and volcanological evidences from volcano-tectonic complexes such as the Sierra Madre Occidental (Mexico) and the Taupo Volcanic Zone (New Zealand).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.S11A1931W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.S11A1931W"><span>Azimuthal Traveltime and Amplitude Anomalies of Tropospheric and Thermospheric Acoustic Waves From the Explosive Eruption of the Sakurajima Volcano in Japan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Watada, S.; Arai, N.; Murayama, T.; Iwakuni, M.; Nogami, M.; Oi, T.; Imanishi, Y.; Kitagawa, Y.</p> <p>2010-12-01</p> <p>With more than 20 microbarometers in a distance range from as small as 4 km to 1100 km, we observed the strongest explosive eruption since 2000 of the Sakurajima volcano, located at the southern end of the Kyushu Island in Japan. An MB2005 at 4-km away from the summit recorded one strong sharp acoustic signal with peak-to-peak amplitude 1200 Pa and duration 4 sec. This nearby microbarogram guarantees that no small eruption occurred with amplitude more than a few tens Pa within a day after this explosive eruption. At the I30H IMS array which is 1000 km away from the volcano, we observed a dispersed pressure wave train with duration 1 min and maximum amplitude 5 Pa and dominant periods 5-10 sec. Array analysis shows a tropospheric propagating infrasound from the azimuth of Sakurajima with an apparent velocity 0.345 km/s. All distant stations are nearly linearly aligned from Sakurajima to the I30H array and their azimuths are 37-65 deg. Within this small azimuth range, we observed a strong azimuthal anisotropy in traveltime and amplitude. The patterns of traveltime anomaly and amplitude are similar, earlier the arrival, larger the amplitude. This implies that these traveltime and amplitude anomalies are wave propagation origin and are likely caused by the wind, not by an asymmetric radiation pattern of the explosion source. More microbarograms including two MB2005s were running in the Honshu Island during the eruption but these records show little infrasound signals with amplitude more than a few Pa. There seems a clear areal boundary where infrasound was observed or not. Another prominent feature of waveforms is the multiple later phases reflected from the troposphere and the thermosphere. The record section of microbarograms recorded at less than 500 km from the volcano reveals nearly-equally time-separated later phases up to 5 bounces. The traveltime curves progressively increases the apparent velocity as the time increases and distance decreases, suggesting multiple reflections between the atmosphere and the ground. The time separation and slowness of these later phases are interpreted that these waves are reflected by an eastward wind at 10 km above aground. The microbarograms recorded at more than 500 km show later phases up to 4 bounces with a larger apparent velocity of about 0.4km/s, indicating their thermospheric origin. More elaborated modeling of traveltimes and amplitude of these tropospheric and thermospheric acoustic waves, together with multiple phases, will reveal the wind condition above the Japanese islands, which should be compared against daily models constructed by JMA for the weather forecast.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.7608W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.7608W"><span>Azimuthal Traveltime and Amplitude Anomalies of Tropospheric and Thermospheric Acoustic Waves From the Explosive Eruption of the Sakurajima Volcano in Japan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Watada, Shingo; Arai, Nobuo; Murayama, Takahiko; Iwakuni, Makiko; Nogami, Mami; Imanishi, Yuichi; Oi, Takuma; Kitagawa, Yuichi</p> <p>2010-05-01</p> <p>With more than 20 microbarometers in a distance range from as small as 4 km to 1100 km, we observed the strongest explosive eruption since 2000 of the Sakurajima volcano, located at the southern end of the Kyushu Island in Japan. An MB2005 at 4-km away from the summit recorded one strong sharp acoustic signal with peak-to-peak amplitude 1200 Pa and duration 4 sec. This nearby microbarogram guarantees that no small eruption occurred with amplitude more than a few tens Pa within a day after this explosive eruption. At the I30H IMS array which is 1000 km away from the volcano, we observed a dispersed pressure wave train with duration 1 min and maximum amplitude 5 Pa and dominant periods 5-10 sec. Array analysis shows a tropospheric propagating infrasound from the azimuth of Sakurajima with an apparent velocity 0.345 km/s. All distant stations are nearly linearly aligned from Sakurajima to the I30H array and their azimuths are 37-65 deg. Within this small azimuth range, we observed a strong azimuthal anisotropy in traveltime and amplitude. The patterns of traveltime anomaly and amplitude are similar, earlier the arrival, larger the amplitude. This implies that these traveltime and amplitude anomalies are wave propagation origin and are likely caused by the wind, not by an asymmetric radiation pattern of the explosion source. More microbarograms including two MB2005s were running in the Honshu Island during the eruption but these records show little infrasound signals with amplitude more than a few Pa. There seems a clear areal boundary where infrasound was observed or not. Another prominent feature of waveforms is the multiple later phases reflected from the troposphere and the thermosphere. The record section of microbarograms recorded at less than 500 km from the volcano reveals nearly-equally time-separated later phases up to 5 bounces. The traveltime curves progressively increases the apparent velocity as the time increases and distance decreases, suggesting multiple reflections between the atmosphere and the ground. The time separation and slowness of these later phases are interpreted that these waves are reflected by an eastward wind at 10 km above aground. The microbarograms recorded at more than 500 km show later phases up to 4 bounces with a larger apparent velocity of about 0.4km/s, indicating their thermospheric origin. More elaborated modeling of traveltimes and amplitude of these tropospheric and thermospheric acoustic waves, together with multiple phases, will reveal the wind condition above the Japanese islands, which should be compared against daily models constructed by JMA for the weather forecast.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28684730','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28684730"><span>Magma dynamics within a basaltic conduit revealed by textural and compositional features of erupted ash: the December 2015 Mt. Etna paroxysms.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pompilio, Massimo; Bertagnini, Antonella; Del Carlo, Paola; Di Roberto, Alessio</p> <p>2017-07-06</p> <p>In December 2015, four violent explosive episodes from Mt. Etna's oldest summit crater, the Voragine, produced eruptive columns extending up to 15 km a.s.l. and significant fallout of tephra up to a hundred km from the vent. A combined textural and compositional study was carried out on pyroclasts from three of the four tephra deposits sampled on the volcano at 6 to 14 km from the crater. Ash fractions (Φ = 1-2) were investigated because these grain sizes preserve the magma properties unmodified by post- emplacement processes. Results were used to identify processes occurring in the conduit during each single paroxysm and to understand how they evolve throughout the eruptive period. Results indicate that the magmatic column is strongly heterogeneous, mainly with respect to microlite, vescicle content and melt composition. During each episode, the heterogeneities can develop at time scales as short as a few tens of hours, and differences between distinct episodes indicate that the time scale for completely refilling the system and renewing magma is in the same order of magnitude. Our data also confirm that the number and shape of microlites, together with melt composition, have a strong control on rheological properties and fragmentation style.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70023640','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70023640"><span>Olivine-liquid relations of lava erupted by Kilauea volcano from 1994 to 1998: Implications for shallow magmatic processes associated with the ongoing east-rift-zone eruption</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Thornber, C.R.</p> <p>2001-01-01</p> <p>From 1994 through 1998, the eruption of Ki??lauea, in Hawai'i, was dominated by steady-state effusion at Pu'u 'O??'??o that was briefly disrupted by an eruption 4 km uprift at Np??au Crater on January 30, 1997. In this paper, I describe the systematic relations of whole-rock, glass, olivine, and olivine-inclusion compositions of lava samples collected throughout this interval. This suite comprises vent samples and tube-contained flows collected at variable distances from the vent. The glass composition of tube lava varies systematically with distance and allows for the "vent-correction" of glass thermometry and olivine-liquid KD as a function of tube-transport distance. Combined olivine-liquid data for vent samples and "vent-corrected" lava-tube samples are used to document pre-eruptive magmatic conditions. KD values determined for matrix glasses and forsterite cores define three types of olivine phenocrysts: type A (in equilibrium with host glass), type B (Mg-rich relative to host glass) and type C (Mg-poor relative to host glass). All three types of olivine have a cognate association with melts that are present within the shallow magmatic plumbing system during this interval. During steady-state eruptive activity, the compositions of whole-rock, glass and most olivine phenocrysts (type A) all vary sympathetically over time and as influenced by changes of magmatic pressure within the summit-rift-zone plumbing system. Type-A olivine is interpreted as having grown during passage from the summit magmachamber along the east-rift-zone conduit. Type-B olivine (high Fo) is consistent with equilibrium crystallization from bulk-rock compositions and is likely to have grown within the summit magma-chamber. Lower-temperature, fractionated lava was erupted during non-steady state activity of the Na??pau Crater eruption. Type-A and type-B olivine-liquid relations indicate that this lava is a mixture of rift-stored and summit-derived magmas. Post-Na??pau lava (at Pu'u 'O?? 'o) gradually increases in temperature and MgO content, and contains type-C olivine with complex zoning, indicating magma hybridization associated with the flushing of rift-stored components through the eruption conduit.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.V43A4843V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.V43A4843V"><span>The June 2014 eruption at Piton de la Fournaise: Robust methods developed for monitoring challenging eruptive processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Villeneuve, N.; Ferrazzini, V.; Di Muro, A.; Peltier, A.; Beauducel, F.; Roult, G. C.; Lecocq, T.; Brenguier, F.; Vlastelic, I.; Gurioli, L.; Guyard, S.; Catry, T.; Froger, J. L.; Coppola, D.; Harris, A. J. L.; Favalli, M.; Aiuppa, A.; Liuzzo, M.; Giudice, G.; Boissier, P.; Brunet, C.; Catherine, P.; Fontaine, F. J.; Henriette, L.; Lauret, F.; Riviere, A.; Kowalski, P.</p> <p>2014-12-01</p> <p>After almost 3.5 years of quiescence, Piton de la Fournaise (PdF) produced a small summit eruption on 20 June 2014 at 21:35 (GMT). The eruption lasted 20 hours and was preceded by: i) onset of deep eccentric seismicity (15-20 km bsl; 9 km NW of the volcano summit) in March and April 2014; ii) enhanced CO2 soil flux along the NW rift zone; iii) increase in the number and energy of shallow (<1.5 km asl) VT events. The increase in VT events occurred on 9 June. Their signature, and shallow location, was not characteristic of an eruptive crisis. However, at 20:06 on 20/06 their character changed. This was 74 minutes before the onset of tremor. Deformations then began at 20:20. Since 2007, PdF has emitted small magma volumes (<3 Mm3) in events preceded by weak and short precursory phases. To respond to this challenging activity style, new monitoring methods were deployed at OVPF. While the JERK and MSNoise methods were developed for processing of seismic data, borehole tiltmeters and permanent monitoring of summit gas emissions, plus CO2 soil flux, were used to track precursory activity. JERK, based on an analysis of the acceleration slope of a broad-band seismometer data, allowed advanced notice of the new eruption by 50 minutes. MSNoise, based on seismic velocity determination, showed a significant decrease 7 days before the eruption. These signals were coupled with change in summit fumarole composition. Remote sensing allowed the following syn-eruptive observations: - INSAR confirmed measurements made by the OVPF geodetic network, showing that deformation was localized around the eruptive fissures; - A SPOT5 image acquired at 05:41 on 21/06 allowed definition of the flow field area (194 500 m2); - A MODIS image acquired at 06:35 on 21/06 gave a lava discharge rate of 6.9±2.8 m3 s-1, giving an erupted volume of 0.3 and 0.4 Mm3. - This rate was used with the DOWNFLOW and FLOWGO models, calibrated with the textural data from Piton's 2010 lava, to run lava flow projections; showing that the event was volume limited. Preliminary sample analyses suggest that the olivine rich lavas have a differentiated character (melt MgO: 5.8 - 6.2 wt.%); proof of chamber residence. However, some aphyric tephra are more primitive (MgO: 8.2 wt.%). This suggests eruption due to injection of a small volume of new magma that destabilized an old magma pocket.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.S43F..08K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.S43F..08K"><span>Characterization of Fluid Oscillations at Kilauea Volcano Through Time-Dependent Modeling of Seismic Displacements from Rockfall Events</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Karlstrom, L.; Dunham, E. M.; Thelen, W. A.; Patrick, M. R.; Liang, C.; Prochnow, B. N.</p> <p>2015-12-01</p> <p>Beginning with the opening of a summit vent in 2008, Kilauea's (Hawaíi) summit eruption has exhibited frequent rockfalls from the crater walls into the active lava lake. These events perturb the lake surface, causing vigorous outgassing and sometimes explosions. A network of broadband seismometers records these events as a combination of high-frequency, long-period, and very long period (VLP) oscillations. The VLP portion of the signal has varied in period from 20-40 s since the summit vent opened and has a duration of 10-15 min. These seismic signals reflect the coupling of fluid motion in the conduit to elastic wall rocks. Oscillatory flow can be quantified in terms of the eigenmodes of a magma-filled conduit. Wave motion is affected by conduit geometry, multiphase fluid compressibility, viscosity, and pressure dependent H2O and CO2 solubility. Background stratification and a large impedance contrast at the depth where volatiles first exsolve gives rise to spatially localized families of conduit eigenmodes. The longest period modes are sensitive to properties of bubbly magma and to the length of the conduit above exsolution (which is set by total volatile content). To study the VLP events, we linearize the conduit flow equations assuming small perturbations to an initially magmastatic column, accounting for non-equilibrium multiphase fluid properties, stratification and buoyancy, and conduit width changes. We solve for conduit eigenmodes and associated eigenfrequencies, as well as for the time-domain conduit response to forces applied to the surface of the lava lake. We use broadband records of rockfalls from 2011-2015 that exhibit consistent periods along with lake level measurements to estimate conduit parameters. Preliminary results suggest that VLP periods can be matched with volatile contents similar to those inferred from melt inclusions from Halemaumau explosions. We are currently conducting a more thorough exploration of the parameter space to investigate this further.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sim/2007/2936/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sim/2007/2936/"><span>Geologic Map of the MTM -30262 and -30267 Quadrangles, Hadriaca Patera Region of Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Crown, David A.; Greeley, Ronald</p> <p>2007-01-01</p> <p>Introduction Mars Transverse Mercator (MTM) -30262 and -30267 quadrangles cover the summit region and east margin of Hadriaca Patera, one of the Martian volcanoes designated highland paterae. MTM -30262 quadrangle includes volcanic deposits from Hadriaca Patera and Tyrrhena Patera (summit northeast of map area) and floor deposits associated with the Dao and Niger Valles canyon systems (south of map area). MTM -30267 quadrangle is centered on the caldera of Hadriaca Patera. The highland paterae are among the oldest, central-vent volcanoes on Mars and exhibit evidence for explosive eruptions, which make a detailed study of their geology an important component in understanding the evolution of Martian volcanism. Photogeologic mapping at 1:500,000-scale from analysis of Viking Orbiter images complements volcanological studies of Hadriaca Patera, geologic investigations of the other highland paterae, and an analysis of the styles and evolution of volcanic activity east of Hellas Planitia in the ancient, cratered highlands of Mars. This photogeologic study is an extension of regional geologic mapping east of Hellas Planitia. The Martian highland paterae are low-relief, areally extensive volcanoes exhibiting central calderas and radial channels and ridges. Four of these volcanoes, Hadriaca, Tyrrhena, Amphitrites, and Peneus Paterae, are located in the ancient cratered terrains surrounding Hellas Planitia and are thought to be located on inferred impact basin rings or related fractures. Based on analyses of Mariner 9 images, Potter (1976), Peterson (1977), and King (1978) suggested that the highland paterae were shield volcanoes formed by eruptions of fluid lavas. Later studies noted morphologic similarities between the paterae and terrestrial ash shields and the lack of primary lava flow features on the flanks of the volcanoes. The degraded appearances of Hadriaca and Tyrrhena Paterae and the apparently easily eroded materials composing their low, broad shields further suggest that the highland paterae are composed predominantly of pyroclastic deposits. Analyses of eruption and flow processes indicate that the distribution of units at Hadriaca and Tyrrhena Paterae is consistent with emplacement by gravity-driven pyroclastic flows. Detailed geologic study of the summit caldera and flanks of Hadriaca Patera is essential to determine the types of volcanic materials exposed, the nature of the processes forming these deposits, and the role of volcanism in the evolution of the cratered highlands that are characteristic of the southern hemisphere of Mars.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1916023P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1916023P"><span>Petrological insights on the effusive-explosive transitions of the Nisyros-Yali Volcanic Center, South Aegean Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Popa, Razvan-Gabriel; Bachmann, Olivier; Ellis, Ben; Degruyter, Wim; Kyriakopoulos, Konstantinos</p> <p>2017-04-01</p> <p>Volcanoes erupting silicic, volatile-rich magmas can exhibit both effusive and explosive eruptions, even during closely spaced eruptive episodes. Understanding the effusive-explosive transition is fundamental in order to assess the hazards involved. Magma properties strongly influence the processes during magma ascent that determine the eruptive style. Here, we investigate the link between changing conditions in the magma reservoir and the eruptive style. The Quaternary Nisyros-Yali volcanic center, from the South Aegean Sea, provides an excellent natural laboratory to study this process. Over the last 60-100 kyrs, it produced a series of dacitic to rhyolitic eruptions that emplaced alternating effusive and explosive deposits (with explosive eruptions likely shortly following effusive ones). For this study, nine fresh and well-preserved units (five effusive and four explosive) were sampled and analyzed for whole-rock, groundmass glass and mineral compositions, in order to draw insights into the magma chamber processes and thermodynamic conditions that preceded both types of eruptions. Silicic magmas in Nisyros-Yali record a complex, open-system evolution, dominated by fractionation in mushy reservoirs at mid to upper crustal depths, frequently recharged by warmer input from below. Storage temperatures recorded by the amphibole-plagioclase thermometer span a wide range, and they are always cooler than the pre-eruptive temperatures yielded by Fe-Ti oxide thermometry for the same unit, whether it is effusive or explosive. However, magmas feeding effusive eruptions typically reached cooler conditions (expressed by the presence of low-Al, low-Ti amphiboles) than in the explosive cases. The difference between the pre-eruptive and the lowest storing temperatures in the Nisyros series are in the order of 10-30°C for explosive units, while the difference is of about 40-110°C for the effusive units. The Yali series does not perfectly fit this pattern, where explosive units have also been heated for 50-100°C. During crystallization and storage in subvolcanic magma reservoirs, relatively cold conditions and higher H2O contents would favor volatile saturation, allowing reservoirs to become more compressible. Hence, a higher fraction of magma recharge would be needed to reach the necessary chamber overpressure to trigger an eruption. In turn, this higher fraction of recharge would allow more mixing and heating of the resident silicic magma, lowering melt viscosity. This facilitates the formation of a permeable foam by growth and expansion of the already nucleated gas bubbles, inducing early syn-eruptive degassing in the conduit and favoring effusive outpouring of magma. In contrast, slightly warmer conditions (and/or slightly lower H2O concentrations) in the mush would lead to reservoirs with less exsolved volatiles, hence less compressible. Thus, eruptions would be triggered faster and pre-eruptive warming would be more limited, reducing magma viscosity less than in the previous case. Bubble nucleation would mostly be confined to the conduit with syn-eruptive degassing starting at shallower depths and being less efficient, thus favoring an explosive eruption.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70030275','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70030275"><span>The transition from explosive to effusive eruptive regime: The example of the 1912 Novarupta eruption, Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Adams, N.K.; Houghton, Bruce F.; Fagents, S.A.; Hildreth, W.</p> <p>2006-01-01</p> <p>The shift from explosive to effusive silicic volcanism seen in many historical eruptions reflects a change in the style of degassing of erupted magma. This paper focuses on such a transition during the largest eruption of the twentieth century, the 1912 eruption of Novarupta. The transition is recorded in a dacite block bed, which covers an elliptical area of 4 km2 around the vent. Approximately 700 studied blocks fall into four main lithologic categories: (1) pumiceous, (2) dense, (3) flow-banded dacites, and (4) welded breccias. Textural analyses of the blocks indicate portions of the melt underwent highly variable degrees of outgassing. Vesicle populations show features characteristic of bubble coalescence and collapse. A decrease in measured vesicularity and increased evidence for bubble collapse compared with pumice from earlier Plinian episodes mark the transition from closed- to open-system degassing. Block morphology and textures strongly suggest the magma was first erupted as a relatively gas-rich lava dome/plug, but incomplete out-gassing led to explosive disruption. Heterogeneous degassing of ascending magma began in Plinian Episode III and resulted in instability during Episode IV dome growth and a (series of) Vulcanian explosion(s). Modeling of the dynamics of explosion initiation and ejecta dispersal indicates that a significant concentration in gas is required to produce the explosions responsible for the observed block field dispersal. The amount of gas available in the hot pumiceous dome material appears to have been inadequate to drive the explosion(s); therefore, external water most likely contributed to the destruction. ?? 2006 Geological Society of America.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.V41E..04H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.V41E..04H"><span>The 3D Distribution of Magma Bodies that Fed the Paraná Silicic Volcanics, Brazil: A Combination of Field Evidence, Textural Analysis, and Geothermobarometry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Harmon, L.; Gualda, G. A. R.; Gravley, D. M.</p> <p>2016-12-01</p> <p>The Paraná Silicic Volcanics include some of the largest eruptive deposits known in the geological record. However, we know very little about the magma bodies that fed these eruptions. Combining physical volcanology, geochemistry, and geothermobarometry techniques, we aim to find the sources of extinct magma bodies to build a 3D view of the magma structure at the time by discovering storage conditions, eruption styles, and post-eruption alteration. The approach elucidates temporal and spatial eruption styles and sequences of the silicic units that make up the Palmas unit of the Serra Geral formation, Brazil. We use field investigations to determine the history of volcanic deposits, domes, and changes in eruptive style; we map and characterize volcanic deposits based on thickness (thicker is proximal to source) and distribution of effusive (proximal to source) and explosive deposits. We focus on several exposed canyons that exhibit either exclusively explosive or effusive, or a clear progression from explosive to effusive deposits. The progression from explosive to effusive indicates a system change from explosively energetic to effusively waning. Additionally, observation of pervasive flow banding in both effusive and explosive deposits indicates rheomorphic flow through many portions of the field area, an indicator of hot emplacement. Geochemical work focuses on the pre-eruptive magma conditions to determine the depth of magma bodies. We utilize glass bearing samples of both the explosively deposited juvenile blob-like structures and obsidian samples to determine crystallization depth. The glass is variably altered, via silicification and devitrification processes, with the blobs more greatly silicified than the obsidian. We use rhyolite-MELTS geothermobarometry when pristine glass can be found. Initial results indicate shallow ( 80 MPa) storage conditions for the explosively erupted blobs. The combination of techniques builds a 3D understanding of extinct super-eruptive systems, and has the potential to unravel both the pre-eruptive and deposition dynamics of the Paraná Silicic Volcanics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17842284','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17842284"><span>Magnetic noise preceding the august 1971 summit eruption of kilauea volcano.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Keller, G V; Jackson, D B; Rapolla, A</p> <p>1972-03-31</p> <p>During the course of an electromagnetic survey about Kilauea Volcano in Hawaii, an unusual amount of low-frequency noise was observed at one recording location. Several weeks later an eruption occurred very close to this site. The high noise level appeared to be associated in some way with the impending eruption.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70193606','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70193606"><span>Pushing the Volcanic Explosivity Index to its limit and beyond: Constraints from exceptionally weak explosive eruptions at Kīlauea in 2008</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Houghton, Bruce F.; Swanson, Don; Rausch, J.; Carey, R.J.; Fagents, S.A.; Orr, Tim R.</p> <p>2013-01-01</p> <p>Estimating the mass, volume, and dispersal of the deposits of very small and/or extremely weak explosive eruptions is difficult, unless they can be sampled on eruption. During explosive eruptions of Halema‘uma‘u Crater (Kīlauea, Hawaii) in 2008, we constrained for the first time deposits of bulk volumes as small as 9–300 m3 (1 × 104 to 8 × 105 kg) and can demonstrate that they show simple exponential thinning with distance from the vent. There is no simple fit for such products within classifications such as the Volcanic Explosivity Index (VEI). The VEI is being increasingly used as the measure of magnitude of explosive eruptions, and as an input for both hazard modeling and forecasting of atmospheric dispersal of tephra. The 2008 deposits demonstrate a problem for the use of the VEI, as originally defined, which classifies small, yet ballistic-producing, explosive eruptions at Kīlauea and other basaltic volcanoes as nonexplosive. We suggest a simple change to extend the scale in a fashion inclusive of such very small deposits, and to make the VEI more consistent with other magnitude scales such as the Richter scale for earthquakes. Eruptions of this magnitude constitute a significant risk at Kīlauea and elsewhere because of their high frequency and the growing number of “volcano tourists” visiting basaltic volcanoes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA19382.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA19382.html"><span>Chilean Volcanic Eruption Nighttime View</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2015-04-27</p> <p>The April 18, 2015 eruption of Calbuco Volcano in Chile, as seen by NASA Terra spacecraft, led to the evacuation of thousands of citizens near the summit, blanketed nearby towns with a layer of ash, and disrupted air traffic. One week later, on April 26, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra spacecraft acquired this nighttime thermal infrared image of Calbuco. Hot eruptive material at the summit appears in white (hot), with a purple plume streaming to the right, indicating that it is ash-laden. The image covers an area of 3.1 by 4.1 miles (5 by 6.6 kilometers), and is located at 41.3 degrees south, 72.5 degrees west. http://photojournal.jpl.nasa.gov/catalog/PIA19382</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V13C0398G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V13C0398G"><span>The First Historical Eruption of Kambalny Volcano in 2017 .</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gordeev, E.</p> <p>2017-12-01</p> <p>The first historical eruption at Kambalny volcano began about 21:20 UTC on March 24, 2017 with powerful ash emissions up to 6 km above sea level from the pre-summit crater. According to tephrochronological data, it is assumed that the strong eruptions of the volcano occurred 200 (?) and 600 years ago. KVERT (Kamchatka Volcanic Eruption Response Team) of the Institute of Volcanology and Seismology FEB RAS has been monitoring Kambalny volcano since 2002. KVERT worked closely with AMC Elizovo and Tokyo VAAC during the eruption at Kambalny volcano in 2017. The maximum intensity of ash emissions occurred on 25-26 March: a continuous plume laden with ash particles spread over several thousand kilometers, changing the direction of propagation from the volcano from the south-west to the south and south-east. On 27-29 March, the ash plume extended to the west, on 30 March - to the southeast of the volcano. On March 31 and April 01, the volcano was relatively quiet. The resumption of the volcano activity after two days of rest was expressed in powerful ash emissions up to 7 km above sea level. Gas-steam plumes containing some amount of ash were noted on 02-05 April, and powerful ash emissions up to 7 km above sea level occurred on 09 April. The explosive activity at the volcano ended on 11 April. The area of ash deposits was about 1500 km2, the total area covered by ash falls, for example, on 25 March, was about 650 thousand km2. To monitor and study the Kambalny volcano eruption we mainly used satellite images of medium resolution available in the information system "Monitoring volcanic activity in Kamchatka and Kurile Islands" (VolSatView). This work was supported by the Russian Science Foundation, project No. 16-17-00042.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/71612','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/71612"><span>Volcanic gas emissions and their impact on ambient air character at Kilauea Volcano, Hawaii</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sutton, A.J.; Elias, T.; Navarrete, R.</p> <p>1994-12-31</p> <p>Gas emissions from Kilauea occur from the summit caldera, along the middle East Rift Zone (ERZ), and where lava enters the ocean. We estimate that the current ERZ eruption of Kilauea releases between 400 metric tonnes of SO{sub 2} per day, during eruptive pauses, to as much as 1850 metric tonnes per day during actively erupting periods, along with lesser amounts of other chemically and radiatively active species including H{sub 2}S, HCl and HF. In order to characterize gas emissions from Kilauea in a meaningful way for assessing environmental impact, we made a series of replicate grab-sample measurements of ambientmore » air and precipitation at the summit of Kilauea, along its ERZ, and at coastal sites where lava enters the ocean. The grab-sampling data combined with SO{sub 2} emission rates, and continuous air quality and meteorological monitoring at the summit of Kilauea show that the effects of these emissions on ambient air character are a complex function of chemical reactivity, source geometry and effusivity, and local meteorology. Prevailing tradewinds typically carry the gases and aerosols released to the southwest, where they are further distributed by the regional wind regime. Episodes of kona, or low speed variable winds sometimes disrupt this pattern, however, and allow the gases and their oxidation products to collect at the summit and eastern side of the island. Summit solfatara areas of Kilauea are distinguished by moderate to high ambient SO{sub 2}, high H{sub 2}S at one location, and low H{sub 2}S at all others, and negligible HCl concentrations, as measured 1 m from degassing point-sources. Summit solfatara rain water has high sulfate and low chloride ion concentrations, and low pH.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29348427','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29348427"><span>Multi-stage volcanic island flank collapses with coeval explosive caldera-forming eruptions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hunt, James E; Cassidy, Michael; Talling, Peter J</p> <p>2018-01-18</p> <p>Volcanic flank collapses and explosive eruptions are among the largest and most destructive processes on Earth. Events at Mount St. Helens in May 1980 demonstrated how a relatively small (<5 km 3 ) flank collapse on a terrestrial volcano could immediately precede a devastating eruption. The lateral collapse of volcanic island flanks, such as in the Canary Islands, can be far larger (>300 km 3 ), but can also occur in complex multiple stages. Here, we show that multistage retrogressive landslides on Tenerife triggered explosive caldera-forming eruptions, including the Diego Hernandez, Guajara and Ucanca caldera eruptions. Geochemical analyses were performed on volcanic glasses recovered from marine sedimentary deposits, called turbidites, associated with each individual stage of each multistage landslide. These analyses indicate only the lattermost stages of subaerial flank failure contain materials originating from respective coeval explosive eruption, suggesting that initial more voluminous submarine stages of multi-stage flank collapse induce these aforementioned explosive eruption. Furthermore, there are extended time lags identified between the individual stages of multi-stage collapse, and thus an extended time lag between the initial submarine stages of failure and the onset of subsequent explosive eruption. This time lag succeeding landslide-generated static decompression has implications for the response of magmatic systems to un-roofing and poses a significant implication for ocean island volcanism and civil emergency planning.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.G43C..01M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.G43C..01M"><span>Recent Inflation of Kilauea Volcano</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Miklius, A.; Poland, M.; Desmarais, E.; Sutton, A.; Orr, T.; Okubo, P.</p> <p>2006-12-01</p> <p>Over the last three years, geodetic monitoring networks and satellite radar interferometry have recorded substantial inflation of Kilauea's magma system, while the Pu`u `O`o eruption on the east rift zone has continued unabated. Combined with the approximate doubling of carbon dioxide emission rates at the summit during this period, these observations indicate that the magma supply rate to the volcano has increased. Since late 2003, the summit area has risen over 20 cm, and a 2.5 km-long GPS baseline across the summit area has extended almost half a meter. The center of inflation has been variable, with maximum uplift shifting from an area near the center of the caldera to the southeastern part of the caldera in 2004-2005. In 2006, the locus of inflation shifted again, to the location of the long-term magma reservoir in the southern part of the caldera - the same area that had subsided more than 1.5 meters during the last 23 years of the ongoing eruption. In addition, the southwest rift zone reversed its long-term trend of subsidence and began uplifting in early 2006. The east rift zone has shown slightly accelerated rates of extension, but with a year-long hiatus following the January 2005 south flank aseismic slip event. Inflation rates have varied greatly. Accelerated rates of extension and uplift in early 2005 and 2006 were also associated with increased seismicity. Seismicity occurred not only at inflation centers, but was also triggered on the normal faulting area northwest of the caldera and the strike-slip faulting area in the upper east rift zone. In early 2006, at about the time that we started recording uplift on the southwest rift zone, the rate of earthquakes extending from the summit into the southwest rift zone at least quadrupled. The most recent previous episode of inflation at Kilauea, in 2002, may have resulted from reduced lava- transport capacity, as it was associated with decreased outflow at the eruption site. In contrast, eruption volumes have not decreased during the current inflation. Indeed, gas emission measurements indicate increased outflow, with average sulfur dioxide emissions from the eruption site having almost doubled in 2005. While the eruption is apparently taking up some of the increased supply, at least intermittently, the magma system to Pu`u `O`o is obviously not capable of sustaining the transport of the entire volume; as a result, both the summit and rift zones are being pressurized. Whether the existing magma transport system to the eruption site can evolve in time to handle the increased flux remains to be seen.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1710045I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1710045I"><span>Secular trends in plume composition of Erebus volcano, Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ilanko, Tehnuka; Oppenheimer, Clive; Kyle, Philip; Burgisser, Alain</p> <p>2015-04-01</p> <p>Long-lived active lava lakes, such as that in the summit crater of Erebus volcano, Antarctica, provide a rare insight into sustained magma convection and degassing over long timescales. Erebus lava lake has been persistently active since 1972, and potentially for several decades or more previously (Ross, 1847). Since the 1970s, regular scientific expeditions, lasting a few weeks in the austral summers, have made observations of the lake activity. Annual Fourier transform infrared (FTIR) spectroscopic gas measurements began in 2004 (Oppenheimer and Kyle, 2008; Oppenheimer et al., 2009), yielding an extensive, if discontinuous, time series of infrared absorption spectra. These data, once processed, provide insights into temporal evolution of the gas geochemistry in terms of seven molecular species: H2O, CO2, CO, SO2, HCl, HF, and OCS. FTIR spectroscopic data are now available over ten field seasons, totalling roughly 1.8 million spectra and increasing each year. This period spans changes to crater morphology, fluctuations in lava lake surface area (Jones et al., 2014), and two episodes of increased explosive activity (2005-06 and 2013). The dataset captures both long-term degassing trends and short-lived features, such as cyclicity in gas emissions during passive degassing (Ilanko et al., 2015) and compositions released by explosive bubble-burst eruptions. We consider the longer-term changes to gas ratios occurring within (i.e. over days to weeks) and between annual field seasons, their potential causes, and their relationship to observations of eruptive behaviour and crater morphology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss015e16913.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss015e16913.html"><span>Earth Observations taken by the Expedition 15 Crew</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2007-07-10</p> <p>ISS015-E-16913 (10 July 2007) --- Shiveluch Volcano, Kamchatka, Russian Far East is featured in this image photographed by an Expedition 15 crewmember on the International Space Station. Shiveluch is one of the biggest and most active of a line of volcanoes along the spine of the Kamchatka peninsula in easternmost Russia. In turn the volcanoes and peninsula are part of the tectonically active "Ring of Fire" that almost surrounds the Pacific Ocean, denoted by active volcanoes and frequent earthquakes. Shiveluch occupies the point where the northeast-trending Kamchatka volcanic line intersects the northwest-trending Aleutian volcanic line. Junctions such as this are typically points of intense volcanic activity. According to scientists, the summit rocks of Shiveluch have been dated at approximately 65,000 years old. Lava layers on the sides of the volcano reveal at least 60 major eruptions in the last 10,000 years, making it the most active volcano in the 2,200 kilometer distance that includes the Kamchatka peninsula and the Kuril island chain. Shiveluch rises from almost sea level to well above 3,200 miles (summit altitude 3,283 miles) and is often capped with snow. In this summer image however, the full volcano is visible, actively erupting ash and steam in late June or early July, 2007. The dull brown plume extending from the north of the volcano summit is most likely a combination of ash and steam (top). The two larger white plumes near the summit are dominantly steam, a common adjunct to eruptions, as rain and melted snow percolate down to the hot interior of the volcano. The sides of the volcano show many eroded stream channels. The south slope also reveals a long sloping apron of collapsed material, or pyroclastic flows. Such debris flows have repeatedly slid down and covered the south side of the volcano during major eruptions when the summit lava domes explode and collapse (this occurred during major eruptions in 1854 and 1964). Regrowth of the forest on the south slope (note the contrast with the eastern slope) has been foiled by the combined effects of continued volcanic activity, instability of the debris flows and the short growing season.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.V41A2485W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.V41A2485W"><span>Magma transport and storage at Kilauea volcano, Hawaii I: 1790-1952</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wright, T. L.; Klein, F.</p> <p>2011-12-01</p> <p>We trace the evolution of Kilauea from the time of the first oral records of an explosive eruption in 1790 to the long eruption in Halemaumau crater in 1952. The establishment of modern seismic and geodetic networks in the early 1960s showed that eruptions and intrusions were fed from two magma sources beneath the summit at depths of 2-6 and ~1 km respectively (sources 1 and 2), and that seaward spreading of the south flank took place on a decollement at 10-12 km depth at the base of the Kilauea edifice. A third diffuse, pressure-transmitting magma system (source 3) between the shallow East rift zone and the decollement was also identified. We test the null hypothesis that the volcano has behaved similarly throughout its lifetime, and conclude that the null hypothesis is not met for the period preceding the 1952 summit eruption because of changes in magma supply rate and differences in ground deformation patterns. The western missionaries arriving at Kilauea in 1823 were confronted with a caldera-wide lava lake. Filling rates determined by visual observation correspond to magma supply rates that averaged more than 0.3 km3/yr prior to 1840 and declined to 1894, when lava disappeared altogether at Halemaumau crater. The Hawaiian Volcano Observatory (HVO) was established by Thomas A. Jaggar in 1912 adjacent to the Volcano House Hotel on the rim of Kilauea. Instrumental observation at HVO began using a seismometer that doubled as a tiltmeter. A 1912-1924 magma supply rate of 0.024 km3/yr agreed with the rate of filling of Kilauea caldera from 1840-1894. 1924 was a critical year. An intrusion that moved down Kilauea's East rift zone beginning in February culminated beneath the lower East rift zone in April. In May, explosive eruptions accompanied a dramatic draining of Halemaumau. Triangulation results between 1912 and 1921 showed uplift extending far beyond Kilauea caldera and an equally large regional subsidence occurred between 1921 and 1927. HVO tilt narrows the former time to 1918-1919 and the latter to 1924. Qualitative Mogi modeling of the 1921-1927 deformation data yields three centers, two shallow ones corresponding to sources 1 and 2, and a third deeper one that we interpret to represent draining of source 3. During recovery from the 1924 intrusion and collapse the tilt remained low, unlike the aftermath of more recent deflations. Small eruptions in Halemaumau between 1924 and 1934 used up the last of the magma that fed the lava lakes, and three passive East rift intrusions without a tilt signal are considered part of the recovery of source 3. Kilauea began inflating in March 1950, leading up to the long 1952 eruption in Halemaumau. Deep earthquakes occurred in 1950 and 1951, resulting in an increased magma supply rate of 0.062 km3/yr. An intense earthquake swarm occurred beneath the offshore south flank in March-April 1952 that unlocked the south flank to initiate the modern spreading regime. We interpret the 1924 intrusion as a critical event in stabilizing the modern magma system beneath the rift zone. Prior to that time it is probable that major caldera draining events in the 19th century involved the entire magmatic system. Measurements made at HVO are critical to the interpretations made in the pre-1952 period.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70182743','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70182743"><span>Stronger or longer: Discriminating between Hawaiian and Strombolian eruption styles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Houghton, Bruce F.; Taddeucci, Jacopo; Andronico, D.; Gonnerman, H; Pistolesi, M; Patrick, Matthew R.; Orr, Tim R.; Swanson, Don; Edmonds, M; Carey, Rebecca J.; Scarlato, P.</p> <p>2016-01-01</p> <p>The weakest explosive volcanic eruptions globally, Strombolian explosions and Hawaiian fountaining, are also the most common. Yet, despite over a hundred years of observations, no classifications have offered a convincing, quantitative way of demarcating these two styles. New observations show that the two styles are distinct in their eruptive timescale, with the duration of Hawaiian fountaining exceeding Strombolian explosions by about 300 to 10,000 seconds. This reflects the underlying process of whether shallow-exsolved gas remains trapped in the erupting magma or whether it is decoupled from it. We propose here a classification scheme based on the duration of events (brief explosions versus prolonged fountains) with a cutoff at 300 seconds that separates transient Strombolian explosions from sustained Hawaiian fountains.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70171029','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70171029"><span>Seismo-acoustic signals associated with degassing explosions recorded at Shishaldin Volcano, Alaska, 2003-2004</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Petersen, T.</p> <p>2007-01-01</p> <p>In summer 2003, a Chaparral Model 2 microphone was deployed at Shishaldin Volcano, Aleutian Islands, Alaska. The pressure sensor was co-located with a short-period seismometer on the volcano’s north flank at a distance of 6.62 km from the active summit vent. The seismo-acoustic data exhibit a correlation between impulsive acoustic signals (1–2 Pa) and long-period (LP, 1–2 Hz) earthquakes. Since it last erupted in 1999, Shishaldin has been characterized by sustained seismicity consisting of many hundreds to two thousand LP events per day. The activity is accompanied by up to ∼200 m high discrete gas puffs exiting the small summit vent, but no significant eruptive activity has been confirmed. The acoustic waveforms possess similarity throughout the data set (July 2003–November 2004) indicating a repetitive source mechanism. The simplicity of the acoustic waveforms, the impulsive onsets with relatively short (∼10–20 s) gradually decaying codas and the waveform similarities suggest that the acoustic pulses are generated at the fluid–air interface within an open-vent system. SO2 measurements have revealed a low SO2 flux, suggesting a hydrothermal system with magmatic gases leaking through. This hypothesis is supported by the steady-state nature of Shishaldin’s volcanic system since 1999. Time delays between the seismic LP and infrasound onsets were acquired from a representative day of seismo-acoustic data. A simple model was used to estimate source depths. The short seismo-acoustic delay times have revealed that the seismic and acoustic sources are co-located at a depth of 240±200 m below the crater rim. This shallow depth is confirmed by resonance of the upper portion of the open conduit, which produces standing waves with f=0.3 Hz in the acoustic waveform codas. The infrasound data has allowed us to relate Shishaldin’s LP earthquakes to degassing explosions, created by gas volume ruptures from a fluid–air interface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70174087','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70174087"><span>Geologic history of the summit of Axial Seamount, Juan de Fuca Ridge</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Clague, David A.; Dreyer, Brian M; Paduan, Jennifer B; Martin, Julie F; Chadwick, William W Jr; Caress, David W; Portner, Ryan A; Guilderson, Thomas P.; McGann, Mary; Thomas, Hans; Butterfield, David A; Embley, Robert W</p> <p>2013-01-01</p> <p>Multibeam (1 m resolution) and side scan data collected from an autonomous underwater vehicle, and lava samples, radiocarbon-dated sediment cores, and observations of flow contacts collected by remotely operated vehicle were combined to reconstruct the geologic history and flow emplacement processes on Axial Seamount's summit and upper rift zones. The maps show 52 post-410 CE lava flows and 20 precaldera lava flows as old as 31.2 kyr, the inferred age of the caldera. Clastic deposits 1–2 m thick accumulated on the rims postcaldera. Between 31 ka and 410 CE, there are no known lava flows near the summit. The oldest postcaldera lava (410 CE) is a pillow cone SE of the caldera. Two flows erupted on the W rim between ∼800 and 1000 CE. From 1220 to 1300 CE, generally small eruptions of plagioclase phyric, depleted, mafic lava occurred in the central caldera and on the east rim. Larger post-1400 CE eruptions produced inflated lobate flows of aphyric, less-depleted, and less mafic lava on the upper rift zones and in the N and S caldera. All caldera floor lava flows, and most uppermost rift zone flows, postdate 1220 CE. Activity shifted from the central caldera to the upper S rift outside the caldera, to the N rift and caldera floor, and then to the S caldera and uppermost S rift, where two historical eruptions occurred in 1998 and 2011. The average recurrence interval deduced from the flows erupted over the last 800 years is statistically identical to the 13 year interval between historical eruptions.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.V51F..02G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.V51F..02G"><span>Multiparametric Geophysical Signature of Vulcanian Explosions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gottsmann, J.; de Angelis, S.; Fournier, N.; van Camp, M. J.; Sacks, S. I.; Linde, A. T.; Ripepe, M.</p> <p>2010-12-01</p> <p>Extrusion of viscous magma leading to lava dome-formation is a common phenomenon at arc volcanoes recently demonstrated at Mount St. Helens (USA), Chaiten (Chile), and SoufriËre Hills Volcano (British West Indies). The growth of lava domes is frequently accompanied by vigorous eruptions, commonly referred to as Vulcanian-style, characterized by sequences of short-lived (tens of seconds to tens of minutes) explosive pulses, reflecting the violent explosive nature of arc volcanism. Vulcanian eruptions represent a significant hazard, and an understanding of their dynamics is vital for risk mitigation. While eruption parameters have been mostly constrained from observational evidence, as well as from petrological, theoretical, and experimental studies, our understanding on the physics of the subsurface processes leading to Vulcanian eruptions is incomplete. We present and interpret a unique set of multi-parameter geophysical data gathered during two Vulcanian eruptions in July and December, 2008 at SoufriËre Hills Volcano from seismic, geodetic, infrasound, barometric, and gravimetric instrumentation. These events document the spectrum of Vulcanian eruptions in terms of their explosivity and nature of erupted products. Our analysis documents a pronounced difference in the geophysical signature of the two events associated with priming timescales and eruption triggering suggesting distinct differences in the mechanics involved. The July eruption has a signature related to shallow conduit dynamics including gradual system destabilisation, syn-eruptive decompression of the conduit by magma fragmentation, conduit emptying and expulsion of juvenile pumice. In contrast, sudden pressurisation of the entire plumbing system including the magma chambers resulted in dome carapace failure, a violent cannon-like explosion, propagation of a shock wave and pronounced ballistic ejection of dome fragments. We demonstrate that with lead times of between one and six minutes to the explosions the geophysical signature is indicative of the style of eruption priming, the dynamics of the ensuing eruption, and the nature of the erupted material. Our study conclusively demonstrates the extraordinary value of integrated multi-parameter systems for monitoring operations, in particular at volcanoes characterized by phases of continuous dome growth interspersed by vigorous, often unexpected, explosive activity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://ngmdb.usgs.gov/Prodesc/proddesc_82895.htm','USGSPUBS'); return false;" href="http://ngmdb.usgs.gov/Prodesc/proddesc_82895.htm"><span>Database for the Geologic Map of the Summit Region of Kilauea Volcano, Hawaii</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dutton, Dillon R.; Ramsey, David W.; Bruggman, Peggy E.; Felger, Tracey J.; Lougee, Ellen; Margriter, Sandy; Showalter, Patrick; Neal, Christina A.; Lockwood, John P.</p> <p>2007-01-01</p> <p>INTRODUCTION The area covered by this map includes parts of four U.S. Geological Survey (USGS) 7.5' topographic quadrangles (Kilauea Crater, Volcano, Ka`u Desert, and Makaopuhi). It encompasses the summit, upper rift zones, and Koa`e Fault System of Kilauea Volcano and a part of the adjacent, southeast flank of Mauna Loa Volcano. The map is dominated by products of eruptions from Kilauea Volcano, the southernmost of the five volcanoes on the Island of Hawai`i and one of the world's most active volcanoes. At its summit (1,243 m) is Kilauea Crater, a 3 km-by-5 km collapse caldera that formed, possibly over several centuries, between about 200 and 500 years ago. Radiating away from the summit caldera are two linear zones of intrusion and eruption, the east and the southwest rift zones. Repeated subaerial eruptions from the summit and rift zones have built a gently sloping, elongate shield volcano covering approximately 1,500 km2. Much of the volcano lies under water: the east rift zone extends 110 km from the summit to a depth of more than 5,000 m below sea level; whereas, the southwest rift zone has a more limited submarine continuation. South of the summit caldera, mostly north-facing normal faults and open fractures of the Koa`e Fault System extend between the two rift zones. The Koa`e Fault System is interpreted as a tear-away structure that accommodates southward movement of Kilauea's flank in response to distension of the volcano perpendicular to the rift zones. This digital release contains all the information used to produce the geologic map published as USGS Geologic Investigations Series I-2759 (Neal and Lockwood, 2003). The main component of this digital release is a geologic map database prepared using ArcInfo GIS. This release also contains printable files for the geologic map and accompanying descriptive pamphlet from I-2759.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss006e43366.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss006e43366.html"><span>Crew Earth Observations (CEO) taken during Expedition Six</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2003-04-04</p> <p>ISS006-E-43366 (4 April 2003) --- This view featuring Baitoushan Volcano, China and North Korea, was photographed by an Expedition 6 crewmember on the International Space Station (ISS). One of the largest known Holocene eruptions occurred at Baitoushan Volcano (also known as Changbaishan in China and P’aektu-san in Korea) about 1000 A.D., with erupted material deposited as far away as northern Japan – a distance of approximately 1200 kilometers. The eruption also created the 4.5 kilometer diameter, 850 meters deep summit caldera of the volcano that is now filled with the waters of Lake Tianchi (or Sky Lake). This oblique photograph was taken during the winter season, and snow highlights frozen Lake Tianchi along with lava flow lobes along the southern face of the volcano. Baitoushan last erupted in 1702 and is considered a dormant volcano. Gas emissions were reported from the summit and nearby hot springs in 1994, but no evidence of renewed activity of the volcano was observed. The Chinese-Korean border runs directly through the center of the summit caldera, and the mountain is considered sacred by the dominantly Korean population living near the volcano. Lake Tianchi is a popular resort destination, both for its natural beauty and alleged sightings of unidentified creatures living in its depths (similar to legendary Loch Ness Monster in Scotland).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPD....4820006M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPD....4820006M"><span>Onset of the Magnetic Explosion in Solar Polar Coronal X-Ray Jets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moore, Ronald L.; Sterling, Alphonse C.; Panesar, Navdeep</p> <p>2017-08-01</p> <p>We examine the onset of the driving magnetic explosion in 15 random polar coronal X-ray jets. Each eruption is observed in a coronal X-ray movie from Hinode and in a coronal EUV movie from Solar Dynamics Observatory. Contrary to the Sterling et al (2015, Nature, 523, 437) scenario for minifilament eruptions that drive polar coronal jets, these observations indicate: (1) in most polar coronal jets (a) the runaway internal tether-cutting reconnection under the erupting minifilament flux rope starts after the spire-producing breakout reconnection starts, not before it, and (b) aleady at eruption onset, there is a current sheet between the explosive closed magnetic field and ambient open field; and (2) the minifilament-eruption magnetic explosion often starts with the breakout reconnection of the outside of the magnetic arcade that carries the minifilament in its core. On the other hand, the diversity of the observed sequences of occurrence of events in the jet eruptions gives further credence to the Sterlling et al (2015, Nature, 523, 437) idea that the magnetic explosions that make a polar X-ray jet work the same way as the much larger magnetic explosions that make and flare and CME. We point out that this idea, and recent observations indicating that magnetic flux cancelation is the fundamental process that builds the field in and around pre-jet minifilaments and triggers the jet-driving magnetic explosion, together imply that usually flux cancelation inside the arcade that explodes in a flare/CME eruption is the fundamental process that builds the explosive field and triggers the explosion.This work was funded by the Heliophysics Division of NASA's Science Mission Directorate through its Living With a Star Targeted Research and Technology Program, its Heliophsyics Guest Investigators Program, and the Hinode Project.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA17978.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA17978.html"><span>Angry Indonesian Volcano Imaged by NASA Spacecraft</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2014-02-11</p> <p>This image acquired by NASA Terra spacecraft is of Mount Sinabung, a stratovolcano located in Indonesia. In late 2013, a lava dome formed on the summit. In early January 2014, the volcano erupted, and it erupted again in early February.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/pp/1801/downloads/pp1801_Chap7_Sutton.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/pp/1801/downloads/pp1801_Chap7_Sutton.pdf"><span>One hundred volatile years of volcanic gas studies at the Hawaiian Volcano Observatory: Chapter 7 in Characteristics of Hawaiian volcanoes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Sutton, A.J.; Elias, Tamar; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.</p> <p>2014-01-01</p> <p>The first volcanic gas studies in Hawai‘i, beginning in 1912, established that volatile emissions from Kīlauea Volcano contained mostly water vapor, in addition to carbon dioxide and sulfur dioxide. This straightforward discovery overturned a popular volatile theory of the day and, in the same action, helped affirm Thomas A. Jaggar, Jr.’s, vision of the Hawaiian Volcano Observatory (HVO) as a preeminent place to study volcanic processes. Decades later, the environmental movement produced a watershed of quantitative analytical tools that, after being tested at Kīlauea, became part of the regular monitoring effort at HVO. The resulting volatile emission and fumarole chemistry datasets are some of the most extensive on the planet. These data indicate that magma from the mantle enters the shallow magmatic system of Kīlauea sufficiently oversaturated in CO2 to produce turbulent flow. Passive degassing at Kīlauea’s summit that occurred from 1983 through 2007 yielded CO2-depleted, but SO2- and H2O-rich, rift eruptive gases. Beginning with the 2008 summit eruption, magma reaching the East Rift Zone eruption site became depleted of much of its volatile content at the summit eruptive vent before transport to Pu‘u ‘Ō‘ō. The volatile emissions of Hawaiian volcanoes are halogen-poor, relative to those of other basaltic systems. Information gained regarding intrinsic gas solubilities at Kīlauea and Mauna Loa, as well as the pressure-controlled nature of gas release, have provided useful tools for tracking eruptive activity. Regular CO2-emission-rate measurements at Kīlauea’s summit, together with surface-deformation and other data, detected an increase in deep magma supply more than a year before a corresponding surge in effusive activity. Correspondingly, HVO routinely uses SO2 emissions to study shallow eruptive processes and effusion rates. HVO gas studies and Kīlauea’s long-running East Rift Zone eruption also demonstrate that volatile emissions can be a substantial volcanic hazard in Hawai‘i. From its humble beginning, trying to determine the chemical composition of volcanic gases over a century ago, HVO has evolved to routinely use real-time gas chemistry to track eruptive processes, as well as hazards.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMNH53B1996M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMNH53B1996M"><span>Relationship between eruption plume heights and seismic source amplitudes of eruption tremors and explosion events</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mori, A.; Kumagai, H.</p> <p>2016-12-01</p> <p>It is crucial to analyze and interpret eruption tremors and explosion events for estimating eruption size and understanding eruption phenomena. Kumagai et al. (EPS, 2015) estimated the seismic source amplitudes (As) and cumulative source amplitudes (Is) for eruption tremors and explosion events at Tungurahua, Ecuador, by the amplitude source location (ASL) method based on the assumption of isotropic S-wave radiation in a high-frequency band (5-10 Hz). They found scaling relations between As and Is for eruption tremors and explosion events. However, the universality of these relations is yet to be verified, and the physical meanings of As and Is are not clear. In this study, we analyzed the relations between As and Is for eruption tremors and explosion events at active volcanoes in Japan, and estimated As and Is by the ASL method. We obtained power-law relations between As and Is, in which the powers were different between eruption tremors and explosion events. These relations were consistent with the scaling relations at Tungurahua volcano. Then, we compared As with maximum eruption plume heights (H) during eruption tremors analyzed in this study, and found that H was proportional to 0.21 power of As. This relation is similar to the plume height model based on the physical process of plume rise, which indicates that H is proportional to 0.25 power of volumetric flow rate for plinian eruptions. This suggests that As may correspond to volumetric flow rate. If we assume a seismic source with volume changes and far-field S-wave, As is proportional to the source volume rate. This proportional relation and the plume height model give rise to the relation that H is proportional to 0.25 power of As. These results suggest that we may be able to estimate plume heights in realtime by estimating As during eruptions from seismic observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70012233','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70012233"><span>Geophysical observations of Kilauea volcano, Hawaii, 1. temporal gravity variations related to the 29 November, 1975, M = 7.2 earthquake and associated summit collapse</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Jachens, R.C.; Eaton, G.P.</p> <p>1980-01-01</p> <p>Repeated high-precision gravity measurements made near the summit of Kilauea volcano, Hawaii, have revealed systematic temporal variations in the gravity field associated with a major deflation of the volcano that followed the 29 November, 1975, earthquake and eruption. Changes in the gravity field with respect to a stable reference station on the south flank of neighboring Mauna Loa volcano were measured at 18 sites in the summit region of Kilauea and at 4 sites far removed from its summit. The original survey, conducted 10-23 November, 1975, was repeated during a two-week period after the earthquake. The results indicate that sometime between the first survey and the latter part of the second survey the gravity field at sites near the summit increased with respect to that at sites far removed from the summit. The pattern of gravity increase is essentially radially symmetrical, with a half-width slightly less than 3 km, about the point of maximum change 1.5 km southeast of Halemaumau pit crater. Gravity changes at sites near the summit correlate closely with elevation decreases that occurred sometime between leveling surveys conducted in late September 1975 and early January 1976. The systematic relation between gravity and elevation change (-1.71 ?? 0.05 (s.e.) ??gal/cm) shows that deflation was accompanied by a loss of mass from beneath the summit region. Mass balance calculations indicate that for all reasonable magma densities, the volume of magma withdrawn from beneath the summit region exceeded the volume of summit collapse. Analysis suggests that magma drained from at least two distinct areas south of Kilauea caldera that coincide roughly with two reservoir areas active during inflation before the 1967-1968 Kilauea eruption. ?? 1980.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.V31B3015H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.V31B3015H"><span>Seismic and deformation precursory to the small explosions of Marapi Volcano, West Sumatra, Indonesia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hidayat, D.; Patria, C.; Gunawan, H.; Taisne, B.; Nurfiani, D.; Avila, E. J.</p> <p>2015-12-01</p> <p>Marapi Volcano is one of the active volcanoes of Indonesia located near the city of Bukittinggi, West Sumatra, Indonesia. Its activity is characterized by small vulcanian explosions with occasional VEI 2 producing tephra and pyroclastic flows. Due to its activity, it is being monitored by Centre for Volcanology and Geological Hazard Mitigation (CVGHM). Four seismic stations consists of 2 broadband and 2 short period instruments have been established since 2009. In collaboration with CVGHM, Earth Observatory of Singapore added 5 seismic stations around the volcano in 2014, initially with short period instruments but later upgraded to broadbands. We added one tilt station at the summit of Marapi. These seismic and tilt stations are telemetered by 5.8GHz radio to Marapi Observatory Post where data are archived and displayed for Marapi observers for their daily volcanic activity monitoring work. We also archive the data in the EOS and CVGHM main offices. Here we are presenting examples of seismic and deformation data from Marapi prior, during, and after the vulcanian explosion. Our study attempt to understand the state of the volcano based on monitoring data and in order to enable us to better estimate the hazards associated with the future eruptions of this or similar volcano.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70041667','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70041667"><span>Interdisciplinary studies of eruption at Chaitén volcano, Chile</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Pallister, John S.; Major, Jon J.; Pierson, Thomas C.; Holitt, Richard P.; Lowenstern, Jacob B.; Eichelberger, John C.; Luis, Lara; Moreno, Hugo; Muñoz, Jorge; Castro, Jonathan M.; Iroumé, Andrés; Andreoli, Andrea; Jones, Julia; Swanson, Fred; Crisafulli, Charlie</p> <p>2010-01-01</p> <p>High-silica rhyolite magma fuels Earth's largest and most explosive eruptions. Recurrence intervals for such highly explosive eruptions are in the 100- to 100,000-year time range, and there have been few direct observations of such eruptions and their immediate impacts. Consequently, there was keen interest within the volcanology community when the first large eruption of high-silica rhyolite since that of Alaska's Novarupta volcano in 1912 began on 1 May 2008 at Chaitén volcano, southern Chile, a 3-kilometer-diameter caldera volcano with a prehistoric record of rhyolite eruptions [Naranjo and Stern, 2004semi; Servicio Nacional de Geología y Minería (SERNAGEOMIN), 2008semi; Carn et al., 2009; Castro and Dingwell, 2009; Lara, 2009; Muñoz et al., 2009]. Vigorous explosions occurred through 8 May 2008, after which explosive activity waned and a new lava dome was extruded.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.S51D2708R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.S51D2708R"><span>Frequency and Size of Strombolian Eruptions from the Phonolitic Lava Lake at Erebus Volcano, Antarctica: Insights from Infrasound and Seismic Observations on Bubble Formation and Ascent</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rotman, H. M. M.; Kyle, P. R.; Fee, D.; Curtis, A.</p> <p>2015-12-01</p> <p>Erebus, an active intraplate volcano on Ross Island, commonly produces bubble burst Strombolian explosions from a long-lived, convecting phonolitic lava lake. Persistent lava lakes are rare, and provide direct insights into their underlying magmatic system. Erebus phonolite is H2O-poor and contains ~30% anorthoclase megacrysts. At shallow depths lab measurements suggest the magma has viscosities of ~107 Pa s. This has implications for magma and bubble ascent rates through the conduit and into the lava lake. The bulk composition and matrix glass of Erebus ejecta has remained uniform for many thousands of years, but eruptive activity varies on decadal and shorter time scales. Over the last 15 years, increased activity took place in 2005-2007, and more recently in the 2013 austral summer. In the 2014 austral summer, new infrasound sensors were installed ~700 m from the summit crater hosting the lava lake. These sensors, supplemented by the Erebus network seismic stations, recorded >1000 eruptions between 1 January and 7 April 2015, with an average infrasound daily uptime of 9.6 hours. Over the same time period, the CTBT infrasound station IS55, ~25 km from Erebus, detected ~115 of the >1000 locally observed eruptions with amplitude decreases of >100x. An additional ~200 eruptions were recorded during local infrasound downtime. This represents an unusually high level of activity from the Erebus lava lake, and while instrument noise influences the minimum observable amplitude each day, the eruption infrasound amplitudes may vary by ~3 orders of magnitude over the scale of minutes to hours. We use this heightened period of variable activity and associated seismic and acoustic waveforms to examine mechanisms for bubble formation and ascent, such as rise speed dependence and collapsing foam; repose times for the larger eruptions; and possible eruption connections to lava lake cyclicity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70147065','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70147065"><span>The 2008 phreatomagmatic eruption of Okmok volcano, Aleutian Islands, Alaska: Chronology, deposits, and landform changes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Jessica Larsen,; Neal, Christina; Schaefer, Janet R.; Kaufman, Max; Lu, Zhong</p> <p>2015-01-01</p> <p>Okmok volcano, Aleutian Islands, Alaska, explosively erupted over a five-week period between July 12 and August 23, 2008. The eruption was predominantly phreatomagmatic, producing fine-grained tephra that covered most of northeastern Umnak Island. The eruption had a maximum Volcanic Explosivity Index (VEI) of 4, with eruption column heights up to 16 km during the opening phase. Several craters and a master tuff cone formed in the caldera as a result of phreatomagmatic explosions and accumulated tephra-fall and surge deposits. Ascending magma continuously interacted with an extensive shallow groundwater table in the caldera, resulting in the phreatomagmatic character of the eruption. Syneruptive explosion and collapse processes enlarged a pre-existing lake, created a second, entirely new lake, and formed new, deep craters. A field of ephemeral collapse pits and collapse escarpments formed where rapid groundwater withdrawal removed material from beneath capping lava flows. This was the first significant phreatomagmatic event in the U.S. since the Ukinrek Maars eruption in 1977.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMPA43C2202S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMPA43C2202S"><span>Don't Forget Kīlauea: Explosive Hazards at an Ocean Island Basaltic Volcano</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Swanson, D. A.; Houghton, B. F.</p> <p>2015-12-01</p> <p>Kīlauea alternates between periods of high and low magma supply rate, each period lasting centuries. The low rate is only a few percent of the high rate. High supply rate, typified by the past 200 years, leads to frequent lava flows, elevated SO2 emission, and relatively low-hazard Hawaiian-style explosive activity (lava fountains, spattering). Periods of low magma supply are very different. They accompany formation and maintenance of a deep caldera, the floor of which is at or below the water table, and are characterized by phreatomagmatic and phreatic explosive eruptions largely powered by external water. The low magma supply rate results in few lava flows and reduced SO2 output. Studies of explosive deposits from the past two periods of low magma supply (~200 BCE-1000 CE and ~1500-1800 CE) indicate that VEIs calculated from isopach maps can range up to a low 3. Clast-size studies suggest that subplinian column heights can reach >10 km (most recently in 1790), though more frequent column heights are ~5-8 km. Pyroclastic density currents (PDCs) present severe proximal hazards; a PDC in 1790 killed a few hundred people in an area of Hawaíi Volcanoes National Park today visited by 5000 people daily. Ash in columns less than about 5 km a.s.l. is confined to the trade-wind regime and advects southwest. Ash in higher columns enters the jet stream and is transported east and southeast of the summit caldera. Recurrence of such column heights today would present aviation hazards, which, for an isolated state dependent on air transport, could have especially deleterious economic impact. There is currently no way to estimate when a period of low magma supply, a deep caldera, and powerful explosive activity will return. Hazard assessments must take into account the cyclic nature of Kīlauea's eruptive activity, not just its present status; consequently, assessments for periods of high and low magma supply rates should be made in parallel to cover all eventualities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NatCo...713585C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NatCo...713585C"><span>Rapid laccolith intrusion driven by explosive volcanic eruption</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Castro, Jonathan M.; Cordonnier, Benoit; Schipper, C. Ian; Tuffen, Hugh; Baumann, Tobias S.; Feisel, Yves</p> <p>2016-11-01</p> <p>Magmatic intrusions and volcanic eruptions are intimately related phenomena. Shallow magma intrusion builds subsurface reservoirs that are drained by volcanic eruptions. Thus, the long-held view is that intrusions must precede and feed eruptions. Here we show that explosive eruptions can also cause magma intrusion. We provide an account of a rapidly emplaced laccolith during the 2011 rhyolite eruption of Cordón Caulle, Chile. Remote sensing indicates that an intrusion began after eruption onset and caused severe (>200 m) uplift over 1 month. Digital terrain models resolve a laccolith-shaped body ~0.8 km3. Deformation and conduit flow models indicate laccolith depths of only ~20-200 m and overpressures (~1-10 MPa) that likely stemmed from conduit blockage. Our results show that explosive eruptions may rapidly force significant quantities of magma in the crust to build laccoliths. These iconic intrusions can thus be interpreted as eruptive features that pose unique and previously unrecognized volcanic hazards.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70013821','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70013821"><span>Detailed record of SO2 emissions from Pu'u `O`o between episodes 33 and 34 of the 1983-86 ERZ eruption, Kilauea, Hawaii</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Chartier, T.A.; Rose, William I.; Stokes, J.B.</p> <p>1988-01-01</p> <p>A tripod-mounted correlation spectrometer was used to measure SO2 emissions from Pu`u `O`o vent, mid-ERZ, Kilauea, Hawaii between Episodes 33 and 34 (June 13 to July 6, 1985). In 24 repose days, 906 measurements were collected, averaging 38 determinations/day. Measurements reflect 13% of the total 576 hours of the repose and 42% of the bright daylight hours. The average SO2 emission for the 24-day repose interval is 167??83 t/d, a total of 4000 tonnes emitted for the entire repose. The large standard deviation reflects the "puffing" character of the plume. The overall rate of SO2 degassing gently decreased with a zero-intercept of 44-58 days and was interrupted by two positive peaks. The data are consistent with the gas emanating from a cylindrical conduit of 50 meter diameter and a length of 1700 meters which degasses about 50% of its SO2 during 24 days. This is in support of the Pu'u `O`o model of Greenland et al. (1987). 36 hours before the onset of Episode 34 (July 5-6, 1985), elevated SO2 emissions were detected while the magma column was extremely active ultimately spilling over during dome fountaining. A "mid-repose" anomaly of SO2 emission (June 21-22, 1985) occurs two days before a sudden increase in the rate of summit inflation (on June 24, 1985), suggesting magma was simultaneously being injected in both the ERZ and summit reservoir until July 24 when it was channelled only to the summit reservoir. This implies degassing magma is sensitive to perturbations within the rift zone conduit system and may at times reflect these disturbances. Periods of 7-45 min are detected in the daily SO2 emissions, which possibly reflect timing of convective overturn in the cylindrical magma body. If the 33-34 repose interval is considered representative of other repose periods, the ERZ reposes of Jan 1983-Jan 1986 ERZ activity, contributed 1.6 ?? 105 tonnes of SO2 to the atmosphere. Including summit fuming from non-eruptive fumaroles (2.7 ?? 105 tonnes SO2); 28% of the total SO2 budget from Kilauea between Jan 1983 to Jan 1986 was contributed by quiescent degassing, and the remainder was released during explosive fountaining episodes. ?? 1988 Springer-Verlag.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5698251-geology-kilauea-volcano','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5698251-geology-kilauea-volcano"><span>Geology of Kilauea volcano</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Moore, R.B.; Trusdell, F.A.</p> <p>1993-08-01</p> <p>This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower east rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailedmore » geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. 71 refs., 2 figs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70017417','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70017417"><span>Geology of kilauea volcano</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Moore, R.B.; Trusdell, F.A.</p> <p>1993-01-01</p> <p>This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower cast rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailed geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. ?? 1993.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-0203323.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-0203323.html"><span>Earth Science</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2002-10-30</p> <p>Expedition Five crew members aboard the International Space Station (ISS) captured this overhead look at the smoke and ash regurgitated from the erupting volcano Mt. Etna on the island of Sicily, Italy in October 2002. Triggered by a series of earthquakes on October 27, 2002, this eruption was one of Etna's most vigorous in years. This image shows the ash plume curving out toward the horizon. The lighter-colored plumes down slope and north of the summit seen in this frame are produced by forest fires set by flowing lava. At an elevation of 10,990 feet (3,350 m), the summit of the Mt. Etna volcano, one of the most active and most studied volcanoes in the world, has been active for a half-million years and has erupted hundreds of times in recorded history.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA22152.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA22152.html"><span>Investigating Mars: Arsia Mons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-27</p> <p>This VIS image shows part of the eastern margin of the summit caldera of Arsia Mons. The arcuate features are the faults created by collapse of summit materials. A massive eruption can empty the large magma chamber which existed within the volcano, creating a void which can not support the weight of the top of the volcano. Arsia Mons is the southernmost of the Tharsis volcanoes. It is 270 miles (450km) in diameter, almost 12 miles (20km) high, and the summit caldera is 72 miles (120km) wide. For comparison, the largest volcano on Earth is Mauna Loa. From its base on the sea floor, Mauna Loa measures only 6.3 miles high and 75 miles in diameter. A large volcanic crater known as a caldera is located at the summit of all of the Tharsis volcanoes. These calderas are produced by massive volcanic explosions and collapse. The Arsia Mons summit caldera is larger than many volcanoes on Earth. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 12487 Latitude: -9.44031 Longitude: 240.527 Instrument: VIS Captured: 2004-10-07 11:58 https://photojournal.jpl.nasa.gov/catalog/PIA22152</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008JVGR..176..583N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008JVGR..176..583N"><span>Seismic pattern recognition techniques to predict large eruptions at the Popocatépetl, Mexico, volcano</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Novelo-Casanova, D. A.; Valdés-González, C.</p> <p>2008-10-01</p> <p>Using pattern recognition techniques, we formulate a simple prediction rule for a retrospective prediction of the three last largest eruptions of the Popocatépetl, Mexico, volcano that occurred on 23 April-30 June 1997 (Eruption 1; VEI ~ 2-3); 11 December 2000-23 January 2001 (Eruption 2; VEI ~ 3-4) and 7 June-4 September 2002 (Eruption 3; explosive dome extrusion and destruction phase). Times of Increased Probability (TIP) were estimated from the seismicity recorded by the local seismic network from 1 January 1995 to 31 December 2005. A TIP is issued when a cluster of seismic events occurs under our algorithm considerations in a temporal window several days (or weeks) prior to large volcanic activity providing sufficient time to organize an effective alert strategy. The best predictions of the three analyzed eruptions were obtained when averaging seismicity rate over a 5-day window with a threshold value of 12 events and declaring an alarm for 45 days. A TIP was issued about six weeks before Eruption 1. TIPs were detected about one and four weeks before Eruptions 2 and 3, respectively. According to our objectives, in all cases, the observed TIPs would have allowed the development of an effective civil protection strategy. Although, under our model considerations the three eruptive events were successfully predicted, one false alarm was also issued by our algorithm. An analysis of the epicentral and depth distribution of the local seismicity used by our prediction rule reveals that successful TIPs were issued from microearthquakes that took place below and towards SE of the crater. On the contrary, the seismicity that issued the observed false alarm was concentrated below the summit of the volcano. We conclude that recording of precursory seismicity below and SE of the crater together with detection of TIPs as described here, could become an important tool to predict future large eruptions at Popocatépetl. Although our model worked well for events that occurred in the past, it is necessary to verify the real capability of the model for future eruptive events.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.V41A2481R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.V41A2481R"><span>High-MgO Vitric Ash in Upper Kulanaokuaiki Tephra, Kilauea Volcano, Hawai`i: A Preliminary Description</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rose, T. R.; Fiske, R. S.; Swanson, D.</p> <p>2011-12-01</p> <p>Small, well-formed Pele's tears containing anomalously high values of MgO were recently discovered in outcrops of the upper Kulanaokuaiki Tephra at and near the base of Uwekahuna Bluff, the western wall of Kilauea Caldera. Electron microprobe analyses of more than 60 high-MgO tears, which are 1-3 mm in diameter, show that most contain 11 to 12 wt. % MgO with a few approaching 13 % MgO. Separate microprobe analyses for sulfur and chlorine of 20 grains revealed no appreciable amounts of either, indicating the magma was largely degassed. Polished-section studies employing an analytical scanning electron microscope show most tears are composed of pure microvesicular glass with scattered skeletal olivine crystals and rare chromite. The abundance of skeletal olivine appears to increase with decreasing MgO content of the glass. These tears contain among the highest known MgO values of any material erupted subaerially from Kilauea. The high-MgO tears occur in a 1-6 cm thick layer of medium-coarse lithic-crystal-vitric ash. The top of this layer consists of 2-3 mm of very fine lithic-crystal ash. The lithics and many of the olivine crystals in this layer are highly oxidized. This deposit is at the top of a sequence of several lithic beds that are interspersed with thinner vitric units totaling about 75 cm in thickness. It is overlain by 9-13 cm of medium pumice lapilli and coarse vitric ash at the top of the "Bluff base" and "mid-Bluff" tephra sections described by Fiske et al. (2009). This high-MgO glass layer has been found thus far in only one other locality, a 2 m-deep soils study pit within Kipuka Puaulu, 3.5 km northwest of the caldera. Based upon stratigraphic relationships and preliminary microprobe data, a few other likely exposures of the high-MgO deposit have been identified north and west of the caldera. The high-MgO vitric ash in the upper Kulanaokuaiki Tephra has a primitive composition that suggests little if any shallow level storage of magma. Instead, the magma probably rose rapidly from deep within, or below, the volcano just before its eruption. Remnants of the Kulanaokuaiki-3 scoria deposit, a subunit of the upper Kulanaokuaiki Tephra, are preserved over wide areas 7-12 km south and southeast of the summit and have characteristics also suggesting rapid rise and eruption (Fiske et al., this meeting). Some relatively primitive vitric ash occurs in the younger Keanakako`i Tephra (Garcia et al., this meeting) and can be interpreted to indicate little if any shallow storage. Thus the high-MgO glass reported here may be an end member in a family of relatively primitive compositions that can erupt under some circumstances at Kilauea's summit. Most recent tephra deposits at and near Kilauea's summit are attributed to phreatic or phreatomagmatic explosive eruptions that originated at relatively shallow depth. One important implication of our findings is that some highly energetic pyroclastic eruptions at Kilauea likely originated at far greater depths.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/pp/1613/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/pp/1613/report.pdf"><span>Magma migration and resupply during the 1974 summit eruptions of Kilauea Volcano, Hawaii</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lockwood, John P.; Tilling, Robert I.; Holcomb, Robin T.; Klein, Fred W.; Okamura, Arnold T.; Peterson, Donald W.</p> <p>1999-01-01</p> <p>The purpose of this paper is to present a complete account of contrasting yet related eruptions, thus filling a gap in the published narratives of recent activity of Kilauea; and to examine their significance within a broader context of regional magmatic and eruptive dynamics. We have gained a historical perspective and can view these three eruptions within a multidecade context of the eruptive behavior of not only Kilauea, but also of the adjacent Mauna Loa.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11859366','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11859366"><span>Transient dynamics of vulcanian explosions and column collapse.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Clarke, A B; Voight, B; Neri, A; Macedonio, G</p> <p>2002-02-21</p> <p>Several analytical and numerical eruption models have provided insight into volcanic eruption behaviour, but most address plinian-type eruptions where vent conditions are quasi-steady. Only a few studies have explored the physics of short-duration vulcanian explosions with unsteady vent conditions and blast events. Here we present a technique that links unsteady vent flux of vulcanian explosions to the resulting dispersal of volcanic ejecta, using a numerical, axisymmetric model with multiple particle sizes. We use observational data from well documented explosions in 1997 at the Soufrière Hills volcano in Montserrat, West Indies, to constrain pre-eruptive subsurface initial conditions and to compare with our simulation results. The resulting simulations duplicate many features of the observed explosions, showing transitional behaviour where mass is divided between a buoyant plume and hazardous radial pyroclastic currents fed by a collapsing fountain. We find that leakage of volcanic gas from the conduit through surrounding rocks over a short period (of the order of 10 hours) or retarded exsolution can dictate the style of explosion. Our simulations also reveal the internal plume dynamics and particle-size segregation mechanisms that may occur in such eruptions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApJ...859....3M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApJ...859....3M"><span>Onset of the Magnetic Explosion in Solar Polar Coronal X-Ray Jets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moore, Ronald L.; Sterling, Alphonse C.; Panesar, Navdeep K.</p> <p>2018-05-01</p> <p>We follow up on the Sterling et al. discovery that nearly all polar coronal X-ray jets are made by an explosive eruption of a closed magnetic field carrying a miniature filament in its core. In the same X-ray and EUV movies used by Sterling et al., we examine the onset and growth of the driving magnetic explosion in 15 of the 20 jets that they studied. We find evidence that (1) in a large majority of polar X-ray jets, the runaway internal/tether-cutting reconnection under the erupting minifilament flux rope starts after both the minifilament’s rise and the spire-producing external/breakout reconnection have started; and (2) in a large minority, (a) before the eruption starts, there is a current sheet between the explosive closed field and the ambient open field, and (b) the eruption starts with breakout reconnection at that current sheet. The variety of event sequences in the eruptions supports the idea that the magnetic explosions that make polar X-ray jets work the same way as the much larger magnetic explosions that make a flare and coronal mass ejection (CME). That idea and recent observations indicating that magnetic flux cancellation is the fundamental process that builds the field in and around the pre-jet minifilament and triggers that field’s jet-driving explosion together suggest that flux cancellation inside the magnetic arcade that explodes in a flare/CME eruption is usually the fundamental process that builds the explosive field in the core of the arcade and triggers that field’s explosion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70017649','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70017649"><span>Evaluation of sulfur dioxide emissions from explosive volcanism: the 1982-1983 eruptions of Galunggung, Java, Indonesia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bluth, G.J.S.; Casadevall, T.J.; Schnetzler, C.C.; Doiron, S.D.; Walter, Louis S.; Krueger, A.J.; Badruddin, M.</p> <p>1994-01-01</p> <p>Galunggung volcano, Java, awoke from a 63-year quiescence in April 1982, and erupted sporadically through January 1983. During its most violent period from April to October, the Cikasasah Volcano Observatory reported 32 large and 56 moderate to small eruptions. From April 5 through September 19 the Total Ozone Mapping Spectrometer (TOMS), carried on NASA's Nimbus-7 satellite, detected and measured 24 different sulfur dioxide clouds; an estimated 1730 kilotons (kt) of SO2 were outgassed by these explosive eruptions. The trajectories, and rapid dispersion rates, of the SO2 clouds were consistent with injection altitudes below the tropopause. An additional 300 kt of SO2 were estimated to have come from 64 smaller explosive eruptions, based on the detection limit of the TOMS instrument. For the first time, an extended period of volcanic activity was monitored by remote sensing techniques which enabled observations of both the entire SO2 clouds produced by large explosive eruptions (using TOMS), and the relatively lower levels of SO2 emissions during non-explosive outgassing (using the Correlation Spectrometer, or COSPEC). Based on COSPEC measurements from August 1982 to January 1983, and on the relationship between explosive and non-explosive degassing, approximately 400 kt of SO2 were emitted during non-explosive activity. The total sulfur dioxide outgassed from Galunggung volcano from April 1982 to January 1983 is calculated to be 2500 kt (?? 30%) from both explosive and non-explosive activity. While Galunggung added large quantities of sulfur dioxide to the atmosphere, its sporadic emissions occurred in relatively small events distributed over several months, and reached relatively low altitudes, and are unlikely to have significantly affected aerosol loading of the stratosphere in 1982 by volcanic activity. ?? 1994.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29203840','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29203840"><span>Enhancement of eruption explosivity by heterogeneous bubble nucleation triggered by magma mingling.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Paredes-Mariño, Joali; Dobson, Katherine J; Ortenzi, Gianluigi; Kueppers, Ulrich; Morgavi, Daniele; Petrelli, Maurizio; Hess, Kai-Uwe; Laeger, Kathrin; Porreca, Massimiliano; Pimentel, Adriano; Perugini, Diego</p> <p>2017-12-04</p> <p>We present new evidence that shows magma mingling can be a key process during highly explosive eruptions. Using fractal analysis of the size distribution of trachybasaltic fragments found on the inner walls of bubbles in trachytic pumices, we show that the more mafic component underwent fracturing during quenching against the trachyte. We propose a new mechanism for how this magmatic interaction at depth triggered rapid heterogeneous bubble nucleation and growth and could have enhanced eruption explosivity. We argue that the data support a further, and hitherto unreported contribution of magma mingling to highly explosive eruptions. This has implications for hazard assessment for those volcanoes in which evidence of magma mingling exists.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017BVol...79....3T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017BVol...79....3T"><span>New insights into Holocene eruption episodes from proximal deposit sequences at Mt. Taranaki (Egmont), New Zealand</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Torres-Orozco, Rafael; Cronin, Shane J.; Pardo, Natalia; Palmer, Alan S.</p> <p>2017-01-01</p> <p>Upper stratovolcano flanks contain the most nuanced depositional record of long eruption episodes, but steep, irregular terrain makes these sequences difficult to correlate and interpret. This necessitates development of a detailed and systematic approach to describing localized depositional facies and relating these to eruptive processes. In this work, the late-Holocene eruption history of Mt. Taranaki/Egmont, New Zealand, was re-assessed based on a study of proximal deposits spanning the 14C-dated age range of 5.0-0.3 cal ka B.P. Mt. Taranaki is a textbook-example stratovolcano, with geological evidence pointing to sudden switches in scale, type and frequency of eruptions over its 130 ka history. The proximal stratigraphy presented here almost doubles the number of eruptions recognized from previous soil-stratigraphy studies. A total of 53 lithostratigraphic bed-sets record eruptions of the summit crater and parasitic vents like Fanthams Peak (the latter between 3.0 and 1.5 cal ka B.P.). At least 12 of the eruptions represented by these bed-sets comprise deposits comparable with or thicker than those of the latest sub-Plinian eruption of AD 1655. The largest eruption episode represented is the 4.6-4.7-cal ka B.P. Kokowai. Contrasting eruption styles were identified, from stable basaltic-andesite eruption columns at Fanthams Peak, to andesitic lava-dome extrusion, blasts and partial collapse of unstable eruption columns at Mt. Taranaki's summit. The centemetre-scale proximal deposit descriptions were used to identify several previously unknown, smaller eruption events. These details are indispensable for building a comprehensive probabilistic event record and in the development of realistic eruptive scenarios for complex eruption episodes prior to re-awakening of a volcano.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/fs/2011/3064/fs2011-3064.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/fs/2011/3064/fs2011-3064.pdf"><span>Kīlauea - An explosive volcano in Hawai‘i</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Swanson, Donald A.; Fiske, Dick; Rose, Tim; Houghton, Bruce F.; Mastin, Larry</p> <p>2011-01-01</p> <p>Kīlauea Volcano on the Island of Hawai‘i, though best known for its frequent quiet eruptions of lava flows, has erupted explosively many times in its history - most recently in 2011. At least six such eruptions in the past 1,500 years sent ash into the jet stream, at the cruising altitudes for today's aircraft. The eruption of 1790 remains the most lethal eruption known from a U.S. volcano. However, the tendency of Kīlauea's 2 million annual visitors is to forget this dangerous potential. Cooperative research by scientists of the U.S. Geological Survey, Smithsonian Institution, and University of Hawai‘i is improving our understanding of Kīlauea's explosive past and its potential for future violent eruptions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2000/0519/pdf/of00-519.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2000/0519/pdf/of00-519.pdf"><span>Preliminary volcano-hazard assessment for Aniakchak Volcano, Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Neal, Christina A.; McGimsey, Robert G.; Miller, Thomas P.; Riehle, James R.; Waythomas, Christopher F.</p> <p>2000-01-01</p> <p>Aniakchak is an active volcano located on the Alaska Peninsula 670 kilometers southwest of Anchorage. The volcano consists of a dramatic, 10-kilometer-diameter, 0.5 to 1.0-kilometer-deep caldera that formed during a catastrophic eruption 3,500 years ago. Since then, at least a dozen separate vents within the caldera have erupted, often explosively, to produce lava flows and widespread tephra (ash) deposits. The most recent eruption at Aniakchak occurred in 1931 and was one of the largest explosive eruptions in Alaska in the last 100 years. Although Aniakchak volcano presently shows no signs of unrest, explosive and nonexplosive eruptions will occur in the future. Awareness of the hazards posed by future eruptions is a key factor in minimizing impact.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.V33B3106T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.V33B3106T"><span>Cyclic Explosivity in High Elevation Phreatomagmatic Eruptions at Ocean Island Volcanoes: Implications for Aquifer Pressurization and Volcano Flank Destabilization.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tarff, R.; Day, S. J.; Downes, H.; Seghedi, I.</p> <p>2015-12-01</p> <p>Groundwater heating and pressurization of aquifers trapped between dikes in ocean island volcanoes has been proposed as a mechanism for destabilizing and triggering large-volume flank collapses. Previous modelling has indicated that heat transfer from sustained magma flow through dikes during eruption has the potential to produce destabilizing levels of pressure on time scales of 4 to 400 days, if the aquifers remain confined. Here we revisit this proposal from a different perspective. We examine evidence for pressure variations in dike-confined aquifers during eruptions at high elevation vents on ocean island volcanoes. Initially magmatic, these eruptions change to mostly small-volume explosive phreatomagmatic activity. A recent example is the 1949 eruption on La Palma, Canary Islands. Some such eruptions involve sequences of larger-volume explosive phases or cycles, including production of voluminous low-temperature, pyroclastic density currents (PDC). Here we present and interpret data from the Cova de Paul crater eruption (Santo Antao, Cape Verde Islands). The phreatomagmatic part of this eruption formed two cycles, each culminating with eruption of PDCs. Compositional and textural variations in the products of both cycles indicate that the diatreme fill began as coarse-grained and permeable which allowed gas to escape. During the eruption, the fill evolved to a finer grained, poorly sorted, less permeable material, in which pore fluid pressures built up to produce violent explosive phases. This implies that aquifers adjacent to the feeder intrusion were not simply depressurized at the onset of phreatomagmatic explosivity but experienced fluctuations in pressure throughout the eruption as the vent repeatedly choked and emptied. In combination with fluctuations in magma supply rate, driving of aquifer pressurization by cyclical vent choking will further complicate the prediction of flank destabilization during comparable eruptions on ocean island volcanoes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120009611','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120009611"><span>Volatile Transport by Volcanic Plumes on Earth, Venus and Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Glaze, Lori S.; Self, Stephen; Baloga, Steve; Stofan, Ellen R.</p> <p>2012-01-01</p> <p>Explosive volcanic eruptions can produce sustained, buoyant columns of ash and gas in the atmosphere (Fig. 1). Large flood basalt eruptions may also include significant explosive phases that generate eruption columns. Such eruptions can transport volcanic volatiles to great heights in the atmosphere. Volcanic eruption columns can also redistribute chemical species within the atmosphere by entraining ambient atmosphere at low altitudes and releasing those species at much higher altitudes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA....11970A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA....11970A"><span>The most destructive effusive eruption in modern history: Nyiragongo (RD. Congo), January 2002.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Allard, P.; Baxter, P.; Halbwachs, M.; Kasareka, M.; Komorowski, J. C.; Joron, J. L.</p> <p>2003-04-01</p> <p>Nyiragongo volcano (3470 m a.s.l.), built on the western branch of the East African Rift, has long contained in its summit crater a highly fluid, actively degassing lava lake of nephelinite composition that was studied on several occasions since the mid XXth century [1]. In 1977, for the first time in recent history, this lava lake suddenly drained out through flank fractures, causing some 60 casualties [2]. A new lava lake gradually refilled the crater from 1982 to 1994 [3] but, subsequently, its surface solidification evidenced a drop in the magma supply rate. On 17 January 2002, after several months of increased seismicity and fumarolic activity, a second drainage of the lava lake occurred through a 18 km long N-S fracture system that propagated in a few hours from 2800 m down to 1550 m elevation along the southern volcano flank. Voluminous flows of fluid pahoehoe and aa lavas ran across villages, banana fields and crops and, finally, through the city of Goma from which 350,000 inhabitants fled in a hurry. About 15% of the city, including its main centre and the housing of 120,000 people, were engulfed by flows which ultimately poured into the nearby gas-charged Lake Kivu, raising concern about a possible Nyos-type lethal gas burst [4]. Despite its limited death toll (about 45), this eruption had the most destructive impact ever recorded in history for an effusive eruption. Understanding its triggering mechanism is fundamental since a new lava lake may reform soon in Nyiragongo crater, further threatening the Goma region. Different field observations and measurements carried out soon after the eruption allowed us [4] and UN-OCHA colleagues [5] to recognize that the 2002 eruption had likely been triggered by tectonic spreading of the Kivu Rift, manifested in the occurrence of intense post-eruptive seismicity, regional ground subsidence, fracturing and minor CO2-CH4-rich gas explosions, rather than by simple magma overpressure and intrusion. This interpretation is supported i) by the similarity in the volumes of erupted flows (ca. 30-40x106 m3) and of summit crater collapse, and ii) by the identical major and trace element chemistry of the 2002 and 1977 lavas, as will be discussed. Monitoring tectonic movements in the Kivu rift thus reveals extremely important for anticipating future volcanic risks from Nyiragongo. [1] Tazieff H. et al., Bull. Volcanol., 23, 69-71, 1960; [2] Tazieff H., Bull. Volcanol., 40, 189-200, 1977; [3] Global Volc. Bull. Reports; [4] Allard P. et al., French-UK Concorde Report, 38 pp., 8 March 2002; [5] Tedesco D. et al., UN-OCHA Report, 52 pp., 30 March 2002.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70018549','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70018549"><span>Differentiation and magma mixing on Kilauea's east rift zone: A further look at the eruptions of 1955 and 1960. Part II. The 1960 lavas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wright, T.L.; Helz, R.T.</p> <p>1996-01-01</p> <p>New and detailed petrographic observations, mineral compositional data, and whole-rock vs glass compositional trends document magma mixing in lavas erupted from Kilauea's lower east rift zone in 1960. Evidence includes the occurrence of heterogeneous phenocryst assemblages, including resorbed and reversely zoned minerals in the lavas inferred to be hybrids. Calculations suggest that this mixing, which is shown to have taken place within magma reservoirs recharged at the end of the 1955 eruption, involved introduction of four different magmas. These magmas originated beneath Kilauea's summit and moved into the rift reservoirs beginning 10 days after the eruption began. We used microprobe analyses of glass to calculate temperatures of liquids erupted in 1955 and 1960. We then used the calculated proportions of stored and recharge components to estimate the temperature of the recharge components, and found those temperatures to be consistent with the temperature of the same magmas as they appeared at Kilauea's summit. Our studies reinforce conclusions reached in previous studies of Kilauea's magmatic plumbing. We infer that magma enters shallow storage beneath Kilauea's summit and also moves laterally into the fluid core of the East rift zone. During this process, if magmas of distinctive chemistry are present, they retain their chemical identity and the amount of cooling is comparable for magma transported either upward or laterally to eruption sites. Intrusions within a few kilometers of the surface cool and crystallize to produce fractionated magma. Magma mixing occurs both within bodies of previously fractionated magma and when new magma intersects a preexisting reservoir. Magma is otherwise prevented from mixing, either by wall-rock septa or by differing thermal and density characteristics of the successive magma batches.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=10514&hterms=Spanish&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DSpanish','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=10514&hterms=Spanish&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DSpanish"><span>Nevado del Huila, Columbia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2007-01-01</p> <p>Nevado del Huila Volcano in Colombia is actually a volcanic chain running north to south, capped by a glacier. With peaks ranging in height from 2,600 to 5,780 meters (8,530 to 18,960 feet), Nevado del Huila is a stratovolcano composed of alternating layers of hardened lava, solidified ash, and volcanic rocks. Its first recorded eruption occurred in the mid-sixteenth century. The long-dormant volcano erupted again in mid-April 2007. A few months before the eruption, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite captured this image of Nevado del Huila, on February 23, 2007. In this image, the bright white area just east of the central summit is ice. Immediately west of the summit are bare rocks, appearing as blue-gray. West of those rocks, white reappears, but this patch of white results from clouds hovering in the nearby valley. In the east, the colors turn to brown (indicating bare rock) and bright green (indicating vegetation). ASTER photographed Nevado del Huila near the end of a long phase of quietude. On April 17, 2007, local authorities recorded seismic activity associated with rock fracturing on the volcano's central summit, according to the ReliefWeb Website. Activity intensified the following day with an eruption and mudflows, forcing thousands of nearby residents to evacuate. As the Associated Press reported, the eruption caused avalanches and floods that wiped away both houses and bridges. It marked the volcano's first recorded eruption since the Spanish colonized the area five centuries earlier. NASA image created by Jesse Allen, using data provided courtesy of the NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AGUSM...V42A08L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AGUSM...V42A08L"><span>Martian Rootless Cones as Indicators of Recent Deposits of Shallow Equatorial Ground Ice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lanagan, P. D.; McEwen, A. S.; Keszthelyi, L. P.; Thordarson, T.</p> <p>2001-05-01</p> <p>Small, cratered cones have been identified in high-resolution Mars Orbiter Camera images of the Cerberus Plains and Amazonis Planitia, Mars [1].These cones occur in small clusters independent of obvious fissures, are superimposed on fresh lava flows, and do not appear to issue lavas themselves. Observed cones have basal diameters <250m and large summit craters. The structures are similar in both morphology and dimensions to the larger of Icelandic rootless cones,or pseudocraters [2], which form due to phreatomagmatic explosions caused by mechanical mixtures of tube-fed lavas with near-surface water-saturated substrates[3]. If the martian cones form in a similar manner as terrestrial rootless cones,then they may provide constraints on the spatial and temporal distribution of martian ground ice. Lavas associated with the western Amazonis cone fields(24N, 171W) show well-preserved surface morphologies and few superimposed impact craters. Impact crater statistics indicate that these lavas and superimposed cones may have been emplaced less than 10 Ma, indicating near-surface ice must have been present at the time. The presence of young rootless cones helps constrain the origins of ground ice. Relic ground ice is unlikely to be a volatile source for rootless eruptions as regolith in equatorial regions is likely to be desiccated to a depth of 200-m [4]. Vapor exchange between the regolith and atmosphere due to obliquity variations [5] may input enough water into the subsurface to reproduce martian cones of observed diameters calculated by explosion models[6]. However, surficial waters released in outflow events may be required to recharge requisite quantities of ground ice. Most proposed rootless cone fields appear in or close to fluvial features of the Cerberus Plains and Marte Valles[7]. Nested summit craters of some cones indicate a multi-stage constructional process, which would require recharge of aquifers beneath the erupting cones. Such a process would require the substrate to be permeable and contain enough ground ice to allow water to flow to the explosion point. [1]Lanagan, P. D. et al.(2001)Geophys Res Let, submitted. [2]Thorarinsson, S.(1953)Bull Vol, 14, 3-44. [3]Thordarson, T.(2000)Volcano-Ice Interactions on Earth and Mars, 36. [4]Clifford, S. M., and Hillel, D.(1983)J Geophys Res, 88, 2456-2474. [5]Mellon, M. T., and B. M. Jakosky.(1995)J Geophys Res, 100, 11781-11799. [6]Fagents, S. A. and R. Greeley.(2000)Volcano-Ice Interactions on Earth and Mars, 13. [7]Burr, D. M. et al.(2001)Geophys Res Abs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014Geomo.207...51P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014Geomo.207...51P"><span>Lahar hazard assessment in the southern drainage system of Cotopaxi volcano, Ecuador: Results from multiscale lahar simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pistolesi, Marco; Cioni, Raffaello; Rosi, Mauro; Aguilera, Eduardo</p> <p>2014-02-01</p> <p>The ice-capped Cotopaxi volcano is known worldwide for the large-scale, catastrophic lahars that have occurred in connection with historical explosive eruptions. The most recent large-scale lahar event occurred in 1877 when scoria flows partially melted ice and snow of the summit glacier, generating debris flows that severely impacted all the river valleys originating from the volcano. The 1877 lahars have been considered in the recent years as a maximum expected event to define the hazard associated to lahar generation at Cotopaxi. Conversely, recent field-based studies have shown that such debris flows have occurred several times during the last 800 years of activity at Cotopaxi, and that the scale of lahars has been variable, including events much larger than that of 1877. Despite a rapid retreat of the summit ice cap over the past century, in fact, there are no data clearly suggesting that future events will be smaller than those observed in the deposits of the last 800 years of activity. In addition, geological field data prove that the lahar triggering mechanism also has to be considered as a key input parameter and, under appropriate eruptive mechanisms, a hazard scenario of a lahar with a volume 3-times larger than the 1877 event is likely. In order to analyze the impact scenarios in the southern drainage system of the volcano, simulations of inundation areas were performed with a semi-empirical model (LAHARZ), using input parameters including variable water volume. Results indicate that a lahar 3-times larger than the 1877 event would invade much wider areas than those flooded by the 1877 lahars along the southern valley system, eventually impacting highly-urbanized areas such as the city of Latacunga.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.V41E..07F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.V41E..07F"><span>Infrasound and SO2 Observations of the 2011 Explosive Eruption of Nabro Volcano, Eritrea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fee, D.; Carn, S. A.; Prata, F.</p> <p>2011-12-01</p> <p>Nabro volcano, Eritrea erupted explosively on 12 June 2011 and produced near continuous emissions and infrasound until mid-July. The eruption disrupted air traffic and severely affected communities in the region. Although the eruption was relatively ash-poor, it produced significant SO2 emissions, including: 1) the highest SO2 column ever retrieved from space (3700 DU), 2) >1.3 Tg SO2 mass on 13 June, and 3) >2 Tg of SO2 for the entire eruption, one of the largest eruptive SO2 masses produced since the 1991 eruption of Mt. Pinatubo. Peak emissions reached well into the stratosphere (~19 km). Although the 12 June eruption was preceded by significant seismicity and clearly detected by satellite sensors, Nabro volcano is an understudied volcano that lies in a remote region with little ground-based monitoring. The Nabro eruption also produced significant infrasound signals that were recorded by two infrasound arrays: I19DJ (Djibouti, 264 km) and I32KE (Kenya, 1708 km). The I19DJ infrasound array detected the eruption with high signal-noise and provides the most detailed eruption chronology available, including eruption onset, duration, changes in intensity, etc. As seen in numerous other studies, sustained low frequency infrasound from Nabro is coincident with high-altitude emissions. Unexpectedly, the eruption also produced hundreds of short-duration, impulsive explosion signals, in addition to the sustained infrasonic jetting signals more typical of subplinian-plinian eruptions. These explosions are variable in amplitude, duration, and often cluster in groups. Here we present: 1) additional analyses, classification, and source estimation of the explosions, 2) infrasound propagation modeling to determine acoustic travel times and propagation paths, 3) detection and characterization of the SO2 emissions using the Ozone Monitoring Instrument (OMI) and Spin Enhanced Visible and Infra-Red Instrument (SEVIRI), and 4) a comparison between the relative infrasound energy and SO2 measurements to investigate the relationship between degassing and infrasound, and to speculate on possible eruption source mechanisms. This example, in addition to other recent work, demonstrates the utility of using regional and global infrasound arrays to characterize explosive volcanic eruptions, particularly in remote and poorly monitored regions. Further, comparison of SO2 emissions and infrasound lends insight into degassing processes and shows the potential to use infrasound as a real-time, remote means to detect hazardous emissions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss037e005089.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss037e005089.html"><span>Earth Observation taken during the Expedition 37 mission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2013-09-30</p> <p>ISS037-E-005089 (30 Sept. 2013) --- Ruapehu volcano and Tongariro volcanic complex in New Zealand are featured in this image photographed by an Expedition 37 crew member on the International Space Station. Mount Ruapehu is one of several volcanic centers on the North Island of New Zealand, but is the largest and historically most active. The 2,797-meter elevation volcano is also the highest mountain on North Island and is covered with snow on its upper slopes. Scientists believe while there are three summit craters that have been active during the last 10,000 years, South Crater is the only historically active one. This vent is currently filled with a lake (Crater Lake), visible at left; eruptions from the vent, mixed with water from the lake can lead to the formation of lahars – destructive gravity flows of mixed fluid and volcanic debris that form a hazard to ski areas on the upper slopes and lower river valleys. The most recent significant eruption of Ruapehu took place in 2007 and formed both an eruption plume and lahars. The volcano is surrounded by a 100-cubic-kilometer ring plain of volcaniclastic debris that appears dark grey in the image, whereas vegetated areas appear light to dark green. Located to the northeast of the Ruapehu volcanic structure, the Tongariro volcanic complex (lower right) is currently in an active eruptive phase – the previous eruptive phase ended in 1897. Explosive eruptions occurred in 2012, which have been followed by steam and gas plumes observed almost daily. According to scientists, the volcanic complex contains multiple cones constructed over the past 275,000 years. The most prominent of these, Mount Ngauruhoe, last erupted in 1975. Like Ruapehu, the upper slopes of both Ngauruhoe and the upper peaks of Tongariro are snow-covered. Scattered cloud cover is also visible near Tongariro at lower right.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5123016','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5123016"><span>Rapid laccolith intrusion driven by explosive volcanic eruption</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Castro, Jonathan M.; Cordonnier, Benoit; Schipper, C. Ian; Tuffen, Hugh; Baumann, Tobias S.; Feisel, Yves</p> <p>2016-01-01</p> <p>Magmatic intrusions and volcanic eruptions are intimately related phenomena. Shallow magma intrusion builds subsurface reservoirs that are drained by volcanic eruptions. Thus, the long-held view is that intrusions must precede and feed eruptions. Here we show that explosive eruptions can also cause magma intrusion. We provide an account of a rapidly emplaced laccolith during the 2011 rhyolite eruption of Cordón Caulle, Chile. Remote sensing indicates that an intrusion began after eruption onset and caused severe (>200 m) uplift over 1 month. Digital terrain models resolve a laccolith-shaped body ∼0.8 km3. Deformation and conduit flow models indicate laccolith depths of only ∼20–200 m and overpressures (∼1–10 MPa) that likely stemmed from conduit blockage. Our results show that explosive eruptions may rapidly force significant quantities of magma in the crust to build laccoliths. These iconic intrusions can thus be interpreted as eruptive features that pose unique and previously unrecognized volcanic hazards. PMID:27876800</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27876800','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27876800"><span>Rapid laccolith intrusion driven by explosive volcanic eruption.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Castro, Jonathan M; Cordonnier, Benoit; Schipper, C Ian; Tuffen, Hugh; Baumann, Tobias S; Feisel, Yves</p> <p>2016-11-23</p> <p>Magmatic intrusions and volcanic eruptions are intimately related phenomena. Shallow magma intrusion builds subsurface reservoirs that are drained by volcanic eruptions. Thus, the long-held view is that intrusions must precede and feed eruptions. Here we show that explosive eruptions can also cause magma intrusion. We provide an account of a rapidly emplaced laccolith during the 2011 rhyolite eruption of Cordón Caulle, Chile. Remote sensing indicates that an intrusion began after eruption onset and caused severe (>200 m) uplift over 1 month. Digital terrain models resolve a laccolith-shaped body ∼0.8 km 3 . Deformation and conduit flow models indicate laccolith depths of only ∼20-200 m and overpressures (∼1-10 MPa) that likely stemmed from conduit blockage. Our results show that explosive eruptions may rapidly force significant quantities of magma in the crust to build laccoliths. These iconic intrusions can thus be interpreted as eruptive features that pose unique and previously unrecognized volcanic hazards.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/fs/2005/3024/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/fs/2005/3024/"><span>Steam explosions, earthquakes, and volcanic eruptions -- what's in Yellowstone's future?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lowenstern, Jacob B.; Christiansen, Robert L.; Smith, Robert B.; Morgan, Lisa A.; Heasler, Henry</p> <p>2005-01-01</p> <p>Yellowstone, one of the world?s largest active volcanic systems, has produced several giant volcanic eruptions in the past few million years, as well as many smaller eruptions and steam explosions. Although no eruptions of lava or volcanic ash have occurred for many thousands of years, future eruptions are likely. In the next few hundred years, hazards will most probably be limited to ongoing geyser and hot-spring activity, occasional steam explosions, and moderate to large earthquakes. To better understand Yellowstone?s volcano and earthquake hazards and to help protect the public, the U.S. Geological Survey, the University of Utah, and Yellowstone National Park formed the Yellowstone Volcano Observatory, which continuously monitors activity in the region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5233140-structural-map-summit-area-kilauea-volcano-hawaii','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5233140-structural-map-summit-area-kilauea-volcano-hawaii"><span>Structural map of the summit area of Kilauea Volcano, Hawaii</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Not Available</p> <p>1982-01-01</p> <p>The map shows the faults, sets of fissures, eruptive vent lines and collapse features in the summit area of the volcano. It covers most of the USGS Kilauea Crater 7-1/2 minute quadrangle, together with parts of Volcano, Makaopuhi Crater, and Kau Desert 7-1/2 minute quadrangles. (ACR)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss022e008285.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss022e008285.html"><span>Earth Observations taken by the Expedition 22 Crew</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2009-12-09</p> <p>ISS022-E-008285 (9 Dec. 2009) --- Llullaillaco volcano on the Argentina-Chile border is featured in this image photographed by an Expedition 22 crew member on the International Space Station. The summit of Llullaillaco volcano has an elevation of 6,739 meters above sea level, making it the highest historically active volcano in the world. The current Llullaillaco stratovolcano ? a typically high, cone-shaped volcano built from successive layers of thick lava flows and eruption products like ash and rock fragments ? is built on top of an older stratovolcano. The last explosive eruption of the volcano occurred in 1877 based on historical records. This detailed photograph of Llullaillaco illustrates an interesting volcanic feature known as a coulee (top left). Coulees are formed from highly viscous, thick lavas that flow onto a steep surface; as they flow slowly downwards, the top of the flow cools and forms a series of parallel ridges oriented at 90 degrees to the direction of flow (somewhat similar in appearance to the pleats of an accordion). The sides of the flow can also cool faster than the center, leading to the formation of wall-like structures known as flow levees (center).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70159596','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70159596"><span>Lava lake level as a gauge of magma reservoir pressure and eruptive hazard</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Patrick, Matthew R.; Anderson, Kyle R.; Poland, Michael P.; Orr, Tim R.; Swanson, Donald A.</p> <p>2015-01-01</p> <p>Forecasting volcanic activity relies fundamentally on tracking magma pressure through the use of proxies, such as ground surface deformation and earthquake rates. Lava lakes at open-vent basaltic volcanoes provide a window into the uppermost magma system for gauging reservoir pressure changes more directly. At Kīlauea Volcano (Hawaiʻi, USA) the surface height of the summit lava lake in Halemaʻumaʻu Crater fluctuates with surface deformation over short (hours to days) and long (weeks to months) time scales. This correlation implies that the lake behaves as a simple piezometer of the subsurface magma reservoir. Changes in lava level and summit deformation scale with (and shortly precede) changes in eruption rate from Kīlauea's East Rift Zone, indicating that summit lava level can be used for short-term forecasting of rift zone activity and associated hazards at Kīlauea.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.S31B2235A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.S31B2235A"><span>1993-2011 Time dependent deformation of Eyjafjallajokull volcano, Iceland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ali, T.; Feigl, K.; Pedersen, R.; Sigmundsson, F.</p> <p>2011-12-01</p> <p>We analyze synthetic aperture radar data acquired by ERS-1, ERS-2, Envisat, TerraSAR-X and ALOS satellites between 1993 and 2011 to characterize the deformation associated with activity at Eyjafjallajokull. The volcano had shown intermittent unrest for 18 years before erupting in 2010. An effusive lava eruption occurred from 20th March to 12th April and was followed by an explosive summit eruption from 14th April to 22nd May, disrupting air traffic. Satellite radar interferometry (InSAR) captured intrusive events in 1994 and 1999 when several decimeters of deformation occurred on the volcanic edifice. By inverting the geodetic data, Pedersen et al. [2004; 2006] inferred that sills between depths of 5-7 km had increased in volume by approximately 10-17 and 21-31 million cubic meters during each of two intrusive events in 1994 and 1999, respectively. In this study, we extend the time series analysis to the pre-eruptive, co-eruptive, and post-eruptive deformation associated with the 2010 eruptions. To describe the pre-eruptive deformation over several months, Sigmundsson et al. [2010] estimate the total volume increase in two sills and a dike to be 49-71 million cubic meters. During the effusive eruption, no significant deformation was observed in the interferograms. During the explosive eruption, deflation was observed, that continued at a low rate after the eruption ceased. To estimate source parameters, we use the General Inversion of Phase Technique [GIPhT; Feigl and Thurber, 2009] that analyzes the gradient of phase without the need for unwrapping. To quantify the misfit between the observed and modeled values of the phase gradient, the objective function calculates the cost as the absolute value of their difference, averaged over all sampled pixels. To minimize the objective function we use a simulated annealing algorithm. For computational efficiency, we approximate the fitting function using Taylor series. Calculation of derivatives requires evaluating the exact version of the fitting function, which for our particular problem involves solving the elasticity equations using the finite element method. The minimization procedure is performed several times before reaching convergence, typically in 5 to 15 iterations. GIPhT is suitable for monitoring volcanoes because it can be run quickly and automatically, as soon as the interferograms are formed. Preliminary results suggest several sources located between 3 and 8 km depth, consistent with seismic observations. The best-fitting models for the inflationary episodes of 1994, 1999 and 2010 are horizontal sills that increase in volume. The deflationary episode is best described by another horizontal sill that decreased in volume after 14th April 2010. The different location of the sources suggests significant movement of magma. Fitting a piece-wise linear polynomial to the time series of source strength estimated from the InSAR data, we find general agreement with independent data sets, including GPS measurements and earthquake locations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29654325','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29654325"><span>Shallow magma diversions during explosive diatreme-forming eruptions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Le Corvec, Nicolas; Muirhead, James D; White, James D L</p> <p>2018-04-13</p> <p>The diversion of magma is an important mechanism that may lead to the relocation of a volcanic vent. Magma diversion is known to occur during explosive volcanic eruptions generating subterranean excavation and remobilization of country and volcanic rocks. However, feedbacks between explosive crater formation and intrusion processes have not been considered previously, despite their importance for understanding evolving hazards during volcanic eruptions. Here, we apply numerical modeling to test the impacts of excavation and subsequent infilling of diatreme structures on stress states and intrusion geometries during the formation of maar-diatreme complexes. Explosive excavation and infilling of diatremes affects local stress states which inhibits magma ascent and drives lateral diversion at various depths, which are expected to promote intra-diatreme explosions, host rock mixing, and vent migration. Our models demonstrate novel mechanisms explaining the generation of saucer-shaped sills, linked with magma diversion and enhanced intra-diatreme explosive fragmentation during maar-diatreme volcanism. Similar mechanisms will occur at other volcanic vents producing crater-forming eruptions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JVGR..309..139W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JVGR..309..139W"><span>Volcano-tectonic earthquakes: A new tool for estimating intrusive volumes and forecasting eruptions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>White, Randall; McCausland, Wendy</p> <p>2016-01-01</p> <p>We present data on 136 high-frequency earthquakes and swarms, termed volcano-tectonic (VT) seismicity, which preceded 111 eruptions at 83 volcanoes, plus data on VT swarms that preceded intrusions at 21 other volcanoes. We find that VT seismicity is usually the earliest reported seismic precursor for eruptions at volcanoes that have been dormant for decades or more, and precedes eruptions of all magma types from basaltic to rhyolitic and all explosivities from VEI 0 to ultraplinian VEI 6 at such previously long-dormant volcanoes. Because large eruptions occur most commonly during resumption of activity at long-dormant volcanoes, VT seismicity is an important precursor for the Earth's most dangerous eruptions. VT seismicity precedes all explosive eruptions of VEI ≥ 5 and most if not all VEI 4 eruptions in our data set. Surprisingly we find that the VT seismicity originates at distal locations on tectonic fault structures at distances of one or two to tens of kilometers laterally from the site of the eventual eruption, and rarely if ever starts beneath the eruption site itself. The distal VT swarms generally occur at depths almost equal to the horizontal distance of the swarm from the summit out to about 15 km distance, beyond which hypocenter depths level out. We summarize several important characteristics of this distal VT seismicity including: swarm-like nature, onset days to years prior to the beginning of magmatic eruptions, peaking of activity at the time of the initial eruption whether phreatic or magmatic, and large non-double couple component to focal mechanisms. Most importantly we show that the intruded magma volume can be simply estimated from the cumulative seismic moment of the VT seismicity from: Log10 V = 0.77 Log ΣMoment - 5.32, with volume, V, in cubic meters and seismic moment in Newton meters. Because the cumulative seismic moment can be approximated from the size of just the few largest events, and is quite insensitive to precise locations, the intruded magma volume can be quickly and easily estimated with few short-period seismic stations. Notable cases in which distal VT events preceded eruptions at long-dormant volcanoes include: Nevado del Ruiz (1984-1985), Pinatubo (1991), Unzen (1989-1995), Soufriere Hills (1995), Shishaldin (1989-1999), Tacana' (1985-1986), Pacaya (1980-1984), Rabaul (1994), and Cotopaxi (2001). Additional cases are recognized at frequently active volcanoes including Popocateptl (2001-2003) and Mauna Loa (1984). We present four case studies (Pinatubo, Soufriere Hills, Unzen, and Tacana') in which we demonstrate the above mentioned VT characteristics prior to eruptions. Using regional data recorded by NEIC, we recognized in near-real time that a huge distal VT swarm was occurring, deduced that a proportionately huge magmatic intrusion was taking place beneath the long dormant Sulu Range, New Britain Island, Papua New Guinea, that it was likely to lead to eruptive activity, and warned Rabaul Volcano Observatory days before a phreatic eruption occurred. This confirms the value of this technique for eruption forecasting. We also present a counter-example where we deduced that a VT swarm at Volcan Cosiguina, Nicaragua, indicated a small intrusion, insufficient to reach the surface and erupt. Finally, we discuss limitations of the method and propose a mechanism by which this distal VT seismicity is triggered by magmatic intrusion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70128562','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70128562"><span>Characterization of very-long-period seismicity accompanying summit activity at Kīlauea Volcano, Hawai'i: 2007-2013</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dawson, Phillip; Chouet, Bernard</p> <p>2014-01-01</p> <p>Eruptive activity returned to the summit region of Kīlauea Volcano, Hawai'i with the formation of the “Overlook crater” within the Halema'uma'u Crater in March 2008. The new crater continued to grow through episodic collapse of the crater walls and as of late 2013 had grown into an approximately elliptical opening with dimensions of ~ 160 × 215 m extending to a depth of ~ 200 m. Occasional weak explosive events and a persistent gas plume continued to occur through 2013. Lava was first observed in the new crater in September 2008, and through 2009 the lava level remained deep in the crater and was only occasionally observed. Since early 2010 a lava lake with fluctuating level within the Overlook crater has been nearly continuously present, and has reached to within 22 m of the Overlook crater rim. Volcanic activity at Kīlauea Volcano is episodic at all time scales and the characterization of very-long-period seismicity in the band 2–100 s for the years 2007–2013 illuminates a portion of this broad spectrum of volcanic behavior. Three types of very-long-period events have been observed over this time and each is associated with distinct processes. Type 1 events are associated with vigorous degassing and occurred primarily between 2007 and 2009. Type 2 events are associated with rockfalls onto the lava lake and occurred primarily after early 2010. Both of these event types are induced by pressure and momentum changes at the top of the magma column that are transmitted downward to a source centroid ~ 1 km below the northeast corner of the Halema'uma'u Crater where the energy couples to the solid Earth at a geometrical discontinuity in the underlying dike system. Type 3 events are not related to surficial phenomena but are associated with transients in mass transfer that occur within the dike system. Very-long-period tremor has also accompanied the return of eruptive activity, with increasing amplitude associated with hours- to months-long changes in gas emission rates and summit deformation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70047947','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70047947"><span>Continuous gravity measurements reveal a low-density lava lake at Kīlauea Volcano, Hawai‘i</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Carbone, Daniele; Poland, Michael P.; Patrick, Matthew R.; Orr, Tim R.</p> <p>2013-01-01</p> <p>On 5 March 2011, the lava lake within the summit eruptive vent at Kīlauea Volcano, Hawai‘i, began to drain as magma withdrew to feed a dike intrusion and fissure eruption on the volcanoʼs east rift zone. The draining was monitored by a variety of continuous geological and geophysical measurements, including deformation, thermal and visual imagery, and gravity. Over the first ∼14 hours of the draining, the ground near the eruptive vent subsided by about 0.15 m, gravity dropped by more than 100 μGal, and the lava lake retreated by over 120 m. We used GPS data to correct the gravity signal for the effects of subsurface mass loss and vertical deformation in order to isolate the change in gravity due to draining of the lava lake alone. Using a model of the eruptive vent geometry based on visual observations and the lava level over time determined from thermal camera data, we calculated the best-fit lava density to the observed gravity decrease — to our knowledge, the first geophysical determination of the density of a lava lake anywhere in the world. Our result, 950 +/- 300 kg m-3, suggests a lava density less than that of water and indicates that Kīlaueaʼs lava lake is gas-rich, which can explain why rockfalls that impact the lake trigger small explosions. Knowledge of such a fundamental material property as density is also critical to investigations of lava-lake convection and degassing and can inform calculations of pressure change in the subsurface magma plumbing system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss016e010894.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss016e010894.html"><span>Earth Observations taken by the Expedition 16 Crew</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2007-11-17</p> <p>ISS016-E-010894 (17 Nov. 2007) --- Cosiguina Volcano, Nicaragua is featured in this image photographed by an Expedition 16 crewmember on the International Space Station. Three Central American countries (El Salvador, Honduras, and Nicaragua) include coastline along the Gulf of Fonseca that opens into the Pacific Ocean. The southern boundary of the Gulf is a peninsula formed by the Cosiguina volcano illustrated in this view. Cosiguina is a stratovolcano, typically tall cone-shaped structures formed by alternating layers of solidified lava and volcanic rocks (ash, pyroclastic flows, breccias) produced by explosive eruptions. The summit crater is filled with a lake (Laguna Cosiguina). The volcano last erupted in 1859, but its most famous activity occurred in 1835 when it produced the largest historical eruption in Nicaragua. Ash from the 1835 eruption has been found in Mexico, Costa Rica, and Jamaica. The volcano has been quiet since 1859, only an instant in terms of geological time. An earthquake swarm was measured near Cosiguina in 2002, indicating that tectonic forces are still active in the region although the volcano is somewhat isolated from the line of more recently active Central American volcanoes to the northwest and southeast. Intermittently observed gas bubbles in Laguna Cosiguina, and a hot spring along the eastern flank of the volcano are the only indicators of hydrothermal activity at the volcano. The fairly uniform vegetation cover (green) on the volcano's sides also attest to a general lack of gas emissions or "hot spots" on the 872 meter high cone, according to NASA scientists who study the photos downlinked from the orbital outpost.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17808489','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17808489"><span>Tephra from the 1979 soufriere explosive eruption.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sigurdsson, H</p> <p>1982-06-04</p> <p>The explosive phase of the 1979 Soufriere eruption produced 37.5 x 10(6) cubic meters (dense-rock equivalent) of tephra, consisting of about 40 percent juvenile basaltic andesite and 60 percent of a nonjuvenile component derived from the fragmentation of the 1971-1972 lava island during phreatomagmatic explosions. The unusually fine grain size, poor sorting, and bimodality of the land deposit are attributed to particle aggregation and the formation of accretionary lapilli in a wet eruption column.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70155874','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70155874"><span>Episodic deflation-inflation events at Kīlauea Volcano and implications for the shallow magma system: Chapter 11</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Anderson, Kyle R.; Poland, Michael; Johnson, Jessica H.; Miklius, Asta; Carey, Rebecca; Cayol, Valérie; Poland, Michael P.; Weis, Dominique</p> <p>2015-01-01</p> <p>Episodic variations in magma pressures and flow rates at Kīlauea Volcano, defined by a characteristic temporal evolution and termed deflation-inflation (DI) events, have been observed since at least the 1990s. DI events consist of transient, days-long deflations and subsequent reinflations of the summit region, accompanied since 2008 by fluctuations in the surface height of Kīlauea's summit lava lake. After a delay of minutes to hours, these events also often appear along the volcano's East Rift Zone in ground deformation data and as temporary reductions in eruption rate (sometimes followed by brief surges). Notable pauses in DI activity have preceded many eruptive events at Kīlauea. We analyzed more than 500 DI events recorded by borehole tiltmeters at the summit during 2000–2013. Inverse modeling suggests that DI-related ground deformation at the summit is generated by pressure transients in a shallow magma reservoir located beneath the east margin of Halema‘uma‘u Crater and that this reservoir has remained remarkably stable for more than a decade. Utilizing tilt data and variation in the level of the summit lava lake during a large DI event, we estimate a reservoir volume of approximately 1 km3 (0.2–5.5 km3 at 95% confidence).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMNH11B1138M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMNH11B1138M"><span>Ice cauldron formation during the initial phase of the Eyjafjallajökull eruption observed with an airborne SAR</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Magnusson, E.; Gudmundsson, M. T.; Hognadottir, T.; Hoskuldsson, F.; Oddsson, B.</p> <p>2010-12-01</p> <p>We present images obtained by the Icelandic Coast Guard with an airborne Synthetic Aperture Radar (SAR) during the first hours and days of the subglacial eruption in Eyjafjallajökull. Cloud cover obscured the summit from view in the first three days of the eruption. Under these circumstances the SAR, being weather independent and able to see through ash plumes, was a particularly valuable tool. It provided a record of temporal development of ice cauldrons formed in the 200 m thick ice cover in the caldera, the 50-100 m thick ice on the southern slopes and disruption due to flooding in the northward facing outlet glacier Gígjökull. The eruption started 14 April, 2010, at 1:30 AM. The eruption apparently remained subglacial for some hours but a small plume was observed by aircraft around 6 AM. The first SAR radar images were obtained at 8:55 and a record of images obtained until 10:42 reveal the early development of ice cauldrons providing unique detail in how the eruption breaks new holes in the ice surface, allowing accurate estimates of ice melting rates in an explosive eruption. Widening of the cauldron around the most active crater on the first day of the eruption was 20-25 m/hour, indicating that heat transfer from magma to the ice walls of the cauldron was of order 2 x 106 W m-2. This heat transfer rate reduced fast as the cauldrons reached a width of 300-400 m. The eruption site was repeatedly surveyed with the same SAR during the next days. The images demonstrate how the surface cauldrons evolved and how the center of the eruption activity moved during the second day of the eruption. During the first days of the eruption holes formed in the surface of the Gígjökull glacier outlet, where the roof of flood water channels collapsed. The SAR images allows further understanding on the flood water mechanism by revealing that many of these holes were formed by an intensive flash flood on the second day of the eruption, presumably by hydraulic fracturing when basal water pressures significantly exceeded the ice load.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017BVol...79...17C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017BVol...79...17C"><span>Textural evolution of magma during the 9.4-ka trachytic explosive eruption at Kilian Volcano, Chaîne des Puys, France</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Colombier, M.; Gurioli, L.; Druitt, T. H.; Shea, T.; Boivin, P.; Miallier, D.; Cluzel, N.</p> <p>2017-02-01</p> <p>Textural parameters such as density, porosity, pore connectivity, permeability, and vesicle size distributions of vesiculated and dense pyroclasts from the 9.4-ka eruption of Kilian Volcano, were quantified to constrain conduit and eruptive processes. The eruption generated a sequence of five vertical explosions of decreasing intensity, producing pyroclastic density currents and tephra fallout. The initial and final phases of the eruption correspond to the fragmentation of a degassed plug, as suggested by the increase of dense juvenile clasts (bimodal density distributions) as well as non-juvenile clasts, resulting from the reaming of a crater. In contrast, the intermediate eruptive phases were the results of more open-conduit conditions (unimodal density distributions, decreases in dense juvenile pyroclasts, and non-juvenile clasts). Vesicles within the pyroclasts are almost fully connected; however, there are a wide range of permeabilities, especially for the dense juvenile clasts. Textural analysis of the juvenile clasts reveals two vesiculation events: (1) an early nucleation event at low decompression rates during slow magma ascent producing a population of large bubbles (>1 mm) and (2) a syn-explosive nucleation event, followed by growth and coalescence of small bubbles controlled by high decompression rates immediately prior to or during explosive fragmentation. The similarities in pyroclast textures between the Kilian explosions and those at Soufrière Hills Volcano on Montserrat, in 1997, imply that eruptive processes in the two systems were rather similar and probably common to vulcanian eruptions in general.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.V31E2577T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.V31E2577T"><span>Conduit Wall Failure as a Trigger for Transition From Strombolian to Phreatomagmatic Explosive Activity in the Cova de Paúl Crater Eruption on Santo Antão, Cape Verde Islands</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tarff, R. W.; Day, S. J.</p> <p>2011-12-01</p> <p>Episodes of hazardous phreatomagmatic explosive activity, including Surtseyan activity, occur within otherwise less dangerous effusive to mildly explosive magmatic eruptions at high-elevation vents on many oceanic island volcanoes. The water driving these explosions is sourced from freshwater aquifers within the volcanic edifices. Understanding volcanic and geophysical precursors to, and mechanisms of, the (frequently abrupt) transitions to explosive activity is required as a basis for effective warning and mitigation of the resulting hazards. Here we describe near-vent deposits around the large Cova de Paúl crater on the island of Santo Antão, Cape Verde Islands, which provide some insights into a transition from mild magmatic to violently explosive phreatomagmatic activity in one such eruption. This pre-historic but well-preserved crater formed in a single eruption that produced extensive low-temperature, lithic-rich phreatomagmatic pyroclastic flows and surge deposits; these are interbedded in proximal outcrops with airfall breccia and ash beds containing varying proportions of lithic and juvenile clasts, pointing to a series of climactic explosions within an extended period of milder explosive activity of broadly Surtseyan type. Prior to the transition to phreatomagmatic activity, the eruption had been characterized by mild Strombolian activity that produced scoria and spatter deposits of broadly tephritic composition. The Strombolian deposits contain a distinct population of strongly banded, low-vesicularity angular clasts with strongly prolate vesicles and a notably glassy appearance. These became markedly larger and more abundant just below the transition to the phreatomagmatic deposits. Comparisons of these clasts with the Strombolian scoria suggest that they are fragments of flow-banded chilled margins from the walls of the eruptive conduit. Thermal shattering of these margins to produce the angular glassy clasts may record the onset of groundwater flow into the conduit, leading to the phreatomagmatic explosive phase of the eruption. Fragmentation of the conduit wall and ingress of groundwater would likely have been accompanied by seismic swarms consisting of high-frequency fracture events and episodes of harmonic tremor, pointing to a potential geophysical signature of the onset of phreatomagmatic explosive activity in comparable future eruptions on Santo Antão and other oceanic islands.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.4641B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.4641B"><span>What factors control the superficial lava dome explosivity?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boudon, Georges; Balcone-Boissard, Hélène; Villemant, Benoit; Morgan, Daniel J.</p> <p>2015-04-01</p> <p>Dome-forming eruption is a frequent eruptive style; lava domes result from intermittent, slow extrusion of viscous lava. Most dome-forming eruptions produce highly microcrystallized and highly- to almost totally-degassed magmas which have a low explosive potential. During lava dome growth, recurrent collapses of unstable parts are the main destructive process of the lava dome, generating concentrated pyroclastic density currents (C-PDC) channelized in valleys. These C-PDC have a high, but localized, damage potential that largely depends on the collapsed volume. Sometimes, a dilute ash cloud surge develops at the top of the concentrated flow with an increased destructive effect because it may overflow ridges and affect larger areas. In some cases, large lava dome collapses can induce a depressurization of the magma within the conduit, leading to vulcanian explosions. By contrast, violent, laterally directed, explosions may occur at the base of a growing lava dome: this activity generates dilute and turbulent, highly-destructive, pyroclastic density currents (D-PDC), with a high velocity and propagation poorly dependent on the topography. Numerous studies on lava dome behaviors exist, but the triggering of lava dome explosions is poorly understood. Here, seven dome-forming eruptions are investigated: in the Lesser Antilles arc: Montagne Pelée, Martinique (1902-1905, 1929-1932 and 650 y. BP eruptions), Soufrière Hills, Montserrat; in Guatemala, Santiaguito (1929 eruption); in La Chaîne des Puys, France (Puy de Dome and Puy Chopine eruptions). We propose a new model of superficial lava-dome explosivity based upon a textural and geochemical study (vesicularity, microcrystallinity, cristobalite distribution, residual water contents, crystal transit times) of clasts produced by these key eruptions. Superficial explosion of a growing lava dome may be promoted through porosity reduction caused by both vesicle flattening due to gas escape and syn-eruptive cristobalite precipitation. Both processes generate an impermeable and rigid carapace allowing overpressurisation of the inner parts of the lava dome by the rapid input of vesiculated magma batches. The thickness of the cristobalite-rich carapace is an inverse function of the external lava dome surface area. Thus the probability of a superficial lava dome explosion inversely depends on its size; explosive activity more likely occurs at the onset of the lava dome extrusion in agreement with observations. We evidence a two-step process in magma ascent with edification of the lava dome that may be accompanied by a rapid ascent of an undegassed batch of magma some days prior the explosive activity. This new result is of interest for the whole volcanological community and for risk management.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.V53A1131S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.V53A1131S"><span>The Fathers Day Eruption of Kilauea, Volcano, Hawaii: a gas Emissions Perspective</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sutton, A.; Elias, T.</p> <p>2007-12-01</p> <p>Gas release events from Kilauea's summit magma reservoir and East Rift Zone (ERZ) before and during the June 17, 2007 Fathers Day eruptive sequence provide evidence of correlated summit and rift processes and illustrate how perturbations in magma supply from depth can disrupt steady processes at the surface. Changes in summit CO2 emission rates are thought to reflect changes in deep magma supply and the movement of magma into the rift zone. During the several years preceding the Fathers Day activity, Kilauea had undergone a surge of magma supply and effusive output, as evidenced by gas release and cross-caldera extension. In 2004, the CO2 emission rate, which had been quasi-steady, below 10,000 tonnes/day for the preceeding eight years, began to increase. By mid-2004 the rate had doubled, and by 2005, had tripled, reaching nearly 30,000 t/d. The peak and subsequent decline in summit CO2 attended a similar pattern in east rift SO2 emissions, which are used at Kilauea as one proxy for effusion rate. The surge in magma supply and lava effusion rate may have unsettled Kilauea's plumbing enough to set the stage for the subsequent Fathers Day intrusive and eruptive activity. As magma was withdrawn from the summit reservoir on 17 June 2007, forming the dike that intruded the Upper East Rift Zone, overburden pressure in the reservoir decreased allowing dissolved gases to exsolve and escape from the melt. The more soluble SO2, would be more affected by this pressure change than CO2, which exsolves at much greater depth. Summit SO2 emissions increased nearly four-fold as the summit deflated and summit and Upper East Rift tremor spiked. Increased ambient gas concentrations downwind of Halema`uma`u Crater resulted from the sharp increase in SO2 emission rates and caused the national park to close Crater Rim Drive in this area for several days. The Fathers Day intrusion, subsequent collapses at Pu`u `O`o, and the brief eruption at Kane Nui O Hamo (KNH) profoundly changed ERZ gases as well. SO2 emissions declined dramatically from Pu`u `O`o, dropping below 100 t/d by early July and remained low for several weeks even after lava reappeared in Pu`u `O`o. This overall decline in east rift gas release is reasonably consistent with the observed eruptive events: the dike likely robbed the magma supply but produced only the scanty KNH eruption, and the thinness of the dike geometry proved a poor conduit for SO2 release from depth. The beginning of the 21 July fissure activity reflected a return of magma and significant gas release to the Pu`u `O`o area as pressure within the shallow vent system exceeded structural integrity of the edifice. Following a brief increase in SO2 emissions at the onset of fissure activity, values declined, while effusion remained high. The low level of SO2 release, which persisted for the first several weeks of this fissure activity possibly reflected displacement of old rift-stored magma with newer magma coming from the summit and passing beneath the Pu`u `O`o system. Beginning 12 August, Pu`u `O`o re-emerged as Kilauea's primary SO2 degassing source, even though all extrusion as of this writing is occurring from the fissure system east of the cone. Currently, Kilauea appears to be following a pattern similar to that of the 1986-1991 Kupaianaha era, wherein most SO2 release was from Pu`u `O`o while active extrusion occurred down rift.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA22151.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA22151.html"><span>Investigating Mars: Arsia Mons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-26</p> <p>The three large aligned Tharsis volcanoes are Arsia Mons, Pavonis Mons and Ascreaus Mons (from south to north). There are collapse features on all three volcanoes, on the southwestern and northeastern flanks. This alignment may indicate a large fracture/vent system was responsible for the eruptions that formed all three volcanoes. The flows of originating from Arsia Mons are thought to be the youngest of the region. This VIS image shows part of the northeastern flank of Arsia Mons. The scalloped depression are most likely created by collapse of the roof of lava tubes. Lava tubes originate during eruption event, when the margins of a flow harden around a still flowing lava stream. When an eruption ends these can become hollow tubes within the flow. With time, the roof of the tube may collapse into the empty space below. The tubes are linear, so the collapse of the roof creates a linear depression. Arsia Mons is the southernmost of the Tharsis volcanoes. It is 270 miles (450km) in diameter, almost 12 miles (20km) high, and the summit caldera is 72 miles (120km) wide. For comparison, the largest volcano on Earth is Mauna Loa. From its base on the sea floor, Mauna Loa measures only 6.3 miles high and 75 miles in diameter. A large volcanic crater known as a caldera is located at the summit of all of the Tharsis volcanoes. These calderas are produced by massive volcanic explosions and collapse. The Arsia Mons summit caldera is larger than many volcanoes on Earth. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 9417 Latitude: -7.78798 Longitude: 240.585 Instrument: VIS Captured: 2004-01-28 17:39 https://photojournal.jpl.nasa.gov/catalog/PIA22151</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.V53C3093S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.V53C3093S"><span>Relationships Between Subsurface Processes and Eruptive Products at Maar-diatreme Volcanoes Using Numerical Modeling and Tephra Ring Componentry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sweeney, M. R.; Valentine, G.; Grosso, Z.</p> <p>2016-12-01</p> <p>Diatremes represent a unique example of a volcanic plumbing system in which the physical characteristics of the system control eruption dynamics, but in turn, the eruption dynamics greatly dictate how the diatreme evolves. As a result, interpreting surface deposits such as tephra rings is difficult in the context of the whole volcano system. Here we present a novel application of multiphase numerical modeling to simulate intra-diatreme explosions and their effects on transport and mixing length scales. This and previous work have shown that whether an explosion erupts material out of the diatreme depends on several variables, but especially the depth and energy of the explosion. Explosions deeper than 250 m are unlikely to erupt unless extremely large amounts of magma and water are involved. Erupted material at maar-diatreme volcanoes is therefore mostly sourced from the upper-most part of the diatreme. Our modeling shows that following an explosion, the material immediately surrounding and overlying the explosion site is propelled toward the surface via debris jets, which are imperfectly coupled gas-solid mixtures. As the debris jet ascends, material elsewhere in the diatreme undergoes substantial subsidence. This subsidence can be responsible for long residence times of clasts in the diatreme, which together with other factors such as "non-erupting" explosions, can bias a simple interpretation of tephra ring deposits (i.e. the presence of a certain lithology is indicative of the depth at which the eruption originated from). In light of these findings, tephra ring componentry from Dotsero Volcano (Colorado, USA) is compared to volume estimates of the well-constrained subsurface geology to estimate the proportions of different country rock units that might preside in the diatreme. These data in conjunction with different modeling scenarios elucidate intra-diatreme processes such as debris jet activity and their role in forming surface deposits.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70193582','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70193582"><span>Emplacement of the final lava dome of the 2009 eruption of Redoubt Volcano, Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bull, Katharine F.; Anderson, Steven W.; Diefenbach, Angela K.; Wessels, Rick L.; Henton, Sarah M.</p> <p>2013-01-01</p> <p>After more than 8 months of precursory activity and over 20 explosions in 12 days, Redoubt Volcano, Alaska began to extrude the fourth and final lava dome of the 2009 eruption on April 4. By July 1 the dome had filled the pre-2009 summit crater and ceased to grow. By means of analysis and annotations of time-lapse webcam imagery, oblique-image photogrammetry techniques and capture and analysis of forward-looking infrared (FLIR) images, we tracked the volume, textural, effusive-style and temperature changes in near-real time over the entire growth period of the dome. The first month of growth (April 4–May 4) produced blocky intermediate- to high-silica andesite lava (59–62.3 wt.% SiO2) that initially formed a round dome, expanding by endogenous growth, breaking the surface crust in radial fractures and annealing them with warmer, fresh lava. On or around May 1, more finely fragmented and scoriaceous andesite lava (59.8–62.2 wt.% SiO2) began to appear at the top of the dome coincident with increased seismicity and gas emissions. The more scoriaceous lava spread radially over the dome surface, while the dome continued to expand from endogenous growth and blocky lava was exposed on the margins and south side of the dome. By mid-June the upper scoriaceous lava had covered 36% of the dome surface area. Vesicularity of the upper scoriaceous lava range from 55 to 66%, some of the highest vesicularity measurements recorded from a lava dome.We suggest that the stability of the final lava dome primarily resulted from sufficient fracturing and clearing of the conduit by preceding explosions that allowed efficient degassing of the magma during effusion. The dome was thus able to grow until it was large enough to exceed the magmastatic pressure in the chamber, effectively shutting off the eruption.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1995BVol...56..660S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1995BVol...56..660S"><span>Geology of Tok Island, Korea: eruptive and depositional processes of a shoaling to emergent island volcano</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sohn, Y. K.</p> <p>1995-02-01</p> <p>Detailed mapping of Tok Island, located in the middle of the East Sea (Sea of Japan), along with lithofacies analysis and K-Ar age determinations reveal that the island is of early to late Pliocene age and comprises eight rock units: Trachyte I, Unit P-I, Unit P-II, Trachyandesite (2.7±0.1 Ma), Unit P-III, Trachyte II (2.7±0.1 Ma), Trachyte III (2.5±0.1 Ma) and dikes in ascending stratigraphic order. Trachyte I is a mixture of coherent trachytic lavas and breccias that are interpreted to be subaqueous lavas and related hyaloclastites. Unit P-I comprises massive and inversely graded basaltic breccias which resulted from subaerial gain flows and subaqueous debris flows. A basalt clast from the unit, derived from below Trachyte I, has an age of 4.6±0.4 Ma. Unit P-II is composed of graded and stratified lapilli tuffs with the characteristics of proximal pyroclastic surge deposits. The Trachyandesite is a massive subaerial lava ponded in a volcano-tectonic depression, probably a summit crater. A pyroclastic sequence containing flattened scoria clasts (Unit P-III) and a small volume subaerial lava (Trachyte II) occur above the Trachyandesite, suggesting resumption of pyroclastic activity and lava effusion. Afterwards, shallow intrusion of magma occurred, producing Trachyte III and trachyte dikes. The eight rock units provide an example of the changing eruptive and depositional processes and resultant succession of lithofacies as a seamount builds up above sea level to form an island volcano: Trachyte I represents a wholly subaqueous and effusive stage; Units P-I and P-II represent Surtseyan and Taalian eruptive phases during an explosive transitional (subaqueous to emergent) stage; and the other rock units represent later subaerial effusive and explosive stages. Reconstruction of volcano morphology suggests that the island is a remnant of the south-western crater rim of a volcano the vent of which lies several hundred meters to the north-east.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.V43E..06H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.V43E..06H"><span>Vesiculation Processes During Transient and Sustained Explosive Activity at Halema'uma'u Crater, Kīlauea in 2008-2013.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Houghton, B. F.; Orr, T. R.; Taddeucci, J.; Carey, R.; Del Bello, E.; Scarlato, P.; Patrick, M. R.</p> <p>2015-12-01</p> <p>The 2008-2015 summit eruption within Halema'uma'u crater, Kilauea has been characterized by alternations of passive degassing with two styles of explosive activity, both frequently triggered by rock falls that perturb the free surface of magma in the vent. In the first, larger rock falls trigger second vesiculation of magma at depths up to 100 m below the free surface ejecting juvenile bomb and lapilli populations of very variable vesicularity. The second, the topic of this presentation, consists of intervals of minutes to tens-of-minutes duration of low fountaining activity often from multiple locations. Vents may migrate with time, first across the free surface to its margins, and then around the margins, in response to convection processes in the underlying melt. Analysis of short sequences of high-speed, high-resolution video footage shows that the sustained fountaining is maintained by not by a continuous discharge but rather by closely spaced bursting of two-to-five meter-wide bubbles. Bubbles accelerate through the free surface at velocities of 10 to 40 m/s disrupting the viscoelastic crust and forming large fall-back, lacework pyroclasts and smaller highly vesicular bombs and lapilli.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1983/0068/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1983/0068/report.pdf"><span>Eruptive history of the Dieng Mountains region, central Java, and potential hazards from future eruptions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Miller, C. Dan; Sushyar, R.; ,; Hamidi, S.</p> <p>1983-01-01</p> <p>The Dieng Mountains region consists of a complex of late Quaternary to recent volcanic stratocones, parasitic vents, and explosion craters. Six age groups of volcanic centers, eruptive products, and explosion craters are recognized in the region based on their morphology, degree of dissection, stratigraphic relationships, and degree of weathering. These features range in age from tens of thousands of years to events that have occurred this century. No magmatic eruptions have occurred in the Dieng Mountains region for at least several thousand years; volcanic activity during this time interval has consisted of phreatic eruptions and non-explosive hydrothermal activity. If future volcanic events are similar to those of the last few thousand years, they will consist of phreatic eruptions, associated small hot mudflows, emission of suffocating gases, and hydrothermal activity. Future phreatic eruptions may follow, or accompany, periods of increased earthquake activity; the epicenters for the seismicity may suggest where eruptive activity will occur. Under such circumstances, the populace within several kilometers of a potential eruption site should be warned of a possible eruption, given instructions about what to do in the event of an eruption, or temporarily evacuated to a safer location.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1987JGR....9211979R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1987JGR....9211979R"><span>Air pressure waves from Mount St. Helens eruptions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reed, Jack W.</p> <p>1987-10-01</p> <p>Infrasonic recordings of the pressure wave from the Mount St. Helens (MSH) eruption on May 18, 1980, together with the weather station barograph records were used to estimate an equivalent explosion airblast yield for this eruption. Pressure wave amplitudes versus distance patterns were found to be comparable with patterns found for a small-scale nuclear explosion, the Krakatoa eruption, and the Tunguska comet impact, indicating that the MSH wave came from an explosion equivalent of about 5 megatons of TNT. The peculiar audibility pattern reported, with the blast being heard only at ranges beyond about 100 km, is explained by consideration of finite-amplitude shock propagation developments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.V33F..03G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.V33F..03G"><span>Parameterization of strombolian explosions: constraint from simultaneous physical and geophysical measurements (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>gurioli, L.; Harris, A. J.</p> <p>2013-12-01</p> <p>Strombolian activity is the most common type of explosive eruption (by frequency) experienced by Earth's volcanoes. It is commonly viewed as consisting of a succession of short discrete explosions where fragments of incandescent magma are ejected a few tens to hundreds meters into the air. This kind of activity is generally restricted to basaltic or basaltic-andesitic magmas because these systems have the sufficiently low viscosities so as to allow gas coalescence and decoupled slug ascent. Mercalli (1907) proposed one of the first formal classifications of explosive activity based on the character of the erupted products and descriptions of case-type eruptions. Later, Walker (1973) devised a classification based on grain size and dispersion, within which strombolian explosions formed the low-to-middle end of the classification. Other classifications have categorized strombolian activity on the basis of erupted magnitude and/or intensity, such as Newhall and Self's (1982) Volcanic Explosivity Index (VEI). Classification can also be made on the basis of explosion mechanism, where strombolian eruptions have become associated with bursting of large gas bubbles, as opposed to release of locked in bubble populations in rapidly ascending magma that feed sustained fountains. Finally, strombolian eruptions can be defined on the basis of geophysical metrics for the explosion source and plume ascent dynamics. Recently, the volcanology community has begun to discuss the difficulty of actually placing strombolian explosions within the compartments defined by each scheme. New sampling strategies in active strombolian volcanic fields have allowed us to parameterize these mildly explosive events both physically and geophysically. Our data show that individual 'normal' and "major" explosions at Stromboli are extremely small, meaning that the classical deposit-based classification thresholds need to be reduced, or a new category defined, if the 'strombolian' eruption style at Stromboli, and other volcanoes like it, are to plot in the strombolian fields of deposit-based classifications. We also quenched a number of bombs soon explosion at Stromboli. This enabled us to quantify the degassing history and rheology of the magma(s) resident in the shallow, near-surface, system. The different textural facies observed in these bombs showed that fresh magma, mingled with partially or completely degassed, oxidized, re-crystallized, evolved and high viscosity magma, was ejected. The degassed magma appears to sit at the top of the conduit, playing only a passive role in the explosive process. Our best model, is that the degassed, oxidized magma forms a plug, or rheologically defined layer, at the top of the conduit, through which the fresh magma bursts. Integration of geophysical measurements with sample analyses, indicates that popular (bubble-bursting) models may not fit this case, thus also changeling the model-based definition of this eruption type.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V12C..05F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V12C..05F"><span>Developing Regional Tephrostratigraphic Frameworks: Applications and Challenges.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fontijn, K.; Pyle, D. M.; Smith, V.; Mather, T. A.</p> <p>2017-12-01</p> <p>Detailed stratigraphic studies of pyroclastic deposits form arguably the best tool to estimate the frequency and magnitude of explosive eruptions at volcanoes where limited or no historical records exist. As such tephrostratigraphy forms a first-order assessment of potential future eruptive behavior at poorly known volcanoes. Alternations of soils and pyroclastic deposits at proximal to medial distances of the volcano however typically only allow reconstructing eruptive behavior within the Holocene. Moreover, they only tend to preserve relatively large explosive eruptions, of magnitude 3-4 and above, and therefore almost invariably form a biased view of the frequency-magnitude relationships at a particular volcano. Long lacustrine records in medial to distal regions offer significant potential to obtain a more complete view of the explosive eruptive record as they often preserve thin fine-grained tephra deposits representing either small-scale explosive eruptions not preserved on land, or distal ash deposits from large explosive eruptions. Furthermore, these sedimentary records often contain material that can be dated to establish a detailed age-depth model that can be used to date the eruptions and estimate the tempo of activity. In settings where volcanoes and lakes closely co-exist, integrating terrestrial and lacustrine data therefore allows the development of regional-scale tephrostratigraphic frameworks. Such frameworks provide a view of temporal trends in volcanic activity and mid/long-term eruptive rates on a regional scale rather than at the level of an individual volcano, i.e. in interaction with regional tectonic stress regimes. They also highlight the spatial distribution of deposits from large explosive eruptions, allowing improved estimates of magnitudes of individual eruptions as well as of frequency of impact by volcanic ash in specific regions. Provided such tephra horizons are well characterized and dated they can be used as age marker horizons and help fine-tune age models for palaeoenvironmental studies. In this presentation we will highlight a few key examples of both local and regional-scale tephrostratigraphic frameworks in East Africa, Chile and South-East Asia, and discuss the multidisciplinary applications as well as challenges posed by data acquisition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70017634','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70017634"><span>Emission rates of sulfur dioxide and carbon dioxide from Redoubt Volcano, Alaska during the 1989-1990 eruptions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Casadevall, T.J.; Doukas, M.P.; Neal, C.A.; McGimsey, R.G.; Gardner, C.A.</p> <p>1994-01-01</p> <p>Airborne measurements of sulfur dioxide emission rates in the gas plume emitted from fumaroles in the summit crater of Redoubt Volcano were started on March 20, 1990 using the COSPEC method. During the latter half of the period of intermittent dome growth and destruction, between March 20 and mid-June 1990, sulfur dioxide emission rates ranged from approximately 1250 to 5850 t/d, rates notably higher than for other convergent-plate boundary volcanoes during periods of active dome growth. Emission rates following the end of dome growth from late June 1990 through May 1991 decreased steadily to less than 75 t/d. The largest mass of sulfur dioxide was released during the period of explosive vent clearing when explosive degassing on December 14-15 injected at least 175,000 ?? 50,000 tonnes of SO2 into the atmosphere. Following the explosive eruptions of December 1989, Redoubt Volcano entered a period of intermittent dome growth from late December 1989 to mid-June 1990 during which Redoubt emitted a total mass of SO2 ranging from 572,000 ?? 90,000 tonnes to 680,000 ?? 90,000 tonnes. From mid-June 1990 through May 1991, the volcano was in a state of posteruption degassing into the troposphere, producing approximately 183,000 ?? 50,000 tonnes of SO2. We estimate that Redoubt Volcano released a minimum mass of sulfur dioxide of approximately 930,000 tonnes. While COSPEC data were not obtained frequently enough to enable their use in eruption prediction, SO2 emission rates clearly indicated a consistent decline in emission rates between March through October 1990 and a continued low level of emission rates through the first half of 1991. Values from consecutive daily measurements of sulfur dioxide emission rates spanning the March 23, 1990 eruption decreased in the three days prior to eruption. That decrease was coincident with a several-fold increase in the frequency of shallow seismic events, suggesting partial sealing of the magma conduit to gas loss that resulted in pressurization of the shallow magma system and an increase in earthquake activity. Unlike the short-term SO2 decrease in March 1990, the long-term decrease of sulfur dioxide emission rates from March 1990 through May 1991 was coincident with low rates of seismic energy release and was interpreted to reflect gradual depressurization of the shallow magma reservoir. The long-term declines in seismic energy release and in SO2 emission rates led AVO scientists to conclude on April 19, 1991 that the potential for further eruptive activity from Redoubt Volcano had diminished, and on this basis, the level of concern color code for the volcano was changed from code yellow (Volcano is restless; earthquake activity is elevated; activity may include extrusion of lava) to code green (Volcano is in its normal 'dormant' state). ?? 1994.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JVGR..336..118L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JVGR..336..118L"><span>Transient numerical model of magma ascent dynamics: application to the explosive eruptions at the Soufrière Hills Volcano</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>La Spina, G.; de'Michieli Vitturi, M.; Clarke, A. B.</p> <p>2017-04-01</p> <p>Volcanic activity exhibits a wide range of eruption styles, from relatively slow effusive eruptions that produce lava flows and lava domes, to explosive eruptions that can inject large volumes of fragmented magma and volcanic gases high into the atmosphere. Although controls on eruption style and scale are not fully understood, previous research suggests that the dynamics of magma ascent in the shallow subsurface (< 10 km depth) may in part control the transition from effusive to explosive eruption and variations in eruption style and scale. Here we investigate the initial stages of explosive eruptions using a 1D transient model for magma ascent through a conduit based on the theory of the thermodynamically compatible systems. The model is novel in that it implements finite rates of volatile exsolution and velocity and pressure relaxation between the phases. We validate the model against a simple two-phase Riemann problem, the Air-Water Shock Tube problem, which contains strong shock and rarefaction waves. We then use the model to explore the role of the aforementioned finite rates in controlling eruption style and duration, within the context of two types of eruptions at the Soufrière Hills Volcano, Montserrat: Vulcanian and sub-Plinian eruptions. Exsolution, pressure, and velocity relaxation rates all appear to exert important controls on eruption duration. More significantly, however, a single finite exsolution rate characteristic of the Soufrière Hills magma composition is able to produce both end-member eruption durations observed in nature. The duration therefore appears to be largely controlled by the timescales available for exsolution, which depend on dynamic processes such as ascent rate and fragmentation wave speed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26420069','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26420069"><span>What factors control superficial lava dome explosivity?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Boudon, Georges; Balcone-Boissard, Hélène; Villemant, Benoît; Morgan, Daniel J</p> <p>2015-09-30</p> <p>Dome-forming eruption is a frequent eruptive style and a major hazard on numerous volcanoes worldwide. Lava domes are built by slow extrusion of degassed, viscous magma and may be destroyed by gravitational collapse or explosion. The triggering of lava dome explosions is poorly understood: here we propose a new model of superficial lava-dome explosivity based upon a textural and geochemical study (vesicularity, microcrystallinity, cristobalite distribution, residual water contents, crystal transit times) of clasts produced by key eruptions. Superficial explosion of a growing lava dome may be promoted through porosity reduction caused by both vesicle flattening due to gas escape and syn-eruptive cristobalite precipitation. Both processes generate an impermeable and rigid carapace allowing overpressurisation of the inner parts of the lava dome by the rapid input of vesiculated magma batches. The relative thickness of the cristobalite-rich carapace is an inverse function of the external lava dome surface area. Explosive activity is thus more likely to occur at the onset of lava dome extrusion, in agreement with observations, as the likelihood of superficial lava dome explosions depends inversely on lava dome volume. This new result is of interest for the whole volcanological community and for risk management.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4588564','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4588564"><span>What factors control superficial lava dome explosivity?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Boudon, Georges; Balcone-Boissard, Hélène; Villemant, Benoît; Morgan, Daniel J.</p> <p>2015-01-01</p> <p>Dome-forming eruption is a frequent eruptive style and a major hazard on numerous volcanoes worldwide. Lava domes are built by slow extrusion of degassed, viscous magma and may be destroyed by gravitational collapse or explosion. The triggering of lava dome explosions is poorly understood: here we propose a new model of superficial lava-dome explosivity based upon a textural and geochemical study (vesicularity, microcrystallinity, cristobalite distribution, residual water contents, crystal transit times) of clasts produced by key eruptions. Superficial explosion of a growing lava dome may be promoted through porosity reduction caused by both vesicle flattening due to gas escape and syn-eruptive cristobalite precipitation. Both processes generate an impermeable and rigid carapace allowing overpressurisation of the inner parts of the lava dome by the rapid input of vesiculated magma batches. The relative thickness of the cristobalite-rich carapace is an inverse function of the external lava dome surface area. Explosive activity is thus more likely to occur at the onset of lava dome extrusion, in agreement with observations, as the likelihood of superficial lava dome explosions depends inversely on lava dome volume. This new result is of interest for the whole volcanological community and for risk management. PMID:26420069</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70046828','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70046828"><span>A mantle-driven surge in magma supply to Kīlauea Volcano during 2003--2007</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Poland, Michael P.; Miklius, Asta; Sutton, A. Jeff; Thornber, Carl R.</p> <p>2012-01-01</p> <p>The eruptive activity of a volcano is fundamentally controlled by the rate of magma supply. At Kīlauea Volcano, Hawai‘i, the rate of magma rising from a source within Earth’s mantle, through the Hawaiian hotspot, was thought to have been relatively steady in recent decades. Here we show that the magma supply to Kīlauea at least doubled during 2003–2007, resulting in dramatic changes in eruptive activity and the formation of new eruptive vents. An initial indication of the surge in supply was an increase in CO2 emissions during 2003–2004, combined with the onset of inflation of Kīlauea’s summit, measured using the Global Positioning System and interferometric synthetic aperture radar. Inflation was not limited to the summit magma reservoirs, but was recorded as far as 50 km from the summit, implying the existence of a connected magma system over that distance. We also record increases in SO2 emissions, heightened seismicity, and compositional and temperature variations in erupted lavas. The increase in the volume of magma passing through and stored within Kīlauea, coupled with increased CO2 emissions, indicate a mantle source for the magma surge. We suggest that magma supply from the Hawaiian hotspot can vary over timescales of years, and that CO2 emissions could be a valuable aid for assessing variations in magma supply at Kīlauea and other volcanoes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2007/1225/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2007/1225/"><span>Digital Data for Volcano Hazards at Newberry Volcano, Oregon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Schilling, S.P.; Doelger, S.; Sherrod, D.R.; Mastin, L.G.; Scott, W.E.</p> <p>2008-01-01</p> <p>Newberry volcano is a broad shield volcano located in central Oregon, the product of thousands of eruptions, beginning about 600,000 years ago. At least 25 vents on the flanks and summit have been active during the past 10,000 years. The most recent eruption 1,300 years ago produced the Big Obsidian Flow. Thus, the volcano's long history and recent activity indicate that Newberry will erupt in the future. Newberry Crater, a volcanic depression or caldera has been the focus of Newberry's volcanic activity for at least the past 10,000 years. Newberry National Volcanic Monument, which is managed by the U.S. Forest Service, includes the caldera and extends to the Deschutes River. Newberry volcano is quiet. Local earthquake activity (seismicity) has been trifling throughout historic time. Subterranean heat is still present, as indicated by hot springs in the caldera and high temperatures encountered during exploratory drilling for geothermal energy. The report USGS Open-File Report 97-513 (Sherrod and others, 1997) describes the kinds of hazardous geologic events that might occur in the future at Newberry volcano. A hazard-zonation map is included to show the areas that will most likely be affected by renewed eruptions. When Newberry volcano becomes restless, the eruptive scenarios described herein can inform planners, emergency response personnel, and citizens about the kinds and sizes of events to expect. The geographic information system (GIS) volcano hazard data layers used to produce the Newberry volcano hazard map in USGS Open-File Report 97-513 are included in this data set. Scientists at the USGS Cascades Volcano Observatory created a GIS data layer to depict zones subject to the effects of an explosive pyroclastic eruption (tephra fallout, pyroclastic flows, and ballistics), lava flows, volcanic gasses, and lahars/floods in Paulina Creek. A separate GIS data layer depicts drill holes on the flanks of Newberry Volcano that were used to estimate the probability of coverage by future lava flows.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/gip/117/gip117.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/gip/117/gip117.pdf"><span>Eruptions of Hawaiian volcanoes - Past, present, and future</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Tilling, Robert I.; Heliker, Christina; Swanson, Donald A.</p> <p>2010-01-01</p> <p>Viewing an erupting volcano is a memorable experience, one that has inspired fear, superstition, worship, curiosity, and fascination since before the dawn of civilization. In modern times, volcanic phenomena have attracted intense scientific interest, because they provide the key to understanding processes that have created and shaped more than 80 percent of the Earth's surface. The active Hawaiian volcanoes have received special attention worldwide because of their frequent spectacular eruptions, which often can be viewed and studied with relative ease and safety. In January 1987, the Hawaiian Volcano Observatory (HVO), located on the rim of Kilauea Volcano, celebrated its 75th Anniversary. In honor of HVO's Diamond Jubilee, the U.S. Geological Survey (USGS) published Professional Paper 1350 (see list of Selected Readings, page 57), a comprehensive summary of the many studies on Hawaiian volcanism by USGS and other scientists through the mid-1980s. Drawing from the wealth of data contained in that volume, the USGS also published in 1987 the original edition of this general-interest booklet, focusing on selected aspects of the eruptive history, style, and products of two of Hawai'i's active volcanoes, Kilauea and Mauna Loa. This revised edition of the booklet-spurred by the approaching Centennial of HVO in January 2012-summarizes new information gained since the January 1983 onset of Kilauea's Pu'u 'O'o-Kupaianaha eruption, which has continued essentially nonstop through 2010 and shows no signs of letup. It also includes description of Kilauea's summit activity within Halema'uma'u Crater, which began in mid-March 2008 and continues as of this writing (late 2010). This general-interest booklet is a companion to the one on Mount St. Helens Volcano first published in 1984 and revised in 1990 (see Selected Readings). Together, these publications illustrate the contrast between the two main types of volcanoes: shield volcanoes, such as those in Hawai'i, which generally are nonexplosive; and composite volcanoes, such as Mount St. Helens in the Cascade Range, which are renowned for their explosive eruptions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009JVGR..182..123B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009JVGR..182..123B"><span>Chronology of the 2007 eruption of Stromboli and the activity of the Scientific Synthesis Group</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barberi, Franco; Civetta, Lucia; Rosi, Mauro; Scandone, Roberto</p> <p>2009-05-01</p> <p>On 27 February 2007, at 12.49 GMT, a new eruption of Stromboli took place with the effusion of a lava flow from a fracture cutting the flank of the NE cone, which rapidly reached the sea. The eruption had been heralded by an increase in the amplitude of tremor and flank movement since at least the 14th of February. Short-term precursors were an increase in the rate of occurrence of small landslides within the "Sciara del Fuoco" scar on the North-western flank of the volcano. A new effusive vent opened at 18.30 GMT on the Sciara del Fuoco at an height of 400 m asl. The new lava emission caused the sudden termination of the summit flow and initiated a period of non-stationary lava outpouring which ended on 2 April, 2007. The eruption has been characterized by a rapid decrease in the eruption rate after the first days and subsequently by episodic pulse increases. On the 15th of March, the increase in lava outpouring, monitored by a thermal camera, heralded by 9 min the occurrence of a violent paroxysmal explosion with the formation of an impulsive eruption column and the emission of small pumices mingled with black scoriae. The pumice had a bulk composition similar to that of the lava and of the black scoriae, but with a distinct lower content of phenocrysts. A similar feature has been repeatedly observed during the major explosive paroxysms of Stromboli. Short term precursors of the paroxysm were recorded by strainmeter and tiltmeter stations. The volcano monitoring activity has been made by a joint team of researchers from the INGV sections of Catania, Napoli, Palermo and Rome, along with researchers from the Universities of Florence, Pisa, Roma Tre, and Palermo. The scientific activity was coordinated by a Synthesis Group made up by scientists responsible for the different monitoring techniques of INGV and Universities and by the volcanic experts of Commissione Nazionale Grandi Rischi of the Prime Minister Office (Civil Protection Department). The group made a daily evaluation of the state of the volcano and transmitted its recommendations to the Civil Protection Department (DPC). Several prevention measures were adopted by DPC, the main of which were the evacuation of the coast zone when strong acceleration of the Sciara del Fuoco slope motion (occurred twice) could led to a dangerous tsunami by flank collapse (as last occurred on 30 December 2002) and four days before the 15 March paroxysm when access was prohibited to the part of the volcano above 290 m asl.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000JGR...105.5997K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000JGR...105.5997K"><span>The chemically zoned 1949 eruption on La Palma (Canary Islands): Petrologic evolution and magma supply dynamics of a rift zone eruption</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Klügel, Andreas; Hoernle, Kaj A.; Schmincke, Hans-Ulrich; White, James D. L.</p> <p>2000-03-01</p> <p>The 1949 rift zone eruption along the Cumbre Vieja ridge on La Palma involved three eruptive centers, 3 km spaced apart, and was chemically and mineralogically zoned. Duraznero crater erupted tephrite for 14 days and shut down upon the opening of Llano del Banco, a fissure that issued first tephrite and, after 3 days, basanite. Hoyo Negro crater opened 4 days later and erupted basanite, tephrite, and phonotephrite, while Llano del Banco continued to issue basanite. The eruption ended with Duraznero erupting basanite with abundant crustal and mantle xenoliths. The tephrites and basanites from Duraznero and Llano del Banco show narrow compositional ranges and define a bimodal suite. Each batch ascended and evolved separately without significant intermixing, as did the Hoyo Negro basanite, which formed at lower degrees of melting. The magmas fractionated clinopyroxene +olivine±kaersutite±Ti-magnetite at 600-800 MPa and possibly 800-1100 MPa. Abundant reversely zoned phenocrysts reflect mixing with evolved melts at mantle depths. Probably as early as 1936, Hoyo Negro basanite entered the deep rift system at 200-350 MPa. Some shallower pockets of this basanite evolved to phonotephrite through differentiation and assimilation of wall rock. A few months prior to eruption, a mixing event in the mantle may have triggered the final ascent of the magmas. Most of the erupted tephrite and basanite ascended from mantle depths within hours to days without prolonged storage in crustal reservoirs. The Cumbre Vieja rift zone differs from the rift zones of Kilauea volcano (Hawaii) in lacking a summit caldera or a summit reservoir feeding the rift system and in being smaller and less active with most of the rift magma solidifying between eruptions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.U13B..15F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.U13B..15F"><span>Constraining the Energetics of Explosive Lava-Water Interactions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fitch, E. P.; Fagents, S. A.</p> <p>2017-12-01</p> <p>During volcanic eruptions, water, such as groundwater or melted ice or snow, may interact with magma within the conduit during eruption, generating explosions when the heat of the magma causes the water to rapidly turn to steam and expand, resulting in what we call a "phreatomagmatic" eruption. In 2010, the eruption of Eyjafjallajökull volcano in Iceland produced a plume of fine ash, through the interaction between magma and glacial melt water, which resulted in the closure of substantial airspace, ultimately costing a total of almost 5 billion dollars. Although an important area of study, it is difficult to quantify the effect of eternal water on eruption intensity when the gas inside of magma is also expanding and fragmenting the magma. In an attempt to understand the energetics of magma-water interactions, small-scale laboratory experiments have been performed. Explosion energy is found to depend mostly on kinetic energy, which is proportional to dispersal distance, and fragmentation energy, which is proportional to the mean grain size of the ejecta, and the mass percent of ash-sized grains. It is thought that in order to generate heat transfer rates sufficiently rapid to cause explosive detonation, the source melt must be finely fragmented, producing ash-sized grains. Those grains undergo brittle fragmentation due to rapid cooling and weak shock waves generated by the vaporization of superheated water. We take the novel approach of studying explosive interactions between lava and water to obtain additional explosion energy constraints. We identified and analyzed numerous beds of lava-water explosion ejecta of varying explosion energy, and we analyzed the ash-sized grains of these beds in detail. We verified that the mass of ash-sized grains increases with increasing explosion energy, and can form at the interface between lava and water. We found that brittle fragmentation occurs to a greater degree as grain size decreases and that the ash of highly-energetic explosions undergoes the most brittle fragmentation. Therefore, our next steps will be to use these results to constrain the fragmentation and kinetic energy, in order to calculate the total energy and heat-transfer rate of lava-water explosions as important analogs for phreatomagmatic eruptions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.V13D2884G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.V13D2884G"><span>From mantle to ash cloud: quantifying magma generation, ascent, and degassing rates at Kilauea during short-lived explosive episodes using short-lived U-series radionuclide disequilibria</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Girard, G.; Reagan, M. K.; Sims, K. W.; Garcia, M. O.; Pietruszka, A. J.; Thornber, C. R.</p> <p>2012-12-01</p> <p>We analyzed for 238U-series isotopes lava, scoria and ash samples erupted from Kilauea volcano, Hawai'i between 1982 and 2008, in order to investigate processes and timescales of magma generation in the mantle, magma ascent through the crust, and eruption. Timescales of degassing during steady-state lava flow activity occurring in Kilauea East Rift Zone and short-lived explosive episodes that occurred in both the East Rift Zone (Pu'u 'O'o vent opening in 1983 and episode 54 at Nāpau crater in January 1997) and on the summit (Halema'uma'u crater eruptions in March 2008) are compared and contrasted. All samples were found to have small but variable 230Th and 226Ra activity excesses over 238U and 230Th, respectively, with (230Th/238U) ratios ranging from 1.00 to 1.13 and (226Ra/230Th) ratios ranging from 1.03 to 1.17. These two variable isotopic disequilibria may reflect local heterogeneities in the mantle underneath Kilauea, with sources in relatively primitive mantle with (238U)-(230Th)-(226Ra) in secular equilibrium and in recently (< 8000 years) depleted mantle with (230Th) and (226Ra) deficits over parent nuclides. In this model, both types of mantle melt to generate Kilauea magmas and subsequently mix in variable proportions. Samples from the brief explosive episodes span the entire composition range, suggesting that they were fed by heterogeneous magma batches which did not homogenize during ascent from the mantle. (210Pb/226Ra) ratios range from 0.75 to 1.00. The lack of correlation between (210Pb/226Ra) and (226Ra/230Th) or (230Th/238U), and the rapid return to secular equilibrium of 210Pb (< 100 years) suggest a fractionation process distinct from and subsequent to the Ra-Th-U fractionation inherited from mantle melting. We hypothesize that 210Pb deficits originate from 222Rn degassing during magma ascent, and estimate magma ascent from lower crust to surface to take place in a maximum of ~ 7 years for the lava flow samples. Products from the explosive episodes have ratios from ~ 0.75 to near equilibrium, suggesting that they comprise of a mix of young melts and degassed magmas which were stored in the shallow volcanic edifice for a few decades, in agreement with existing petrologic models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.T11E..07M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.T11E..07M"><span>The May 2010 submarine eruption from South Sarigan seamount, Northern Mariana Islands</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McGimsey, R. G.; Neal, C. A.; Searcy, C. K.; Camacho, J. T.; Aydlett, W. B.; Embley, R. W.; Trusdell, F.; Paskievitch, J. F.; Schneider, D. J.</p> <p>2010-12-01</p> <p>A sudden submarine explosive eruption occurred on May 29, 2010, from a seamount south of Sarigan Island in the Northern Mariana Islands, propelling a diffuse steam and ash cloud to high altitude. Pre-eruptive seismicity was recorded in early April by stations located on Sarigan and Anatahan Island, 42 km to the south, and indicated a source ~12-16 km south of Sarigan. On May 27-28, a change in seismicity—the appearance of tremor-like waveforms—may have marked the onset of volcanic activity. Also on May 27, an elongate patch of discolored ocean water and possible light-colored floating debris about 8-11 km south of Sarigan was observed from a helicopter. This material was likely produced during low-intensity eruptive activity, and an Information Statement from the Commonwealth of the Northern Mariana Islands (CNMI) Emergency Management Office (EMO) and USGS issued at 2353 UTC May 28 described the observation. The Guam Weather Forecast Office of the National Weather Service reported that the area of discoloration, visible on satellite images at 2313 and 2330 UTC on May 28, was about 10 km2, about twice the size of Sarigan Island. Pulses of tremor merged into a nearly continuous signal by 0305 UTC on May 29, lasting for ~4.5 hours followed by nearly 4.5 hours of quiescence. The EMO issued a declaration closing the region south of Sarigan to all local boating traffic and issued an advisory to aircraft. The explosive onset of the main plume-producing event occurred at ~1148 UTC as confirmed by seismic records on Anatahan Island, with the strongest phase ending ~1200 UTC. Soon after, the Washington Volcanic Ash Advisory Center reported an eruption cloud reaching an estimated 40,000 feet (12 km) ASL that diminished rapidly on satellite imagery suggesting it was water-vapor dominated. Winds carried the cloud southwest over Guam, and although no ash fall was reported, the cloud was visible and was detected in Aura/OMI aerosol index imagery. Biologists on Sarigan Island at the time of the explosion reported hearing a loud noise from the south, and shortly thereafter receiving a dusting of ash. They also reported the sound of a water wave passing by; a tide gauge in Saipan recorded a wave on the order of 4-5 cm. The eruption was followed by a rapid return to relative quiescence with occasional earthquakes (0-3 per day) recorded throughout the summer. The eruption appears to have originated from South Sarigan seamount, about 12 km south of Sarigan Island. The summit of the seamount is poorly surveyed but appears to consist of several peaks with minimum depths ranging up to ~184 m BSL including a small (young?) cone at ~350 m BSL. Sidescan sonar data collected in 2003 show that the flank of the seamount is characterized by radiating patterns of high acoustic backscatter indicating recent mass flows of volcaniclastic material, which suggests that this is a frequently active volcano.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUSM.V31B..15I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUSM.V31B..15I"><span>Changes in Aerosol Chemistry in the Plume of Kilauea Volcano Caused by the 2008 Summit Eruption</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ilyinskaya, E.; Oppenheimer, C.</p> <p>2009-05-01</p> <p>In March 2008 an eruption began in Halema'uma'u summit crater of Kilauea volcano; this was the first summit eruption since 1982. Prior to the new active phase, degassing in the crater was predominantly from several small fumaroles emitting a weak translucent plume. The 2003-2007 average SO2 emission rate was 140 tonnes per day and increased drastically to over 2000 tonnes per day in March 2008. The plume emitted from the crater during the eruption was concentrated and opaque, containing both ash and aerosol particles. Aerosol particles were sampled in the plume from Halema'uma'u before the start of the new eruptive phase (August 2007) and during it (May 2008). Particles emitted from Pu'u'O'o crater were collected at the rim and 8- 10km downwind. Sampling was done with a cascade impactor which collects and segregates PM10 (particle matter <10 μm) into 14 size fractions. There is a significant increase in PM sulphate concentration during the eruptive phase, or from 0.11 up to 6.3 μg per m3 of sampled air. Cl- concentration increased from 0.097 to 0.338 μgm-3, while F- was not detected either before or during the eruption. The SO42-/Cl- ratio increased from 0.15 to 18.8. The concentration peak of SO42- shifts to a coarser PM size fraction during the active phase, or from 0.18-0.32 to 0.32-0.56 μm. It is possible that higher water vapour content during the eruption favours more rapid particle growth. PM collected at Pu'u'O'o rim shows a noteworthy bimodal SO42- concentration distribution with a finer peak between 0.32-0.56 μm and a coarser peak between 1.0-1.4 μm. The coarser PM is efficiently removed from the plume and is not detected when sampled 8km downwind of the source. Near-vent nitrate was not detected in pre-eruptive samples but was found in concentrations between 0.17-0.58 μgm-3 in syn-eruptive PM; these are much lower than the concentrations seen at Pu'u'O'o (up to 3.0 μgm-3). Work in progress is analysis of metal content in the pre- and syn-eruptive PM which will be correlated with the size-resolved chemistry of anions. Further field sampling will be made in April 2009 now that the eruptive activity is significantly diminished and potentially coming to an end.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/fs/1998/fs173-98/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/fs/1998/fs173-98/"><span>Eruptions of Lassen Peak, California, 1914 to 1917</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Clynne, Michael A.; Christiansen, Robert L.; Felger, Tracey J.; Stauffer, Peter H.; Hendley, James W.</p> <p>1999-01-01</p> <p>On May 22, 1915, an explosive eruption at Lassen Peak, California, the southernmost active volcano in the Cascade Range, devastated nearby areas and rained volcanic ash as far away as 200 miles to the east. This explosion was the most powerful in a 1914–17 series of eruptions that were the last to occur in the Cascades before the 1980 eruption of Mount St. Helens, Washington. Recent work by scientists with the U.S. Geological Survey (USGS) in cooperation with the National Park Service is shedding new light on these eruptions.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.V43A3127L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.V43A3127L"><span>Changes in long-term eruption dynamics at Santiaguito, Guatemala: Observations from seismic data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lamb, O. D.; Lavallée, Y.; De Angelis, S.; Lamur, A.; Hornby, A. J.; von Aulock, F. W.; Kendrick, J. E.; Chigna, G.; Rietbrock, A.</p> <p>2016-12-01</p> <p>Santiaguito (Guatemala) is an ideal laboratory for the study of the eruption dynamics of long-lived silicic eruptions. Here we present seismic observations of ash-and-gas explosions recorded between November 2014 and June 2016 during a multi-disciplinary experiment by the University of Liverpool. The instruments, deployed around the active dome complex between 0.5 to 7 km from the vent, included 5 broadband and 6 short-period seismometers, as well as 5 infrasound sensors. The geophysical data is complemented by thermal images, optical images from a UAV, and geochemical measurements of erupted material. Regular, small-to-moderate sized explosions from the El Caliente dome at Santiaguito have been common since at least the early 1970s. However, in 2015, a shift in character took place in terms of the regularity and magnitude of the explosions. Explosions became larger and less regular, and often accompanied by pyroclastic density currents. The larger explosions have caused a major morphological change at the vent, as a rubble-filled vent was replaced by a crater of 150 m depth. This shift in behaviour likely represents a change in the eruptive mechanism in the upper conduit beneath the Caliente vent, possibly triggered by processes at a greater depth in the volcanic system. This experiment represents a unique opportunity to use multi-disciplinary research to help understand the long-term eruptive dynamics of lava dome eruptions. Our observations may have implications for hazard assessment not only at Santiaguito, but at many other volcanic systems worldwide.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JVGR..354..102N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JVGR..354..102N"><span>Furthering the investigation of eruption styles through quantitative shape analyses of volcanic ash particles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nurfiani, D.; Bouvet de Maisonneuve, C.</p> <p>2018-04-01</p> <p>Volcanic ash morphology has been quantitatively investigated for various aims such as studying the settling velocity of ash for modelling purposes and understanding the fragmentation processes at the origin of explosive eruptions. In an attempt to investigate the usefulness of ash morphometry for monitoring purposes, we analyzed the shape of volcanic ash particles through a combination of (1) traditional shape descriptors such as solidity, convexity, axial ratio and form factor and (2) fractal analysis using the Euclidean Distance transform (EDT) method. We compare ash samples from the hydrothermal eruptions of Iwodake (Japan) in 2013, Tangkuban Perahu (Indonesia) in 2013 and Marapi (Sumatra, Indonesia) in 2015, the dome explosions of Merapi (Java, Indonesia) in 2013, the Vulcanian eruptions of Merapi in 2010 and Tavurvur (Rabaul, Papaua New Guinea) in 2014, and the Plinian eruption of Kelud (Indonesia) in 2014. Particle size and shape measurements were acquired from a Particle Size Analyzer with a microscope camera attached to the instrument. Clear differences between dense/blocky particles from hydrothermal or dome explosions and vesicular particles produced by the fragmentation of gas-bearing molten magma are well highlighted by conventional shape descriptors and the fractal method. In addition, subtle differences between dense/blocky particles produced by hydrothermal explosions, dome explosions, or quench granulation during phreatomagmatic eruptions can be evidenced with the fractal method. The combination of shape descriptors and fractal analysis is therefore potentially able to distinguish between juvenile and non-juvenile magma, which is of importance for eruption monitoring.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA02674.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA02674.html"><span>Eruption of Shiveluch Volcano, Kamchatka, Russia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2001-07-21</p> <p>On the night of June 4, 2001 ASTER captured this thermal image of the erupting Shiveluch volcano. Located on Russia's Kamchatka Peninsula, Shiveluch rises to an altitude of 8028'. The active lava dome complex is seen as a bright (hot) area on the summit of the volcano. To the southwest, a second hot area is either a debris avalanche or hot ash deposit. Trailing to the west is a 25 km ash plume, seen as a cold "cloud" streaming from the summit. At least 60 large eruptions have occurred during the last 10,000 years; the largest historical eruptions were in 1854 and 1964. Because Kamchatka is located along the major aircraft routes between North America/Europe and the Far East, this area is constantly monitored for potential ash hazards to aircraft. The lower image is the same as the upper, except it has been color coded: red is hot, light greens to dark green are progressively colder, and gray/black are the coldest areas. The image is located at 56.7 degrees north latitude, 161.3 degrees east longitude. http://photojournal.jpl.nasa.gov/catalog/PIA02674</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70016847','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70016847"><span>Petrology of lavas from episodes 2-47 of the Puu Oo eruption of Kilauea Volcano, Hawaii: Evaluation of magmatic processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Garcia, M.O.; Rhodes, J.M.; Wolfe, E.W.; Ulrich, G.E.; Ho, R.A.</p> <p>1992-01-01</p> <p>The Puu Oo eruption of Kilauea Volcano in Hawaii is one of its largest and most compositionally varied historical eruptions. The mineral and whole-rock compositions of the Puu Oo lavas indicate that there were three compositionally distinct magmas involved in the eruption. Two of these magmas were differentiated (<6.8 wt% MgO) and were apparently stored in the rift zone prior to the eruption. A third, more mafic magma (9-10 wt% MgO) was probably intruded as a dike from Kilauea's summit reservoir just before the start of the eruption. Its intrusion forced the other two magmas to mix, forming a hybrid that erupted during the first three eruptive episodes from a fissure system of vents. A new hybrid was erupted during episode 3 from the vent where Puu Oo later formed. The composition of the lava erupted from this vent became progressively more mafic over the next 21 months, although significant compositional variation occurred within some eruptive episodes. The intra-episode compositional variation was probably due to crystal fractionation in the shallow (0.0-2.9 km), dike-shaped (i.e. high surface area/volume ratio) and open-topped Puu Oo magma reservoir. The long-term compositional variation was controlled largely by mixing the early hybrid with the later, more mafic magma. The percentage of mafic magma in the erupted lava increased progressively to 100% by episode 30 (about two years after the eruption started). Three separate magma reservoirs were involved in the Puu Oo eruption. The two deeper reservoirs (3-4 km) recharged the shallow (0.4-2.9 km) Puu Oo reservoir. Recharge of the shallow reservoir occurred rapidly during an eruption indicating that these reservoirs were well connected. The connection with the early hybrid magma body was cut off before episode 30. Subsequently, only mafic magma from the summit reservoir has recharged the Puu Oo reservoir. ?? 1992 Springer-Verlag.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=MSFC-0202485&hterms=active+volcanoes&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dactive%2Bvolcanoes','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=MSFC-0202485&hterms=active+volcanoes&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dactive%2Bvolcanoes"><span>Erupting Volcano Mount Etna</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2001-01-01</p> <p>An Expedition Two crewmember aboard the International Space Station (ISS) captured this overhead look at the smoke and ash regurgitated from the erupting volcano Mt. Etna on the island of Sicily, Italy. At an elevation of 10,990 feet (3,350 m), the summit of the Mt. Etna volcano, one of the most active and most studied volcanoes in the world, has been active for a half-million years and has erupted hundreds of times in recorded history.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000074661&hterms=ribbon+winding&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dribbon%2Bwinding','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000074661&hterms=ribbon+winding&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dribbon%2Bwinding"><span>Onset of the Magnetic Explosion in Filament-Eruption Flares and Coronal Mass Ejections: Single-Bipole Events</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Moore, Ron L.; Sterling, Alphonse C.</p> <p>2000-01-01</p> <p>We present three-dimensional sketches of die magnetic field before and during filament eruptions in flares and coronal mass ejections. Before the eruption, the overall magnetic field is a closed bipole in which the core field (the field rooted along the bipole's neutral line in the photospheric magnetic flux) is strongly sheared and has oppositely curved "elbows" that bulge out from the opposite ends of the neutral line. This core-field sigmoid runs under and is pressed down in the middle by the rest of the field in the bipole, the less-sheared envelope field rooted outside the core field (as in the model of Antiochos, Dahlburg, & Klimchuk. A filament of chromospheric-temperature plasma is often held in the core field over the neutral line. In a filament eruption, the core field undergoes an explosive eruption, the frozen-in filament plasma providing a visible tracer of the erupting field. The core-field explosion may be either confined (as in some flares) or ejective (as in CMEs that begin together with the onset of a long-duration two-ribbon flare). We present examples of each of these two kind of events as observed in sequences of coronal X-ray images from the Yohkoh SXT, and consider (1) how the explosion begins, and (2) whether confined eruptions begin in basically the same way as ejective eruptions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss033e022852.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss033e022852.html"><span>Earth observation taken by the Expedition 33 crew.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2012-11-18</p> <p>ISS033-E-022852 (18 Nov. 2012) --- This view, photographed by an Expedition 33 crew member on the International Space Station, highlights the 24-kilometer wide Aso caldera on the Japanese Island of Kyushu, formed during four explosive eruptions that took place from 300,000 to 90,000 years ago, according to scientists. These major eruptions produced pyroclastic flows and airfall tephra that covered much of Kyushu. As the eruptions emptied the magma chambers beneath the ancient volcanoes, they collapsed ? forming the caldera. Shadows highlight the caldera rim at left, while green vegetation covers slopes between the rim and caldera floor at right. Volcanic activity continued in the caldera following its formation, represented by 17 younger volcanoes including Naka-dake at center. Naka-dake is one of Japan?s most active volcanoes, with ash plumes produced from the summit crater as recently as June 2011. Another prominent crater, Kusasenri, is visible to the west of Naka-dake. This crater is the site of the Aso Volcano Museum as well as pasture for cows and horses. The Aso caldera floor is largely occupied by urban and agricultural land uses that present a gray to white speckled appearance in the image. Fields and cities surround the younger volcanic structures in the caldera center to the north, west, and south. Tan to yellow-brown regions along the crater rim, and along the lower slopes of the younger volcanic highlands in the central caldera, are lacking the dense tree cover indicated by greener areas in the image.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.V12A..06H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.V12A..06H"><span>Ground Tilt Time Delays between Kilauea Volcano's Summit and East Rift Zone Caused by Magma Reservoir Buffering</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Haney, M. M.; Patrick, M. R.; Anderson, K. R.</p> <p>2016-12-01</p> <p>A cyclic pattern of ground deformation, called a deflation-inflation (DI) cycle, is commonly observed at Kilauea Volcano, Hawai`i. These cycles are an important part of Kilauea's eruptive activity because they directly influence the level of the summit lava lake as well as the effusion rate (and resulting lava flow hazard) at the East Rift Zone eruption site at Pu`u `O`o. DI events normally span several days, and are measured both at the summit and at Pu`u `O`o cone (20 km distance). Signals appear first at the summit and are then observed at Pu`u `O`o after an apparent delay of between 0.5 and 10 hours, which has been previously interpreted as reflecting magma transport time. We propose an alternate explanation, in which the apparent delay is an artifact of buffering by the small magma reservoir thought to exist at Pu`u `O`o. Simple Poiseuille flow modeling demonstrates that this apparent delay can be reproduced by the changing balance of inflow (from the summit) and outflow (to surface lava flows) at the Pu`u `O`o magma reservoir. The apparent delay is sensitive to the geometry of the conduit leaving Pu`u `O`o, feeding surface lava flows. We demonstrate how the reservoir buffering is quantitatively equivalent to a causal low-pass filter, which explains both the apparent delay as well as the smoothed, skewed nature of the signal at Pu`u `O`o relative to the summit. By comparing summit and Pu`u `O`o ground tilt signals over an extended time period, it may be possible to constrain the changing geometry of the shallow magmatic system through time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNH31C..03W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNH31C..03W"><span>On the use of UAVs at active volcanoes: a case study from Volcan de Fuego, Guatemala</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Watson, M.; Chigna, G.; Wood, K.; Richardson, T.; Liu, E.; Schellenberg, B.; Thomas, H.; Naismith, A.</p> <p>2017-12-01</p> <p>Volcan de Fuego, Guatemala, is one of Central America's most active systems. More than one hundred thousand people live within ten kilometres of the summit, many of them in profound poverty. Both the summit region and the volcano's steep sided valleys present significant access challenges, mostly associated with unacceptably high risk. Unmanned aerial vehicles (UAVs) offer the opportunity to observe, map and quantify emissions of tephra, gas, lava and heat flux and, using structure from motion algorithms, model dynamic topography. During recent campaigns, the team have completed observations of changes in the summit morphology immediately prior a paroxysmal eruption, mapped the key drainage systems after the fifth of May 2017 eruption and sampled the plume for tephra and gases using a range of onboard instruments. I will present the group's findings within a broader context of hazard mitigation and physical volcanology, and discuss the future of UAVs in volcano monitoring and research.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRB..121.5477P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRB..121.5477P"><span>Insights into shallow magmatic processes at Kīlauea Volcano, Hawaíi, from a multiyear continuous gravity time series</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Poland, Michael P.; Carbone, Daniele</p> <p>2016-07-01</p> <p>Continuous gravity data collected near the summit eruptive vent at Kīlauea Volcano, Hawaíi, during 2011-2015 show a strong correlation with summit-area surface deformation and the level of the lava lake within the vent over periods of days to weeks, suggesting that changes in gravity reflect variations in volcanic activity. Joint analysis of gravity and lava level time series data indicates that over the entire time period studied, the average density of the lava within the upper tens to hundreds of meters of the summit eruptive vent remained low—approximately 1000-1500 kg/m3. The ratio of gravity change (adjusted for Earth tides and instrumental drift) to lava level change measured over 15 day windows rose gradually over the course of 2011-2015, probably reflecting either (1) a small increase in the density of lava within the eruptive vent or (2) an increase in the volume of lava within the vent due to gradual vent enlargement. Superimposed on the overall time series were transient spikes of mass change associated with inflation and deflation of Kīlauea's summit and coincident changes in lava level. The unexpectedly strong mass variations during these episodes suggest magma flux to and from the shallow magmatic system without commensurate deformation, perhaps indicating magma accumulation within, and withdrawal from, void space—a process that might not otherwise be apparent from lava level and deformation data alone. Continuous gravity data thus provide unique insights into magmatic processes, arguing for continued application of the method at other frequently active volcanoes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.A53B0255B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.A53B0255B"><span>Eruption History of Cone D: Implications for Current and Future Activity at Okmok Caldera</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Beget, J.; Almberg, L.; Faust-Larsen, J.; Neal, C.</p> <p>2008-12-01</p> <p>Cone B at Okmok Caldera erupted in 1817, and since then activity has beeen centered in and around Cone A in the SW part of Okmok Caldera. However, prior to 1817 at least a half dozen other eruptive centers were active at various times within the caldera. Cone D was active between ca. 2000-1500 yr BP., and underwent at least two separate intervals characterized by violent hydromagmatic explosions and surge production followed by the construction of extensive lava deltas in a 150-m-deep intra-caldera lake. Reconstructions of cone morphology indicate the hydromagmatic explosions occurred when lake levels were shallow or when the eruptive cones had grown to reach the surface of the intra-caldera lake. The effusion rate over this interval averaged several million cubic meters of lava per year, implying even higher outputs during the actual eruptive episodes. At least two dozen tephra deposits on the volcano flanks date to this interval, and record frequent explosive eruptions. The pyroclastic flows and surges from Cone D and nearby cones extend as far as 14 kilometers from the caldera rim, where dozens of such deposits are preserved in a section as much as 6 m thick at a distance of 8 km beyond the rim. A hydromagmatic explosive eruption at ca. 1500 yr BP generated very large floods and resulted in the draining of the caldera lake. The 2008 hydromagmatic explosive eruptions in the Cone D area caused by interactions with lake water resulted in the generation of surges, floods and lahars that are smaller but quite similar in style to the prehistoric eruptions at Cone E ca. 2000-1500 yr BP. The style and magnitude of future eruptions at vents around Cone D will depend strongly on the evolution of the intra-caldera lake system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C33A1180D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C33A1180D"><span>Influence of Gígjökull on the Emplacement of the Lava Flow Produced by the 2010 Eruption of Eyjafjallajökull, Iceland, and the Flow's Effects on the Glacier's Resilience to Climate Change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dougherty, W.; Edwards, B. R.; Kochtitzky, W. H.; Oddsson, B.; Gudmundsson, M. T.</p> <p>2017-12-01</p> <p>While more than 180 volcanoes on Earth are presently glaciated (Edwards and Kochtitzky, 2014), few studies have examined the long-term impact of a specific eruption on the affected glacier. The 2010 eruption of Eyjafjallajökull in south-central Iceland significantly damaged the small summit ice cap as well as Gígjökull, a valley glacier on the north side of the volcano. Up until the eruption in April 2010, the terminus of Gígjökull was a glacial lagoon confined by a terminal moraine. During the eruption, melting of the ice cap and valley glacier produced floods that flushed out the lagoon and infilled it with sediment. Currently, several very small lakes exist in the former lagoon, which is drained by a small stream. We documented the damage to the ice cap and Gígjökull in July 2010 on aerial overflights and the glaciers' reaction to the eruption. We again made aerial observations of the glaciers in 2011 and 2012, and have continued to monitor their changes from ground-based images. Immediately after the eruption a hole was present in the summit ice cap, containing a small lake. A complete passage from the summit ice cap to within 1 km of the glacier terminus had been melted, and was filled with volcanic debris. The damaged parts of Gígjökull included a wide opening near the head of the glacier, from which a lava flow traveled during the eruption. A canyon was melted in the ice below the vent. By summer 2011 an ice tongue was migrating into the crater from the south side of the crater rim. As of June 2017, Gígjökull had advanced to cover most of the 2010 lava flow, suggesting some glacial recovery, but no more than an isolated ice tongue, no longer fed by the main glacier, reached the lower part of the valley where the lagoon previously existed, and the glacier terminated before the 2010 eruption. Studies of Gígjökull provide insight on glaciers' influences on lava flow emplacement as well as the ability of a glacier to recover after major volcanic disturbances.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007BVol...69..353D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007BVol...69..353D"><span>Transient deformation following the 30 January 1997 dike intrusion at Kīlauea volcano, Hawai'i</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Desmarais, Emily K.; Segall, Paul</p> <p>2007-02-01</p> <p>On 30 January 1997 an intrusion on Kīlauea volcano opened a new fissure within the East Rift Zone (ERZ) at Nāpau Crater, 3 km uprift from the ongoing eruptions at Pu’u ’Ō’ō. The fissure eruption lasted 22 h and opened a 5.1 km long, nearly vertical dike 1.9 m, extending from the surface to a depth of 2.4 km (Owen et al. 2000b). During the eruption, the lava pond at Pu’u ’Ō’ō drained, and eruptions ceased there. Pu’u ’Ō’ō eventually refilled in late February and eruptions resumed there on 28 March 1997. Continuous GPS data show a large transient following the 30 January 1997 dike intrusion. After lengthening 40 cm during the initial eruption, the baseline between two stations spanning the ERZ lengthened an additional 10 cm over the following 6 months. A coastal station KAEP also exhibited transient deformation, as it continued to move southward (5 cm) over the same 6-month period. The baseline between two stations spanning Kīlauea’s summit caldera contracted sharply during the eruption, but gradually recovered to slightly longer than its previous length 2 months after the intrusion. We use the extended network inversion filter (McGuire and Segall 2003) to invert continuous GPS data for volume change of a spherical pressure source under Kīlauea’s summit, opening distribution on a nearly vertical dike in the ERZ and potential slip on a decollement 9 km beneath the south flank. Following the 30 January intrusion, rift extension continued below the initial dike intrusion for the duration of the transient. Decollement slip, regardless of its assumed depth, is not required to fit the data. The modeled transient summit reinflation and rift opening patterns under Nāpau crater coincide with changes in observed behavior of Pu’u ’Ō’ō’s lava pond. Rift opening accelerated while Pu’u ’Ō’ō eruptions paused and began to decelerate after the lava pond reappeared nearly a month after the Nāpau eruption. The transient deformation is interpreted as resulting from shallow accommodation of the new dike volume.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMOS41C1993M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMOS41C1993M"><span>Waveform Template Matching and Analysis of Hydroacoustic Events from the April-May 2015 Eruption of Axial Volcano</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mann, M. E.; Bohnenstiehl, D. R.; Weis, J.</p> <p>2016-12-01</p> <p>The submarine emplacement of new lava flows during the 2015 eruption of Axial Volcano generated a series of impulsive acoustic signals that were captured by seismic and hydrophone sensors deployed as part of the Ocean Observatories Initiative cabled array network. A catalog of >37,000 explosions was created using a four-channel waveform matching routine using 800 template arrivals. Most of the explosions are sourced from a set of lava mounds erupted along the volcano's northern rift; however, a subset of 400 explosions are located within the caldera and track the flow of lava from a vent near its eastern rim. The earliest explosion occurs at 08:00 UTC on April 24, approximately four hours after the seismicity rate began to increase and two hours after bottom pressure recorders indicate the caldera floor began to subside. Between April 24 and 28 event rates are sustained at 1000/day. The rate then decreases gradually with explosive activity ending on 21 May, coincident with the initial re-inflation of the caldera. The windowed coefficient of variation of the inter-event time is approximately 1 throughout the eruption, consistent with a random process. The size-frequency distribution shows a bimodal pattern, with the loudest explosions, having received levels up to 157 dB re 1 micro-Pa, being produced during the first few hours of the eruption.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014GeoRL..41.3096T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014GeoRL..41.3096T"><span>High-speed imaging, acoustic features, and aeroacoustic computations of jet noise from Strombolian (and Vulcanian) explosions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Taddeucci, J.; Sesterhenn, J.; Scarlato, P.; Stampka, K.; Del Bello, E.; Pena Fernandez, J. J.; Gaudin, D.</p> <p>2014-05-01</p> <p>High-speed imaging of explosive eruptions at Stromboli (Italy), Fuego (Guatemala), and Yasur (Vanuatu) volcanoes allowed visualization of pressure waves from seconds-long explosions. From the explosion jets, waves radiate with variable geometry, timing, and apparent direction and velocity. Both the explosion jets and their wave fields are replicated well by numerical simulations of supersonic jets impulsively released from a pressurized vessel. The scaled acoustic signal from one explosion at Stromboli displays a frequency pattern with an excellent match to those from the simulated jets. We conclude that both the observed waves and the audible sound from the explosions are jet noise, i.e., the typical acoustic field radiating from high-velocity jets. Volcanic jet noise was previously quantified only in the infrasonic emissions from large, sub-Plinian to Plinian eruptions. Our combined approach allows us to define the spatial and temporal evolution of audible jet noise from supersonic jets in small-scale volcanic eruptions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.V21E2364S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.V21E2364S"><span>Phreatic and Hydrothermal Explosions: A Laboratory Approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Scheu, B.; Dingwell, D. B.</p> <p>2010-12-01</p> <p>Phreatic eruptions are amongst the most common eruption types on earth. They might be precursory to another type of volcanic eruption but often they stand on their one. Despite being the most common eruption type, they also are one of the most diverse eruptions, in appearance as well as on eruption mechanism. Yet steam is the common fuel behind all phreatic eruptions. The steam-driven explosions occur when water beneath the ground or on the surface is heated by magma, lava, hot rocks, or fresh volcanic deposits (such as ignimbrites, tephra and pyroclastic-flow deposits) and result in crater, tuff rings and debris avalanches. The intense heat of such material may cause water to boil and flash to steam, thereby generating an explosion of steam, water, ash, blocks, and bombs. Another wide and important field affected by phreatic explosions are hydrothermal areas; here phreatic explosions occur every few months creating explosion craters and resemble a significant hazard to hydrothermal power plants. Despite of their hazard potential, phreatic explosions have so far been overlooked by the field of experimental volcanology. A part of their hazard potential in owned by the fact that phreatic explosions are hardly predictable in occurrence time and size as they have manifold triggers (variances in groundwater and heat systems, earthquakes, material fatigue, water level, etc..) A new set of experiments has been designed to focus on this phreatic type of steam explosion, whereas classical phreatomagmatic experiments use molten fuel-coolant interaction (e.g., Zimanowski, et al., 1991). The violent transition of the superheated water to vapour adds another degree of explosivity to the dry magmatic fragmentation, driven mostly by vesicle bursting due to internal gas overpressure. At low water fractions the fragmentation is strongly enforced by the mixture of these two effects and a large fraction of fine pyroclasts are produced, whereas at high water fraction in the sample the fragmentation is less violent as its dry counterpart. The experimental conditions used it this study (varying degree of water saturation, moderate overpressure, 200- 300°C) applies e.g. to volcanic rocks as well as country rocks at depth of about 100-800 m in a conduit or dome bearing a fraction of ground water and being heated from magma rising beneath (150-400°C). The diversity of phreatic eruptions at a volcanic system (vent) arises from the variety of host rocks, ways to seal the conduit, and to alter this material depending on the composition of volcanic gases. Here, we assess the influence of rapid decompression of the supercritical water phase in the pore space of samples, on the fragmentation behaviour. This will enable us to elucidate the characteristics of the different “fuels” for explosive fragmentation (gas overpressure, steam flashing), as well as their interplay.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/977784','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/977784"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gisler, Galen R.; Weaver, R. P.; Mader, Charles L.</p> <p></p> <p>Kick-em Jenny, in the Eastern Caribbean, is a submerged volcanic cone that has erupted a dozen or more times since its discovery in 1939. The most likely hazard posed by this volcano is to shipping in the immediate vicinity (through volcanic missiles or loss-of-buoyancy), but it is of interest to estimate upper limits on tsunamis that might be produced by a catastrophic explosive eruption. To this end, we have performed two-dimensional simulations of such an event in a geometry resembling that of Kick-em Jenny with our SAGE adaptive mesh Eulerian multifluid compressible hydrocode. We use realistic equations of state formore » air, water, and basalt, and follow the event from the initial explosive eruption, through the generation of a transient water cavity and the propagation of waves away from the site. We find that even for extremely catastrophic explosive eruptions, tsunamis from Kick-em Jenny are unlikely to pose significant danger to nearby islands. For comparison, we have also performed simulations of explosive eruptions at the much larger shield volcano Vailuluu in the Samoan chain, where the greater energy available can produce a more impressive wave. In general, however, we conclude that explosive eruptions do not couple well to water waves. The waves that are produced from such events are turbulent and highly dissipative, and don't propagate well. This is consistent with what we have found previously in simulations of asteroid-impact generated tsunamis. Non-explosive events, however, such as landslides or gas hydrate releases, do couple well to waves, and our simulations of tsunamis generated by subaerial and sub-aqueous landslides demonstrate this.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.V33E..01P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.V33E..01P"><span>Recent improvements in monitoring Hawaiian volcanoes with webcams and thermal cameras</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Patrick, M. R.; Orr, T. R.; Antolik, L.; Lee, R.; Kamibayashi, K.</p> <p>2012-12-01</p> <p>Webcams have become essential tools for continuous observation of ongoing volcanic activity. The use of both visual webcams and Web-connected thermal cameras has increased dramatically at the Hawaiian Volcano Observatory over the past five years, improving our monitoring capability and understanding of both Kilauea's summit eruption, which began in 2008, and the east rift zone eruption, which began in 1983. The recent bolstering of the webcam network builds upon the three sub-megapixel webcams that were in place five years ago. First, several additional fixed visual webcam systems have been installed, using multi-megapixel low-light cameras. Second, several continuously operating thermal cameras have been deployed, providing a new view of activity, easier detection of active flows, and often "seeing" through fume that completely obscures views from visual webcams. Third, a new type of "mobile" webcam - using cellular modem telemetry and capable of rapid deployment - has allowed us to respond quickly to changes in eruptive activity. Fourth, development of automated analysis and alerting scripts provide real-time products that aid in quantitative interpretation of incoming images. Finally, improvements in the archiving and Web-based display of images allow efficient review of current and recent images by observatory staff. Examples from Kilauea's summit and lava flow field provide more detail on the improvements. A thermal camera situated at Kilauea's summit has tracked the changes in the active lava lake in Halema`uma`u Crater since late 2010. Automated measurements from these images using Matlab scripts are now providing real-time quantitative data on lava level and, in some cases, lava crust velocity. Lava level essentially follows summit tilt over short time scales, in which near-daily cycles of deflation and inflation correspond with about ten meters of lava level drop and rise, respectively. The data also show that the long-term Halema`uma`u lava level tracked by the thermal cameras also correlates with the pressure state of the summit magma reservoir over months based on deformation data. Comparing the summit lava level with that in Pu`u `O`o crater, about 20 km distant on the east rift zone, reveals a clear correlation that reaffirms the hydraulic connection from summit to rift zone. Elsewhere on Kilauea, mobile webcams deployed on the coastal plain have improved the tracking of active breakouts from the east rift zone eruption site - a critical hazard zone given that four homes, mostly in the Kalapana area, have been destroyed by lava flows in the last three years. Each morning an automated Matlab script detects incandescent areas in overnight images and, using the known image geometry, determines the azimuth to active flows. The results of this eruptive "breakout locator" are emailed to observatory staff each morning and provide a quantitative constraint on breakout locations and hazard potential that serves as a valuable addition to routine field mapping. These examples show the utility of webcams and thermal cameras for monitoring volcanic activity, and they reinforce the importance of continued development of equipment as well as real-time processing and analysis tools.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.V43G2337E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.V43G2337E"><span>Ambient air quality effects of the 2008-2009 Halema`uma`u eruption on the Island of Hawai`i</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Elias, T.; Sutton, A. J.; Kauahikaua, J. P.; Ray, J. D.; Babb, J. L.</p> <p>2009-12-01</p> <p>While the Halema`uma`u eruption has enlivened volcanologists with the rare opportunity to observe eruptive processes at Kilauea’s summit, it has also caused significant environmental impact on the Island of Hawai`i. Since the beginning of 2008, the combined SO2 emissions from the east rift zone (ERZ) and summit of Kilauea have increased by ~40% as compared to the 2003-2007 long-term average. However, emissions from Kilauea’s summit have increased ~6-fold, averaging 850 t/d during January 2008-August 2009. Although average emissions from the ERZ during this period have been 1-2 times that of the summit, the relative impact of summit emissions is disproportionately large due to the location of the vent and the plume dispersal pattern to downwind communities. Ambient air quality data show that federal standards have been exceeded frequently in various communities on the south half of the island. Between April 2008 and August 2009, primary health standards for SO2 and PM2.5 were exceeded on 41 and 19 occasions respectively in Pahala, located ~30 km downwind of the Kilauea summit under prevailing trade wind conditions. Pahala, which exceeded the SO2 annual standard for 2008, had not exceeded standards prior to the opening of the Halema`uma`u vent in March 2008. In July 2008, the U.S. Secretary of Agriculture designated Hawai`i County a primary natural disaster area due to agricultural losses from volcanic emissions. Many growers of exotic flower crops in the Ka`u district suffered irrecoverable losses. Coffee and macadamia nut farmers also reported damage to their fields. While some livestock farmers reported eye irritation in cattle, more significant damage was observed in the accelerated deterioration of galvanized fencing, gates, pipelines and other infrastructure. The increase in volcanic pollution has spurred health concerns. A rise in respiratory emergencies for visitors to Kilauea caldera in early 2008 led Hawai`i Volcanoes National Park to close areas downwind of the vent. Two recent health studies on the Island of Hawaii conducted prior to the 2008-2009 activity noted increased upper respiratory symptom prevalence in areas of persistent volcanic pollution. The current activity and exposure provides further opportunity to examine thresholds of human response. Local emergency response agencies were pressured to act quickly to address the air quality hazards. A variety of initial approaches led to an official policy of “shelter-in-place” during extreme air quality events. To date, interagency mitigation efforts have included providing Web-available near-real-time SO2 and PM data, developing an SO2 alert index, public education, supplying community fire stations and schools with SO2 monitoring equipment, surveying water quality in home-based drinking water catchment tanks, exploring forecast models, and working to install air handling systems for affected hospitals. While volcanic pollution has been an ongoing issue on the Island since the ERZ eruption became continuous in 1986, the current summit eruption has posed new challenges to Hawai`i residents, who must adapt to living with an active volcano.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29934608','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29934608"><span>Lattice Boltzmann modeling to explain volcano acoustic source.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Brogi, Federico; Ripepe, Maurizio; Bonadonna, Costanza</p> <p>2018-06-22</p> <p>Acoustic pressure is largely used to monitor explosive activity at volcanoes and has become one of the most promising technique to monitor volcanoes also at large scale. However, no clear relation between the fluid dynamics of explosive eruptions and the associated acoustic signals has yet been defined. Linear acoustic has been applied to derive source parameters in the case of strong explosive eruptions which are well-known to be driven by large overpressure of the magmatic fluids. Asymmetric acoustic waveforms are generally considered as the evidence for supersonic explosive dynamics also for small explosive regimes. We have used Lattice-Boltzmann modeling of the eruptive fluid dynamics to analyse the acoustic wavefield produced by different flow regimes. We demonstrate that acoustic waveform well reproduces the flow dynamics of a subsonic fluid injection related to discrete explosive events. Different volumetric flow rate, at low-Mach regimes, can explain both the observed symmetric and asymmetric waveform. Hence, asymmetric waveforms are not necessarily related to the shock/supersonic fluid dynamics of the source. As a result, we highlight an ambiguity in the general interpretation of volcano acoustic signals for the retrieval of key eruption source parameters, necessary for a reliable volcanic hazard assessment.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.V34A..02F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.V34A..02F"><span>Infrasonic Observations of Explosions and Degassing at Kilauea Summit</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fee, D.; Garces, M.</p> <p>2008-12-01</p> <p>After 25 years of quiescence, eruptive activity returned to Kilauea Caldera with an explosion in Halema'uma'u crater on March 19th 2008. The explosion is presumed to be the clearing of a clogged vent. Along with the 3/19 explosion, at least 5 more gas-driven explosions have occurred and were clearly recorded at a 4-element infrasound array 7 km away. Acoustic energy estimates for these explosions yield energies between ~ 0.2-3 × 107 J. Infrasonic VLP energy is present for some of the explosions, but not all. The relatively long explosion durations (>20 seconds) and frequency content are consistent with a transient pressure pulse followed by the reverberation of a shallow gas chamber or conduit. Persistent degassing from Halema'uma'u followed the initial explosion. The harmonic infrasonic tremor produced by the degassing is the most energetic to date at Kilauea, with the cumulative tremor acoustic energy at ~107-108 Joules/hour. The complex tremor spectra show numerous peaks, with the dominant peak between 0.3-0.6 Hz and a smaller amplitude peak around 1-3 Hz. The peak frequency of the harmonic tremor has changed over time, which could be related to a change in the gas-filled chamber dimensions or temperature. Further analysis of the tremor spectra may help constrain dimensions. Consistent with our previous observations at Kilauea from Pu'u 'O'o, Fissure D, and lava skylights, the excitation of a gas within a confined volume appears to be the acoustic (and possibly seismic) source. For the tremor, we propose a mechanism where persistent degassing excites the gas volume into resonance. The explosions signals are consistent with a slug of gas reaching the free surface and exciting the conduit as well. Correlation of the infrasound signals with seismic tremor, LP and VLP signals suggest an open system connecting the atmosphere to the seismic excitation process at depth. Results will also be presented in relation to the recent observation of a visible lava lake within the conduit.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17771801','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17771801"><span>Magma supply rate at kilauea volcano, 1952-1971.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Swanson, D A</p> <p>1972-01-14</p> <p>The three longest Kilauea eruptions since 1952 produced lava at an overall constant rate of about 9 x 10(6) cubic meters per month (vesicle-free). This is considered to represent the rate of magma supply from a deep source, probably the mantle, because little or no summit deformation indicating high-level storage accompanied any of the three eruptions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NHESS..16..871S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NHESS..16..871S"><span>Lightning and electrical activity during the Shiveluch volcano eruption on 16 November 2014</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shevtsov, Boris M.; Firstov, Pavel P.; Cherneva, Nina V.; Holzworth, Robert H.; Akbashev, Renat R.</p> <p>2016-03-01</p> <p>According to World Wide Lightning Location Network (WWLLN) data, a sequence of lightning discharges was detected which occurred in the area of the explosive eruption of Shiveluch volcano on 16 November 2014 in Kamchatka. Information on the ash cloud motion was confirmed by the measurements of atmospheric electricity, satellite observations and meteorological and seismic data. It was concluded that WWLLN resolution is enough to detect the earlier stage of volcanic explosive eruption when electrification processes develop the most intensively. The lightning method has the undeniable advantage for the fast remote sensing of volcanic electric activity anywhere in the world. There is a good opportunity for the development of WWLLN technology to observe explosive volcanic eruptions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2001/0482/pdf/of01-482.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2001/0482/pdf/of01-482.pdf"><span>Preliminary volcano-hazard assessment for Mount Spurr Volcano, Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Waythomas, Christopher F.; Nye, Christopher J.</p> <p>2001-01-01</p> <p>Mount Spurr volcano is an ice- and snow-covered stratovolcano complex located in the north-central Cook Inlet region about 100 kilometers west of Anchorage, Alaska. Mount Spurr volcano consists of a breached stratovolcano, a lava dome at the summit of Mount Spurr, and Crater Peak vent, a small stratocone on the south flank of Mount Spurr volcano. Historical eruptions of Crater Peak occurred in 1953 and 1992. These eruptions were relatively small but explosive, and they dispersed volcanic ash over areas of interior, south-central, and southeastern Alaska. Individual ash clouds produced by the 1992 eruption drifted east, north, and south. Within a few days of the eruption, the south-moving ash cloud was detected over the North Atlantic. Pyroclastic flows that descended the south flank of Crater Peak during both historical eruptions initiated volcanic-debris flows or lahars that formed temporary debris dams across the Chakachatna River, the principal drainage south of Crater Peak. Prehistoric eruptions of Crater Peak and Mount Spurr generated clouds of volcanic ash, pyroclastic flows, and lahars that extended to the volcano flanks and beyond. A flank collapse on the southeast side of Mount Spurr generated a large debris avalanche that flowed about 20 kilometers beyond the volcano into the Chakachatna River valley. The debris-avalanche deposit probably formed a large, temporary debris dam across the Chakachatna River. The distribution and thickness of volcanic-ash deposits from Mount Spurr volcano in the Cook Inlet region indicate that volcanic-ash clouds from most prehistoric eruptions were as voluminous as those produced by the 1953 and 1992 eruptions. Clouds of volcanic ash emitted from the active vent, Crater Peak, would be a major hazard to all aircraft using Ted Stevens Anchorage International Airport and other local airports and, depending on wind direction, could drift a considerable distance beyond the volcano. Ash fall from future eruptions could disrupt many types of economic and social activities, including oil and gas operations and shipping activities in the Cook Inlet area. Eruptions of Crater Peak could involve significant amounts of ice and snow that would lead to the formation of large lahars, formation of volcanic debris dams, and downstream flooding. The greatest hazards in order of importance are described below and shown on plate 1.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JVGR..357..287Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JVGR..357..287Y"><span>The origin of a coarse lithic breccia in the 34 ka caldera-forming Sounkyo eruption, Taisetsu volcano group, central Hokkaido, Japan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yasuda, Y.; Suzuki-Kamata, K.</p> <p>2018-05-01</p> <p>The 34 ka Sounkyo eruption produced 7.6 km3 of tephra ( 5 km3 DRE) as fallout, ignimbrite, and lithic breccia units, forming a small, 2-km-diameter summit caldera in the Taisetsu volcano group, Japan. The Sounkyo eruption products are made up of five eruptive units (SK-A to -E) in proximal regions, corresponding to the distal deposits, a 1- to 2-m-thick pumice fallout and the Px-type ignimbrite up to 220 m thick. The eruption began with a fallout phase, producing unstable low eruption columns during the earlier phase to form a <7-m-thick succession of well-stratified fallouts (SK-A1 and the lower part of the distal fallout). The eruption column reached up to 25 km high (subplinian to plinian) and became more stable at the late of the phase, producing a < 60-m-thick, pumice-dominated fallout (SK-A2 and the upper part of the distal fallout). The second phase, the climax of the Sounkyo eruption, produced a widespread, valley-filling ignimbrite in both proximal and distal regions (SK-B and the Px-type ignimbrite). At the end of the climactic phase, the waning of the eruption led to extensive failure of the walls of the shallow conduit, generating a dense, lithic-rich, low-mobile pyroclastic density current (PDC) to form a >27-m-thick, unstratified and ungraded, coarse lithic breccia (SK-C). The failure in turn choked the conduit, and then the eruption stopped. After a short eruptive hiatus, the eruption resumed with a short-lived fall phase, establishing an eruption column up to 16 km high and producing a <6-m-thick scoria fallout (SK-D). Finally, the eruption ended with the generation of PDCs by eruption column collapse to form a 5- to 15-m-thick ignimbrite in the proximal area (SK-E). Volume relationships between the caldera, ejected magma, and ejected lithic fragments suggest that the caldera was not essentially formed by caldera collapse but, instead, by vent widening as a consequence of explosive erosion and failure of the shallow conduit. The dominance of shallow-origin volcanic rocks in the lithic fraction throughout the Sounkyo eruption products implies the development of a flaring funnel-shaped vent. Hence, the occurrence of lithic breccias within small caldera-forming eruption products does not necessarily reflect either the existence or the timing of caldera collapse, as commonly assumed in literature. Lithic breccias commonly overlie climactic ignimbrite/fallout deposits in small caldera-forming eruptions, and an alternative explanation is that this reflects the collapse of the shallow conduit after an eruption climax, whose walls had been highly fractured and had become unstable owing to progressive erosion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.V31A3074S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.V31A3074S"><span>Measuring Gases Using Drones at Turrialba Volcano, Costa Rica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stix, J.; Alan, A., Jr.; Corrales, E.; D'Arcy, F.; de Moor, M. J.; Diaz, J. A.</p> <p>2016-12-01</p> <p>We are currently developing a series of drones and associated instrumentation to study Turrialba volcano in Costa Rica. This volcano has shown increasing activity during the last 20 years, and the volcano is currently in a state of heightened unrest as exemplified by recent explosive activity in May-August 2016. The eruptive activity has made the summit area inaccessible to normal gas monitoring activities, prompting development of new techniques to measure gas compositions. We have been using two drones, a DJI Spreading Wings S1000 octocopter and a Turbo Ace Matrix-i quadcopter, to airlift a series of instruments to measure volcanic gases in the plume of the volcano. These instruments comprise optical and electrochemical sensors to measure CO2, SO2, and H2S concentrations which are considered the most significant species to help forecast explosive eruptions and determine the relative proportions of magmatic and hydrothermal components in the volcanic gas. Additionally, cameras and sensors to measure air temperature, relative humidity, atmospheric pressure, and GPS location are included in the package to provide meteorological and geo-referenced information to complement the concentration data and provide a better picture of the volcano from a remote location. The integrated payloads weigh 1-2 kg, which can typically be flown by the drones in 10-20 minutes at altitudes of 2000-4000 meters. Preliminary tests at Turrialba in May 2016 have been very encouraging, and we are in the process of refining both the drones and the instrumentation packages for future flights. Our broader goals are to map gases in detail with the drones in order to make flux measurements of each species, and to apply this approach at other volcanoes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70182800','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70182800"><span>Renewed unrest at Mount Spurr Volcano, Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Power, John A.</p> <p>2004-01-01</p> <p>The Alaska Volcano Observatory (AVO),a cooperative program of the U.S. Geological Survey, the University of Alaska Fairbanks Geophysical Institute, and the Alaska Division of Geological and Geophysical Surveys, has detected unrest at Mount Spurr volcano, located about 125 km west of Anchorage, Alaska, at the northeast end of the Aleutian volcanic arc.This activity consists of increased seismicity melting of the summit ice cap, and substantial rates of C02 and H2S emission.The current unrest is centered beneath the volcano's 3374-m-high summit, whose last known eruption was 5000–6000 years ago. Since then, Crater Peak, 2309 m in elevation and 4 km to the south, has been the active vent. Recent eruptions occurred in 1953 and 1992.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016BVol...78...21S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016BVol...78...21S"><span>Impact of explosive volcanic eruptions around Vesuvius: a story of resilience in Roman time</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Scarpati, Claudio; Perrotta, Annamaria; De Simone, Girolamo Ferdinando</p> <p>2016-03-01</p> <p>Large explosive eruptions have reshaped the landscape around Vesuvius many times in prehistoric and historical times. Previous stratigraphic surveys suggested that people living in this area have probably abandoned their settlements (in the Bronze Age) or towns and villas (in the Roman period) for centuries after each major plinian eruption. New archaeological excavations on the northern slope of Vesuvius suggest a much more intriguing scenario. At Pollena Trocchia, an ongoing excavation has shown the superimposition of three different Roman structures, sandwiched between the deposits of the AD 79, AD 472, and AD 512 Vesuvius eruptions. Each of these eruptions more or less completely destroyed and buried the buildings under meters of volcanic products. Surprisingly, after a few years or decades, a new settlement was established exactly on the top of the buried one, indicating the immediate recovery of part of the devastated area. Our research documents the destruction of Roman buildings by volcanic eruptions over a period of five centuries (first to sixth century AD) and provides new insight into human behavior after major explosive eruptions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA22157.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA22157.html"><span>Investigating Mars: Arsia Mons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2018-01-03</p> <p>This THEMIS image shows part of the caldera floor of Arsia Mons. It is not uncommon for calderas to have "flat" floors after the final explosive eruption the empties the subsurface magma chamber. There may still be some magma or superheated rock left after the collapse that will fill in part of the depression. Additionally, over time erosion will work to level the topography. Within Arsia Mons there was renewed activity that occurred within the caldera along the alignment of the NE/SW trend of the three large volcanoes. This ongoing, low volume actitivity is similar to the lava lake in Kilauea in Hawaii. Small flows are visible throughout this image. In the center of the image is a small "L" shaped feature. This is the summit vent for the volcanic flows around it. The flows have lapped up against the caldera wall, filling in faults left by the caldera formation and increasing the elevation of the surface in this region of the caldera. Arsia Mons is the southernmost of the Tharsis volcanoes. It is 270 miles (450km) in diameter, almost 12 miles (20km) high, and the summit caldera is 72 miles (120km) wide. For comparison, the largest volcano on Earth is Mauna Loa. From its base on the sea floor, Mauna Loa measures only 6.3 miles high and 75 miles in diameter. A large volcanic crater known as a caldera is located at the summit of all of the Tharsis volcanoes. These calderas are produced by massive volcanic explosions and collapse. The Arsia Mons summit caldera is larger than many volcanoes on Earth. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 19874 Latitude: -8.57834 Longitude: 240.452 Instrument: VIS Captured: 2006-06-07 18:39 https://photojournal.jpl.nasa.gov/catalog/PIA22157</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..1213960P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..1213960P"><span>The extimated presence of differentiated higly explosive magmas beneath Vesuvius and Campi Flegrei: evidence from geochemical and textural studies.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pappalardo, Lucia; Mastrolorenzo, Giuseppe</p> <p>2010-05-01</p> <p>Highly catastrophic explosive eruptions are supplied by Si-rich magmas, generated at shallower level in crust by the evolution of mantle liquids. The timescale of these evolution processes is a crucial factor, because of its control on the length of volcano repose interval leading to high explosive events. Campi Flegrei and Somma-Vesuvius alkaline volcanic systems, located respectively at few kilometers west and east of Neapolitan metropolitan area, produced a variety of eruptions ranging from not explosive lava flows and domes to highly destructive eruptions. Both these high risk volcanoes are in repose time since the last eruption occurred in the 1538 and 1944 BP, respectively. Since that time, the volcanoes experienced fumarolic activity, low level of seismicity with rare earthquakes swarms, as well as two bradyseismic crisis (1969-1972 and 1982-1984) localized in the center of Campi Flegrei caldera, that generated a net uplift of 3.5 m around the town of Pozzuoli. A wide low velocity layer interpreted as an extended magmatic body has been detected at 8-10 km depth beneath these volcanoes by seismic data. The capability of this reservoir to erupt explosively again strongly depends on magma differentiation degree, therefore the knowledge of the time lapse necessary at not explosive mafic liquids to differentiate toward explosive magmas is very crucial to predict the size of a possible short-term future eruption in Campanian area. Our petrologic data indicate that a multi-depth supply system was active under the Campanian Plain since 39 ka. Fractional crystallization during magma cooling associated with upward migration of less dense evolved liquids appears to be the prevalent differentiation process. Our results indicate that huge steam exolution occurred during the late stage of trachyte and phonolite crystallization thus accounting for the high Volcanic Explosivity Index (VEI) of eruptions supplied by these melts. Moreover our CSD data on phenocrysts reveal rapid crystallization and differentiation time for alkaline Campanian magmas (in the order of decades to few centuries). This evidence implies that the 400 km2 partial melting zone detected by tomography study at 8-10 km depth beneath Vesuvius and Campi Flegrei, should consist of differentiated magma already capable to produce also large scale (plinian) explosive events in case of renewal of the activity from the present closed-conduit state.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70178439','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70178439"><span>Special issue “The phreatic eruption of Mt. Ontake volcano in 2014”</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Yamaoka, Koshun; Geshi, Nobuo; Hashimoto, Tasheki; Ingebritsen, Steven E.; Oikawa, Teruki</p> <p>2016-01-01</p> <p>Mt. Ontake volcano erupted at 11:52 on September 27, 2014, claiming the lives of at least 58 hikers. This eruption was the worst volcanic disaster in Japan since the 1926 phreatic eruption of Mt. Tokachidake claimed 144 lives (Table 1). The timing of the eruption contributed greatly to the heavy death toll: near midday, when many hikers were near the summit, and during a weekend of clear weather conditions following several rainy weekends. The importance of this timing is reflected by the fact that a somewhat larger eruption of Mt. Ontake in 1979 resulted in injuries but no deaths. In 2014, immediate precursors were detected with seismometers and tiltmeters about 10 min before the eruption, but the eruption started before a warning was issued.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26PSL.480...42F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26PSL.480...42F"><span>Eruption mass estimation using infrasound waveform inversion and ash and gas measurements: Evaluation at Sakurajima Volcano, Japan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fee, David; Izbekov, Pavel; Kim, Keehoon; Yokoo, Akihiko; Lopez, Taryn; Prata, Fred; Kazahaya, Ryunosuke; Nakamichi, Haruhisa; Iguchi, Masato</p> <p>2017-12-01</p> <p>Eruption mass and mass flow rate are critical parameters for determining the aerial extent and hazard of volcanic emissions. Infrasound waveform inversion is a promising technique to quantify volcanic emissions. Although topography may substantially alter the infrasound waveform as it propagates, advances in wave propagation modeling and station coverage permit robust inversion of infrasound data from volcanic explosions. The inversion can estimate eruption mass flow rate and total eruption mass if the flow density is known. However, infrasound-based eruption flow rates and mass estimates have yet to be validated against independent measurements, and numerical modeling has only recently been applied to the inversion technique. Here we present a robust full-waveform acoustic inversion method, and use it to calculate eruption flow rates and masses from 49 explosions from Sakurajima Volcano, Japan. Six infrasound stations deployed from 12-20 February 2015 recorded the explosions. We compute numerical Green's functions using 3-D Finite Difference Time Domain modeling and a high-resolution digital elevation model. The inversion, assuming a simple acoustic monopole source, provides realistic eruption masses and excellent fit to the data for the majority of the explosions. The inversion results are compared to independent eruption masses derived from ground-based ash collection and volcanic gas measurements. Assuming realistic flow densities, our infrasound-derived eruption masses for ash-rich eruptions compare favorably to the ground-based estimates, with agreement ranging from within a factor of two to one order of magnitude. Uncertainties in the time-dependent flow density and acoustic propagation likely contribute to the mismatch between the methods. Our results suggest that realistic and accurate infrasound-based eruption mass and mass flow rate estimates can be computed using the method employed here. If accurate volcanic flow parameters are known, application of this technique could be broadly applied to enable near real-time calculation of eruption mass flow rates and total masses. These critical input parameters for volcanic eruption modeling and monitoring are not currently available.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110007767','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110007767"><span>Explosive Volcanic Eruptions from Linear Vents on Earth, Venus and Mars: Comparisons with Circular Vent Eruptions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Glaze, Lori S.; Baloga, Stephen M.; Wimert, Jesse</p> <p>2010-01-01</p> <p>Conditions required to support buoyant convective plumes are investigated for explosive volcanic eruptions from circular and linear vents on Earth, Venus, and Mars. Vent geometry (linear versus circular) plays a significant role in the ability of an explosive eruption to sustain a buoyant plume. On Earth, linear and circular vent eruptions are both capable of driving buoyant plumes to equivalent maximum rise heights, however, linear vent plumes are more sensitive to vent size. For analogous mass eruption rates, linear vent plumes surpass circular vent plumes in entrainment efficiency approximately when L(sub o) > 3r(sub o) owing to the larger entrainment area relative to the control volume. Relative to circular vents, linear vents on Venus favor column collapse and the formation of pyroclastic flows because the range of conditions required to establish and sustain buoyancy is narrow. When buoyancy can be sustained, however, maximum plume heights exceed those from circular vents. For current atmospheric conditions on Mars, linear vent eruptions are capable of injecting volcanic material slightly higher than analogous circular vent eruptions. However, both geometries are more likely to produce pyroclastic fountains, as opposed to convective plumes, owing to the low density atmosphere. Due to the atmospheric density profile and water content on Earth, explosive eruptions enjoy favorable conditions for producing sustained buoyant columns, while pyroclastic flows would be relatively more prevalent on Venus and Mars. These results have implications for the injection and dispersal of particulates into the planetary atmosphere and the ability to interpret the geologic record of planetary volcanism.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016BVol...78...84B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016BVol...78...84B"><span>MeMoVolc report on classification and dynamics of volcanic explosive eruptions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bonadonna, C.; Cioni, R.; Costa, A.; Druitt, T.; Phillips, J.; Pioli, L.; Andronico, D.; Harris, A.; Scollo, S.; Bachmann, O.; Bagheri, G.; Biass, S.; Brogi, F.; Cashman, K.; Dominguez, L.; Dürig, T.; Galland, O.; Giordano, G.; Gudmundsson, M.; Hort, M.; Höskuldsson, A.; Houghton, B.; Komorowski, J. C.; Küppers, U.; Lacanna, G.; Le Pennec, J. L.; Macedonio, G.; Manga, M.; Manzella, I.; Vitturi, M. de'Michieli; Neri, A.; Pistolesi, M.; Polacci, M.; Ripepe, M.; Rossi, E.; Scheu, B.; Sulpizio, R.; Tripoli, B.; Valade, S.; Valentine, G.; Vidal, C.; Wallenstein, N.</p> <p>2016-11-01</p> <p>Classifications of volcanic eruptions were first introduced in the early twentieth century mostly based on qualitative observations of eruptive activity, and over time, they have gradually been developed to incorporate more quantitative descriptions of the eruptive products from both deposits and observations of active volcanoes. Progress in physical volcanology, and increased capability in monitoring, measuring and modelling of explosive eruptions, has highlighted shortcomings in the way we classify eruptions and triggered a debate around the need for eruption classification and the advantages and disadvantages of existing classification schemes. Here, we (i) review and assess existing classification schemes, focussing on subaerial eruptions; (ii) summarize the fundamental processes that drive and parameters that characterize explosive volcanism; (iii) identify and prioritize the main research that will improve the understanding, characterization and classification of volcanic eruptions and (iv) provide a roadmap for producing a rational and comprehensive classification scheme. In particular, classification schemes need to be objective-driven and simple enough to permit scientific exchange and promote transfer of knowledge beyond the scientific community. Schemes should be comprehensive and encompass a variety of products, eruptive styles and processes, including for example, lava flows, pyroclastic density currents, gas emissions and cinder cone or caldera formation. Open questions, processes and parameters that need to be addressed and better characterized in order to develop more comprehensive classification schemes and to advance our understanding of volcanic eruptions include conduit processes and dynamics, abrupt transitions in eruption regime, unsteadiness, eruption energy and energy balance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JVGR..286..373B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JVGR..286..373B"><span>Using the spatial distribution and lithology of ballistic blocks to interpret eruption sequence and dynamics: August 6 2012 Upper Te Maari eruption, New Zealand</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Breard, E. C. P.; Lube, G.; Cronin, S. J.; Fitzgerald, R.; Kennedy, B.; Scheu, B.; Montanaro, C.; White, J. D. L.; Tost, M.; Procter, J. N.; Moebis, A.</p> <p>2014-10-01</p> <p>The ballistic ejection of blocks during explosive eruptions constitutes a major hazard near active volcanoes. Fields of ballistic clasts can provide important clues towards quantifying the energy, dynamics and directionality of explosive events, but detailed datasets are rare. During the 6 August 2012 hydrothermal eruption of Upper Te Maari (Tongariro), New Zealand, three explosions occurred in rapid succession within less than 20 s. The first two produced laterally-directed pyroclastic density currents (PDC), and the final vertical explosion generated an ash plume. Each of these explosions was associated with the ejection of ballistic blocks. We present detailed maps of the resulting 5.1 km2 block impact field and the distribution of the > 2200 impact craters with diameters > 2.5 m. There are two distinct regions of high crater concentration, where crater densities reach more than six times the average background density. These occur at distances of 500-700 m east and 1000-1350 west of a 430-m-long fissure that was created during the eruption. The high-density fields are characterized by a narrow radial spread of < 45° and are located along the proximal transport direction of the pyroclastic density currents. A provenance analysis of ballistic blocks allowed us to reconstruct two different eruptive vents for the explosions. The first two laterally-directed explosions were sourced from the fissure, while the third explosion occurred through the pre-existing Upper Te Maari Crater, generating a roughly axisymmetric shower of ballistics. Stratigraphic relationships between impact craters, PDC and fall deposits suggest that the ballistic blocks were initially coupled with the rapidly expanding gas-particle mixtures that produced the PDCs. Ballistic trajectory modeling, reproducing the lateral extent and main impact density pattern of the western impact field, allows estimation of the vertical expansion angle of the second and largest explosion. The calculations show that the largest proportion of the explosion energy was strongly focused as a narrow and extremely shallow (from - 3 to 15° from the horizontal) laterally expanding hydrothermal blast. The results presented here constitute an important data set for ballistic hazard assessment at Tongariro volcano and they can provide further clues towards better understanding highly energetic laterally directed volcanic explosions at similar hydrothermal fields.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70034325','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70034325"><span>The role of dyking and fault control in the rapid onset of eruption at Chaitén Volcano, Chile</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wicks, Charles; De La, Llera; Lara, L.E.; Lowenstern, J.</p> <p>2011-01-01</p> <p>Rhyolite is the most viscous of liquid magmas, so it was surprising that on 2 May 2008 at Chaitén Volcano, located in Chile’s southern Andean volcanic zone, rhyolitic magma migrated from more than 5 km depth in less than 4 hours and erupted explosively with only two days of detected precursory seismic activity. The last major rhyolite eruption before that at Chaitén was the largest volcanic eruption in the twentieth century, at Novarupta volcano, Alaska, in 1912. Because of the historically rare and explosive nature of rhyolite eruptions and because of the surprisingly short warning before the eruption of the Chaitén volcano, any information about the workings of the magmatic system at Chaitén, and rhyolitic systems in general, is important from both the scientific and hazard perspectives. Here we present surface deformation data related to the Chaitén eruption based on radar interferometry observations from the Japan Aerospace Exploration Agency (JAXA) DAICHI (ALOS) satellite. The data on this explosive rhyolite eruption indicate that the rapid ascent of rhyolite occurred through dyking and that melt segregation and magma storage were controlled by existing faults.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70022778','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70022778"><span>The hazards of eruptions through lakes and seawater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Mastin, L.G.; Witter, J.B.</p> <p>2000-01-01</p> <p>Eruptions through crater lakes or shallow seawater, referred to here as subaqueous eruptions, present hazards from hydromagmatic explosions, such as base surges, lahars, and tsunamis, which may not exist at volcanoes on dry land. We have systematically compiled information from eruptions through surface water in order to understand the circumstances under which these hazards occur and what disastrous effects they have caused in the past. Subaqueous eruptions represent only 8% of all recorded eruptions but have produced about 20% of all fatalities associated with volcanic activity in historical time. Excluding eruptions that have resulted in about a hundred deaths or less, lahars have killed people in the largest number of historical subaqueous eruptions (8), followed by pyroclastic flows (excluding base surges; 5) tsunamis (4), and base surges (2). Subaqueous eruptions have produced lahars primarily on high (>1000 m), steep-sided volcanoes containing small (<1 km diameter) crater lakes. Tsunamis and other water waves have caused death or destroyed man-made structures only at submarine volcanoes and at Lake Taal in the Philippines. In spite of evidence that magma-water mixing makes eruptions more explosive, such explosions and their associated base surges have caused fewer deaths, and have been implicated in fewer eruptions involving large numbers of fatalities than lahars and tsunamis. The latter hazards are more deadly because they travel much farther from a volcano and inundate coastal areas and stream valleys that tend to be densely settled.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V23F..04D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V23F..04D"><span>A Sulfur Trigger for the 2017 Phreatomagmatic Eruption of Poás Volcano, Costa Rica? Insights from MultiGAS and Drone-based Gas Monitoring</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>de Moor, M. J.; Aiuppa, A.; Avard, G.; Diaz, J. A.; Corrales, E.; Rüdiger, J.; D´Arcy, F.; Fischer, T. P.; Stix, J.; Alan, A.</p> <p>2017-12-01</p> <p>In April 2017 Poás volcano entered its first magmatic eruption period of the 21st century. The initial explosive blasts produced eruption columns up to 4 km in height, destroyed the pre-existing dome that was emplaced during the last magmatic eruption in the 1950s, and showered the tourist observation deck with bombs. Over the following months, the hyperacid crater lake dried out and a transition from phreatomagmatic to strombolian activity was observed. Two vents now dominate the activity. The main vent (old dome site) produces gas, ash, and scoria. A second vent is located in the dried-out lake bed and produces a peculiar canary-yellow gas plume. A fixed MultiGAS instrument installed in the crater bottom recorded large changes in gas composition prior to the explosive eruptions. The station recorded a dramatic increase in SO2/CO2 from an average of 0.04 for March 2017 to an average of 7.4 the day before the first explosive eruption that occurred at 18:30 on 12 April. A simultaneous rapid decrease in H2S/SO2 from 2.7 to <0.01 was observed prior to the eruptions. The MultiGAS station stopped transmitting data after 2 days of explosive eruptions. We since developed new methods for measuring gas compositions and SO2 fluxes using drones, allowing continued gas monitoring despite dangerous conditions. Extremely high SO2/CO2 of 33 was measured with drone-based miniaturized MultiGAS ("miniGAS") in May 2017, and the ratio has since dropped to 3, which are more typical values of high temperature magmatic gases at Poás. The SO2 flux from Poás was at record low levels (< 5 T/d) in late 2016 and early 2017. Drone-based SO2 DOAS ("DROAS") measurements indicate high SO2 fluxes from Poas of >2000 T/d since the explosive eruptions, indicating a strong magmatic source and open conduits. We attribute the unusually S-rich gas compositions observed at Poás prior to and during the initial eruptions to combustion of previously deposited hydrothermal sulfur. The very low gas flux from the system prior to the explosive eruptions suggests that this sulfur may have played a role in hydrothermal sealing, leading to pressurization of the magmatic-hydrothermal system and ultimately triggering phreatomagmatic eruptions and "top down" remobilization of previously emplaced magma.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFMED13C1153H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFMED13C1153H"><span>Volcanoes in the Classroom: Simulating an Eruption Column</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Harpp, K. S.; Geist, D. J.; Koleszar, A. M.</p> <p>2005-12-01</p> <p>Few students have the opportunity to witness volcanic eruptions first hand. Analog models of eruptive processes provide ways for students to apply basic physical principles when field observations are not feasible. We describe a safe simulation of violent volcanic explosions, one that can be carried out simply and easily as a demonstration for specialized volcanology classes, introductory classes, and science outreach programs. Volcanic eruptions are fundamentally gas-driven phenomena. Depressurization of volatiles dissolved in magma during ascent is the driving force behind most explosive eruptions. We have developed a demonstration whereby the instructor can initiate a gas-driven eruption, which produces a dramatic but safe explosion and eruptive column. First, one pours liquid nitrogen into a weighted, plastic soda bottle, which is then sealed and placed into a trashcan filled with water. As the liquid nitrogen boils, the pressure inside the bottle increases until the seal fails, resulting in an explosion. The expansive force propels a column of water vertically, to 10 or more meters. Students can operate the demonstration themselves and carry out a sequence of self-designed variations, changing the vent size and viscosity of the "magma", for instance. They can also vary the material used as "tephra", studying the effects of projectile density, column height, and wind direction on tephra distribution. The physical measurements that students collect, such as column height and tephra radius, can be used as the basis for problem sets that explore the dynamics of eruption columns. Possible calculations include ejection velocity, the pressure needed to propel the water column, and average vesicularity of the "magma". Students can then compare their results to observations from real volcanic eruptions. We find this to be an exceedingly effective demonstration of gas-driven liquid explosions and one that is safe if done properly. [NOTE: Please do NOT attempt this demonstration without full, detailed instructions and safety precautions, see website resource below].</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JVGR..354..140S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JVGR..354..140S"><span>Large explosive basaltic eruptions at Katla volcano, Iceland: Fragmentation, grain size and eruption dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schmith, Johanne; Höskuldsson, Ármann; Holm, Paul Martin; Larsen, Guðrún</p> <p>2018-04-01</p> <p>Katla volcano in Iceland produces hazardous large explosive basaltic eruptions on a regular basis, but very little quantitative data for future hazard assessments exist. Here details on fragmentation mechanism and eruption dynamics are derived from a study of deposit stratigraphy with detailed granulometry and grain morphology analysis, granulometric modeling, componentry and the new quantitative regularity index model of fragmentation mechanism. We show that magma/water interaction is important in the ash generation process, but to a variable extent. By investigating the large explosive basaltic eruptions from 1755 and 1625, we document that eruptions of similar size and magma geochemistry can have very different fragmentation dynamics. Our models show that fragmentation in the 1755 eruption was a combination of magmatic degassing and magma/water-interaction with the most magma/water-interaction at the beginning of the eruption. The fragmentation of the 1625 eruption was initially also a combination of both magmatic and phreatomagmatic processes, but magma/water-interaction diminished progressively during the later stages of the eruption. However, intense magma/water interaction was reintroduced during the final stages of the eruption dominating the fine fragmentation at the end. This detailed study of fragmentation changes documents that subglacial eruptions have highly variable interaction with the melt water showing that the amount and access to melt water changes significantly during eruptions. While it is often difficult to reconstruct the progression of eruptions that have no quantitative observational record, this study shows that integrating field observations and granulometry with the new regularity index can form a coherent model of eruption evolution.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMOS44B..03W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMOS44B..03W"><span>Earthquake Tidal Triggering Associated with the 2015 Eruption of Axial Seamount</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wilcock, W. S. D.; Tolstoy, M.; Waldhauser, F.; Tan, Y. J.; Garcia, C.; Arnulf, A. F.; Crone, T. J.</p> <p>2016-12-01</p> <p>The Ocean Observatories Initiative's real time cabled observatory at Axial Seamount includes a seven station seismic network that spans the southern half of the summit caldera. The network has been in operation since late 2014 and, in conjunction with geodetic sensors on the observatory, has recorded an exceptional data set to characterize the dynamics of the caldera through the April 2015 eruption. Prior to the eruption, earthquake rates were high and double-difference locations show that the inflation of the volcano was accommodated by deformation on an outward dipping caldera ring fault. The onset of the eruption was marked by a seismic crisis on April 24 and rapid deflation of the volcano; the caldera ring fault accommodated deflation and guided a dike beneath the east rim of the caldera. The seismic crisis was followed by a steady decline in the rates of earthquakes and deflation. Numerous seafloor explosions document the timing and location of lava flows in the caldera and on the north rift of the seamount. They ceased after about a month when the volcano started to reinflate. Efforts are presently underway to improve the resolution of hypocenters both through the use of cross-correlation-based double-difference hypocenter locations (Tan et al., this meeting) and by the incorporation of three-dimensional velocity models that account for the heterogeneous structure of the volcano. One particularly interesting aspect of the seismicity is the tidal triggering. Prior to the eruption, when the volcano is critically stressed, the earthquakes show a strong tidal triggering signal with higher rates of seismicity near low tides when faults are unclamped. Earthquake rates at the lowest tides are about six times those at the highest tides. There are also noticeable temporo-spatial patterns in the earthquake swarms that occur at each low tide suggesting that the characteristics of tidal triggering may be spatial dependent. Following the eruption, only a weak tidal triggering signal remains. We will present the results of ongoing efforts to characterize the patterns of tidal triggering, relate them to prior observations on mid-ocean ridges, and understand the implications for earthquake nucleation, eruption forecasting, and hydrological processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AGUFM.V22E..10G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AGUFM.V22E..10G"><span>CO2 Degassing at Kilauea Volcano: Implications for Primary Magma, Summit Reservoir Dynamics, and Magma Supply Monitoring</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gerlach, T. M.; McGee, K. A.; Elias, T.; Sutton, A. J.; Doukas, M. P.</p> <p>2001-12-01</p> <p>We report a new CO2 emission rate of 8,500 tons/day (t/d) for the summit of Kilauea Volcano, a result several times larger than previous estimates. It is based on 12 experiments on three occasions over four years constraining the SO2 emission rate and the average CO2/SO2 of emissions along the 5.4-km summit COSPEC traverse (by COSPEC, NDIR CO2 analyzer, and CP-FTIR). The core of the summit plume is at ground level along the traverse and gives average CO2/SO2 values that are representative of the overall summit emission, even though CO2 and SO2 variations are commonly uncorrelated. CO2 and SO2 concentrations exceed background by 200-1,000 ppm and 1-7 ppm respectively. Nighttime measurements exclude Park auto exhaust as a source of CO2. The summit CO2 emission rate is nearly constant (95% confidence interval = 300 t/d), despite variable summit SO2 emission rates (62-240 t/d) and CO2/SO2 (54-183). Including other known CO2 emissions on the volcano (mainly from the Pu`u `O`o eruption) gives a total emission rate of about 8,800 t/d. Thus summit CO2 emissions comprise 97% of the total known CO2 output, consistent with the hypothesis that all primary magma supplied to Kilauea arrives under the summit caldera and is thoroughly degassed of excess CO2. A persistent large CO2 anomaly of 200-1,000 ppm indicates the entry to the summit reservoir is beneath a km2-area east of Halemaumau. The bulk CO2 content of primary magma is about 0.70 wt%, inferred from the CO2 emission rate and Kilauea's magma supply rate (0.18 km3/y [Cayol et al., Science, 288, 2343, 2000]). Most of the CO2 is present as exsolved vapor (3.6-11.7 vol%) at summit reservoir depths (2-7 km), making the primary magma strongly buoyant. Magma chamber replenishment models show that robust turbulent mixing of primary and reservoir magma prevents frequent eruption of buoyant primary magma in the summit region. The escape of 90-95% of the CO2 from the summit reservoir provides a potential proxy for monitoring the magma supply rate. Streaming CO2-rich vapor causes fractional degassing of H2O and SO2 from reservoir magma, but scrubbing minimizes summit SO2 emissions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70016660','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70016660"><span>Mount St. Helens a decade after the 1980 eruptions: magmatic models, chemical cycles, and a revised hazards assessment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Pallister, J.S.; Hoblitt, R.P.; Crandell, D.R.; Mullineaux, D.R.</p> <p>1992-01-01</p> <p>Available geophysical and geologic data provide a simplified model of the current magmatic plumbing system of Mount St. Helens (MSH). This model and new geochemical data are the basis for the revised hazards assessment presented here. The assessment is weighted by the style of eruptions and the chemistry of magmas erupted during the past 500 years, the interval for which the most detailed stratigraphic and geochemical data are available. This interval includes the Kalama (A. D. 1480-1770s?), Goat Rocks (A.D. 1800-1857), and current eruptive periods. In each of these periods, silica content decreased, then increased. The Kalama is a large amplitude chemical cycle (SiO2: 57%-67%), produced by mixing of arc dacite, which is depleted in high field-strength and incompatible elements, with enriched (OIB-like) basalt. The Goat Rocks and current cycles are of small amplitude (SiO2: 61%-64% and 62%-65%) and are related to the fluid dynamics of magma withdrawal from a zoned reservoir. The cyclic behavior is used to forecast future activity. The 1980-1986 chemical cycle, and consequently the current eruptive period, appears to be virtually complete. This inference is supported by the progressively decreasing volumes and volatile contents of magma erupted since 1980, both changes that suggest a decreasing potential for a major explosive eruption in the near future. However, recent changes in seismicity and a series of small gas-release explosions (beginning in late 1989 and accompanied by eruption of a minor fraction of relatively low-silica tephra on 6 January and 5 November 1990) suggest that the current eruptive period may continue to produce small explosions and that a small amount of magma may still be present within the conduit. The gas-release explosions occur without warning and pose a continuing hazard, especially in the crater area. An eruption as large or larger than that of 18 May 1980 (???0.5 km3 dense-rock equivalent) probably will occur only if magma rises from an inferred deep (???7 km), relative large (5-7 km3) reservoir. A conservative approach to hazard assessment is to assume that this deep magma is rich in volatiles and capable of erupting explosively to produce voluminous fall deposits and pyroclastic flows. Warning of such an eruption is expectable, however, because magma ascent would probably be accompanied by shallow seismicity that could be detected by the existing seismic-monitoring system. A future large-volume eruption (???0.1 km3) is virtually certain; the eruptive history of the past 500 years indicates the probability of a large explosive eruption is at least 1% annually. Intervals between large eruptions at Mount St. Helens have varied widely; consequently, we cannot confidently forecast whether the next large eruption will be years decades, or farther in the future. However, we can forecast the types of hazards, and the areas that will be most affected by future large-volume eruptions, as well as hazards associated with the approaching end of the current eruptive period. ?? 1992 Springer-Verlag.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AIPC.1645..410T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AIPC.1645..410T"><span>Interacting supernovae and supernova impostors: Evidence of incoming supernova explosions?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tartaglia, L.</p> <p>2015-02-01</p> <p>Violent eruptions, and consequently major mass loss, are a common feature of the so-called Luminous Blue Variable (LBV) stars. During major eruptive episodes LBVs mimic the behavior of real type IIn supernovae (SNe), showing comparable radiated energy and similar spectroscopic properties. For this reason these events are frequently labelled as SN impostors. Type IIn SN spectra are characterized by the presence of prominent narrow Balmer lines in emission. In most cases, SNe IIn arise from massive stars (M>8⊙) exploding in a dense H-rich circumstellar medium (CSM), produced by progenitor's mass loss prior to the SN explosion. Although the mechanisms triggering these eruptions are still unknown, recently we had direct proofs of the connection between very massive stars, their eruptions and ejecta-CSM interacting SNe. SNe 2006jc, 2010mc, 2011ht and the controversial SN 2009ip are famous cases in which we observed the explosion of the star months to years after major outbursts. In this context, the case of a recent transient event, LSQ13zm, is extremely interesting since we observed an outburst just ˜3 weeks before the terminal SN explosion. All of this may suggest that SN impostors occasionally herald true SN explosions. Nonetheless, there are several cases where major eruptions are followed by a quiescent phase in the LBV life. The impostor SN 2007sv is one of these cases, since it showed a single outburst event. Its photometric (a relatively faint absolute magnitude at the maximum) and spectroscopic properties (low velocity and temperature of the ejecta, and the absence of the typical elements produced in the explosive nucleosynthesis) strongly suggest that SN 2007sv was the giant eruption of an LBV, which has then returned in a quiescent stage.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22391008-interacting-supernovae-supernova-impostors-evidence-incoming-supernova-explosions','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22391008-interacting-supernovae-supernova-impostors-evidence-incoming-supernova-explosions"><span>Interacting supernovae and supernova impostors: Evidence of incoming supernova explosions?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Tartaglia, L.</p> <p>2015-02-24</p> <p>Violent eruptions, and consequently major mass loss, are a common feature of the so–called Luminous Blue Variable (LBV) stars. During major eruptive episodes LBVs mimic the behavior of real type IIn supernovae (SNe), showing comparable radiated energy and similar spectroscopic properties. For this reason these events are frequently labelled as SN impostors. Type IIn SN spectra are characterized by the presence of prominent narrow Balmer lines in emission. In most cases, SNe IIn arise from massive stars (M>8{sub ⊙}) exploding in a dense H–rich circumstellar medium (CSM), produced by progenitor’s mass loss prior to the SN explosion. Although the mechanismsmore » triggering these eruptions are still unknown, recently we had direct proofs of the connection between very massive stars, their eruptions and ejecta-CSM interacting SNe. SNe 2006jc, 2010mc, 2011ht and the controversial SN 2009ip are famous cases in which we observed the explosion of the star months to years after major outbursts. In this context, the case of a recent transient event, LSQ13zm, is extremely interesting since we observed an outburst just ∼3 weeks before the terminal SN explosion. All of this may suggest that SN impostors occasionally herald true SN explosions. Nonetheless, there are several cases where major eruptions are followed by a quiescent phase in the LBV life. The impostor SN 2007sv is one of these cases, since it showed a single outburst event. Its photometric (a relatively faint absolute magnitude at the maximum) and spectroscopic properties (low velocity and temperature of the ejecta, and the absence of the typical elements produced in the explosive nucleosynthesis) strongly suggest that SN 2007sv was the giant eruption of an LBV, which has then returned in a quiescent stage.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1712911T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1712911T"><span>A kilohertz approach to Strombolian-style eruptions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Taddeucci, Jacopo; Scarlato, Piergiorgio; Del Bello, Elisabetta; Gaudin, Damien</p> <p>2015-04-01</p> <p>Accessible volcanoes characterized by persistent, relatively mild Strombolian-style explosive activity have historically hosted multidisciplinary studies of eruptions. These studies, focused on geophysical signals preceding, accompanying, and following the eruptions, have provided key insights on the physical processes driving the eruptions. However, the dynamic development of the single explosions that characterize this style of activity remained somewhat elusive, due to the timescales involved (order of 0.001 seconds). Recent technological advances now allow recording and synchronizing different data sources on time scales relevant to the short timescales involved in the explosions. In the last several years we developed and implemented a field setup that integrates visual and thermal imaging with acoustic and seismic recordings, all synchronized and acquired at timescales of 100-10000 Hz. This setup has been developed at several active volcanoes. On the one hand, the combination of these different techniques provides unique information on the dynamics and energetics of the explosions, including the parameterization of individual ejection pulses within the explosions, the ejection and emplacement of pyroclasts and their coupling-decoupling with the gas phases, the different stages of development of the eruption jets, and their reflection in the associated acoustic and seismic signals. On the other hand, the gained information provides foundation for better understanding and interpreting the signals acquired, at lower sampling rates but routinely, from volcano monitoring networks. Perhaps even more important, our approach allows parameterizing differences and commonalities in the explosions from different volcanoes and settings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70027212','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70027212"><span>Decompression experiments identify kinetic controls on explosive silicic eruptions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Mangan, M.T.; Sisson, T.W.; Hankins, W.B.</p> <p>2004-01-01</p> <p>Eruption intensity is largely controlled by decompression-induced release of water-rich gas dissolved in magma. It is not simply the amount of gas that dictates how forcefully magma is propelled upwards during an eruption, but also the rate of degassing, which is partly a function of the supersaturation pressure (??Pcritical) triggering gas bubble nucleation. High temperature and pressure decompression experiments using rhyolite and dacite melt reveal compositionally-dependent differences in the ??Pcritical of degassing that may explain why rhyolites have fueled some of the most explosive eruptions on record.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JTePh..62.1024K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JTePh..62.1024K"><span>Experimental model of the role of cracks in the mechanism of explosive eruption of St. Helens-80</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kedrinskii, V. K.; Skulkin, A. A.</p> <p>2017-07-01</p> <p>A unique mini model of explosive volcano eruption through a formed system of cracks is developed. The process of crack formation and development is simulated by electric explosion of a conductor in a plate of optically transparent organic glass submerged into water. The explosion of a wire aligned with a through hole in the plate generates shock-wave loading along the plate and forms cracks. The fundamental role of high velocity flow in crack wedging by a high power hydrodynamic flow of a pulsating explosion cavity has been demonstrated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70022519','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70022519"><span>10,000 Years of explosive eruptions of Merapi Volcano, Central Java: archaeological and modern implications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Newhall, C.G.; Bronto, S.; Alloway, B.; Banks, N.G.; Bahar, I.; Del Marmol, M.A.; Hadisantono, R.D.; Holcomb, R.T.; McGeehin, J.; Miksic, J.N.; Rubin, M.; Sayudi, S.D.; Sukhyar, R.; Andreastuti, Supriyati; Tilling, R.I.; Torley, R.; Trimble, D.; Wirakusumah, A.D.</p> <p>2000-01-01</p> <p>Stratigraphy and radiocarbon dating of pyroclastic deposits at Merapi Volcano, Central Java, reveals ~10,000 years of explosive eruptions. Highlights include: (1) Construction of an Old Merapi stratovolcano to the height of the present cone or slightly higher. Our oldest age for an explosive eruption is 9630±60 14C y B.P.; construction of Old Merapi certainly began earlier. (2) Collapse(s) of Old Merapi that left a somma rim high on its eastern slope and sent one or more debris avalanche(s) down its southern and western flanks. Impoundment of Kali Progo to form an early Lake Borobudur at ~3400 14C y B.P. hints at a possible early collapse of Merapi. The latest somma-forming collapse occurred ~1900 14C y B.P. The current cone, New Merapi, began to grow soon thereafter. (3) Several large and many small Buddhist and Hindu temples were constructed in Central Java between 732 and ~900 A.D. (roughly, 1400-1000 14C y B.P.). Explosive Merapi eruptions occurred before, during and after temple construction. Some temples were destroyed and (or) buried soon after their construction, and we suspect that this destruction contributed to an abrupt shift of power and organized society to East Java in 928 A.D. Other temples sites, though, were occupied by "caretakers" for several centuries longer. (4) A partial collapse of New Merapi occurred 14C y B.P. Eruptions ~700-800 14C y B.P. (12-14th century A.D.) deposited ash on the floors of (still-occupied?) Candi Sambisari and Candi Kedulan. We speculate but cannot prove that these eruptions were triggered by (the same?) partial collapse of New Merapi, and that the eruptions, in turn, ended "caretaker" occupation at Candi Sambisari and Candi Kedulan. A new or raised Lake Borobudur also existed during part or all of the 12-14th centuries, probably impounded by deposits from Merapi. (5) Relatively benign lava-dome extrusion and dome-collapse pyroclastic flows have dominated activity of the 20th century, but explosive eruptions much larger than any of this century have occurred many times during Merapi's history, most recently during the 19th century. Are the relatively small eruptions of the 20th century a new style of open-vent, less hazardous activity that will persist for the foreseeable future? Or, alternatively, are they merely low-level "background" activity that could be interrupted upon relatively short notice by much larger explosive eruptions? The geologic record suggests the latter, which would place several hundred thousand people at risk. We know of no reliable method to forecast when an explosive eruption will interrupt the present interval of low-level activity. This conclusion has important implications for hazard evaluation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26097277','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26097277"><span>The frequency of explosive volcanic eruptions in Southeast Asia.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Whelley, Patrick L; Newhall, Christopher G; Bradley, Kyle E</p> <p></p> <p>There are ~750 active and potentially active volcanoes in Southeast Asia. Ash from eruptions of volcanic explosivity index 3 (VEI 3) and smaller pose mostly local hazards while eruptions of VEI ≥ 4 could disrupt trade, travel, and daily life in large parts of the region. We classify Southeast Asian volcanoes into five groups, using their morphology and, where known, their eruptive history and degassing style. Because the eruptive histories of most volcanoes in Southeast Asia are poorly constrained, we assume that volcanoes with similar morphologies have had similar eruption histories. Eruption histories of well-studied examples of each morphologic class serve as proxy histories for understudied volcanoes in the class. From known and proxy eruptive histories, we estimate that decadal probabilities of VEI 4-8 eruptions in Southeast Asia are nearly 1.0, ~0.6, ~0.15, ~0.012, and ~0.001, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70176203','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70176203"><span>Insights into shallow magmatic processes at Kīlauea Volcano, Hawaiʻi, from a multiyear continuous gravity time series</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Poland, Michael P.; Carbone, Daniele</p> <p>2016-01-01</p> <p>Continuous gravity data collected near the summit eruptive vent at Kīlauea Volcano, Hawaiʻi, during 2011–2015 show a strong correlation with summit-area surface deformation and the level of the lava lake within the vent over periods of days to weeks, suggesting that changes in gravity reflect variations in volcanic activity. Joint analysis of gravity and lava level time series data indicates that over the entire time period studied, the average density of the lava within the upper tens to hundreds of meters of the summit eruptive vent remained low—approximately 1000–1500 kg/m3. The ratio of gravity change (adjusted for Earth tides and instrumental drift) to lava level change measured over 15 day windows rose gradually over the course of 2011–2015, probably reflecting either (1) a small increase in the density of lava within the eruptive vent or (2) an increase in the volume of lava within the vent due to gradual vent enlargement. Superimposed on the overall time series were transient spikes of mass change associated with inflation and deflation of Kīlauea's summit and coincident changes in lava level. The unexpectedly strong mass variations during these episodes suggest magma flux to and from the shallow magmatic system without commensurate deformation, perhaps indicating magma accumulation within, and withdrawal from, void space—a process that might not otherwise be apparent from lava level and deformation data alone. Continuous gravity data thus provide unique insights into magmatic processes, arguing for continued application of the method at other frequently active volcanoes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1998/0462/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1998/0462/report.pdf"><span>Sulfur Dioxide Emission Rates of Kilauea Volcano, Hawaii, 1979-1997</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Elias, Tamar; Sutton, A.J.; Stokes, J.B.; Casadevall, T.J.</p> <p>1998-01-01</p> <p>INTRODUCTION Sulfur dioxide (SO2) emission rates from Kilauea Volcano were first measured by Stoiber and Malone (1975) and have been measured on a regular basis since 1979 (Casadevall and others, 1987; Greenland and others, 1985; Elias and others, 1993; Elias and Sutton, 1996). The purpose of this report is to present a compilation of Kilauea SO2 emission rate data from 1979 through 1997 with ancillary meteorological data (wind speed and wind direction). We have included measurements previously reported by Casadevall and others (1987) for completeness and to improve the usefulness of this current database compilation. Kilauea releases SO2 gas predominantly from its summit caldera and rift zones (fig. 1). From 1979 through 1982, vehicle-based COSPEC measurements made within the summit caldera were adequate to quantify most of the SO2 emitted from the volcano. Beginning in 1983. the focus of SO2 release shifted from the summit to the east rift zone (ERZ) eruption site at Pu'u 'O'o and, later, Kupaianaha. Since 1984, the Kilauea gas measurement effort has been augmented with intermittent airborne and tripod-based surveys made near the ERZ eruption site. In addition, beginning in 1992 vehicle-based measurements have been made along a section of Chain of Craters Road approximately 9 km downwind of the eruption site. These several types of COSPEC measurements continue to the present.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1815370L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1815370L"><span>Open-path FTIR spectroscopy of magma degassing processes during eight lava fountains on Mount Etna</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>La Spina, Alessandro; Burton, Mike; Allard, Patrick; Alparone, Salvatore; Murè, Filippo</p> <p>2016-04-01</p> <p>In June-July 2001 a series of 16 discrete lava fountain paroxysms occurred at the Southeast summit crater (SEC) of Mount Etna, preceding a 28-day long violent flank eruption. Each paroxysm was preceded by lava effusion, growing seismic tremor and a crescendo of Strombolian explosive activity culminating into powerful lava fountaining up to 500m in height. During 8 of these 16 events we could measure the chemical composition of the magmatic gas phase (H2O, CO2, SO2, HCl, HF and CO), using open-path Fourier transform infrared (OP-FTIR) spectrometry at ˜1-2km distance from SEC and absorption spectra of the radiation emitted by hot lava fragments. We show that each fountaining episode was characterized by increasingly CO2-rich gas release, with CO2/SO2and CO2/HCl ratios peaking in coincidence with maxima in seismic tremor and fountain height, whilst the SO2/HCl ratio showed a weak inverse relationship with respect to eruption intensity. Moreover, peak values in both CO2/SO2ratio and seismic tremor amplitude for each paroxysm were found to increase linearly in proportion with the repose interval (2-6 days) between lava fountains. These observations, together with a model of volatile degassing at Etna, support the following driving process. Prior to and during the June-July 2001 lava fountain sequence, the shallow (˜2km) magma reservoir feeding SEC received an increasing influx of deeply derived carbon dioxide, likely promoted by the deep ascent of volatile-rich primitive basalt that produced the subsequent flank eruption. This CO2-rich gas supply led to gas accumulation and overpressure in SEC reservoir, generating a bubble foam layer whose periodical collapse powered the successive fountaining events. The anti-correlation between SO2/HCl and eruption intensity is best explained by enhanced syn-eruptive degassing of chlorine from finer particles produced during more intense magma fragmentation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GSFC_20171208_Archive_e001954.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GSFC_20171208_Archive_e001954.html"><span>Activity at Shiveluch Volcano</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-08</p> <p>NASA image acquired Sept 7, 2010 Shiveluch (also spelled Sheveluch) is one of the largest and most active volcanoes on Russia’s Kamchatka Peninsula. It has been spewing ash and steam intermittently—with occasional dome collapses, pyroclastic flows, and lava flows, as well—for the past decade. Shiveluch is a stratovolcano, a steep-sloped formation of alternating layers of hardened lava, ash, and rocks thrown out by earlier eruptions. A lava dome has been growing southwest of the 3,283-meter (10,771-foot) summit. The Advanced Land Imager (ALI) on NASA’s Earth Observing-1 (EO-1) satellite acquired this image on September 7, 2010. Brown and tan debris—perhaps ash falls, perhaps mud from lahars—covers the southern landscape of the volcano, while the hills on the northern side remain covered in snow and ice. The Kamchatkan Volcanic Eruption Response Team (KVERT) reported that seismic activity at Shiveluch was "above background levels" from September 3-10. Ash plumes rose to an altitude of 6.5 kilometers (21,300 feet) on September 3-4, and gas-and-ash plumes were reported on September 7, when this image was acquired. According to the Smithsonian Institution's volcano program, at least 60 large eruptions of Shiveluch have occurred during the current Holocene Epoch of geological history. Intermittent explosive eruptions began in the 1990s, and the largest historical eruptions from Shiveluch occurred in 1854 and 1964. NASA Earth Observatory image created by Jesse Allen and Robert Simmon, using EO-1 ALI data provided courtesy of the NASA EO-1 team. Caption by Mike Carlowicz. Instrument: EO-1 - ALI Credit: NASA Earth Observatory NASA Goddard Space Flight Center contributes to NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s endeavors by providing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70176918','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70176918"><span>The A.D. 1835 eruption of Volcán Cosigüina, Nicaragua: A guide for assessing local volcanic hazards</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Scott, William E.; Gardner, Cynthia A.; Devoli, Graziella; Alvarez, Antonio</p> <p>2006-01-01</p> <p>The January 1835 eruption of Volcán Cosigüina in northwestern Nicaragua was one of the largest and most explosive in Central America since Spanish colonization. We report on the results of reconnaissance stratigraphic studies and laboratory work aimed at better defining the distribution and character of deposits emplaced by the eruption as a means of developing a preliminary hazards assessment for future eruptions. On the lower flanks of the volcano, a basal tephra-fall deposit comprises either ash and fine lithic lapilli or, locally, dacitic pumice. An overlying tephra-fall deposit forms an extensive blanket of brown to gray andesitic scoria that is 35–60 cm thick at 5–10 km from the summit-caldera rim, except southwest of the volcano, where it is considerably thinner. The scoria fall produced the most voluminous deposit of the eruption and underlies pyroclastic-surge and -flow deposits that chiefly comprise gray andesitic scoria. In northern and southeastern sectors of the volcano, these flowage deposits form broad fans and valley fills that locally reach the Gulf of Fonseca. An arcuate ridge 2 km west of the caldera rim and a low ridge east of the caldera deflected pyroclastic flows northward and southeastward. Pyroclastic flows did not reach the lower west and southwest flanks, which instead received thick, fine-grained, accretionary-lapilli–rich ashfall deposits that probably derived chiefly from ash clouds elutriated from pyroclastic flows. We estimate the total bulk volume of erupted deposits to be ∼6 km3. Following the eruption, lahars inundated large portions of the lower flanks, and erosion of deposits and creation of new channels triggered rapid alluviation. Pre-1835 eruptions are poorly dated; however, scoria-fall, pyroclastic-flow, and lahar deposits record a penultimate eruption of smaller magnitude than that of 1835. It occurred a few centuries earlier—perhaps in the fifteenth century. An undated sequence of thick tephra-fall deposits on the west flank of the volcano records tens of eruptions, some of which were greater in magnitude than that of 1835. Weathering evidence suggests this sequence is at least several thousand years old. The wide extent of pyroclastic flows and thick tephra fall during 1835, the greater magnitude of some previous Holocene eruptions, and the location of Cosigüina on a peninsula limit the options to reduce risk during future unrest and eruption.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70022317','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70022317"><span>January 30, 1997 eruptive event on Kilauea Volcano, Hawaii, as monitored by continuous GPS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Owen, S.; Segall, P.; Lisowski, M.; Miklius, Asta; Murray, M.; Bevis, M.; Foster, J.</p> <p>2000-01-01</p> <p>A continuous Global Positioning System (GPS) network on Kilauea Volcano captured the most recent fissure eruption in Kilauea's East Rift Zone (ERZ) in unprecedented spatial and temporal detail. The short eruption drained the lava pond at Pu'u O' o, leading to a two month long pause in its on-going eruption. Models of the GPS data indicate that the intrusion's bottom edge extended to only 2.4 km. Continuous GPS data reveal rift opening 8 hours prior to the eruption. Absence of precursory summit inflation rules out magma storage overpressurization as the eruption's cause. We infer that stresses in the shallow rift created by the continued deep rift dilation and slip on the south flank decollement caused the rift intrusion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA22158.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA22158.html"><span>Investigating Mars: Arsia Mons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2018-01-04</p> <p>The three large aligned Tharsis volcanoes are Arsia Mons, Pavonis Mons and Ascreaus Mons (from south to north). There are collapse features on all three volcanoes, on the southwestern and northeastern flanks. This alignment may indicate a large fracture/vent system was responsible for the eruptions that formed all three volcanoes. This VIS image shows part of the southern flank of Arsia Mons, along the center of the aligned fracture system. The scalloped depressions are most likely created by collapse of the roof of lava tubes. Lava tubes originate during eruption event, when the margins of a flow harden around a still flowing lava stream. When an eruption ends these can become hollow tubes within the flow. With time, the roof of the tube may collapse into the empty space below. The tubes are linear, so the collapse of the roof creates a linear depression. In this region, the complexity of the collapse and faulting has created a unique surface. This region has collapse depressions with floors at a variety of elevations, landslide deposits where material has continued to fall into the depression and depression sizes from small to large. Arsia Mons is the southernmost of the Tharsis volcanoes. It is 270 miles (450km) in diameter, almost 12 miles (20km) high, and the summit caldera is 72 miles (120km) wide. For comparison, the largest volcano on Earth is Mauna Loa. From its base on the sea floor, Mauna Loa measures only 6.3 miles high and 75 miles in diameter. A large volcanic crater known as a caldera is located at the summit of all of the Tharsis volcanoes. These calderas are produced by massive volcanic explosions and collapse. The Arsia Mons summit caldera is larger than many volcanoes on Earth. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 33925 Latitude: -10.6619 Longitude: 239.412 Instrument: VIS Captured: 2009-08-07 16:10 https://photojournal.jpl.nasa.gov/catalog/PIA22158</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss024e012425.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss024e012425.html"><span>Earth Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2010-08-22</p> <p>ISS024-E-012425 (22 Aug. 2010) --- This photograph, featuring a landscape in the central Andes mountains near the Chile/Argentina border dominated by numerous volcanoes and associated landforms, was photographed by an Expedition 24 crew member on the International Space Station. Layers of older sedimentary rocks are visible to the southeast (upper right). Many of the volcanic cones show grooves eroded by water to form gullies. Such erosion has occurred since the host volcano was built up, indicating that most volcanoes in this view have been inactive for centuries or millennia. A few volcanoes exhibit much less erosion, and even show tongues of recent, dark lava flows (top left). According to scientists, two of these volcanoes, Cerro el Condor and Peinado have likely erupted within approximately the last 12,000 years (the Holocene Epoch). Also visible in the image is the world’s highest active volcano, Nevado Ojos del Salado, with a summit at 6,887 meters above sea level. The most recent confirmed eruption of this volcano has been dated to 700 (approximately 300 years), but minor eruptive activity may have occurred as recently as 1993. Stratovolcanoes such as Cerro el Condor, Peinado, and Nevado Ojos del Salado are formed partly by buildup of lava flows and partly by buildup of explosively vented material dropping back down onto the surface. One type of material associated with explosive eruptions is welded tuff, which is formed by molten and fragmented rock that accumulates on the ground and later solidifies. A large tuff sheet is visible at top left. Formed very rapidly, these sheets have been termed “instant landscapes.” So active has the Andean volcanic system been that the origin of many of the tuffs in the Andes cannot be pinpointed since source vents have been overprinted by subsequent volcanic events. The volcanic landscape also shows that the erosive work of rivers—and glaciers repeatedly in the recent past—is slower than the opposite processes of the upward building of the volcanoes. The bright blue, nearly 7-kilometer-long lake near the center of the image is known as Laguna Verde. This and other less obvious lakes indicate that water (snowmelt or direct precipitation) is unable to reach the sea, but is rather impounded in the depressions between the volcanic edifices.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1613919J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1613919J"><span>Grain size distribution and characteristics of the tephra from the Vatnaöldur AD 871±2 eruption, Iceland.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jónsdóttir, Tinna; Larsen, Guðrún; Guðmundsson, Magnús</p> <p>2014-05-01</p> <p>Basaltic explosive eruptions in Iceland are frequent and often occur from vents in regions of surface lakes, large groundwater reservoirs or within glaciers. The recent Eyjafjallajökull eruption in 2010 and Grímsvötn eruption 2011 highlighted the vulnerability of passenger jet aircraft to ash in the atmosphere. Iceland's volcanoes are the most potent producers of tephra in Europe, and the frequent occurrence of basaltic explosive eruptions is a major factor in causing this. As a step in increasing the knowledge on the tephra erupted in basaltic explosive eruptions, we study the grain size distribution of a large (~5 km3) explosive basaltic eruption that occurred in AD 871±2. The source is the 25 km long Vatnaöldur crater row in south-central Iceland. The crater row lies within the Bárðarbunga-Veiðivötn volcanic system, one of the most productive volcanic systems in Iceland in recent times. Samples for grain size analysis were collected at six different locations along the broad northwest-trending dispersal axis. Sampling sites ranged in 1.5 km to 120 km distance from the largest vent Skyggnir, near the southern end of the crater row. The Vatnaöldur eruption has been classified as phreatomagmatic, erupting through fractured bedrock composed of recent lavas, hyaloclastites and pillow lava in an area characterized by a high groundwater level and surface lakes. Explosive activity dominanted the ~ 25 km long discontinuous fissure, as tuff cones were formed and conduits reached under groundwater table. During the eruption the tephra layer was dispersed in all directions. The area within the 0.5 cm isopach is 50,000 km2 and this tephra has also been identified in Greenland ice cores. The grain size analysis indicates that one dominant characteristic of the tephra is the scarcity of pyroclasts over 1 mm in diameter. In the ash sampled more than 4 km from source larger grain sizes are absent. The dispersion in the more distal parts, at distances of 60 - 120 km is dominated by peaks between 0.250 and 0.063 mm, with the deposit showing slight tendency for progressively higher proportion of fines with distance.In the more proximal sections different phases in the eruption have been identified.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011BVol...73..295D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011BVol...73..295D"><span>The Averno 2 fissure eruption: a recent small-size explosive event at the Campi Flegrei Caldera (Italy)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>di Vito, Mauro Antonio; Arienzo, Ilenia; Braia, Giuseppe; Civetta, Lucia; D'Antonio, Massimo; di Renzo, Valeria; Orsi, Giovanni</p> <p>2011-04-01</p> <p>The Averno 2 eruption (3,700 ± 50 a B.P.) was an explosive low-magnitude event characterized by magmatic and phreatomagmatic explosions, generating mainly fall and surge beds, respectively. It occurred in the Western sector of the Campi Flegrei caldera (Campanian Region, South Italy) at the intersection of two active fault systems, oriented NE and NW. The morphologically complex crater area, largely filled by the Averno lake, resulted from vent activation and migration along the NE-trending fault system. The eruption generated a complex sequence of pyroclastic deposits, including pumice fall deposits in the lower portion, and prevailing surge beds in the intermediate-upper portion. The pyroclastic sequence has been studied through stratigraphical, morphostructural and petrological investigations, and subdivided into three members named A through C. Member A was emplaced during the first phase of the eruption mainly by magmatic explosions which generated columns reaching a maximum height of 10 km. During this phase the eruption reached its climax with a mass discharge rate of 3.2 106 kg/s. Intense fracturing and fault activation favored entry of a significant amount of water into the system, which produced explosions driven by variably efficient water-magma interaction. These explosions generated wet to dry surge deposits that emplaced Member B and C, respectively. Isopachs and isopleths maps, as well as areal distribution of ballistic fragments and facies variation of surge deposits allow definition of four vents that opened along a NE oriented, 2 km long fissure. The total volume of magma extruded during the eruption has been estimated at about 0.07 km3 (DRE). The erupted products range in composition from initial, weakly peralkaline alkali-trachyte, to last-emplaced alkali-trachyte. Isotopic data and modeling suggest that mixing occurred during the Averno 2 eruption between a more evolved, less radiogenic stored magma, and a less evolved, more radiogenic magma that entered the shallow reservoir to trigger the eruption. The early phases of the eruption, during which the vent migrated from SW to the center of the present lake, were fed by the more evolved, uppermost magma, while the following phases extruded the less evolved, lowermost magma. Integration of the geological and petrological results suggests that the Averno 2 complex eruption was fed from a dyke-shaped shallow reservoir intruded into the NE-SW fault system bordering to the west the La Starza resurgent block, within the caldera floor.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.V23C2072K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.V23C2072K"><span>2500 pyroclast puzzle: probing eruptive scenarios at Volcán de Colima, Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kueppers, U.; Varley, N. R.; Alatorre-Ibarguengoitia, M. A.; Lavallee, Y.; Becker, S.; Berninger, N.; Goldstein, F.; Hanson, J. B.; Kolzenburg, S.; Dingwell, D. B.</p> <p>2009-12-01</p> <p>The Colima volcanic complex is comprised by two edifices, the extinct Nevado de Colima to the North and the active Fuego de Colima in the South. Since 1998, a dome-building phase has shown repeated shifts between lava effusion and short-lived explosive activity. Lava extrusion rates were usually low leading to the build-up of domes inside the crater but occasionally, lava spilled over the crater rim and flowed down the flanks. This effusive activity was usually associated with several ash explosions and gas exhalation events per day. In 2005, occasional block-and-ash flows from dome-collapse events travelled down the Western flanks and reached La Lumbre valley. Later that year, violent explosive eruptions destroyed the dome and sent pyroclastic flows to valleys in the South (Monte Grande) and South-East (La Arena). The transition from effusive to short-lived but highly explosive eruptive behaviour presents an interesting opportunity to study pyroclastic flow deposits from different generating mechanisms. Gas at overpressure in bubbly magma is one of the main driving forces of explosive eruptions. The change of the physical properties of evolved magmas after the fragmentation is minor. Therefore, a detailed characterisation of volcanic products reveals much information and is vital for a correct understanding of volcanic deposits. Comparing different units allows constraining the bandwidth of possible eruptive scenarios. Here, we thoroughly characterized the deposits of the above described events on site. In the field, we 1) measured the density distribution of 100 surficial juvenile and lithic clasts at 24 localities (1 * 1 m) across the length and width of the pyroclastic flow deposits; 2) sieved the matrix (approx. 30 * 30 * 30 cm) at each locality; and 3) created detailed stratigraphic logs. We observe a lower mean density and a greater variance for clasts generated by the explosive eruption. Our results highlight the different origin of the 2005 deposits on Colima. Ergo, the physical properties of eruptive products allow the constraining of eruptive scenarios and may help to better interpret volcanic deposits that have not been eye-witnessed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.V43E3194G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.V43E3194G"><span>Juvenile pumice and pyroclastic obsidian reveal the eruptive conditions necessary for the stability of Plinian eruption of rhyolitic magma</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Giachetti, T.; Shea, T.; Gonnermann, H. M.; McCann, K. A.; Hoxsie, E. C.</p> <p>2016-12-01</p> <p>Significant explosive activity generally precedes or coexists with the large effusion of rhyolitic lava (e.g., Mono Craters; Medicine Lake Volcano; Newberry; Chaitén; Cordón Caulle). Such explosive-to-effusive transitions and, ultimately, cessation of activity are commonly explained by the overall waning magma chamber pressure accompanying magma withdrawal, albeit modulated by magma outgassing. The tephra deposits of such explosive-to-effusive eruptions record the character of the transition - abrupt or gradual - as well as potential changes in eruptive conditions, such as magma composition, volatiles content, mass discharge rate, conduit size, magma outgassing. Results will be presented from a detailed study of both the gas-rich (pumice) and gas-poor (obsidian) juvenile pyroclasts produced during the Plinian phase of the 1060 CE Glass Mountain eruption of Medicine Lake Volcano, California. In the proximal deposits, a multitude of pumice-rich sections separated by layers rich in dense clasts suggests a pulsatory behavior of the explosive phase. Density measurements on 2,600 pumices show that the intermediate, most voluminous deposits have a near constant median porosity of 65%. However, rapid increase in porosity to 75-80% is observed at both the bottom and the top of the fallout deposits, suggestive of rapid variations in magma degassing. In contrast, a water content of pyroclastic obsidians of approximately 0.6 wt% does remain constant throughout the eruption, suggesting that the pyroclastic obsidians degassed up to a constant pressure of a few megapascals. Numerical modeling of eruptive magma ascent and degassing is used to provide constraints on eruption conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6014524-kilauea-volcano-degassing-hot-spot','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6014524-kilauea-volcano-degassing-hot-spot"><span>Kilauea volcano: the degassing of a hot spot</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gerlach, T.M.</p> <p>1986-03-01</p> <p>Hot spots such as Kilauea volcano can degas by a one-stage eruptive process or a two-stage process involving eruptive and noneruptive degassing. One stage degassing occurs during sustained summit eruptions and causes a direct environmental impact. Although generally less efficient than the one-stage degassing process, two stage degassing can cause 1 to 2 orders of magnitude greater impact in just a few hours during flank eruptions. Hot spot volcanos with resupplied crustal magma chambers may be capable of maintaining an equivalent impact from CO/sub 2/ and S outgassing during both eruptive and noneruptive periods. On average, a hot spot volcanomore » such as Kilauea is a minor polluter compared to man.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1910153C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1910153C"><span>Shallow system rejuvenation and magma discharge trends at Piton de la Fournaise volcano (La Réunion Island)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Coppola, Diego; Di Muro, Andrea; Peltier, Aline; Villeneuve, Nicolas; Ferrazzini, Valerie; Favalli, Massimiliano; Bachèlery, Patrick; Gurioli, Lucia; Harris, Andrew; Moune, Séverine; Vlastélic, Ivan; Galle, Bo; Arellano, Santiago; Aiuppa, Alessandro</p> <p>2017-04-01</p> <p>During April 2007, the largest historical eruption of Piton de la Fournaise (Île de La Réunion, France) drained the shallow plumbing system and resulted in collapse of the summit crater. Following the 2007 eruption, Piton de la Fournaise entered a seven-year long period of near-continuous deflation interrupted, in June 2014, by a new phase of significant inflation. By integrating multiple datasets (lava discharge rates, deformation, seismicity, gas flux, gas composition, and lava chemistry), we here show that the progressive migration of magma from a deeper (below sea level) storage zone gradually rejuvenated and pressurized the above-sea-level portion of the magmatic system to provoke four small (<5 × 10 6 m3) eruptions from vents located close to the summit cone. Progressive increase in output rate between each eruption culminated, with the fifth, longest-lasting (August-October 2015) and largest-volume (45 ± 15 × 10 6 m3) eruption of the cycle. Activity observed in 2014 and 2015 points to a phase of shallow system rejuvenation and discharge, whereby continuous magma supply provoked eruptions from increasingly deeper and larger magma storage zones. Downward depressurization continued until unloading of the deepest, least differentiated magma triggered an "effusive paroxysm" that emptied the main shallow reservoir and terminated the cycle. Such an unloading process may characterize the evolution of shallow magmatic systems at other persistently active effusive centers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70026627','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70026627"><span>What makes hydromagmatic eruptions violent? Some insights from the Keanakāko'i Ash, Kı̄lauea Volcano, Hawai'i</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Mastin, Larry G.; Christiansen, Robert L.; Thornber, Carl R.; Lowenstern, Jacob B.; Beeson, Melvin H.</p> <p>2004-01-01</p> <p>Volcanic eruptions at the summit of Ki??ilauea volcano, Hawai'i, are of two dramatically contrasting types: (1) benign lava flows and lava fountains; and (2) violent, mostly prehistoric eruptions that dispersed tephra over hundreds of square kilometers. The violence of the latter eruptions has been attributed to mixing of water and magma within a wet summit caldera; however, magma injection into water at other volcanoes does not consistently produce widespread tephras. To identify other factors that may have contributed to the violence of these eruptions, we sampled tephra from the Keanaka??ko'i Ash, the most recent large hydromagmatic deposit, and measured vesicularity, bubble-number density and dissolved volatile content of juvenile matrix glass to constrain magma ascent rate and degree of degassing at the time of quenching. Bubble-number densities (9 ?? 104- 1 ?? 107 cm-3) of tephra fragments exceed those of most historically erupted Ki??lauean tephras (3 ?? 103-1.8 ?? 105 cm-3), and suggest exceptionally high magma effusion rates. Dissolved sulfur (average = 330 ppm) and water (0.15-0.45 wt.%) concentrations exceed equilibrium-saturation values at 1 atm pressure (100-150 ppm and ???0.09%, respectively), suggesting that clasts quenched before equilibrating to atmospheric pressure. We interpret these results to suggest rapid magma injection into a wet crater, perhaps similar to continuous-uprush jets at Surtsey. Estimates of Reynolds number suggest that the erupting magma was turbulent and would have mixed with surrounding water in vortices ranging downward in size to centimeters. Such fine-scale mixing would have ensured rapid heat exchange and extensive magma fragmentation, maximizing the violence of these eruptions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1999/0373/pdf/of99-373text.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1999/0373/pdf/of99-373text.pdf"><span>Preliminary volcano-hazard assessment for Iliamna Volcano, Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Waythomas, Christopher F.; Miller, Thomas P.</p> <p>1999-01-01</p> <p>Iliamna Volcano is a 3,053-meter-high, ice- and snow-covered stratovolcano in the southwestern Cook Inlet region about 225 kilometers southwest of Anchorage and about 100 kilometers northwest of Homer. Historical eruptions of Iliamna Volcano have not been positively documented; however, the volcano regularly emits steam and gas, and small, shallow earthquakes are often detected beneath the summit area. The most recent eruptions of the volcano occurred about 300 years ago, and possibly as recently as 90-140 years ago. Prehistoric eruptions have generated plumes of volcanic ash, pyroclastic flows, and lahars that extended to the volcano flanks and beyond. Rock avalanches from the summit area have occurred numerous times in the past. These avalanches flowed several kilometers down the flanks and at least two large avalanches transformed to cohesive lahars. The number and distribution of known volcanic ash deposits from Iliamna Volcano indicate that volcanic ash clouds from prehistoric eruptions were significantly less voluminous and probably less common relative to ash clouds generated by eruptions of other Cook Inlet volcanoes. Plumes of volcanic ash from Iliamna Volcano would be a major hazard to jet aircraft using Anchorage International Airport and other local airports, and depending on wind direction, could drift at least as far as the Kenai Peninsula and beyond. Ashfall from future eruptions could disrupt oil and gas operations and shipping activities in Cook Inlet. Because Iliamna Volcano has not erupted for several hundred years, a future eruption could involve significant amounts of ice and snow that could lead to the formation of large lahars and downstream flooding. The greatest hazards in order of importance are described below and shown on plate 1.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19812671','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19812671"><span>Rapid ascent of rhyolitic magma at Chaitén volcano, Chile.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Castro, Jonathan M; Dingwell, Donald B</p> <p>2009-10-08</p> <p>Rhyolite magma has fuelled some of the Earth's largest explosive volcanic eruptions. Our understanding of these events is incomplete, however, owing to the previous lack of directly observed eruptions. Chaitén volcano, in Chile's northern Patagonia, erupted rhyolite magma unexpectedly and explosively on 1 May 2008 (ref. 2). Chaitén residents felt earthquakes about 24 hours before ash fell in their town and the eruption escalated into a Plinian column. Although such brief seismic forewarning of a major explosive basaltic eruption has been documented, it is unprecedented for silicic magmas. As precursory volcanic unrest relates to magma migration from the storage region to the surface, the very short pre-eruptive warning at Chaitén probably reflects very rapid magma ascent through the sub-volcanic system. Here we present petrological and experimental data that indicate that the hydrous rhyolite magma at Chaitén ascended very rapidly, with velocities of the order of one metre per second. Such rapid ascent implies a transit time from storage depths greater than five kilometres to the near surface in about four hours. This result has implications for hazard mitigation because the rapidity of ascending rhyolite means that future eruptions may provide little warning.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V23A0461D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V23A0461D"><span>Constraining magma physical properties and its temporal evolution from InSAR and topographic data only: a physics-based eruption model for the effusive phase of the Cordon Caulle 2011-2012 rhyodacitic eruption</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Delgado, F.; Kubanek, J.; Anderson, K. R.; Lundgren, P.; Pritchard, M. E.</p> <p>2017-12-01</p> <p>The 2011-2012 eruption of Cordón Caulle volcano in Chile is the best scientifically observed rhyodacitic eruption and is thus a key place to understand the dynamics of these rare but powerful explosive rhyodacitic eruptions. Because the volatile phase controls both the eruption temporal evolution and the eruptive style, either explosive or effusive, it is important to constrain the physical parameters that drive these eruptions. The eruption began explosively and after two weeks evolved into a hybrid explosive - lava flow effusion whose volume-time evolution we constrain with a series of TanDEM-X Digital Elevation Models. Our data shows the intrusion of a large volume laccolith or cryptodome during the first 2.5 months of the eruption and lava flow effusion only afterwards, with a total volume of 1.4 km3. InSAR data from the ENVISAT and TerraSAR-X missions shows more than 2 m of subsidence during the effusive eruption phase produced by deflation of a finite spheroidal source at a depth of 5 km. In order to constrain the magma total H2O content, crystal cargo, and reservoir pressure drop we numerically solve the coupled set of equations of a pressurized magma reservoir, magma conduit flow and time dependent density, volatile exsolution and viscosity that we use to invert the InSAR and topographic data time series. We compare the best-fit model parameters with independent estimates of magma viscosity and total gas content measured from lava samples. Preliminary modeling shows that although it is not possible to model both the InSAR and the topographic data during the onset of the laccolith emplacement, it is possible to constrain the magma H2O and crystal content, to 4% wt and 30% which agree well with published literature values.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1918835M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1918835M"><span>Degassing vs. eruptive styles at Mt. Etna volcano (Sicily, Italy): Volatile stocking, gas fluxing, and the shift from low-energy to highly-explosive basaltic eruptions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moretti, Roberto; Métrich, Nicole; Di Renzo, Valeria; Aiuppa, Alessandro; Allard, Patrick; Arienzo, Ilenia</p> <p>2017-04-01</p> <p>Basaltic magmas can transport and release large amounts of volatiles into the atmosphere, especially in subduction zones, where slab-derived fluids enrich the mantle wedge. Depending on magma volatile content, basaltic volcanoes thus display a wide spectrum of eruptive styles, from common Strombolian-type activity to Plinian events. Mt. Etna in Sicily, is a typical basaltic volcano where the volatile control on such a variable activity can be investigated. Based on a melt inclusion study in products from Strombolian or lava-fountain activity to Plinian eruptions, here we show that for the same initial volatile content, different eruptive styles reflect variable degassing paths throughout the composite Etnean plumbing system. The combined influence of i) crystallization, ii) deep degassing and iii) CO2 gas fluxing can explain the evolution of H2O, CO2, S and Cl in products from such a spectrum of activity. Deep crystallization produces the CO2-rich gas fluxing the upward magma portions, which will become buoyant and easily mobilized in small gas-rich batches stored within the plumbing system. When reaching gas dominated conditions (i.e., a gas/melt mass ratio of 0.3 and CO2,gas/H2Ogas molar ratio 5 ), these will erupt effusively or mildly explosively, whilst in case of the 122 BC Plinian eruption, open-system degassing conditions took place within the plumbing system, such that continuous CO2-fluxing determined gas accumulation on top of the magmatic system. The emission of such a cap in the early eruptive phase triggered the arrival of deep H2O-rich whose fast decompression and bubble nucleation lead to the highly explosive character, enhanced by abundant microlite crystallization and consequent increase of magma effective viscosity. This could explain why open system basaltic systems like Etna may experience highly explosive or even Plinian episodes during eruptions that start with effusive to mildly explosive phases. The proposed mechanism also determines a depression of chlorine contents in CO2-fluxed (and less explosive) magmas with respect to those feeding Plinian events like 122 BC one. The opposite is seen for sulfur: low to mild-explosive fluxed magmas are S-enriched, whereas the 122 BC Plinian products are relatively S-poor, likely because of early sulfide separation accompanying magma crystallization. The proposed mechanism involving CO2 separation and fluxing may suggest a subordinate role for variable mixing of different sources having different degrees of K-enrichment. However, such a mechanism requires further experimental studies about the effects on S and Cl dissolution and does not exclude self-mixing between degassed and undegassed batches within the Etna plumbing system. Finally, our findings may represent a new interpretative tool for the geochemical and petrological monitoring of plume gas discharges and melt inclusions, and allow tracking the switch from mild-explosive to highly explosive or even Plinian events at Etna.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1910705R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1910705R"><span>Seismicity associated with quiescent-explosive transitions at dome forming eruptions: The July 2008 Vulcanian Explosion of Soufrière Hills Volcano, Montserrat</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rodgers, Mel; Smith, Patrick; Mather, Tamsin A.; Pyle, David M.</p> <p>2017-04-01</p> <p>During long-lived dome-forming eruptions volcanoes often transition between quiescent, effusive, and explosive behaviour. Soufrière Hills Volcano (SHV), Montserrat, has been erupting since 1995 and has repeatedly transitioned between these different phases of activity. At SHV many of the largest explosions have occurred either during periods of dome growth, or as major dome collapse events at the end of extrusion phases. However, on the 29th July 2008 a vulcanian explosion marked the transition from a quiescent phase (Pause 3) to explosion and then extrusion. This was one of the largest explosions by volume and the largest to occur outside a period of lava extrusion. The eruption was preceded by one of the most intense seismic swarms ever recorded at SHV. In this study we analysed precursory seismic data to investigate the subsurface volcanic processes that culminated in this eruption. We used spectral and multiplet analysis techniques, and applied a simple parameterization approach to relate monitoring observations (seismic, SO2, visual) to subsurface interpretations. These techniques would be available to most volcano observatories. Our study suggests that an initial VT swarm, coincident with ash-venting events, can be triggered by ascent of decoupled gas ahead of rising magma. A subsequent large LF swarm shows a coincident decrease in spectral content that we interpret as magma ascent through the upper conduit system. An ash-venting event on 27 July (a few hours before peak event rate) may have triggered rapid microlite growth. We observe an increase in the spectral content of the LF swarm that is concurrent with a decrease in event rates, suggesting pressurization of the magmatic system due to inhibited magmatic outgassing. Our results suggest that pressurization of the magmatic system may have occurred in the final 24 h before the vulcanian explosion. We also observe LP and Hybrid events within the same multiplet, suggesting that these events have very similar source processes and should be considered part of the same classification at SHV. Our study demonstrates the potential for using spectral and multiplet analysis to understand subsurface magmatic processes and for investigating the transition between quiescence and eruption.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1817168C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1817168C"><span>Constraining the dynamics of 2014-15 Bardarbunga-Holuhraun intrusion and eruption using seismic noise</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Caudron, Corentin; Donaldson, Clare; White, Robert</p> <p>2016-04-01</p> <p>The 2010 Eyjafjallajokull volcanic eruption explosively emitted a large quantity of ash in the atmosphere and paralysed the European airspace for weeks. Several seismic scientific studies already contributed to the understanding of this complex eruption (e.g., Tarasewicz et al., 2012). Although an excellent network of seismometers recorded this eruption, some volcanological and seismological aspects are still poorly understood. In order to gain further constraints on the dynamics of this ground-breaking eruptions, we mine the seismic dataset using the seismic ambient noise technique between pairs of stations and the Seismic Amplitude Ratio Analysis (SARA). Our preliminary results reveal a strong contamination of the Cross Correlation Functions (CCF) by the volcanic tremor, particularly above 0.5 Hz even for station pairs located >50 km from the volcano. Although this volcanic tremor precludes the monitoring of the seismic velocities, it literally illuminated the medium. The two phases of the eruptions (i.e., effusive and explosive) are clearly distinguished in these functions due to their different locations. During the explosive phase, an intriguing shift of the main peaks of the cross correlation functions is evidenced (early May 2010). It is remarkably consistent with the downward migration proposed by Tarasewicz et al. (2012) and is interpreted as a migration of the volcanic tremor. SARA methodology, which is continuously imaging and tracking any significant seismicity at a 10-min time scale (Taisne et al., 2010), is applied in the 5-15 Hz frequency band in order to image to continuously migrating microseismicity. The analysis displays several shallow migrations (above 5 km of depth, in March 2010) preceding the effusive phase of the eruption. Interestingly, the results also evidence a fast and deep migration (> 5 km) starting a few hours before the beginning of the explosive phase (13 April 2010). These preliminary results may shed light on the triggering of the explosive eruption.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22012396','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22012396"><span>The role of dyking and fault control in the rapid onset of eruption at Chaitén volcano, Chile.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wicks, Charles; de la Llera, Juan Carlos; Lara, Luis E; Lowenstern, Jacob</p> <p>2011-10-19</p> <p>Rhyolite is the most viscous of liquid magmas, so it was surprising that on 2 May 2008 at Chaitén Volcano, located in Chile's southern Andean volcanic zone, rhyolitic magma migrated from more than 5 km depth in less than 4 hours (ref. 1) and erupted explosively with only two days of detected precursory seismic activity. The last major rhyolite eruption before that at Chaitén was the largest volcanic eruption in the twentieth century, at Novarupta volcano, Alaska, in 1912. Because of the historically rare and explosive nature of rhyolite eruptions and because of the surprisingly short warning before the eruption of the Chaitén volcano, any information about the workings of the magmatic system at Chaitén, and rhyolitic systems in general, is important from both the scientific and hazard perspectives. Here we present surface deformation data related to the Chaitén eruption based on radar interferometry observations from the Japan Aerospace Exploration Agency (JAXA) DAICHI (ALOS) satellite. The data on this explosive rhyolite eruption indicate that the rapid ascent of rhyolite occurred through dyking and that melt segregation and magma storage were controlled by existing faults.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.2976A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.2976A"><span>Diverse Eruptive Activity Revealed by Acoustic and Electromagnetic Observations of the 14 July 2013 Intense Vulcanian Eruption of Tungurahua Volcano, Ecuador</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Anderson, J. F.; Johnson, J. B.; Steele, A. L.; Ruiz, M. C.; Brand, B. D.</p> <p>2018-04-01</p> <p>During the powerful July 2013 eruption of Tungurahua volcano, Ecuador, we recorded exceptionally high amplitude, long-period infrasound (1,600-Pa peak-to-peak amplitude, 5.5-s period) on sensors within 2 km of the vent alongside electromagnetic signals from volcanic lightning serendipitously captured as interference. This explosion was one of Tungurahua's most powerful vulcanian eruptions since recent activity began in 1999, and its acoustic wave is among the most powerful volcanic infrasound ever recorded anywhere. We use these data to quantify erupted volume from the main explosion and to classify postexplosive degassing into distinct emission styles. Additionally, we demonstrate a highly effective method of recording lightning-related electromagnetic signals alongside infrasound. Detailed chronologies of powerful vulcanian eruptions are rare; this study demonstrates that diverse eruptive processes can occur in such eruptions and that near-vent infrasound and electromagnetic data can elucidate them.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.V21C2728M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.V21C2728M"><span>Are There Spatial or Temporal Patterns to Holocene Explosive Eruptions in the Aleutian Archipelago? A Work in Progress</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martin, C.; Nicolaysen, K. P.; McConville, K.; Hatfield, V.; West, D.</p> <p>2013-12-01</p> <p>By examining the existing geological and archeological record of radiocarbon dated Aleutian tephras of the last 12,000 years, this study sought to determine whether there were spatial or temporal patterns of explosive eruptive activity. The Holocene tephra record has important implications because two episodes of migration and colonization by humans of distinct cultures established the Unangan/Aleut peoples of the Aleutian Islands concurrently with the volcanic activity. From Aniakchak Volcano on the Alaska Peninsula to the Andreanof Islands (158 to 178° W longitude), 55 distinct tephras represent significant explosive eruptions of the last 12,000 years. Initial results suggest that the Andreanof and Fox Island regions of the archipelago have had frequent explosive eruptions whereas the Islands of Four Mountains, Rat, and Near Island regions have apparently had little or no eruptive activity. However, one clear result of the investigation is that sampling bias strongly influences the apparent spatial patterns. For example field reconnaissance in the Islands of Four Mountains documents two Holocene calderas and a minimum of 20 undated tephras in addition to the large ignimbrites. Only the lack of significant explosive activity in the Near Islands seems a valid spatial result as archeological excavations and geologic reports failed to document Holocene tephras there. An intriguing preliminary temporal pattern is the apparent absence of large explosive eruptions across the archipelago from ca. 4,800 to 6,000 yBP. To test the validity of apparent patterns, a statistical treatment of the compiled data grappled with the sampling bias by considering three confounding variables: larger island size allows more opportunity for geologic preservation of tephras; larger magnitude eruption promotes tephra preservation by creating thicker and more widespread deposits; the comprehensiveness of the tephra sampling of each volcano and island varies widely because of logistical and financial limitations. This initial statistical investigation proposes variables to mitigate the effects of sampling bias and makes recommendations for sampling strategies to enable statistically valid examination of research questions. Further, though caldera-forming eruptions occurred throughout the Holocene - and several remain undated - four of six dated eruptions occurred throughout the archipelago between 8,000-9,100 yBP, a period coinciding with some of the earliest human occupation (Early Anangula Phase) of the eastern Aleutians.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70170360','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70170360"><span>Observations of volcanic tremor during January-February 2005 eruption of Mt. Veniaminof, Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>De Angelis, Slivio; McNutt, Stephen R.</p> <p>2007-01-01</p> <p>Mt. Veniaminof, Alaska Peninsula, is a stratovolcano with a summit ice-filled caldera containing a small intracaldera cone and active vent. From January 2 to February 21, 2005, Mt. Veniaminof erupted. The eruption was characterized by numerous small ash emissions (VEI 0 to 1) and accompanied by low-frequency earthquake activity and volcanic tremor. We have performed spectral analyses of the seismic signals in order to characterize them and to constrain their source. Continuous tremor has durations of minutes to hours with dominant energy in the band 0.5– 4.0 Hz, and spectra characterized by narrow peaks either irregularly (non-harmonic tremor) or regularly spaced (harmonic tremor). The spectra of non-harmonic tremor resemble those of low-frequency events recorded simultaneously with surface ash explosions, suggesting that the source mechanisms might be similar or related. We propose that non-harmonic tremor at Mt. Veniaminof results from the coalescence of gas bubbles while low-frequency events are related to the disruption of large gas pockets within the conduit. Harmonic tremor, characterized by regular and quasisinusoidal waveforms, has duration of hours. Spectra containing up to five harmonics suggest the presence of a resonating source volume that vibrates in a longitudinal acoustic mode. An interesting feature of harmonic tremor is that frequency is observed to change over time; spectral lines move towards higher or lower values while the harmonic nature of the spectra is maintained. Factors controlling the variable characteristics of harmonic tremor include changes in acoustic velocity at the source and variations of the effective size of the resonator.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss029e020003.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss029e020003.html"><span>Earth observation taken by the Expedition 29 crew</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2011-10-07</p> <p>ISS029-E-020003 (7 Oct. 2011) --- Parinacota Volcano in the Chile-Bolivia border region, South America is featured in this image photographed by an Expedition 29 crew member on the International Space Station. Volcan Parinacota (?flamingo lake? in the regional Aymara language) is a potentially active stratovolcano located on the Altiplano, a high plateau situated within the Andes Mountains of west-central South America. While no direct observations of eruptive activity are recorded, surface exposure age-dating of lava flows suggests that activity occurred as recently as 290 AD approximately 300 years, according to scientists. Local Aymara stories also suggest that the volcano has erupted during the past 1,000 years. This detailed photograph highlights the symmetrical cone of Parinacota, with its well-developed summit crater (elevation 6,348 meters above sea level) at center. Dark brown to dark gray surfaces to the east and west of the summit include lava flows, pyroclastic deposits, and ash. A companion volcano, Pomerape, is located across a low saddle to the north ? scientists believe this volcano last erupted during the Pleistocene Epoch (extending from approximately 3 million to 12,000 years ago). The summits of both volcanoes are covered by white permanent snowpack and small glaciers. Together, the two volcanoes form the Nevados de Payachata volcanic area. Eruptive activity at Parinacota has directly influenced development of the local landscape beyond the emplacement of volcanic deposits ? approximately 8,000 years ago the western flank of the volcano collapsed, creating a debris avalanche that traveled 22 kilometers to the west. This debris avalanche blocked drainages, leading to the formation of Lake Chungara to the south (upper right). The uneven, hummocky surface of the debris avalanche deposit provides ample catchments for water, as evidenced by the numerous small ponds and Cotacotani Lake to the west.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22069195-acoustic-waves-atmosphere-ground-generated-volcanic-activity','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22069195-acoustic-waves-atmosphere-ground-generated-volcanic-activity"><span>Acoustic waves in the atmosphere and ground generated by volcanic activity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ichihara, Mie; Lyons, John; Oikawa, Jun</p> <p>2012-09-04</p> <p>This paper reports an interesting sequence of harmonic tremor observed in the 2011 eruption of Shinmoe-dake volcano, southern Japan. The main eruptive activity started with ashcloud forming explosive eruptions, followed by lava effusion. Harmonic tremor was transmitted into the ground and observed as seismic waves at the last stage of the effusive eruption. The tremor observed at this stage had unclear and fluctuating harmonic modes. In the atmosphere, on the other hand, many impulsive acoustic waves indicating small surface explosions were observed. When the effusion stopped and the erupted lava began explosive degassing, harmonic tremor started to be transmitted alsomore » to the atmosphere and observed as acoustic waves. Then the harmonic modes became clearer and more stable. This sequence of harmonic tremor is interpreted as a process in which volcanic degassing generates an open connection between the volcanic conduit and the atmosphere. In order to test this hypothesis, a laboratory experiment was performed and the essential features were successfully reproduced.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GeoRL..43.6220A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GeoRL..43.6220A"><span>Characterization of moderate ash-and-gas explosions at Santiaguito volcano, Guatemala, from infrasound waveform inversion and thermal infrared measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Angelis, S. De; Lamb, O. D.; Lamur, A.; Hornby, A. J.; von Aulock, F. W.; Chigna, G.; Lavallée, Y.; Rietbrock, A.</p> <p>2016-06-01</p> <p>The rapid discharge of gas and rock fragments during volcanic eruptions generates acoustic infrasound. Here we present results from the inversion of infrasound signals associated with small and moderate gas-and-ash explosions at Santiaguito volcano, Guatemala, to retrieve the time history of mass eruption rate at the vent. Acoustic waveform inversion is complemented by analyses of thermal infrared imagery to constrain the volume and rise dynamics of the eruption plume. Finally, we combine results from the two methods in order to assess the bulk density of the erupted mixture, constrain the timing of the transition from a momentum-driven jet to a buoyant plume, and to evaluate the relative volume fractions of ash and gas during the initial thrust phase. Our results demonstrate that eruptive plumes associated with small-to-moderate size explosions at Santiaguito only carry minor fractions of ash, suggesting that these events may not involve extensive magma fragmentation in the conduit.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70095477','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70095477"><span>Hydrogeomorphic effects of explosive volcanic eruptions on drainage basins</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Pierson, Thomas C.; Major, Jon J.</p> <p>2014-01-01</p> <p>Explosive eruptions can severely disturb landscapes downwind or downstream of volcanoes by damaging vegetation and depositing large volumes of erodible fragmental material. As a result, fluxes of water and sediment in affected drainage basins can increase dramatically. System-disturbing processes associated with explosive eruptions include tephra fall, pyroclastic density currents, debris avalanches, and lahars—processes that have greater impacts on water and sediment discharges than lava-flow emplacement. Geo-morphic responses to such disturbances can extend far downstream, persist for decades, and be hazardous. The severity of disturbances to a drainage basin is a function of the specific volcanic process acting, as well as distance from the volcano and magnitude of the eruption. Postdisturbance unit-area sediment yields are among the world's highest; such yields commonly result in abundant redeposition of sand and gravel in distal river reaches, which causes severe channel aggradation and instability. Response to volcanic disturbance can result in socioeconomic consequences more damaging than the direct impacts of the eruption itself.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28503003','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28503003"><span>Characterization of moderate ash-and-gas explosions at Santiaguito volcano, Guatemala, from infrasound waveform inversion and thermal infrared measurements.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Angelis, S De; Lamb, O D; Lamur, A; Hornby, A J; von Aulock, F W; Chigna, G; Lavallée, Y; Rietbrock, A</p> <p>2016-06-28</p> <p>The rapid discharge of gas and rock fragments during volcanic eruptions generates acoustic infrasound. Here we present results from the inversion of infrasound signals associated with small and moderate gas-and-ash explosions at Santiaguito volcano, Guatemala, to retrieve the time history of mass eruption rate at the vent. Acoustic waveform inversion is complemented by analyses of thermal infrared imagery to constrain the volume and rise dynamics of the eruption plume. Finally, we combine results from the two methods in order to assess the bulk density of the erupted mixture, constrain the timing of the transition from a momentum-driven jet to a buoyant plume, and to evaluate the relative volume fractions of ash and gas during the initial thrust phase. Our results demonstrate that eruptive plumes associated with small-to-moderate size explosions at Santiaguito only carry minor fractions of ash, suggesting that these events may not involve extensive magma fragmentation in the conduit.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70118321','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70118321"><span>Doppler weather radar observations of the 2009 eruption of Redoubt Volcano, Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Schneider, David J.; Hoblitt, Richard P.</p> <p>2013-01-01</p> <p>The U.S. Geological Survey (USGS) deployed a transportable Doppler C-band radar during the precursory stage of the 2009 eruption of Redoubt Volcano, Alaska that provided valuable information during subsequent explosive events. We describe the capabilities of this new monitoring tool and present data captured during the Redoubt eruption. The MiniMax 250-C (MM-250C) radar detected seventeen of the nineteen largest explosive events between March 23 and April 4, 2009. Sixteen of these events reached the stratosphere (above 10 km) within 2–5 min of explosion onset. High column and proximal cloud reflectivity values (50 to 60 dBZ) were observed from many of these events, and were likely due to the formation of mm-sized accretionary tephra-ice pellets. Reflectivity data suggest that these pellets formed within the first few minutes of explosion onset. Rapid sedimentation of the mm-sized pellets was observed as a decrease in maximum detection cloud height. The volcanic cloud from the April 4 explosive event showed lower reflectivity values, due to finer particle sizes (related to dome collapse and related pyroclastic flows) and lack of significant pellet formation. Eruption durations determined by the radar were within a factor of two compared to seismic and pressure-sensor derived estimates, and were not well correlated. Ash dispersion observed by the radar was primarily in the upper troposphere below 10 km, but satellite observations indicate the presence of volcanogenic clouds in the stratosphere. This study suggests that radar is a valuable complement to traditional seismic and satellite monitoring of explosive eruptions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013GGG....14.2232M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013GGG....14.2232M"><span>Magma flow between summit and Pu`u `Ō`ō at K¯lauea Volcano, Hawai`i</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Montagna, C. P.; Gonnermann, H. M.</p> <p>2013-07-01</p> <p>Volcanic eruptions are often accompanied by spatiotemporal migration of ground deformation, a consequence of pressure changes within magma reservoirs and pathways. We modeled the propagation of pressure variations through the east rift zone (ERZ) of K¯lauea Volcano, Hawai`i, caused by magma withdrawal during the early eruptive episodes (1983-1985) of the ongoing Pu`u `Ō`ō-Kupaianaha eruption. Eruptive activity at the Pu`u `Ō`ō vent was typically accompanied by abrupt deflation that lasted for several hours and was followed by a sudden onset of gradual inflation once the eruptive episode had ended. Similar patterns of deflation and inflation were recorded at K¯lauea's summit, approximately 15 km to the northwest, albeit with time delays of hours. These delay times can be reproduced by modeling the spatiotemporal changes in magma pressure and flow rate within an elastic-walled dike that traverses K¯lauea's ERZ. Key parameters that affect the behavior of the magma-dike system are the dike dimensions, the elasticity of the wall rock, the magma viscosity, and to a lesser degree the magnitude and duration of the pressure variations themselves. Combinations of these parameters define a transport efficiency and a pressure diffusivity, which vary somewhat from episode to episode, resulting in variations in delay times. The observed variations in transport efficiency are most easily explained by small, localized changes to the geometry of the magma pathway.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JVGR..310..186L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JVGR..310..186L"><span>Arrested diatreme development: Standing Rocks East, Hopi Buttes, Navajo Nation, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lefebvre, Nathalie S.; White, James D. L.; Kjarsgaard, Bruce A.</p> <p>2016-01-01</p> <p>Maar-diatreme volcanoes, defined by their relatively large pyroclastic debris-filled subsurface structures and craters that cut into the pre-eruptive land surface, are typically found in small-volume mafic to ultramafic monogenetic volcanic fields. Diatremes are associated with strong explosions throughout most of their development, focused along feeder dikes and generally attributed to magma-water interaction, or high magmatic volatiles. Detailed mapping of the magnificently exposed Standing Rocks East (SRE) diatreme shows evidence of additional eruptive complexity, and offers new insights into how the plumbing and vent structures of small-volume volcanoes evolve during an eruption. SRE is part of a larger, basanitic volcanic complex that includes several diatremes formed along a series of irregular, offset NW-SE trending dikes exposed 300 m below the pre-eruptive land surface. Its similarly oriented elliptical-shaped diatreme structure comprises predominantly country rock lithic-rich breccia of coarse inhomogeneously mixed wall-rock blocks sourced from above and below the current surface, plus sparse juvenile material. Domains of pyroclastic deposits crosscut the country rock breccia deposits, and the best exposed is the NW massif rising 35 m above the current erosional surface. It represents a cross-section of an evolving crater floor, and comprises matrix-rich lapilli tuff and spatter deposits cut by irregularly distributed dikes, some with very complex textures. The most significant deposit, in terms of volume, is an unbedded lapilli tuff that is poorly sorted and has a well-mixed population of wall-rock and juvenile clast varieties, thus resembling deposits typical of diatremes. It is overlain by and locally intercalated with spatter deposits, and this irregular contact demarcates the base of what was during eruption an uneven, evolving crater floor. The generally massive, variably welded spatter deposits constitute mostly lapilli-sized juvenile clasts with fluidal, folded-over shapes and ropy surfaces, subordinate thermally altered wall-rock and variegated domains of lapilli tuff. SRE shows a progressive transition from fissure to diatreme, and overall evolution from more explosive to weakly explosive eruption styles recorded at the conduit-crater transition. Diatreme development was initiated by deep-quarrying explosive eruptions along a fissure to form the country rock-rich breccia. Only parts of the fissure remained active as magma feeding the highly explosive eruptions along the fissure localized into discrete point sources forming the matrix-rich lapilli tuff deposits. These superimposed deposits record the passage of multiple debris-jets and subvertical fallback from shallow cratering arising from explosions triggered by magma-water interaction at numerous, discrete sites. However, instead of continuing to build a well-formed diatreme, the system switched to weak spattering with intermittent explosive activity and near-surface dike emplacement into the unconsolidated anisotropic, pyroclastic debris of the crater floor. Dominant spatter from strombolian-style bursts accumulated on the topographically varied, evolving unstable syn-eruptive crater floor, and led to local failure and remobilization. This study demonstrates how the combination of fissure behavior and sensitivity of the shallow plumbing system to local conditions during an eruption can lead to a decrease in eruptive footprint within the diatreme structure, and an overall decrease in explosivity resulting in the arrested development of an immature diatreme.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/pp/1750/chapters/pp2008-1750_chapter06.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/pp/1750/chapters/pp2008-1750_chapter06.pdf"><span>Seismicity and infrasound associated with explosions at Mount St. Helens, 2004-2005: Chapter 6 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Moran, Seth C.; McChesney, Patrick J.; Lockhart, Andrew B.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.</p> <p>2008-01-01</p> <p>Six explosions occurred during 2004-5 in association with renewed eruptive activity at Mount St. Helens, Washington. Of four explosions in October 2004, none had precursory seismicity and two had explosion-related seismic tremor that marked the end of the explosion. However, seismicity levels dropped following each of the October explosions, providing the primary instrumental means for explosion detection during the initial vent-clearing phase. In contrast, explosions on January 16 and March 8, 2005, produced noticeable seismicity in the form of explosion-related tremor, infrasonic signals, and, in the case of the March 8 explosion, an increase in event size ~2 hours before the explosion. In both 2005 cases seismic tremor appeared before any infrasonic signals and was best recorded on stations located within the crater. These explosions demonstrated that reliable explosion detection at volcanoes like Mount St. Helens requires seismic stations within 1-2 km of the vent and stations with multiple acoustic sensors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JVGR..337...98W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JVGR..337...98W"><span>Magmatic degassing, lava dome extrusion, and explosions from Mount Cleveland volcano, Alaska, 2011-2015: Insight into the continuous nature of volcanic activity over multi-year timescales</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Werner, Cynthia; Kern, Christoph; Coppola, Diego; Lyons, John J.; Kelly, Peter J.; Wallace, Kristi L.; Schneider, David J.; Wessels, Rick L.</p> <p>2017-05-01</p> <p>Mount Cleveland volcano (1730 m) is one of the most active volcanoes in the Aleutian arc, Alaska, but heightened activity is rarely accompanied by geophysical signals, which makes interpretation of the activity difficult. In this study, we combine volcanic gas emissions measured for the first time in August 2015 with longer-term measurements of thermal output and lava extrusion rates between 2011 and 2015 calculated from MODIS satellite data with the aim to develop a better understanding of the nature of volcanic activity at Mount Cleveland. Degassing measurements were made in the month following two explosive events (21 July and 7 August 2015) and during a period of new dome growth in the summit crater. SO2 emission rates ranged from 400 to 860 t d- 1 and CO2/SO2 ratios were < 3, consistent with the presence of shallow magma in the conduit and the observed growth of a new lava dome. Thermal anomalies derived from MODIS data from 2011 to 2015 had an average repose time of only 4 days, pointing to the continuous nature of volcanic activity at this volcano. Rapid increases in the cumulative thermal output were often coincident with visual confirmation of dome growth or accumulations of tephra in the crater. The average rate of lava extrusion calculated for 9 periods of rapid increase in thermal output was 0.28 m3 s- 1, and the total volume extruded from 2011 to 2015 was 1.9-5.8 Mm3. The thermal output from the lava extrusion events only accounts for roughly half of the thermal budget, suggesting a continued presence of shallow magma in the upper conduit, likely driven by convection. Axisymmetric dome morphology and occasional drain back of lava into the conduit suggests low-viscosity magmas drive volcanism at Mount Cleveland. It follows also that only small overpressures can be maintained given the small domes and fluid magmas, which is consistent with the low explosivity of most of Mount Cleveland's eruptions. Changes between phases of dome growth and explosive activity are somewhat unpredictable and likely result from plugs that are related to the dome obtaining a critical dimension, or from small variations in the magma ascent rate that lead to crystallization-induced blockages in the upper conduit, thereby reducing the ability of magma to degas. We suggest the small magma volumes, slow ascent rates, and low magma viscosity lead to the overall lack of anomalous geophysical signals prior to eruptions, and that more continuous volcanic degassing measurements might lead to more successful eruption forecasting at this continuously-active open-vent volcano.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70192603','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70192603"><span>Magmatic degassing, lava dome extrusion, and explosions from Mount Cleveland volcano, Alaska, 2011–2015: Insight into the continuous nature of volcanic activity over multi-year timescales</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Werner, Cynthia; Kern, Christoph; Coppola, Diego; Lyons, John; Kelly, Peter; Wallace, Kristi; Schneider, David; Wessels, Rick</p> <p>2017-01-01</p> <p>Mount Cleveland volcano (1730 m) is one of the most active volcanoes in the Aleutian arc, Alaska, but heightened activity is rarely accompanied by geophysical signals, which makes interpretation of the activity difficult. In this study, we combine volcanic gas emissions measured for the first time in August 2015 with longer-term measurements of thermal output and lava extrusion rates between 2011 and 2015 calculated from MODIS satellite data with the aim to develop a better understanding of the nature of volcanic activity at Mount Cleveland. Degassing measurements were made in the month following two explosive events (21 July and 7 August 2015) and during a period of new dome growth in the summit crater. SO2 emission rates ranged from 400 to 860 t d− 1 and CO2/SO2 ratios were < 3, consistent with the presence of shallow magma in the conduit and the observed growth of a new lava dome. Thermal anomalies derived from MODIS data from 2011 to 2015 had an average repose time of only 4 days, pointing to the continuous nature of volcanic activity at this volcano. Rapid increases in the cumulative thermal output were often coincident with visual confirmation of dome growth or accumulations of tephra in the crater. The average rate of lava extrusion calculated for 9 periods of rapid increase in thermal output was 0.28 m3 s− 1, and the total volume extruded from 2011 to 2015 was 1.9–5.8 Mm3. The thermal output from the lava extrusion events only accounts for roughly half of the thermal budget, suggesting a continued presence of shallow magma in the upper conduit, likely driven by convection. Axisymmetric dome morphology and occasional drain back of lava into the conduit suggests low-viscosity magmas drive volcanism at Mount Cleveland. It follows also that only small overpressures can be maintained given the small domes and fluid magmas, which is consistent with the low explosivity of most of Mount Cleveland's eruptions. Changes between phases of dome growth and explosive activity are somewhat unpredictable and likely result from plugs that are related to the dome obtaining a critical dimension, or from small variations in the magma ascent rate that lead to crystallization-induced blockages in the upper conduit, thereby reducing the ability of magma to degas. We suggest the small magma volumes, slow ascent rates, and low magma viscosity lead to the overall lack of anomalous geophysical signals prior to eruptions, and that more continuous volcanic degassing measurements might lead to more successful eruption forecasting at this continuously-active open-vent volcano.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017CoMP..172...76L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017CoMP..172...76L"><span>Timescales of mixing and storage for Keanakāko`i Tephra magmas (1500-1820 C.E.), Kīlauea Volcano, Hawai`i</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lynn, Kendra J.; Garcia, Michael O.; Shea, Thomas; Costa, Fidel; Swanson, Donald A.</p> <p>2017-09-01</p> <p>The last 2500 years of activity at Kīlauea Volcano (Hawai`i) have been characterized by centuries-long periods dominated by either effusive or explosive eruptions. The most recent period of explosive activity produced the Keanakāko`i Tephra (KT; ca. 1500-1820 C.E.) and occurred after the collapse of the summit caldera (1470-1510 C.E.). Previous studies suggest that KT magmas may have ascended rapidly to the surface, bypassing storage in crustal reservoirs. The storage conditions and rapid ascent hypothesis are tested here using chemical zoning in olivine crystals and thermodynamic modeling. Forsterite contents (Fo; [Mg/(Mg + Fe) × 100]) of olivine core and rim populations are used to identify melt components in Kīlauea's prehistoric (i.e., pre-1823) plumbing system. Primitive (≥Fo88) cores occur throughout the 300+ years of the KT period; they originated from mantle-derived magmas that were first mixed and stored in a deep crustal reservoir. Bimodal olivine populations (≥Fo88 and Fo83-84) record repeated mixing of primitive magmas and more differentiated reservoir components shallower in the system, producing a hybrid composition (Fo85-87). Phase equilibria modeling using MELTS shows that liquidus olivine is not stable at depths >17 km. Thus, calculated timescales likely record mixing and storage within the crust. Modeling of Fe-Mg and Ni zoning patterns (normal, reverse, complex) reveal that KT magmas were mixed and stored for a few weeks to several years before eruption, illustrating a more complex storage history than direct and rapid ascent from the mantle as previously inferred for KT magmas. Complexly zoned crystals also have smoothed compositional reversals in the outer 5-20 µm rims that are out of Fe-Mg equilibrium with surrounding glasses. Diffusion models suggest that these rims formed within a few hours to a few days, indicating that at least one additional, late-stage mixing event may have occurred shortly prior to eruption. Our study illustrates that the lifetimes of KT magmas are more complex than previously proposed, and that most KT magmas did not rise rapidly from the mantle without modification during shallow crustal storage.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.8858Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.8858Z"><span>The July - August 2014 Mt. Etna eruptions: insights on the magmatic feeding system from geochemical and geophysical data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zuccarello, Francesco; Cannata, Andrea; Gresta, Stefano; Palano, Mimmo; Viccaro, Marco</p> <p>2016-04-01</p> <p>The 2014 volcanic activity of Mt. Etna has been characterized by a marked change in the eruptive behavior with respect to the one that occurred during the 2011-2013 time interval. During the 2011-2013 period, the volcanic activity was characterized by the occurrence of more than 40 vigorous lava fountain episodes at the summit New South-East Crater (hereinafter NSEC). Conversely, from the end of 2013 to the end of 2014, although intense Strombolian and effusive activity took place at NSEC, the volcanic activity never culminated in sustained lava fountaining and voluminous tephra emission. The July - August 2014 eruption can be framed within such a low level of volcanic activity. This eruption started on July 5 2014, when a fissure opened on the lower eastern flank of the summit North-East Crater (hereinafter NEC), close to the fracture field of the 2008-2009 eruption. These fissures fed weak Strombolian activity and minor lava emission from two new vents located at about 3000 m elevation. On July 25, more intense Strombolian activity took place at a further vent opened close to these two vents, at 3090 m elevation. The eruption from the vents on the lower eastern flank of NEC continued until August 9. Before the end of this eruption, on 8 August a new eruptive episode started at NSEC. This last eruption, culminating during August 11-14 with vigorous Strombolian activity and lava effusion, ended on August 16. Moreover, such a contemporaneous activity at both NSEC and NEC lends credit to the existence of a shallow link between the two craters. Taking advantage from the availability of an extensive dataset of geochemical, seismic and geodetic data we have here analyzed the volcanic activity characterizing this eruptive event. This integrated, multidisciplinary study is aimed at improving the knowledge of the deeper and shallower portions of the magmatic feeding system along with the magma transfer mechanisms toward the surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA22156.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA22156.html"><span>Investigating Mars: Arsia Mons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2018-01-02</p> <p>This THEMIS image shows part of the caldera floor of Arsia Mons. It is not uncommon for calderas to have "flat" floors after the final explosive eruption that empties the subsurface magma chamber. There may still be some magma or superheated rock left after the collapse that will fill in part of the depression. Additionally, over time erosion will work to level the topography. Within Arsia Mons there was renewed activity that occurred within the caldera along the alignment of the NE/SW trend of the three large volcanoes. This ongoing, low volume actitivity is similar to the lava lake in Kilauea in Hawaii. Small flows are visible throughout this image. Arsia Mons is the southernmost of the Tharsis volcanoes. It is 270 miles (450km) in diameter, almost 12 miles (20km) high, and the summit caldera is 72 miles (120km) wide. For comparison, the largest volcano on Earth is Mauna Loa. From its base on the sea floor, Mauna Loa measures only 6.3 miles high and 75 miles in diameter. A large volcanic crater known as a caldera is located at the summit of all of the Tharsis volcanoes. These calderas are produced by massive volcanic explosions and collapse. The Arsia Mons summit caldera is larger than many volcanoes on Earth. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 19588 Latitude: -9.19485 Longitude: 239.276 Instrument: VIS Captured: 2006-05-15 03:33 https://photojournal.jpl.nasa.gov/catalog/PIA22156</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26PSL.463...13C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26PSL.463...13C"><span>Shallow system rejuvenation and magma discharge trends at Piton de la Fournaise volcano (La Réunion Island)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Coppola, D.; Di Muro, A.; Peltier, A.; Villeneuve, N.; Ferrazzini, V.; Favalli, M.; Bachèlery, P.; Gurioli, L.; Harris, A. J. L.; Moune, S.; Vlastélic, I.; Galle, B.; Arellano, S.; Aiuppa, A.</p> <p>2017-04-01</p> <p>Basaltic magma chambers are often characterized by emptying and refilling cycles that influence their evolution in space and time, and the associated eruptive activity. During April 2007, the largest historical eruption of Piton de la Fournaise (Île de La Réunion, France) drained the shallow plumbing system (> 240 ×106 m3) and resulted in collapse of the 1-km-wide summit crater. Following these major events, Piton de la Fournaise entered a seven-year long period of near-continuous deflation interrupted, in June 2014, by a new phase of significant inflation. By integrating multiple datasets (lava discharge rates, deformation, seismicity, gas flux, gas composition, and lava chemistry), we here show that the progressive migration of magma from a deeper (below sea level) storage zone gradually rejuvenated and pressurized the above-sea-level portion of the magmatic system consisting of a vertically-zoned network of relatively small-volume magma pockets. Continuous inflation provoked four small (< 5 ×106 m3) eruptions from vents located close to the summit cone and culminated, during August-October 2015, with a chemically zoned eruption that erupted 45 ± 15 ×106 m3 of lava. This two-month-long eruption evolved through (i) an initial phase of waning discharge, associated to the withdrawal of differentiated magma from the shallow system, into (ii) a month-long phase of increasing lava and SO2 fluxes at the effusive vent, coupled with CO2 enrichment of summit fumaroles, and involving emission of less differentiated lavas, to end with, (iii) three short-lived (∼2 day-long) pulses in lava and gas flux, coupled with arrival of cumulative olivine at the surface and deflation. The activity observed at Piton de la Fournaise in 2014 and 2015 points to a new model of shallow system rejuvenation and discharge, whereby continuous magma supply causes eruptions from increasingly deeper and larger magma storage zones. Downward depressurization continues until unloading of the deepest, least differentiated magma triggers pulses in lava and gas flux, accompanied by rapid contraction of the volcano edifice, that empties the main shallow reservoir and terminates the cycle. Such an unloading process may characterize the evolution of shallow magmatic systems at other persistently active effusive centers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1710921R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1710921R"><span>Diffuse Carbon Dioxide (CO2) degassing from the summit crater of Pico do Fogo during the 2014-15 eruption, Cape Verde</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rodríguez, Fatima; Dionis, Samara; Padrón, Eleazar; Fernandes, Paulo; Melián, Gladys V.; Pérez, Nemesio M.; Hernández, Pedro A.; Silva, Sónia; Pereira, José Manuel; Cardoso, Nadir; Asensio-Ramos, María; Barrancos, José; Padilla, Germán; Calvo, David; Semedo, Helio</p> <p>2015-04-01</p> <p>On January 3, 2015, a new diffuse CO2 degassing survey at the summit crater of Pico do Fogo volcano (2,829 m above sea level) was carried out by ITER/INVOLCAN/UNICV/OVCV research team to investigate the effect of the 2014-15 Fogo eruption on the diffuse degassing through the summit crater. Before the eruption onset on November 23, 2014, these type of surveys were periodically performed by ITER/INVOLCAN/UNICV/OVCV research team since May 2007. The first published data on diffuse CO2 degassing rate from the summit crater of Pico do Fogo volcano (219 ± 36 t d-1) is related to a survey performed on February 2010 (Dionis et al., 2015). Each survey implies about 65 CO2 efflux measurements to obtain a good spatial distribution and cover homogeneously the summit crater area (0.14 km2). Because of the sudden falls of rocks of different sizes inside the summit crater during the January 3 survey, the research team aborted continues working in the summit crater without completing the survey only 32 of the 65 CO2 efflux measurements were performed covering a smaller area (0.065 km2). Observed CO2 efflux values ranged from non detectable (< 1.5 g m-2 d-1) up to 12188 g m-2 d-1 and showed a mean value of 1090.2 g m-2 d-1. The observed CO2 efflux median values from the same sampling sites in previous surveys (83.1 g m-2 d-1 for March 2014; 15.5 g m-2 d-1 for October 2013; 2.3 g m-2 d-1 for April 2013; 14.6 g m-2 d-1 for February 2012; 64.7 g m-2 d-1 for March 2011; 64.5 for Febraury 2010 ) were lower than the median of the January 2015 survey (249.4 g m-2 d-1) suggesting a higher degassing rate for this new survey. The diffuse CO2 emission from the study area of 0.065 km2, within the summit crater, was 74 t d-1 on January 3, 2015, which is a similar degassing rate to those estimated for the same study area on the July 2014 (90 t d-1) and August 2014 (66 t d-1) surveys, and relatively higher than the estimated for October 2012 survey (27 t d-1). Since the diffuse CO2 emission rate on July and August 2014 were 323 and 337 t d-1, respectively, it can be expected a relatively high diffuse CO2 degassing rate from the summit crater of Pico do Fogo for the January 3, 2015 survey (> 300 t d-1). This most recent survey did not cover the hydrothermal alteration zone within the crater, where the highest CO2 efflux measurements are usually recorded. Dionis et al. (2015), Bull. Volcanol., in press;</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMNH43B1758S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMNH43B1758S"><span>Eruptive history, current activity and risk estimation using geospatial information in the Colima volcano, Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Suarez-Plascencia, C.; Camarena-Garcia, M.; Nunez-Cornu, F. J.; Flores-Peña, S.</p> <p>2013-12-01</p> <p>Colima volcano, also known as Volcan de Fuego (19 30.696 N, 103 37.026 W), is located on the border between the states of Jalisco and Colima, and is the most active volcano in Mexico. In January 20, 1913, Colima had its biggest explosion of the twentieth century, with VEI 4, after the volcano had been dormant for almost 40 years. In 1961, a dome reached the northeastern edge of the crater and started a new lava flow, and from this date maintains constant activity. In February 10, 1999, a new explosion occurred at the summit dome. The activity during the 2001-2005 period was the most intense, but did not exceed VEI 3. The activity resulted in the formation of domes and their destruction after explosive events. The explosions originated eruptive columns, reaching altitudes between 4,500 and 9,000 masl, further pyroclastic flows reaching distances up to 3.5 km from the crater. During the explosive events, ash emissions were generated in all directions reaching distances up to 100 km, slightly affecting the nearby villages: Tuxpan, Tonila, Zapotlan, Cuauhtemoc, Comala, Zapotitlan de Vadillo and Toliman. During 2005 to July 2013, this volcano has had an intense effusive-explosive activity; similar to the one that took place during the period of 1890 through 1905. That was before the Plinian eruption of 1913, where pyroclastic flows reached a distance of 15 km from the crater. In this paper we estimate the risk of Colima volcano through the analysis of the vulnerability variables, hazard and exposure, for which we use: satellite imagery, recurring Fenix helicopter over flights of the state government of Jalisco, the use of the images of Google Earth and the population census 2010 INEGI. With this information and data identified changes in economic activities, development, and use of land. The expansion of the agricultural frontier in the lower sides of the volcano Colima, and with the advancement of traditional crops of sugar cane and corn, increased the growth of avocado orchards and fruits like blueberries, raspberries, and blackberries within the radius of 15 km from the crater. The population dynamics in the Colima volcano area had a population of 552,954 inhabitants in 2010, and a growth at an annual rate of 1.6 percent of the total population. 60 percent of the populations live in 105 towns with a population less than 250 inhabitants. Also, the region showed an increase in vulnerability for the development of economic activities, supported by the highway, railway, natural gas pipelines and electrical infrastructure that connect to the Port of Manzanillo to Guadalajara city. With the use of geospatial information quantify the vulnerability, together with the hazard maps and exposure, enabled us to build the following volcanic risk maps: a) Exclusion areas and moderate hazard for explosive events (ballistic) and pyroclastic flows, b) Hazard map of lahars and debris flow, and c) Hazard map of ash-fall. The geospatial database, a GIS mapping and current volcano monitoring, are the basis of the Operational Plan Colima Volcano. Civil Protection by the state of Jalisco and the updating of urban development plans of municipalities converge on the volcano. These instruments of land planning will help reduce volcanic risk in the region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.V41C..04B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.V41C..04B"><span>Small explosive volcanic plume dynamics: insights from feature tracking velocimetry at Santiaguito lava dome</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Benage, M. C.; Andrews, B. J.</p> <p>2016-12-01</p> <p>Volcanic explosions eject turbulent, transient jets of hot volcanic gas and particles into the atmosphere. Though the jet of hot material is initially negatively buoyant, the jet can become buoyant through entrainment and subsequent thermal expansion of entrained air that allows the eruptive plume to rise several kilometers. Although basic plume structure is qualitatively well known, the velocity field and dynamic structure of volcanic plumes are not well quantified. An accurate and quantitative description of volcanic plumes is essential for hazard assessments, such as if the eruption will form a buoyant plume that will affect aviation or produce dangerous pyroclastic density currents. Santa Maria volcano, in Guatemala, provides the rare opportunity to safely capture video of Santiaguito lava dome explosions and small eruptive plumes. In January 2016, two small explosions (< 2 km) that lasted several minutes and with little cloud obstruction were recorded for image analysis. The volcanic plume structure is analyzed through sequential image frames from the video where specific features are tracked using a feature tracking velocimetry (FTV) algorithm. The FTV algorithm quantifies the 2D apparent velocity fields along the surface of the plume throughout the duration of the explosion. Image analysis of small volcanic explosions allows us to examine the maximum apparent velocities at two heights above the dome surface, 0-25 meters, where the explosions first appear, and 100-125 meters. Explosions begin with maximum apparent velocities of <15 m/s. We find at heights near the dome surface and 10 seconds after explosion initiation, the maximum apparent velocities transition to sustained velocities of 5-15 m/s. At heights 100-125 meters above the dome surface, the apparent velocities transition to sustained velocities of 5-15 m/s after 25 seconds. Throughout the explosion, transient velocity maximums can exceed 40 m/s at both heights. Here, we provide novel quantification and description of turbulent surface velocity fields of explosive volcanic eruptions at active lava domes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMED34C..04S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMED34C..04S"><span>Beyond baking soda: Demonstrating the link between volcanic eruptions and viscosity to all ages</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smithka, I. N.; Walters, R. L.; Harpp, K. S.</p> <p>2014-12-01</p> <p>Public interest in volcanic eruptions and societal relevance of volcanic hazards provide an excellent basis for successful earth science outreach. During a museum-based earth science outreach event free and open to the public, we used two new interactive experiments to illustrate the relationship between gas content, magma viscosity, and eruption style. Learning objectives for visitors are to understand: how gas drives volcanic eruptions, the differences between effusive and explosive eruption styles, viscosity's control on gas pressure within a magma reservoir, and the role of gas pressure on eruption style. Visitors apply the scientific method by asking research questions and testing hypotheses by conducting the experiments. The demonstrations are framed with real life examples of volcanic eruptions (e.g., Mt. St. Helens eruption in 1980), providing context for the scientific concepts. The first activity demonstrates the concept of fluid viscosity and how gas interacts with fluids of different viscosities. Visitors blow bubbles into water and corn syrup. The corn syrup is so viscous that bubbles are trapped, showing how a more viscous material builds up higher gas pressure. Visitors are asked which kind of magma (high or low viscosity) will produce an explosive eruption. To demonstrate an explosive eruption, visitors add an Alka-Seltzer tablet to water in a snap-top film canister. The reaction rapidly produces carbon dioxide gas, increasing pressure in the canister until the lid pops off and the canister launches a few meters into the air (tinyurl.com/nzsgfoe). Increasing gas pressure in the canister is analogous to gas pressure building within a magma reservoir beneath a volcano. The lid represents high-viscosity magma that prevents degassing, causing gas pressure to reach explosive levels. This interactive activity is combined with a display of an effusive eruption: add vinegar to baking soda in a model volcano to produce a quick-flowing eruption. These demonstrations were implemented in March 2014 at "Can You Dig It?", a popular annual collaborative outreach event hosted by the Florida Museum of Natural History and the University of Florida Department of Geological Sciences (>1,500 visitors). These experiments were also used to illustrate volcanic processes at the VGP Exploration Station, AGU 2013.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22365861-recurrent-explosive-eruptions-sigmoid-arcade-transformation-sun-driven-dynamical-magnetic-flux-emergence','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22365861-recurrent-explosive-eruptions-sigmoid-arcade-transformation-sun-driven-dynamical-magnetic-flux-emergence"><span>RECURRENT EXPLOSIVE ERUPTIONS AND THE ''SIGMOID-TO-ARCADE'' TRANSFORMATION IN THE SUN DRIVEN BY DYNAMICAL MAGNETIC FLUX EMERGENCE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Archontis, V.; Hood, A. W.; Tsinganos, K., E-mail: va11@st-andrews.ac.uk</p> <p>2014-05-10</p> <p>We report on three-dimensional MHD simulations of recurrent mini coronal mass ejection (CME)-like eruptions in a small active region (AR), which is formed by the dynamical emergence of a twisted (not kink unstable) flux tube from the solar interior. The eruptions develop as a result of the repeated formation and expulsion of new flux ropes due to continuous emergence and reconnection of sheared field lines along the polarity inversion line of the AR. The acceleration of the eruptions is triggered by tether-cutting reconnection at the current sheet underneath the erupting field. We find that each explosive eruption is followed bymore » reformation of a sigmoidal structure and a subsequent ''sigmoid-to-flare arcade'' transformation in the AR. These results might have implications for recurrent CMEs and eruptive sigmoids/flares observations and theoretical studies.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.V41C..02D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.V41C..02D"><span>Preliminary results from an integrated, multi-parameter, experiment at the Santiaguito lava dome complex, Guatemala</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>De Angelis, S.; Rietbrock, A.; Lavallée, Y.; Lamb, O. D.; Lamur, A.; Kendrick, J. E.; Hornby, A. J.; von Aulock, F. W.; Chigna, G.</p> <p>2016-12-01</p> <p>Understanding the complex processes that drive volcanic unrest is crucial to effective risk mitigation. Characterization of these processes, and the mechanisms of volcanic eruptions, is only possible when high-resolution geophysical and geological observations are available over comparatively long periods of time. In November 2014, the Liverpool Earth Observatory, UK, in collaboration with the Instituto Nacional de Sismologia, Meteorologia e Hidrologia (INSIVUMEH), Guatemala, established a multi-parameter geophysical network at Santiaguito, one of the most active volcanoes in Guatemala. Activity at Santiaguito throughout the past decade, until the summer of 2015, was characterized by nearly continuous lava dome extrusion accompanied by frequent and regular small-to-moderate gas or gas-and-ash explosions. Over the past two years our network collected a wealth of seismic, acoustic and deformation data, complemented by campaign visual and thermal infrared measurements, and rock and ash samples. Here we present preliminary results from the analysis of this unique dataset. Using acoustic and thermal data collected during 2014-2015 we were able to assess volume fractions of ash and gas in the eruptive plumes. The small proportion of ash inferred in the plumes confirms estimates from previous, independent, studies, and suggests that these events did not involve significant magma fragmentation in the conduit. The results also agree with the suggestion that sacrificial fragmentation along fault zones in the conduit region, due to shear-induced thermal vesiculation, may be at the origin of such events. Finally, starting in the summer of 2015, our experiment captured the transition to a new phase of activity characterized by vigorous vulcanian-style explosions producing large, ash-rich, plumes and frequent hazardous pyroclastic flows, as well as the formation a large summit crater. We present evidence of this transition in the geophysical and geological data, and discuss its underlying mechanisms within the framework of recent and previous models of volcanic activity at Santiaguito. We conclude that our observations have the potential to considerably advance our understanding of effusive-explosive transitions at lava dome volcanoes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V23A0465W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V23A0465W"><span>Numerical modeling of magma-tectonic interactions at Pacaya Volcano, Guatemala</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wauthier, C.</p> <p>2017-12-01</p> <p>Pacaya Volcano is composed of several volcanic cones located along the southern rim of the Amatitlan caldera, approximately 25 km south of Guatemala City. It is a basaltic volcano located in the Central American Volcanic Arc. The shallow magma plumbing system at Pacaya likely includes at least three magma reservoirs: a very shallow ( 0.2-0.4 km depth) reservoir located below and possibly within the MacKenney cone, a 4 km deep reservoir located northwest of the summit, and a shallow dike-like conduit below the summit which fed the recent flank eruptions. Pacaya's western flank is slipping in a stick-slip fashion, and the instability seems associated with larger volume eruptions. Flank instability phases indeed occurred in 2010 and 2014 in coincidence with major intrusive and eruptive phases, suggesting a positive feedback between the flank motion and major intrusions. Simple analytical models are insufficient to fit the geodetic observations and model the flank processes and their mechanical interactions with the magmatic system. Here, numerical modeling approaches are used to characterize the 2014 flank deformation episode and magma-tectonic interactions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70146876','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70146876"><span>Continuous monitoring of Hawaiian volcanoes with thermal cameras</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Patrick, Matthew R.; Orr, Tim R.; Antolik, Loren; Lee, Robert Lopaka; Kamibayashi, Kevan P.</p> <p>2014-01-01</p> <p>Continuously operating thermal cameras are becoming more common around the world for volcano monitoring, and offer distinct advantages over conventional visual webcams for observing volcanic activity. Thermal cameras can sometimes “see” through volcanic fume that obscures views to visual webcams and the naked eye, and often provide a much clearer view of the extent of high temperature areas and activity levels. We describe a thermal camera network recently installed by the Hawaiian Volcano Observatory to monitor Kīlauea’s summit and east rift zone eruptions (at Halema‘uma‘u and Pu‘u ‘Ō‘ō craters, respectively) and to keep watch on Mauna Loa’s summit caldera. The cameras are long-wave, temperature-calibrated models protected in custom enclosures, and often positioned on crater rims close to active vents. Images are transmitted back to the observatory in real-time, and numerous Matlab scripts manage the data and provide automated analyses and alarms. The cameras have greatly improved HVO’s observations of surface eruptive activity, which includes highly dynamic lava lake activity at Halema‘uma‘u, major disruptions to Pu‘u ‘Ō‘ō crater and several fissure eruptions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70032612','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70032612"><span>Hydrothermal hexahydrite spherules erupted during the 2008-2010 summit eruption of Kīlauea Volcano, Hawai`i'</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hon, Ken; Orr, Tim R.</p> <p>2011-01-01</p> <p>Small (1-3 mm), hollow spherules of hexahydrite have been collected falling out of the magmatic gas plume downwind of Kīlauea’s summit vent. The spherules were observed on eight separate occasions during 2009-2010 when a lake of actively spattering lava was present ~150-200 m below the rim of the vent. The shells of the spherules have a fine bubbly foam structure less than 0.1 mm thick, composed almost entirely of hexahydrite [MgSO4·6H2O] Small microspherules of lava (4-saturated meteoric water in the walls of the conduit above the surface of the lava lake. Solfataric sulfates may thus be recycled and reinjected into the plume, creating particulates of sulfate minerals that can be distributed far from their original source.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JVGR..344..212S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JVGR..344..212S"><span>Transient deformation associated with explosive eruption measured at Masaya volcano (Nicaragua) using Interferometric Synthetic Aperture Radar</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stephens, K. J.; Ebmeier, S. K.; Young, N. K.; Biggs, J.</p> <p>2017-09-01</p> <p>Deformation caused by processes within a volcanic conduit are localised, transient, and therefore challenging to measure. However, observations of such deformation are important because they provide insight into conditions preceding explosive activity, and are important for hazard assessment. Here, we present measurements of low magnitude, transient deformation covering an area of ∼4 km2 at Masaya volcano spanning a period of explosive eruptions (30th April-17th May 2012). Radial uplift of duration 24 days and peak displacements of a few millimeters occurred in the month before the eruption, but switched to subsidence ∼27 days before the onset of the explosive eruption on 30th of April. Uplift resumed during, and continued for ∼16 days after the end of the explosive eruption period. We use a finite element modelling approach to investigate a range of possible source geometries for this deformation, and find that the changes in pressurisation of a conduit 450 m below the surface vent (radius 160 m and length 700 m), surrounded by a halo of brecciated material with a Young's modulus of 15 GPa, gave a good fit to the InSAR displacements. We propose that the pre-eruptive deformation sequence at Masaya is likely to have been caused by the movement of magma through a constriction within the shallow conduit system. Although measuring displacements associated with conduit processes remains challenging, new high resolution InSAR datasets will increasingly allow the measurement of transient and lower magnitude deformation signals, improving the method's applicability for observing transitions between volcanic activity characterised by an open and a closed conduit system.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/pp/1810/downloads/pp1810.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/pp/1810/downloads/pp1810.pdf"><span>Postglacial eruptive history, geochemistry, and recent seismicity of Aniakchak volcano, Alaska Peninsula</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bacon, Charles R.; Neal, Christina A.; Miller, Thomas P.; McGimsey, Robert G.; Nye, Christopher J.</p> <p>2014-01-01</p> <p>Future volcanic activity of Aniakchak could include hydromagmatic explosions, possibly followed by effusion or strombolian eruption of basaltic andesite to Plinian eruption of dacite. Another voluminous eruption, such as Aniakchak II, is considered unlikely in the near future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/7836','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/7836"><span>Effects of coarse woody debris and its removal on a channel affected by the 1980 eruption of Mount St. Helens, Washington</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Thomas E. Lisle</p> <p>1995-01-01</p> <p>Abstract - During the May 18, 1980, eruption of Mount St. Helens, Washington, a pyroclastic surge introduced large volumes of coarse woody debris (CWD) and fine grained sediment to Clearwater Creek, approximately 15 km northeast of the summit. Effects of controlled CWD removal on sediment storage, substrate, and pool frequency and volume were measured in four reaches,...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/pp/1750/chapters/pp2008-1750_chapter30.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/pp/1750/chapters/pp2008-1750_chapter30.pdf"><span>Petrology of the 2004-2006 Mount St. Helens lava dome -- implications for magmatic plumbing and eruption triggering: Chapter 30 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Pallister, John S.; Thornber, Carl R.; Cashman, Katharine V.; Clynne, Michael A.; Lowers, Heather; Mandeville, Charles W.; Brownfield, Isabelle K.; Meeker, Gregory P.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.</p> <p>2008-01-01</p> <p>The question of new versus residual magma has implications for the long-term eruptive behavior of Mount St. Helens, because arrival of a new batch of dacitic magma from the deep crust could herald the beginning of a new long-term cycle of eruptive activity. It is also important to our understanding of what triggered the eruption and its future course. Two hypotheses for triggering are considered: (1) top-down fracturing related to the shallow groundwater system and (2) an increase in reservoir pressure brought about by recent magmatic replenishment. With respect to the future course of the eruption, similarities between textures and character of eruption of the 2004-6 dome and the long-duration (greater than 100 years) pre-1980 summit dome, along with the low eruptive rate of the current eruption, suggest that the eruption could continue sluggishly or intermittently for years to come.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016BVol...78...88D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016BVol...78...88D"><span>The 1909 Chinyero eruption on Tenerife (Canary Islands): insights from historical accounts, and tephrostratigraphic and geochemical data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Di Roberto, A.; Bertagnini, A.; Del Carlo, P.; Meletlidis, S.; Pompilio, M.</p> <p>2016-12-01</p> <p>The last eruption on Tenerife (Canary Islands, Spain) started on 18 November 1909 from the El Chinyero vent on the northwestern Santiago rift. This fissural eruption was well documented by scientists and eyewitnesses, but there is a lack of data on the high-energy phase that produced the most significant emissions of ash and lapilli at the onset of the eruption. Here, we review historical documents (e.g. newspapers, dispatches, telegrams); eyewitness accounts and scientific reports were reviewed from a volcanological perspective and integrated with data from the analysis of deposit features, allowing an accurate reconstruction of the eruption and its dynamics. The 1909 eruption of Chinyero was fed by a compositionally discrete magma batch that ascended rapidly within the crust, producing rather violent pulsating Strombolian explosive activity in the early phases of the eruption. This activity produced a ca. 80 m high scoria cone and heavy fallout of lapilli and ash over the entire northern sector of the island of Tenerife. The energy of explosive activity waned after 3 days, giving way to the weak Strombolian explosive activity that contributed to a lesser extent to the buildup of the pyroclastic pile. Eruptions such as those from the Chinyero vent in 1909 are representative of rift activity on Tenerife and constitute a volcanic hazard for present-day inhabitants.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.8575O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.8575O"><span>Volcano Observations Using an Unmanned Autonomous Helicopter : seismic and GPS observations near the active summit area of Sakurajima and Kirishima volcano, Japan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ohminato, T.; Kaneko, T.; Koyama, T.; Watanabe, A.; Takeo, M.; Iguchi, M.; Honda, Y.</p> <p>2012-04-01</p> <p>Observations in the vicinity of summit area of active volcanoes are very important from various viewpoints such as understanding physical processes in the volcanic conduit. It is, however, highly difficult to install observation sensors near active vents because of the risk of sudden eruptions. We have been developing a safe volcano observation system based on an unmanned aerial vehicle (UAV). As an UAV, we adopted an unmanned autonomous helicopter manufactured by Yamaha-Motor Co., Ltd. We have also developed earthquake observation modules and GPS receiver modules that are exclusively designed for UAV installation at summit areas of active volcanoes. These modules are light weight, compact size, and solar powered. For data transmission, a commercial cellular-phone network is used. Our first application of the sensor installation by the UAV is Sakurajima, one of the most active volcanos in Japan. In November 2009, 2010, and 2011, we installed up to four seismic sensors within 2km from the active summit crater. In the 2010 and 2011 operations, we succeeded in pulling up and collecting the sensor modules by using the UAV. In the 2011 experiment, we installed two GPS receivers near the summit area of Sakurajima volcano. We also applied the UAV installation to another active volcano, Shinmoedake in Kirishima volcano group. Since the sub-plinian eruption in February 2011, entering the area 3km from the summit of Shinmoe-dake has been prohibited. In May and November 2011, we installed seismic sensors and GPS receivers in the off-limit zone. Although the ground coupling of the seismic modules is not perfect due to the way they are installed, the signal-to-noise ratio of the seismic signals recorded by these modules is fairly good. Despite the low antenna height of 50 cm from the ground surface, the location errors in horizontal and vertical GPS components are 1cm and 3cm, respectively. For seismic signals associated with eruptions at Sakurajima from November 2010 to November 2011, we measure temporal variation of the amplitude ratio among the summit stations. In order to correct the amplitude variation due to the source amplitude variation, the amplitude of the recorded signals are normalized by using the amplitude of a permanent station, located on the western flank of Sakurajima 5km from the summit. The daily average of the normalized amplitude ratios among the summit stations shows clear temporal variation. The amplitude ratio variation can be classified to three stages. In the first stage, the amplitude ratios among the summit stations are nearly constant. The 2nd stage is characterized by a gradual increase in the amplitude ratio. The third stage is slightly difficult to define but we can say that the amplitude ratios are almost constant with fluctuations larger than that in the first stage. These changes strongly suggest a change in the source depth, probably migration of the source to the shallower portion in the volcanic conduit. Small change in the source position would have been observed as a big change in the observed amplitude ratio due to the closeness of the sensors to the source.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70172021','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70172021"><span>Electrical activity during the 2006 Mount St. Augustine volcanic eruptions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Thomas, Ronald J.; Krehbiel, Paul R.; Rison, William; Edens, H. E.; Aulich, G. D.; McNutt, S.R.; Tytgat, Guy; Clark, E.</p> <p>2007-01-01</p> <p>By using a combination of radio frequency time-of-arrival and interferometer measurements, we observed a sequence of lightning and electrical activity during one of Mount St. Augustine's eruptions. The observations indicate that the electrical activity had two modes or phases. First, there was an explosive phase in which the ejecta from the explosion appeared to be highly charged upon exiting the volcano, resulting in numerous apparently disorganized discharges and some simple lightning. The net charge exiting the volcano appears to have been positive. The second phase, which followed the most energetic explosion, produced conventional-type discharges that occurred within plume. Although the plume cloud was undoubtedly charged as a result of the explosion itself, the fact that the lightning onset was delayed and continued after and well downwind of the eruption indicates that in situ charging of some kind was occurring, presumably similar in some respects to that which occurs in normal thunderstorms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70191500','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70191500"><span>238U–230Th–226Ra–210Pb–210Po disequilibria constraints on magma generation, ascent, and degassing during the ongoing eruption of Kīlauea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Girard, Guillaume; Reagan, Mark K.; Sims, Kenneth W. W.; Thornber, Carl; Waters, Christopher L.; Phillips, Erin H.</p> <p>2017-01-01</p> <p>The timescales of magma genesis, ascent, storage and degassing at Kīlauea volcano, Hawai‘i are addressed by measuring 238U-series radionuclide abundances in lava and tephra erupted between 1982 and 2008. Most analyzed samples represent lavas erupted by steady effusion from Pu‘u ‘Ō‘ō and Kūpahianaha from 1983 to 2008. Also included are samples erupted at the summit in April 1982 and March 2008, along the East Rift Zone at the onset of the ongoing eruption in January 1983, and during vent shifting episodes 54 and 56, at Nāpau crater in January 1997, and Kane Nui O Hamo in June 2007. In general, samples have small (∼4%) excesses of (230Th) over (238U) and ∼3 to ∼17% excesses of (226Ra) over (230Th), consistent with melting of a garnet peridotite source at melting rates between 1 × 10–3 and 5 × 10–3 kg m–3 a–1, and melting region porosity between ∼2 and ∼10%, in agreement with previous studies of the ongoing eruption and historical eruptions. A small subset of samples has near-equilibrium (230Th/238U) values, and thus were generated at higher melting rates. Based on U–Th–Ra disequilibria and Th isotopic data from this and earlier studies, melting processes and sources have been relatively stable over at least the past two centuries or more, including during the ongoing unusually long (>30 years) and voluminous (4 km3) eruption. Lavas recently erupted from the East Rift Zone have average initial (210Pb/226Ra) values of 0·80 ± 0·11 (1σ), which we interpret to be the result of partitioning of 222Rn into a persistently generated CO2-rich gas phase over a minimum of 8 years. This (210Pb) deficit implies an average magma ascent rate of ≤3·7 km a–1 from ∼30 km depth to the surface. Spatter and lava associated with vent-opening episodes erupt with variable (210Pb) deficits ranging from 0·7 to near-equilibrium values in some samples. The samples with near-equilibrium (210Pb/226Ra) are typically more differentiated, suggesting decadal timescales of magma storage in shallow conduits or reservoirs that were not degassing. Lava and spatter samples erupted in the East Rift Zone and at the summit had (210Po) ∼0 at the time of eruption, which results from efficient partitioning of Po into the CO2- and SO2-rich gas phases during and prior to eruption. Summit ash and Pele’s hair samples from 2008 differ from lava and lapilli samples in that they have elevated initial (210Po), (210Pb/226Ra), and Pb concentrations because of Po condensation on tephra particles, and incorporation of fumarolic Po and Pb into erupted tephra fragments during quenching.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19..803L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19..803L"><span>Long-term variations in explosion dynamics at Santiaguito volcano</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lamb, Oliver; De Angelis, Silvio; Lavallée, Yan; Lamur, Anthony; Hornby, Adrian; Von Aulock, Felix; Kendrick, Jackie; Chigna, Gustavo; Rietbrock, Andreas</p> <p>2017-04-01</p> <p>Here we present two years of seismic and infrasound observations of ash-and-gas explosions recorded during an ongoing multi-disciplinary experiment at the Santiaguito lava dome complex, Guatemala. Due to the occurrence of regular explosive activity since the early 1970's, the volcano is an ideal laboratory for the study of the eruption dynamics of long-lived silicic eruptions. The instrument network, deployed between 0.5 and 7 km from the active vent, includes 5 broadband and 6 short-period seismometers, as well as 5 infrasound sensors. Seismo-acoustic data are complemented by thermal infrared imagery, visual observations from an unmanned aerial vehicle, and geochemical measurements of eruptive products. In mid-2015, a major shift in activity took place at Santiaguito. Vulcanian explosions became more energetic and less regular, and were often accompanied by pyroclastic density currents. Important morphological changes were observed at the active El Caliente dome, as the lava-filled crater was excavated by a sequence of vigorous explosions to a depth of at least 150 m. Variations in the relative arrival times of seismic and infrasound signals suggest a significant deepening of the explosion initiation point inside the conduit. This shift in behaviour likely represents a change in the eruptive mechanism in the upper conduit beneath El Caliente, possibly triggered by disequilibrium at a greater depth in the volcanic system. Our observations suggest a reactivation of the deep magmatic system at Santiaguito, with little precursory activity. The results of this multi-parameteric monitoring experiment have specific implications for hazard assessment at Santiaguito, and contributes to understanding the processes that control changes in eruptive regime at lava dome volcanoes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.V53E2670W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.V53E2670W"><span>May 2011 eruption of Telica Volcano, Nicaragua: Multidisciplinary observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Witter, M. R.; Geirsson, H.; La Femina, P. C.; Roman, D. C.; Rodgers, M.; Muñoz, A.; Morales, A.; Tenorio, V.; Chavarria, D.; Feineman, M. D.; Furman, T.; Longley, A.</p> <p>2011-12-01</p> <p>Telica volcano, an andesitic stratovolcano in north-western Nicaragua, erupted in May 2011. The eruption, produced ash but no lava and required the evacuation of over 500 people; no injuries were reported. We present the first detailed report of the eruption, using information from the TElica Seismic ANd Deformation (TESAND) network, that provides real-time data, along with visual observations, ash leachate analysis, and fumarole temperature measurements. Telica is located in the Maribios mountain range. It is one of the most active volcanoes in Nicaragua and has frequent small explosions and rare large (VEI 4) eruptions, with the most recent sizable eruptions (VEI 2) occurring in 1946 and 1999. The 2011 eruption is the most explosive since 1999. The eruption consisted of a series of ash explosions, with the first observations from May 8, 2011 when local residents reported ash fall NE of the active crater. Popping sounds could be heard coming from the crater on May 10. On May 13, the activity intensified and continued with some explosions every day for about 2 weeks. The well-defined plumes originated from the northern part of the crater. Ash fall was reported 4 km north of the active crater on May 14. The largest explosion at 2:54 pm (local time) on May 21 threw rocks from the crater and generated a column 2 km in height. Fresh ash samples were collected on May 16, 18, and 21 and preliminary inspection shows that the majority of the material is fragmented rock and crystalline material, i.e. not juvenile. Ash leachates (ash:water = 1:25) contain a few ppb As, Se, and Cd; tens of ppb Co and Ni; and up to a few hundred ppb Cu and Zn. Telica typically has hundreds of small seismic events every day, even when the volcano is not erupting. The TESAND network detected an increase in the rate and magnitude of seismic activity, with a maximum magnitude of 3.3. Elevated fumarole temperatures at locations near the active vent were also observed throughout the May 2011 eruption. Temperature measurements taken on May 26 recorded a maximum of 539°C. Ten continuous GPS stations running on and close to the volcano showed little deformation, suggesting that substantial quantities of new magma were not displaced beneath the volcanic edifice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007BVol...69..741C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007BVol...69..741C"><span>Pits, rifts and slumps: the summit structure of Piton de la Fournaise</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carter, Adam; van Wyk de Vries, Benjamin; Kelfoun, Karim; Bachèlery, Patrick; Briole, Pierre</p> <p>2007-06-01</p> <p>A clear model of structures and associated stress fields of a volcano can provide a framework in which to study and monitor activity. We propose a volcano-tectonic model for the dynamics of the summit of Piton de la Fournaise (La Reunion Island, Indian Ocean). The summit contains two main pit crater structures (Dolomieu and Bory), two active rift zones, and a slumping eastern sector, all of which contribute to the actual fracture system. Dolomieu has developed over 100 years by sudden large collapse events and subsequent smaller drops that include terrace formation. Small intra-pit collapse scars and eruptive fissures are located along the southern floor of Dolomieu. The western pit wall of Dolomieu has a superficial inward dipping normal fault boundary connected to a deeper ring fault system. Outside Dolomieu, an oval extension zone containing sub-parallel pit-related fractures extends to a maximum distance of 225 m from the pit. At the summit the main trend for eruptive fissures is N80°, normal to the north south rift zone. The terraced structure of Dolomieu has been reproduced by analogue models with a roof to width ratio of approximately 1, suggesting an original magma chamber depth of about 1 km. Such a chamber may continue to act as a storage location today. The east flank has a convex concave profile and is bounded by strike-slip fractures that define a gravity slump. This zone is bound to the north by strike-slip fractures that may delineate a shear zone. The southern reciprocal shear zone is probably marked by an alignment of large scoria cones and is hidden by recent aa lavas. The slump head intersects Dolomieu pit and may slide on a hydrothermally altered layer known to be located at a depth of around 300 m. Our model has the summit activity controlled by the pit crater collapse structure, not the rifts. The rifts become important on the mid-flanks of the cone, away from pit-related fractures. On the east flank the superficial structures are controlled by the slump. We suggest that during pit subsidence intra-pit eruptions may occur. During tumescence, however, the pit system may become blocked and a flank eruption is more likely. Intrusions along the rift may cause deformation that subsequently increases the slump’s potential to deform. Conversely, slumping may influence the east flank stress distribution and locally control intrusion direction. These predictions can be tested with monitoring data to validate the model and, eventually, improve monitoring.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018LPICo2047.6102H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018LPICo2047.6102H"><span>Magmatic Ascent and Eruption Processes on Mercury</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Head, J. W.; Wilson, L.</p> <p>2018-05-01</p> <p>MESSENGER volcanic landform data and information on crustal composition allow us to model the generation, ascent, and eruption of magma; Mercury explosive and effusive eruption processes differ significantly from other terrestrial planetary bodies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JVGR..278..132W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JVGR..278..132W"><span>Thermal imaging and analysis of short-lived Vulcanian explosions at Volcán de Colima, Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Webb, Erica B.; Varley, Nick R.; Pyle, David M.; Mather, Tamsin A.</p> <p>2014-05-01</p> <p>Vulcanian explosions present a major hazard at many active volcanoes, but they also provide useful insights into the underlying behaviour of the volcanic system and therefore require close monitoring. Thermal infrared cameras are an effective tool for imaging Vulcanian explosion plumes since they capture detailed temperature information, and can reveal the internal dynamics of the plume-forming explosions. High spatial resolution thermal images of 200 small to moderate sized Vulcanian explosions from the summit crater of Volcán de Colima, Mexico, recorded between 2006 and 2011, were analysed to distinguish different event types and develop an explosion classification scheme. Explosions display a broad spectrum of sizes and characteristics, ranging between two typical end-members: “large-impulsive” events producing rapidly ascending explosion plumes up to heights of 600-1600 m above the crater rim, and “small-diffusive” events with plumes restricted to heights < 600 m. Most explosion plumes comprise a steady “gas-thrust” feeder plume below a convecting plume front. Others, that lack sufficient kinetic energy, rise buoyantly throughout the explosion, with steady buoyant ascent velocities ranging from ~ 1 m s- 1 to ~ 29 m s- 1. A time-series of thermal imagery throughout the period 2006-2011 reveals a weak relationship between apparent plume temperatures and lava dome extrusion, with the highest explosion temperatures coinciding with the onset of dome growth in early 2007. Temporal variations in the source locations of explosions across the summit crater are also identified and appear to show a close relationship to the patterns of lava dome growth and thermal evolution, with explosion source locations associated with the highest temperature thermal features.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRE..122..501P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRE..122..501P"><span>Flank vents and graben as indicators of Late Amazonian volcanotectonic activity on Olympus Mons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Peters, S. I.; Christensen, P. R.</p> <p>2017-03-01</p> <p>Previous studies have focused on large-scale features on Olympus Mons, such as its flank terraces, the summit caldera complex, and the basal escarpment and aureole deposits. Here we identify and characterize previously unrecognized and unmapped small scale features to help further understand the volcanotectonic evolution of this enormous volcano. Using Context Camera, High Resolution Imaging Science Experiment, Thermal Emission Imaging System, High Resolution Stereo Camera Digital Terrain Model, and Mars Orbiter Laser Altimeter data, we identified and characterized the morphology and distribution of 60 flank vents and 84 grabens on Olympus Mons. We find that effusive eruptions have dominated volcanic activity on Olympus Mons in the Late Amazonian. Explosive eruptions were rare, implying volatile-poor magmas and/or a lack of magma-water interactions during the Late Amazonian. The distribution of flank vents suggests dike propagation of hundreds of kilometers and shallow magma storage. Small grabens, not previously observed in lower-resolution data, occur primarily on the lower flanks of Olympus Mons and indicate late-stage extensional tectonism. Based on superposition relationships, we have concluded two stages of development for Olympus Mons during the Late Amazonian: (1) primarily effusive resurfacing and formation of flank vents followed by (2) waning effusive volcanism and graben formation and/or reactivation. This developmental sequence resembles that proposed for Ascraeus Mons and other large Martian shields, suggesting a similar geologic evolution for these volcanoes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss021e008370.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss021e008370.html"><span>Earth Observations taken by the Expedition 21 Crew</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2009-10-16</p> <p>ISS021-E-008370 (16 Oct. 2009) --- El Misti volcano in Peru is featured in this image photographed by an Expedition 21 crew member on the International Space Station. The symmetric conical shape of El Misti is typical of a stratovolcano ? a type of volcano characterized by interlayered lavas and products of explosive eruptions, such as ash and pyroclastic flow deposits. Stratovolcanoes are usually located on the continental crust above a subducting tectonic plate. Magma feeding the stratovolcanoes of the Andes Mountains ? including 5,822 meter-high El Misti ? is associated with ongoing subduction of the Nazca Plate beneath the South American Plate. El Misti?s most recent -- and relatively minor -- eruption occurred in 1985. The city center of Arequipa, Peru lies only 17 kilometers away from the summit of El Misti; the gray urban area is bordered by green agricultural fields (right). With almost one million residents in 2009, it is the second city of Peru in terms of population. Much of the building stone for Arequipa, known locally as sillar, is quarried from nearby pyroclastic flow deposits that are white in color. Arequipa is known as ?the White City? because of the prevalence of this building material. The Chili River extends northeastwards from the city center, and flows through a canyon (left) between El Misti volcano and Nevado Chachani to the north.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.V53D2650M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.V53D2650M"><span>Building the oceanic crust: Insights on volcanic emplacement processes at the hotspot-influenced Galápagos Spreading Center, 92°W</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McClinton, J. T.; White, S. M.; Colman, A.; Sinton, J. M.</p> <p>2011-12-01</p> <p>The Galápagos Spreading Center (GSC) displays a range of axial morphology due to increased magma supply from the adjacent Galápagos mantle plume. Over 30 years of scientific exploration has also documented the associated variations in volcanic terrain, crustal thickness, and geochemistry of erupted basalts, but until recently the fine-scale ("lava flow scale") volcanic features of the GSC had not been investigated. Using the Alvin submersible and aided by near-bottom photographic surveys by TowCam and sub-meter-scale sonar surveys by AUV Sentry, we mapped and sampled 12 individual eruptive units covering ~16km2 of seafloor on the ridge axis of the GSC at 92°W. Variations in AUV Sentry bathymetry and DSL-120A backscatter enabled us to characterize the fine-scale surface morphology within each eruptive unit. Lava flow morphologies within each unit were identified using a neuro-fuzzy classifier which assigns pixels as pillows, lobates, sheets, or fissures by using attributes derived from high-resolution sonar bathymetry and backscatter (McClinton et al., submitted PE&RS). An accuracy assessment indicates approximately 90% agreement between the lava morphology map and an independent set of visual observations. The result of this classification effort is that we are able to quantitatively examine the spatial distribution of lava flow morphology as it relates to the emplacement of lava flows within each eruptive unit at a mid-ocean ridge. Preliminary analyses show that a large, segment-centered volcanic cone which straddles the axial summit graben (the "Empanada") is constructed mostly of pillow lavas, while volcanism in the rifted center of the cone consists of lobate and sheet flows. Conversely, along the rest of the segment, on-axis eruptions consist mainly of pillow lava with most sheet and lobate flows found outside of a small axial summit graben. At least some of these sheet flows are fed by lava channels, suggesting emplacement over distances up to 1km, while pillow lava within the summit graben form low mounds; we speculate that eruption effusion rates decreased over the eruptive episode, producing changes in lava morphology within the larger eruptive units. Many axial mounds are also cut by the graben faults. The relatively young appearance of the lava surfaces at 92°W argues for a close relationship between volcanism and graben faulting on this part of the ridge.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018EP%26S...70...67C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018EP%26S...70...67C"><span>The thermal signature of Aso Volcano during unrest episodes detected from space and ground-based measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cigolini, Corrado; Coppola, Diego; Yokoo, Akihiko; Laiolo, Marco</p> <p>2018-04-01</p> <p>The thermal signature of Aso Volcano (Nakadake) during unrest episodes has been analyzed by combining the MODIS-MIROVA data set (2000-2017) with high-resolution images (LANDSAT 8 OLI and Sentinel 2) and ground-based thermal observations (2013-2017). The site of major activity (crater 1) is located at the summit of the volcano and is composed by a fumarole field (located in the South Area) and an acidic lake (replaced by a Central Pit during Strombolian phases). The volcanic radiative power (VRP) obtained by nighttime satellite data during the reference period was mainly below 3 MW. This thermal threshold marks the transition from high fumarole activity (HFA) to Strombolian eruptions (SE). However, periods characterized by sporadic phreatic eruptions (PE, eventually bearing phreatomagmatic episodes), which is the prevalent phase during unrest episodes, exhibit very low VRP values, being around 0.5 MW, or below. The statistical analysis of satellite data shows that the transition from HFA to Strombolian activity (which started on August 2014 and ceased in May 2015) occurs when VRP values are above the cited 3 MW threshold. In particular during marked Strombolian phases (November-December 2014), the radiative power was higher than 4 MW, reaching peak values up to 15.6 MW (on December 7, 2014, i.e., 10 days after the major Strombolian explosion of November 27). Conversely, ground-based measurements show that heat fluxes recorded by FLIR T440 Thermo-camera on the fumarole field of the South Area has been relatively stable around 2 MW until February 2015. Their apparent temperatures were fluctuating around 490-575 °C before the major Strombolian explosive event, whereas those recorded at the active vent, named Central Pit, reached their maxima slightly above 600 °C; then both exhibited a decreasing trend in the following days. During the Strombolian activity, the crater lake dried out and was then replenished by early July, 2016. Then, volcanic activity shifted back to phreatic-phreatomagmatic and the eruptive cycle was completed. During this period, the MIROVA system detected very few thermal alerts and the ground-based measurements were fluctuating around 1 MW. The most violent explosion occurred on October 8, 2016, and within the following weeks measured VRP were moderately above 2 MW. This is coeval with a thermal increase at the fumarole field of the South Area, with temperatures well above 300 °C. Thermal monitoring at Aso Volcano is an additional tool in volcano surveillance that may contribute to near-real-time hazard assessment.[Figure not available: see fulltext.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.V43A3129A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.V43A3129A"><span>Changes in lava effusion rate, explosion characteristics and degassing revealed by time-series photogrammetry and feature tracking velocimetry of Santiaguito lava dome</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Andrews, B. J.; Grocke, S.; Benage, M.</p> <p>2016-12-01</p> <p>The Santiaguito dome complex, Guatemala, provides a unique opportunity to observe an active lava dome with an array of DSLR and video cameras from the safety of Santa Maria volcano, a vantage point 2500 m away from and 1000 m above the dome. Radio triggered DSLR cameras can collect synchronized images at rates up to 10 frames/minute. Single-camera datasets describe lava dome surface motions and application of Feature-Tracking-Velocimetry (FTV) to the image sequences measures apparent lava flow surface velocities (as projected onto the camera-imaging plane). Multi-camera datasets describe the lava dome surface topography and 3D velocity field; this 4D photogrammetric approach yields georeferenced point clouds and DEMs with specific points or features tracked through time. HD video cameras document explosions and characterize those events as comparatively gas-rich or ash-rich. Comparison of observations collected during January and November 2012 and January 2016 reveals changes in the effusion rate and explosion characteristics at the active Santiaguito dome that suggest a change in shallow degassing behavior. The 2012 lava dome had numerous incandescent regions and surface velocities of 3 m/hr along the southern part of the dome summit where the dome fed a lava flow. The 2012 dome also showed a remarkably periodic (26±6 minute) pattern of inflation and deflation interpreted to reflect gas accumulation and release, with some releases occurring explosively. Video observations show that the explosion plumes were generally ash-poor. In contrast, the January 2016 dome exhibited very limited incandescence, and had reduced surface velocities of <1 m/hr. Explosions occurred infrequently, but were generally longer duration ( e.g. 90-120 s compared to 30 s) and more ash-rich than those in 2012. We suggest that the reduced lava effusion rate in 2016 produced a net increase in the gas accumulation capacity of the shallow magma, and thus larger, less-frequent explosions. These findings indicate that gas permeability may be proportional to magma ascent and strain rate in dome-forming eruptions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.V33B0647F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.V33B0647F"><span>Kulanaokuaiki 3: Product of an Energetic, Diatreme-Like Eruption at Kilauea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fiske, R. S.; Rose, T. R.; Swanson, D. A.</p> <p>2006-12-01</p> <p>Kulanaokuaiki 3 (K-3), one of five units of the Kulanaokuaiki tephra, was erupted at ~AD 850 and blanketed large near-summit areas. Most complete remnants today are found in the Koa`e fault system and on the volcano`s south flank, S and SE of the summit. There, K-3 consists mostly of crystal-rich scoria lapilli contained in two sub-units, generally 1-8 cm thick, separated by a <1 cm "parting" of coarse ash and/or reticulite lapilli. Fine ash (<0.5 mm) makes up <3% of the two scoria units, increasing upward to ~10%. Dense lithic clasts are contained in both sub-units; ~85% of these consist of a wide variety of basalt (some enclosed in cored bombs), and ~12% are fine-coarse gabbro (some containing interstitial glass w/vesicles). The lithics are typically fresh, suggesting that the eruptive conduit pierced pristine parts of the volcano`s edifice rather than long-established, hydrothermally altered conduit systems. Erosion has stripped most K-3 from the south flank, leaving its lithics as scattered lags. Dense clasts, >4 kg and 18 cm across, are found as far as 7 km from the summit; progressively smaller clasts (~3-4 cm) fell at the coastline, 17 km away. The K-3 scoria deposits are unremarkable to the eye, but this belies cryptic vertical zonation that characterizes these units at widespread south-flank localities. The specific gravity of scoria lapilli (7-10 mm dia.) decreases upward in the lower sub-unit, accompanied by decreasing whole-rock MgO values. The pattern is reversed in the upper sub-unit, where specific gravity and MgO values increase upward. Available information suggests the specific gravity and MgO variations correlate with percentages of phenocrystic olivine. Preliminary geobarometry of pyroxene-glass pairs suggests that some gabbro was crystallizing at 5-7 km depth before exploding from the volcano-- far deeper than expected in a phreatomagmatic eruption. We interpret that CO2, known to be released in huge volumes from Kilauea`s summit, and which initially exsolves from basaltic magma at ~10 km depth, was the likely propellant for the diatreme-like K-3 eruption. While reaming a conduit to the surface, the streaming CO2, knicked the upper part of a magma body (likely dike-shaped), initiating its disintegration. The first pulse of the eruption released scoria that, along with spalled conduit wall rocks, erupted to form the lower K-3 sub-unit. Following a brief pause, when the air partly cleared to form the mid-K-3 parting, a second pulse entrained scoria originating from progressively deeper and more olivine-rich parts of the magma body. As a result, scoria containing greater percentages of phenocrystic olivine was erupted, and these were showered over the south flank to produce the observed upside-down "magma-chamber grading" in the upper K-3 sub-unit. Multi-mach exit velocities are visualized, and entrained lithic clasts may have been carried to heights of 15-20 km. These clasts were carried to the southeast as they fell through high-level northwesterly winds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.V14B..07M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.V14B..07M"><span>A Nanolite Record of Eruption Style Transition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mujin, M.; Nakamura, M.</p> <p>2014-12-01</p> <p>Microlites in pyroclasts have been intensively studied to understand magma ascent processes. However, microlites do not record the explosive-effusive transitions in sub-Plinian eruptions when such transitions are governed by the shallow level degassing rather than by the magma ascent rate. To overcome this limitation, we studied the "nanolites" in the quenched products of the 2011 Shinmoedake, Kirishima Volcanic Group, Kyusyu Japan1. Nanolites are the nanometer-scale components of the groundmass minerals and exhibit a steeper slope of crystal size distribution than that of the microlites2. In the 2011 Shinmoedake eruption, the style of activity had undergone transformations from sub-Plinian eruption to Vulcanian explosion and intermittent effusion of lava3. We found that, although the products formed by different eruptive activities have similar microlite characteristics, such products can be distinguished clearly by their mineral assemblage of nanolites. The samples of pumices of sub-Plinian eruptions and Vulcanian explosions and the dense juvenile fragments of lava (in descending order of explosivity) contained, respectively, nanolites of low-Ca pyroxene, low-Ca pyroxene + plagioclase, and low-Ca pyroxene + plagioclase + Fe-Ti oxides. Nanolites are assumed to crystallize when undercooling of the magma due primarily to dehydration increases rapidly near the surface. The water contents of the interstitial glass indicate that the quenched depths did not differ greatly between eruption styles. Hence, the different nanolite assemblages of each eruption style are assumed to have resulted from differences in magma residence time near the surface. Thus, we propose that nanolites in pyroclasts have the potential to indicate the physicochemical conditions of magma at the transition points of eruption styles. References 1) Mujin and Nakamura, 2014, Geology, v.42, p.611-614 2) Sharp et al., 1996, Bull. Volcanol, v.57, p.631-640 3) Miyabuchi et al, 2013, J. Volcanol. Geotherm. Res, v.258, p.31-46</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss038e025895.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss038e025895.html"><span>Earth Observations taken by Expedition 38 crewmember</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2014-01-05</p> <p>ISS038-E-025895 (5 Jan. 2014) --- Bazman volcano in Iran is featured in this image photographed by an Expedition 38 crew member on the International Space Station. Bazman volcano is located in a remote southern region within the Bazman Protected Area of Sistan and Baluchestan Provinces. While the volcano has the classic cone shape associated with stratovolcanoes, it is also heavily dissected by channels that extend downwards from the 3,490-meter-above-sea-level summit. This radial drainage pattern - looking similar to the spokes of a bicycle wheel - is readily observed in this photograph. Such patterns can form around high, symmetric peaks when water runoff and erosion is not constrained by the resistance of geologic materials or barriers to flow, leading to essentially even distribution of water runoff channels around the central peak. While there is no historical record of volcanism at Bazman, and no geologic record of eruptive activity within the past 10,000 years, some fumarolic activity - gas and steam emissions - have been reported, according to the Smithsonian Institution National Museum of Natural History's Global Volcanism Program. The summit of the volcano is marked by a well-formed explosion crater, and lava cones formed on the flanks of the main volcano are associated with well-preserved lava flows-a particularly striking example is visible on the north flank of Bazman at center. Together, these observations and features are suggestive that Bazman may be a dormant, rather than extinct, volcano.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss014e18844.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss014e18844.html"><span>Earth Observations taken by the Expedition 14 crew</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2007-04-02</p> <p>ISS014-E-18844 (2 April 2007) --- A plume at Mt. Bagana, Bougainville Island is featured in this image photographed by an Expedition 14 crewmember on the International Space Station. Bougainville Island, part of the Solomon Islands chain to the east of Papua New Guinea, is typical of many Pacific Rim islands in that volcanism has played a large part in both its geological and recorded history. The island hosts three large volcanoes along its northwest-southeast trending axis: Mt. Balbi, Mt. Bagana, and the Mt. Takuan volcanic complex. Mt. Bagana (near center) is the only volcano on the island that has been historically active. Light green stressed vegetation, and brown lobate lava flows mark the 1,750 meter high lava cone of Mt. Bagana within the verdant landscape of Bougainville Island. The eruptive style of the volcano is typically non-explosive, producing thick lobes of andesitic lava that run down the flanks and maintain a dome in the summit crater. Occasional pyroclastic flows have also been noted. The most recent phase of activity, which began on March 7, has been characterized by vapor plumes with occasional ash-producing emissions. This photograph, acquired almost one month (twenty days) after the last reported activity at Bagana, records a diffuse white vapor plume extending west-southwest from the summit. The Solomon Island region experiences other effects due to the geologic setting: earlier this week, a large but shallow earthquake shook the region and induced a tsunami that hit the western part of the Solomon Island chain.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70024289','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70024289"><span>Subsidence at Kiska volcano, Western Aleutians, detected by satellite radar interferometry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lu, Z.; Masterlark, Timothy; Power, J.; Dzurisin, D.; Wicks, Charles</p> <p>2002-01-01</p> <p>Sequential interferometric synthetic aperture radar images of Kiska, the westernmost historically active volcano in the Aleutian arc, show that a circular area about 3 km in diameter centered near the summit subsided by as much as 10 cm from 1995 to 2001, mostly during 1999 and 2000. An elastic Mogi-type deformation model suggests that the source is within 1 km of the surface. Based on the shallow source depth, the copious amounts of steam during recent eruptions, and recent field reports of vigorous steaming and persistent ground shaking near the summit area, we attribute the subsidence to decreased pore-fluid pressure within a shallow hydrothermal system beneath the summit area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70013053','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70013053"><span>Degassing-induced crystallization of basaltic magma and effects on lava rheology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lipman, P.W.; Banks, N.G.; Rhodes, J.M.</p> <p>1985-01-01</p> <p>During the north-east rift eruption of Mauna Loa volcano, Hawaii, on 25 March-14 April 1984 (Fig. 1), microphenocryst contents of erupted lava increased from 0.5 to 30% without concurrent change in either bulk magma composition or eruption temperature (1,140 ?? 3 ??C). The crystallization of the microphenocrysts is interpreted here as being due to undercooling of the magma 20-30 ??C below its liquidas; the undercooling probably resulted from separation and release of volatiles as the magma migrated 12 km from the primary summit reservoir to the eruption site on the north-east rift zone. Such crystallization of magma during an eruption has not been documented previously. The undercooling and crystallization increased the effective viscosity of the magma, leading to decreased eruption rates and stagnation of the lava flow. ?? 1985 Nature Publishing Group.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018FrEaS...6...46Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018FrEaS...6...46Z"><span>An overview of the dynamics of the Volcanic Paroxysmal Explosive Activity, and related seismicity, at andesitic and dacitic volcanoes (1960-2010)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zobin, Vyacheslav M.</p> <p>2018-05-01</p> <p>Understanding volcanic paroxysmal explosive activity requires the knowledge of many associated processes. An overview of the dynamics of paroxysmal explosive eruptions (PEEs) at andesitic and dacitic volcanoes occurring between 1960 and 2010 is presented here. This overview is based mainly on a description of the pre-eruptive and eruptive events, as well as on the related seismic measurements. The selected eruptions are grouped according to their Volcanic Explosivity Index (VEI). A first group includes three eruptions of VEI 5-6 (Mount St. Helens, 1980; El Chichón, 1982, and Pinatubo, 1991) and a second group includes three eruptions of VEI 3 (Usu volcano, 1977; Soufriere Hills Volcano (SHV), 1996, and Volcán de Colima, 2005). The PEEs of the first group have similarity in their developments that allows to propose a 5-stage scheme of their dynamics process. Between these stages are: long (more than 120 years) period of quiescence (stage 1), preliminary volcano-tectonic (VT) earthquake swarm (stage 2), period of phreatic explosions (stage 3) and then, PEE appearance (stage 4). It was shown also that the PEEs of this group during their Plinian stage "triggered" the earthquake sequences beneath the volcanic structures with the maximum magnitude of earthquakes proportional to the volume of ejecta of PEEs (stage 5). Three discussed PEEs of the second group with lower VEI developed in more individual styles, not keeping within any general scheme. Among these, one PEE (SHV) may be considered as partly following in development to the PEEs of the first group, having stages 1, 3 and 4. The PEEs of Usu volcano and of Volcán de Colima had no preliminary long-term stages of quiescence. The PEE at Usu volcano came just at the end of the preceding short swarm of VT earthquakes. At Volcán de Colima, no preceding swarm of VT occurred. This absence of any regularity in development of lower VEI eruptions may refer, among other reasons, to different conditions of opening of the magmatic conduit during these eruptions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EP%26S...68...48K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EP%26S...68...48K"><span>Groundwater pressure changes and crustal deformation before and after the 2007 and 2014 eruptions of Mt. Ontake</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koizumi, Naoji; Sato, Tsutomu; Kitagawa, Yuichi; Ochi, Tadafumi</p> <p>2016-03-01</p> <p>Volcanic activity generally causes crustal deformation, which sometimes induces groundwater changes, and both of these phenomena are sometimes detected before volcanic eruptions. Therefore, investigations of crustal deformation and groundwater changes can be useful for predicting volcanic eruptions. The Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, has been observing groundwater pressure at Ohtaki observatory (GOT) since 1998. GOT is about 10 km southeast of the summit of Mt. Ontake. During this observation period, Mt. Ontake has erupted twice, in 2007 and in 2014. Before the 2007 eruption, the groundwater pressure at GOT clearly dropped, but it did not change before or after the 2014 eruption. These observations are consistent with the crustal deformation observed by Global Navigation Satellite System stations of the Geospatial Information Authority of Japan. The difference between the 2007 and 2014 eruptions can be explained if a relatively large magma intrusion occurred before the 2007 eruption but no or a small magma intrusion before the 2014 eruption.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1914865C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1914865C"><span>Lava flow hazard at the new South-East Crater of Etna volcano</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cappello, Annalisa; Ganci, Gaetana; Bilotta, Giuseppe; Hérault, Alexis; Zago, Vito; Del Negro, Ciro</p> <p>2017-04-01</p> <p>The summit area of Mount Etna has frequently undergone major morphological changes due to its persistent eruptive activity. Since its creation during the 1971 eruption, the Southeast Crater (SEC) has been the most active of the summit craters of Etna. At first, it was a degassing pit located close to the southeast base of the Central Crater cone. During the first 40 years of activity, SEC erupted quite frequently producing almost one hundred of lava flows. Between 2011 and 2016, more than 50 lava fountains occurred, leading to the formation of a new pyroclastic cone (NSEC) on the eastern flank of the SEC. All SEC eruptions are likely to give rise to lava flow, which is the greatest hazard presented to the tourist facilities on the south flank of Etna. For this reason, in 2011 we produced a lava flow hazard map for SEC eruptions using the 2005 DEM as topographic base, where the NSEC was not yet formed. Here we present the new 1-m DEM of Etna updated to 18 December 2015 obtained from high resolution stereo Pléiades images (0.5 m). Processing of Pléiades data was performed by using the DEM Extraction Module of ENVI through three steps: epipolar image creation, image matching, and DEM geocoding. This DEM was used as the new topographic base to produce the first hazard map from lava flow inundation in the NSEC area allowing key at-risk zones to be rapidly and appropriately identified.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V33G0592A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V33G0592A"><span>Pre-eruptive processes and timescales recorded in olivine crystals and melt inclusions from the 2007 caldera-forming eruption of Piton de la Fournaise (La Réunion Island)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Albert, H.; Costa Rodriguez, F.; Herrin, J. S.; Di Muro, A.; Metrich, N.</p> <p>2017-12-01</p> <p>Summit caldera collapse is a rare event at Piton de la Fournaise. One such event occurred in 2007 during one of the largest historic eruptions of more than 200 Mm3 of magma. Effusion of aphyric basalts initiated at the summit area in mid-February, followed by the migration of active vents in March and early April to progressively lower elevations. Collapse of a 1 km diameter summit caldera occurred on April 5th while effusion of crystal rich lava continued until May 1st. Here we investigate these events through timescales recorded in olivine crystals and their melt inclusions (MIs) using a diffusion modelling approach. Olivine crystals from the early tephra emitted just before caldera collapse and from the post caldera collapse lava display similar compositions and zoning patterns. Fo [%Fo=100*Mg/(Mg+Fe)] values range from ≈82 to ≈86 and the phenocrysts are complexly zoned including a reverse followed by normal zoning. Fo≈84 cores are surrounded by a Fo≈86 plateau. In contact with the surrounding matrix or MIs, crystals exhibit normal zoning toward values of Fo≈82-83. Phosphorus distribution revealed in 2D X-Ray maps shows complex patterns that can be interpreted as early skeletal growth likely responsible for entrapment of MIs. Diffusion modeling of Fo, Ca, and Ni reveals two distinct magma residence timescales recorded in olivine. The inner reversed-zoned profiles yield timescales of 1-2 years, while normally-zoned profiles at crystal rims and also adjacent to MIs yield timescales of only a few days. Modelling of the P zoning patterns is consistent with the 1-2 year timescales obtained from reversely-zoned profiles. H2O contents of olivine-hosted MIs range from 0.35-1.16 wt%. Selective loss of water in some MIs suggests diffusive re-equilibration between the MIs and host magma during ascent. We have applied H2O diffusion modeling to estimate timescales of water loss of a few days, consistent with the results of Fo/Ca/Ni modeling of olivine profiles. We infer that the timescales of one to two years obtained from reversely-zoned profiles and P in olivine could record residence in a long-lived intrusive body sitting below the volcano summit which was fluidized during the eruption leading to caldera collapse. Timescales of one to a few days obtained from normal zoning and water loss record magma ascent during the 2007 eruption.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-0202485.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-0202485.html"><span>International Space Station (ISS)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2001-07-22</p> <p>An Expedition Two crewmember aboard the International Space Station (ISS) captured this overhead look at the smoke and ash regurgitated from the erupting volcano Mt. Etna on the island of Sicily, Italy. At an elevation of 10,990 feet (3,350 m), the summit of the Mt. Etna volcano, one of the most active and most studied volcanoes in the world, has been active for a half-million years and has erupted hundreds of times in recorded history.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.3205C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.3205C"><span>Tephra architecture, pyroclast texture and magma rheology of mafic, ash-dominated eruptions: the Violent Strombolian phase of the Pleistocene Croscat (NE Spain) eruption.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cimarelli, C.; Di Traglia, F.; Vona, A.,; Taddeucci, J.</p> <p>2012-04-01</p> <p>A broad range of low- to mid-intensity explosive activity is dominated by the emission of ash-sized pyroclasts. Among this activity, Violent Strombolian phases characterize the climax of many mafic explosive eruptions. Such phases last months to years, and produce ash-charged plumes several kilometers in height, posing severe threats to inhabited areas. To tackle the dominant processes leading to ash formation during Violent Strombolian eruptions, we investigated the magma rheology and the field and textural features of products from the 11 ka Croscat basaltic complex scoria cone in the Quaternary Garrotxa Volcanic Field (GVF). Field, grain-size, chemical (XRF, FE-SEM and electron microprobe) and textural analyses of the Croscat pyroclastic succession outlined the following eruption evolution: activity at Croscat began with fissural, Hawaiian-type fountaining that rapidly shifted towards Strombolian style from a central vent. Later, a Violent Strombolian explosion included several stages, with different emitted volumes and deposit features indicative of differences within the same eruptive style: at first, quasi-sustained fire-fountaining with ash jet and plume produced a massive, reverse to normal graded, scoria deposit; later, a long lasting series of ash-explosions produced a laminated scoria deposit. The eruption ended with a lava flow breaching the western-side of the volcano. Scoria clasts from the Croscat succession ubiquitously show micrometer- to centimeter-sized, microlite-rich domains (MRD) intermingled with volumetrically dominant, microlite-poor domains (MPD). MRD magmas resided longer in a relatively cooler, degassed zone lining the conduit walls, while MPD ones travelled faster along the central, hotter streamline, the two interminging along the interface between the two velocity zones. The preservation of two distinct domains in the short time-scale of the eruption was favoured by their rheological contrast related to the different microlite abundances. The proportion of MPD and MRD, in agreement with bubble-number density (BND), in different tephra layers reflects the extent of the fast- and slow-flowing zones, thus reflecting the ascent velocity profile of magma during the different phases. Recent works (Kueppers et al. 2006, "Explosive energy" during volcanic eruptions from fractal analysis of pyroclasts) indicate that fractal fragmentation theory may allow for quantifying fragmentation processes during explosive volcanic eruptions by calculating the fractal dimension (D) of the size distribution of pyroclasts. At Croscat, BND and MPD/MRD volume ratio decreased during the violent Strombolian activity while D increased, suggesting that the decrease in the magma flow rate was accompanied by the increase in fragmentation efficiency, i.e. by the increase in the ash production capability. This trend may be tentatively attributed to an increased rheological stiffness of the magma progressively enhancing its brittle, more efficient fragmentation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27656115','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27656115"><span>Increased rates of large-magnitude explosive eruptions in Japan in the late Neogene and Quaternary.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mahony, S H; Sparks, R S J; Wallace, L M; Engwell, S L; Scourse, E M; Barnard, N H; Kandlbauer, J; Brown, S K</p> <p>2016-07-01</p> <p>Tephra layers in marine sediment cores from scientific ocean drilling largely record high-magnitude silicic explosive eruptions in the Japan arc for up to the last 20 million years. Analysis of the thickness variation with distance of 180 tephra layers from a global data set suggests that the majority of the visible tephra layers used in this study are the products of caldera-forming eruptions with magnitude (M) > 6, considering their distances at the respective drilling sites to their likely volcanic sources. Frequency of visible tephra layers in cores indicates a marked increase in rates of large magnitude explosive eruptions at ∼8 Ma, 6-4 Ma, and further increase after ∼2 Ma. These changes are attributed to major changes in tectonic plate interactions. Lower rates of large magnitude explosive volcanism in the Miocene are related to a strike-slip-dominated boundary (and temporary cessation or deceleration of subduction) between the Philippine Sea Plate and southwest Japan, combined with the possibility that much of the arc in northern Japan was submerged beneath sea level partly due to previous tectonic extension of northern Honshu related to formation of the Sea of Japan. Changes in plate motions and subduction dynamics during the ∼8 Ma to present period led to (1) increased arc-normal subduction in southwest Japan (and resumption of arc volcanism) and (2) shift from extension to compression of the upper plate in northeast Japan, leading to uplift, crustal thickening and favorable conditions for accumulation of the large volumes of silicic magma needed for explosive caldera-forming eruptions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JVGR..259..185W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JVGR..259..185W"><span>Remote observations of eruptive clouds and surface thermal activity during the 2009 eruption of Redoubt volcano</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Webley, P. W.; Lopez, T. M.; Ekstrand, A. L.; Dean, K. G.; Rinkleff, P.; Dehn, J.; Cahill, C. F.; Wessels, R. L.; Bailey, J. E.; Izbekov, P.; Worden, A.</p> <p>2013-06-01</p> <p>Volcanoes often erupt explosively and generate a variety of hazards including volcanic ash clouds and gaseous plumes. These clouds and plumes are a significant hazard to the aviation industry and the ground features can be a major hazard to local communities. Here, we provide a chronology of the 2009 Redoubt Volcano eruption using frequent, low spatial resolution thermal infrared (TIR), mid-infrared (MIR) and ultraviolet (UV) satellite remote sensing data. The first explosion of the 2009 eruption of Redoubt Volcano occurred on March 15, 2009 (UTC) and was followed by a series of magmatic explosive events starting on March 23 (UTC). From March 23-April 4 2009, satellites imaged at least 19 separate explosive events that sent ash clouds up to 18 km above sea level (ASL) that dispersed ash across the Cook Inlet region. In this manuscript, we provide an overview of the ash clouds and plumes from the 19 explosive events, detailing their cloud-top heights and discussing the variations in infrared absorption signals. We show that the timing of the TIR data relative to the event end time was critical for inferring the TIR derived height and true cloud top height. The ash clouds were high in water content, likely in the form of ice, which masked the negative TIR brightness temperature difference (BTD) signal typically used for volcanic ash detection. The analysis shown here illustrates the utility of remote sensing data during volcanic crises to measure critical real-time parameters, such as cloud-top heights, changes in ground-based thermal activity, and plume/cloud location.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017BVol...79...69T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017BVol...79...69T"><span>The 2012-2016 eruptive cycle at Copahue volcano (Argentina) versus the peripheral gas manifestations: hints from the chemical and isotopic features of fumarolic fluids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tassi, F.; Agusto, M.; Lamberti, C.; Caselli, A. T.; Pecoraino, G.; Caponi, C.; Szentiványi, J.; Venturi, S.; Vaselli, O.</p> <p>2017-10-01</p> <p>This study presents the chemical and isotopic compositions of hydrothermal gases from fumaroles discharging around Copahue volcano (Argentina). Gas samples, including those from two fumaroles at the active summit crater, were collected during 13 surveys carried out by different research teams from 1976 to February 2016. The time-series of H2, CO and light hydrocarbons showed episodic increases related to the main events of the last eruptive cycle that started on 19 July 2012. Concentration peaks were likely caused by enhanced input of hot magmatic fluids affecting the hydrothermal reservoir. These data contrast with the temporal variations shown by Rc/ Ra and δ13C-CO2 values in 2012-2014, which indicated an increasing input from a crustal fluid source. In 2015-2016, however, these isotopic parameters showed opposite trends; their composition became closer to that of the two summit fumaroles, which possibly corresponds to that of the deep magmatic-related end-member. The delayed and reduced compositional changes in the peripheral hydrothermal fluid discharge in response to the 2012-2016 eruptive events suggest that geochemical surveys of these emissions are unlikely to provide premonitory signals of volcanic unrest if the volcanic activity remains centered in the main crater. Instead, an instrument which is able to provide measurements of volcanic gases in the air (e.g. MultiGAS) may be used to detect changes at the summit crater. Otherwise, monitoring of seismic activity and ground deformation, as well as the periodic measurement of the chemistry of the water in the Rio Agrio, which is fed by thermal discharge from the summit crater, seem to represent the most reliable means of monitoring at Copahue. However, the relative compositional stability of the hydrothermal reservoir is a great advantage in terms of geothermal resource exploitation and could encourage new investments in the Copahue geothermal project which was abandoned in the 1990s.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.3429H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.3429H"><span>Volcanic Thunder From Explosive Eruptions at Bogoslof Volcano, Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Haney, Matthew M.; Van Eaton, Alexa R.; Lyons, John J.; Kramer, Rebecca L.; Fee, David; Iezzi, Alexandra M.</p> <p>2018-04-01</p> <p>Lightning often occurs during ash-producing eruptive activity, and its detection is now being used in volcano monitoring for rapid alerts. We report on infrasonic and sonic recordings of the related, but previously undocumented, phenomenon of volcanic thunder. We observe volcanic thunder during the waning stages of two explosive eruptions at Bogoslof volcano, Alaska, on a microphone array located 60 km away. Thunder signals arrive from a different direction than coeruptive infrasound generated at the vent following an eruption on 10 June 2017, consistent with locations from lightning networks. For the 8 March 2017 eruption, arrival times and amplitudes of high-frequency thunder signals correlate well with the timing and strength of lightning detections. In both cases, the thunder is associated with lightning that continues after significant eruptive activity has ended. Infrasonic and sonic observations of volcanic thunder offer a new avenue for studying electrification processes in volcanic plumes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20050181426&hterms=equilibrium+movie&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dequilibrium%2Bmovie','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20050181426&hterms=equilibrium+movie&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dequilibrium%2Bmovie"><span>Initiation of Coronal Mass Ejections</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Moore, Ronald L.; Sterling, Alphonse C.</p> <p>2005-01-01</p> <p>This paper is a synopsis of the initiation of the strong-field magnetic explosions that produce large, fast coronal mass ejections. Cartoons based on observations are used to describe the inferred basic physical processes and sequences that trigger and drive the explosion. The magnetic field that explodes is a sheared-core bipole that may or may not be embedded in surrounding strong magnetic field, and may or may not contain a flux rope before it starts to explode. We describe three different mechanisms that singly or in combination trigger the explosion: (1) runaway internal tether-cutting reconnection, (2) runaway external tether-cutting reconnection, and (3) ideal MHD instability or loss or equilibrium. For most eruptions, high-resolution, high-cadence magnetograms and chromospheric and coronal movies (such as from TRACE and/or Solar-B) of the pre-eruption region and of the onset of the eruption and flare are needed to tell which one or which combination of these mechanisms is the trigger. Whatever the trigger, it leads to the production of an erupting flux rope. Using a simple model flux rope, we demonstrate that the explosion can be driven by the magnetic pressure of the expanding flux rope, provided the shape of the expansion is "fat" enough.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA13607.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA13607.html"><span>Merapi Volcano Continues its Destructive Eruption</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2010-11-10</p> <p>On Nov. 8, 2010, the ASTER instrument onboard NASA Terra spacecraft captured an image of the hot volcanic flows from Merapi volcano that resulted from continued collapse of the summit lava dome, and the ensuing release of ash plumes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.V43A4864M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.V43A4864M"><span>Gravity Change at the Summit of Kīlauea Volcano, Hawaíi, during 2012-2014</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moore, S.; Poland, M. P.; Young, N. K.; Bagnardi, M.; Carbone, D.</p> <p>2014-12-01</p> <p>Monitoring of gravity change at a volcano is a valuable means of assessing mass change at depth and a good complement to other surveillance methods, like deformation and seismicity. At Kīlauea Volcano, Hawaíi, repeated gravity surveys of the summit region have been conducted since 1975, with hundreds of microgals of gravity increase measured at the center of the caldera but without the magnitude of surface uplift through 2008 that would be expected from the gravity increase. This gravity increase was attributed to magma accumulation in void space. Between 2009 and 2012, gravity increase and uplift were coincident, but the uplift was less than expected for the given gravity signal (assuming a basaltic magma density of 2500 kg/m3). The source of both deformation and gravity change was at 1.5 km depth beneath the east margin of Halemáumáu Crater, within Kīlauea Caldera, corresponding to the location of a known shallow magma reservoir. Densification of magma in this reservoir due to degassing through the open summit eruptive vent, active since 2008, is the preferred explanation of the observed gravity change and surface displacements. We conducted gravity surveys in 2013 and 2014 and found that both gravity change and surface displacements were negligible with respect to 2012. We interpret this lack of recent gravity change as an indication that the 1.5-km-depth magma reservoir has reached a steady-state density, where gas loss from the summit vent is compensated for by gas influx from below. Continued gravity surveys should identify any changes in this equilibrium that may presage changes in summit eruptive activity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=STS059%28S%29074&hterms=Hawaii+Kilauea+volcano&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DHawaii%2BKilauea%2Bvolcano','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=STS059%28S%29074&hterms=Hawaii+Kilauea+volcano&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DHawaii%2BKilauea%2Bvolcano"><span>Color composite C-band and L-band image of Kilauea volcanoe on Hawaii</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1994-01-01</p> <p>This color composite C-band and L-band image of the Kilauea volcano on the Big Island of Hawaii was acuired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperature Radar (SIR-C/X-SAR) flying on the Space Shuttle Endeavour. The city of Hilo can be seen at the top. The image shows the different types of lava flows around the crater Pu'u O'o. Ash deposits which erupted in 1790 from the summit of Kilauea volcano show up as dark in this image, and fine details associated with lava flows which erupted in 1919 and 1974 can be seen to the south of the summit in an area called the Ka'u Desert. Other historic lava flows can also be seen. Highway 11 is the linear feature running from Hilo to the Kilauea volcano. The Jet Propulsion Laboratory alternative photo number is P-43918.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GSFC_20171208_Archive_e002097.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GSFC_20171208_Archive_e002097.html"><span>Eruption of Eyjafjallajökull Volcano, Iceland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2010-03-27</p> <p>NASA Image acquired March 24, 2010 To learn more and to download a high res version of this image go here: earthobservatory.nasa.gov/IOTD/view.php?id=43252 Iceland’s Eyjafjallajökull Volcano burst into life for the first time in 190 years on March 20, 2010. A 500-meter- (2,000-foot) long fissure opened in the Fimmvörduháls pass to the west of the ice-covered summit of Eyjafjallajökull. Lava fountains erupted fluid magma, which quickly built several hills of bubble-filled lava rocks (scoria) along the vent. A lava flow spread northeast, spilling into Hrunagil Gully. This natural-color satellite image shows lava fountains, lava flows, a volcanic plume, and steam from vaporized snow. The image was acquired on March 24, 2010, by the Advanced Land Imager (ALI) aboard NASA’s Earth Observing-1 (EO-1) satellite. The lava fountains are orange-red, barely visible at the 10-meter (33-foot) resolution of the satellite. The scoria cones surrounding the fissure are black, as is the lava flow extending to the northeast. White volcanic gases escape from the vent and erupting lava, while a steam plume rises where the hot lava meets snow. (The bright green color along the edge of the lava flow is an artifact of the sensor.) The eruption of Eyjafjallajökull was presaged by a series of earthquakes starting in early March. Over time, the earthquakes rose towards the surface, and land near the volcano rose at least 40 millimeters (2 inches)—both indications that magma was moving underneath the volcano. The eruption continued through at least March 26th, and may continue for several more months. Previous eruptions in the area have caused flooding due to the melting of glacial ice (a Jökulhlaup), but the current eruption is in an area covered by winter snow, not permanent ice. Although some past eruptions of Eyjafjallajökull were followed by larger, explosive eruptions at nearby Katla Volcano, there is currently no sign of activity at Katla. NASA image by Robert Simmon, using ALI data from the EO-1 team. Caption by Robert Simmon. Instrument: EO-1 - ALI NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1711263B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1711263B"><span>Sulphur dioxide (SO2) emissions during the 2014-15 Fogo eruption, Cape Verde</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barrancos, José; Dionis, Samara; Quevedo, Roberto; Fernandes, Paulo; Rodríguez, Fátima; Pérez, Nemesio M.; Silva, Sónia; Cardoso, Nadir; Hernández, Pedro A.; Melián, Gladys V.; Padrón, Eleazar; Padilla, Germán; Asensio-Ramos, María; Calvo, David; Semedo, Helio; Alfama, Vera</p> <p>2015-04-01</p> <p>A new eruption started at Fogo volcanic island on November 23, 2014, an active stratovolcano, located in the SW of the Cape Verde Archipelago; rising over 6 km from the 4000m deep seafloor to the Pico do Fogo summit at 2829m above sea level (m.a.s.l.). Since settlement in the 15th century, 27 eruptions have been identified through analysis of incomplete written records (Ribeiro, 1960), with average time intervals of 20 yr and average duration of two months. The eruptions were mostly effusive (Hawaiian to Strombolian), with rare occurrences of highly explosive episodes including phreatomagmatic events (Day et al., 1999). This study reports sulphur dioxide (SO2) emission rate variations observed throughout the 2014-15 Fogo eruption, Cape Verde. More than 100 measurements of SO2 emission rate have been carried out in a daily basis by ITER/INVOLCAN/UNICV/OVCV/SNPC research team since November 28, 2014, five days after the eruption onset, by means of a miniDOAS using the traverse method with a car. The daily deviation obtained of the data is around 15%. Estimated SO2 emission rates ranged from 12,476 ± 981 to 492 ± 27 tons/day during the 2014-15 Fogo eruption until January 1, 2015. During this first five days of measurements, the observed SO2 emission rates were high with an average rate of 11,100 tons/day. On December 3, 2014 the SO2 emission rate dropped to values close to 4,000 tons/day, whereas few days later, on December 10, 2014, an increase to values close to 11,000 tons/day was recorded. Since then, SO2 emission rate has shown decrease trend to values close to 1,300 tons/day until December 21, 2014. The average of the observed SO2 emission rate was about 2,000 tons/day from December 21, 2014 to January 1, 2015, without detecting a specific either increasing or decreasing trend of the SO2 emission rate. The objective of this report is to clarify relations between the SO2 emission rate and surface eruptive activity during the 2014-15 Fogo eruption. Day, S. J., Heleno da Silva, S. I. N., and Fonseca, J. F. B. D.: A past giant lateral collapse and present-day flank instability of Fogo, Cape Verde Islands, J. Volcanol. Geotherm. Res., 94, 191-218, 1999. Ribeiro, O.: A ilha do Fogo e as suas erupções, 12a edição, Memórias, Série Geográfica, J. Inv. Ultramar, 1960.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70035328','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70035328"><span>Satellite and ground observations of the June 2009 eruption of Sarychev Peak volcano, Matua Island, Central Kuriles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rybin, A.; Chibisova, M.; Webley, P.; Steensen, T.; Izbekov, P.; Neal, C.; Realmuto, V.</p> <p>2011-01-01</p> <p>After 33 years of repose, one of the most active volcanoes of the Kurile island arc-Sarychev Peak on Matua Island in the Central Kuriles-erupted violently on June 11, 2009. The eruption lasted 9 days and stands among the largest of recent historical eruptions in the Kurile Island chain. Satellite monitoring of the eruption, using Moderate Resolution Imaging Spectroradiometer, Meteorological Agency Multifunctional Transport Satellite, and Advanced Very High Resolution Radiometer data, indicated at least 23 separate explosions between 11 and 16 June 2009. Eruptive clouds reached altitudes of generally 8-16 km above sea level (ASL) and in some cases up to 21 km asl. Clouds of volcanic ash and gas stretched to the north and northwest up to 1,500 km and to the southeast for more than 3,000 km. For the first time in recorded history, ash fall occurred on Sakhalin Island and in the northeast sector of the Khabarovsky Region, Russia. Based on satellite image analysis and reconnaissance field studies in the summer of 2009, the eruption produced explosive tephra deposits with an estimated bulk volume of 0. 4 km3. The eruption is considered to have a Volcanic Explosivity Index of 4. Because the volcano is remote, there was minimal risk to people or infrastructure on the ground. Aviation transport, however, was significantly disrupted because of the proximity of air routes to the volcano. ?? 2011 Springer-Verlag.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>