Toward an Empirically-Based Parametric Explosion Spectral Model
2011-09-01
Site (NNSS, formerly the Nevada Test Site ) with data from explosions at the Semipalatinsk Test ...Nevada Test Site ) with data from explosions at the Semipalatinsk Test Site recorded at the Borovoye Geophysical Observatory (BRV). The BRV data archive...explosions at Semipalatinsk Test Site of the former Soviet Union (Figure 4). As an example, we plot the regional phase spectra of one of
Regional Seismic Amplitude Modeling and Tomography for Earthquake-Explosion Discrimination
2008-09-01
explosions from earthquakes, using closely located pairs of earthquakes and explosions recorded on common, publicly available stations at test sites ...Battone et al., 2002). For example, in Figure 1 we compare an earthquake and an explosion at each of four major test sites (rows), bandpass filtered...explosions as the frequency increases. Note also there are interesting differences between the test sites , indicating that emplacement conditions (depth
Toward an Empirically-Based Parametric Explosion Spectral Model
2010-09-01
estimated (Richards and Kim, 2009). This archive could potentially provide 200 recordings of explosions at Semipalatinsk Test Site of the former Soviet...estimates of explosion yield, and prior work at the Nevada Test Site (NTS) (e.g., Walter et al., 1995) has found that explosions in weak materials have...2007). Corner frequency scaling of regional seismic phases for underground nuclear explosions at the Nevada Test Site , Bull. Seismol. Soc. Am. 97
2007-08-31
explosions at the former Soviet Semipalatinsk test site (STS). Labeled stations are those for which high resolution digital data are available. 12 8...characteristics of regional phase observations from underground nuclear explosions at the former Soviet Semipalatinsk and Novaya Zemlya test sites , the...various regional phases observed from underground nuclear explosions at the former Soviet Semipalatinsk test site (STS). Labeled stations are those for
2008-09-30
coda) meet expectations. We are also interpreting absolute amplitudes, for those underground nuclear explosions at the Semipalatinsk Test Site (STS...waves, coda) meet expectations. We are also interpreting absolute amplitudes, for those underground nuclear explosions at the Semipalatinsk Test Site ...Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies 4.0- Balapan Subregion Semipalatinsk Test Site n- 3.5 - (U CIO ’-3.0 ES UI
Underground Nuclear Explosions and Release of Radioactive Noble Gases
NASA Astrophysics Data System (ADS)
Dubasov, Yuri V.
2010-05-01
Over a period in 1961-1990 496 underground nuclear tests and explosions of different purpose and in different rocks were conducted in the Soviet Union at Semipalatinsk and anovaya Zemlya Test Sites. A total of 340 underground nuclear tests were conducted at the Semipalatinsk Test Site. One hundred seventy-nine explosions (52.6%) among them were classified as these of complete containment, 145 explosions (42.6%) as explosions with weak release of radioactive noble gases (RNG), 12 explosions (3.5%) as explosions with nonstandard radiation situation, and four excavation explosions with ground ejection (1.1%). Thirty-nine nuclear tests had been conducted at the Novaya Zemlya Test Site; six of them - in shafts. In 14 tests (36%) there were no RNG release. Twenty-three tests have been accompanied by RNG release into the atmosphere without sedimental contamination. Nonstandard radiation situation occurred in two tests. In incomplete containment explosions both early-time RNG release (up to ~1 h) and late-time release from 1 to 28 h after the explosion were observed. Sometimes gas release took place for several days, and it occurred either through tunnel portal or epicentral zone, depending on atmospheric air temperature.
ISC origin times for announced and presumed underground nuclear explosions at several test sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodean, H.C.
1979-12-03
Announced data for US and French underground nuclear explosions indicate that nearly all detonations have occurred within one or two tenths of a second after the minute. This report contains ISC origin-time data for announced explosions at two US test sites and one French test site, and includes similar data for presumed underground nuclear explosions at five Soviet sites. Origin-time distributions for these sites are analyzed for those events that appeared to be detonated very close to the minute. Particular attention is given to the origin times for the principal US and Soviet test sites in Nevada and Eastern Kazakhstan.more » The mean origin times for events at the several test sites range from 0.4 s to 2.8 s before the minute, with the earlier mean times associated with the Soviet sites and the later times with the US and French sites. These times indicate lower seismic velocities beneath the US and French sites, and higher velocities beneath the sites in the USSR 9 figures, 8 tables.« less
Next-Generation MDAC Discrimination Procedure Using Multi-Dimensional Spectral Analyses
2007-09-01
explosions near the Lop Nor, Novaya Zemlya, Semipalatinsk , Nevada, and Indian test sites . We have computed regional phase spectra and are correcting... test sites as mainly due to differences in explosion P and S corner frequencies. Fisk (2007) used source model fits to estimate Pn, Pg, and Lg corner...frequencies for Nevada Test Site (NTS) explosions and found that Lg corner frequencies exhibit similar scaling with source size as for Pn and Pg
NASA Astrophysics Data System (ADS)
Sokolova, Inna
2015-04-01
Availability of the acoustic wave on the record of microbarograph is one of discriminate signs of atmospheric (surface layer of atmosphere) and contact explosions. Nowadays there is large number of air wave records from chemical explosions recorded by the IMS infrasound stations installed during recent decade. But there is small number of air wave records from nuclear explosions as air and contact nuclear explosions had been conducted since 1945 to 1962, before the Limited Test Ban Treaty was signed in 1963 (the treaty banning nuclear weapon tests in the atmosphere, in outer space and under water) by the Great Britain, USSR and USA. That time there was small number of installed microbarographs. First infrasound stations in the USSR appeared in 1954, and by the moment of the USSR collapse the network consisted of 25 infrasound stations, 3 of which were located on Kazakhstan territory - in Kurchatov (East Kazakhstan), in Borovoye Observatory (North Kazakhstan) and Talgar Observatory (Northern Tien Shan). The microbarograph of Talgar Observatory was installed in 1962 and recorded large number of air nuclear explosions conducted at Semipalatinsk Test Site and Novaya Zemlya Test Site. The epicentral distance to the STS was ~700 km, and to Novaya Zemlya Test Site ~3500 km. The historical analog records of the microbarograph were analyzed on the availability of the acoustic wave. The selected records were digitized, the database of acoustic signals from nuclear explosions was created. In addition, acoustic signals from atmospheric nuclear explosions conducted at the USSR Test Sites were recorded by analogue broadband seismic stations at wide range of epicentral distances, 300-3600 km. These signals coincide well by its form and spectral content with records of microbarographs and can be used for monitoring tasks and discrimination in places where infrasound observations are absent. Nuclear explosions which records contained acoustic wave were from 0.03 to 30 kt yield for the STS, and from 8.3 to 25 Mt yield for Novaya Zemlya Test Site region. The peculiarities of the wave pattern and spectral content of the acoustic wave records, and relation regularities of acoustic wave amplitude and periods with explosion yield and distance were investigated. The created database can be applied in different monitoring tasks, such as infrasound stations calibration, discrimination of nuclear explosions, precision of nuclear explosions parameters, determination of the explosion yield etc.
Wave Pattern Peculiarities of Different Types of Explosions Conducted at Semipalatinsk Test Site
NASA Astrophysics Data System (ADS)
Sokolova, Inna
2014-05-01
The historical seismograms of the explosions conducted at the STS in 1949 - 1989 are of great interest for the researchers in the field of monitoring. Large number of air (86), surface (30) and underground nuclear explosions were conducted here in boreholes and tunnels (340). In addition to nuclear explosions, large chemical explosions were conducted at the Test Site. It is known that tectonic earthquakes occur on the Test Site territory and near it. Since 2005 the Institute of Geophysical Researches conducts works on digitizing the historical seismograms of nuclear explosions. Currently, the database contains more than 6000 digitized seismograms of nuclear explosions used for investigative monitoring tasks, major part of them (4000) are events from the STS region. Dynamic parameters of records of air, surface and underground nuclear explosions, as well as large chemical explosions with compact charge laying were investigated for seismic stations located on the territory of Kazakhstan using digitized records of the STS events. In addition, the comparison between salvo wave pattern and single explosions was conducted. The records of permanent and temporary seismic stations (epicentral distances range 100 - 800 km) were used for the investigations. Explosions spectra were analyzed, specific features of each class of events were found. The seismograms analysis shows that the wave pattern depends significantly on the explosion site and on the source type.
An Analysis of the Seismic Source Characteristics of Explosions in Low-Coupling Dry Porous Media
2011-09-29
Semipalatinsk Test Site (Shagan, Degelen and Konystan Testing Areas) and in Salt at the Former Soviet Azgir Test Site ...to be applicable to all underground nuclear explosions conducted in various hard rock media at the former Soviet Semipalatinsk test site , as well as...in Hard Rock at the Former Soviet Semipalatinsk Test Site (Shagan, Degelen and Konystan Testing Areas) and in Salt at the Former Soviet Azgir Test
NASA Astrophysics Data System (ADS)
Belyashov, A.; Shaitorov, V.; Yefremov, M.
2014-03-01
This article describes geological and geophysical studies of an underground nuclear explosion area in one of the boreholes at the Semipalatinsk test site in Kazakhstan. During these studies, the typical elements of mechanical impact of the underground explosion on the host medium—fracturing of rock, spall zones, faults, cracks, etc., were observed. This information supplements to the database of underground nuclear explosion phenomenology and can be applied in fulfilling on-site inspection tasks under the Comprehensive Nuclear-Test-Ban Treaty.
2007-09-01
stations at test sites around the world (e.g., Nevada, Lop Nor, Novaya Zemlya, Semipalatinsk , India, Pakistan, and North Korea). We show this pattern...regional P/S amplitudes tended to be dominated by frequencies around 1 Hz. As shown in Figure 2 at a number of major nuclear test sites , these...Figure 2. Bandpass filtered 1-2 Hz seismograms of earthquake (red) and explosion (blue) pairs at nuclear test sites show little consistent
2008-09-01
values for nuclear explosions at the Semipalatinsk Test Site (STS) will be inferred in the same way they were for NTS. Comparisons between K values...K > ~3 in Poisson media. Most Nevada Test Site (NTS) observations support ~1 < K < 3, and as such the new model predicts lower Ms compared to the...explosions at the two test sites and for two different containment rules are summarized in Table 1 below. F1 is found to be positive for NTS, as we
Extension of the Caucasus Seismic Information Network Study into Central Asia
2008-09-01
nuclear tests at the Semipalatinsk test site in Kazakhstan, Lop Nor in China, Pokharan in India, and Chagai in Pakistan, as well as for several peaceful... Semipalatinsk test site in Kazakhstan, Lop Nor in China, Pokharan in India, and Chagai in Pakistan, and several peaceful nuclear explosion (PNE) events...truth in tomography studies. Figures 5 and 6 show waveforms for a nuclear explosion at the Semipalatinsk Test Site in northeast Kazakhstan and for a
2009-09-30
excitation of surface waves in the Balapan sub-region of the Soviet Semipalatinsk test site in central Asia were noted for anomalous behavior...complete recording history of Semipalatinsk Test Site (STS) explosions, waveform data from the Borovoye archive offer the opportunity to re-evaluate...Figure 2. Map of the Balapan sub-region of the Semipalatinsk Test Site showing locations of 50 tests currently understudy and the boundaries of NE
1982-09-30
Frequency-wave-number analyses of data from Nevada Test Site (NTS) shots recorded at LASA were computed in the frequency range from 0.01 to 0.05 Hz (Ref...from events in the Soviet Union at a known test site . In order to put further factual basis behind the SP spectral discriminants we used, comparisons...explosion. A catalogue of presumed explosion# in the Soviet Union away from the regular test sites was assembled. A time-domain analysis of seismograms
Improvements to a Major Digital Archive of Seismic Waveforms from Nuclear Explosions
2010-03-23
Semipalatinsk Test site ; Novaya Zemlya (461 traces) in Russia; and Lop Nor (120 traces) in China; and also from many Peaceful Nuclear Explosions (552... Semipalatinsk Test Site (circles) recorded at Borovoye (BRV) during 1966- 1989.The Balapan, Degelen, and Murzhik regions are indicated. 5 3. Locations of... Semipalatinsk Test Site , Kazakhstan; test of 1968 June 19 70 35. Last of seven sets of BRV seismograms on the KOD system for a UNE at the Balapan area
NASA Astrophysics Data System (ADS)
Vergino, Eileen S.
Soviet seismologists have published descriptions of 96 nuclear explosions conducted from 1961 through 1972 at the Semipalatinsk test site, in Kazakhstan, central Asia [Bocharov et al., 1989]. With the exception of releasing news about some of their peaceful nuclear explosions (PNEs) the Soviets have never before published such a body of information.To estimate the seismic yield of a nuclear explosion it is necessary to obtain a calibrated magnitude-yield relationship based on events with known yields and with a consistent set of seismic magnitudes. U.S. estimation of Soviet test yields has been done through application of relationships to the Soviet sites based on the U.S. experience at the Nevada Test Site (NTS), making some correction for differences due to attenuation and near-source coupling of seismic waves.
Sykes, Lynn R.; Cifuentes, Inés L.
1984-01-01
Magnitudes of the larger Soviet underground nuclear weapons tests from the start of the Threshold Test Ban Treaty in 1976 through 1982 are determined for short- and long-period seismic waves. Yields are calculated from the surface wave magnitude for those explosions at the eastern Kazakh test site that triggered a small-to-negligible component of tectonic stress and are used to calibrate body wave magnitude-yield relationship that can be used to determine the sizes of other explosions at that test site. The results confirm that a large bias, related to differential attenuation of P waves, exists between Nevada and Central Asia. The yields of the seven largest Soviet explosions are nearly identical and are close to 150 kilotons, the limit set by the Threshold Treaty. PMID:16593440
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallegos, G; Daniels, J; Wegrecki, A
2006-04-24
This document contains the human health and ecological risk assessment for the Resource Recovery and Conservation Act (RCRA) permit renewal for the Explosives Waste Treatment Facility (EWTF). Volume 1 is the text of the risk assessment, and Volume 2 (provided on a compact disc) is the supporting modeling data. The EWTF is operated by the Lawrence Livermore National Laboratory (LLNL) at Site 300, which is located in the foothills between the cities of Livermore and Tracy, approximately 17 miles east of Livermore and 8 miles southwest of Tracy. Figure 1 is a map of the San Francisco Bay Area, showingmore » the location of Site 300 and other points of reference. One of the principal activities of Site 300 is to test what are known as ''high explosives'' for nuclear weapons. These are the highly energetic materials that provide the force to drive fissionable material to criticality. LLNL scientists develop and test the explosives and the integrated non-nuclear components in support of the United States nuclear stockpile stewardship program as well as in support of conventional weapons and the aircraft, mining, oil exploration, and construction industries. Many Site 300 facilities are used in support of high explosives research. Some facilities are used in the chemical formulation of explosives; others are locations where explosive charges are mechanically pressed; others are locations where the materials are inspected radiographically for such defects as cracks and voids. Finally, some facilities are locations where the machined charges are assembled before they are sent to the on-site test firing facilities, and additional facilities are locations where materials are stored. Wastes generated from high-explosives research are treated by open burning (OB) and open detonation (OD). OB and OD treatments are necessary because they are the safest methods for treating explosives wastes generated at these facilities, and they eliminate the requirement for further handling and transportation that would be required if the wastes were treated off site.« less
Seismic data acquisition at the FACT site for the CASPAR project.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Kyle R.; Chael, Eric Paul; Hart, Darren M.
Since May 2010, we have been recording continuous seismic data at Sandia's FACT site. The collected signals provide us with a realistic archive for testing algorithms under development for local monitoring of explosive testing. Numerous small explosive tests are routinely conducted around Kirtland AFB by different organizations. Our goal is to identify effective methods for distinguishing these events from normal daily activity on and near the base, such as vehicles, aircraft, and storms. In this report, we describe the recording system, and present some observations of the varying ambient noise conditions at FACT. We present examples of various common, non-explosive,more » sources. Next we show signals from several small explosions, and discuss their characteristic features.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodgers, A; Tkalcic, H; McCallen, D
2005-03-18
Between 2001-2004 the Las Vegas Seismic Response Project has sought to understand the response of Las Vegas Valley (LVV) to seismic excitation. In this study, the author report the findings of this project with an emphasis on ground motions in LVV from nuclear explosions at the Nevada Test Site (NTS). These ground motions are used to understand building structural response and damage as well as human perception. Historical nuclear explosion observations are augmented with earthquake recordings from a temporary deployment of seismometers to improve spatial coverage of LVV. The nuclear explosions were conducted between 1968 and 1989 and were recordedmore » at various sites within Las Vegas. The data from past nuclear tests were used to constrain ground motions in LVV and to gain a predictive capability of ground motions for possible future nuclear tests at NTS. Analysis of ground motion data includes peak ground motions (accelerations and velocities) and amplification of basin sites relative to hard rock sites (site response). Site response was measured with the Standard Spectral Ratios (SSR) technique relative to hard rock reference sites on the periphery of LVV. The site response curves indicate a strong basin amplification of up to a factor of ten at frequencies between 0.5-2 Hz. Amplifications are strongest in the central and northern portions of LVV, where the basin is deeper than 1 km based on the reported basin depths of Langenheim et al (2001a). They found a strong correlation between amplification and basin depth and shallow shear wave velocities. Amplification below 1 Hz is strongly controlled by slowness-averaged shear velocities to depths of 30 and 100 meters. Depth averaged shear velocities to 10 meters has modest control of amplifications between 1-3 Hz. Modeling reveals that low velocity material in the shallow layers (< 200 m) effectively controls amplification. They developed a method to scale nuclear explosion ground motion time series to sites around LVV that have no historical record of explosions. The method is also used to scale nuclear explosion ground motions to different yields. They also present a range of studies to understand basin structure and response performed on data from the temporary deployment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallegos, G; Daniels, J; Wegrecki, A
2007-10-01
This document contains the human health and ecological risk assessment for the Resource Recovery and Conservation Act (RCRA) permit renewal for the Explosives Waste Treatment Facility (EWTF). Volume 1 is the text of the risk assessment, and Volume 2 (provided on a compact disc) is the supporting modeling data. The EWTF is operated by the Lawrence Livermore National Laboratory (LLNL) at Site 300, which is located in the foothills between the cities of Livermore and Tracy, approximately 17 miles east of Livermore and 8 miles southwest of Tracy. Figure 1 is a map of the San Francisco Bay Area, showingmore » the location of Site 300 and other points of reference. One of the principal activities of Site 300 is to test what are known as 'high explosives' for nuclear weapons. These are the highly energetic materials that provide the force to drive fissionable material to criticality. LLNL scientists develop and test the explosives and the integrated non-nuclear components in support of the United States nuclear stockpile stewardship program as well as in support of conventional weapons and the aircraft, mining, oil exploration, and construction industries. Many Site 300 facilities are used in support of high explosives research. Some facilities are used in the chemical formulation of explosives; others are locations where explosive charges are mechanically pressed; others are locations where the materials are inspected radiographically for such defects as cracks and voids. Finally, some facilities are locations where the machined charges are assembled before they are sent to the onsite test firing facilities, and additional facilities are locations where materials are stored. Wastes generated from high-explosives research are treated by open burning (OB) and open detonation (OD). OB and OD treatments are necessary because they are the safest methods for treating explosives wastes generated at these facilities, and they eliminate the requirement for further handling and transportation that would be required if the wastes were treated off site.« less
Tritium as an indicator of venues for nuclear tests.
Lyakhova, O N; Lukashenko, S N; Mulgin, S I; Zhdanov, S V
2013-10-01
Currently, due to the Treaty on the Non-proliferation of Nuclear Weapons there is a highly topical issue of an accurate verification of nuclear explosion venues. This paper proposes to consider new method for verification by using tritium as an indicator. Detailed studies of the tritium content in the air were carried in the locations of underground nuclear tests - "Balapan" and "Degelen" testing sites located in Semipalatinsk Test Site. The paper presents data on the levels and distribution of tritium in the air where tunnels and boreholes are located - explosion epicentres, wellheads and tunnel portals, as well as in estuarine areas of the venues for the underground nuclear explosions (UNE). Copyright © 2013 Elsevier Ltd. All rights reserved.
Field trip to Nevada test site
,
1976-01-01
Two road logs guide the reader through the geologic scene from Las Vegas to Mercury and from Mercury through eight stops on the Nevada Test Site. Maps and cross sections depict the geology and hydrology of the area. Included among the tables is one showing the stratigraphic units in the southwestern Nevada volcanic field and another that lists the geologic maps covering the Nevada Test Site and vicinity. The relation of the geologic environment to nuclear-explosion effects is alluded to in brief discussions of collapse, surface subsidence, and cratering resulting from underground nuclear explosions.
Sykes, Lynn R.; Wiggins, Graham C.
1986-01-01
Surface and body wave magnitudes are determined for 15 U.S.S.R. underground nuclear weapons tests conducted at Novaya Zemlya between 1964 and 1976 and are used to estimate yields. These events include the largest underground explosions detonated by the Soviet Union. A histogram of body wave magnitude (mb) values indicates a clustering of explosions at a few specific yields. The most pronounced cluster consists of six explosions of yield near 500 kilotons. Several of these seem to be tests of warheads for major strategic systems that became operational in the late 1970s. The largest Soviet underground explosion is estimated to have a yield of 3500 ± 600 kilotons, somewhat smaller than the yield of the largest U.S. underground test. A preliminary estimation of the significance of tectonic release is made by measuring the amplitude of Love waves. The bias in mb for Novaya Zemlya relative to the Nevada test site is about 0.35, nearly identical to that of the eastern Kazakhstan test site relative to Nevada. PMID:16593645
NASA Astrophysics Data System (ADS)
Pasyanos, Michael E.; Ford, Sean R.; Walter, William R.
2014-03-01
We test the performance of high-frequency regional P/S discriminants to differentiate between earthquakes and explosions at test sites and over broad regions using a historical dataset of explosions recorded at the Borovoye Observatory in Kazakhstan. We compare these explosions to modern recordings of earthquakes at the same location. We then evaluate the separation of the two types of events using the raw measurements and those where the amplitudes are corrected for 1-D and 2-D attenuation structure. We find that high-frequency P/S amplitudes can reliably identify earthquakes and explosions, and that the discriminant is applicable over broad regions as long as propagation effects are properly accounted for. Lateral attenuation corrections provide the largest improvement in the 2-4 Hz band, the use of which may successfully enable the identification of smaller, distant events that have lower signal-to-noise at higher frequencies. We also find variations in P/S ratios among the three main nuclear testing locations within the Semipalatinsk Test Site which, due to their nearly identical paths to BRVK, must be a function of differing geology and emplacement conditions.
NASA Astrophysics Data System (ADS)
Sokolova, Inna
2014-05-01
Many researchers working in the field of monitoring and discriminating of nuclear tests encounter the problem of lacking in seismic catalogues the information about source parameters for weak nuclear explosions. As usual, the information about origin time, coordinates and magnitude is absent, there is information about date, approximate coordinates and information about explosion yield. Huge work conducted on recovery of parameters of small underground nuclear explosions conducted at the Semipalatinsk Test Site using records of analogue seismic stations of the USSR located at regional distances was conducted by V. Khalturin, T. Rayutian, P. Richards (Pure and Applied Geophysics, 2001). However, if underground nuclear explosions are studied and described in literature quite well, then air and contact explosions were small and were not recorded by standard permanent seismic stations. In 1961-1962 maximum number of air and contact explosions was conducted at Opytnoye polye site of the STS. We managed to find and analyze additional seismic data from some temporary and permanent stations. That time IPE AS USSR installed a network of high-sensitive stations along Pamir-Baykal profile to study earth crust structure and upper mantle, the profile length was 3500 km. Epicentral distance from some stations of the profile to Opytnoye polye was 300-400 km. In addition, a permanent seismic station Semipalatinsk (SEM) located 175 km away from the site started its operation. The seismograms from this station became available recently. The digitized historical seismograms allowed to recover and add parameters for more than 36 air and surface explosions. Origin time, coordinates, magnitudes mpv, MLV and energy class K were determined for explosions. A regional travel-time curve for Central Kazakhstan constructed using records of calibration chemical explosions conducted at the STS in 1997-2000 and ground-truth underground nuclear explosions was used to determine kinematic parameters of explosions. MLV, mpv, and energy class K were determined for all underground nuclear explosions conducted at the STS using historical seismograms from Central Asia stations. Dependencies of regional magnitudes on yield were received for air and underground nuclear explosions. Thus, application of historical seismograms at regional distances allows to recover and replenish the seismic catalogues of past nuclear explosions for further use in scientific investigations and monitoring tasks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
AllamehZadeh, Mostafa, E-mail: dibaparima@yahoo.com
A Quadratic Neural Networks (QNNs) model has been developed for identifying seismic source classification problem at regional distances using ARMA coefficients determination by Artificial Neural Networks (ANNs). We have devised a supervised neural system to discriminate between earthquakes and chemical explosions with filter coefficients obtained by windowed P-wave phase spectra (15 s). First, we preprocess the recording's signals to cancel out instrumental and attenuation site effects and obtain a compact representation of seismic records. Second, we use a QNNs system to obtain ARMA coefficients for feature extraction in the discrimination problem. The derived coefficients are then applied to the neuralmore » system to train and classification. In this study, we explore the possibility of using single station three-component (3C) covariance matrix traces from a priori-known explosion sites (learning) for automatically recognizing subsequent explosions from the same site. The results have shown that this feature extraction gives the best classifier for seismic signals and performs significantly better than other classification methods. The events have been tested, which include 36 chemical explosions at the Semipalatinsk test site in Kazakhstan and 61 earthquakes (mb = 5.0-6.5) recorded by the Iranian National Seismic Network (INSN). The 100% correct decisions were obtained between site explosions and some of non-site events. The above approach to event discrimination is very flexible as we can combine several 3C stations.« less
An Explosion Aftershock Model with Application to On-Site Inspection
NASA Astrophysics Data System (ADS)
Ford, Sean R.; Labak, Peter
2016-01-01
An estimate of aftershock activity due to a theoretical underground nuclear explosion is produced using an aftershock rate model. The model is developed with data from the Nevada National Security Site, formerly known as the Nevada Test Site, and the Semipalatinsk Test Site, which we take to represent soft-rock and hard-rock testing environments, respectively. Estimates of expected magnitude and number of aftershocks are calculated using the models for different testing and inspection scenarios. These estimates can help inform the Seismic Aftershock Monitoring System (SAMS) deployment in a potential Comprehensive Test Ban Treaty On-Site Inspection (OSI), by giving the OSI team a probabilistic assessment of potential aftershocks in the Inspection Area (IA). The aftershock assessment, combined with an estimate of the background seismicity in the IA and an empirically derived map of threshold magnitude for the SAMS network, could aid the OSI team in reporting. We apply the hard-rock model to a M5 event and combine it with the very sensitive detection threshold for OSI sensors to show that tens of events per day are expected up to a month after an explosion measured several kilometers away.
An explosion aftershock model with application to on-site inspection
Ford, Sean R.; Labak, Peter
2015-02-14
An estimate of aftershock activity due to a theoretical underground nuclear explosion is produced using an aftershock rate model. The model is developed with data from the Nevada National Security Site, formerly known as the Nevada Test Site, and the Semipalatinsk Test Site, which we take to represent soft-rock and hard-rock testing environments, respectively. Estimates of expected magnitude and number of aftershocks are calculated using the models for different testing and inspection scenarios. These estimates can help inform the Seismic Aftershock Monitoring System (SAMS) deployment in a potential Comprehensive Test Ban Treaty On-Site Inspection (OSI), by giving the OSI teammore » a probabilistic assessment of potential aftershocks in the Inspection Area (IA). The aftershock assessment, combined with an estimate of the background seismicity in the IA and an empirically derived map of threshold magnitude for the SAMS network, could aid the OSI team in reporting. Here, we apply the hard-rock model to a M5 event and combine it with the very sensitive detection threshold for OSI sensors to show that tens of events per day are expected up to a month after an explosion measured several kilometers away.« less
NASA Astrophysics Data System (ADS)
Adushkin, V. V.
- A statistical procedure is described for estimating the yields of underground nuclear tests at the former Soviet Semipalatinsk test site using the peak amplitudes of short-period surface waves observed at near-regional distances (Δ < 150 km) from these explosions. This methodology is then applied to data recorded from a large sample of the Semipalatinsk explosions, including the Soviet JVE explosion of September 14, 1988, and it is demonstrated that it provides seismic estimates of explosion yield which are typically within 20% of the yields determined for these same explosions using more accurate, non-seismic techniques based on near-source observations.
Summary of geologic effects of the Boxcar event, Nevada Test Site
Dickey, Dayton Delbert; McKeown, F.A.; Ellis, William L.
1969-01-01
A high-yield underground nuclear explosion at the U20i site, formed a sink 1,000 feet in diameter above the explosion point. Fractures opened as far as 20,000 feet from the explosion and rock-falls occurred as far as 15 miles. Most fractures were coincidental with north-trending naturally occurring faults. Maximum displacement along a fault was 3 feet vertically with the downthrown side the same as that on the original fault.
1984-04-01
wavelengths. A direct application of such a laser is isotope separation. 2. For a brief status report of the Laboratory’s high- explosive flash...operation in the fall of 1982. in a 50-MeV Advanced Test Accelerator Facility (the ATA)1 that we are con- structing at our high- explosives test loca...chemical explosives in target-damage studies. Potential hazards associated with the ATA experiments were considered in choosing our site. LLNL’s
Proceedings of the 11th Annual DARPA/AFGL Seismic Research symposium
NASA Astrophysics Data System (ADS)
Lewkowicz, James F.; McPhetres, Jeanne M.
1990-11-01
The following subjects are covered: near source observations of quarry explosions; small explosion discrimination and yield estimation; Rg as a depth discriminant for earthquakes and explosions: a case study in New England; a comparative study of high frequency seismic noise at selected sites in the USSR and USA; chemical explosions and the discrimination problem; application of simulated annealing to joint hypocenter determination; frequency dependence of Q(sub Lg) and Q in the continental crust; statistical approaches to testing for compliance with a threshold test ban treaty; broad-band studies of seismic sources at regional and teleseismic distances using advanced time series analysis methods; effects of depth of burial and tectonic release on regional and teleseismic explosion waveforms; finite difference simulations of seismic wave excitation at Soviet test sites with deterministic structures; stochastic geologic effects on near-field ground motions; the damage mechanics of porous rock; nonlinear attenuation mechanism in salt at moderate strain; compressional- and shear-wave polarizations at the Anza seismic array; and a generalized beamforming approach to real time network detection and phase association.
Seismic Methods of Identifying Explosions and Estimating Their Yield
NASA Astrophysics Data System (ADS)
Walter, W. R.; Ford, S. R.; Pasyanos, M.; Pyle, M. L.; Myers, S. C.; Mellors, R. J.; Pitarka, A.; Rodgers, A. J.; Hauk, T. F.
2014-12-01
Seismology plays a key national security role in detecting, locating, identifying and determining the yield of explosions from a variety of causes, including accidents, terrorist attacks and nuclear testing treaty violations (e.g. Koper et al., 2003, 1999; Walter et al. 1995). A collection of mainly empirical forensic techniques has been successfully developed over many years to obtain source information on explosions from their seismic signatures (e.g. Bowers and Selby, 2009). However a lesson from the three DPRK declared nuclear explosions since 2006, is that our historic collection of data may not be representative of future nuclear test signatures (e.g. Selby et al., 2012). To have confidence in identifying future explosions amongst the background of other seismic signals, and accurately estimate their yield, we need to put our empirical methods on a firmer physical footing. Goals of current research are to improve our physical understanding of the mechanisms of explosion generation of S- and surface-waves, and to advance our ability to numerically model and predict them. As part of that process we are re-examining regional seismic data from a variety of nuclear test sites including the DPRK and the former Nevada Test Site (now the Nevada National Security Site (NNSS)). Newer relative location and amplitude techniques can be employed to better quantify differences between explosions and used to understand those differences in term of depth, media and other properties. We are also making use of the Source Physics Experiments (SPE) at NNSS. The SPE chemical explosions are explicitly designed to improve our understanding of emplacement and source material effects on the generation of shear and surface waves (e.g. Snelson et al., 2013). Finally we are also exploring the value of combining seismic information with other technologies including acoustic and InSAR techniques to better understand the source characteristics. Our goal is to improve our explosion models and our ability to understand and predict where methods of identifying explosions and estimating their yield work well, and any circumstances where they may not.
Radionuclide observables for the Platte underground nuclear explosive test on 14 April 1962.
Burnett, Jonathan L; Milbrath, Brian D
2016-11-01
Past nuclear weapon explosive tests provide invaluable information for understanding the radionuclide observables expected during an On-site Inspection (OSI) for the Comprehensive Nuclear-Test-Ban Treaty (CTBT). These radioactive signatures are complex and subject to spatial and temporal variability. The Platte underground nuclear explosive test on 14 April 1962 provides extensive environmental monitoring data that can be modelled and used to calculate the maximum time available for detection of the OSI-relevant radionuclides. The 1.6 kT test is especially useful as it released the highest amounts of recorded activity during Operation Nougat at the Nevada Test Site - now known as the Nevada National Security Site (NNSS). It has been estimated that 0.36% of the activity was released, and dispersed in a northerly direction. The deposition ranged from 1 × 10 -11 to 1 × 10 -9 of the atmospheric release (per m 2 ), and has been used in this paper to evaluate an OSI and the OSI-relevant radionuclides at 1 week to 2 years post-detonation. Radioactive decay reduces the activity of the OSI-relevant radionuclides by 99.7% within 2 years of detonation, such that detection throughout the hypothesized inspection is only achievable close to the explosion where deposition was highest. Copyright © 2016 Elsevier Ltd. All rights reserved.
Three-dimensional Nonlinear Calculation of the 2017 North Korean Nuclear Test
NASA Astrophysics Data System (ADS)
Stevens, J. L.; O'Brien, M.
2017-12-01
We perform a three-dimensional nonlinear calculation of the 2017 North Korean Nuclear Test including the topography of the test site. Surface waves from all six DPRK nuclear tests are remarkably similar. Linear scaling of surface wave amplitudes from an estimated yield of 4.6 kt for the 2009 event (Murphy et al, 2013) gives an estimated yield of 180 kt for the 2017 event, which is the yield used in the calculation. The depth of the calculated explosion is 730 meters below the surface and close to the peak of Mt. Mantap. Calculated surface displacements are as large as 4 meters vertical and 2 meters horizontal, but there is a node in both with minimal vertical and horizontal displacements close to the mountain peak. Earlier calculations of a 12.5 kiloton explosion at depths of 100-800 meters show a peak in surface wave amplitudes for explosions at the base of the mountain relative to both deeper and shallower sources, so the North Korean explosions have been at optimal depth for surface wave generation. This combined with tectonic stress state and a low surface wave amplitude bias at other test sites may explain the large surface wave anomaly at this test site. Cracking and nonlinear deformation are much more extensive for the 180 kt calculation than in the earlier 12.5 kiloton calculations.
Regional Seismic Methods of Identifying Explosions
NASA Astrophysics Data System (ADS)
Walter, W. R.; Ford, S. R.; Pasyanos, M.; Pyle, M. L.; Hauk, T. F.
2013-12-01
A lesson from the 2006, 2009 and 2013 DPRK declared nuclear explosion Ms:mb observations is that our historic collection of data may not be representative of future nuclear test signatures (e.g. Selby et al., 2012). To have confidence in identifying future explosions amongst the background of other seismic signals, we need to put our empirical methods on a firmer physical footing. Here we review the two of the main identification methods: 1) P/S ratios and 2) Moment Tensor techniques, which can be applied at the regional distance (200-1600 km) to very small events, improving nuclear explosion monitoring and confidence in verifying compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Amplitude ratios of seismic P-to-S waves at sufficiently high frequencies (~>2 Hz) can identify explosions among a background of natural earthquakes (e.g. Walter et al., 1995). However the physical basis for the generation of explosion S-waves, and therefore the predictability of this P/S technique as a function of event properties such as size, depth, geology and path, remains incompletely understood. Calculated intermediate period (10-100s) waveforms from regional 1-D models can match data and provide moment tensor results that separate explosions from earthquakes and cavity collapses (e.g. Ford et al. 2009). However it has long been observed that some nuclear tests produce large Love waves and reversed Rayleigh waves that complicate moment tensor modeling. Again the physical basis for the generation of these effects from explosions remains incompletely understood. We are re-examining regional seismic data from a variety of nuclear test sites including the DPRK and the former Nevada Test Site (now the Nevada National Security Site (NNSS)). Newer relative amplitude techniques can be employed to better quantify differences between explosions and used to understand those differences in term of depth, media and other properties. We are also making use of the Source Physics Experiments (SPE) at NNSS. The SPE chemical explosions are explicitly designed to improve our understanding of emplacement and source material effects on the generation of shear and surface waves (e.g. Snelson et al., 2013). Our goal is to improve our explosion models and our ability to understand and predict where P/S and moment tensor methods of identifying explosions work, and any circumstances where they may not. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Preliminary report on engineering geology of thirteen tunnel sites, Nevada Test Site
Wilmarth, Verl Richard; McKeown, Francis Alexander; Dobrovolny, Ernest
1958-01-01
Reconnaissance of 13 areas in and adjacent to Nevada Test Site was completed. Of the 13 areas, Forty Mile Canyon, South-central Shoshone Mountain, and Southeast Shoshone Mountain named in order of preference, offer many advantages for carrying on future underground nuclear explosions.
Residual radioactivity in the soil of the Semipalatinsk Nuclear Test Site in the former USSR.
Yamamoto, M; Tsukatani, T; Katayama, Y
1996-08-01
This paper deals with our efforts to survey residual radioactivity in the soil sampled at the Semipalatinsk Nuclear Test Site and at off-site areas in Kazakhstan. The soil was sampled at the hypocenter where the first Soviet nuclear explosion was carried out on 29 August 1949, and at the bank of the crater called "Bolapan," which was formed by an underground nuclear detonation on 15 January 1965 along the Shagan River. As a comparison, other soil was also sampled in the cities of Kurchatov and Almaty. These data have allowed a preliminary evaluation of the contemporary radioactive contamination of the land in and around the test site. At the first nuclear explosion site and at Bolapan, higher than background levels of 239,240Pu with weapons-grade plutonium were detected together with fission and activation products such as 137Cs, 60Co, 152Eu, and 154Eu.
Empirical Calibration of Small Explosion Seismic And Acoustic Phenomenology in New England
2008-10-31
site was too close to a nearby cell /radio tower and the active quarry wall to detonate our planned 400 lb explosions. Core drilling at an...alternative test site (Figure 52) was conducted further away from the active quarry wall and a nearby cell /radio tower. The alternative site would be far...experiment was returned into the original location (Figure 52). In order to reduce the projected ground vibrations at the cell /radio tower and high
2012-01-01
14 Figure 7. The column study used to test treatment options and longevity by tracking pH in the leachate from the APG OD soil...during baseline characterization of the APG OD site. ............................................................. 39 Table 8. Runoff water and leachate ...et al. 2006). Off-site migration of explosives from OBOD area soils is possible through horizon- tal transport in surface water and vertical leachate
Seismological analysis of the fourth North Korean nuclear test
NASA Astrophysics Data System (ADS)
Hartmann, Gernot; Gestermann, Nicolai; Ceranna, Lars
2016-04-01
The Democratic People's Republic of Korea has conducted its fourth underground nuclear explosions on 06.01.2016 at 01:30 (UTC). The explosion was clearly detected and located by the seismic network of the International Monitoring System (IMS) of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Additional seismic stations of international earthquake monitoring networks at regional distances, which are not part of the IMS, are used to precisely estimate the epicenter of the event in the North Hamgyong province (41.38°N / 129.05°E). It is located in the area of the North Korean Punggye-ri nuclear test site, where the verified nuclear tests from 2006, 2009, and 2013 were conducted as well. The analysis of the recorded seismic signals provides the evidence, that the event was originated by an explosive source. The amplitudes as well as the spectral characteristics of the signals were examined. Furthermore, the similarity of the signals with those from the three former nuclear tests suggests very similar source type. The seismograms at the 8,200 km distant IMS station GERES in Germany, for example, show the same P phase signal for all four explosions, differing in the amplitude only. The comparison of the measured amplitudes results in the increasing magnitude with the chronology of the explosions from 2006 (mb 4.2), 2009 (mb 4.8) until 2013 (mb 5.1), whereas the explosion in 2016 had approximately the same magnitude as that one three years before. Derived from the magnitude, a yield of 14 kt TNT equivalents was estimated for both explosions in 2013 and 2016; in 2006 and 2009 yields were 0.7 kt and 5.4 kt, respectively. However, a large inherent uncertainty for these values has to be taken into account. The estimation of the absolute yield of the explosions depends very much on the local geological situation and the degree of decoupling of the explosive from the surrounding rock. Due to the missing corresponding information, reliable magnitude-yield estimation for the North Korean test site is proved to be difficult. The direct evidence for the nuclear character of the explosion can only be found, if radioactive fission products of the explosion get released into the atmosphere and detected. The corresponding analysis by Atmospheric Transport Modelling is presented on the poster by O. Ross and L. Ceranna assessing the detection chances of IMS radionuclide stations.
Snelson, Catherine M.; Abbott, Robert E.; Broome, Scott T.; ...
2013-07-02
A series of chemical explosions, called the Source Physics Experiments (SPE), is being conducted under the auspices of the U.S. Department of Energy’s National Nuclear Security Administration (NNSA) to develop a new more physics-based paradigm for nuclear test monitoring. Currently, monitoring relies on semi-empirical models to discriminate explosions from earthquakes and to estimate key parameters such as yield. While these models have been highly successful monitoring established test sites, there is concern that future tests could occur in media and at scale depths of burial outside of our empirical experience. This is highlighted by North Korean tests, which exhibit poormore » performance of a reliable discriminant, mb:Ms (Selby et al., 2012), possibly due to source emplacement and differences in seismic responses for nascent and established test sites. The goal of SPE is to replace these semi-empirical relationships with numerical techniques grounded in a physical basis and thus applicable to any geologic setting or depth.« less
GIS Modelling of Radionuclide Transport from the Semipalatinsk Test Site
NASA Astrophysics Data System (ADS)
Balakay, L.; Zakarin, E.; Mahura, A.; Baklanov, A.; Sorensen, J. H.
2009-04-01
In this study, the software complex GIS-project MigRad (Migration of Radionuclide) was developed, tested and applied for the territory of the Semipalatinsk test site/ polygon (Republic of Kazakhstan), where since 1961, in total 348 underground nuclear explosions were conducted. The MigRad is oriented on integration of large volumes of different information (mapping, ground-based, and satellite-based survey): and also includes modeling on its base local redistribution of radionuclides by precipitation and surface waters and by long-range transport of radioactive aerosols. The existing thermal anomaly on territory of the polygon was investigated in details, and the object-oriented analysis was applied for the studied area. Employing the RUNOFF model, the simulation of radionuclides migration with surface waters was performed. Employing the DERMA model, the simulation of long-term atmospheric transport, dispersion and deposition patterns for cesium was conducted from 3 selected locations (Balapan, Delegen, and Experimental Field). Employing geoinformation technology, the mapping of the of the high temperature zones and epicenters of radioactive aerosols transport for the territory of the test site was carried out with post-processing and integration of modelling results into GIS environment. Contamination levels of pollution due to former nuclear explosions for population and environment of the surrounding polygon territories of Kazakhstan as well as adjacent countries were analyzed and evaluated. The MigRad was designed as instrument for comprehensive analysis of complex territorial processes influenced by former nuclear explosions on the territory of Semipalatinsk test site. It provides possibilities in detailed analyses for (i) extensive cartographic material, remote sensing, and field measurements data collected in different level databases; (ii) radionuclide migration with flows using accumulation and redistribution of soil particles; (iii) thermal anomalies caused by explosions and observed on the test site and adjacent territories, and (iv) long-range transport of radioactive aerosols with analysis of dynamics of spatial distribution, averaged and accumulated fields for concentration and deposition patterns.
OSI Passive Seismic Experiment at the Former Nevada Test Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sweeney, J J; Harben, P
On-site inspection (OSI) is one of the four verification provisions of the Comprehensive Nuclear Test Ban Treaty (CTBT). Under the provisions of the CTBT, once the Treaty has entered into force, any signatory party can request an on-site inspection, which can then be carried out after approval (by majority voting) of the Executive Council. Once an OSI is approved, a team of 40 inspectors will be assembled to carry out an inspection to ''clarify whether a nuclear weapon test explosion or any other nuclear explosion has been carried out in violation of Article I''. One challenging aspect of carrying outmore » an on-site inspection (OSI) in the case of a purported underground nuclear explosion is to detect and locate the underground effects of an explosion, which may include an explosion cavity, a zone of damaged rock, and/or a rubble zone associated with an underground collapsed cavity. The CTBT (Protocol, Section II part D, paragraph 69) prescribes several types of geophysical investigations that can be carried out for this purpose. One of the methods allowed by the CTBT for geophysical investigation is referred to in the Treaty Protocol as ''resonance seismometry''. This method, which was proposed and strongly promoted by Russia during the Treaty negotiations, is not described in the Treaty. Some clarification about the nature of the resonance method can be gained from OSI workshop presentations by Russian experts in the late 1990s. Our understanding is that resonance seismometry is a passive method that relies on seismic reverberations set up in an underground cavity by the passage of waves from regional and teleseismic sources. Only a few examples of the use of this method for detection of underground cavities have been presented, and those were done in cases where the existence and precise location of an underground cavity was known. As is the case with many of the geophysical methods allowed during an OSI under the Treaty, how resonance seismology really works and its effectiveness for OSI purposes has yet to be determined. For this experiment, we took a broad approach to the definition of ''resonance seismometry''; stretching it to include any means that employs passive seismic methods to infer the character of underground materials. In recent years there have been a number of advances in the use of correlation and noise analysis methods in seismology to obtain information about the subsurface. Our objective in this experiment was to use noise analysis and correlation analysis to evaluate these techniques for detecting and characterizing the underground damage zone from a nuclear explosion. The site that was chosen for the experiment was the Mackerel test in Area 4 of the former Nevada Test Site (now named the Nevada National Security Site, or NNSS). Mackerel was an underground nuclear test of less than 20 kT conducted in February of 1964 (DOENV-209-REV 15). The reason we chose this site is because there was a known apical cavity occurring at about 50 m depth above a rubble zone, and that the site had been investigated by the US Geological Survey with active seismic methods in 1965 (Watkins et al., 1967). Note that the time delay between detonation of the explosion (1964) and the time of the present survey (2010) is nearly 46 years - this would not be typical of an expected OSI under the CTBT.« less
SUMMARY OF ACCIDENTAL RELEASES OF RADIOACTIVITY DETECTED OFF THE NEVADA TEST SITE, 1963-1986
Of the more than 450 underground nuclear explosives tests conducted at the Nevada Test Site from August 1963 (signing of the Limited Test Ban Treaty) through the end of 1986, only 23 accidentally released radioactivity that was detectable beyond the boundary of the NTS. Of these ...
NASA Astrophysics Data System (ADS)
Arndt, R.; Gaya-Pique, L.; Labak, P.; Tanaka, J.
2009-04-01
On-site inspections (OSIs) constitute the final verification measure under the Comprehensive Nuclear-Test-Ban Treaty (CTBT). OSIs are launched to establish whether or not a nuclear explosion has been carried out, thus they are conducted to verify States' compliance with the Treaty. During such an inspection, facts are gathered within a limited investigation area of 1000 Km2 to identify possible violators of the Treaty. Time scale (referring both to the preparation of the inspection as well as to the conduct of an OSI itself) is one of the challenges that an inspection team has to face when conducting an OSI. Other challenges are the size of the team - which is limited to 40 inspectors - and political limitations imposed by the Treaty in the use of allowed techniques. The Integrated Field Exercise 2008 (IFE08) recently conducted in Kazakhstan was the first large-scale, as well as the most comprehensive, on site inspection exercise ever conducted by the Preparatory Commission of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO). The exercise took place in a deserted area south east of Kurchatov, within the former Soviet Union's Semipalatinsk nuclear test site. In this paper we will provide an overview of the technical activities conducted by the inspection team during IFE08 in order to collect evidence for a hypothetical nuclear explosion test. The techniques applied can be distributed in four different blocks: visual observation (to look for man-made changes in the geomorphology as well as anthropogenic features related to an underground nuclear explosion, UNE); passive seismic monitoring (to identify possible aftershocks created by the UNE); radionuclide measurements (to collect evidence for radionuclide isotopes related to a nuclear explosion); and finally geophysical surveys (to identify geophysical signatures related to an UNE in terms of changes in the geological strata, to the hydrogeological regime, and in terms of the shallow remains of the infrastructure deployed during the preparation and monitoring of the test). The data collected during IFE08, together with data from previous exercises, set the fundaments of a database of invaluable value to be used by CTBTO in the future for a better understanding of the phenomenology related to a nuclear explosion.
High explosive spot test analyses of samples from Operable Unit (OU) 1111
DOE Office of Scientific and Technical Information (OSTI.GOV)
McRae, D.; Haywood, W.; Powell, J.
1995-01-01
A preliminary evaluation has been completed of environmental contaminants at selected sites within the Group DX-10 (formally Group M-7) area. Soil samples taken from specific locations at this detonator facility were analyzed for harmful metals and screened for explosives. A sanitary outflow, a burn pit, a pentaerythritol tetranitrate (PETN) production outflow field, an active firing chamber, an inactive firing chamber, and a leach field were sampled. Energy dispersive x-ray fluorescence (EDXRF) was used to obtain semi-quantitative concentrations of metals in the soil. Two field spot-test kits for explosives were used to assess the presence of energetic materials in the soilmore » and in items found at the areas tested. PETN is the major explosive in detonators manufactured and destroyed at Los Alamos. No measurable amounts of PETN or other explosives were detected in the soil, but items taken from the burn area and a high-energy explosive (HE)/chemical sump were contaminated. The concentrations of lead, mercury, and uranium are given.« less
Effects of Source RDP Models and Near-source Propagation: Implication for Seismic Yield Estimation
NASA Astrophysics Data System (ADS)
Saikia, C. K.; Helmberger, D. V.; Stead, R. J.; Woods, B. B.
- It has proven difficult to uniquely untangle the source and propagation effects on the observed seismic data from underground nuclear explosions, even when large quantities of near-source, broadband data are available for analysis. This leads to uncertainties in our ability to quantify the nuclear seismic source function and, consequently the accuracy of seismic yield estimates for underground explosions. Extensive deterministic modeling analyses of the seismic data recorded from underground explosions at a variety of test sites have been conducted over the years and the results of these studies suggest that variations in the seismic source characteristics between test sites may be contributing to the observed differences in the magnitude/yield relations applicable at those sites. This contributes to our uncertainty in the determination of seismic yield estimates for explosions at previously uncalibrated test sites. In this paper we review issues involving the relationship of Nevada Test Site (NTS) source scaling laws to those at other sites. The Joint Verification Experiment (JVE) indicates that a magnitude (mb) bias (δmb) exists between the Semipalatinsk test site (STS) in the former Soviet Union (FSU) and the Nevada test site (NTS) in the United States. Generally this δmb is attributed to differential attenuation in the upper-mantle beneath the two test sites. This assumption results in rather large estimates of yield for large mb tunnel shots at Novaya Zemlya. A re-examination of the US testing experiments suggests that this δmb bias can partly be explained by anomalous NTS (Pahute) source characteristics. This interpretation is based on the modeling of US events at a number of test sites. Using a modified Haskell source description, we investigated the influence of the source Reduced Displacement Potential (RDP) parameters ψ ∞ , K and B by fitting short- and long-period data simultaneously, including the near-field body and surface waves. In general, estimates of B and K are based on the initial P-wave pulse, which various numerical analyses show to be least affected by variations in near-source path effects. The corner-frequency parameter K is 20% lower at NTS (Pahute) than at other sites, implying larger effective source radii. The overshoot parameter B appears to be low at NTS (although variable) relative to other sites and is probably due to variations in source conditions. For a low B, the near-field data require a higher value of ψ ∞ to match the long-period MS and short-period mb observations. This flexibility in modeling proves useful in comparing released FSU yields against predictions based on mb and MS.
NASA Astrophysics Data System (ADS)
Walter, W. R.; Dodge, D. A.; Ichinose, G.; Myers, S. C.; Ford, S. R.; Pitarka, A.; Pyle, M. L.; Pasyanos, M.; Matzel, E.; Rodgers, A. J.; Mellors, R. J.; Hauk, T. F.; Kroll, K.
2017-12-01
On September 3, 2017, an mb 6.3 seismic event was reported by the USGS in the vicinity of the DPRK nuclear test site at Punggye-ri. Shortly afterwards DPRK declared it had conducted a nuclear explosion. The seismic signals indicate this event is roughly an order of magnitude larger than the largest of the previous five DPRK declared nuclear tests. In addition to its size, this explosion was different from previous DPRK tests in being associated with a number of additional seismic events. Approximately eight and a half minutes after the explosion a seismic event reported as ML 4.0 by the USGS occurred. Regional waveform modeling indicated this event had a collapse mechanism (e.g. Ichinose et al., 2017, written communication). On September 23 and again on October 12, 2017, seismic events were reported near the DPRK test site by the USGS and the CTBTO (on 9/23/17 two events: USGS ML 3.6 and USGS ML 2.6; and on 10/12/17 one event: USGS mb(Lg) 2.9). Aftershocks following underground nuclear testing are expected, though at much lower magnitudes and rates than for comparably sized earthquakes. This difference in aftershock production has been proposed by Ford and Walter (2010), and others as a potential source-type discriminant. Seismic signals from the collapse of cavities formed by underground nuclear testing have also been previously observed. For example, the mb 5.7 nuclear test ATRISCO in Nevada in 1982 was followed twenty minutes later by a collapse with an mb of 4.0. Here we examine the seismic characteristics of nuclear tests, post-test collapses and post-test aftershocks from both the former Nevada test site and the DPRK test site to better understand the differences between these different source-type signals. In particular we look at discriminants such as P/S ratios, to see if there are unique characteristics to post-test collapses and aftershocks. Finally, we apply correlation methods to continuous data at regional stations to look for additional seismic signals that might have an apparent association with the DPRK nuclear testing, post-testing collapses and post-test induced seismicity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seaber, P.R.; Stowers, E.D.; Pearl, R.H.
1997-04-01
The Nevada Test Site (NTS) was established in 1951 as a proving ground for nuclear weapons. The site had formerly been part of an Air Force bombing and gunnery range during World War II. Sponsor-directed studies of the geology, hydrogeology, and hydrology of the NTS began about 1956 and were broad based in nature, but were related mainly to the effects of the detonation of nuclear weapons. These effects included recommending acceptable media and areas for underground tests, the possibility of off-site contamination of groundwater, air blast and surface contamination in the event of venting, ground-shock damage that could resultmore » from underground blasts, and studies in support of drilling and emplacement. The studies were both of a pure scientific nature and of a practical applied nature. The NTS was the site of 828 underground nuclear tests and 100 above-ground tests conducted between 1951 and 1992 (U.S. Department of Energy, 1994a). After July 1962, all nuclear tests conducted in the United States were underground, most of them at the NTS. The first contained underground nuclear explosion was detonated on September 19, 1957, following extensive study of the underground effect of chemical explosives. The tests were performed by U.S. Department of Energy (DOE) and its predecessors, the U.S. Atomic Energy Commission and the Energy Research and Development Administration. As part of a nationwide complex for nuclear weapons design, testing and manufacturing, the NTS was the location for continental testing of new and stockpiled nuclear devices. Other tests, including Project {open_quotes}Plowshare{close_quotes} experiments to test the peaceful application of nuclear explosives, were conducted on several parts of the site. In addition, the Defense Nuclear Agency tested the effect of nuclear detonations on military hardware.« less
Why Waveform Correlation Sometimes Fails
NASA Astrophysics Data System (ADS)
Carmichael, J.
2015-12-01
Waveform correlation detectors used in explosion monitoring scan noisy geophysical data to test two competing hypotheses: either (1) an amplitude-scaled version of a template waveform is present, or, (2) no signal is present at all. In reality, geophysical wavefields that are monitored for explosion signatures include waveforms produced by non-target sources that are partially correlated with the waveform template. Such signals can falsely trigger correlation detectors, particularly at low thresholds required to monitor for smaller target explosions. This challenge is particularly formidable when monitoring known test sites for seismic disturbances, since uncatalogued natural seismicity is (generally) more prevalent at lower magnitudes, and could be mistaken for small explosions. To address these challenges, we identify real examples in which correlation detectors targeting explosions falsely trigger on both site-proximal earthquakes (Figure 1, below) and microseismic "noise". Motivated by these examples, we quantify performance loss when applying these detectors, and re-evaluate the correlation-detector's hypothesis test. We thereby derive new detectors from more general hypotheses that admit unknown background seismicity, and apply these to real data. From our treatment, we derive "rules of thumb'' for proper template and threshold selection in heavily cluttered signal environments. Last, we answer the question "what is the probability of falsely detecting an earthquake collocated at a test site?", using correlation detectors that include explosion-triggered templates. Figure Top: An eight-channel data stream (black) recorded from an earthquake near a mine. Red markers indicate a detection. Middle: The correlation statistic computed by scanning the template against the data stream at top. The red line indicates the threshold for event declaration, determined by a false-alarm on noise probability constraint, as computed from the signal-absent distribution using the Neyman Pearson criteria. Bottom: The histogram of the correlation statistic time series (gray) superimposed on the theoretical null distribution (black curve). The line shows the threshold, consistent with a right-tail probability, computed from the black curve.
NASA Astrophysics Data System (ADS)
Tokuoka, Nobuyuki; Miyoshi, Hitoshi; Kusano, Hideaki; Hata, Hidehiro; Hiroe, Tetsuyuki; Fujiwara, Kazuhito; Yasushi, Kondo
2008-11-01
Visualization of explosion phenomena is very important and essential to evaluate the performance of explosive effects. The phenomena, however, generate blast waves and fragments from cases. We must protect our visualizing equipment from any form of impact. In the tests described here, the front lens was separated from the camera head by means of a fiber-optic cable in order to be able to use the camera, a Shimadzu Hypervision HPV-1, for tests in severe blast environment, including the filming of explosions. It was possible to obtain clear images of the explosion that were not inferior to the images taken by the camera with the lens directly coupled to the camera head. It could be confirmed that this system is very useful for the visualization of dangerous events, e.g., at an explosion site, and for visualizations at angles that would be unachievable under normal circumstances.
Surface Wave Detection and Measurement Using a One Degree Global Dispersion Grid
2006-05-01
explosions at all major test sites .................................................................... 21 List of Figures (continued) Figure 17 Page...surface - . 7 " wave phase and group velocity dispersion curves from underground nuclear test sites (Stevens, 1986; Stevens and McLaughlin, 19881...calculated from earth models for 270 paths ( test site - station combinations) at 10 frequencies between 0.01 5 and 0.06 Hz; phase and group velocity
North Korea nuclear test analysis results using KMA seismic and infrasound networks
NASA Astrophysics Data System (ADS)
Jeon, Y. S.; Park, E.; Lee, D.; Min, K.; CHO, S.
2017-12-01
Democratic People's Republic of Korea(DPRK) carried out 6th nuclear test on 3 Sep. 2017 at 03:30 UTC. Seismic and infrasound network operated by Korea Meteorological Administration(KMA) successfully detected signals took place in the DPRK's test site, Punggye-ri. First, we checked that Pg/Lg spectral amplitude ratio greater than 1 in the frequency range from 1.0 to 10.0 Hz is useful to discriminate between DPRK test signals and natural earthquakes. KMA's infrasound stations of Cheorwon(CW) and Yanggu(YG) successfully monitored the azimuth direction of the arrival of the infrasound signals generated from DPRK underground nuclear explosions, including the recent test on September 03, 2017. The azimuthal direction of 210(CW) and 130 (YG) point out Punggye-ri test site. Complete waveforms at stations MDJ, CHC2, YNCB in long period(0.05 to 0.1 HZ) are jointly inverted with local P-wave polarities to generate moment tensor inversion result of the explosive moment 1.20e+24 dyne cm(Mw 5.31) and 65% of ISO. The moment magnitude of 5th, 4th and 3rd are 4.61, 4.69 and 4.46 respectively. Source type moment tensor inversion result of DPRK nuclear tests show that the event is significantly away from the deviatoric line of the Hudson et at. (1989) source-type diagram and identifies as having a significant explosive component. Analysis results using seismic and infrasound network verify that the DPRK's explosion tests classified as nuclear test.
NASA Astrophysics Data System (ADS)
Goncharov, German A.
2005-11-01
On 22 November 1955, the Semipalatinsk test site saw the test of the first domestic two-stage thermonuclear RDS-37 charge. The charge operation was based on the principle of radiation implosion. The kernel of the principle consists in the radiation generated in a primary A-bomb explosion and confined by the radiation-opaque casing propagating throughout the interior casing volume and flowing around the secondary thermonuclear unit. The secondary unit experiences a strong compression under the irradiation, with a resulting nuclear and thermonuclear explosion. The RDS-37 explosion was the strongest of all those ever realized at the Semipalatinsk test site. It produced an indelible impression on the participants in the test. This document-based paper describes the genesis of the ideas underlying the RDS-37 design and reflects the critical moments in its development. The advent of RDS-37 was an outstanding accomplishment of the scientists and engineers of our country.
Ongoing research experiments at the former Soviet nuclear test site in eastern Kazakhstan
Leith, William S.; Kluchko, Luke J.; Konovalov, Vladimir; Vouille, Gerard
2002-01-01
Degelen mountain, located in EasternKazakhstan near the city of Semipalatinsk, was once the Soviets most active underground nuclear test site. Two hundred fifteen nuclear tests were conducted in 181 tunnels driven horizontally into its many ridges--almost twice the number of tests as at any other Soviet underground nuclear test site. It was also the site of the first Soviet underground nuclear test--a 1-kiloton device detonated on October 11, 1961. Until recently, the details of testing at Degelen were kept secret and have been the subject of considerable speculation. However, in 1991, the Semipalatinsk test site became part of the newly independent Republic of Kazakhstan; and in 1995, the Kazakhstani government concluded an agreement with the U.S. Department of Defense to eliminate the nuclear testing infrastructure in Kazakhstan. This agreement, which calls for the "demilitarization of the infrastructure directly associated with the nuclear weapons test tunnels," has been implemented as the "Degelen Mountain Tunnel Closure Program." The U.S. Defense Threat Reduction Agency, in partnership with the Department of Energy, has permitted the use of the tunnel closure project at the former nuclear test site as a foundation on which to support cost-effective, research-and-development-funded experiments. These experiments are principally designed to improve U.S. capabilities to monitor and verify the Comprehensive Test Ban Treaty (CTBT), but have provided a new source of information on the effects of nuclear and chemical explosions on hard, fractured rock environments. These new data extends and confirms the results of recent Russian publications on the rock environment at the site and the mechanical effects of large-scale chemical and nuclear testing. In 1998, a large-scale tunnel closure experiment, Omega-1, was conducted in Tunnel 214 at Degelen mountain. In this experiment, a 100-ton chemical explosive blast was used to test technologies for monitoring the Comprehensive Nuclear Test Ban Treaty, and to calibrate a portion of the CTBT's International Monitoring System. This experiment has also provided important benchmark data on the mechanical behavior of hard, dense, fractured rock, and has demonstrated the feasibility of fielding large-scale calibration explosions, which are specified as a "confidence-building measure" in the CTBT Protocol. Two other large-scale explosion experiments, Omega-2 and Omega-3, are planned for the summer of 1999 and 2000. Like the Tunnel 214 test, the 1999 experiment will include close-in monitoring of near-source effects, as well as contributing to the calibration of key seismic stations for the Comprehensive Test Ban Treaty. The Omega-3 test will examine the effect of multiple blasts on the fractured rock environment.
1982-01-01
thermal explosion occurred throughout these tests. Some thermal cracking was noted at the 4000 C level, but was rare (Ensor 1978:5). Ensor has reported that...treating of relatively large pieces with little or no thermal explosion . The Miller III peoples, on the other hand, were heating the local cherts to the...point of thermal explosion in many cases, which resulted in much smaller 70 " i ."M" -"" "" + " ill iti i d ll iil d i il i i " I V ," pieces
How Big Was It? Getting at Yield
NASA Astrophysics Data System (ADS)
Pasyanos, M.; Walter, W. R.; Ford, S. R.
2013-12-01
One of the most coveted pieces of information in the wake of a nuclear test is the explosive yield. Determining the yield from remote observations, however, is not necessarily a trivial thing. For instance, recorded observations of seismic amplitudes, used to estimate the yield, are significantly modified by the intervening media, which varies widely, and needs to be properly accounted for. Even after correcting for propagation effects such as geometrical spreading, attenuation, and station site terms, getting from the resulting source term to a yield depends on the specifics of the explosion source model, including material properties, and depth. Some formulas are based on assumptions of the explosion having a standard depth-of-burial and observed amplitudes can vary if the actual test is either significantly overburied or underburied. We will consider the complications and challenges of making these determinations using a number of standard, more traditional methods and a more recent method that we have developed using regional waveform envelopes. We will do this comparison for recent declared nuclear tests from the DPRK. We will also compare the methods using older explosions at the Nevada Test Site with announced yields, material and depths, so that actual performance can be measured. In all cases, we also strive to quantify realistic uncertainties on the yield estimation.
Chiang, Andrea; Dreger, Douglas S.; Ford, Sean R.; ...
2014-07-08
Here in this study, we investigate the 14 September 1988 U.S.–Soviet Joint Verification Experiment nuclear test at the Semipalatinsk test site in eastern Kazakhstan and two nuclear explosions conducted less than 10 years later at the Chinese Lop Nor test site. These events were very sparsely recorded by stations located within 1600 km, and in each case only three or four stations were available in the regional distance range. We have utilized a regional distance seismic waveform method fitting long-period, complete, three-component waveforms jointly with first-motion observations from regional stations and teleseismic arrays. The combination of long-period waveforms and first-motionmore » observations provides a unique discrimination of these sparsely recorded events in the context of the Hudson et al. (1989) source-type diagram. We demonstrate through a series of jackknife tests and sensitivity analyses that the source type of the explosions is well constrained. One event, a 1996 Lop Nor shaft explosion, displays large Love waves and possibly reversed Rayleigh waves at one station, indicative of a large F-factor. We show the combination of long-period waveforms and P-wave first motions are able to discriminate this event as explosion-like and distinct from earthquakes and collapses. We further demonstrate the behavior of network sensitivity solutions for models of tectonic release and spall-based tensile damage over a range of F-factors and K-factors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiang, Andrea; Dreger, Douglas S.; Ford, Sean R.
Here in this study, we investigate the 14 September 1988 U.S.–Soviet Joint Verification Experiment nuclear test at the Semipalatinsk test site in eastern Kazakhstan and two nuclear explosions conducted less than 10 years later at the Chinese Lop Nor test site. These events were very sparsely recorded by stations located within 1600 km, and in each case only three or four stations were available in the regional distance range. We have utilized a regional distance seismic waveform method fitting long-period, complete, three-component waveforms jointly with first-motion observations from regional stations and teleseismic arrays. The combination of long-period waveforms and first-motionmore » observations provides a unique discrimination of these sparsely recorded events in the context of the Hudson et al. (1989) source-type diagram. We demonstrate through a series of jackknife tests and sensitivity analyses that the source type of the explosions is well constrained. One event, a 1996 Lop Nor shaft explosion, displays large Love waves and possibly reversed Rayleigh waves at one station, indicative of a large F-factor. We show the combination of long-period waveforms and P-wave first motions are able to discriminate this event as explosion-like and distinct from earthquakes and collapses. We further demonstrate the behavior of network sensitivity solutions for models of tectonic release and spall-based tensile damage over a range of F-factors and K-factors.« less
NASA Astrophysics Data System (ADS)
Labak, P.; Ford, S. R.; Sweeney, J. J.; Smith, A. T.; Spivak, A.
2011-12-01
One of four elements of CTBT verification regime is On-site inspection (OSI). Since the sole purpose of an OSI shall be to clarify whether a nuclear weapon test explosion or any other nuclear explosion has been carried out, inspection activities can be conducted and techniques used in order to collect facts to support findings provided in inspection reports. Passive seismological monitoring, realized by the seismic aftershock monitoring (SAMS) is one of the treaty allowed techniques during an OSI. Effective planning and deployment of SAMS during the early stages of an OSI is required due to the nature of possible events recorded and due to the treaty related constrains on size of inspection area, size of inspection team and length of an inspection. A method, which may help in planning the SAMS deployment is presented. An estimate of aftershock activity due to a theoretical underground nuclear explosion is produced using a simple aftershock rate model (Ford and Walter, 2010). The model is developed with data from the Nevada Test Site and Semipalatinsk Test Site, which we take to represent soft- and hard-rock testing environments, respectively. Estimates of expected magnitude and number of aftershocks are calculated using the models for different testing and inspection scenarios. These estimates can help to plan the SAMS deployment for an OSI by giving a probabilistic assessment of potential aftershocks in the Inspection Area (IA). The aftershock assessment combined with an estimate of the background seismicity in the IA and an empirically-derived map of threshold magnitude for the SAMS network could aid the OSI team in reporting. We tested the hard-rock model to a scenario similar to the 2008 Integrated Field Exercise 2008 deployment in Kazakhstan and produce an estimate of possible recorded aftershock activity.
Probing the DPRK nuclear test-site to low magnitude using seismic pattern detectors
NASA Astrophysics Data System (ADS)
Kvaerna, T.; Gibbons, S. J.; Mykkeltveit, S.
2017-12-01
Six declared nuclear explosions at North Korea's Punggye-ri test-site between October 2006 and September 2017 were detected seismically both at regional and teleseismic distances. The similarity of body-wave signals from explosion to explosion allows us to locate these events relative to each other with high accuracy. Greater uncertainty in the relative time measurements for the most recent test on 3 September 2017 results in a greater uncertainty in the relative location estimate for this event, although it appears to have taken place below optimal overburden close to the peak of Mount Mantap. A number of smaller events, detected mainly at regional distances, have been identified as being at, or very close to, the test site. Due to waveform differences and available station coverage, a simple double-difference relative location is often not possible. In addition to the apparent collapse event some 8 minutes after the declared nuclear test, small seismic events have been detected on 25 May 2014, 11 September 2016, 23 September 2017, and 12 October 2017. The signals from these events differ significantly from those from the declared nuclear tests with far weaker Pn and far stronger Lg phases. Multi-channel correlation analysis and empirical matched field processing allow us to categorize these weaker seismic events with far greater confidence than classical waveform analysis allows.
2008-09-01
explosions (UNEs) at the Semipalatinsk Test Site and regional earthquakes recorded by station WMQ (Urumchi, China). Measurements from the grids are... Semipalatinsk , Lop Nor, Novaya Zemlya, and Nevada Test Sites (STS, LNTS, NZTS, NTS, respectively) and regional earthquakes. We used phase-specific window...stations (triangles) within 2000 km of STS and LNTS. Semipalatinsk Test Site Figure 2 shows Pn/Lg spectral ratios, corrected for site and distance
2001-12-01
Explosive Test Site Program Definition and Risk Reduction Permissible Exposure Limit Program Executive Office Propellants, Explosives, and...each test vehicle is flown in the captive mode and critical systems are functioned to further remove risk of failure due to the flight environment...of other inferior missiles would require a larger number of missiles, at increased procurement costs and risk to aircraft and crew, in order to
NASA Astrophysics Data System (ADS)
Belyashova, N. N.; Shacilov, V. I.; Mikhailova, N. N.; Komarov, I. I.; Sinyova, Z. I.; Belyashov, A. V.; Malakhova, M. N.
- Two chemical calibration explosions, conducted at the former Semipalatinsk nuclear test site in 1998 with charges of 25 tons and 100 tons TNT, have been used for developing travel-time curves and generalized one-dimensional velocity models of the crust and upper mantle of the platform region of Kazakhstan. The explosions were recorded by a number of digital seismic stations, located in Kazakhstan at distances ranging from 0 to 720km. The travel-time tables developed in this paper cover the phases P, Pn, Pg, S, Sn, Lg in a range of 0-740km and the velocity models apply to the crust down to 44km depth and to the mantle down to 120km. A comparison of the compiled travel-time tables with existing travel-time tables of CSE and IASPEI91 is presented.
Quantification of Rock Damage from Small Explosions and Its Effect on Shear-Wave Generation
2009-06-15
close to a nearby cell /radio tower and the active quarry wall to detonate our planned 400 lb explosions. Core drilling at an alternative test site...Figure ) was conducted further away from the active quarry wall and a nearby cell /radio tower. The alternative site would be far enough away from...returned into the original location (Figure ). In order to reduce the projected ground vibrations at the cell /radio tower and high wall of the active
NASA Astrophysics Data System (ADS)
Walter, W. R.; Ford, S. R.; Xu, H.; Pasyanos, M. E.; Pyle, M. L.; Matzel, E.; Mellors, R. J.; Hauk, T. F.
2012-12-01
It is well established empirically that regional distance (200-1600 km) amplitude ratios of seismic P-to-S waves at sufficiently high frequencies (~>2 Hz) can identify explosions among a background of natural earthquakes. However the physical basis for the generation of explosion S-waves, and therefore the predictability of this P/S technique as a function of event properties such as size, depth, geology and path, remains incompletely understood. A goal of the Source Physics Experiments (SPE) at the Nevada National Security Site (NNSS, formerly the Nevada Test Site (NTS)) is to improve our physical understanding of the mechanisms of explosion S-wave generation and advance our ability to numerically model and predict them. Current models of explosion P/S values suggest they are frequency dependent with poor performance below the source corner frequencies and good performance above. This leads to expectations that small magnitude explosions might require much higher frequencies (>10 Hz) to identify them. Interestingly the 1-ton chemical source physics explosions SPE2 and SPE3 appear to discriminate well from background earthquakes in the frequency band 6-8 Hz, where P and S signals are visible at the NVAR array located near Mina, NV about 200 km away. NVAR is a primary seismic station in the International Monitoring System (IMS), part of the Comprehensive nuclear-Test-Ban Treaty (CTBT). The NVAR broadband element NV31 is co-located with the LLNL station MNV that recorded many NTS nuclear tests, allowing the comparison. We find the small SPE explosions in granite have similar Pn/Lg values at 6-8 Hz as the past nuclear tests mainly in softer rocks. We are currently examining a number of other stations in addition to NVAR, including the dedicated SPE stations that recorded the SPE explosions at much closer distances with very high sample rates, in order to better understand the observed frequency dependence as compared with the model predictions. We plan to use these observations to improve our explosion models and our ability to understand and predict where P/S methods of identifying explosions work and any circumstances where they may not. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Nevada Test Site craters used for astronaut training
NASA Technical Reports Server (NTRS)
Moore, H. J.
1977-01-01
Craters produced by chemical and nuclear explosives at the Nevada Test Site were used to train astronauts before their lunar missions. The craters have characteristics suitable for reconnaissance-type field investigations. The Schooner test produced a crater about 300 m across and excavated more than 72 m of stratigraphic section deposited in a fairly regular fashion so that systematic observations yield systematic results. Other features common on the moon, such as secondary craters and glass-coated rocks, are present at Schooner crater. Smaller explosive tests on Buckboard Mesa excavated rocks from three horizontal alteration zones within basalt flows so that the original sequence of the zones could be determined. One crater illustrated the characteristics of craters formed across vertical boundaries between rock units. Although the exercises at the Nevada Test Site were only a small part of the training of the astronauts, voice transcripts of Apollo missions 14, 16, and 17 show that the exercises contributed to astronaut performance on the moon.
Towards an Empirically Based Parametric Explosion Spectral Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ford, S R; Walter, W R; Ruppert, S
2009-08-31
Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never before been tested. The focus of our work is on the local and regional distances (< 2000 km) and phases (Pn, Pg, Sn, Lg) necessary to see small explosions. We are developing a parametric model of the nuclear explosion seismic source spectrum that is compatible with the earthquake-based geometrical spreading and attenuation models developed using the Magnitude Distance Amplitude Correction (MDAC) techniques (Walter and Taylor, 2002). The explosion parametric model will be particularly important in regions without any priormore » explosion data for calibration. The model is being developed using the available body of seismic data at local and regional distances for past nuclear explosions at foreign and domestic test sites. Parametric modeling is a simple and practical approach for widespread monitoring applications, prior to the capability to carry out fully deterministic modeling. The achievable goal of our parametric model development is to be able to predict observed local and regional distance seismic amplitudes for event identification and yield determination in regions with incomplete or no prior history of underground nuclear testing. The relationship between the parametric equations and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source.« less
2010-02-17
systems to detect a nuclear explosion; seismic, hydroacoustic, infrasound , and radionuclide. These stations are able to detect a nuclear explosion as...These sites detect thousands of seismic events a year, mainly from earthquakes and mining explosions, and have proved effective in detecting past...that detect sound waves in the oceans, and the 60 infrasound stations above ground that detect ultra-low frequency sound waves emitted by nuclear
2015-02-01
Sustainable design measures such as the use of “green” technology (e.g., photovoltaic panels, solar collection, heat recovery systems, wind turbines , green...explosive test events. During a I ,000 pounds explosive test event, the sound pressure level can cause tinnitus ( ringing of the ears) with a temporary...quality. ln additional, biological simulant testing would only occur when winds are from the south; ensuring lands off the installation would be
1979-09-30
were presumed nuclear explosions announced by ERDA. Of the last, 11 were at the Semipalatinsk test site , 2 at the Western Kazakh test site , 2 in Novaya...which will fulfill U.S. ob- ligations that may be incurred under a possible future Comprehensive Test Ban Treaty. This report includes 9 contributions...which could assume U.S. seismic-data-management responsibilities in the event that international agreement is reached on a Comprehensive Test Ban
De Meutter, Pieter; Camps, Johan; Delcloo, Andy; Termonia, Piet
2017-08-18
On 6 January 2016, the Democratic People's Republic of Korea announced to have conducted its fourth nuclear test. Analysis of the corresponding seismic waves from the Punggye-ri nuclear test site showed indeed that an underground man-made explosion took place, although the nuclear origin of the explosion needs confirmation. Seven weeks after the announced nuclear test, radioactive xenon was observed in Japan by a noble gas measurement station of the International Monitoring System. In this paper, atmospheric transport modelling is used to show that the measured radioactive xenon is compatible with a delayed release from the Punggye-ri nuclear test site. An uncertainty quantification on the modelling results is given by using the ensemble method. The latter is important for policy makers and helps advance data fusion, where different nuclear Test-Ban-Treaty monitoring techniques are combined.
Cense Explosion Test Program. Report 1. Cense 1. Explosions in Sandstone
1977-09-01
series, "Analysis and Summary of CENSE Data." 10 * _ CHAPTER 2 APPROACH 2.1 DESCRIPTION OF TEST SITE An exposed outcrop of Kayenta sandstone with 180...ft/s seismic velocity previously determined (References 12-14) for the unweathered upper zone of the Kayenta sandstone. 16 I The P-wave propagation...Propagation along the horizontal radial was 8400 ft/s. The seismic velocity pre- viously determined for Kayenta sandstone in this area was 7500 ft/s
NASA Astrophysics Data System (ADS)
Bao, X.; Shen, Y.; Wang, N.
2017-12-01
Accurate estimation of the source moment is important for discriminating underground explosions from earthquakes and other seismic sources. In this study, we invert for the full moment tensors of the recent seismic events (since 2016) at the Democratic People's Republic of Korea (PRRK) Punggye-ri test site. We use waveform data from broadband seismic stations located in China, Korea, and Japan in the inversion. Using a non-staggered-grid, finite-difference algorithm, we calculate the strain Green's tensors (SGT) based on one-dimensional (1D) and three-dimensional (3D) Earth models. Taking advantage of the source-receiver reciprocity, a SGT database pre-calculated and stored for the Punggye-ri test site is used in inversion for the source mechanism of each event. With the source locations estimated from cross-correlation using regional Pn and Pn-coda waveforms, we obtain the optimal source mechanism that best fits synthetics to the observed waveforms of both body and surface waves. The moment solutions of the first three events (2016-01-06, 2016-09-09, and 2017-09-03) show dominant isotropic components, as expected from explosions, though there are also notable non-isotropic components. The last event ( 8 minutes after the mb6.3 explosion in 2017) contained mainly implosive component, suggesting a collapse following the explosion. The solutions from the 3D model can better fit observed waveforms than the corresponding solutions from the 1D model. The uncertainty in the resulting moment solution is influenced by heterogeneities not resolved by the Earth model according to the waveform misfit. Using the moment solutions, we predict the peak ground acceleration at the Punggye-ri test site and compare the prediction with corresponding InSAR and other satellite images.
NASA Astrophysics Data System (ADS)
Bonner, J. L.; Stump, B. W.
2011-12-01
On 23 September 1992, the United States conducted the nuclear explosion DIVIDER at the Nevada Test Site (NTS). It would become the last US nuclear test when a moratorium ended testing the following month. Many of the theoretical explosion seismic models used today were developed from observations of hundreds of nuclear tests at NTS and around the world. Since the moratorium, researchers have turned to chemical explosions as a possible surrogate for continued nuclear explosion research. This talk reviews experiments since the moratorium that have used chemical explosions to advance explosion source models. The 1993 Non-Proliferation Experiment examined single-point, fully contained chemical-nuclear equivalence by detonating over a kiloton of chemical explosive at NTS in close proximity to previous nuclear explosion tests. When compared with data from these nearby nuclear explosions, the regional and near-source seismic data were found to be essentially identical after accounting for different yield scaling factors for chemical and nuclear explosions. The relationship between contained chemical explosions and large production mining shots was studied at the Black Thunder coal mine in Wyoming in 1995. The research led to an improved source model for delay-fired mining explosions and a better understanding of mining explosion detection by the International Monitoring System (IMS). The effect of depth was examined in a 1997 Kazakhstan Depth of Burial experiment. Researchers used local and regional seismic observations to conclude that the dominant mechanism for enhanced regional shear waves was local Rg scattering. Travel-time calibration for the IMS was the focus of the 1999 Dead Sea Experiment where a 10-ton shot was recorded as far away as 5000 km. The Arizona Source Phenomenology Experiments provided a comparison of fully- and partially-contained chemical shots with mining explosions, thus quantifying the reduction in seismic amplitudes associated with partial confinement. The Frozen Rock Experiment in 2006 found only minor differences in seismic coupling for explosions in frozen and unfrozen rock. The seismo-acoustic source function was the focus of the above- and below-ground Humble Redwood explosions (2007, 2009 ) in New Mexico and detonations of rocket motor explosions in Utah. Acoustic travel time calibration for the IMS was accomplished with the 2009 and 2011 100-ton surface explosions in southern Israel. The New England Damage Experiment in 2009 correlated increased shear wave generation with increased rock damage from explosions. Damage from explosions continues to be an important research topic at Nevada's National Center for Nuclear Security with the ongoing Source Physics Experiment. A number of exciting experiments are already planned for the future and thus continue the effort to improve global detection, location, and identification of nuclear explosions.
Rogers, A.M.; Covington, P.A.; Park, R.B.; Borcherdt, R.D.; Perkins, D.M.
1980-01-01
This report presents a collection of Nevada Test Site (NTS) nuclear explosion recordings obtained at sites in the greater Los Angeles, Calif., region. The report includes ground velocity time histories, as well as, derived site transfer functions. These data have been collected as part of a study to evaluate the validity of using low-level ground motions to predict the frequency-dependent response of a site during an earthquake. For this study 19 nuclear events were recorded at 98 separate locations. Some of these sites have recorded more than one of the nuclear explosions, and, consequently, there are a total of 159, three-component station records. The location of all the recording sites are shown in figures 1–5, the station coordinates and abbreviations are given in table 1. The station addresses are listed in table 2, and the nuclear explosions that were recorded are listed in table 3. The recording sites were chosen on the basis of three criteria: (1) that the underlying geological conditions were representative of conditions over significant areas of the region, (2) that the site was the location of a strong-motion recording of the 1971 San Fernando earthquake, or (3) that more complete geographical coverage was required in that location.
Romolo, Francesco Saverio; Ferri, Elida; Mirasoli, Mara; D'Elia, Marcello; Ripani, Luigi; Peluso, Giuseppe; Risoluti, Roberta; Maiolini, Elisabetta; Girotti, Stefano
2015-01-01
The capability to collect timely information about the substances employed on-site at a crime scene is of fundamental importance during scientific investigations in crimes involving the use of explosives. TNT (2,4,6-trinitrotoluene) is one of the most employed explosives in the 20th century. Despite the growing use of improvised explosives, criminal use and access to TNT is not expected to decrease. Immunoassays are simple and selective analytical tests able to detect molecules and their immunoreactions can occur in portable formats for use on-site. This work demonstrates the application of three immunochemical assays capable of detecting TNT to typical forensic samples from experimental tests: an indirect competitive ELISA with chemiluminescent detection (CL-ELISA), a colorimetric lateral flow immunoassay (LFIA) based on colloidal gold nanoparticles label, and a chemiluminescent-LFIA (CL-LFIA). Under optimised working conditions, the LOD of the colorimetric LFIA and CL-LFIA were 1 μg mL(-1) and 0.05 μg mL(-1), respectively. The total analysis time for LFIAs was 15 min. ELISA proved to be a very effective laboratory approach, showing very good sensitivity (LOD of 0.4 ng mL(-1)) and good reproducibility (CV value about 7%). Samples tested included various materials involved in controlled explosions of improvised explosive devices (IEDs), as well as hand swabs collected after TNT handling tests. In the first group of tests, targets covered with six different materials (metal, plastic, cardboard, carpet fabric, wood and adhesive tape) were fixed on top of wooden poles (180 cm high). Samples of soil from the explosion area and different materials covering the targets were collected after each explosion and analysed. In the second group of tests, hand swabs were collected with and without hand washing after volunteers simulated the manipulation of small charges of TNT. The small amount of solution required for each assay allows for several analyses. Results of immunoassays confirmed that they were suitable to detect post-blast residues in soil and target materials and post transfer residues on hands, allowing further confirmation by more selective techniques. ELISA and LFIAs results obtained from the same solution were consistently in good agreement, and were confirmed by gas chromatography coupled to mass spectrometry (GC-MS). The reported immunoassays data demonstrates the suitability of LFIAs as on-site rapid and effective assays to detect TNT traces. The CL-ELISA proved useful in obtaining very sensitive detection in forensic investigations and testing, while CL-LFIA had performances in between LFIA and CL-ELISA. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
2010-09-01
and R. G. Warren (1994). A geophysical-geological transect of the Silent Canyon caldera complex, Pahute Mesa, Nevada, J. Geophys. Res. 99: 4323–4339...Velocity structure of Silent Canyon caldera , Nevada Test Site, Bull. Seismol. Soc. Am. 77: 597–613. 2010 Monitoring Research Review: Ground-Based
Yield Determination of Underground and Near Surface Explosions
NASA Astrophysics Data System (ADS)
Pasyanos, M.
2015-12-01
As seismic coverage of the earth's surface continues to improve, we are faced with signals from a wide variety of explosions from various sources ranging from oil train and ordnance explosions to military and terrorist attacks, as well as underground nuclear tests. We present on a method for determining the yield of underground and near surface explosions, which should be applicable for many of these. We first review the regional envelope method that was developed for underground explosions (Pasyanos et al., 2012) and more recently modified for near surface explosions (Pasyanos and Ford, 2015). The technique models the waveform envelope templates as a product of source, propagation (geometrical spreading and attenuation), and site terms, while near surface explosions include an additional surface effect. Yields and depths are determined by comparing the observed envelopes to the templates and minimizing the misfit. We then apply the method to nuclear and chemical explosions for a range of yields, depths, and distances. We will review some results from previous work, and show new examples from ordnance explosions in Scandinavia, nuclear explosions in Eurasia, and chemical explosions in Nevada associated with the Source Physics Experiments (SPE).
Computing Q-D Relationships for Storage of Rocket Fuels
NASA Technical Reports Server (NTRS)
Jester, Keith
2005-01-01
The Quantity Distance Measurement Tool is a GIS BASEP computer program that aids safety engineers by calculating quantity-distance (Q-D) relationships for vessels that contain explosive chemicals used in testing rocket engines. (Q-D relationships are standard relationships between specified quantities of specified explosive materials and minimum distances by which they must be separated from persons, objects, and other explosives to obtain specified types and degrees of protection.) The program uses customized geographic-information-system (GIS) software and calculates Q-D relationships in accordance with NASA's Safety Standard For Explosives, Propellants, and Pyrotechnics. Displays generated by the program enable the identification of hazards, showing the relationships of propellant-storage-vessel safety buffers to inhabited facilities and public roads. Current Q-D information is calculated and maintained in graphical form for all vessels that contain propellants or other chemicals, the explosiveness of which is expressed in TNT equivalents [amounts of trinitrotoluene (TNT) having equivalent explosive effects]. The program is useful in the acquisition, siting, construction, and/or modification of storage vessels and other facilities in the development of an improved test-facility safety program.
Regional Seismic Amplitude Modeling and Tomography for Earthquake-Explosion Discrimination
NASA Astrophysics Data System (ADS)
Walter, W. R.; Pasyanos, M. E.; Matzel, E.; Gok, R.; Sweeney, J.; Ford, S. R.; Rodgers, A. J.
2008-12-01
Empirically explosions have been discriminated from natural earthquakes using regional amplitude ratio techniques such as P/S in a variety of frequency bands. We demonstrate that such ratios discriminate nuclear tests from earthquakes using closely located pairs of earthquakes and explosions recorded on common, publicly available stations at test sites around the world (e.g. Nevada, Novaya Zemlya, Semipalatinsk, Lop Nor, India, Pakistan, and North Korea). We are examining if there is any relationship between the observed P/S and the point source variability revealed by longer period full waveform modeling. For example, regional waveform modeling shows strong tectonic release from the May 1998 India test, in contrast with very little tectonic release in the October 2006 North Korea test, but the P/S discrimination behavior appears similar in both events using the limited regional data available. While regional amplitude ratios such as P/S can separate events in close proximity, it is also empirically well known that path effects can greatly distort observed amplitudes and make earthquakes appear very explosion-like. Previously we have shown that the MDAC (Magnitude Distance Amplitude Correction, Walter and Taylor, 2001) technique can account for simple 1-D attenuation and geometrical spreading corrections, as well as magnitude and site effects. However in some regions 1-D path corrections are a poor approximation and we need to develop 2-D path corrections. Here we demonstrate a new 2-D attenuation tomography technique using the MDAC earthquake source model applied to a set of events and stations in both the Middle East and the Yellow Sea Korean Peninsula regions. We believe this new 2-D MDAC tomography has the potential to greatly improve earthquake-explosion discrimination, particularly in tectonically complex regions such as the Middle East.
NASA Astrophysics Data System (ADS)
Kadyrzhanov, K. K.; Khazhekber, S.; Lukashenko, S. N.; Solodukhin, V. P.; Kazachevskiy, I. V.; Poznyak, V. L.; Knyazev, B. B.; Rofer, Ch.
2003-01-01
Data on the spatial distribution of radionuclides (241Am, 239Pu, 137Cs and 152Eu) formed during nuclear explosions of different types near P2 SNTS test site are presented. Radionuclide contamination induced by the explosions varies in the concentrations of individual radionuclides, their proportions and species. Examination of the variations is a crucial task to plan remediation activities as well as those aimed at decrease of radiation risk for population and prevention of repeated contamination. Concentrations of 241Am and 239+240Pu that are the most toxic radionuclides in the area lie in hundred thousands of Bqkg-1. The most contaminated areas are classified by the radionuclide concentration, ratio and form present in soil.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beck Colleen M,Edwards Susan R.,King Maureen L.
2011-09-01
This document presents the results of nearly six years (2002-2008) of historical research and field studies concerned with evaluating potential environmental liabilities associated with U.S. Atomic Energy Commission projects from the Plowshare and Vela Uniform Programs. The Plowshare Program's primary purpose was to develop peaceful uses for nuclear explosives. The Vela Uniform Program focused on improving the capability of detecting, monitoring and identifying underground nuclear detonations. As a result of the Project Chariot site restoration efforts in the early 1990s, there were concerns that there might be other project locations with potential environmental liabilities. The Desert Research Institute conducted archivalmore » research to identify projects, an analysis of project field activities, and completed field studies at locations where substantial fieldwork had been undertaken for the projects. Although the Plowshare and Vela Uniform nuclear projects are well known, the projects that are included in this research are relatively unknown. They are proposed nuclear projects that were not executed, proposed and executed high explosive experiments, and proposed and executed high explosive construction activities off the Nevada Test Site. The research identified 170 Plowshare and Vela Uniform off-site projects and many of these had little or no field activity associated with them. However, there were 27 projects that merited further investigation and field studies were conducted at 15 locations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beck Colleen M.,Edwards Susan R.,King Maureen L.
2011-09-01
This document presents the results of nearly six years (2002-2008) of historical research and field studies concerned with evaluating potential environmental liabilities associated with U.S. Atomic Energy Commission projects from the Plowshare and Vela Uniform Programs. The Plowshare Program's primary purpose was to develop peaceful uses for nuclear explosives. The Vela Uniform Program focused on improving the capability of detecting, monitoring and identifying underground nuclear detonations. As a result of the Project Chariot site restoration efforts in the early 1990s, there were concerns that there might be other project locations with potential environmental liabilities. The Desert Research Institute conducted archivalmore » research to identify projects, an analysis of project field activities, and completed field studies at locations where substantial fieldwork had been undertaken for the projects. Although the Plowshare and Vela Uniform nuclear projects are well known, the projects that are included in this research are relatively unknown. They are proposed nuclear projects that were not executed, proposed and executed high explosive experiments, and proposed and executed high explosive construction activities off the Nevada Test Site. The research identified 170 Plowshare and Vela Uniform off-site projects and many of these had little or no field activity associated with them. However, there were 27 projects that merited further investigation and field studies were conducted at 15 locations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beck Colleen M.,Edwards Susan R.,King Maureen L.
2011-09-01
This document presents the results of nearly six years (2002-2008) of historical research and field studies concerned with evaluating potential environmental liabilities associated with U.S. Atomic Energy Commission projects from the Plowshare and Vela Uniform Programs. The Plowshare Program's primary purpose was to develop peaceful uses for nuclear explosives. The Vela Uniform Program focused on improving the capability of detecting, monitoring and identifying underground nuclear detonations. As a result of the Project Chariot site restoration efforts in the early 1990s, there were concerns that there might be other project locations with potential environmental liabilities. The Desert Research Institute conducted archivalmore » research to identify projects, an analysis of project field activities, and completed field studies at locations where substantial fieldwork had been undertaken for the projects. Although the Plowshare and Vela Uniform nuclear projects are well known, the projects that are included in this research are relatively unknown. They are proposed nuclear projects that were not executed, proposed and executed high explosive experiments, and proposed and executed high explosive construction activities off the Nevada Test Site. The research identified 170 Plowshare and Vela Uniform off-site projects and many of these had little or no field activity associated with them. However, there were 27 projects that merited further investigation and field studies were conducted at 15 locations.« less
The May 18, 1998 Indian Nuclear Test Seismograms at station NIL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walter, W R; Rodgers, A J; Bowers, D
2005-04-11
The last underground nuclear tests were conducted by India and Pakistan in May 1998. Although the Comprehensive Test Ban Treaty has not entered force, an International Monitoring System (IMS), established by the treaty is nearing completion. This system includes 170 seismic stations, a number of them originally established by IRIS. The station IRIS station NIL (Nilore, Pakistan) is close to a planned IMS primary station and recorded some very interesting seismograms from the May 18, 1998 Indian test. We carefully calibrated the path to NIL using a prior Mw 4.4 that occurred on April 4, 1995 about 110 km northmore » of the Indian test site. We used joint epicentral location techniques along with teleseismic P waves and regional surface waves to fix the epicenter, depth, mechanism and moment of this event. From these we obtained a velocity model for the path to NIL and created explosion synthetic seismograms to compare with the data. Interestingly the observed Rayleigh waves are reversed, consistent with an implosion rather than an explosion source. The preferred explanation is that the explosion released tectonic stress near the source region, which can be modeled as a thrust earthquake of approximate Mw 4.0 plus a pure explosion. This tectonic release is sufficient to completely dominate the Rayleigh waves and produce the observed signal (Walter et al. 2005). We also examined the explosion at high frequencies of 6 6-8 Hz where many studies have shown that relative P/S amplitudes can discriminate explosions from a background of earthquakes (Rodgers and Walter, 2002). Comparing with the April 4 1995 earthquake we see the classic difference of relatively large P/S values for the explosion compared to the earthquakes despite the complication of the large tectonic release during the explosion.« less
A Fracture Decoupling Experiment
NASA Astrophysics Data System (ADS)
Stroujkova, A. F.; Bonner, J. L.; Leidig, M.; Ferris, A. N.; Kim, W.; Carnevale, M.; Rath, T.; Lewkowicz, J.
2012-12-01
Multiple observations made at the Semipalatinsk Test Site suggest that conducting nuclear tests in the fracture zones left by previous explosions results in decreased seismic amplitudes for the second nuclear tests (or "repeat shots"). Decreased seismic amplitudes reduce both the probability of detection and the seismically estimated yield of a "repeat shot". In order to define the physical mechanism responsible for the amplitude reduction and to quantify the degree of the amplitude reduction in fractured rocks, Weston Geophysical Corp., in collaboration with Columbia University's Lamont Doherty Earth Observatory, conducted a multi-phase Fracture Decoupling Experiment (FDE) in central New Hampshire. The FDE involved conducting explosions of various yields in the damage/fracture zones of previously detonated explosions. In order to quantify rock damage after the blasts we performed well logging and seismic cross-hole tomography studies of the source region. Significant seismic velocity reduction was observed around the source regions after the initial explosions. Seismic waves produced by the explosions were recorded at near-source and local seismic networks, as well as several regional stations throughout northern New England. Our analysis confirms frequency dependent seismic amplitude reduction for the repeat shots compared to the explosions in un-fractured rocks. The amplitude reduction is caused by pore closing and/or by frictional losses within the fractured media.
Explosion Amplitude Reduction due to Fractures in Water-Saturated and Dry Granite
NASA Astrophysics Data System (ADS)
Stroujkova, A. F.; Leidig, M.; Bonner, J. L.
2013-12-01
Empirical observations made at the Semipalatinsk Test Site suggest that nuclear tests in the fracture zones left by previous explosions ('repeat shots') show reduced seismic amplitudes compared to the nuclear tests in virgin rocks. Likely mechanisms for the amplitude reduction in the repeat shots include increased porosity and reduced strength and elastic moduli, leading to pore closing and frictional sliding. Presence of pore water significantly decreases rock compressibility and strength, thus affecting seismic amplitudes. A series of explosion experiments were conducted in order to define the physical mechanism responsible for the amplitude reduction and to quantify the degree of the amplitude reduction in fracture zones of previously detonated explosions. Explosions in water-saturated granite were conducted in central New Hampshire in 2011 and 2012. Additional explosions in dry granite were detonated in Barre, VT in 2013. The amplitude reduction is different between dry and water-saturated crystalline rocks. Significant reduction in seismic amplitudes (by a factor of 2-3) in water-saturated rocks was achieved only when the repeat shot was detonated in the extensive damage zone created by a significantly larger (by a factor of 5) explosion. In case where the first and the second explosions were similar in yield, the amplitude reduction was relatively modest (5-20%). In dry rocks the amplitude reduction reached a factor of 2 even in less extensive damage zones. In addition there are differences in frequency dependence of the spectral amplitude ratios between explosions in dry and water-saturated rocks. Thus the amplitude reduction is sensitive to the extent of the damage zone as well as the pore water content.
Los Alamos Explosives Performance Key to Stockpile Stewardship
Dattelbaum, Dana
2018-02-14
As the U.S. Nuclear Deterrent ages, one essential factor in making sure that the weapons will continue to perform as designed is understanding the fundamental properties of the high explosives that are part of a nuclear weapons system. As nuclear weapons go through life extension programs, some changes may be advantageous, particularly through the addition of what are known as "insensitive" high explosives that are much less likely to accidentally detonate than the already very safe "conventional" high explosives that are used in most weapons. At Los Alamos National Laboratory explosives research includes a wide variety of both large- and small-scale experiments that include small contained detonations, gas and powder gun firings, larger outdoor detonations, large-scale hydrodynamic tests, and at the Nevada Nuclear Security Site, underground sub-critical experiments.
Radionuclide observables for the Platte underground nuclear explosive test on 14 April 1962
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burnett, Jonathan L.; Milbrath, Brian D.
2016-11-01
Past nuclear weapons tests provide invaluable information for understanding the radionuclide observables and data quality objectives expected during an On-site Inspection (OSI) for the Comprehensive Nuclear-Test-Ban Treaty (CTBT). These radioactive signatures are complex and subject to spatial and temporal variability. The Platte Underground Nuclear Test on 14 April 1962 provides extensive environmental monitoring data that can be modelled and used to assess an OSI. The 1.6 kT test is especially useful as it released the highest amounts of recorded activity during Operation Nougat at the Nevada Test Site – now known as the Nevada National Security Site (NNSS). It hasmore » been estimated that 0.36% of the activity was released, and dispersed in a northerly direction. The deposition ranged from 1 x 10-11 to 1 x 10-9 of the atmospheric release (per m2), and has been used to evaluate a hypothetical OSI at 1 week to 2 years post-detonation. Radioactive decay reduces the activity of the 17 OSI relevant radionuclides by 99.7%, such that detection throughout the inspection is only achievable close to the explosion where deposition was highest.« less
Joint maximum-likelihood magnitudes of presumed underground nuclear test explosions
NASA Astrophysics Data System (ADS)
Peacock, Sheila; Douglas, Alan; Bowers, David
2017-08-01
Body-wave magnitudes (mb) of 606 seismic disturbances caused by presumed underground nuclear test explosions at specific test sites between 1964 and 1996 have been derived from station amplitudes collected by the International Seismological Centre (ISC), by a joint inversion for mb and station-specific magnitude corrections. A maximum-likelihood method was used to reduce the upward bias of network mean magnitudes caused by data censoring, where arrivals at stations that do not report arrivals are assumed to be hidden by the ambient noise at the time. Threshold noise levels at each station were derived from the ISC amplitudes using the method of Kelly and Lacoss, which fits to the observed magnitude-frequency distribution a Gutenberg-Richter exponential decay truncated at low magnitudes by an error function representing the low-magnitude threshold of the station. The joint maximum-likelihood inversion is applied to arrivals from the sites: Semipalatinsk (Kazakhstan) and Novaya Zemlya, former Soviet Union; Singer (Lop Nor), China; Mururoa and Fangataufa, French Polynesia; and Nevada, USA. At sites where eight or more arrivals could be used to derive magnitudes and station terms for 25 or more explosions (Nevada, Semipalatinsk and Mururoa), the resulting magnitudes and station terms were fixed and a second inversion carried out to derive magnitudes for additional explosions with three or more arrivals. 93 more magnitudes were thus derived. During processing for station thresholds, many stations were rejected for sparsity of data, obvious errors in reported amplitude, or great departure of the reported amplitude-frequency distribution from the expected left-truncated exponential decay. Abrupt changes in monthly mean amplitude at a station apparently coincide with changes in recording equipment and/or analysis method at the station.
Gas Transport and Detection Following Underground Nuclear Explosions
NASA Astrophysics Data System (ADS)
Carrigan, C. R.; Sun, Y.; Wagoner, J. L.; Zucca, J. J.
2011-12-01
Some extremely rare radioactive noble gases are by-products of underground nuclear explosions, and the detection of significant levels of these gases (e.g., Xe-133 and Ar-37) at the surface is a very strong indicator of the occurrence of an underground nuclear event. Because of their uniqueness, such noble gas signatures can be confirmatory of the nuclear nature of an event while signatures from other important detection methods, such as anomalous seismicity, are generally not. As a result, noble gas detection at a suspected underground nuclear test site is considered to be the most important technique available to inspectors operating under the On-Site-Inspection protocol of the Comprehensive Nuclear Test Ban Treaty. A one-kiloton chemical underground explosion, the Non-Proliferation Experiment (NPE), was carried out at the Nevada Test Site in 1993 and represented the first On-Site-Inspection oriented test of subsurface gas transport with subsequent detection at the surface using soil gas sampling methods. A major conclusion of the experiment was that noble gases from underground nuclear tests have a good possibility of being detected even if the test is well contained. From this experiment and from computer simulations, we have also learned significant lessons about the modes of gas transport to the surface and the importance of careful subsurface sampling to optimize the detected noble gas signature. Understanding transport and sampling processes for a very wide range of geologic and testing scenarios presents significant challenges that we are currently addressing using sensitivity studies, which we attempt to verify using experiments such as the NPE and a new subsurface gas migration experiment that is now being undertaken at the National Center for Nuclear Security. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
2010-06-01
parts to detect a nuclear explosion: seismic, hydroacoustic, infrasound and radionuclide. Figure 3. CTBTO International Monitoring System Sites26...Conference,” (Oct. 14, 2009), www.armscontrol.org.. [17] from earthquakes and mining explosions, but have proved effective in detecting past nuclear...hydroacoustic monitoring stations detect sound waves in the oceans, and the 60 infrasound stations detect above ground, ultra-low frequency sound waves
Evseeva, T I; Maĭstrenko, T A; Geras'kin, S A; Belykh, E S; Umarov, M A; Sergeeva, I Iu; Sergeev, V Iu
2008-01-01
Results on estimation of modern radioecological situation at nuclear explosion "Chagan" based on large-scale cartographic studies (1:25000) of a test area (4 km2) are presented. Maximum gamma-irradiation doses were observed at bulk of ground surrounded a crater and at radioactive fall-outs extended to the North-East and to the SouthWest from the crater. Based on data on artificial radionuclide specific activity most part of soil samples were attributed to radioactive wastes according to IAEA (1996) and OSPORB (1999). Natural decrease of soil radioactivity up to safety level due to 60Co, 137Cs, 90Sr, 152Eu, 154Eu radioactive decay and 241Am accumulation-decay will not take place within the next 60 years at the studied area.
Seismological investigation of September 09 2016, North Korea underground nuclear test
NASA Astrophysics Data System (ADS)
Gaber, H.; Elkholy, S.; Abdelazim, M.; Hamama, I. H.; Othman, A. S.
2017-12-01
On Sep. 9, 2016, a seismic event of mb 5.3 took place in North Korea. This event was reported as a nuclear test. In this study, we applied a number of discriminant techniques that facilitate the ability to distinguish between explosions and earthquakes on the Korean Peninsula. The differences between explosions and earthquakes are due to variation in source dimension, epicenter depth and source mechanism, or a collection of them. There are many seismological differences between nuclear explosions and earthquakes, but not all of them are detectable at large distances or are appropriate to each earthquake and explosion. The discrimination methods used in the current study include the seismic source location, source depth, the differences in the frequency contents, complexity versus spectral ratio and Ms-mb differences for both earthquakes and explosions. Sep. 9, 2016, event is located in the region of North Korea nuclear test site at a zero depth, which is likely to be a nuclear explosion. Comparison between the P wave spectra of the nuclear test and the Sep. 8, 2000, North Korea earthquake, mb 4.9 shows that the spectrum of both events is nearly the same. The results of applying the theoretical model of Brune to P wave spectra of both explosion and earthquake show that the explosion manifests larger corner frequency than the earthquake, reflecting the nature of the different sources. The complexity and spectral ratio were also calculated from the waveform data recorded at a number of stations in order to investigate the relation between them. The observed classification percentage of this method is about 81%. Finally, the mb:Ms method is also investigated. We calculate mb and Ms for the Sep. 9, 2016, explosion and compare the result with the mb: Ms chart obtained from the previous studies. This method is working well with the explosion.
Hong, Tae-Kyung; Choi, Eunseo; Park, Seongjun; Shin, Jin Soo
2016-02-17
Strong ground motions induce large dynamic stress changes that may disturb the magma chamber of a volcano, thus accelerating the volcanic activity. An underground nuclear explosion test near an active volcano constitutes a direct treat to the volcano. This study examined the dynamic stress changes of the magma chamber of Baekdusan (Changbaishan) that can be induced by hypothetical North Korean nuclear explosions. Seismic waveforms for hypothetical underground nuclear explosions at North Korean test site were calculated by using an empirical Green's function approach based on a source-spectral model of a nuclear explosion; such a technique is efficient for regions containing poorly constrained velocity structures. The peak ground motions around the volcano were estimated from empirical strong-motion attenuation curves. A hypothetical M7.0 North Korean underground nuclear explosion may produce peak ground accelerations of 0.1684 m/s(2) in the horizontal direction and 0.0917 m/s(2) in the vertical direction around the volcano, inducing peak dynamic stress change of 67 kPa on the volcano surface and ~120 kPa in the spherical magma chamber. North Korean underground nuclear explosions with magnitudes of 5.0-7.6 may induce overpressure in the magma chamber of several tens to hundreds of kilopascals.
REGIONAL SEISMIC AMPLITUDE MODELING AND TOMOGRAPHY FOR EARTHQUAKE-EXPLOSION DISCRIMINATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walter, W R; Pasyanos, M E; Matzel, E
2008-07-08
We continue exploring methodologies to improve earthquake-explosion discrimination using regional amplitude ratios such as P/S in a variety of frequency bands. Empirically we demonstrate that such ratios separate explosions from earthquakes using closely located pairs of earthquakes and explosions recorded on common, publicly available stations at test sites around the world (e.g. Nevada, Novaya Zemlya, Semipalatinsk, Lop Nor, India, Pakistan, and North Korea). We are also examining if there is any relationship between the observed P/S and the point source variability revealed by longer period full waveform modeling (e. g. Ford et al 2008). For example, regional waveform modeling showsmore » strong tectonic release from the May 1998 India test, in contrast with very little tectonic release in the October 2006 North Korea test, but the P/S discrimination behavior appears similar in both events using the limited regional data available. While regional amplitude ratios such as P/S can separate events in close proximity, it is also empirically well known that path effects can greatly distort observed amplitudes and make earthquakes appear very explosion-like. Previously we have shown that the MDAC (Magnitude Distance Amplitude Correction, Walter and Taylor, 2001) technique can account for simple 1-D attenuation and geometrical spreading corrections, as well as magnitude and site effects. However in some regions 1-D path corrections are a poor approximation and we need to develop 2-D path corrections. Here we demonstrate a new 2-D attenuation tomography technique using the MDAC earthquake source model applied to a set of events and stations in both the Middle East and the Yellow Sea Korean Peninsula regions. We believe this new 2-D MDAC tomography has the potential to greatly improve earthquake-explosion discrimination, particularly in tectonically complex regions such as the Middle East. Monitoring the world for potential nuclear explosions requires characterizing seismic events and discriminating between natural and man-made seismic events, such as earthquakes and mining activities, and nuclear weapons testing. We continue developing, testing, and refining size-, distance-, and location-based regional seismic amplitude corrections to facilitate the comparison of all events that are recorded at a particular seismic station. These corrections, calibrated for each station, reduce amplitude measurement scatter and improve discrimination performance. We test the methods on well-known (ground truth) datasets in the U.S. and then apply them to the uncalibrated stations in Eurasia, Africa, and other regions of interest to improve underground nuclear test monitoring capability.« less
On-Site Inspection RadioIsotopic Spectroscopy (Osiris) System Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caffrey, Gus J.; Egger, Ann E.; Krebs, Kenneth M.
2015-09-01
We have designed and tested hardware and software for the acquisition and analysis of high-resolution gamma-ray spectra during on-site inspections under the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The On-Site Inspection RadioIsotopic Spectroscopy—Osiris—software filters the spectral data to display only radioisotopic information relevant to CTBT on-site inspections, e.g.,132I. A set of over 100 fission-product spectra was employed for Osiris testing. These spectra were measured, where possible, or generated by modeling. The synthetic test spectral compositions include non-nuclear-explosion scenarios, e.g., a severe nuclear reactor accident, and nuclear-explosion scenarios such as a vented underground nuclear test. Comparing its computer-based analyses to expert visual analysesmore » of the test spectra, Osiris correctly identifies CTBT-relevant fission product isotopes at the 95% level or better.The Osiris gamma-ray spectrometer is a mechanically-cooled, battery-powered ORTEC Transpec-100, chosen to avoid the need for liquid nitrogen during on-site inspections. The spectrometer was used successfully during the recent 2014 CTBT Integrated Field Exercise in Jordan. The spectrometer is controlled and the spectral data analyzed by a Panasonic Toughbook notebook computer. To date, software development has been the main focus of the Osiris project. In FY2016-17, we plan to modify the Osiris hardware, integrate the Osiris software and hardware, and conduct rigorous field tests to ensure that the Osiris system will function correctly during CTBT on-site inspections. The planned development will raise Osiris to technology readiness level TRL-8; transfer the Osiris technology to a commercial manufacturer, and demonstrate Osiris to potential CTBT on-site inspectors.« less
Los Alamos Explosives Performance Key to Stockpile Stewardship
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dattelbaum, Dana
2014-11-03
As the U.S. Nuclear Deterrent ages, one essential factor in making sure that the weapons will continue to perform as designed is understanding the fundamental properties of the high explosives that are part of a nuclear weapons system. As nuclear weapons go through life extension programs, some changes may be advantageous, particularly through the addition of what are known as "insensitive" high explosives that are much less likely to accidentally detonate than the already very safe "conventional" high explosives that are used in most weapons. At Los Alamos National Laboratory explosives research includes a wide variety of both large- andmore » small-scale experiments that include small contained detonations, gas and powder gun firings, larger outdoor detonations, large-scale hydrodynamic tests, and at the Nevada Nuclear Security Site, underground sub-critical experiments.« less
North Korea's 2017 Test and its Nontectonic Aftershock
NASA Astrophysics Data System (ADS)
Liu, J.; Li, L.; Zahradník, J.; Sokos, E.; Liu, C.; Tian, X.
2018-04-01
Seismology illuminates physical processes occurring during underground explosions, not all yet fully understood. The thus-far strongest North Korean test of 3 September 2017 was followed by a moderate seismic event (mL 4.1) after 8.5 min. Here we provide evidence that this aftershock was a nontectonic event which radiated seismic waves as a buried horizontal closing crack. This vigorous crack closure, occurring shortly after the blast, is studied in the North Korea test site for the first time. The event can be qualitatively explained as rapid destruction of an explosion-generated cracked rock chimney due to cavity collapse, although other compaction processes cannot be ruled out.
NASA Astrophysics Data System (ADS)
Sorokin, A. G.; Lobycheva, I. Yu.
2011-08-01
This paper presents data on the recording of infrasound from distant nuclear explosions set off in former soviet test site Semipalatinsk and recorded by infrasonic station Irkutsk-Badary of the Institute of Solar-Terrestrial Physics SB RAS in the Tunkinsky region in the Buryat Republic. We assess the state of the atmospheric acoustic channel (AAC) along the propagation path. Results of the AAC modeling are compared with experimental data.
Lateral variations in geologic structure and tectonic setting from remote sensing data
NASA Astrophysics Data System (ADS)
Alexander, S. S.
1983-05-01
The principal objective of this study was: (1) to assess the usefulness of remote sensing digital imagery, principally LANDSAT multispectral scanning (MSS) data, for inferring lateral variations in geologic structure and tectonic setting; and (2) to determine the extent to which these inferred variations correlate with observed variations in seismic excitation from underground nuclear explosion test sites in the Soviet Union. Soviet, French and U.S. test sites have been investigated to compare their geologic and tectonic responses as seen by LANDSAT. The characteristics of "granite' intrusive bodies exposed at Semipalatinsk (Degelen), North Africa (Hoggar), NTS (Climax stock), and an analog site in Maine (Mt. Katahdin), have been studied in detail. The tectonic stress field inferred from the tectonic release portion of seismic signatures of explosions in these three areas is compared with local and regional fracture patterns discernable from imagery. The usefulness of satellite synthetic aperture radar (SAR) to determine geologic conditions and delineate fault (fracture) patterns is demonstrated by the analysis of SEASAT data for an area in the eastern United States. Algorithms to enhance structural boundaries and to use textures to identify rock types were developed and applied to several test sites.
The acoustic field in the ionosphere caused by an underground nuclear explosion
NASA Astrophysics Data System (ADS)
Krasnov, V. M.; Drobzheva, Ya. V.
2005-07-01
The problem of describing the generation and propagation of an infrasonic wave emitted by a finite extended source in the inhomogeneous absorbing atmosphere is the focus of this paper. It is of interest since the role of infrasonic waves in the energy balance of the upper atmosphere remains largely unknown. We present an algorithm, which allows adaptation of a point source model for calculating the infrasonic field from an underground nuclear explosion at ionospheric altitudes. Our calculations appear to agree remarkably well with HF Doppler sounding data measured for underground nuclear explosions at the Semipalatinsk Test Site. We show that the temperature and ionospheric electron density perturbation caused by an acoustic wave from underground nuclear explosion can reach 10% of background levels.
ON-SITE CAVITY LOCATION-SEISMIC PROFILING AT NEVADA TEST SITE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forbes, C.B.; Peterson, R.A.; Heald, C.L.
1961-10-25
Experimental seismic studies were conducted at the Nevada Test Site for the purpose of designing and evaluating the most promising seismic techniques for on-site inspection. Post-explosion seismic profiling was done in volcanic tuff in the vicinity of the Rainier and Blanca underground explosions. Pre-explosion seismic profiling was done over granitic rock outcrops in the Climax Stock area, and over tuff at proposed location for Linen and Orchid. Near surface velocity profiling techniques based on measurements of seismic time-distance curves gave evidence of disturbances in near surface rock velocities over the Rainier and Refer als0 to abstract 30187. Blanca sites. Thesemore » disturbances appear to be related to near surface fracturing and spallation effects resulting from the reflection of the original intense compression wave pulse at the near surface as a tension pulse. Large tuned seismometer arrays were used for horizontal seismic ranging in an attempt to record back-scattered'' or reflected seismic waves from subsurface cavities or zones of rock fracturing around the underground explosions. Some possible seismic events were recorded from the near vicinities of the Rainier and Blanca sites. However, many more similar events were recorded from numerous other locations, presumably originating from naturally occurring underground geological features. No means was found for discriminating between artificial and natural events recorded by horizontal seismic ranging, and the results were, therefore, not immediately useful for inspection purposes. It is concluded that in some instances near surface velocity profiling methods may provide a useful tool in verifying the presence of spalled zones above underground nuclear explosion sites. In the case of horizontal seismic ranging it appears that successful application would require development of satisfactory means for recognition of and discrimination against seismic responses to naturally occurring geological features. It is further concluded that, although more sophisticated instrumentation systems can be conceived, the most promising returns for effort expended can be expected to come from increased experience, skill, and human ingenuity in applying existing techniques. The basic problem is in large part a geological one of differentiating seismic response to man made irregularities from that of natural features which are of a similar or greater size and universally proved. It would not appear realistic to consider the seismic tool as a proven routine device for giving clear answers in on-site inspection operations. Application must still be considered largely experimental. (auth)« less
DOUBLE TRACKS Test Site interim corrective action plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The DOUBLE TRACKS site is located on Range 71 north of the Nellis Air Force Range, northwest of the Nevada Test Site (NTS). DOUBLE TRACKS was the first of four experiments that constituted Operation ROLLER COASTER. On May 15, 1963, weapons-grade plutonium and depleted uranium were dispersed using 54 kilograms of trinitrotoluene (TNT) explosive. The explosion occurred in the open, 0.3 m above the steel plate. No fission yield was detected from the test, and the total amount of plutonium deposited on the ground surface was estimated to be between 980 and 1,600 grams. The test device was composed primarilymore » of uranium-238 and plutonium-239. The mass ratio of uranium to plutonium was 4.35. The objective of the corrective action is to reduce the potential risk to human health and the environment and to demonstrate technically viable and cost-effective excavation, transportation, and disposal. To achieve these objectives, Bechtel Nevada (BN) will remove soil with a total transuranic activity greater then 200 pCI/g, containerize the soil in ``supersacks,`` transport the filled ``supersacks`` to the NTS, and dispose of them in the Area 3 Radioactive Waste Management Site. During this interim corrective action, BN will also conduct a limited demonstration of an alternative method for excavation of radioactive near-surface soil contamination.« less
Source-Type Identification Analysis Using Regional Seismic Moment Tensors
NASA Astrophysics Data System (ADS)
Chiang, A.; Dreger, D. S.; Ford, S. R.; Walter, W. R.
2012-12-01
Waveform inversion to determine the seismic moment tensor is a standard approach in determining the source mechanism of natural and manmade seismicity, and may be used to identify, or discriminate different types of seismic sources. The successful applications of the regional moment tensor method at the Nevada Test Site (NTS) and the 2006 and 2009 North Korean nuclear tests (Ford et al., 2009a, 2009b, 2010) show that the method is robust and capable for source-type discrimination at regional distances. The well-separated populations of explosions, earthquakes and collapses on a Hudson et al., (1989) source-type diagram enables source-type discrimination; however the question remains whether or not the separation of events is universal in other regions, where we have limited station coverage and knowledge of Earth structure. Ford et al., (2012) have shown that combining regional waveform data and P-wave first motions removes the CLVD-isotropic tradeoff and uniquely discriminating the 2009 North Korean test as an explosion. Therefore, including additional constraints from regional and teleseismic P-wave first motions enables source-type discrimination at regions with limited station coverage. We present moment tensor analysis of earthquakes and explosions (M6) from Lop Nor and Semipalatinsk test sites for station paths crossing Kazakhstan and Western China. We also present analyses of smaller events from industrial sites. In these sparse coverage situations we combine regional long-period waveforms, and high-frequency P-wave polarity from the same stations, as well as from teleseismic arrays to constrain the source type. Discrimination capability with respect to velocity model and station coverage is examined, and additionally we investigate the velocity model dependence of vanishing free-surface traction effects on seismic moment tensor inversion of shallow sources and recovery of explosive scalar moment. Our synthetic data tests indicate that biases in scalar seismic moment and discrimination for shallow sources are small and can be understood in a systematic manner. We are presently investigating the frequency dependence of vanishing traction of a very shallow (10m depth) M2+ chemical explosion recorded at several kilometer distances, and preliminary results indicate at the typical frequency passband we employ the bias does not affect our ability to retrieve the correct source mechanism but may affect the retrieval of the correct scalar seismic moment. Finally, we assess discrimination capability in a composite P-value statistical framework.
Possible large-volume mafic explosive eruptions in the Izu arc recorded in IODP Site U1436
NASA Astrophysics Data System (ADS)
Tamura, Y.; Jutzeler, M.; Schindlbeck, J. C.; Nichols, A. R.; DeBari, S.; Gill, J.; Busby, C. J.; Blum, P.
2014-12-01
The Izu-Bonin-Mariana volcanic arc system is an excellent example of an intraoceanic convergent margin where the effects of crustal anatexis and assimilation are considered to be minimal. The Izu fore arc is a repository of ashes erupted in the Izu-Bonin frontal arc because the prevailing wind blows from west to east. IODP Site U1436 (proposed Site IBM-4GT), located at 32°23.88'N, 140°21.93'E, lies in the western part of the Izu fore arc basin, ~60 km east of the arc-front volcano Aogashima, ~170 km west of the axis of the Izu-Bonin Trench, 1.5 km west of ODP Site 792, and at 1776 mbsl. It was drilled in April-May 2014, during IODP Expedition 350, as a 150 m deep geotechnical test hole for potential future deep drilling at proposed Site IBM-4 using the D/V Chikyu. The stratigraphic record of Late Pleistocene mafic and silicic explosive volcanic products from the arc front consists of tuffaceous mud interstratified with mafic and evolved ash and lapilli, including distinctive black glassy mafic ash layers. These distinctive intervals are basaltic andesite and the most mafic deposits analyzed shipboard at Site U1436. The facies appeared to be unusually homogeneous in componentry and texture; the overwhelmingly glassy nature of the ash suggests subaqueous explosive eruption, and its good sorting suggests deposition by vertical settling through the water column from an ash plume that reached the atmosphere. An alterative hypothesis is that the ash layers have been redeposited in bathymetric lows by submarine density currents. These black glassy mafic ash layers attracted a great deal of interest among the science party because, if the first hypothesis is correct, they could record large-volume mafic explosive eruptions. As a result three more holes were drilled at Site U1436, in order to recover undisturbed examples of these layers. Samples from each hole are currently undergoing post-cruise geochemical (major, traces and volatiles) and componentry analysis to test these two hypotheses in more detail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lear, P.R.; Gemarr, D.
1997-12-31
The US Army Umatilla Depot (UMD) was established as an ordnance depot in 1941 to store, preserve, and perform minor maintenance on conventional and chemical munitions. From the 1940`s until the present, UMD operated periodically at the 32 miscellaneous sites identified as OU-5. OU-4 consists of twenty sites within the Ammunition Demolition Activity Area. Typical activities conducted at these sites consisted of operations to burn, detonate, and otherwise dispose of ordnance, munitions casings, and other solids wastes. Five sites were selected for remedial action. The remediation contaminants of concern for the sites encompassed both metallic and non-metallic elements and bothmore » inorganic and organic compounds. The remedial action selected for the contaminated soil at these sites was stabilization/solidification (S/S). The site remediation activities for the five sites were performed by OHM Remediation Services Corp. (OHM) under the supervision of the US Army Corps of Engineers (USACE) Seattle District. The remedial action included treatability mix design testing, mobilization and field setup, soil excavation and processing, and S/S treatment. Stabilized soil samples were collected as grab samples from the pugmill discharge conveyor at a rate of every 75 tons of soil feed, corresponding to an individual production lot. None of the 437 production lots failed to meet the UCS requirement of 50 psi, however, 31 (7%) of the 437 lots failed for either TCLP-leachable metals or explosives. With one exception, all production lots which failed were due to exceedances of the TCLP-leachable explosives requirements. Of these 30 lots, 22 lots were from the OU-5 metals sites and were not expected to contain significant amounts of explosives. The areas in the landfill corresponding to these lots were excavated and the material reprocessed.« less
Method for attenuating seismic shock from detonating explosive in an in situ oil shale retort
Studebaker, Irving G.; Hefelfinger, Richard
1980-01-01
In situ oil shale retorts are formed in formation containing oil shale by excavating at least one void in each retort site. Explosive is placed in a remaining portion of unfragmented formation within each retort site adjacent such a void, and such explosive is detonated in a single round for explosively expanding formation within the retort site toward such a void for forming a fragmented permeable mass of formation particles containing oil shale in each retort. This produces a large explosion which generates seismic shock waves traveling outwardly from the blast site through the underground formation. Sensitive equipment which could be damaged by seismic shock traveling to it straight through unfragmented formation is shielded from such an explosion by placing such equipment in the shadow of a fragmented mass in an in situ retort formed prior to the explosion. The fragmented mass attenuates the velocity and magnitude of seismic shock waves traveling toward such sensitive equipment prior to the shock wave reaching the vicinity of such equipment.
NASA Astrophysics Data System (ADS)
Ross, J. Ole; Ceranna, Lars
2016-04-01
The Comprehensive Nuclear-Test-Ban Treaty (CTBT) prohibits all kinds of nuclear explosions. The International Monitoring System (IMS) is in place and at about 90% complete to verify compliance with the CTBT. The stations of the waveform technologies are capable to detect seismic, hydro-acoustic and infrasonic signals for detection, localization, and characterization of explosions. The seismic signals of the DPRK event on 6 January 2016 were detected by many seismic stations around the globe and allow for localization of the event and identification as explosion (see poster by G. Hartmann et al.). However, the direct evidence for a nuclear explosion is only possible through the detection of nuclear fission products which may be released. For that 80 Radionuclide (RN) Stations are part of the designed IMS, about 60 are already operational. All RN stations are highly sensitive for tiny traces of particulate radionuclides in large volume air samplers. There are 40 of the RN stations designated to be equipped with noble gas systems detecting traces of radioactive xenon isotopes which are more likely to escape from an underground test cavity than particulates. Already 30 of the noble gas systems are operational. Atmospheric Transport Modelling supports the interpretation of radionuclide detections (and as appropriate non-detections) by connecting the activity concentration measurements with potential source locations and release times. In our study forecasts with the Lagrangian Particle Dispersion Model HYSPLIT (NOAA) and GFS (NCEP) meteorological data are considered to assess the plume propagation patterns for hypothetical releases at the known DPRK nuclear test site. The results show a considerable sensitivity of the IMS station RN 38 Takasaki (Japan) to a potential radionuclide release at the test site in the days and weeks following the explosion in January 2016. In addition, backtracking simulations with ECMWF analysis data in 0.2° horizontal resolution are performed for selected samples to get a complementary estimation of the sensitivities and the connected thresholds for detectable releases.The meteorological situation is compared to the aftermath of the nuclear explosion on 12 February 2013 after which a specific occurrence of an unusual 131mXe signature at RN 38 eight weeks after the test could be very likely attributed to a late release from the DPRK event.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friese, Judah I.; Kephart, Rosara F.; Lucas, Dawn D.
2013-05-01
The Comprehensive Nuclear Test Ban Treaty (CTBT) has remote radionuclide monitoring followed by an On Site Inspection (OSI) to clarify the nature of a suspect event. An important aspect of radionuclide measurements on site is the discrimination of other potential sources of similar radionuclides such as reactor accidents or medical isotope production. The Chernobyl and Fukushima nuclear reactor disasters offer two different reactor source term environmental inputs that can be compared against historical measurements of nuclear explosions. The comparison of whole-sample gamma spectrometry measurements from these three events and the analysis of similarities and differences are presented. This analysis ismore » a step toward confirming what is needed for measurements during an OSI under the auspices of the Comprehensive Test Ban Treaty.« less
Lyakhova, O N; Lukashenko, S N; Larionova, N V; Tur, Y S
2012-11-01
During the period of testing from 1945 to 1962 at the territory of Semipalatinsk test site (STS) within the Degelen Mountains in tunnels, 209 underground nuclear explosions were produced. Many of the tunnels have seasonal water seepage in the form of streams, through which tritium migrates from the underground nuclear explosion (UNE) venues towards the surface. The issue of tritium contamination occupies a special place in the radioactive contamination of the environment. In this paper we assess the level and distribution of tritium in the atmospheric air of ecosystems with water seepage at tunnels № 176 and № 177, located on "Degelen" site. There has been presented general nature of tritium distribution in the atmosphere relative to surface of a watercourse which has been contaminated with tritium. The basic mechanisms were studied for tritium distribution in the air of studied ecosystems, namely, the distribution of tritium in the systems: water-atmosphere, tunnel air-atmosphere, soil water-atmosphere, vegetation-atmosphere. An analytical calculation of tritium concentration in the atmosphere by the concentration of tritium in water has been performed. There has experimentally obtained the dependence for predictive assessment of tritium concentrations in air as a function of tritium concentration in one of the inlet sources such as water, tunnel air, soil water, vegetation, etc.. The paper also describes the general nature of tritium distribution in the air in the area "Degelen". Copyright © 2012 Elsevier Ltd. All rights reserved.
P sub n from the Nevada Test Site
1988-12-15
reviewed and is approved for publication" JAMES0- t1IC Z--C J (TEX S C. BAkTIS CnLract Manager Acting Chief Solid Earth Geophysics Branch Solid Earth...high frequency Pn . The data base being used in the development consists of signals from explosions and earthquakes recorded on the western U.S. digital...measured quantitatively by correlating the average explosiorn ?n trace wiLh a data base of explosion and earthquake signals. The populations
2012-09-01
series of explosions, we have the unique and rare opportunity to study infrasound generated by a well-characterized source from the same borehole ...opportunity to study infrasound generated by a well-characterized source from the same borehole . This reduces the number of variables that must be...experiment is to study the seismic waves generated from explosions in both damaged and undamaged rock and that the observed infrasound is a
Rukavishnikov, V S; Efimova, N V; Katul'skaia, O Iu; Cherniago, B P; Matorova, N I; Beliaeva, T A; Medvedev, V I
2009-01-01
Analysis of archival records on the activity of diurnal plane-tables from the region's weather stations revealed local radioactive fall-out in the near-Baikal areas from the nuclear weapon tests carried out at the Semipalatinsk testing site. Examination of mortality rates in the settlements exposed to the tests showed that the maximum rates of overall and lung malignancy mortalities were observed in 1960-1979; the mean radiation dose in the exposed settlements were estimated to be 580-850 MeV.
Hong, Tae-Kyung; Choi, Eunseo; Park, Seongjun; Shin, Jin Soo
2016-01-01
Strong ground motions induce large dynamic stress changes that may disturb the magma chamber of a volcano, thus accelerating the volcanic activity. An underground nuclear explosion test near an active volcano constitutes a direct treat to the volcano. This study examined the dynamic stress changes of the magma chamber of Baekdusan (Changbaishan) that can be induced by hypothetical North Korean nuclear explosions. Seismic waveforms for hypothetical underground nuclear explosions at North Korean test site were calculated by using an empirical Green’s function approach based on a source-spectral model of a nuclear explosion; such a technique is efficient for regions containing poorly constrained velocity structures. The peak ground motions around the volcano were estimated from empirical strong-motion attenuation curves. A hypothetical M7.0 North Korean underground nuclear explosion may produce peak ground accelerations of 0.1684 m/s2 in the horizontal direction and 0.0917 m/s2 in the vertical direction around the volcano, inducing peak dynamic stress change of 67 kPa on the volcano surface and ~120 kPa in the spherical magma chamber. North Korean underground nuclear explosions with magnitudes of 5.0–7.6 may induce overpressure in the magma chamber of several tens to hundreds of kilopascals. PMID:26884136
The Explosive Pulsed Power Test Facility at AFRL
2005-06-01
Air Force Research Laboratory , AFRL /DEHP, Albuquerque...NM 87117 S. Coffey, A. Brown, B. Guffey NumerEx, Albuquerque, NM Abstract The Air Force Research Laboratory has developed and tested a...Chestnut Site on Kirtland Air Force Base. The facility is described in this paper, including details of recent upgrades. I.
Explosive Cratering Performance Tests
1981-07-02
0.25 cm) rain bucket Sling psychrometer ± 1%, ± 10 C 3 TOP 4-2-830 2 July 1981 ITEM REQUIR•4ENT Instrumentation Range/Minimum Accuracy Wind indicator...burial depths. History of prior excavation or disturbance among the various crater sites within the test area should be comparatively equal. However
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carmichael, Joshua D.; Hartse, Hans
Colocated explosive sources often produce correlated seismic waveforms. Multichannel correlation detectors identify these signals by scanning template waveforms recorded from known reference events against "target" data to find similar waveforms. This screening problem is challenged at thresholds required to monitor smaller explosions, often because non-target signals falsely trigger such detectors. Therefore, it is generally unclear what thresholds will reliably identify a target explosion while screening non-target background seismicity. Here, we estimate threshold magnitudes for hypothetical explosions located at the North Korean nuclear test site over six months of 2010, by processing International Monitoring System (IMS) array data with a multichannelmore » waveform correlation detector. Our method (1) accounts for low amplitude background seismicity that falsely triggers correlation detectors but is unidentifiable with conventional power beams, (2) adapts to diurnally variable noise levels and (3) uses source-receiver reciprocity concepts to estimate thresholds for explosions spatially separated from the template source. Furthermore, we find that underground explosions with body wave magnitudes m b = 1.66 are detectable at the IMS array USRK with probability 0.99, when using template waveforms consisting only of P -waves, without false alarms. We conservatively find that these thresholds also increase by up to a magnitude unit for sources located 4 km or more from the Feb.12, 2013 announced nuclear test.« less
Surface Disturbances at the Punggye-ri Nuclear Test Site: Another Indicator of Nuclear Testing?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pabian, Frank V.; Coblentz, David
A review of available very high-resolution commercial satellite imagery (bracketing the time of North Korea’s most recent underground nuclear test on 9 September 2016 at the Punggye-ri Underground Nuclear Test Site) has led to the detection and identification of several minor surface disturbances on the southern flank of Mt. Mantap. These surface disturbances occur in the form of small landslides, either alone or together with small zones of disturbed bare rock that appear to have been vertically lofted (“spalled”) as a result of the most recent underground explosion. Typically, spall can be uniquely attributed to underground nuclear testing and ismore » not a result of natural processes. However, given the time gap of up to three months between images (pre- and post-event), which was coincident with a period of heavy typhoon flooding in the area1, it is not possible to determine whether the small landslides were exclusively explosion induced, the consequence of heavy rainfall erosion, or some combination of the two.« less
Baseline ecological risk assessment Salmon Site, Lamar County, Mississippi
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-04-01
The Salmon Site (SS), formerly the Tatum Dome Test Site, located in Mississippi was the site of two nuclear and two gas explosion tests conducted between 1964 and 1970. A consequence of these testing activities is that radionuclides were released into the salt dome, where they are presently contained. During reentry drilling and other site activities, incidental liquid and solid wastes that contained radioactivity were generated, resulting in some soil, ground water and equipment contamination. As part of the remedial investigation effort, a Baseline Ecological Risk Assessment was conducted at the SS. The purpose is to gauge ecological and othermore » environmental impacts attributable to past activities at the former test facility. The results of this facility-specific baseline risk assessment are presented in this document.« less
Environmental technology demonstrations involving explosives contamination at the Volunteer Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, A.J.; Broder, M.F.; Jayne, E.A.
1997-08-01
Managed by the US Army Environmental Center, the Army`s test site at Volunteer Army Ammunition Plant encompasses a 300-acre area formerly used for batch production of TNT. Soil and groundwater contamination in the test area is well characterized. A network of monitoring wells and detailed information regarding the volume, location, and concentration of soil contamination is available to potential demonstrators. On-site field and laboratory support is provided by ICI Americas Incorporated, the facility`s operator. Four demonstrations have been conducted at the test site and several are scheduled for 1997. Preliminary findings from the four demonstrations discussed will be available sometimemore » in 1997.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heuze, F.E.
1982-05-01
The Department of Energy and the Department of Defense are actively pursuing a program of nuclear weapons testing by underground explosions at the Nevada Test Site (NTS). Over the past 11 years, scores of tests have been conducted and the safety record is very good. In the short run, emphasis is put on preventing the release of radioactive materials into the atmosphere. In the long run, the subsidence and collapse of the ground above the nuclear cavities also are matters of interest. Currently, estimation of containment is based mostly on empiricism derived from extensive experience and on a combination ofmore » physical/mechanical testing and numerical modeling. When measured directly, the mechanical material properties are obtained from short-term laboratory tests on small, conventional samples. This practice does not determine the large effects of scale and time on measured stiffnesses and strengths of geological materials. Because of the limited data base of properties and in situ conditions, the input to otherwise fairly sophisticated computer programs is subject to several simplifying assumptions; some of them can have a nonconservative impact on the calculated results. As for the long-term, subsidence and collapse phenomena simply have not been studied to any significant degree. This report examines the geomechanical aspects of procedures currently used to estimate containment of undergroung explosions at NTS. Based on this examination, it is concluded that state-of-the-art geological engineering practice in the areas of field testing, large scale laboratory measurements, and numerical modeling can be drawn upon to complement the current approach.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, David Charles
In 2014, baseline storm water monitoring samples for Potrillo Canyon Sample Management Area at Los Alamos National Laboratory (LANL) exceeded the National Pollutant Discharge Elimination System Individual Permit No. NM0030759 target action level (TAL) of 15 picocuries per liter (pCi/L) for gross-alpha radioactivity (393 pCi/L) and a TAL of 30 pCi/L for radium-226 and radium-228 (95.9 pCi/L). Consequently, erosion control measures within the management area are proposed to minimize sediment migration, a corrective action under the permit that is a requirement of the New Mexico Environment Department consent decree and a good management practice to limit off-site sediment migration. Themore » area proposed for erosion controls consists of portions of Technical Area 36 that were used as firing sites primarily involving high explosives (HE) and metal (e.g., depleted uranium, lead, copper, aluminum, and steel), small-explosives experiments and burn pits (burn pits were used for burning and disposal of test debris). In addition, underground explosive tests at an approximate depth of 100 feet were also conducted. These watershed-based storm water controls will focus on addressing erosion occurring within the floodplain through mitigating and reducing both current and future channelization and head cutting.« less
Earthquakes induced by fluid injection and explosion
Healy, J.H.; Hamilton, R.M.; Raleigh, C.B.
1970-01-01
Earthquakes generated by fluid injection near Denver, Colorado, are compared with earthquakes triggered by nuclear explosion at the Nevada Test Site. Spatial distributions of the earthquakes in both cases are compatible with the hypothesis that variation of fluid pressure in preexisting fractures controls the time distribution of the seismic events in an "aftershock" sequence. We suggest that the fluid pressure changes may also control the distribution in time and space of natural aftershock sequences and of earthquakes that have been reported near large reservoirs. ?? 1970.
The Seismic Event in North Korea on 12 May 2010: an assessment from available seismological data
NASA Astrophysics Data System (ADS)
Koch, Karl; Kim, Won-Young; Richards, Paul G.; Schaff, David P.
2016-04-01
North Korea conducted underground nuclear explosions in October 2006, May 2009, February 2013, and January 2016 that were subsequently officially announced. Based on a number of detections of radionuclides and noble gas elements in May 2010, claims were raised that North Korea conducted a small clandestine nuclear test on its test site on 11 or 12 May 2010, which, however, lacked any signs of an associated seismic event in IMS and non-IMS seismic data. First evidence was presented in fall 2014 and published in February 2015 that data from a Chinese seismic network showed signals that could be related to the claimed underground nuclear explosion in May 2010. Unfortunately, these data have not become openly available for further and wider seismological assessments. First openly available data were found for this seismic event from stations of the North-East China Extended SeiSmic (NECESS) Array consistent with an event on or near the North Korean test site. Later, additional data were obtained from stations of the nearby Dongbei Broadband Seismographic Network (DBSN), for the event of 12 May 2010 and for the underground nuclear tests conducted in 2006 and 2009. Together with data from the open GSN station Mudanjiang (MDJ) in northeastern China we developed a framework for relative location of the event, event characterization by measuring P/S amplitude ratios at different frequencies and by independently assessing the magnitude of the event. While the location of the event can be shown to be within several kilometers of previous nuclear tests, event characterization for frequencies between 5 and 10 Hz indicates that the known nuclear tests are explosion-like; the 12 May 2010 event is in contrast characterized as earthquake-like. Our assessment also indicates that seismic events about three-thousand times smaller than the UNEs in 2013 or 2016 may be monitored on or near the North Korean test site.
Novel Circuits for Energizing Manganin Stress Gauges
NASA Astrophysics Data System (ADS)
Tasker, Douglas
2015-06-01
This paper describes the design, manufacture and testing of novel MOSFET pulsed constant current supplies for low impedance Manganin stress gauges. The design emphasis has been on high accuracy, low noise, simple, low cost, disposable supplies that can be used to energize multiple gauges in explosive or shock experiments. Manganin gauges used to measure stresses in detonating explosive experiments have typical resistances of 50 m Ω and are energized with pulsed currents of 50 A. Conventional pulsed current supplies for these gauges are high voltage devices with outputs as high as 500 V. Common problems with the use of high voltage supplies at explosive firing sites are: erroneous signals caused by ground loops; overdrive of oscilloscopes on gauge failure; gauge signal crosstalk; cost; and errors due to finite and changing source impedances. To correct these issues a novel MOSFET circuit was designed and will be described. It is an 18-V circuit, powered by 9-V alkaline batteries, and features an optically isolated trigger, and single-point grounding. These circuits have been successfully tested at the Los Alamos National Laboratory and selected explosive tests will be described together with their results. LA-UR-15-20613.
Post-Explosion Tracer Gas Study in Fractured Granite
NASA Astrophysics Data System (ADS)
Avendano, S.; Horne, M.; Herrera, C.; Person, M. A.; Gorman, E.; Stroujkova, A. F.; Gomez-Velez, J. D.
2017-12-01
Radioactive noble gas detection at suspected underground nuclear test sites is the only proven way to confirm that a nuclear test has occurred. However, the migration of gas effluent through fracture networks is still poorly understood. A pilot field study of the gas migration through rock damaged by explosions was conducted in a rock quarry in New Hampshire in the summer of 2017. Tracer gas (SF6), used as a proxy for the noble gas, was released into a cavity created by an explosion (63 kg of TNT at a depth of 13 m) conducted during the summer of 2016. The upper 5 m of borehole were grouted with stainless steel tubing sealed in the concrete and the gas was pumped through the tubing. Before the gas release, we conducted a series of geophysical and hydrologic tests: a pump test, several slug tests, a salt tracer release in two boreholes, and TEM and ERT surveys. Pressure and electrical conductivity transducers were placed in the surrounding boreholes to monitor the pressure changes and tracer arrival during the pumping. The results of the pump test show that the rock is well connected and has high permeability. Interestingly, the injection of gas resulted in a substantial increase of the local hydraulic conductivity, as evidenced by slug test results before and after injection. The pressure changes in the surrounding boreholes were also monitored during the gas release. We observed gas breakthrough immediately after the release. During the first minute after injection, a pressure wave was observed in two boreholes suggestive of inertial effects and hydraulic fracturing after gas release. The concentrations observed at each monitoring site are consistent with the pump testing. The results of this study will be used in our upcoming experiments and to test detailed mathematical models.
Radioactivity in trinitite six decades later.
Parekh, Pravin P; Semkow, Thomas M; Torres, Miguel A; Haines, Douglas K; Cooper, Joseph M; Rosenberg, Peter M; Kitto, Michael E
2006-01-01
The first nuclear explosion test, named the Trinity test, was conducted on July 16, 1945 near Alamogordo, New Mexico. In the tremendous heat of the explosion, the radioactive debris fused with the local soil into a glassy material named Trinitite. Selected Trinitite samples from ground zero (GZ) of the test site were investigated in detail for radioactivity. The techniques used included alpha spectrometry, high-efficiency gamma-ray spectrometry, and low-background beta counting, following the radiochemistry for selected radionuclides. Specific activities were determined for fission products (90Sr, 137Cs), activation products (60Co, 133Ba, 152Eu, 154Eu, 238Pu, 241Pu), and the remnants of the nuclear fuel (239Pu, 240Pu). Additionally, specific activities of three natural radionuclides (40K, 232Th, 238U) and their progeny were measured. The determined specific activities of radionuclides and their relationships are interpreted in the context of the fission process, chemical behavior of the elements, as well as the nuclear explosion phenomenology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1962-10-31
A conrparative ecologmcal study of the animals at the Nevada Test Site was made in order to determine their reaction to nuclear explosion effects. To make this study the project was subdivmded mnto the following projects: determine the kmnds and populations of native animals in areas disturbed by atomic explosions in comparison with animals in contiguous undisturbed areas; determine seasonal distribution, migration, home range, and other habits of native animals in disturbed and undisturbed areas; and determine whether there are tissue changes in native animals living in radiation contaminated areas. Results of the program are stmll being analyzed, however, somemore » results are presented. The animals studied primarily are grounddwelling animals, rodents, lizards, ants, grasshoppers, crickets, beetles, spiders, and scorpions. These animals were selected because of their distribution and abundance in many plant communities throughout the test site. Description is given of the 26 major study plots and the techniques used for collecting the animals. 75 supporting plots established and investigated are also described. (N.W.R.)« less
NASA Astrophysics Data System (ADS)
Lowrey, J. D.; Haas, D.
2013-12-01
Underground nuclear explosions (UNEs) produce anthropogenic isotopes that can potentially be used in the verification component of the Comprehensive Nuclear-Test-Ban Treaty. Several isotopes of radioactive xenon gas have been identified as radionuclides of interest within the International Monitoring System (IMS) and in an On-Site Inspection (OSI). Substantial research has been previously undertaken to characterize the geologic and atmospheric mechanisms that can drive the movement of radionuclide gas from a well-contained UNE, considering both sensitivities on gas arrival time and signature variability of xenon due to the nature of subsurface transport. This work further considers sensitivities of radioxenon gas arrival time and signatures to large variability in geologic stratification and generalized explosion cavity characteristics, as well as compares this influence to variability in the shallow surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodgers, A
2008-01-16
In this report we describe the data sets used to evaluate ground motion hazards in Las Vegas from nuclear tests at the Nevada Test Site. This analysis is presented in Rodgers et al. (2005, 2006) and includes 13 nuclear explosions recorded at the John Blume and Associates network, the Little Skull Mountain earthquake and a temporary deployment of broadband station in Las Vegas. The data are available in SAC format on CD-ROM as an appendix to this report.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-19
... Secretariat with geographic locations of sites where chemical explosions of 300 tons of TNT-equivalent, or... response. Estimated Reporting and Recordkeeping ``Non-Hour Cost'' Burden: We have not identified any ``non...
REGIONAL SEISMIC CHEMICAL AND NUCLEAR EXPLOSION DISCRIMINATION: WESTERN U.S. EXAMPLES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walter, W R; Taylor, S R; Matzel, E
2006-07-07
We continue exploring methodologies to improve regional explosion discrimination using the western U.S. as a natural laboratory. The western U.S. has abundant natural seismicity, historic nuclear explosion data, and widespread mine blasts, making it a good testing ground to study the performance of regional explosion discrimination techniques. We have assembled and measured a large set of these events to systematically explore how to best optimize discrimination performance. Nuclear explosions can be discriminated from a background of earthquakes using regional phase (Pn, Pg, Sn, Lg) amplitude measures such as high frequency P/S ratios. The discrimination performance is improved if the amplitudesmore » can be corrected for source size and path length effects. We show good results are achieved using earthquakes alone to calibrate for these effects with the MDAC technique (Walter and Taylor, 2001). We show significant further improvement is then possible by combining multiple MDAC amplitude ratios using an optimized weighting technique such as Linear Discriminant Analysis (LDA). However this requires data or models for both earthquakes and explosions. In many areas of the world regional distance nuclear explosion data is lacking, but mine blast data is available. Mine explosions are often designed to fracture and/or move rock, giving them different frequency and amplitude behavior than contained chemical shots, which seismically look like nuclear tests. Here we explore discrimination performance differences between explosion types, the possible disparity in the optimization parameters that would be chosen if only chemical explosions were available and the corresponding effect of that disparity on nuclear explosion discrimination. Even after correcting for average path and site effects, regional phase ratios contain a large amount of scatter. This scatter appears to be due to variations in source properties such as depth, focal mechanism, stress drop, in the near source material properties (including emplacement conditions in the case of explosions) and in variations from the average path and site correction. Here we look at several kinds of averaging as a means to try and reduce variance in earthquake and explosion populations and better understand the factors going into a minimum variance level as a function of epicenter (see Anderson ee et al. this volume). We focus on the performance of P/S ratios over the frequency range from 1 to 16 Hz finding some improvements in discrimination as frequency increases. We also explore averaging and optimally combining P/S ratios in multiple frequency bands as a means to reduce variance. Similarly we explore the effects of azimuthally averaging both regional amplitudes and amplitude ratios over multiple stations to reduce variance. Finally we look at optimal performance as a function of magnitude and path length, as these put limits the availability of good high frequency discrimination measures.« less
NASA Astrophysics Data System (ADS)
Sussman, A. J.; Anderson, D.; Burt, C.; Craven, J.; Kimblin, C.; McKenna, I.; Schultz-Fellenz, E. S.; Miller, E.; Yocky, D. A.; Haas, D.
2016-12-01
Underground nuclear explosions (UNEs) result in numerous signatures that manifest on a wide range of temporal and spatial scales. Currently, prompt signals, such as the detection of seismic waves provide only generalized locations and the timing and amplitude of non-prompt signals are difficult to predict. As such, research into improving the detection, location, and identification of suspect events has been conducted, resulting in advancement of nuclear test detection science. In this presentation, we demonstrate the scalar variably of surface and subsurface observables, briefly discuss current capabilities to locate, detect and characterize potential nuclear explosion locations, and explain how emergent technologies and amalgamation of disparate data sets will facilitate improved monitoring and verification. At the smaller scales, material and fracture characterization efforts on rock collected from legacy UNE sites and from underground experiments using chemical explosions can be incorporated into predictive modeling efforts. Spatial analyses of digital elevation models and orthoimagery of both modern conventional and legacy nuclear sites show subtle surface topographic changes and damage at nearby outcrops. Additionally, at sites where such technology cannot penetrate vegetative cover, it is possible to use the vegetation itself as both a companion signature reflecting geologic conditions and showing subsurface impacts to water, nutrients, and chemicals. Aerial systems based on RGB imagery, light detection and ranging, and hyperspectral imaging can allow for combined remote sensing modalities to perform pattern recognition and classification tasks. Finally, more remote systems such as satellite based synthetic aperture radar and satellite imagery are other techniques in development for UNE site detection, location and characterization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ford, S R; Walter, W R
The behavior of aftershock sequences around the Nevada Test Site in the southern Great Basin is characterized as a potential discriminant between explosions and earthquakes. The aftershock model designed by Reasenberg and Jones (1989, 1994) allows for a probabilistic statement of earthquake-like aftershock behavior at any time after the mainshock. We use this model to define two types of aftershock discriminants. The first defines M{sub X}, or the minimum magnitude of an aftershock expected within a given duration after the mainshock with probability X. Of the 67 earthquakes with M > 4 in the study region, 63 of them producemore » an aftershock greater than M{sub 99} within the first seven days after a mainshock. This is contrasted with only six of 93 explosions with M > 4 that produce an aftershock greater than M{sub 99} for the same period. If the aftershock magnitude threshold is lowered and the M{sub 90} criteria is used, then no explosions produce an aftershock greater than M{sub 90} for durations that end more than 17 days after the mainshock. The other discriminant defines N{sub X}, or the minimum cumulative number of aftershocks expected for given time after the mainshock with probability X. Similar to the aftershock magnitude discriminant, five earthquakes do not produce more aftershocks than N{sub 99} within 7 days after the mainshock. However, within the same period all but one explosion produce less aftershocks then N{sub 99}. One explosion is added if the duration is shortened to two days after than mainshock. The cumulative number aftershock discriminant is more reliable, especially at short durations, but requires a low magnitude of completeness for the given earthquake catalog. These results at NTS are quite promising and should be evaluated at other nuclear test sites to understand the effects of differences in the geologic setting and nuclear testing practices on its performance.« less
Timonova, L V; Lyakhova, O N; Lukashenko, S N; Aidarkhanov, A O
2015-01-01
As a result of investigations carried out on the territory of Semipalatinsk Test Site, tritium was found in different environmental objects--surface and ground waters, vegetation, air environment, and snow cover. The analysis of the data obtained has shown that contamination of environmental objects at the Semipalatinsk Test Site with tritium is associated with the places where underground nuclear tests were performed. Since tritium can originate from an activation reaction and be trapped by pock particles during a test, it was decided to examine the soil in the sites where surface and excavation tests took place. It was found that the concentration of tritium in soil correlates with the concentration of europium. Probably, the concentration of tritium in the soil depends on the character and yield of the tests performed. Findings of the study have revealed that tritium can be found in soil in significant amounts not only in sites where underground nuclear tests took place but also in sites where surface and excavation nuclear tests were carried out.
78 FR 1143 - Explosive Siting Requirements; Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-08
... launch site operators in site planning for the storage and handling of energetic liquids and explosives...: For technical questions concerning this final rule, contact Yvonne Tran, Commercial Space... this final rule, contact Laura Montgomery, AGC 200, [[Page 1144
NASA Astrophysics Data System (ADS)
Zucca, J. J.
2014-05-01
On-site inspection (OSI) is a critical part of the verification regime for the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The OSI verification regime provides for international inspectors to make a suite of measurements and observations on site at the location of an event of interest. The other critical component of the verification regime is the International Monitoring System (IMS), which is a globally distributed network of monitoring stations. The IMS along with technical monitoring data from CTBT member countries, as appropriate, will be used to trigger an OSI. After the decision is made to carry out an OSI, it is important for the inspectors to deploy to the field site rapidly to be able to detect short-lived phenomena such as the aftershocks that may be observable after an underground nuclear explosion. The inspectors will be on site from weeks to months and will be working with many tens of tons of equipment. Parts of the OSI regime will be tested in a field exercise in the country of Jordan late in 2014. The build-up of the OSI regime has been proceeding steadily since the CTBT was signed in 1996 and is on track to becoming a deterrent to someone considering conducting a nuclear explosion in violation of the Treaty.
Threshold magnitudes for a multichannel correlation detector in background seismicity
Carmichael, Joshua D.; Hartse, Hans
2016-04-01
Colocated explosive sources often produce correlated seismic waveforms. Multichannel correlation detectors identify these signals by scanning template waveforms recorded from known reference events against "target" data to find similar waveforms. This screening problem is challenged at thresholds required to monitor smaller explosions, often because non-target signals falsely trigger such detectors. Therefore, it is generally unclear what thresholds will reliably identify a target explosion while screening non-target background seismicity. Here, we estimate threshold magnitudes for hypothetical explosions located at the North Korean nuclear test site over six months of 2010, by processing International Monitoring System (IMS) array data with a multichannelmore » waveform correlation detector. Our method (1) accounts for low amplitude background seismicity that falsely triggers correlation detectors but is unidentifiable with conventional power beams, (2) adapts to diurnally variable noise levels and (3) uses source-receiver reciprocity concepts to estimate thresholds for explosions spatially separated from the template source. Furthermore, we find that underground explosions with body wave magnitudes m b = 1.66 are detectable at the IMS array USRK with probability 0.99, when using template waveforms consisting only of P -waves, without false alarms. We conservatively find that these thresholds also increase by up to a magnitude unit for sources located 4 km or more from the Feb.12, 2013 announced nuclear test.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foxall, W; Vincent, P; Walter, W
1999-07-23
We have previously presented simple elastic deformation modeling results for three classes of seismic events of concern in monitoring the CTBT--underground explosions, mine collapses and earthquakes. Those results explored the theoretical detectability of each event type using synthetic aperture radar interferometry (InSAR) based on commercially available satellite data. In those studies we identified and compared the characteristics of synthetic interferograms that distinguish each event type, as well the ability of the interferograms to constrain source parameters. These idealized modeling results, together with preliminary analysis of InSAR data for the 1995 mb 5.2 Solvay mine collapse in southwestern Wyoming, suggested thatmore » InSAR data used in conjunction with regional seismic monitoring holds great potential for CTBT discrimination and seismic source analysis, as well as providing accurate ground truth parameters for regional calibration events. In this paper we further examine the detectability and ''discriminating'' power of InSAR by presenting results from InSAR data processing, analysis and modeling of the surface deformation signals associated with underground explosions. Specifically, we present results of a detailed study of coseismic and postseismic surface deformation signals associated with underground nuclear and chemical explosion tests at the Nevada Test Site (NTS). Several interferograms were formed from raw ERS-1/2 radar data covering different time spans and epochs beginning just prior to the last U.S. nuclear tests in 1992 and ending in 1996. These interferograms have yielded information about the nature and duration of the source processes that produced the surface deformations associated with these events. A critical result of this study is that significant post-event surface deformation associated with underground nuclear explosions detonated at depths in excess of 600 meters can be detected using differential radar interferometry. An immediate implication of this finding is that underground nuclear explosions may not need to be captured coseismically by radar images acquired before and after an event in order to be detectable. This has obvious advantages in CTBT monitoring since suspect seismic events--which usually can be located within a 100 km by 100 km area of an ERS-1/2 satellite frame by established seismic methods-can be imaged after the event has been identified and located by existing regional seismic networks. Key Words: InSAR, SLC images, interferogram, synthetic interferogram, ERS-1/2 frame, phase unwrapping, DEM, coseismic, postseismic, source parameters.« less
NASA Astrophysics Data System (ADS)
Tiira, Timo
1996-10-01
Seismic discrimination capability of artificial neural networks (ANNs) was studied using earthquakes and nuclear explosions from teleseismic distances. The events were selected from two areas, which were analyzed separately. First, 23 nuclear explosions from Semipalatinsk and Lop Nor test sites were compared with 46 earthquakes from adjacent areas. Second, 39 explosions from Nevada test site were compared with 27 earthquakes from close-by areas. The basic discriminants were complexity, spectral ratio and third moment of frequency. The spectral discriminants were computed in five different ways to obtain all the information embedded in the signals, some of which were relatively weak. The discriminants were computed using data from six short period stations in Central and southern Finland. The spectral contents of the signals of both classes varied considerably between the stations. The 66 discriminants were formed into 65 optimum subsets of different sizes by using stepwise linear regression. A type of ANN called multilayer perceptron (MLP) was applied to each of the subsets. As a comparison the classification was repeated using linear discrimination analysis (LDA). Since the number of events was small the testing was made with the leave-one-out method. The ANN gave significantly better results than LDA. As a final tool for discrimination a combination of the ten neural nets with the best performance were used. All events from Central Asia were clearly discriminated and over 90% of the events from Nevada region were confidently discriminated. The better performance of ANNs was attributed to its ability to form complex decision regions between the groups and to its highly non-linear nature.
Modeling Explosion Induced Aftershocks
NASA Astrophysics Data System (ADS)
Kroll, K.; Ford, S. R.; Pitarka, A.; Walter, W. R.; Richards-Dinger, K. B.
2017-12-01
Many traditional earthquake-explosion discrimination tools are based on properties of the seismic waveform or their spectral components. Common discrimination methods include estimates of body wave amplitude ratios, surface wave magnitude scaling, moment tensor characteristics, and depth. Such methods are limited by station coverage and noise. Ford and Walter (2010) proposed an alternate discrimination method based on using properties of aftershock sequences as a means of earthquakeexplosion differentiation. Previous studies have shown that explosion sources produce fewer aftershocks that are generally smaller in magnitude compared to aftershocks of similarly sized earthquake sources (Jarpe et al., 1994, Ford and Walter, 2010). It has also been suggested that the explosion-induced aftershocks have smaller Gutenberg- Richter b-values (Ryall and Savage, 1969) and that their rates decay faster than a typical Omori-like sequence (Gross, 1996). To discern whether these observations are generally true of explosions or are related to specific site conditions (e.g. explosion proximity to active faults, tectonic setting, crustal stress magnitudes) would require a thorough global analysis. Such a study, however, is hindered both by lack of evenly distributed explosion-sources and the availability of global seismicity data. Here, we employ two methods to test the efficacy of explosions at triggering aftershocks under a variety of physical conditions. First, we use the earthquake rate equations from Dieterich (1994) to compute the rate of aftershocks related to an explosion source assuming a simple spring-slider model. We compare seismicity rates computed with these analytical solutions to those produced by the 3D, multi-cycle earthquake simulator, RSQSim. We explore the relationship between geological conditions and the characteristics of the resulting explosion-induced aftershock sequence. We also test hypothesis that aftershock generation is dependent upon the frequency content of the passing dynamic seismic waves as suggested by Parsons and Velasco (2009). Lastly, we compare all results of explosion-induced aftershocks with aftershocks generated by similarly sized earthquake sources. Prepared by LLNL under Contract DE-AC52-07NA27344.
Romanyukha, Alex; Schauer, David A; Malikov, Yurii K
2006-02-01
Between 1949 and 1989 the Semipalatinsk nuclear test site (SNTS), an area of 19,000 square km in northeastern Kazakhstan, was the location of over 400 nuclear test explosions with a total explosive energy of 6.6 Mt TNT (trinitrotoluene or trotyl) equivalent. It is estimated that the bulk of the radiation exposure to the population resulted from three tests, conducted in 1949, 1951, and 1953 although estimations of radiation doses received by the local population have varied significantly. Analysis of the published ESR dose reconstruction results for residents of the villages near the SNTS show that they do not correlate well with other methods of dose assessment (e.g. model dose calculation and thermo luminescence dosimetry (TLD) in bricks). The most significant difference in dose estimations was found for the population of Dolon, which was exposed as result of the first Soviet nuclear test in 1949. Published results of ESR measurements in tooth enamel are considerably lower than other dose estimations. Detailed analysis of these results is provided and a possible explanation for this discrepancy and ways to eliminate it are suggested.
1992-03-01
Activity .............................. 2 2-2 Explosive Washout Lagoons (Site 4) and Washout Plant Area ............................... 2-3 3-1 Site 4...ponds for liquid wastes from bomb-washing operations in the washout plant . The measured dimensions of the flat bottoms of the two lagoons are 30 by 80...explosives washout plant system was drained, flushed, and cleaned approximately once each week from the mid-1950s until 1965. The lagoons received all of the
NASA Technical Reports Server (NTRS)
Cocchiaro, James E. (Editor); Filliben, Jeff D. (Editor); Watson, Anne H. (Editor)
1997-01-01
In the Propellant Development and Characterization Subcommittee (PDCS) meeting, topics included: the analysis, characterization, and processing of propellants and propellant ingredients; chemical reactivity; liquid propellants; test methods; rheology; surveillance and aging; and process engineering. In the Safety and Environmental Protection Subcommittee (S&EPS) meeting, topics covered included: hydrazine propellant vapor detection methods; toxicity of propellants and propellants; explosives safety; atmospheric modeling and risk assessment of toxic releases; reclamation, disposal, and demilitarization methods; and remediation of explosives or propellant contaminated sites.
Field analysis for explosives: TNT and RDX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elcoate, W.; Mapes, J.
The EPA has listed as hazardous many of the compounds used in the production of ammunitions and other explosive ordnance. The contamination of soil with TNT (2,4,6-trinitrotoluene), the major component of many munitions formulations and to a lesser degree RDX (hexhydro-1,3,5-trinitro-1,3,5-trizine) is a significant problem at many ammunition manufacturing facilities, depots, and ordnance disposal sites. Field test kits for explosives TNT and RDX (hexhydro-1,3,5-trinitro-1,3,5-triazine) were developed based on the methods of T.F. Jenkins and M.E. Walsh and T.F Jenkins. EnSys Environmental Products, Inc. with technical support from T.F. Jenkins took the original TNT procedure, modified it for easier field use,more » performed validation studies to ensure that it met or exceeded the method specifications for both the T.F. Jenkins and SW-846 methods, and developed an easy to use test format for the field testing of TNT. The RDX procedure has gone through the development cycle and is presently in the field validation phase. This paper describes the test protocol and performance characteristics of the TNT test procedure.« less
Testing for Controlled Rapid Pressurization
Steven Knudsen
2014-09-03
Borehole W1 is a NQ core hole drilled at our test site in Socorro. The rock is rhyolite. Borehole W1 which was used to test gas-gas explosive mixtures is 55 feet deep with casing (pinkish in the drawing) set to 35 feet. The model is a representation of the borehole and the holes we cored around the central borehole after the test. The brown colored core holes showed dye when we filled W1 with water and slightly pressurized it. This indicates there was some path between W1 and the colored core hole. The core holes are shown to their TD in the drawing. The green plane is a fracture plane which we believe is the result of the explosions of the gas mixture in W1. Data resource is a 2D .pdf Solid Works Drawing of borehole w-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael Kruzic
2007-09-01
Located in Area 25 of the Nevada Test Site, the Test Cell A Facility was used in the 1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program. The facility was decontaminated and decommissioned (D&D) in 2005 using the Streamlined Approach For Environmental Restoration (SAFER) process, under the Federal Facilities Agreement and Consent Order (FFACO). Utilities and process piping were verified void of contents, hazardous materials were removed, concrete with removable contamination decontaminated, large sections mechanically demolished, and the remaining five-foot, five-inch thick radiologically-activated reinforced concrete shield wall demolished using open-air controlled explosive demolitionmore » (CED). CED of the shield wall was closely monitored and resulted in no radiological exposure or atmospheric release.« less
Method for explosive expansion toward horizontal free faces for forming an in situ oil shale retort
Ricketts, Thomas E.
1980-01-01
Formation is excavated from within a retort site in formation containing oil shale for forming a plurality of vertically spaced apart voids extending horizontally across different levels of the retort site, leaving a separate zone of unfragmented formation between each pair of adjacent voids. Explosive is placed in each zone, and such explosive is detonated in a single round for forming an in situ retort containing a fragmented permeable mass of formation particles containing oil shale. The same amount of formation is explosively expanded upwardly and downwardly toward each void. A horizontal void excavated at a production level has a smaller horizontal cross-sectional area than a void excavated at a lower level of the retort site immediately above the production level void. Explosive in a first group of vertical blast holes is detonated for explosively expanding formation downwardly toward the lower void, and explosive in a second group of vertical blast holes is detonated in the same round for explosively expanding formation upwardly toward the lower void and downwardly toward the production level void for forming a generally T-shaped bottom of the fragmented mass.
Remedial action suitability for the Cornhusker Army Ammunition Plant site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nonavinakere, S.; Rappa, P. III
1995-12-31
Numerous Department of Defense (DOD) sites across the nation are contaminated with explosive wastes due to munitions production during World War II, Korean Conflict and Vietnam Conflict. Production activities included explosives manufacturing, loading, packing, assembling, machining, casting and curing. Contaminants often present at these sites include TNT, RDX, HMX, Tetryl 2,4-DNT, 2,6-DNT, 1,3-DNB, 1,3,5-TNB and nitrobenzene. The Cornhusker Army Ammunition Plant (CAAP) is one such DOD site that has been determined to be contaminated with explosives. The CAAP is located approximately 2 miles west of the City of Grand Island in Hall County, Nebraska. The plant produced artillery, bombs, boosters,more » supplementary charges and various other experimental explosives. The purpose of this paper is to provide an overview of the site background, review of the remedial alternatives evaluation process and rationale behind the selection of present remedial action.« less
NASA Astrophysics Data System (ADS)
Vorobiev, O.; Ezzedine, S. M.; Antoun, T.; Glenn, L.
2014-12-01
This work describes a methodology used for large scale modeling of wave propagation fromunderground explosions conducted at the Nevada Test Site (NTS) in two different geological settings:fractured granitic rock mass and in alluvium deposition. We show that the discrete nature of rockmasses as well as the spatial variability of the fabric of alluvium is very important to understand groundmotions induced by underground explosions. In order to build a credible conceptual model of thesubsurface we integrated the geological, geomechanical and geophysical characterizations conductedduring recent test at the NTS as well as historical data from the characterization during the undergroundnuclear test conducted at the NTS. Because detailed site characterization is limited, expensive and, insome instances, impossible we have numerically investigated the effects of the characterization gaps onthe overall response of the system. We performed several computational studies to identify the keyimportant geologic features specific to fractured media mainly the joints; and those specific foralluvium porous media mainly the spatial variability of geological alluvium facies characterized bytheir variances and their integral scales. We have also explored common key features to both geologicalenvironments such as saturation and topography and assess which characteristics affect the most theground motion in the near-field and in the far-field. Stochastic representation of these features based onthe field characterizations have been implemented in Geodyn and GeodynL hydrocodes. Both codeswere used to guide site characterization efforts in order to provide the essential data to the modelingcommunity. We validate our computational results by comparing the measured and computed groundmotion at various ranges. This work performed under the auspices of the U.S. Department of Energy by Lawrence LivermoreNational Laboratory under Contract DE-AC52-07NA27344.
Wang, Teng; Shi, Qibin; Nikkhoo, Mehdi; Wei, Shengji; Barbot, Sylvain; Dreger, Douglas; Bürgmann, Roland; Motagh, Mahdi; Chen, Qi-Fu
2018-05-10
Surveillance of clandestine nuclear tests relies on a global seismic network, but the potential of spaceborne monitoring has been underexploited. Here, we determined the complete surface displacement field of up to 3.5 m of divergent horizontal motion with 0.5 m of subsidence associated with North Korea's largest underground nuclear test using satellite radar imagery. Combining insight from geodetic and seismological remote sensing, we found that the aftermath of the initial explosive deformation involved subsidence associated with sub-surface collapse and aseismic compaction of the damaged rocks of the test site. The explosive yield from the nuclear detonation with seismic modeling for 450m depth was between 120-304 kt of TNT equivalent. Our results demonstrate the capability of spaceborne remote sensing to help characterize large underground nuclear tests. Copyright © 2018, American Association for the Advancement of Science.
Integrated Geophysical Analysis at a Legacy Test Site
NASA Astrophysics Data System (ADS)
Yang, X.; Mellors, R. J.; Sweeney, J. J.; Sussman, A. J.
2015-12-01
We integrate magnetic, electromagnetic (EM), gravity, and seismic data to develop a unified and consistent model of the subsurface at the U20ak site on Pahute Mesa at the Nevada National Nuclear Security Site (NNSS). The 1985 test, conducted in tuff at a depth of approximately 600 m did not collapse to the surface or produce a crater. The purpose of the geophysical measurements is to characterize the subsurface above and around the presumed explosion cavity. The magnetic data are used to locate steel borehole casings and pipes and are correlated with surface observations. The EM data show variation in lithology at depth and clear signatures from borehole casings and surface cables. The gravity survey detects a clear gravity low in the area of the explosion. The seismic data indicates shallow low velocity zone and indications of a deeper low velocity zones. In this study, we conduct 2D inversion of EM data for better characterization of site geology and use a common 3D density model to jointly interpret both the seismic and gravity data along with constraints on lithology boundaries from the EM. The integration of disparate geophysical datasets allows improved understanding of the non-prompt physical signatures of an underground nuclear explosion (UNE). LLNL Release Number: LLNL-ABS-675677. The authors express their gratitude to the National Nuclear Security Administration, Defense Nuclear Nonproliferation Research and Development, and the Comprehensive Inspection Technologies and UNESE working group, a multi-institutional and interdisciplinary group of scientists and engineers. This work was performed by Lawrence Livermore National Laboratory and Los Alamos National Laboratory under award number DE-AC52-06NA25946.
14 CFR 420.63 - Explosive siting.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Explosive siting. 420.63 Section 420.63 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... launch site boundary; (2) A listing of the maximum quantities of liquid and solid propellants and other...
14 CFR 420.63 - Explosive siting.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Explosive siting. 420.63 Section 420.63 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... launch site boundary; (2) A listing of the maximum quantities of liquid and solid propellants and other...
14 CFR 420.63 - Explosive siting.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Explosive siting. 420.63 Section 420.63 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... launch site boundary; (2) A listing of the maximum quantities of liquid and solid propellants and other...
Chemical analysis kit for the presence of explosives
Eckels, Joel Del [Livermore, CA; Nunes,; Peter, J [Danville, CA; Alcaraz, Armando [Livermore, CA; Whipple, Richard E [Livermore, CA
2011-05-10
A tester for testing for explosives associated with a test location comprising a first explosives detecting reagent; a first reagent holder, the first reagent holder containing the first explosives detecting reagent; a second explosives detecting reagent; a second reagent holder, the second reagent holder containing the second explosives detecting reagent; a sample collection unit for exposure to the test location, exposure to the first explosives detecting reagent, and exposure to the second explosives detecting reagent; and a body unit containing a heater for heating the sample collection unit for testing the test location for the explosives.
30 CFR 7.306 - Explosion tests.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Explosion tests. 7.306 Section 7.306 Mineral... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Electric Motor Assemblies § 7.306 Explosion tests. (a) The following shall be used for conducting an explosion test: (1) An explosion test chamber designed...
30 CFR 7.306 - Explosion tests.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Explosion tests. 7.306 Section 7.306 Mineral... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Electric Motor Assemblies § 7.306 Explosion tests. (a) The following shall be used for conducting an explosion test: (1) An explosion test chamber designed...
30 CFR 7.306 - Explosion tests.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Explosion tests. 7.306 Section 7.306 Mineral... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Electric Motor Assemblies § 7.306 Explosion tests. (a) The following shall be used for conducting an explosion test: (1) An explosion test chamber designed...
After the Explosion: Investigating Supernova Sites
2015-03-26
A new study analyzes several sites where dead stars once exploded. The explosions, called Type Ia supernovae, occurred within galaxies, six of which are shown in these images from the Sloan Digital Sky Survey.
Standoff detection of explosive substances at distances of up to 150 m.
Mukherjee, Anadi; Von der Porten, Steven; Patel, C Kumar N
2010-04-10
We report detection and identification of trace quantities of explosives at standoff distances up to 150 m with high sensitivity (signal-to-noise ratio of approximately 70) and high selectivity. The technique involves illuminating the target object with laser radiation at a wavelength that is strongly absorbed by the target. The resulting temperature rise is observed by remotely monitoring the increased blackbody radiation from the sample. An unambiguous determination of the target, TNT, in soil samples collected from an explosives test site in China Lake Naval Air Weapons Station is achieved through the use of a tunable CO(2) laser that scans over the absorption fingerprint of the target explosives. The theoretical analysis supports the observation and indicates that, with optimized detectors and data processing algorithms, the measurement capability can be improved significantly, permitting rapid standoff detection of explosives at distances approaching 1 km. The detection sensitivity varies as R(-2) and, thus, with the availability of high power, room-temperature, tunable mid-wave infrared and long-wave infrared quantum cascade lasers, this technology may play an important role in screening personnel and their belongings at short distances, such as in airports, for detecting and identifying explosives material residue on persons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagaraty, G.; Johnson, J.; Middlebrooks, P.
The Phase II EBS results document the extent of environmental contamination believed to be present on McCormick Ranch. Explosive test areas having the greatest potential for containing soil contaminants were identified using several geophysical survey methods: EM 31 terrain conductivity meter, magnetometer/gradiometer, and ground penetrating radar. From the geophysical surveys, five areas selected to conduct further environmental analysis. A total of 310 soil samples were collected from the five areas and 13 specific high explosive test sites. The samples were screened for semi-volatile organic compounds, PETN, TNT, TNT-degradation products, nitrates and radioactivity. Laboratory analyses were performed and no explosives ormore » degradation products were identified. Semi-volatile organic compounds were in 2 samples, manganese was detected in 3 samples, nitrates were discovered below soil action levels, and radiation levels were below background. Consequently, it is unlikely that significant contamination exists.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagaraty, G.; Johnson, J.; Middlebrooks, P.
The Phase II EBS results document the extent of environmental contamination believed to be present on McCormick Ranch. Explosive test areas having the greatest potential for containing soil contaminants were identified using several geophysical survey methods: EM 31 terrain conductivity meter, magnetometer/gradiometer, and ground penetrating radar. From the geophysical surveys, five areas were selected to conduct further environmental analysis. A total of 310 soil samples were collected from the five areas and 13 specific high explosive test sites. The samples were screened for semi-volatile organic compounds, PETN, TNT, TNT-degradation products, nitrates and radioactivity. Laboratory analyses were and no explosives ormore » degradation products were identified. Semi-volatile organic compounds were in 2 samples, manganese was detected in 3 samples, nitrates were discovered below soil action levels, and radiation levels were below background. Consequently, it is unlikely that significant contamination exists.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagaraty, G.; Johnson, J.; Middlebrooks, P.
The Phase II EBS results document the extent of environmental contamination believed to be present on McCormick Ranch. Explosive test areas having the greatest potential for containing soil contaminants were identified using several geophysical survey methods: EM 31 terrain conductivity meter, magnetometer/gradiometer, and ground penetrating radar. From the geophysical surveys, five areas were selected to conduct further environmental analysis. A total of 310 soil samples were collected from the and 13 specific high explosive test sites. The samples were screened for semi-volatile organic PETN, TNT, TNT-degradation products, nitrates and radioactivity. Laboratory analyses were and no explosives or degradation products weremore » identified. Semi-volatile organic compounds were in 2 samples, manganese was detected in 3 samples, nitrates were discovered below soil action levels, and radiation levels were below background. Consequently, it is unlikely that significant contamination exists.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagaraty, G.; Johnson, J.; Middlebrooks, P.
The Phase II EBS results document the extent of environmental contamination believed to be present on McCormick Ranch. Explosive test areas having the greatest potential for containing soil contaminants were identified using several geophysical survey methods: EM 31 terrain conductivity meter, magnetometer/gradiometer, and ground penetrating radar. From the geophysical surveys, five areas were selected to conduct further environmental analysis. A total of 310 soil samples were collected from the areas and 13 specific high explosive test sites. The samples were screened for semi-volatile organic compounds, PETN, TNT, TNT-degradation products, nitrates and radioactivity. Laboratory analyses were performed and no explosives ormore » degradation products were identified. Semi-volatile organic compounds were in 2 samples, manganese was detected in 3 samples, nitrates were discovered below soil action levels and radiation levels were below background. Consequently, it is unlikely that significant contamination exists.« less
Preliminary SPE Phase II Far Field Ground Motion Estimates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steedman, David W.
2014-03-06
Phase II of the Source Physics Experiment (SPE) program will be conducted in alluvium. Several candidate sites were identified. These include existing large diameter borehole U1e. One criterion for acceptance is expected far field ground motion. In June 2013 we were requested to estimate peak response 2 km from the borehole due to the largest planned SPE Phase II experiment: a contained 50- Ton event. The cube-root scaled range for this event is 5423 m/KT 1/3. The generally accepted first order estimate of ground motions from an explosive event is to refer to the standard data base for explosive eventsmore » (Perrett and Bass, 1975). This reference is a compilation and analysis of ground motion data from numerous nuclear and chemical explosive events from Nevada National Security Site (formerly the Nevada Test Site, or NTS) and other locations. The data were compiled and analyzed for various geologic settings including dry alluvium, which we believe is an accurate descriptor for the SPE Phase II setting. The Perrett and Bass plots of peak velocity and peak yield-scaled displacement, both vs. yield-scaled range, are provided here. Their analysis of both variables resulted in bi-linear fits: a close-in non-linear regime and a more distant linear regime.« less
Field Sampling and Selecting On-Site Analytical Methods for Explosives in Soil
The purpose of this issue paper is to provide guidance to Remedial Project Managers regarding field sampling and on-site analytical methods fordetecting and quantifying secondary explosive compounds in soils.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1997-02-25
1.1 Purpose This Closure Report presents the information obtained from investigative actions performed to justify the decision for clean closure of CAU 430 through "No Further Action." The investigative actions were performed per the Streamlined Approach for Environmental Restoration Plan, CA UNO. 430: Buried Depleted Uranium Artille~ Round No. 1, Tonopah Test Range (DOE/NV, 1996a) (hereafter referred to as the SAFER Plan). The Buried DU Artillery Round No. 1 is located approximately 1.1 kilometers (km) (0.7 mile [mi]) south of Avenue 13 in the test area south of Area 9 (Figure 1-2). The site was thought to consist of amore » potentially unexploded W-79 Joint Test Assembly (JTA) test artillery projectile with high explosives (HE) and DU. The DU was substituted for Special Nuclear Material to prevent a nuclear explosion and yet retain the physical characteristics of uranium for ballistic and other mechanical tests. The projectile was reportedly buried in one pit, approximately 5 to 10 feet (ft) deep (Smith, 1993; Smith, 1996; Quas, 1996). The exact location of the burial pit is unknown; however, three disturbed areas (Sites A, B, and C) were identified through geophysical surveys, site visits, and employee interviews as possible locations of the test projectile (Figure 1-3). Results of the investigation are summarized within this Closure Report. Additional information about the site and investigation activities may be found in the SAFER Plan (DOE/NV, 1996a). 1.2 Scope The objectives of the SAFER Plan (DOE/NV, 1996a) activities were to prepare the site for closure through locating and identi~ing the projectile (Buried DU Artillery Round No. 1), destroying the projectile and any remaining components, collecting soil samples to detect residual contamination resulting from projectile destruction, and finally, remediating residual contamination.« less
Code of Federal Regulations, 2013 CFR
2013-04-01
... testing of new or modified explosive materials; (2) Training in explosives detection or development or testing of explosives detection equipment; or (3) Forensic science purposes; or (b) Was plastic explosive... EXPLOSIVES, DEPARTMENT OF JUSTICE EXPLOSIVES COMMERCE IN EXPLOSIVES Marking of Plastic Explosives § 555.182...
Code of Federal Regulations, 2014 CFR
2014-04-01
... testing of new or modified explosive materials; (2) Training in explosives detection or development or testing of explosives detection equipment; or (3) Forensic science purposes; or (b) Was plastic explosive... EXPLOSIVES, DEPARTMENT OF JUSTICE EXPLOSIVES COMMERCE IN EXPLOSIVES Marking of Plastic Explosives § 555.182...
Zaridze, D G; Li, N; Men, T; Duffy, S W
1994-11-15
Rates of childhood cancer between 1981 and 1990 in the 4 administrative zones of Kazakhstan were studied to assess the relationship, if any, with distance from nuclear testing sites. Risk of various cancers among children aged 14 years or younger were estimated in relation to distance from (1) a site where testing in air was performed before 1963, (2) a site where underground testing took place thereafter, and (3) a reservoir, known as "Atom Lake," created by 4 nuclear explosions in 1965. Risk of acute leukaemia rose significantly with increasing proximity of residence to the testing areas, although the absolute value of the risk gradient was relatively small. The relative risk for those living less than 200 km from the air-testing site was 1.76 compared with those living 400 km or more away from the site. Similar relative risks were observed for the underground site and "Atom Lake." There was also some evidence of increased risk of brain tumours in association with proximity to the test sites. In 2 of the 4 zones studied, there was substantial regional variation in acute leukaemia rates which was not attributable to distance from the test site. The findings may be affected by potential confounders, notably urban/rural status and ethnic factors.
Airborne and Ground-Based Optical Characterization of Legacy Underground Nuclear Test Sites
NASA Astrophysics Data System (ADS)
Vigil, S.; Craven, J.; Anderson, D.; Dzur, R.; Schultz-Fellenz, E. S.; Sussman, A. J.
2015-12-01
Detecting, locating, and characterizing suspected underground nuclear test sites is a U.S. security priority. Currently, global underground nuclear explosion monitoring relies on seismic and infrasound sensor networks to provide rapid initial detection of potential underground nuclear tests. While seismic and infrasound might be able to generally locate potential underground nuclear tests, additional sensing methods might be required to further pinpoint test site locations. Optical remote sensing is a robust approach for site location and characterization due to the ability it provides to search large areas relatively quickly, resolve surface features in fine detail, and perform these tasks non-intrusively. Optical remote sensing provides both cultural and surface geological information about a site, for example, operational infrastructure, surface fractures. Surface geological information, when combined with known or estimated subsurface geologic information, could provide clues concerning test parameters. We have characterized two legacy nuclear test sites on the Nevada National Security Site (NNSS), U20ak and U20az using helicopter-, ground- and unmanned aerial system-based RGB imagery and light detection and ranging (lidar) systems. The multi-faceted information garnered from these different sensing modalities has allowed us to build a knowledge base of how a nuclear test site might look when sensed remotely, and the standoff distances required to resolve important site characteristics.
NASA Astrophysics Data System (ADS)
Schlittenhardt, J.
- A comparison of regional and teleseismic log rms (root-mean-square) Lg amplitude measurements have been made for 14 underground nuclear explosions from the East Kazakh test site recorded both by the BRV (Borovoye) station in Kazakhstan and the GRF (Gräfenberg) array in Germany. The log rms Lg amplitudes observed at the BRV regional station at a distance of 690km and at the teleseismic GRF array at a distance exceeding 4700km show very similar relative values (standard deviation 0.048 magnitude units) for underground explosions of different sizes at the Shagan River test site. This result as well as the comparison of BRV rms Lg magnitudes (which were calculated from the log rms amplitudes using an appropriate calibration) with magnitude determinations for P waves of global seismic networks (standard deviation 0.054 magnitude units) point to a high precision in estimating the relative source sizes of explosions from Lg-based single station data. Similar results were also obtained by other investigators (Patton, 1988; Ringdaletal., 1992) using Lg data from different stations at different distances.Additionally, GRF log rms Lg and P-coda amplitude measurements were made for a larger data set from Novaya Zemlya and East Kazakh explosions, which were supplemented with mb(Lg) amplitude measurements using a modified version of Nuttli's (1973, 1986a) method. From this test of the relative performance of the three different magnitude scales, it was found that the Lg and P-coda based magnitudes performed equally well, whereas the modified Nuttli mb(Lg) magnitudes show greater scatter when compared to the worldwide mb reference magnitudes. Whether this result indicates that the rms amplitude measurements are superior to the zero-to-peak amplitude measurement of a single cycle used for the modified Nuttli method, however, cannot be finally assessed, since the calculated mb(Lg) magnitudes are only preliminary until appropriate attenuation corrections are available for the specific path to GRF.
Vibration and stretching effects on flexibility and explosive strength in young gymnasts.
Kinser, Ann M; Ramsey, Michael W; O'Bryant, Harold S; Ayres, Christopher A; Sands, William A; Stone, Michael H
2008-01-01
Effects of simultaneous vibration-stretching on flexibility and explosive strength in competitive female gymnasts were examined. Twenty-two female athletes (age = 11.3 +/- 2.6 yr; body mass = 35.3 +/- 11.6 kg; competitive levels = 3-9) composed the simultaneous vibration-stretching (VS) group, which performed both tests. Flexibility testing control groups were stretching-only (SF) (N = 7) and vibration-only (VF) (N = 8). Explosive strength-control groups were stretching-only (SES) (N = 8) and vibration-only (VES) (N = 7). Vibration (30 Hz, 2-mm displacement) was applied to four sites, four times for 10 s, with 5 s of rest in between. Right and left forward-split (RFS and LFS) flexibility was measured by the distance between the ground and the anterior suprailiac spine. A force plate (sampling rate, 1000 Hz) recorded countermovement and static jump characteristics. Explosive strength variables included flight time, jump height, peak force, instantaneous forces, and rates of force development. Data were analyzed using Bonferroni adjusted paired t-tests. VS had statistically increased flexibility (P) and large effect sizes (d) in both the RFS (P = 1.28 x 10(-7), d = 0.67) and LFS (P = 2.35 x 10(-7), d = 0.72). VS had statistically different results of favored (FL) (P = 4.67 x 10(-8), d= 0.78) and nonfavored (NFL) (P = 7.97 x 10(-10), d = 0.65) legs. VF resulted in statistical increases in flexibility and medium d on RFS (P = 6.98 x 10(-3), d = 0.25) and statistically increased flexibility on VF NFL flexibility (P = 0.002, d = 0.31). SF had no statistical difference between measures and small d. For explosive strength, there were no statistical differences in variables in the VS, SES, and VES for the pre- versus posttreatment tests. Simultaneous vibration and stretching may greatly increase flexibility while not altering explosive strength.
76 FR 80378 - Federal Property Suitable as Facilities To Assist the Homeless
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-23
... sq. ft.; current use: explosive testing; needs extensive repairs; possible asbestos and lead base... asbestos and mold Bldg. 1197 Ft. Knox Ft. Knox KY 40121 Landholding Agency: Army Property Number... lead base paint, asbestos, and mold Rhode Island FDA Davisville Site 113 Bruce Boyer Street North...
Collaborative Research: Calibration for IMS Stations in Eastern Asia
2007-07-01
Atomnaya Energia , Vol.87, Issue 3, 1989 (in Russian). 142 BondAr, I. Combining 1-D models for regional calibration, in Proceedings of a Workshop on IMS...Zelentsov and V.N. Mikhailov, Characteristics of 96 underground nuclear explosions at the Semipalatinsk Test Site, Atomaya Energia , (in Russian), Vol. 67
AFRL Solid Propellant Laboratory Explosive Siting and Renovation Lessons Learned
2010-07-01
Area 1-30A explosive facility and provide consultation/support during the review process for each of the site plans. • Applied Engineering Services...provided consultation/support during the siting review process. • Applied Engineering Services (AES) Inc. performed a detailed structural, blast, thermal... Applied Engineering Services (AES) Inc. structural, blast, thermal and fragment hazard analysis to determine the appropriate siting values based on
30 CFR 57.6903 - Burning explosive material.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Burning explosive material. 57.6903 Section 57... General Requirements-Surface and Underground § 57.6903 Burning explosive material. If explosive material is suspected of burning at the blast site, persons shall be evacuated from the endangered area and...
30 CFR 57.6903 - Burning explosive material.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Burning explosive material. 57.6903 Section 57... General Requirements-Surface and Underground § 57.6903 Burning explosive material. If explosive material is suspected of burning at the blast site, persons shall be evacuated from the endangered area and...
30 CFR 57.6903 - Burning explosive material.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Burning explosive material. 57.6903 Section 57... General Requirements-Surface and Underground § 57.6903 Burning explosive material. If explosive material is suspected of burning at the blast site, persons shall be evacuated from the endangered area and...
30 CFR 57.6903 - Burning explosive material.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Burning explosive material. 57.6903 Section 57... General Requirements-Surface and Underground § 57.6903 Burning explosive material. If explosive material is suspected of burning at the blast site, persons shall be evacuated from the endangered area and...
30 CFR 57.6903 - Burning explosive material.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Burning explosive material. 57.6903 Section 57... General Requirements-Surface and Underground § 57.6903 Burning explosive material. If explosive material is suspected of burning at the blast site, persons shall be evacuated from the endangered area and...
Analysis of FISH-painted chromosomes in individuals living near the Semipalatinsk nuclear test site.
Stephan, G; Pressl, S; Koshpessova, G; Gusev, B I
2001-06-01
The Semipalatinsk nuclear test site (STS) is located in the Republic of Kazakhstan. A total of 498 nuclear weapons tests were conducted in this area between 1949 and 1989. The radiation exposure to people who lived close to the STS resulted mostly from the above-ground explosions. Blood samples for chromosome analysis were obtained from 10 subjects who were born before the first explosion in August 1949 and lived continuously in the village of Dolon. The individual calculated effective doses were about 3 Sv. Chromosomes 2, 4 and 8 were painted by means of the FISH technique. In total, 22,240 cells were analyzed. The mean frequency of translocations in the subjects who were irradiated during childhood (2.4/1000 cells) did not differ from the control value (3.1 translocations/1000 cells). It is assumed, therefore, that the calculated physical dose is too high. A significantly increased level of complex cells was determined, however, and this was assumed to have been induced in circulating lymphocytes. The reason for this may be the incorporation of radionuclides from fallout which were not distributed homogeneously within the body, but accumulated instead in tissues that were well supplied with peripheral blood.
NASA Astrophysics Data System (ADS)
Kim, W. Y.; Richards, P. G.
2017-12-01
At least four small seismic events were detected around the North Korean nuclear test site following the 3 September 2017 underground nuclear test. The magnitude of these shocks range from 2.6 to 3.5. Based on their proximity to the September 3 UNT, these shocks may be considered as aftershocks of the UNT. We assess the best method to classify these small events based on spectral amplitude ratios of regional P and S wave from the shocks. None of these shocks are classified as explosion-like based on P/S spectral amplitude ratios. We examine additional possible small seismic events around the North Korean test site by using seismic data from stations in southern Korea and northeastern China including IMS seismic arrays, GSN stations, and regional network stations in the region.
Recognizing explosion sites with a self-organizing network for unsupervised learning
NASA Astrophysics Data System (ADS)
Tarvainen, Matti
1999-06-01
A self-organizing neural network model has been developed for identifying mining explosion locations in different environments in Finland and adjacent areas. The main advantage of the method is its ability to automatically find a suitable network structure and naturally correctly identify explosions as such. The explosion site recognition was done using extracted waveform attributes of various kind event records from the small-aperture array FINESS in Finland. The recognition was done by using P-S phase arrival differences and rough azimuth estimates to provide a first robust epicentre location. This, in turn, leads to correct mining district identification where more detailed tuning was performed using different phase amplitude and signal-to-noise attributes. The explosions studied here originated in mines and quarries located in Finland, coast of Estonia and in the St. Petersburg area, Russia. Although the Helsinki bulletins in 1995 and 1996 listed 1649 events in these areas, analysis was restricted to the 380 (ML≥2) events which, besides, were found in the reviewed event bulletins (REB) of the CTBTO/UN prototype international data centre (pIDC) in Arlington, VA, USA. These 380 events with different attributes were selected for the learning stage. Because no `ground-truth' information was available the corresponding mining, `code' coordinates used earlier to compile Helsinki bulletins were utilized instead. The novel self-organizing method was tested on 18 new event recordings in the mentioned area in January-February 1997, out of which 15 were connected to correct mines. The misconnected three events were those which did not have all matching attributes in the self-organizing maps (SOMs) network.
Tanaka, K; Tchaijunusova, N J; Takatsuji, T; Gusev, B I; Sakerbaev, A K; Hoshi, M; Kamada, N
2000-03-01
The Semipalatinsk area is highly contaminated with radioactive fallout from 40 years of continuous nuclear testing. The biological effects on human health in this area have not been studied. Significant remaining radioactivities include long-lived radioisotopes of 238,239,400Pu, 137Cs and 90Sr. To evaluate the long-term biological effects of the radioactive fallout, the incidence of micronuclei in lymphocytes from residents of the area was observed. Blood was obtained from 10 residents (5 females and 5 males, aged 47 to 55 years old) from each of the 3 areas of Znamenka, Dolon and Semipalatinsk, which are about 50-150 km from the nuclear explosion test site. For micronucleus assay, PHA-stimulated lymphocytes were cultured for 72 h and cytochalasin B was added at 44 h for detecting binuclear lymphocytes. Five thousand binuclear lymphocytes in each resident were scored. The means of micronucleus counts in 1,000 lymphocytes in residents of Semipalatinsk, Dolon and Znamenka were 16.3, 12.6, and 7.80, respectively, which were higher than those of the normal Japanese persons (4.66). These values were equivalent to the results obtained from 0.187-0.47 Gy of chronic exposure to gamma-rays at a dose rate of 0.02 cGy/min. The high incidence of micronuclei in residents of the Semipalatinsk nuclear test site area was mainly caused by internal exposure rather than external exposure received for the past 40 years.
Ellis, William L.; Kibler, J.D.
1983-01-01
Explosion-induced compressive stress increases near an underground nuclear explosion are believed to contribute significantly to the containment of high-pressure gases within the explosion-produced cavity. These induced compressive stresses are predicted by computer calculations, but have never been adequately confirmed by field measurements, owing primarily to the unique difficulties of obtaining such field data. Vibrating-wire stressmeter measurements made near the Mighty Epic nuclear detonation, however, qualitatively indicate that within 150 meters of the working point, permanent compressive stress increases of several megapascals were present 15 weeks after the event. Additionally, stress-change magnitudes interpreted from the stressmeter data between the 75- and 260-meter range from the working point compare favorably with calculational predictions of the stress changes believed to be present shortly after detonation of the event. The measurements and calculations differ, however, with regard to the pattern of stress change radial and transverse to the explosion source. For the range of the field measurements from the working point, computer models predict the largest compressive-stress increase to be radial to the explosion source, while the field data indicate the transverse component of. stress change to be the most compressive. The significance of time-dependent modification of the initial explosion-induced stress distribution is, however, uncertain with regard to the comparison of the field measurements and theoretical predictions.
Calculation of Seismic Waves from Explosions with Tectonic Stresses and Topography
NASA Astrophysics Data System (ADS)
Stevens, J. L.; O'Brien, M.
2017-12-01
We investigate the effects of explosion depth, tectonic stresses and topography on seismic waves from underground nuclear explosions. We perform three-dimensional nonlinear calculations of an explosion at several depths in the topography of the North Korean test site. We also perform a large number of two-dimensional axisymmetric calculations of explosions at depths from 150 to 1000 meters in four earth structures, with compressive and tensile tectonic stresses and with no tectonic stresses. We use the representation theorem to propagate the results of these calculations and calculate seismic waves at regional and teleseismic distances. We find that P-waves are not strongly affected by any of these effects because the initial downgoing P-wave is unaffected by interaction with the free surface. Surface waves, however, are strongly affected by all of these effects. There is an optimal depth at which surface waves are maximized at the base of a mountain and at or slightly below normal containment depth. At deeper depths, increasing overburden pressure reduces the surface waves. At shallower depths, interaction with the free surface reduces the surface waves. For explosions inside a mountain, displacement of the sides of the mountain reduces surface waves. Compressive prestress reduces surface waves substantially, while tensile prestress increases surface waves. The North Korean explosions appear to be at an optimal depth, in a region of extension, and beneath a mountain, all of which increase surface wave amplitudes.
Operation BUSTER. Project 2.2. Thermal and Blast Effects on Idealized Forest Fuels
1952-04-29
outside the test area . Naturally occurring fuels at the test site mm brush, grass clumps, and Joshua bark — ware studied before the tests and...oharrad« Conclusions based on results and observations from Operation BDSBRt 1. Under fire weather oonditionsi/ in a forest area , atomic ex...following atomic explosions over forest areas * 5* Bomb-induced conreotion does not produce surface winds follow« lag blastHTind effects and need not be
41Ca, 14C and 10Be concentrations in coral sand from the Bikini atoll.
Lachner, Johannes; Christl, Marcus; Alfimov, Vasily; Hajdas, Irka; Kubik, Peter W; Schulze-König, Tim; Wacker, Lukas; Synal, Hans-Arno
2014-03-01
Activation measurements of materials exposed to nuclear bomb explosions are widely used to reconstruct the neutron flux for retrospective dosimetry. In this study the applicability of coral CaCO3 as a biogenic neutron fluence dosimeter is tested. The long-lived radioisotopes (41)Ca, (14)C and (10)Be, which had been produced in nuclear bomb explosions, are measured in several coral sand samples from the Bikini atoll at the 600 kV and 200 kV AMS facilities of ETH Zurich. Elevated concentrations of all studied isotopes are found in a sample from the crater that was initially formed by the high-yield nuclear explosion Castle Bravo in 1954 and that had been used as site for several tests afterward. The observed (14)C concentration is considered too large to originate from neutron irradiation of CaCO3 alone. The relatively low concentration of (10)Be found in the crater sample indicates that production of (10)Be during nuclear bomb testing is generally minor. A simple neutron fluence reconstruction is performed on basis of the (41)Ca/(40)Ca ratio. Copyright © 2013 Elsevier Ltd. All rights reserved.
Geology of the Chinese nuclear test site near Lop Nor, Xinjiang Uygur Autonomous Region, China
Matzko, J.R.
1994-01-01
The Chinese underground nuclear test site in the Kuruktag and Kyzyltag mountains of the Xinjiang Uygur Autonomous Region of northwest China, is the location of sixteen underground tests that occurred between 1969 and 1992. The largest test to date, conducted on 21 May 1992, had a reported yield of about one megaton. Geophysical properties of the rocks and a large-scale geologic map of part of the test area were published by the Chinese in 1986 and 1987 and are the first site-specific data available for this test site. In areas of low relief, underground nuclear testing has occurred below the water table, in shafts drilled vertically into dense, low porosity Paleozoic granitic and metasedimentary rocks. Additional testing in areas of more rugged terrain has occurred in horizontal tunnels, probably above the water table. At least one of these tunnels was driven into granite. The upper 50 m of the rock in the area of the vertical tests is weathered and fractured; these conditions have been shown to influence the magnitude of the disturbance of the land surface after a nuclear explosion. These descriptions suggest hard rock coupling at depth and a closer resemblance to the former Soviet test site in eastern Kazakhstan than to the U.S. test site in Nevada. ?? 1994.
Portable SERS Instrument for Explosives Monitoring
2008-01-01
groundwater monitoring from a cone penetrometer (CPT) platform (5) Demonstrate improved capability for discriminating explosives versus colorimetry ...interference, and better discrimination of individual explosives compared to colorimetry • Applicability to virtually any environmental water...chemicals such as nitroaromatics or nitramines. While this makes colorimetry more generally applicable at explosive sites, it also limits the ability to
Determination of JWL Parameters for Non-Ideal Explosive
NASA Astrophysics Data System (ADS)
Hamashima, H.; Kato, Y.; Itoh, S.
2004-07-01
JWL equation of state is widely used in numerical simulation of detonation phenomena. JWL parameters are determined by cylinder test. Detonation characteristics of non-ideal explosive depend strongly on confinement, and JWL parameters determined by cylinder test do not represent the state of detonation products in many applications. We developed a method to determine JWL parameters from the underwater explosion test. JWL parameters were determined through a method of characteristics applied to the configuration of the underwater shock waves of cylindrical explosives. The numerical results obtained using JWL parameters determined by the underwater explosion test and those obtained using JWL parameters determined by cylinder test were compared with experimental results for typical non-ideal explosive; emulsion explosive. Good agreement was confirmed between the results obtained using JWL parameters determined by the underwater explosion test and experimental results.
Shock and thermal metamorphism of basalt by nuclear explosion, Nevada test site
James, O.B.
1969-01-01
Olivine trachybasalt metamorphosed by nuclear explosion is classified into categories of progressive metamorphism: (i) Weak. Plagioclase is microfractured, and augite cotainis fine twin lamellae. (ii) Moderate. Plagioclase is converted to glass, and mafic minerals show intragranular deformation (undulatory extinction, twin lamellae, and, possibly, deformation lamellae), but rock texture is preserved. (iii) Moderately strong. Plagioclase glass shows small-scale flow, mafic minerals are fractured and show intragranular deformation, and rocks contain tension fractures. (iv) Strong. Plagioclase glass is vesicular, augite is minutely fractured, and olivine is coarsely fragmented, shows mosaic extinction, distinctive lamellar structures, and is locally recrystallized. (v) Intense. Rocks are converted to inhomogeneous basaltic glass.
Peng, Liying; Hua, Lei; Wang, Weiguo; Zhou, Qinghua; Li, Haiyang
2014-01-01
New techniques for the field detection of inorganic improvised explosive devices (IEDs) are urgently developed. Although ion mobility spectrometry (IMS) has been proved to be the most effective method for screening organic explosives, it still faces a major challenge to detect inorganic explosives owing to their low volatilities. Herein, we proposed a strategy for detecting trace inorganic explosives by thermal desorption ion mobility spectrometry (TD-IMS) with sample-to-sample analysis time less than 5 s based on in-situ acidification on the sampling swabs. The responses for typical oxidizers in inorganic explosives, such as KNO3, KClO3 and KClO4 were at least enhanced by a factor of 3000 and their limits of detection were found to be subnanogram. The common organic explosives and their mixtures with inorganic oxidizers were detected, indicating that the acidification process did not affect the detection of organic explosives. Moreover, the typical inorganic explosives such as black powders, firecrackers and match head could be sensitively detected as well. These results demonstrated that this method could be easily employed in the current deployed IMS for on-site sensitive detection of either inorganic explosives or organic ones. PMID:25318960
Effects of HMX-lead mixtures on reproduction of the earthworm Eisenia andrei.
Savard, Kathleen; Berthelot, Yann; Auroy, Aurelie; Spear, Philip A; Trottier, Bertin; Robidoux, Pierre Yves
2007-10-01
High metal (e.g., Pb) concentrations are typically found in explosive-contaminated soil, and their presence may increase, decrease, or not influence toxicity predicted on the basis of one explosive alone (e.g., HMX). Nevertheless, few data are available in the scientific literature for this type of multiple exposure. Soil organisms, such as earthworms, are one of the first receptors affected by the contamination of soil. Therefore, a reproductive study was conducted using Eisenia andrei in a forest-type soil. Both HMX and Pb decreased reproduction parameters (number of total cocoons, hatched cocoons, and surviving juveniles) individually. Based on the total number of cocoons, HMX was more toxic in a forest soil than Pb, with EC(50) of 31 mg kg(-1), and 1068 mg kg(-1), respectively. The slope of the concentration-response curve was significantly greater in the case of Pb, which is consistent with the possibility that the two compounds do not act on the same target site. The response-addition model was used to predict the response of earthworms and to test for interaction between the two contaminants. The predicted toxicity was not significantly different than the observed toxicity, implying that Pb and HMX were considered noninteractive compounds. The combined action of Pb-HMX may be described, therefore, as dissimilar-noninteractive joint action in a forest soil. The results illustrate the relevance of considering the presence of metals in the risk assessment of explosive-contaminated sites because metals can add their toxicity to explosives. Extension of this study to other types of soil and other metals would improve the understanding of toxicity at these sites.
NASA Astrophysics Data System (ADS)
Grenard, P.
2009-04-01
The International Monitoring System (IMS) for the Comprehensive Nuclear Test-ban-Treaty Organization is a global Network of stations for detecting and providing evidence of possible nuclear explosions. Upon completion, the IMS will consist of 321 monitoring facilities and 16 radionuclide laboratories distributed worldwide in locations designated by the Treaty. Many of these sites are located in areas that are remote and difficult to access, posing major engineering and logistical challenges. The IMS uses seismic, hydroacoustic and infrasound monitoring waveform technologies to detect signals released from an explosion or a naturally occurring event (e.g. earthquakes) in the underground, underwater and atmospheric environments. The radionuclide technology as an integral part of the IMS uses air samples to collect particular matter from the atmosphere. Samples are then analyzed for evidence of physical products created by a nuclear explosion and carried through the atmosphere. The certification process of the IMS stations assures their compliance with the IMS technical requirements. In 2008 significant progress was made towards the completion of the IMS Network. So far 75% of the IMS stations have been built and certified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peek, Dennis W.
The “subject property” is comprised of a parcel of land within the Kirtland Military Reservation, Bernalillo County, New Mexico, as shown on the map in Appendix B of this document. The land requirement for the parking lot addition to the 9940 Main Complex is approximately 2.7 acres. The scope of this Supplemental Environmental Baseline Survey (SEBS) is for the parking lot addition land transfer only. For details on the original 9940 Main Complex see Environmental Baseline Survey, Land Use Permit Request for the 9940 Complex PERM/0-KI-00-0001, August 21, 2003, and for details on the 9940 Complex Expansion see Environmental Baselinemore » Survey, Proposed Land Use Permit Expansion for 9940 DETS Complex, June 24, 2009. The 2.7-acre parcel of land for the new parking lot, which is the subject of this EBS (also referred to as the “subject property”), is adjacent to the southwest boundary of the original 12.3- acre 9940 Main Complex. No testing is known to have taken place on the subject property site. The only activity known to have taken place was the burial of overhead utility lines in 2014. Adjacent to the subject property, the 9940 Main Complex was originally a 12.3-acre site used by the Department of Energy (DOE) under a land use permit from the United States Air Force (USAF). Historical use of the site, dating from 1964, included arming, fusing, and firing of explosives and testing of explosives systems components. In the late 1970s and early 1980s experiments at the 9940 Main Complex shifted toward reactor safety issues. From 1983 to 1988, fuel coolant interaction (FCI) experiments were conducted, as were experiments with conventional high explosives (HE). Today, the land is used for training of the Nuclear Emergency Response community and for research on energetic materials. In 2009, the original complex was expanded to include four additional 20-acre areas: 9940 Training South, 9940 Training East, T-Range 6, and Training West Landing Zone. The proposed use of the subject property is for the purpose of adding a parking lot to serve the increase in customer vehicles that is occurring as the 9940 Main Complex is more heavily utilized, and as the 2009 Expansion areas come online as operational training facilities. The subject property would be used only for parking, not for testing or training activities. The parking lot would have a gravel surface. Current and future work at the 9940 Main Complex involves arming, fuzing, and firing of explosives and the testing of explosive systems components in both terrestrial and aquatic settings. It also involves specialized training activities for a variety of first responder customers, both DOE and non-DOE agencies. The approach was to perform a document search, supplemented by a visual site inspection, to identify potential environmental contamination associated with the property. Factors evaluated included hazardous substances; petroleum products and derivatives; environmental restoration sites; areas of concern; storage tanks; oil/water separators; grease traps; wash racks; waste tanks; pesticides; military munitions/ordnance; medical or bio-hazardous waste; radioactive waste; solid/municipal waste; indoor air quality; groundwater; wastewater treatment, collection, and disposal/discharge; drinking water quality; utilities; asbestos; polychlorinated biphenyls (PCBs); radon; lead-based paint; cultural resources; floodplains; and natural/biological resources. Each of these factors is evaluated separately in Section 5, Findings for Subject Property. The property categorization for this subject property would be considered Category 1- “An area or real property where no storage, release, or disposal of hazardous substances or petroleum products or their derivatives has occurred into the environment or structures or disposed on the subject property (including no migration of these substances from adjacent properties).” There appears to be sufficient information to categorize the subject property and it appears that no further effort needs to be made to obtain additional information. There are no findings of an adverse nature on the subject property itself or from adjacent properties. It is recommended that the proposed transfer of the subject property from the USAF to DOE proceed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NNSA /NSO
The Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 204 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 204 is located on the Nevada Test Site approximately 65 miles northwest of Las Vegas, Nevada. This CAU is comprised of six Corrective Action Sites (CASs) which include: 01-34-01, Underground Instrument House Bunker; 02-34-01, Instrument Bunker; 03-34-01, Underground Bunker; 05-18-02, Chemical Explosives Storage; 05-33-01, Kay Blockhouse; 05-99-02, Explosive Storage Bunker.more » Based on site history, process knowledge, and previous field efforts, contaminants of potential concern for Corrective Action Unit 204 collectively include radionuclides, beryllium, high explosives, lead, polychlorinated biphenyls, total petroleum hydrocarbons, silver, warfarin, and zinc phosphide. The primary question for the investigation is: ''Are existing data sufficient to evaluate appropriate corrective actions?'' To address this question, resolution of two decision statements is required. Decision I is to ''Define the nature of contamination'' by identifying any contamination above preliminary action levels (PALs); Decision II is to ''Determine the extent of contamination identified above PALs. If PALs are not exceeded, the investigation is completed. If PALs are exceeded, then Decision II must be resolved. In addition, data will be obtained to support waste management decisions. Field activities will include radiological land area surveys, geophysical surveys to identify any subsurface metallic and nonmetallic debris, field screening for applicable contaminants of potential concern, collection and analysis of surface and subsurface soil samples from biased locations, and step-out sampling to define the extent of contamination, as necessary. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.« less
Search Site submit Feynman Center for Innovation Los Alamos National Laboratory Collaboration for Explosives Detection Los Alamos National Laboratory Los Alamos Collaboration for Explosives Detection Menu is built upon Los Alamos' unparalleled explosive detection capabilities derived from the expertise of
1991-11-27
the methylene chloride/methanol mix. All test train components will be composited and explosives will be analyzed and reported on a total test train...check ute volume metering system nicked. dented. or cored . they Shall be note the barometric preure. nd the ulibration values ax the field test site...antimony, arsenic, cadmium, lead, selenium, thallium hollow cathode lamps (HCLs) or electrodeless discharge lamps (EDLs). [Same as EPA SW-846 Methods 7041
Schultz-Fellenz, Emily S.; Coppersmith, Ryan T.; Sussman, Aviva J.; ...
2017-08-19
Efficient detection and high-fidelity quantification of surface changes resulting from underground activities are important national and global security efforts. In this investigation, a team performed field-based topographic characterization by gathering high-quality photographs at very low altitudes from an unmanned aerial system (UAS)-borne camera platform. The data collection occurred shortly before and after a controlled underground chemical explosion as part of the United States Department of Energy’s Source Physics Experiments (SPE-5) series. The high-resolution overlapping photographs were used to create 3D photogrammetric models of the site, which then served to map changes in the landscape down to 1-cm-scale. Separate models weremore » created for two areas, herein referred to as the test table grid region and the nearfield grid region. The test table grid includes the region within ~40 m from surface ground zero, with photographs collected at a flight altitude of 8.5 m above ground level (AGL). The near-field grid area covered a broader area, 90–130 m from surface ground zero, and collected at a flight altitude of 22 m AGL. The photographs, processed using Agisoft Photoscan® in conjunction with 125 surveyed ground control point targets, yielded a 6-mm pixel-size digital elevation model (DEM) for the test table grid region. This provided the ≤3 cm resolution in the topographic data to map in fine detail a suite of features related to the underground explosion: uplift, subsidence, surface fractures, and morphological change detection. The near-field grid region data collection resulted in a 2-cm pixel-size DEM, enabling mapping of a broader range of features related to the explosion, including: uplift and subsidence, rock fall, and slope sloughing. This study represents one of the first works to constrain, both temporally and spatially, explosion-related surface damage using a UAS photogrammetric platform; these data will help to advance the science of underground explosion detection.« less
NASA Astrophysics Data System (ADS)
Schultz-Fellenz, Emily S.; Coppersmith, Ryan T.; Sussman, Aviva J.; Swanson, Erika M.; Cooley, James A.
2017-08-01
Efficient detection and high-fidelity quantification of surface changes resulting from underground activities are important national and global security efforts. In this investigation, a team performed field-based topographic characterization by gathering high-quality photographs at very low altitudes from an unmanned aerial system (UAS)-borne camera platform. The data collection occurred shortly before and after a controlled underground chemical explosion as part of the United States Department of Energy's Source Physics Experiments (SPE-5) series. The high-resolution overlapping photographs were used to create 3D photogrammetric models of the site, which then served to map changes in the landscape down to 1-cm-scale. Separate models were created for two areas, herein referred to as the test table grid region and the nearfield grid region. The test table grid includes the region within 40 m from surface ground zero, with photographs collected at a flight altitude of 8.5 m above ground level (AGL). The near-field grid area covered a broader area, 90-130 m from surface ground zero, and collected at a flight altitude of 22 m AGL. The photographs, processed using Agisoft Photoscan® in conjunction with 125 surveyed ground control point targets, yielded a 6-mm pixel-size digital elevation model (DEM) for the test table grid region. This provided the ≤3 cm resolution in the topographic data to map in fine detail a suite of features related to the underground explosion: uplift, subsidence, surface fractures, and morphological change detection. The near-field grid region data collection resulted in a 2-cm pixel-size DEM, enabling mapping of a broader range of features related to the explosion, including: uplift and subsidence, rock fall, and slope sloughing. This study represents one of the first works to constrain, both temporally and spatially, explosion-related surface damage using a UAS photogrammetric platform; these data will help to advance the science of underground explosion detection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schultz-Fellenz, Emily S.; Coppersmith, Ryan T.; Sussman, Aviva J.
Efficient detection and high-fidelity quantification of surface changes resulting from underground activities are important national and global security efforts. In this investigation, a team performed field-based topographic characterization by gathering high-quality photographs at very low altitudes from an unmanned aerial system (UAS)-borne camera platform. The data collection occurred shortly before and after a controlled underground chemical explosion as part of the United States Department of Energy’s Source Physics Experiments (SPE-5) series. The high-resolution overlapping photographs were used to create 3D photogrammetric models of the site, which then served to map changes in the landscape down to 1-cm-scale. Separate models weremore » created for two areas, herein referred to as the test table grid region and the nearfield grid region. The test table grid includes the region within ~40 m from surface ground zero, with photographs collected at a flight altitude of 8.5 m above ground level (AGL). The near-field grid area covered a broader area, 90–130 m from surface ground zero, and collected at a flight altitude of 22 m AGL. The photographs, processed using Agisoft Photoscan® in conjunction with 125 surveyed ground control point targets, yielded a 6-mm pixel-size digital elevation model (DEM) for the test table grid region. This provided the ≤3 cm resolution in the topographic data to map in fine detail a suite of features related to the underground explosion: uplift, subsidence, surface fractures, and morphological change detection. The near-field grid region data collection resulted in a 2-cm pixel-size DEM, enabling mapping of a broader range of features related to the explosion, including: uplift and subsidence, rock fall, and slope sloughing. This study represents one of the first works to constrain, both temporally and spatially, explosion-related surface damage using a UAS photogrammetric platform; these data will help to advance the science of underground explosion detection.« less
Explosive simulants for testing explosive detection systems
Kury, John W.; Anderson, Brian L.
1999-09-28
Explosives simulants that include non-explosive components are disclosed that facilitate testing of equipment designed to remotely detect explosives. The simulants are non-explosive, non-hazardous materials that can be safely handled without any significant precautions. The simulants imitate real explosives in terms of mass density, effective atomic number, x-ray transmission properties, and physical form, including moldable plastics and emulsions/gels.
From Supernovae to Neutron Stars
NASA Astrophysics Data System (ADS)
Suwa, Yudai
A core-collapse supernova is a generation site of a neutron star as well as one of the largest explosions in the universe. This article gives a brief overview of the studies on supernova explosion mechanism. Basic picture of the explosion mechanism, the method to solve neutrino transfer equation, the impact of the nuclear equation of state on the explosion, and long-term simulation of neutron star evolution from the onset of the explosion are presented.
Crustal structure in Nevada and southern Idaho from nuclear explosions
Pakiser, L.C.; Hill, D.P.
1962-01-01
The time of first arrival of seismic waves generated by 4 underground nuclear explosions at the Nevada Test Site (NTS) and recorded along a line extending north into southern Idaho is expressed as T0 = 0. 00 + Δ/3.0 (assumed), T1 = 0 .40 + Δ/6.03, and T2 = 6.15 + Δ/7.84, where time is in seconds and the shot-detector distance (Δ) is in km. Assuming constant velocities and horizontal layers, crustal thickness in the vicinity of NTS was determined to be 28 km. Delays in the traveltime segment T2, which represents Pn, indicate that the crust may thicken to 32 km in northern Nevada. A third phase, expressed as T3 = 14.48 + Δ/7.84, was also recognized and has arrival times appropriate for SPS. Amplitudes of Pn were determined at 7 places from recordings of seismic waves from one underground nuclear explosion (ANTLER).
Exposure to impulse noise at an explosives company: a case study.
Kulik, Aleksandra; Malinowska-Borowska, Jolanta
2018-02-15
Impulse noise encountered in workplaces is a threat to hearing. The aim of this study was to assess the occupational exposure to impulse noise produced by detonation of dynamite on the premises of an explosives company. Test points were located on the blast test area (inside and outside the bunker) and in work buildings across the site. Noise propagation measurement was performed during 130 blast tests at nine measurement points. At every point, at least 10 separate measurements of A-weighted equivalent sound pressure level (L A eq ), maximum A-weighted sound pressure level (L A max ) and C-weighted peak sound pressure level (L C peak ) were made. Noise recorded in the blast test area exceeded occupational exposure limits (OELs). Noise levels measured in buildings did not exceed OELs. Results of the survey showed that for 62% of respondents, impulse noise causes difficulties in performing work. The most commonly reported symptoms include headaches, nervousness and irritability.
Numerical Simulation on Smoke Spread and Temperature Distribution in a Corn Starch Explosion
NASA Astrophysics Data System (ADS)
Lin, CherngShing; Hsu, JuiPei
2018-01-01
It is discovered from dust explosion accidents in recent years that deep causes of the accidents lies in insufficient cognition of dust explosion danger, and no understanding on danger and information of the dust explosion. In the study, Fire Dynamics Simulator (FDS) evaluation tool is used aiming at Taiwan Formosa Fun Coast explosion accidents. The calculator is used for rebuilding the explosion situation. The factors affecting casualties under explosion are studied. The injured personnel participating in the party are evaluated according to smoke diffusion and temperature distribution for numerical simulation results. Some problems noted in the fire disaster after actual explosion are proposed, rational site analysis is given, thereby reducing dust explosion risk grade.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murarik, T.M.; Wenstrand, T.K.; Rogers, L.A.
An initial soil characterization study was conducted to help identify possible remediation methods to remove plutonium from the Nevada Test Site and Tonapah Test Range surface soils. Results from soil samples collected across various isopleths at five sites indicate that the size-fraction distribution patterns of plutonium remain similar to findings from the Nevada Applied Ecology Group (NAEG) (1970's). The plutonium remains in the upper 10--15 cm of soils, as indicated in previous studies. Distribution of fine particles downwind'' of ground zero at each site is suggested. Whether this pattern was established immediately after each explosion or this resulted from post-shotmore » wind movement of deposited material is unclear. Several possible soil treatment scenarios are presented. Removal of plutonium from certain size fractions of the soils would alleviate the sites of much of the plutonium burden. However, the nature of association of plutonium with soil components will determine which remediation methods will most likely succeed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murarik, T.M.; Wenstrand, T.K.; Rogers, L.A.
An initial soil characterization study was conducted to help identify possible remediation methods to remove plutonium from the Nevada Test Site and Tonapah Test Range surface soils. Results from soil samples collected across various isopleths at five sites indicate that the size-fraction distribution patterns of plutonium remain similar to findings from the Nevada Applied Ecology Group (NAEG) (1970`s). The plutonium remains in the upper 10--15 cm of soils, as indicated in previous studies. Distribution of fine particles ``downwind`` of ground zero at each site is suggested. Whether this pattern was established immediately after each explosion or this resulted from post-shotmore » wind movement of deposited material is unclear. Several possible soil treatment scenarios are presented. Removal of plutonium from certain size fractions of the soils would alleviate the sites of much of the plutonium burden. However, the nature of association of plutonium with soil components will determine which remediation methods will most likely succeed.« less
A comparative evaluation of explosion hazards in chemical and mechanical pulp bleaching systems
Peter W. Hart; Alan W. Rudie
2010-01-01
Over the past several years, at least three pulp mills in North America have experienced catastrophic events that resulted in the explosion of pumps, mixers, and tanks. All these mills were using 50% concentration hydrogen peroxide at the site of the explosions. In at least two instances, alkali catalyzed decomposition of peroxide is implicated in the explosion....
NASA Astrophysics Data System (ADS)
Townsend, M.; Huckins-Gang, H.; Prothro, L.; Reed, D.
2012-12-01
The National Center for Nuclear Security, established by the U.S. Department of Energy, National Nuclear Security Administration, is conducting a series of explosive tests at the Nevada National Security Site that are designed to increase the understanding of certain basic physical phenomena associated with underground explosions. These tests will aid in developing technologies that might be used to detect underground nuclear explosions in support of verification activities for the Comprehensive Nuclear-Test-Ban Treaty. The initial project is a series of explosive tests, known collectively as the Source Physics Experiment-Nevada (SPE-N), being conducted in granitic rocks. The SPE N test series is designed to study the generation and propagation of seismic waves. The results will help advance the seismic monitoring capability of the United States by improving the predictive capability of physics-based modeling of explosive phenomena. The first SPE N (SPE N1) test was conducted in May 2011, using 0.1 ton of explosives at the depth of 54.9 m in the U 15n source hole. SPE N2 was conducted in October 2011, using 1.0 ton of explosives at the depth of 45.7 m in the same source hole. The SPE N3 test was conducted in the same source hole in July 2012, using the same amount and type of explosive as for SPE N2, and at the same depth as SPE N2, within the damage zone created by the SPE N2 explosion to investigate damage effects on seismic wave propagation. Following the SPE N2 shot and prior to the SPE N3 shot, the core hole U-15n#10 was drilled at an angle from the surface to intercept the SPE N2 shot point location to obtain information necessary to characterize the damage zone. The desire was to determine the position of the damage zone near the shot point, at least on the northeast, where the core hole penetrated it, and obtain information on the properties of the damaged medium. Geologic characterization of the post-SPE N2 core hole included geophysical logging, a directional survey, and geologic description of the core to document visual evidence of damage. Selected core samples were provided to Sandia National Laboratories for measurement of physical and mechanical properties. A video was also run in the source hole after it was cleaned out. A significant natural fault zone was encountered in the angle core hole between 5.7 and 7.5 m from the shot point. However, several of the fractures observed in the core hole are interpreted as having been caused by the explosion. The fractures are characterized by a "fresh," mechanically broken look, with uncoated and very irregular surfaces. They tend to terminate against natural fractures and have orientations that differ from the previously defined natural fracture sets; they are common starting at about 5.4 m from the shot point. Within about 3.3 m of the shot point to the end of the recovered core at 1.6 m from the shot point, some of the core samples are softer and lighter in color, but do not appear to be weathered. It is thought this could be indicative of the presence of distributed microfracturing. This work was done by National Security Technologies, LLC, under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy.
Burnett, Jonathan L; Miley, Harry S; Milbrath, Brian D
2016-03-01
In 2014 the Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) undertook an Integrated Field Exercise (IFE14) in Jordan. The exercise consisted of a simulated 0.5-2 kT underground nuclear explosion triggering an On-site Inspection (OSI) to search for evidence of a Treaty violation. This research paper evaluates two of the OSI techniques used during the IFE14, laboratory-based gamma-spectrometry of soil samples and in-situ gamma-spectrometry, both of which were implemented to search for 17 OSI relevant particulate radionuclides indicative of nuclear explosions. The detection sensitivity is evaluated using real IFE and model data. It indicates that higher sensitivity laboratory measurements are the optimum technique during the IFE and within the Treaty/Protocol-specified OSI timeframes. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kudo, Makoto; Murata, Kenji; Kamata, Satoru; Hamada, Fumio
In this paper, a new aerial shell made of biodegradable plastics was developed and explosion tests were carried out using 2.5-10 gou-size firework aerial shells at a ground test site in order to observe the fragmentation. The dispersed fragments were then collected and their size and distribution measured. In order to monitor the fragmentation visually, a high-speed camera was used to film the ignition of the bursting charge and the scattering of the shell fragments. The shell fragments became much smaller, because mechanical properties of biodegradable plastics that were added improved polyvinyl alcohol (PVA) and chaff powder (CP). Fibrillation was seen in PBS/PVA/CP, and it seemed effective for mechanical properties. As a result, safer aerial shells which disperse into smaller fragments on explosion were successfully developed.
Code of Federal Regulations, 2010 CFR
2010-04-01
... testing of new or modified explosive materials; (2) Training in explosives detection or development or testing of explosives detection equipment; or (3) Forensic science purposes; or (b) Was plastic explosive...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-23
... of information unless it displays a currently valid OMB control number. DATES: You must submit... Collins, CO 80526-8118 (mail); 970-226-9230 (fax); or [email protected] (e-mail). Use OMB Control Number... of sites where chemical explosions greater than 300 tons TNT-equivalent have occurred or will occur...
Ford, Sean R.; Walter, William R.
2015-05-06
Seismic waveform correlation offers the prospect of greatly reducing event detection thresholds when compared with more conventional processing methods. Correlation is applicable for seismic events that in some sense repeat, that is they have very similar waveforms. A number of recent studies have shown that correlated seismic signals may form a significant fraction of seismicity at regional distances. For the particular case of multiple nuclear explosions at the same test site, regional distance correlation also allows very precise relative location measurements and could offer the potential to lower thresholds when multiple events exist. Using the Comprehensive Nuclear-Test-Ban Treaty (CTBT) Internationalmore » Monitoring System (IMS) seismic array at Matsushiro, Japan (MJAR), Gibbons and Ringdal (2012) were able to create a multichannel correlation detector with a very low false alarm rate and a threshold below magnitude 3.0. They did this using the 2006 or 2009 Democratic People’s Republic of Korea (DPRK) nuclear explosion as a template to search through a data stream from the same station to find a match via waveform correlation. In this paper, we extend the work of Gibbons and Ringdal (2012) and measure the correlation detection threshold at several other IMS arrays. We use this to address three main points. First, we show the IMS array station at Mina, Nevada (NVAR), which is closest to the Nevada National Security Site (NNSS), is able to detect a chemical explosion that is well under 1 ton with the right template. Second, we examine the two IMS arrays closest to the North Korean (DPRK) test site (at Ussuriysk, Russian Federation [USRK] and Wonju, Republic of Korea [KSRS]) to show that similarly low thresholds are possible when the right templates exist. We also extend the work of Schaff et al. (2012) and measure the correlation detection threshold at the nearest Global Seismic Network (GSN) three-component station (MDJ) at Mudanjiang, Heilongjiang Province, China, from the New China Digital Seismograph Network (IC). To conclude, we use these results to explore the recent claim by Zhang and Wen (2015) that the DPRK conducted “…a low-yield nuclear test…” on 12 May 2010.« less
Effects of Containment on Radionuclide Releases from Underground Nuclear Explosions
NASA Astrophysics Data System (ADS)
Carrigan, C. R.; Sun, Y.
2016-12-01
Confirming the occurrence of an underground nuclear explosion can require capturing short-lived noble gas radioisotopes produced by the explosion, sometimes referred to as the "smoking gun" for nuclear explosion detection. It is well known that the radioisotopic distribution resulting from the detonation evolves with time in the explosion cavity. In effect, the explosion cavity or chimney behaves as a chemical reactor. As long as the parent and daughter radionuclides remain in a closed and well-mixed cavity, parameters, such as radioxenon isotopic ratios, can be calculated analytically from a decay-chain network model. When gases from the cavity migrate into the containment regime, consideration of a "leaky reactor" model is more appropriate. We consider several implications of such a leaky reactor model relevant to interpretations of gas samples from the subsurface during an on-site inspection that could potentially be carried out under the Comprehensive Nuclear Test Ban Treaty. Additionally, we have attempted to validate our leaky reactor model against atmospheric observations of radioactive xenon isotopes detected by radionuclide monitoring stations in Japan and Russia following the February 2013 DPRK underground nuclear explosion (Carrigan et al., 2016). While both model uncertainty and observational error are significant, our model of isotopic evolution appears to be in broad agreement with radionuclide observations, and for the first time links atmospheric measurements of radioxenon isotopic ratios to estimates of seismic yield. Carrigan et al., Scientific Reports 6, Article number: 23032 (2016) doi:10.1038/srep23032
Novel circuits for energizing manganin stress gauges
NASA Astrophysics Data System (ADS)
Tasker, Douglas G.
2017-01-01
This paper describes the design of a novel MOSFET pulsed constant current supplies for low impedance Manganin stress gauges. The design emphasis has been on high accuracy, low noise, simple, low cost, disposable supplies that can be used to energize multiple gauges in explosive or shock experiments. The Manganin gauges used to measure stresses in detonating explosive experiments have typical resistances of 50 mΩ and are energized with pulsed currents of 50 A. Conventional pulsed, constant current supplies for these gauges are high voltage devices with outputs as high as 500 V. Common problems with the use of high voltage supplies at explosive firing sites are: erroneous signals caused by ground loops; overdrive of oscilloscopes on gauge failure; gauge signal crosstalk; cost; and errors due to changing load impedances. The new circuit corrects these issues. It is an 18-V circuit, powered by 9-V alkaline batteries, and features an optically isolated trigger, and single-point grounding. These circuits have been successfully tested at the Los Alamos National Laboratory in explosive experiments. [LA-UR-15-24819
Minutes of the 23rd Eplosives Safety Seminar, volume 2
NASA Astrophysics Data System (ADS)
1988-08-01
Some areas of discussion at this seminar were: Hazards and risks of the disposal of chemical munitions using a cryogenic process; Special equipment for demilitarization of lethal chemical agent filled munitions; explosive containment room (ECR) repair Johnston Atoll chemical agent disposal system; Sympathetic detonation testing; Blast loads, external and internal; Structural reponse testing of walls, doors, and valves; Underground explosion effects, external airblast; Explosives shipping, transportation safety and port licensing; Explosive safety management; Underground explosion effects, model test and soil rock effects; Chemical risk and protection of workers; and Full scale explosives storage test.
NASA Astrophysics Data System (ADS)
Chaves, E. J.; Lay, T.; Voytan, D. P.
2017-12-01
On 3 September 2017, the Republic of North Korea conducted the sixth and largest declared underground nuclear test at the Punggye-ri test site. Estimates of yield (W) based on magnitude-yield calibrations for other test sites result in a wide range of yield estimates for the North Korean tests, due to uncertainty in the effects of site-specific coupling, likely overburial of the events, and poorly constrained crustal and mantle attenuation for the test site. The event produced good signal-to-noise broadband (BB) teleseismic P wave recordings at hundreds of stations along with high quality regional recordings. When using teleseismic data, robust estimation of W and depth of burial (DOB) must account for the biasing effects of laterally varying upper mantle attenuation (t*) on P waves, so we empirically determine a best choice of average t* by modeling remote observations. We assume a Mueller-Murphy source model for a granite medium to address the coupling issue. We compute synthetic Reduced Velocity Potential (RVP) seismograms for varying combinations of W and DOB for the 2017 event for a simple half-space case to account for possible overburial effects. RVPs are convolved with Futterman, constant operators, corrected for geometric spreading and receiver function, and then compared with teleseismic P wave displacement records from 435 BB seismic stations, pre-stacked in 26 azimuth and distance bins to suppress station effects. Our preliminary results for half-space modeling give high average cross-correlations and low waveform misfit errors between synthetic and observed waveforms for W of 110-130 kt with DOB 700-800 m and a preferred t* = 0.98 s. For the Mueller-Murphy model we find that frequency-dependent absorption band models are not preferred for this test site. Ongoing analysis is exploring effects of receiver crustal layering. Furthermore, we characterize the explosion source time function using the vertical component Pn-waves from regional BB recordings. We correct for attenuation, site and path effects using the lower yield nuclear tests carried out in 2016, 2013 and 2009 as empirical Green's functions. The deconvolved relative source functions exhibit a complex time sequence, with a second peak possibly related to a deviatoric source activated during the large explosion.
14 CFR Appendix E to Part 420 - Tables for Explosive Site Plan
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Tables for Explosive Site Plan E Appendix E to Part 420 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION...*(ln(d))3] Table E-8—Separation Distance Criteria for Storage of Liquid Hydrogen and Bulk Quantities of...
14 CFR Appendix E to Part 420 - Tables for Explosive Site Plan
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Tables for Explosive Site Plan E Appendix E to Part 420 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION...*(ln(d))3] Table E-8—Separation Distance Criteria for Storage of Liquid Hydrogen and Bulk Quantities of...
NASA Astrophysics Data System (ADS)
Larmat, C. S.; Delorey, A.; Rougier, E.; Knight, E. E.; Steedman, D. W.; Bradley, C. R.
2017-12-01
This presentation reports numerical modeling efforts to improve knowledge of the processes that affect seismic wave generation and propagation from underground explosions, with a focus on Rg waves. The numerical model is based on the coupling of hydrodynamic simulation codes (Abaqus, CASH and HOSS), with a 3D full waveform propagation code, SPECFEM3D. Validation datasets are provided by the Source Physics Experiment (SPE) which is a series of highly instrumented chemical explosions at the Nevada National Security Site with yields from 100kg to 5000kg. A first series of explosions in a granite emplacement has just been completed and a second series in alluvium emplacement is planned for 2018. The long-term goal of this research is to review and improve current existing seismic sources models (e.g. Mueller & Murphy, 1971; Denny & Johnson, 1991) by providing first principles calculations provided by the coupled codes capability. The hydrodynamic codes, Abaqus, CASH and HOSS, model the shocked, hydrodynamic region via equations of state for the explosive, borehole stemming and jointed/weathered granite. A new material model for unconsolidated alluvium materials has been developed and validated with past nuclear explosions, including the 10 kT 1965 Merlin event (Perret, 1971) ; Perret and Bass, 1975). We use the efficient Spectral Element Method code, SPECFEM3D (e.g. Komatitsch, 1998; 2002), and Geologic Framework Models to model the evolution of wavefield as it propagates across 3D complex structures. The coupling interface is a series of grid points of the SEM mesh situated at the edge of the hydrodynamic code domain. We will present validation tests and waveforms modeled for several SPE tests which provide evidence that the damage processes happening in the vicinity of the explosions create secondary seismic sources. These sources interfere with the original explosion moment and reduces the apparent seismic moment at the origin of Rg waves up to 20%.
The 16 August 1997 Novaya Zemlya seismic event as viewed from GSN stations KEV and KBS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartse, H.E.
1997-11-01
Using current and historic seismic records from Global Seismic Network stations KEV and KBS, the authors find that S minus P arrival time comparisons between nuclear explosions and the 16 August 1997 seismic event (m{sub b} {approx} 3.6) from near Novaya Zemlya clearly indicate that (relative to KEV) the 16 August event occurred at least 80 km east of the Russian test site. Including S minus P arrival times from KBS constrains the location to beneath the Kara Sea and in good agreement with previously reported locations, over 100 km southeast of the test site. From an analysis of P{submore » n}/S{sub n} waveform ratios at frequencies above 4 Hz, they find that the 16 August event falls within the population of regional earthquakes and is distinctly separated from Novaya Zemlya and other northern Eurasian nuclear explosion populations. Thus, given its location and waveform characteristics, they conclude the 16 August event was an earthquake. The 16 August event was not detected at teleseismic distances, and thus, this event provides a good example of the regional detection, location, and identification efforts that will be required to monitor the Comprehensive Test Ban Treaty below m{sub b} {approx} 4.« less
NASA Astrophysics Data System (ADS)
Premlet, B.; Sabu, S.; Kamarudheen, R.; Subair, S.
2017-12-01
Since the first nuclear test on 15 July 1945 , there have been over 2,051 other weapon tests around the world . The waveforms of a natural earthquake which generates strong S waves and an underground explosion which is dominated by P waves were distinguished from the analysis of data corresponding to a 2005 M5.0 Earthquake and a 2016 North Korean nuclear test , both at similar distances from seismometer . Further differences between the seismograms were evaluated and successfully distinguished between the origins of the elastic waves through the data using Moment Tensor Solution using stations BJT , HIA and INCN . North Korea has developed a nuclear fuel cycle capability and has both plutonium and enriched uranium programs at Pyongyang . Seismic recordings of vertical ground motion at Global Seismographic Network station IC.MDJ of the 4 seismic events at Punggye-ri , North Korea , which occurred on the 9th of October 2006 , 25th of May 2009, 12th of February 2013 and on the 6th of January and 9th of September , 2016 were examined and the P waves of these seismic waves , which show very similar wave form , were inspected and compared to the seismic data of the latest underground nuclear test on the 3rd of September 2017 at 03:30 UTC at the same site which is many times more powerful than the previous tests . The country , which is the only nation to have tested nuclear weapons in this millennium , has successfully prevented the release of radioactive isotopes and hampered data collection but further studies were done using acoustic data which was analysed from sonograms of the 4 North Korean tests at station MDJ. The latest explosion data from 3rd September was also compared to 42 presumed underground explosions which occurred in China , India , the U.S.S.R , Iran , Turkey and recorded at Arkansas Seismic Network.
NASA Astrophysics Data System (ADS)
la Grone, Marcus J.; Cumming, Colin J.; Fisher, Mark E.; Fox, Michael J.; Jacob, Sheena; Reust, Dennis; Rockley, Mark G.; Towers, Eric
2000-08-01
The explosive charge within a landmine is the source for a mixture of chemical vapors that form a distinctive 'chemical signature' indicative of a landmine. The concentration of these compounds in the air over landmines is extremely low, well below the minimum detection limits of most field- portable chemical sensors. Described in this paper is a man- portable landmine detection system that has for the first time demonstrated the ability to detect landmines by direct sensing of the vapors of signature compounds in the air over landmines. The system utilizes fluorescent polymers developed by collaborators at the MIT. The sensor can detect ultra-trace concentrations of TNT vapor and other nitroaromatic compounds found in many landmine explosives. Thin films of the polymers exhibit intense fluorescence, but when exposed to vapors of nitroaromatic explosives the intensity of the light emitted from the films decreases. A single molecule of TNT binding to a receptor site quenches the fluorescence from many polymer repeat units, increasing the sensitivity by orders of magnitude. A sensor prototype has been develop that response in near real-time to low femtogram quantities of nitroaromatic explosives. The prototype is portable, lightweight, has low power consumption, is simple to operate, and is relatively inexpensive. Simultaneous field testing of the sensor and experienced canine landmine detection teams was recently completed. Although the testing was limited in scope, the performance of the senor met or exceeded that of the canines against buried landmines.
NASA Astrophysics Data System (ADS)
Lyman, J. D.; Taddia, F.; Stritzinger, M. D.; Galbany, L.; Leloudas, G.; Anderson, J. P.; Eldridge, J. J.; James, P. A.; Krühler, T.; Levan, A. J.; Pignata, G.; Stanway, E. R.
2018-01-01
SN 2002cx-like Type Ia supernovae (also known as SNe Iax) represent one of the most numerous peculiar SN classes. They differ from normal SNe Ia by having fainter peak magnitudes, faster decline rates and lower photospheric velocities, displaying a wide diversity in these properties. We present both integral-field and long-slit visual-wavelength spectroscopy of the host galaxies and explosion sites of SNe Iax to provide constraints on their progenitor formation scenarios. The SN Iax explosion-site metallicity distribution is similar to that of core-collapse SNe and metal poor compared to either normal SNe Ia or SN 1991T-like events. Fainter members, speculated to form distinctly from brighter SN Iax, are found at a range of metallicities, extending to very metal poor environments. Although the SN Iax explosion-sites' ages and star formation rates are comparatively older and less intense than the distribution of star-forming regions across their host galaxies, we confirm the presence of young stellar populations (SPs) at explosion environments for most SNe Iax, expanded here to a larger sample. Ages of the young SPs (several × 107 to 108 yr) are consistent with predictions for young thermonuclear and electron-capture SN progenitors. The lack of extremely young SPs at the explosion sites disfavours very massive progenitors such as Wolf-Rayet explosions with significant fallback. We find weak ionized gas in the only SN Iax host without obvious signs of star formation. The source of the ionization remains ambiguous but appears unlikely to be mainly due to young, massive stars.
NASA Astrophysics Data System (ADS)
Douglas, A.
2007-01-01
The first technical discussions, held in 1958, on methods of verifying compliance with a treaty banning nuclear explosions, concluded that a monitoring system could be set up to detect and identify such explosions anywhere except underground: the difficulty with underground explosions was that there would be some earthquakes that could not be distinguished from an explosion. The development of adequate ways of discriminating between earthquakes and underground explosions proved to be difficult so that only in 1996 was a Comprehensive Nuclear Test Ban Treaty (CTBT) finally negotiated. Some of the important improvements in the detection and identification of underground tests—that is in forensic seismology—have been made by the UK through a research group at the Atomic Weapons Establishment (AWE). The paper describes some of the advances made in identification since 1958, particularly by the AWE Group, and the main features of the International Monitoring System (IMS), being set up to verify the Test Ban. Once the Treaty enters into force, then should a suspicious disturbance be detected the State under suspicion of testing will have to demonstrate that the disturbance was not a test. If this cannot be done satisfactorily the Treaty has provisions for on-site inspections (OSIs): for a suspicious seismic disturbance for example, an international team of inspectors will search the area around the estimated epicentre of the disturbance for evidence that a nuclear test really took place. Early observations made at epicentral distances out to 2,000 km from the Nevada Test Site showed that there is little to distinguish explosion seismograms from those of nearby earthquakes: for both source types the short-period (SP: ˜1 Hz) seismograms are complex showing multiple arrivals. At long range, say 3,000 10,000 km, loosely called teleseismic distances, the AWE Group noted that SP P waves—the most widely and well-recorded waves from underground explosions—were in contrast simple, comprising one or two cycles of large amplitude followed by a low-amplitude coda. Earthquake signals on the other hand were often complex with numerous arrivals of similar amplitude spread over 35 s or more. It therefore appeared that earthquakes could be recognised on complexity. Later however, complex explosion signals were observed which reduced the apparent effectiveness of complexity as a criterion for identifying earthquakes. Nevertheless, the AWE Group concluded that for many paths to teleseismic distances, Earth is transparent for P signals and this provides a window through which source differences will be most clearly seen. Much of the research by the Group has focused on understanding the influence of source type on P seismograms recorded at teleseismic distances. Consequently the paper concentrates on teleseismic methods of distinguishing between explosions and earthquakes. One of the most robust criteria for discriminating between earthquakes and explosions is the m b : M s criterion which compares the amplitudes of the SP P waves as measured by the body-wave magnitude m b, and the long-period (LP: ˜0.05 Hz) Rayleigh-wave amplitude as measured by the surface-wave magnitude M s; the P and Rayleigh waves being the main wave types used in forensic seismology. For a given M s, the m b for explosions is larger than for most earthquakes. The criterion is difficult to apply however, at low magnitude (say m b < 4.5) and there are exceptions—earthquakes that look like explosions. A difficulty with identification criteria developed in the early days of forensic seismology was that they were in the main empirical—it was not known why they appeared to work and if there were test sites or earthquakes where they would fail. Consequently the AWE Group in cooperation with the University of Cambridge used seismogram modelling to try and understand what controls complexity of SP P seismograms, and to put the m b : M s criterion on a theoretical basis. The results of this work show that the m b : M s criterion is robust because several factors contribute to the separation of earthquakes and explosions. The principal reason for the separation however, is that for many orientations of the earthquake source there is at least one P nodal plane in the teleseismic window and this biases m b low. Only for earthquakes with near 45° dip-slip mechanisms where the antinode of P is in the source window is the m b: M s criterion predicted to fail. The results from modelling are consistent with observation—in particular there are earthquakes, “anomalous events”, which look explosion-like on the m b: M s criterion, that turn out to have mechanisms close to 45° dip-slip. Fortunately the P seismograms from such earthquakes usually show pP and sP, the reflections from the free surface of P and S waves radiated upwards. From the pP P and sP P times the focal depth can be estimated. So far the estimated depth of the anomalous events have turned out to be ˜20 km, too deep to be explosions. Studies show that the observation that P seismograms are more complex than predicted by simple models can be explained on the weak-signal hypothesis: the standard phases, direct P and the surface reflections, are weak because of amongst other things, the effects of the radiation pattern or obstacles on the source-to-receiver path; other non-standard arrivals then appear relatively large on the seismograms. What has come out of the modelling of P seismograms is a criterion for recognising suspicious disturbances based on simplicity rather than complexity. Simple P seismograms for earthquakes at depths of more than a few kilometres are likely to be radiated only to stations that lie in a confined range of azimuths and distances. If then, simple seismograms are recorded over a wide range of distances and particularly azimuths, it is unlikely the source is an earthquake at depth. It is possible to test this using the relative amplitudes of direct P and later arrivals that might be surface reflections. The procedure is to use only the simple P seismograms on the assumption that whereas the propagation through Earth may make a signal more complex it is unlikely to make it simpler. From the amplitude of the coda of these seismograms, bounds can be placed on the size of possible pP and sP. The relative-amplitude method is then used to search for orientations of the earthquake source that are compatible with the observations. If no such orientations are found the source must be shallow so that any surface reflections merge with direct P, and hence could be an explosion. The IMS when completed will be a global network of 321 monitoring stations, including 170 seismological stations principally to detect the seismic waves from earthquakes and underground explosions. The IMS will also have stations with hydrophones, microbarographs and radionuclide detectors to detect explosions in the oceans and the atmosphere and any isotopes in the air characteristic of a nuclear test. The Global Communications Infrastructure provides communications between the IMS stations and the International Data Centre (IDC), Vienna, where the recordings from the monitoring stations is collected, collated, and analysed. The IDC issues bulletins listing geophysical disturbances, to States Signatories to the CTBT. The assessment of the disturbances to decide whether any are possible explosions, is a task for State Signatories. For each Signatory to do a detailed analysis of all disturbances would be expensive and time consuming. Fortunately many disturbances can be readily identified as earthquakes and removed from consideration—a process referred to as “event screening”. For example, many earthquakes with epicentres over the oceans can be distinguished from underwater explosions, because an explosion signal is of much higher frequency than that of earthquakes that occur below the ocean bed. Further, many earthquakes could clearly be identified at the IDC on the m b : M s criterion, but there is a difficulty—how to set the decision line. The possibility has to be very small that an explosion will be classed by mistake, as an earthquake. The decision line has therefore to be set conservatively, consequently with routine application of current screening criteria, only about 50% of earthquakes can be positively identified as such. Various methods have been proposed whereby a “determined violator” could avoid the provisions of a CTBT and carry out a test that would be either undetected or detected but not identified as an explosion. The increase in complexity and cost of such a test should discourage any State from attempting it. In addition, there is always the possibility of some stations detecting the test, the test being identified as suspicious, and so subject to an OSI. With time as the IMS becomes more efficient and effective it will act increasingly to deter anyone contemplating a clandestine test, from going ahead. What has emerged is several robust criteria. The criteria include: location, which when combined with hydro-acoustic data can identify earthquakes under the sea; m b : M s; and depth of focus. More detailed study is required of any remaining seismic disturbance that is regarded as suspicious: for example, is close to a site where nuclear tests have been carried out in the past. Any disturbance that is shown to be explosion-like, may be the subject of an OSI. One surprise is how little plate tectonics has contributed to resolving problems in forensic seismology. Much of the evidence for plate tectonics comes from seismological studies so it would be expected that the implications for Earth structure arising from forensic seismology would be consistent with plate-tectonic models. So far the AWE Group have found little synergy between plate tectonics and forensic seismology. It is to be hoped that the large volume of seismological data of high quality now being collected by the IMS and the increasing number of digital stations, will result in a revised Earth model that is consistent with the findings of forensic seismology, so that a future review of progress will show that the forensic seismologist can draw on this model in attempting to interpret apparently anomalous seismograms.
AFRL Solid Propellant Laboratory Explosive Siting and Renovation Lessons Learned
2010-05-19
AFRL Solid Propellant Laboratory Explosive Siting and Renovation Lessons Learned Daniel F. Schwartz Air Force Research Laboratory ...9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) Air Force Research Laboratory (AFMC) AFRL /RZS...provide the United States Air Force with advanced rocket propulsion technologies, the Air Force Research
Alternate methodologies to experimentally investigate shock initiation properties of explosives
NASA Astrophysics Data System (ADS)
Svingala, Forrest R.; Lee, Richard J.; Sutherland, Gerrit T.; Benjamin, Richard; Boyle, Vincent; Sickels, William; Thompson, Ronnie; Samuels, Phillip J.; Wrobel, Erik; Cornell, Rodger
2017-01-01
Reactive flow models are desired for new explosive formulations early in the development stage. Traditionally, these models are parameterized by carefully-controlled 1-D shock experiments, including gas-gun testing with embedded gauges and wedge testing with explosive plane wave lenses (PWL). These experiments are easy to interpret due to their 1-D nature, but are expensive to perform and cannot be performed at all explosive test facilities. This work investigates alternative methods to probe shock-initiation behavior of new explosives using widely-available pentolite gap test donors and simple time-of-arrival type diagnostics. These experiments can be performed at a low cost at most explosives testing facilities. This allows experimental data to parameterize reactive flow models to be collected much earlier in the development of an explosive formulation. However, the fundamentally 2-D nature of these tests may increase the modeling burden in parameterizing these models and reduce general applicability. Several variations of the so-called modified gap test were investigated and evaluated for suitability as an alternative to established 1-D gas gun and PWL techniques. At least partial agreement with 1-D test methods was observed for the explosives tested, and future work is planned to scope the applicability and limitations of these experimental techniques.
2011-09-01
24. Ferguson, J. F., A. H. Cogbill, and R. G. Warren (1994). A geophysical-geological transect of the Silent Canyon caldera complex, Pahute Mesa...and L. R. Johnson (1987). Velocity structure of Silent Canyon caldera , Nevada Test Site, Bull. Seismol. Soc. Am. 77: 597–613. Murphy J. R. (1996
NASA Astrophysics Data System (ADS)
Vivas Veloso, J. A.; Christie, D. R.; Campus, P.; Bell, M.; Hoffmann, T. L.; Langlois, A.; Martysevich, P.; Demirovik, E.; Carvalho, J.; Kramer, A.
2002-11-01
The infrasound component of the International Monitoring System (IMS) for Comprehensive Nuclear-Test-Ban Treaty verification aims for global detection and localization of low-frequency sound waves originating from atmospheric nuclear explosions. The infrasound network will consist of 60 array stations, distributed as evenly as possible over the globe to assure at least two-station detection capability for 1-kton explosions at any point on earth. This network will be larger and more sensitive than any other previously operated infrasound network. As of today, 85% of the site surveys for IMS infrasound stations have been completed, 25% of the stations have been installed, and 8% of the installations have been certified and are transmitting high-quality continuous data to the International Data Center in Vienna. By the end of 2002, 20% of the infrasound network is expected to be certified and operating in post-certification mode. This presentation will discuss the current status and progress made in the site survey, installation, and certification programs for IMS infrasound stations. A review will be presented of the challenges and difficulties encountered in these programs, together with practical solutions to these problems.
6 CFR 27.225 - Site security plans.
Code of Federal Regulations, 2013 CFR
2013-01-01
... performance standards and potential modes of terrorist attack including, as applicable, vehicle-borne explosive devices, water-borne explosive devices, ground assault, or other modes or potential modes...
6 CFR 27.225 - Site security plans.
Code of Federal Regulations, 2014 CFR
2014-01-01
... performance standards and potential modes of terrorist attack including, as applicable, vehicle-borne explosive devices, water-borne explosive devices, ground assault, or other modes or potential modes...
6 CFR 27.225 - Site security plans.
Code of Federal Regulations, 2012 CFR
2012-01-01
... performance standards and potential modes of terrorist attack including, as applicable, vehicle-borne explosive devices, water-borne explosive devices, ground assault, or other modes or potential modes...
Preliminary burn and impact tests of hybrid polymeric composites. [preventing graphite fiber release
NASA Technical Reports Server (NTRS)
Tompkins, S. S.; Brewer, W. D.
1978-01-01
Free graphite fibers released into the environment from resin matrix composite components, as a result of fire and/or explosion, pose a potential hazard to electrical equipment. An approach to prevent the fibers from becoming airborne is to use hybrid composite materials which retain the fibers at the burn site. Test results are presented for three hybrid composites that were exposed to a simulation of an aircraft fire and explosion. The hybrid systems consisted of 16 plies of graphite-epoxy with two plies of Kevlar-, S-glass-, or boron-epoxy on each face. Two different test environments were used. In one environment, specimens were heated by convection only, and then impacted by a falling mass. In the other environment, specimens were heated by convection and by radiation, but were not impacted. The convective heat flux was about 100-120 kW/m in both environments and the radiative flux was about 110 kW/sq m.
Seismic Imaging of the Source Physics Experiment Site with the Large-N Seismic Array
NASA Astrophysics Data System (ADS)
Chen, T.; Snelson, C. M.; Mellors, R. J.
2017-12-01
The Source Physics Experiment (SPE) consists of a series of chemical explosions at the Nevada National Security Site. The goal of SPE is to understand seismic wave generation and propagation from these explosions. To achieve this goal, we need an accurate geophysical model of the SPE site. A Large-N seismic array that was deployed at the SPE site during one of the chemical explosions (SPE-5) helps us construct high-resolution local geophysical model. The Large-N seismic array consists of 996 geophones, and covers an area of approximately 2 × 2.5 km. The array is located in the northern end of the Yucca Flat basin, at a transition from Climax Stock (granite) to Yucca Flat (alluvium). In addition to the SPE-5 explosion, the Large-N array also recorded 53 weight drops. Using the Large-N seismic array recordings, we perform body wave and surface wave velocity analysis, and obtain 3D seismic imaging of the SPE site for the top crust of approximately 1 km. The imaging results show clear variation of geophysical parameter with local geological structures, including heterogeneous weathering layer and various rock types. The results of this work are being incorporated in the larger 3D modeling effort of the SPE program to validate the predictive models developed for the site.
49 CFR 173.58 - Assignment of class and division for new explosives.
Code of Federal Regulations, 2011 CFR
2011-10-01
....4 explosives. In addition to the test prescribed in § 173.57 of this subchapter, a substance or... tests: Cap Sensitivity Test, Princess Incendiary Spark Test, DDT Test, and External Fire Test, each as... projection of fragments, occurs in the External Fire Test (Test Method 5(c), or (4) Ignition or explosion...
49 CFR 173.58 - Assignment of class and division for new explosives.
Code of Federal Regulations, 2012 CFR
2012-10-01
....4 explosives. In addition to the test prescribed in § 173.57 of this subchapter, a substance or... tests: Cap Sensitivity Test, Princess Incendiary Spark Test, DDT Test, and External Fire Test, each as... projection of fragments, occurs in the External Fire Test (Test Method 5(c), or (4) Ignition or explosion...
49 CFR 173.58 - Assignment of class and division for new explosives.
Code of Federal Regulations, 2014 CFR
2014-10-01
....4 explosives. In addition to the test prescribed in § 173.57 of this subchapter, a substance or... tests: Cap Sensitivity Test, Princess Incendiary Spark Test, DDT Test, and External Fire Test, each as... projection of fragments, occurs in the External Fire Test (Test Method 5(c), or (4) Ignition or explosion...
49 CFR 173.58 - Assignment of class and division for new explosives.
Code of Federal Regulations, 2013 CFR
2013-10-01
....4 explosives. In addition to the test prescribed in § 173.57 of this subchapter, a substance or... tests: Cap Sensitivity Test, Princess Incendiary Spark Test, DDT Test, and External Fire Test, each as... projection of fragments, occurs in the External Fire Test (Test Method 5(c), or (4) Ignition or explosion...
NASA Astrophysics Data System (ADS)
Rodgers, A. J.; Pitarka, A.; Wagoner, J. L.; Helmberger, D. V.
2017-12-01
The FLASK underground nuclear explosion (UNE) was conducted in Area 2 of Yucca Flat at the Nevada Test Site on May 26, 1970. The yield was 105 kilotons (DOE/NV-209-Rev 16) and the working point was 529 m below the surface. This test was detonated in faulted Tertiary volcanic rocks of Yucca Flat. Coincidently, the FLASK UNE ground zero (GZ) is close (< 600 m) to the U2ez hole where the Source Physics Experiment will be conducting Phase II of its chemical high explosives test series in the so-called Dry Alluvium Geology (DAG) site. Ground motions from FLASK were recorded by twelve (12) three-component seismic stations in the near-field at ranges 3-4 km. We digitized the paper records and used available metadata on peak particle velocity measurements made at the time to adjust the amplitudes. These waveforms show great variability in amplitudes and waveform complexity with azimuth from the shot, likely due to along propagation path structure such as the geometry of the hard-rock/alluvium contact above the working point. Peak particle velocities at stations in the deeper alluvium to the north, east and south of GZ have larger amplitudes than those to the west where the basement rock is much shallower. Interestingly, the transverse components show a similar trend with azimuth. In fact, the transverse component amplitudes are similar to the other components for many stations overlying deeper basement. In this study, we simulated the seismic response at the available near-field stations using the SW4 three-dimensional (3D) finite difference code. SW4 can simulate seismic wave propagation in 3D inelastic earth structure, including surface topography. SW4 includes vertical mesh refinement which greatly reduces the computational resources needed to run a specific problem. Simulations are performed on high-performance computers with grid spacing as small as 10 meters and resolution to 6 Hz. We are testing various subsurface models to identify the role of 3D structure on path propagation effects from the source. We are also testing 3D models to constrain structure for the upcoming DAG experiments in 2018.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peek, Dennis W.
The approach was to perform a document search, supplemented by a visual site inspection, to identify potential environmental contamination associated with the property. Factors evaluated included hazardous substances; petroleum products and derivatives; environmental restoration sites; areas of concern; storage tanks; oil/water separators; grease traps; wash racks; waste tanks; pesticides; military munitions/ordnance; medical or bio-hazardous waste; radioactive waste; solid/municipal waste; indoor air quality; groundwater; wastewater treatment, collection, and disposal/discharge; drinking water quality; utilities; asbestos; polychlorinated biphenyls (PCBs); radon; lead-based paint; cultural resources; floodplains; and natural/biological resources.
The SRI Model 86 1 OC gas chromatograph (GC) is a transportable instrument that can provide on-site analysis of soils for explosives. Coupling this transportable gas chromatograph with a thermionic ionization detector (TID) allows for the determination of explosives in soil matri...
30 CFR 7.100 - Explosion tests.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Explosion tests. 7.100 Section 7.100 Mineral... Underground Coal Mines Where Permissible Electric Equipment is Required § 7.100 Explosion tests. (a) Test procedures. (1) Prepare to test the diesel power package as follows: (i) Perform a detailed check of parts...
30 CFR 7.100 - Explosion tests.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Explosion tests. 7.100 Section 7.100 Mineral... Underground Coal Mines Where Permissible Electric Equipment is Required § 7.100 Explosion tests. (a) Test procedures. (1) Prepare to test the diesel power package as follows: (i) Perform a detailed check of parts...
30 CFR 7.100 - Explosion tests.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Explosion tests. 7.100 Section 7.100 Mineral... Underground Coal Mines Where Permissible Electric Equipment is Required § 7.100 Explosion tests. (a) Test procedures. (1) Prepare to test the diesel power package as follows: (i) Perform a detailed check of parts...
49 CFR 173.58 - Assignment of class and division for new explosives.
Code of Federal Regulations, 2010 CFR
2010-10-01
....4 explosives. In addition to the test prescribed in § 173.57 of this subchapter, a substance or... Sensitivity Test, Princess Incendiary Spark Test, DDT Test, and External Fire Test, each as described in the... fragments, occurs in the External Fire Test (Test Method 5(c), or (4) Ignition or explosion occurs in the...
1975-06-20
H1101600 Underwater Explosions Explosion Effects on Fish Fish Lethal Ranges " Environmental Effects of Explosions . A*STRACT reverse side It nooosemy and...effects of its research operations. When such operations involve the detonation of underwater explosions, one of the environmental factors to be evaluated...04o APPENDIX A: EXPERIMENTS WITH CRABS AND OYSTERS ......... .. A-I APPENDIX B: FINAL REPORT: ENVIRONMENTAL EFFECTS OF EXPLOSIVE TESTING
Variation of methods in small-scale safety and thermal testing of improvised explosives
Sandstrom, Mary M.; Brown, Geoffrey W.; Preston, Daniel N.; ...
2014-09-29
Here, one of the first steps in establishing safe handling procedures for explosives is small-scale safety and thermal (SSST) testing. To better understand the response of homemade or improvised explosives (HMEs) to SSST testing, 16 HME materials were compared to 3 standard military explosives in a proficiency-type round robin study among five laboratories, two U.S. Department of Defense and three U.S. Department of Energy, sponsored by the Department of Homeland Security, Science & Technology Directorate, Explosives Division.
Carroll, R.D.; Lacomb, J.W.
1993-01-01
The location of the subsurface top of the chimney formed by the collapse of the cavity resulting from an underground nuclear explosion is examined at five sites at the Nevada Test Site. The chimneys were investigated by drilling, coring, geophysical logging (density, gamma-ray, caliper), and seismic velocity surveys. The identification of the top of the chimney can be complicated by chimney termination in friable volcanic rock of relatively high porosity. The presence of an apical void in three of the five cases is confirmed as the chimney horizon by coincidence with anomalies observed in coring, caliper and gamma-ray logging (two cases), seismic velocity, and drilling. In the two cases where an apical void is not present, several of these techniques yield anomalies at identical horizons, however, the exact depth of chimney penetration is subject to some degree of uncertainty. This is due chiefly to the extent to which core recovery and seismic velocity may be affected by perturbations in the tuff above the chimney due to the explosion and collapse. The data suggest, however, that the depth uncertainty may be only of the order of 10 m if several indicators are available. Of all indicators, core recovery and seismic velocity indicate anomalous horizons in every case. Because radiation products associated with the explosion are contained within the immediate vicinity of the cavity, gamma-ray logs are generally not diagnostic of chimney penetration. In no case is the denisty log indicative of the presence of the chimney. ?? 1993.
Ground motion analysis of OSSY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swift, R.P.; Snell, C.M.
1993-11-01
The On Site Seismic Yield experiment, OSSY, was performed to investigate the viability of a high-explosive technique to help estimate the yield of nuclear explosions. We have analyzed recorded data and conducted numerical simulations of the 100-pound OSSY experiments performed in hole UE-10 ITS No. 3 at the Nevada Test Site. Particle velocity wave forms from these experiments show a distinct dual-pulse structure in the close-in and far-field regions, with the amplitude of the second pulse being as large as or larger than the first pulse. To gain some insight into the cause of the dual-pulse feature, we examine howmore » the explosion-induced close-in response is affected by (1) certain features of inelastic rock/soil constitutive models applied in the near-field region, (2) the large length-to-diameter charge ratio of 8, (3) the charge and gauge package emplacement, and (4) geology (e.g., layering) in the vicinity of the explosion. Our results from 1-D and 2-D simulations show the following: (a) the response, measured by accelerometers located above the charges, is significantly influenced by the charge length-to-diameter ratio out to a distance of 8 m. (b) the grout emplacement of the charge has very little effect on the response. (c) the geologic layering serves mainly to phase the arrival of the pulses. (d) the second pulse can be best accounted for by applying a dilatant feature that allows for pore recovery during unloading. Other material property variations do not provide any contribution to the formation of a second pulse.« less
Testing of Confining Pressure Impacton Explosion Energy of Explosive Materials
NASA Astrophysics Data System (ADS)
Drzewiecki, Jan; Myszkowski, Jacek; Pytlik, Andrzej; Pytlik, Mateusz
2017-06-01
This paper presents the results of testing the explosion effects of two explosive charges placed in an environment with specified values of confining pressure. The aim of this study is to determine the impact of variable environmental conditions on the suitability of particular explosives for their use in the prevention of natural hazards in hard coal mining. The research results will contribute to improving the efficiency of currently adopted technologies of natural hazard prevention and aid in raising the level of occupational safety. To carry out the subject matter measurements, a special test stand was constructed which allows the value of the initial pressure inside the chamber, which constitutes its integral part, to be altered before the detonation of the charge being tested. The obtained characteristics of the pressure changes during the explosion of the analysed charge helped to identify the work (energy) which was produced during the process. The test results are a valuable source of information, opening up new possibilities for the use of explosives, the development of innovative solutions for the construction of explosive charges and their initiation.
2010-06-24
control Defensive Test Chamber • Certified for Chem-Bio simulants • Man-in-simulant (MIST) testing Bang Box • Explosive material synthesis and testing...Explosive material synthesis and testing Bang Box –Peroxide Explosives Properties – HMTD, TATP, DADP –Peroxide Explosives as Initiators –TATP... Synthesis –HMTD Synthesis –RDX Synthesis –ANFO Mixture Mustang VILLAGE Approved for public release; distribution is unlimited. • Hotel, Post Office
"Fooling fido"--chemical and behavioral studies of pseudo-explosive canine training aids.
Kranz, William D; Strange, Nicholas A; Goodpaster, John V
2014-12-01
Genuine explosive materials are traditionally employed in the training and testing of explosive-detecting canines so that they will respond reliably to these substances. However, challenges arising from the acquisition, storage, handling, and transportation of explosives have given rise to the development of "pseudo-explosive" training aids. These products attempt to emulate the odor of real explosives while remaining inert. Therefore, a canine trained on a pseudo-explosive should respond to its real-life analog. Similarly, a canine trained on an actual explosive should respond to the pseudo-explosive as if it was real. This research tested those assumptions with a focus on three explosives: single-base smokeless powder, 2,4,6-trinitrotoluene (TNT), and a RDX-based plastic explosive (Composition C-4). Using gas chromatography-mass spectrometry with solid phase microextraction as a pre-concentration technique, we determined that the volatile compounds given off by pseudo-explosive products consisted of various solvents, known additives from explosive formulations, and common impurities present in authentic explosives. For example, simulated smokeless powders emitted terpenes, 2,4-dinitrotoluene, diphenylamine, and ethyl centralite. Simulated TNT products emitted 2,4- and 2,6-dinitrotoluene. Simulated C-4 products emitted cyclohexanone, 2-ethyl-1-hexanol, and dimethyldinitrobutane. We also conducted tests to determine whether canines trained on pseudo-explosives are capable of alerting to genuine explosives and vice versa. The results show that canines trained on pseudo-explosives performed poorly at detecting all but the pseudo-explosives they are trained on. Similarly, canines trained on actual explosives performed poorly at detecting all but the actual explosives on which they were trained.
A Historical Evaluation of the U12t Tunnel, Nevada Test Site, Nye County, Nevada, Volume 1 of 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drollinger, Harold; Jones, Robert C.; Thomas F. Bullard
2009-02-01
This report presents a historical evaluation of the U12t Tunnel on the Nevada Test Site in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency (DTRA). The U12t Tunnel is one of a series of tunnels used for underground nuclear weapons effects tests on the east side of Rainier and Aqueduct Mesas. Six nuclear weapons effects tests, Mint Leaf, Diamond Sculls, Husky Pup, Midas Myth/Milagro, Mighty Oak, and Mission Ghost, and onemore » high explosive test, SPLAT, were conducted within the U12t Tunnel from 1970 to 1987. All six of the nuclear weapons effects tests and the high explosive test were sponsored by DTRA. Two conventional weapons experiments, Dipole Knight and Divine Eagle, were conducted in the tunnel portal area in 1997 and 1998. These experiments were sponsored by the Defense Special Weapons Agency. The U12t Tunnel complex is composed of the Portal and Mesa Areas and includes an underground tunnel with a main access drift and nine primary drifts, a substantial tailings pile fronting the tunnel portal, a series of discharge ponds downslope of the tailings pile, and two instrumentation trailer parks and 16 drill holes on top of Aqueduct Mesa. A total of 89 cultural features were recorded: 54 at the portal and 35 on the mesa. In the Portal Area, cultural features are mostly concrete pads and building foundations; other features include the portal, rail lines, the camel back, ventilation and cooling system components, communication equipment, and electrical equipment. On the mesa are drill holes, a few concrete pads, a loading ramp, and electrical equipment.« less
A Historical Evaluation of the U12t Tunnel, Nevada Test Site, Nye County, Nevada, Volume 5 of 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harold Drollinger; Robert C. Jones; and Thomas F. Bullard
2009-02-01
This report presents a historical evaluation of the U12t Tunnel on the Nevada Test Site in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency (DTRA). The U12t Tunnel is one of a series of tunnels used for underground nuclear weapons effects tests on the east side of Rainier and Aqueduct Mesas. Six nuclear weapons effects tests, Mint Leaf, Diamond Sculls, Husky Pup, Midas Myth/Milagro, Mighty Oak, and Mission Ghost, and onemore » high explosive test, SPLAT, were conducted within the U12t Tunnel from 1970 to 1987. All six of the nuclear weapons effects tests and the high explosive test were sponsored by DTRA. Two conventional weapons experiments, Dipole Knight and Divine Eagle, were conducted in the tunnel portal area in 1997 and 1998. These experiments were sponsored by the Defense Special Weapons Agency. The U12t Tunnel complex is composed of the Portal and Mesa Areas and includes an underground tunnel with a main access drift and nine primary drifts, a substantial tailings pile fronting the tunnel portal, a series of discharge ponds downslope of the tailings pile, and two instrumentation trailer parks and 16 drill holes on top of Aqueduct Mesa. A total of 89 cultural features were recorded: 54 at the portal and 35 on the mesa. In the Portal Area, cultural features are mostly concrete pads and building foundations; other features include the portal, rail lines, the camel back, ventilation and cooling system components, communication equipment, and electrical equipment. On the mesa are drill holes, a few concrete pads, a loading ramp, and electrical equipment.« less
A Historical Evaluation of the U12t Tunnel, Nevada Test Site, Nye County, Nevada, Volume 6 of 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harold Drollinger; Robert C. Jones; and Thomas F. Bullard
2009-02-01
This report presents a historical evaluation of the U12t Tunnel on the Nevada Test Site in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency (DTRA). The U12t Tunnel is one of a series of tunnels used for underground nuclear weapons effects tests on the east side of Rainier and Aqueduct Mesas. Six nuclear weapons effects tests, Mint Leaf, Diamond Sculls, Husky Pup, Midas Myth/Milagro, Mighty Oak, and Mission Ghost, and onemore » high explosive test, SPLAT, were conducted within the U12t Tunnel from 1970 to 1987. All six of the nuclear weapons effects tests and the high explosive test were sponsored by DTRA. Two conventional weapons experiments, Dipole Knight and Divine Eagle, were conducted in the tunnel portal area in 1997 and 1998. These experiments were sponsored by the Defense Special Weapons Agency. The U12t Tunnel complex is composed of the Portal and Mesa Areas and includes an underground tunnel with a main access drift and nine primary drifts, a substantial tailings pile fronting the tunnel portal, a series of discharge ponds downslope of the tailings pile, and two instrumentation trailer parks and 16 drill holes on top of Aqueduct Mesa. A total of 89 cultural features were recorded: 54 at the portal and 35 on the mesa. In the Portal Area, cultural features are mostly concrete pads and building foundations; other features include the portal, rail lines, the camel back, ventilation and cooling system components, communication equipment, and electrical equipment. On the mesa are drill holes, a few concrete pads, a loading ramp, and electrical equipment.« less
A Historical Evaluation of the U12t Tunnel, Nevada Test Site, Nye County, Nevada, Volume 3 of 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harold Drollinger; Robert C. Jones; and Thomas F. Bullard
2009-02-01
This report presents a historical evaluation of the U12t Tunnel on the Nevada Test Site in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency (DTRA). The U12t Tunnel is one of a series of tunnels used for underground nuclear weapons effects tests on the east side of Rainier and Aqueduct Mesas. Six nuclear weapons effects tests, Mint Leaf, Diamond Sculls, Husky Pup, Midas Myth/Milagro, Mighty Oak, and Mission Ghost, and onemore » high explosive test, SPLAT, were conducted within the U12t Tunnel from 1970 to 1987. All six of the nuclear weapons effects tests and the high explosive test were sponsored by DTRA. Two conventional weapons experiments, Dipole Knight and Divine Eagle, were conducted in the tunnel portal area in 1997 and 1998. These experiments were sponsored by the Defense Special Weapons Agency. The U12t Tunnel complex is composed of the Portal and Mesa Areas and includes an underground tunnel with a main access drift and nine primary drifts, a substantial tailings pile fronting the tunnel portal, a series of discharge ponds downslope of the tailings pile, and two instrumentation trailer parks and 16 drill holes on top of Aqueduct Mesa. A total of 89 cultural features were recorded: 54 at the portal and 35 on the mesa. In the Portal Area, cultural features are mostly concrete pads and building foundations; other features include the portal, rail lines, the camel back, ventilation and cooling system components, communication equipment, and electrical equipment. On the mesa are drill holes, a few concrete pads, a loading ramp, and electrical equipment.« less
A Historical Evaluation of the U12t Tunnel, Nevada Test Site, Nye County, Nevada, Volume 2 of 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harold Drollinger; Robert C. Jones; and Thomas F. Bullard
2009-02-01
This report presents a historical evaluation of the U12t Tunnel on the Nevada Test Site in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency (DTRA). The U12t Tunnel is one of a series of tunnels used for underground nuclear weapons effects tests on the east side of Rainier and Aqueduct Mesas. Six nuclear weapons effects tests, Mint Leaf, Diamond Sculls, Husky Pup, Midas Myth/Milagro, Mighty Oak, and Mission Ghost, and onemore » high explosive test, SPLAT, were conducted within the U12t Tunnel from 1970 to 1987. All six of the nuclear weapons effects tests and the high explosive test were sponsored by DTRA. Two conventional weapons experiments, Dipole Knight and Divine Eagle, were conducted in the tunnel portal area in 1997 and 1998. These experiments were sponsored by the Defense Special Weapons Agency. The U12t Tunnel complex is composed of the Portal and Mesa Areas and includes an underground tunnel with a main access drift and nine primary drifts, a substantial tailings pile fronting the tunnel portal, a series of discharge ponds downslope of the tailings pile, and two instrumentation trailer parks and 16 drill holes on top of Aqueduct Mesa. A total of 89 cultural features were recorded: 54 at the portal and 35 on the mesa. In the Portal Area, cultural features are mostly concrete pads and building foundations; other features include the portal, rail lines, the camel back, ventilation and cooling system components, communication equipment, and electrical equipment. On the mesa are drill holes, a few concrete pads, a loading ramp, and electrical equipment.« less
A Historical Evaluation of the U12t Tunnel, Nevada Test Site, Nye County, Nevada, Volume 4 of 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harold Drollinger; Robert C. Jones; and Thomas F. Bullard
2009-02-01
This report presents a historical evaluation of the U12t Tunnel on the Nevada Test Site in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency (DTRA). The U12t Tunnel is one of a series of tunnels used for underground nuclear weapons effects tests on the east side of Rainier and Aqueduct Mesas. Six nuclear weapons effects tests, Mint Leaf, Diamond Sculls, Husky Pup, Midas Myth/Milagro, Mighty Oak, and Mission Ghost, and onemore » high explosive test, SPLAT, were conducted within the U12t Tunnel from 1970 to 1987. All six of the nuclear weapons effects tests and the high explosive test were sponsored by DTRA. Two conventional weapons experiments, Dipole Knight and Divine Eagle, were conducted in the tunnel portal area in 1997 and 1998. These experiments were sponsored by the Defense Special Weapons Agency. The U12t Tunnel complex is composed of the Portal and Mesa Areas and includes an underground tunnel with a main access drift and nine primary drifts, a substantial tailings pile fronting the tunnel portal, a series of discharge ponds downslope of the tailings pile, and two instrumentation trailer parks and 16 drill holes on top of Aqueduct Mesa. A total of 89 cultural features were recorded: 54 at the portal and 35 on the mesa. In the Portal Area, cultural features are mostly concrete pads and building foundations; other features include the portal, rail lines, the camel back, ventilation and cooling system components, communication equipment, and electrical equipment. On the mesa are drill holes, a few concrete pads, a loading ramp, and electrical equipment.« less
The Source Physics Experiments (SPE) at the Nevada National Security Site (NNSS): An Overview
NASA Astrophysics Data System (ADS)
Snelson, C. M.; Chipman, V.; White, R. L.; Emmitt, R.; Townsend, M.; Barker, D.; Lee, P.
2012-12-01
Understanding the changes in seismic energy as it travels from the near field to the far field is the ultimate goal in monitoring for explosive events of interest. This requires a clear understanding of explosion phenomenology as it relates to seismic, infrasound, and acoustic signals. Although there has been much progress in modeling these phenomena, this has been primarily based in the empirical realm. As a result, the logical next step in advancing the seismic monitoring capability of the United States is to conduct field tests that can expand the predictive capability of the physics-based modeling currently under development. The Source Physics Experiment at the Nevada National Security Site (SPE) is the first step in this endeavor to link the empirically based with the physics-based modeling. This is a collaborative project between National Security Technologies (NSTec), Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), the Defense Threat Reduction Agency (DTRA), and the Air Force Technical Applications Center (AFTAC). The test series require both the simple and complex cases to fully characterize the problem, which is to understand the transition of seismic energy from the near field to the far field; to understand the development of S-waves in explosives sources; and how anisotropy controls seismic energy transmission and partitioning. The current series is being conducted in a granite body called the Climax Stock. This location was chosen for several reasons, including the fairly homogenous granite; the location of previous nuclear tests in the same rock body; and generally the geology has been well characterized. The simple geology series is planned for 7 shots using conventional explosives in the same shot hole surrounded by Continuous Reflectometry for Radius vs. Time Experiment (CORRTEX), Time of Arrival (TOA), Velocity of Detonation (VOD), down-hole accelerometers, surface accelerometers, infrasound, and a suite of seismic sensors of various frequency bands from the near field to the far field. This allows for the use of a single test bed in the simple geology case instead of multiple tests beds to obtain the same results. The shots are planned at various depths to obtain a Green's function, scaled-depth of burial data, nominal depth of burial data and damage zone data. SPE1 was conducted in May 2011 as a 220 lb (100 kg) TNT equivalent calibration shot at a depth of 180 ft (55 m). SPE2 was conducted in October 2011 as a 2200 lb (1000 kg) TNT equivalent calibration shot at a depth of 150 ft (46 m). SPE3 was conducted in July 2012 as a 2200 lb (1000 kg) TNT equivalent calibration shot at a depth of 150 ft (46 m) in the damaged zone. Over 400 data channels were recorded for each of these shots and data recovery was about 95% with high signal to noise ratio. Once the simple geology site data has been utilized, a new test bed will be developed in a complex geology site to test these physics based models. Ultimately, the results from this project will provide the next advances in the science of monitoring to enable a physics-based predicative capability. This work was done by National Security Technologies, LLC, under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy. DOE/NV/25946--1584
A Chemical Monitoring Program of the Explosion Products in Underwater Explosion Tests
1975-04-04
CLASSIFICATION QF THIS PAGE- (When Date Entered) UNCLASSIFIED tL,URJTY CLASSIFICATION OF THIS PAGE(Then Data Entered) 20.and determination of various explosion...to institute a chemical monitoring program of the explosion products in underwater explosion tests, to determine monitoring parameters, and to...27 3.2.3 Samplers 28 3.2.4 Storage of Sediment Samples 32 IV. DETERMINATION OF EXPLOSION PRODUCTS 32 4.1 DESIGN OF MEASUREMENT SYSTEM 32 4.1.1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wetovsky, Marv A; Aguilar - Chang, Julio; Anderson, Dale
These proceedings contain papers prepared for the Monitoring Research Review 2009: Ground -Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2009 in Tucson, Arizona,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Test Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States’ capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well asmore » potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.« less
Proceedings of the 30th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wetovsky, Marv A; Aguilar-chang, Julio; Arrowsmith, Marie
These proceedings contain papers prepared for the 30th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 23-25 September, 2008 in Portsmouth, Virginia. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States’ capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoringmore » agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wetovsky, Marvin A; Patterson, Eileen F
These proceedings contain papers prepared for the Monitoring Research Review 2010: Ground-Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2010 in Orlando, Florida,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, National Science Foundation (NSF), Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, asmore » well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wetovsky, Marvin A.; Patterson, Eileen F.; Sandoval, Marisa N.
These proceedings contain papers prepared for the Monitoring Research Review 2011: Ground-Based Nuclear Explosion Monitoring Technologies, held 13-15 September, 2011 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), National Science Foundation (NSF), and other invited sponsors. The scientific objectives of the research are to improve the United States' capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is tomore » provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.
These proceedings contain papers prepared for the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 19-21 September, 2006 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoringmore » agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.
These proceedings contain papers prepared for the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 25-27 September, 2007 in Denver, Colorado. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoringmore » agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ford, Sean R.; Walter, William R.
Seismic waveform correlation offers the prospect of greatly reducing event detection thresholds when compared with more conventional processing methods. Correlation is applicable for seismic events that in some sense repeat, that is they have very similar waveforms. A number of recent studies have shown that correlated seismic signals may form a significant fraction of seismicity at regional distances. For the particular case of multiple nuclear explosions at the same test site, regional distance correlation also allows very precise relative location measurements and could offer the potential to lower thresholds when multiple events exist. Using the Comprehensive Nuclear-Test-Ban Treaty (CTBT) Internationalmore » Monitoring System (IMS) seismic array at Matsushiro, Japan (MJAR), Gibbons and Ringdal (2012) were able to create a multichannel correlation detector with a very low false alarm rate and a threshold below magnitude 3.0. They did this using the 2006 or 2009 Democratic People’s Republic of Korea (DPRK) nuclear explosion as a template to search through a data stream from the same station to find a match via waveform correlation. In this paper, we extend the work of Gibbons and Ringdal (2012) and measure the correlation detection threshold at several other IMS arrays. We use this to address three main points. First, we show the IMS array station at Mina, Nevada (NVAR), which is closest to the Nevada National Security Site (NNSS), is able to detect a chemical explosion that is well under 1 ton with the right template. Second, we examine the two IMS arrays closest to the North Korean (DPRK) test site (at Ussuriysk, Russian Federation [USRK] and Wonju, Republic of Korea [KSRS]) to show that similarly low thresholds are possible when the right templates exist. We also extend the work of Schaff et al. (2012) and measure the correlation detection threshold at the nearest Global Seismic Network (GSN) three-component station (MDJ) at Mudanjiang, Heilongjiang Province, China, from the New China Digital Seismograph Network (IC). To conclude, we use these results to explore the recent claim by Zhang and Wen (2015) that the DPRK conducted “…a low-yield nuclear test…” on 12 May 2010.« less
Large-N Over the Source Physics Experiment (SPE) Phase I and Phase II Test Beds
NASA Astrophysics Data System (ADS)
Snelson, C. M.; Carmichael, J. D.; Mellors, R. J.; Abbott, R. E.
2014-12-01
One of the current challenges in the field of monitoring and verification is source discrimination of low-yield nuclear explosions from background seismicity, both natural and anthropogenic. Work is underway at the Nevada National Security Site to conduct a series of chemical explosion experiments using a multi-institutional, multi-disciplinary approach. The goal of this series of experiments, called the Source Physics Experiments (SPE), is to refine the understanding of the effect of earth structures on source phenomenology and energy partitioning in the source region, the transition of seismic energy from the near field to the far field, and the development of S waves observed in the far field. To fully explore these problems, the SPE series includes tests in both hard and soft rock geologic environments. The project comprises a number of activities, which range from characterizing the shallow subsurface to acquiring new explosion data from both the near field (<100 m) and the far field (>100 m). SPE includes a series of planned explosions (with different yields and depths of burials), which are conducted in the same hole and monitored by a diverse set of sensors recording characteristics of the explosions, ground-shock, seismo-acoustic energy propagation. This presentation focuses on imaging the full 3D wavefield over hard rock and soft rock test beds using a large number of seismic sensors. This overview presents statistical analyses of optimal sensor layout required to estimate wavefield discriminants and the planned deployment for the upcoming experiments. This work was conducted under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Ramzaev, V; Repin, V; Medvedev, A; Khramtsov, E; Timofeeva, M; Yakovlev, V
2012-07-01
Samples of soil and epigeic lichens were collected from the "Taiga" peaceful nuclear explosion site (61.30°N 56.60°E, the Perm region, Russia) in 2009 and analyzed using high resolution γ-ray spectrometry. For soil samples obtained at six different plots, two products of fission ((137)Cs and (155)Eu), five products of neutron activation ((60)Co, (94)Nb, (152)Eu, (154)Eu, (207)Bi) and (241)Am have been identified and quantified. The maximal activity concentrations of (60)Co, (137)Cs, and (241)Am for the soils samples were measured as 1650, 7100, and 6800 Bq kg(-1) (d.w.), respectively. The deposit of (137)Cs for the top 20 cm of soil on the tested plots at the "Taiga" site ranged from 30 to 1020 kBq m(-2); the maximal value greatly (by almost 3 orders of magnitude) exceeded the regional background (from global fallout) level of 1.4 kBq m(-2). (137)Cs contributes approximately 57% of the total ground inventory of the man-made γ-ray emitters for the six plots tested at the "Taiga" site. The other major radionuclides -(241)Am and (60)Co, constitute around 40%. Such radionuclides as (60)Co, (137)Cs, (241)Am, and (207)Bi have also been determined for the epigeic lichens (genera Cladonia) that colonized certain areas at the ground lip produced by the "Taiga" explosion. Maximal activity concentrations (up to 80 Bq kg(-1) for (60)Co, 580 Bq kg(-1) for (137)Cs, 200 Bq kg(-1) for (241)Am, and 5 Bq kg(-1) for (207)Bi; all are given in terms of d.w.) have been detected for the lower dead section of the organisms. The air kerma rates associated with the anthropogenic sources of gamma radiation have been calculated using the data obtained from the laboratory analysis. For the six plots tested, the kerma rates ranged from 50 to 1200 nGy h(-1); on average, 51% of the dose can be attributed to (137)Cs and 45% to (60)Co. These estimates agree reasonably well with the results of the in situ measurements made during our field survey of the "Taiga" site in August 2009. Copyright © 2011 Elsevier Ltd. All rights reserved.
Numerical Modeling of Ejecta Dispersal from Transient Volcanic Explosions on Mars
NASA Astrophysics Data System (ADS)
Fagents, Sarah A.; Wilson, Lionel
1996-10-01
The dynamics of ejecta dispersal in transient volcanic eruptions on Mars are distinct from those on Earth and Venus because of the low atmospheric pressure and gravitational acceleration. Numerical modeling of the physical mechanisms of such activity, accounting for the different martian environmental conditions, can help constrain the style of emplacement of the eruptive products. The scenario envisaged is one of pressurized gas, contributed from either a magmatic or meteoric source, accumulating in the near-surface crust beneath a retaining medium. On failure of the confining material, the gas expands rapidly out of the vent, displacing both the “caprock” and a mass of atmospheric gas overlying the explosion site, in a discrete, transient event. Trajectories of large blocks of ejecta are computed subject to the complex aerodynamic interactions of atmospheric and volcanic gases which are set in motion by the initiation of the explosion. Reservoirs of crustal and surface water and carbon dioxide may have increased the chances of occurrence of transient explosive events on Mars in two ways: by supplying a source of volatiles for vaporization by the magma and by acting to slow the ascent of the magma by chilling it, providing conditions favorable for gas accumulation. Results of the modeling indicate that ejection velocities ranging up to ∼580 m sec-1were possible in martian H2O-driven explosions, with CO2-driven velocities typically a factor of ∼1.5 smaller. Travel distances of large blocks of ejecta lie within the range of a few kilometers to the order of 100 km from the vent. The low martian atmospheric pressure and gravity would thus have conspired to produce more vigorous explosions and more widely dispersed deposits than are associated with analogous events on Earth or Venus. Other phenomena likely to be associated with transient explosions include ashfall deposits from associated convecting clouds of fine material, pyroclastic flows, and ejecta impact crater fields. It is anticipated that the martian environment would have caused such features to be greater in size than would be the case in the terrestrial environment. Ash clouds associated with discrete explosions are expected to have risen to a maximum of ∼25 km on Mars, producing deposits having similar widths. Another indication of a volcanic explosion site might be found in areas of high regolith ice content, such as fretted terrains, where ice removal and mass-wasting may have modified the vent's initial morphology. The modeling results highlight the implications of the occurrence of transient explosive eruptions for the global crustal volatile distribution and provide some predictions of the likely manifestation of such activity for testing by upcoming spacecraft missions to Mars.
Network sensitivity solutions for regional moment-tensor inversions
Ford, Sean R.; Dreger, Douglas S.; Walter, William R.
2010-09-20
Well-resolved moment-tensor solutions reveal information about the sources of seismic waves. In this paper,we introduce a newly of assessing confidence in the regional full moment-tensor inversion via the introduction of the network sensitivity solution (NSS). The NSS takes into account the unique station distribution, frequency band, and signal-to-noise ratio of a given event scenario. The NSS compares both a hypothetical pure source (for example, an explosion or an earthquake) and the actual data with several thousand sets of synthetic data from a uniform distribution of all possible sources. The comparison with a hypothetical pure source provides the theoretically best-constrained source-typemore » distribution for a given set of stations; and with it, one can determine whether further analysis with the data is warranted. The NSS that employs the actual data gives a direct comparison of all other source types with the best fit source. In this way, one can choose a threshold level of fit in which the solution is comfortably constrained. The method is tested for the well-recorded nuclear test, JUNCTION, at the Nevada Test Site. Sources that fit comparably well to a hypothetical pure explosion recorded with no noise at the JUNCTION data stations have a large volumetric component and are not described well by a double-couple (DC) source. The NSS using the real data from JUNCTION is even more tightly constrained to an explosion because the data contain some energy that precludes fitting with any type of deviator source. We also calculate the NSS for the October 2006 North Korea test and a nearby earthquake, where the station coverage is poor and the event magnitude is small. As a result, the earthquake solution is very well fit by a DC source, and the best-fit solution to the nuclear test (M w 4.1) is dominantly explosion.« less
NASA Astrophysics Data System (ADS)
Yoo, S. H.
2017-12-01
Monitoring seismologists have successfully used seismic coda for event discrimination and yield estimation for over a decade. In practice seismologists typically analyze long-duration, S-coda signals with high signal-to-noise ratios (SNR) at regional and teleseismic distances, since the single back-scattering model reasonably predicts decay of the late coda. However, seismic monitoring requirements are shifting towards smaller, locally recorded events that exhibit low SNR and short signal lengths. To be successful at characterizing events recorded at local distances, we must utilize the direct-phase arrivals, as well as the earlier part of the coda, which is dominated by multiple forward scattering. To remedy this problem, we have developed a new hybrid method known as full-waveform envelope template matching to improve predicted envelope fits over the entire waveform and account for direct-wave and early coda complexity. We accomplish this by including a multiple forward-scattering approximation in the envelope modeling of the early coda. The new hybrid envelope templates are designed to fit local and regional full waveforms and produce low-variance amplitude estimates, which will improve yield estimation and discrimination between earthquakes and explosions. To demonstrate the new technique, we applied our full-waveform envelope template-matching method to the six known North Korean (DPRK) underground nuclear tests and four aftershock events following the September 2017 test. We successfully discriminated the event types and estimated the yield for all six nuclear tests. We also applied the same technique to the 2015 Tianjin explosions in China, and another suspected low-yield explosion at the DPRK test site on May 12, 2010. Our results show that the new full-waveform envelope template-matching method significantly improves upon longstanding single-scattering coda prediction techniques. More importantly, the new method allows monitoring seismologists to extend coda-based techniques to lower magnitude thresholds and low-yield local explosions.
Robidoux, Pierre Yves; Dubois, Charles; Hawari, Jalal; Sunahara, Geoffrey I
2004-08-01
Earthworm mesocosms studies were carried out on a explosives-contaminated site at an antitank firing range. Survival of earthworms and the lysosomal neutral red retention time (NRRT), a biomarker of lysosomal membrane stability, were used in these studies to assess the effect of explosives-contaminated soils on the earthworms Lumbricus terrestris and Eisenia andrei under field conditions. Toxicity of the soils samples for E. andrei was also assessed under laboratory conditions using the earthworms reproduction test and the NRRT. Results indicate that the survival was reduced up to 40% in certain explosive-contaminated soil mesocosms following 10 days of exposure under field conditions, whereas survival was reduced up to 100% following 28 days of exposure under laboratory conditions. Reproduction parameters such as number of cocoons and number of juveniles were reduced in many of the selected contaminated soils. Compared to the reference, NRRT was significantly reduced for E. andrei exposed to explosive-contaminated soils under both field and laboratory conditions, whereas for L. terrestris NRRT was similar compared to the reference mesocosm. Analyses showed that HMX was the major polynitro-organic compound in soils. HMX was also the only explosive detected in earthworm tissues. Thus, results from both field mesocosms and laboratory studies, showed lethal and sub-lethal effects associated to soil from the contaminated area of the antitank firing range.
Reactive Behavior of Explosive Billets in Deflagration Tube of Varied Confinements
NASA Astrophysics Data System (ADS)
Hu, Haibo; Guo, Yingwen; Li, Tao; Fu, Hua; Shang, Hailin; Wen, Shanggang; Qiu, Tian; LaboratoryShock Wave; Detonation Physics Research Team
2017-06-01
The deflagration process of small size cylinder billets of pressed HMX-based explosive JO-9159 and the deflagration tube wall deformation is recorded by combined pressure velocity-meter high-speed frame photographic and radiographic diagnostic system. The influence of confinement structure strength on deflagration evolution behavior is compared with analysis of convective flame propagation along the slot between explosive billet and confinement wall.The follow-up reaction inside the cracks on the initiation site end surface on the side surfaces and between the end surfaces of explosive billets is restored with the analysis results of post experimental explosive billet remains.
Radiation doses to local populations near nuclear weapons test sites worldwide.
Simon, Steven L; Bouville, André
2002-05-01
Nuclear weapons testing was conducted in the atmosphere at numerous sites worldwide between 1946 and 1980, which resulted in exposures to local populations as a consequence of fallout of radioactive debris. The nuclear tests were conducted by five nations (United States, Soviet Union, United Kingdom, France, and China) primarily at 16 sites. The 16 testing sites, located in nine different countries on five continents (plus Oceania) contributed nearly all of the radioactive materials released to the environment by atmospheric testing; only small amounts were released at a fewother minor testing sites. The 16 sites discussed here are Nevada Test Site, USA (North American continent), Bikini and Enewetak, Marshall Islands (Oceania); Johnston Island, USA (Oceania), Christmas and Malden Island, Kiribati (Oceania); Emu Field, Maralinga, and Monte Bello Islands, Australia (Australian continent); Mururoa and Fangataufa, French Polynesia (Oceania), Reggane, Algeria (Africa), Novaya Zemlya and Kapustin Yar, Russia (Europe), Semipalatinsk, Kazakhstan (Asia), and Lop Nor, China (Asia). There were large differences in the numbers of tests conducted at each location and in the total explosive yields. Those factors, as well as differences in population density, lifestyle, environment, and climate at each site, led to large differences in the doses received by local populations. In general, the tests conducted earliest led to the highest individual and population exposures, although the amount of information available for a few of these sites is insufficient to provide any detailed evaluation of radiation exposures. The most comprehensive information for any site is for the Nevada Test Site. The disparities in available information add difficulty to determining the radiation exposures of local populations at each site. It is the goal of this paper to summarize the available information on external and internal doses received by the public living in the regions near each of the mentioned nuclear test sites as a consequence of local fallout deposition.
ONE-DIMENSIONAL TIME TO EXPLOSION (THERMAL SENSITIVITY) TESTS ON PETN, PBX-9407, LX-10, AND LX-17
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, Peter C.; Strout, Steve; McClelland, Matthew
Incidents caused by fire and combat operations can heat energetic materials that may lead to thermal explosion and result in structural damage and casualty. Some explosives may thermally explode at fairly low temperatures (< 100 C) and the violence from thermal explosion may cause a significant damage. Thus it is important to understand the response of energetic materials to thermal insults. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory has been used for decades to measure times to thermal explosion, threshold thermal explosion temperature, and determine the kinetic parameters of thermal decomposition of energeticmore » materials. Samples of different configurations (pressed part, powder, paste, and liquid) can be tested in the system. The ODTX testing can also provide useful data for assessing the thermal explosion violence of energetic materials. This report summarizes the results of our recent ODTX experiments on PETN powder, PBX-9407 pressed part, LX-10 pressed part, LX-17 pressed part and compares the test data that were obtained decades ago with the older version of ODTX system. Test results show the thermal sensitivity of various materials tested in the following order: PETN> PBX-9407 > LX-10 > LX-17.« less
An Overview of the Source Physics Experiments (SPE) at the Nevada National Security Site (NNSS)
NASA Astrophysics Data System (ADS)
Snelson, C. M.; Barker, D. L.; White, R. L.; Emmitt, R. F.; Townsend, M. J.; Graves, T. E.; Becker, S. A.; Teel, M. G.; Lee, P.; Antoun, T. H.; Rodgers, A.; Walter, W. R.; Mellors, R. J.; Brunish, W. M.; Bradley, C. R.; Patton, H. J.; Hawkins, W. L.; Corbell, B. H.; Abbott, R. E.; SPE Working Group
2011-12-01
Modeling of explosion phenomenology has been primarily empirically based when looking at the seismic, infrasound, and acoustic signals. In order to detect low-yield nuclear explosions under the Comprehensive Nuclear Test-Ban Treaty (CTBT), we must be able to understand and model the explosive source in settings beyond where we have empirical data. The Source Physics Experiments (SPE) at the Nevada National Security Site are the first step in this endeavor to link the empirically based with the physics-based modeling to develop this predictive capability. The current series of tests is being conducted in a granite body called the Climax Stock. This location was chosen for several reasons, including the site's expected "simple geology"-the granite is a fairly homogeneous body. In addition, data are available from underground nuclear tests that were conducted in the same rock body, and the nature of the geology has been well-documented. Among the project goals for the SPE is to provide fully coupled seismic energy to the seismic and acoustic seismic arrays so that the transition between the near and far-field data can be modeled and our scientists can begin to understand how non-linear effects and anisotropy control seismic energy transmission and partitioning. The first shot for the SPE was conducted in May 2011 as a calibration shot (SPE1) with 220 lb (100 kg) of chemical explosives set at a depth of 180 ft (55 m). An array of sensors and diagnostics recorded the shot data, including accelerometers, geophones, rotational sensors, short-period and broadband seismic sensors, Continuous Reflectometry for Radius vs. Time Experiment (CORRTEX), Time of Arrival (TOA), Velocity of Detonation (VOD) as well as infrasound sensors. The three-component accelerometer packages were set at depths of 180 ft (55 m), 150 ft (46 m), and 50 ft (15 m) in two rings around ground zero (GZ); the inner ring was at 10 m and the outer ring was 20 m from GZ. Six sets of surface accelerometers (100 and 500 g) were placed along in an azimuth of SW from GZ every 10 m. Seven infrasound sensors were placed in an array around the GZ, extending from tens of meters to kilometers. Over 100 seismic stations were positioned, most of which were in five radial lines from GZ out to 2 km. Over 400 data channels were recorded for SPE1, and data recovery was about 95% with high signal to noise ratio. Future tests will be conducted in the same shot hole as SPE1. The SPE2 experiment will consist of 2200 lb (1000 kg) of chemical explosives shot at 150 ft (46 m) depth utilizing the above-described instrumentation. Subsequent SPE shots will be the same size, within the same shot hole, and within the damage zone. The ultimate goal of the SPE Project is to develop predictive capability for using seismic energy as a tool for CTBT issues. This work was done by National Security Technologies, LLC, under Contract No. DE AC52 06NA25946 with the U.S. Department of Energy.
An Empirical Non-TNT Approach to Launch Vehicle Explosion Modeling
NASA Technical Reports Server (NTRS)
Blackwood, James M.; Skinner, Troy; Richardson, Erin H.; Bangham, Michal E.
2015-01-01
In an effort to increase crew survivability from catastrophic explosions of Launch Vehicles (LV), a study was conducted to determine the best method for predicting LV explosion environments in the near field. After reviewing such methods as TNT equivalence, Vapor Cloud Explosion (VCE) theory, and Computational Fluid Dynamics (CFD), it was determined that the best approach for this study was to assemble all available empirical data from full scale launch vehicle explosion tests and accidents. Approximately 25 accidents or full-scale tests were found that had some amount of measured blast wave, thermal, or fragment explosion environment characteristics. Blast wave overpressure was found to be much lower in the near field than predicted by most TNT equivalence methods. Additionally, fragments tended to be larger, fewer, and slower than expected if the driving force was from a high explosive type event. In light of these discoveries, a simple model for cryogenic rocket explosions is presented. Predictions from this model encompass all known applicable full scale launch vehicle explosion data. Finally, a brief description of on-going analysis and testing to further refine the launch vehicle explosion environment is discussed.
Forensic Seismology: constraints on terrorist bombings
NASA Astrophysics Data System (ADS)
Wallace, T. C.; Koper, K. D.
2002-05-01
Seismology has long been used as a tool to monitor and investigate explosions, both accidental and intentional. Seismic records can be used to provide a precise chronology of events, estimate the energy release in explosions and produce constraints to test various scenarios for the explosions. Truck bombs are a popular tool of terrorists, and at least two such attacks have been recorded seismically. On August 7, 1998 a truck bomb was detonated near the US embassy in Nairobi, Kenya. The bomb seriously damaging a dozen buildings, injuring more than 4000 people and causing 220 fatalities. The explosion was recorded on a short-period seismometer located north of the blast site; the blast seismogram contained body waves, Rayleigh waves and vibrations associated with the air blast. Modeling of the body and surfaces wave allowed an estimate of the origin time of the bombing, which it turn could be used as a constraint the timing of the air blasts. The speed of the air waves from an explosion depend on the air temperature and the size, or yield, of the explosion. In an effort to fully utilize the seismic recordings from such attacks, we analyzed the seismic records from a series of controlled truck bomb explosions carried out at White Sand Missile Range in New Mexico. We developed a new set of scaling laws that relate seismic and acoustic observations directly to the explosive mass (yield). These relationships give a yield of approximately 3000 kg of TNT equivalent for the Nairobi bomb. The terrorist bombing of the Murrah Federal Building in Oklahoma City in 1995 was also recorded on seismometers. One of these records showed 2 discrete surface wavetrains separated by approximately 10 seconds. Some groups seized on the seismic recordings as evidence that there were 2 explosions, and that the US government was actually behind the bombing. However, the USGS monitored the demolition of the remainder of the Murrah Building and showed that the collapse also produced 2 surface waves. The interpretation is that one group was the fundamental mode Rayleigh wave while the other was either a higher-mode surface wave or a scattered S-wave (Lg like) packet (Holzer et al, 1996). This example illustrates the utility of forensic seismology for testing various hypothesis for the explosions. As the number of permanent and temporarily installed seismometers increase in the next decade, the number of "exotic" sources recorded and investigated is grow dramatically. These studies can be very useful for investigating terrorist attacks, and developing scenarios for the crimes.
On-site comprehensive analysis of explosives using HPLC-UV-PAED
NASA Astrophysics Data System (ADS)
Marple, Ronita L.; LaCourse, William R.
2004-03-01
High-performance liquid chromatography with ultra violet and photo-assisted electrochemical detection (HPLC-UV-PAED) has been developed for the sensitive and selective detection of explosives in ground water and soil extracts. Fractionation and preconcentration of explosives is accomplished with on-line solid phase extraction (SPE), which minimizes sample pretreatment and enables faster and more accurate on-site assessment of a contaminated site. Detection limits are equivalent or superior (i.e., <1 part-per-trillion for HMX) to those achieved using the Environmental Protection Agency (EPA) Method 8330. This approach is more broadly applicable, as it is capable of determining a wider range of organic nitro compounds. Soil samples are extracted using pressurized fluid extraction (PFE), and this technique is automatable, field-compatible, and environmentally friendly, adding to the overall efficiency of the methodology.
Investigating source processes of isotropic events
NASA Astrophysics Data System (ADS)
Chiang, Andrea
This dissertation demonstrates the utility of the complete waveform regional moment tensor inversion for nuclear event discrimination. I explore the source processes and associated uncertainties for explosions and earthquakes under the effects of limited station coverage, compound seismic sources, assumptions in velocity models and the corresponding Green's functions, and the effects of shallow source depth and free-surface conditions. The motivation to develop better techniques to obtain reliable source mechanism and assess uncertainties is not limited to nuclear monitoring, but they also provide quantitative information about the characteristics of seismic hazards, local and regional tectonics and in-situ stress fields of the region . This dissertation begins with the analysis of three sparsely recorded events: the 14 September 1988 US-Soviet Joint Verification Experiment (JVE) nuclear test at the Semipalatinsk test site in Eastern Kazakhstan, and two nuclear explosions at the Chinese Lop Nor test site. We utilize a regional distance seismic waveform method fitting long-period, complete, three-component waveforms jointly with first-motion observations from regional stations and teleseismic arrays. The combination of long period waveforms and first motion observations provides unique discrimination of these sparsely recorded events in the context of the Hudson et al. (1989) source-type diagram. We examine the effects of the free surface on the moment tensor via synthetic testing, and apply the moment tensor based discrimination method to well-recorded chemical explosions. These shallow chemical explosions represent rather severe source-station geometry in terms of the vanishing traction issues. We show that the combined waveform and first motion method enables the unique discrimination of these events, even though the data include unmodeled single force components resulting from the collapse and blowout of the quarry face immediately following the initial explosion. In contrast, recovering the announced explosive yield using seismic moment estimates from moment tensor inversion remains challenging but we can begin to put error bounds on our moment estimates using the NSS technique. The estimation of seismic source parameters is dependent upon having a well-calibrated velocity model to compute the Green's functions for the inverse problem. Ideally, seismic velocity models are calibrated through broadband waveform modeling, however in regions of low seismicity velocity models derived from body or surface wave tomography may be employed. Whether a velocity model is 1D or 3D, or based on broadband seismic waveform modeling or the various tomographic techniques, the uncertainty in the velocity model can be the greatest source of error in moment tensor inversion. These errors have not been fully investigated for the nuclear discrimination problem. To study the effects of unmodeled structures on the moment tensor inversion, we set up a synthetic experiment where we produce synthetic seismograms for a 3D model (Moschetti et al., 2010) and invert these data using Green's functions computed with a 1D velocity mode (Song et al., 1996) to evaluate the recoverability of input solutions, paying particular attention to biases in the isotropic component. The synthetic experiment results indicate that the 1D model assumption is valid for moment tensor inversions at periods as short as 10 seconds for the 1D western U.S. model (Song et al., 1996). The correct earthquake mechanisms and source depth are recovered with statistically insignificant isotropic components as determined by the F-test. Shallow explosions are biased by the theoretical ISO-CLVD tradeoff but the tectonic release component remains low, and the tradeoff can be eliminated with constraints from P wave first motion. Path-calibration to the 1D model can reduce non-double-couple components in earthquakes, non-isotropic components in explosions and composite sources and improve the fit to the data. When we apply the 3D model to real data, at long periods (20-50 seconds), we see good agreement in the solutions between the 1D and 3D models and slight improvement in waveform fits when using the 3D velocity model Green's functions. (Abstract shortened by ProQuest.).
Intercorrelation of P and Pn Recordings for the North Korean Nuclear Tests
NASA Astrophysics Data System (ADS)
Lay, T.; Voytan, D.; Ohman, J.
2017-12-01
The relative waveform analysis procedure called Intercorrelation is applied to Pn and P waveforms at regional and teleseismic distances, respectively, for the 5 underground nuclear tests at the North Korean nuclear test site. Intercorrelation is a waveform equalization procedure that parameterizes the effective source function for a given explosion, including the reduced velocity potential convolved with a simplified Green's function that accounts for the free surface reflections (pPn and pP), and possibly additional arrivals such as spall. The source function for one event is convolved with the signal at a given station for a second event, and the recording at the same station for the first event is convolved with the source function for the second event. This procedure eliminates the need to predict the complex receiver function effects at the station, which are typically not well-known for short-period response. The parameters of the source function representation are yield and burial depth, and an explosion source model is required. Here we use the Mueller-Murphy representation of the explosion reduced velocity potential, which explicitly depends on yield and burial depth. We then search over yield and burial depth ranges for both events, constrained by a priori information about reasonable ranges of parameters, to optimize the simultaneous match of multiple station signals for the two events. This procedure, applied to the apparently overburied North Korean nuclear tests (no indications of spall complexity), assuming simple free surface interactions (elastic reflection from a flat surface), provides excellent waveform equalization for all combinations of 5 nuclear tests.
The Expansion of Explosives Safety Education for the 21st Century
2010-07-01
shape charges, explosive welding, thermite reaction – Sensitivity testing: drop hammer, electrospark discharge, friction – Physics of explosives, history... ATF ) • Phytoremediation workers use plants to remove explosives from soil and render the explosives harmless • Sales of explosives detection
Field Demonstration of Acetone Pretreatment and Composting of Particulate-TNT-Contaminated Soil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radtke, Corey William; Smith, D.; Owen, S.
2002-02-01
Solid fragments of explosives in soil are common in explosives testing and training areas. In this study we initially sieved the upper 6 in of contaminated soil through a 3-mm mesh, and found 2, 4, 6-trinitrotoluene (TNT) fragments. These contributed to an estimated concentration of 1.7 kg per cubic yard soil, or for 2000 ppm TNT in the soil. Most of the fragments ranged 4 mm to 10 mm diameter in size, but explosives particles weighing up to 56 g (about 4 cm diameter) were frequently observed. An acetone pretreatment/composting system was then demonstrated at field scale. The amount ofmore » acetone required for a TNT-dissolving slurry process was controlled by the viscosity of the soil/acetone mix rather than the TNT dissolution rate. The amount needed was estimated at about 55 gallons acetone per cubic yard soil. Smaller, 5- to 10-mm-diameter fragments went into solution in less than 15 min at a mixer speed of 36 rpm, with a minimum of 2 g TNT going into solution per 30 min for the larger chunks. The slurries were than mixed with compost starting materials and composted in a vented 1 yd3 container. After 34 days incubation time TNT was below the site-specific regulatory threshold of 44 ppm. TNT metabolites and acetone were also below their regulatory thresholds established for the site.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saey, P. R.J.; Ringbom, Anders; Bowyer, Ted W.
The Comprehensive Nuclear-Test-Ban Treaty (CTBT) specifies that radioxenon measurements should be performed at 40 or more stations worldwide within the International Monitoring System (IMS). Measuring radioxenon is one of the principle techniques to detect underground nuclear explosions. Specifically, presence and ratios of different radioxenon isotopes allows determining whether a detection event under consideration originated from a nuclear explosion or a civilian source. However, radioxenon monitoring on a global scale is a novel technology and the global civil background must be characterized sufficiently. This paper lays out a study, based on several unique measurement campaigns, of the worldwide concentrations and sourcesmore » of verification relevant xenon isotopes. It complements the experience already gathered with radioxenon measurements within the CTBT IMS programme and focuses on locations in Belgium, Germany, Kuwait, Thailand and South Africa where very little information was available on ambient xenon levels or interesting sites offered opportunities to learn more about emissions from known sources. The findings corroborate the hypothesis that a few major radioxenon sources contribute in great part to the global radioxenon background. Additionally, the existence of independent sources of 131mXe (the daughter of 131I) has been demonstrated, which has some potential to bias the isotopic signature of signals from nuclear explosions.« less
Infrared thermographic detection of buried grave sites
NASA Astrophysics Data System (ADS)
Weil, Gary J.; Graf, Richard J.
1992-04-01
Since time began, people have been born and people have died. For a variety of reasons grave sites have had to be located and investigated. These reasons have included legal, criminal, religious, construction and even simple curiosity problems. Destructive testing methods such as shovels and backhoes, have traditionally been used to determine grave site locations in fields, under pavements, and behind hidden locations. These existing techniques are slow, inconvenient, dirty, destructive, visually obtrusive, irritating to relatives, explosive to the media and expensive. A new, nondestructive, non-contact technique, infrared thermography has been developed to address these problems. This paper will describe how infrared thermography works and will be illustrated by several case histories.
Department of the Navy Explosives Safety Site Approval Process Improvement Initiative
2010-07-01
All applicable existing land-use restrictions, such as explosives safety quantity distance (ESQD) arcs, Hazards of Electromagnetic Radiation to... Ordnance ( HERO ) zones, air field safety zones, and munitions response program sites are noted in the ESAR. PWO will have in place a written...N547) Naval Ordnance Safety and Security Activity Farragut Hall, 3817 Strauss Ave, Suite 108 Indian Head, MD 20640-5151 (301) 744-6059
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aalseth, Craig E.; Day, Anthony R.; Haas, Derek A.
On-Site Inspection (OSI) is a key component of the verification regime for the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Measurements of radionuclide isotopes created by an underground nuclear explosion are a valuable signature of a Treaty violation. Argon-37 is produced from neutron interaction with calcium in soil, 40Ca(n,α)37Ar. For OSI, the 35-day half-life of 37Ar provides both high specific activity and sufficient time for completion of an inspection before decay limits sensitivity. This paper presents a low-background internal-source gas proportional counter with an 37Ar measurement sensitivity level equivalent to 45.1 mBq/SCM in whole air.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snelson, C. M., Chipman, V. D., White, R. L., Emmitt, R. F., Townsend, M. J., Barker, D., Lee, P.
Understanding the changes in seismic energy as it travels from the near field to the far field is the ultimate goal in monitoring for explosive events of interest. This requires a clear understanding of explosion phenomenology as it relates to seismic, infrasound, and acoustic signals. Although there has been much progress in modeling these phenomena, this has been primarily based in the empirical realm. As a result, the logical next step in advancing the seismic monitoring capability of the United States is to conduct field tests that can expand the predictive capability of the physics-based modeling currently under development. Themore » Source Physics Experiment at the Nevada National Security Site (SPE-N) is the first step in this endeavor to link the empirically based with the physics-based modeling. This is a collaborative project between National Security Technologies (NSTec), Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), the Defense Threat Reduction Agency (DTRA), and the Air Force Technical Applications Center (AFTAC). The test series require both the simple and complex cases to fully characterize the problem, which is to understand the transition of seismic energy from the near field to the far field; to understand the development of S-waves in explosives sources; and how anisotropy controls seismic energy transmission and partitioning. The current series is being conducted in a granite body called the Climax Stock. This location was chosen for several reasons, including the fairly homogenous granite; the location of previous nuclear tests in the same rock body; and generally the geology has been well characterized. The simple geology series is planned for 7 shots using conventional explosives in the same shot hole surrounded by Continuous Reflectometry for Radius vs. Time Experiment (CORRTEX), Time of Arrival (TOA), Velocity of Detonation (VOD), down-hole accelerometers, surface accelerometers, infrasound, and a suite of seismic sensors of various frequency bands from the near field to the far field. This allows for the use of a single test bed in the simple geology case instead of multiple tests beds to obtain the same results. The shots are planned at various depths to obtain a Green’s function, scaled-depth of burial data, nominal depth of burial data and damage zone data. SPE1-N was conducted in May 2011 as a 220 lb (100 kg) TNT equivalent calibration shot at a depth of 180 ft (55 m). SPE2-N was conducted in October 2011 as a 2200 lb (1000 kg) TNT equivalent calibration shot at a depth of 150 ft (46 m). SPE3-N was conducted in July 2012 as a 2200 lb (1000 kg) TNT equivalent calibration shot at a depth of 150 ft (46 m) in the damaged zone. Over 400 data channels were recorded for each of these shots and data recovery was about 95% with high signal to noise ratio. Once the simple geology site data has been utilized, a new test bed will be developed in a complex geology site to test these physics based models. Ultimately, the results from this project will provide the next advances in the science of monitoring to enable a physics-based predicative capability.« less
DOD Ammunition and Explosives Safety Standards
2004-10-05
chemical canister, 3 x 10- 5 1 x 10- 4 1 x 10- 5 3 x 10-3 3 x 10-3 air purifying protective mask will be on hand for escape . ( The M9, M17 or M40...1,2, 3, 4 , 5 8 8 9 ENERGETIC LIQUIDS STATIC TEST STANDS RANGE LAUNCH LO 2 /LH 2 See Note 6 See Note 6 LO 2 /LH 2 + LO 2 /RP-1 Sum of (see...liquids provided they comply with the construction and siting requirements of chapters 5 and 9 , respectively for Hazard Division 1.1. ECM must be sited
NASA Astrophysics Data System (ADS)
Labak, Peter; Lindblom, Pasi; Malich, Gregor
2017-04-01
The Integrated Field Exercise of 2014 (IFE14) was a field event held in the Hashemite Kingdom of Jordan (with concurrent activities in Austria) during which the operational and technical capabilities of a Comprehensive Test Ban Treaty's (CTBT) on-site inspection (OSI) were tested in integrated manner. Many of the inspection techniques permitted by the CTBT were applied during IFE14 including a range of geophysical techniques, however, one of the techniques foreseen by the CTBT but not yet developed is resonance seismometry. During August and September 2016, seismic field measurements have been conducted in the region of Kylylahti, Finland, in support of the further development of geophysical seismic techniques for OSIs. 45 seismic stations were used to continuously acquire seismic signals. During that period, data from local, regional and teleseismic natural events and man-made events were acquired, including from a devastating earthquake in Italy and the nuclear explosion announced by the Democratic People's Republic of Korea on 9 September 2016. Also, data were acquired following the small-scale use of man-made chemical explosives in the area and of vibratory sources. This presentation will show examples from the data set and will discuss its use for the development of resonance seimometry for OSIs.
NASA Astrophysics Data System (ADS)
Burgos, Gaël.; Capdeville, Yann; Guillot, Laurent
2016-06-01
We investigate the effect of small-scale heterogeneities close to a seismic explosive source, at intermediate periods (20-50 s), with an emphasis on the resulting nonisotropic far-field radiation. First, using a direct numerical approach, we show that small-scale elastic heterogeneities located in the near-field of an explosive source, generate unexpected phases (i.e., long period S waves). We then demonstrate that the nonperiodic homogenization theory applied to 2-D and 3-D elastic models, with various pattern of small-scale heterogeneities near the source, leads to accurate waveforms at a reduced computational cost compared to direct modeling. Further, it gives an interpretation of how nearby small-scale features interact with the source at low frequencies, through an explicit correction to the seismic moment tensor. In 2-D simulations, we find a deviatoric contribution to the moment tensor, as high as 21% for near-source heterogeneities showing a 25% contrast of elastic values (relative to a homogeneous background medium). In 3-D this nonisotropic contribution reaches 27%. Second, we analyze intermediate-periods regional seismic waveforms associated with some underground nuclear explosions conducted at the Nevada National Security Site and invert for the full moment tensor, in order to quantify the relative contribution of the isotropic and deviatoric components of the tensor. The average value of the deviatoric part is about 35%. We conclude that the interactions between an explosive source and small-scale local heterogeneities of moderate amplitude may lead to a deviatoric contribution to the seismic moment, close to what is observed using regional data from nuclear test explosions.
NASA Astrophysics Data System (ADS)
Patton, H. J.; Rougier, E.
2015-12-01
Since 2010, the U. S. Department of Energy has funded a series of chemical tests at the National Nuclear Security Site (NNSS) in Climax Stock granite as part of the Source Physics Experiment (SPE) with the aim of gaining a better understanding of the generation and propagation of seismic energy from underground explosions in hard rock media. To date, four tests have been conducted in the same borehole with yields of 100, 1000, 900 and 100 kg at different depths of burials. The nominal scaled depths of burial are 938, 363, 376 and 1556 m/kt1/3 compared to standard containment practices of ~120 m/kt1/3. A quite dense array of free field accelerometers were installed around the borehole, both on and off shot depth. Acceleration data were corrected for shock-generated baseline-shifts, and free field ground velocity waveforms were obtained. This work concentrates on the qualitative analysis of the reduced displacement potentials and the explosion source spectra for the last shot of the series (SPE-4Prime) and the comparison of the obtained results against the previous events. Finally, the results obtained from the experimental data are compared to the Mueller-Murphy empirical explosion model both using the Heard and Ackerman and Denny and Johnson cavity radius scaling laws.
Automatic behavior sensing for a bomb-detecting dog
NASA Astrophysics Data System (ADS)
Nguyen, Hoa G.; Nans, Adam; Talke, Kurt; Candela, Paul; Everett, H. R.
2015-05-01
Bomb-detecting dogs are trained to detect explosives through their sense of smell and often perform a specific behavior to indicate a possible bomb detection. This behavior is noticed by the dog handler, who confirms the probable explosives, determines the location, and forwards the information to an explosive ordnance disposal (EOD) team. To improve the speed and accuracy of this process and better integrate it with the EOD team's robotic explosive disposal operation, SPAWAR Systems Center Pacific has designed and prototyped an electronic dog collar that automatically tracks the dog's location and attitude, detects the indicative behavior, and records the data. To account for the differences between dogs, a 5-minute training routine can be executed before the mission to establish initial values for the k-mean clustering algorithm that classifies a specific dog's behavior. The recorded data include GPS location of the suspected bomb, the path the dog took to approach this location, and a video clip covering the detection event. The dog handler reviews and confirms the data before it is packaged up and forwarded on to the EOD team. The EOD team uses the video clip to better identify the type of bomb and for awareness of the surrounding environment before they arrive at the scene. Before the robotic neutralization operation commences at the site, the location and path data (which are supplied in a format understandable by the next-generation EOD robots—the Advanced EOD Robotic System) can be loaded into the robotic controller to automatically guide the robot to the bomb site. This paper describes the project with emphasis on the dog-collar hardware, behavior-classification software, and feasibility testing.
Spiridonov, S I; Mukusheva, M K; Gontarenko, I A; Fesenko, S V; Baranov, S A
2005-01-01
A mathematical model of 137Cs behaviour in the soil-plant system is presented. The model has been parameterized for the area adjacent to the testing area Ground Zero of the Semipalatinsk Test Site. The model describes the main processes responsible for the changes in 137Cs content in the soil solution and, thereby, dynamics of the radionuclide uptake by vegetation. The results are taken from predictive and retrospective calculations that reflect the dynamics of 137Cs distribution by species in soil after nuclear explosions. The importance of factors governing 137Cs accumulation in plants within the STS area is assessed. The analysis of sensitivity of the output model variable to changes in its parameters revealed that the key soil properties significantly influence the results of prediction of 137Cs content in plants.
Dynamic Fracture Behavior of Plastic-Bonded Explosives
NASA Astrophysics Data System (ADS)
Fu, Hua; Li, Jun-Ling; Tan, Duo-Wang; Ifp, Caep Team
2011-06-01
Plastic-Bonded Explosives (PBX) are used as important energetic materials in nuclear or conventional weapons. Arms Warhead in the service process and the ballistic phase, may experience complex process such as long pulse and higher loading, compresson, tension and reciprocating compression - tension, friction with the projectile shell, which would lead to explosive deformation and fracture.And the dynamic deformation and fracture behavior of PBX subsequently affect reaction characteristics and initiation mechanism in explosives, then having influence on explosives safety. The dynamic fracure behavior of PBX are generally complex and not well studied or understood. In this paper, the dynamic fracture of explosives are conducted using a Kolsky bar. The Brazilian test, also known as a indirect tensile test or splitting test, is chosen as the test method. Tensile strength under different strain rates are obtained using quartz crystal embedded in rod end. The dynamic deformation and fracture process are captured in real-time by high-speed digital camera, and the displacement and strain fields distribution before specimen fracture are obtained by digital correlation method. Considering the non-uniform microstructure of explosives,the dynamic fracture behavior of explosive are simulated by discrete element method, the simulation results can reproduce the deformation and fracture process in Brazilian test using a maximum tensile strain criterion.
2010-06-07
r i t y - S e r v i c e - E x c e l l e n c e 536 458 460 466 638 549 517 600 639 628 491 507 0 100 200 300 400...2008 through 1 August 2008. 4 I n t e g r i t y - S e r v i c e - E x c e l l e n c e Explosives Site Plans Received 0 200 400 600 800...measured on 1 June 2010. The current backlog is primarily ESPs awaiting MAJCOM response to review queries. 8 I n t e g r i t y - S e r v i c
Analytical methods for characterization of explosives-contaminated sites on U.S. Army installations
NASA Astrophysics Data System (ADS)
Jenkins, Thomas F.; Walsh, Marianne E.; Thorne, Philip G.
1995-10-01
The U.S. Army manufactures munitions at facilities throughout the United States. Many of these facilities are contaminated with residues of explosives from production, disposal of off- specification, and out-of-data munitions. The first step in remediating these sites is careful characterization. Currently sites are being characterized using a combination of on-site field screening and off-site laboratory analysis. Most of the contamination is associated with TNT (2,4,6-trinitrotoluene) and RDX (hexahydro-1,3,5-tri-nitro-1,3,5-triazine) and their manufacturing impurities and environmental transformation products. Both colorimetric and enzyme immunoassay-based field screening methods have been used successfully for on-site characterization. These methods have similar detection capabilities but differ in their selectivity. Although field screening is very cost-effective, laboratory analysis is still required to fully characterize a site. Laboratory analysis for explosives residues in the United States is generally conducted using high-performance liquid chromatography equipped with a UV detector. Air-dried soils are extracted with acetonitrile in an ultrasonic bath. Water is analyzed directly if detection limits in the range of 10 - 20 (mu) g/L are acceptable, or preconcentrated using either salting-out solvent extraction with acetonitrile or solid phase extraction.
NASA Astrophysics Data System (ADS)
Hirakawa, E. T.; Ezzedine, S. M.
2017-12-01
Recorded motions from underground chemical explosions are complicated by long duration seismic coda as well as motion in the tangential direction. The inability to distinguish the origins of these complexities as either source or path effects comprises a limitation to effective monitoring of underground chemical explosions. With numerical models, it is possible to conduct rigorous sensitivity analyses for chemical explosive sources and their resulting ground motions under the influence of many attributes, including but not limited to complex velocity structure, topography, and non-linear source characteristics. Previously we found that topography can cause significant scattering in the direct wave but leads to relatively little motion in the coda. Here, we aim to investigate the contribution from the low-velocity weathered layer that exists in the shallow subsurface apart from and in combination with surface topography. We use SW4, an anelastic anisotropic fourth order finite difference code to simulate chemical explosive source in a 1D velocity structure consisting of a single weathered layer over a half space. A range of velocity magnitudes are used for the upper weathered layer with the velocities always being lower than that of the granitic underlaying layer. We find that for lower weathered layer velocities, the wave train is highly dispersed and causes a large percentage of energy to be contained in the coda in relation to the entire time series. The percentage of energy contained in the coda grows with distance from the source but saturates at a certain distance that depends on weathered layer velocity and thickness. The saturation onset distance increases with decreasing layer thickness and increasing velocity of the upper layer. Measurements of relative coda energy and coda saturation onset distance from real recordings can provide an additional constraint on the properties of the weathered layer in remote sites as well as test sites like the Nevada National Security Site (NNSS). The results of this modeling study will aid in distinguishing source effects from path effects to the recorded motions in experiments such as the Source Physics Experiment (SPE). This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Effect of Explosion Bulge Test Parameters on the Measurement of Deformation Resistance for Steel
2014-02-01
UNCLASSIFIED UNCLASSIFIED Effect of Explosion Bulge Test Parameters on the Measurement of Deformation Resistance for Steel C...Measurement of Deformation Resistance for Steel Executive Summary The Explosion Bulge Test has been used for over 60 years as a standard test for...the assessment of steel toughness and deformation resistance under blast loading conditions [1-3]. However, details of the test conditions vary
The report gives results from (1) flame suppression testing of potential Halon-1301 (CF3Br) replacement chemicals in a laboratory cup burner using n-heptane fuel and (2) explosion prevention (inertion) testing in a small-scale explosion sphere using propane and methane as fuels. ...
A critical evaluation of combustible/explosible dust testing methods-part 1
USDA-ARS?s Scientific Manuscript database
Tests were conducted by the Center for Agricultural Air Quality Engineering and Science (CAAQES) and by Safety Consulting Engineers Inc. (SCE) to determine if dust found in cotton gins (gin dust) would serve as fuel for dust explosions. In other words, is gin dust explosible? The laboratory tests us...
Submarine Hydraulic Fluid Explosion Mitigation and Fire Threats to Ordnance
2005-01-18
capable of absorbing large amounts of energy from a developing explosion if the mist can be delivered, in sufficient quantity, to the point of origin of...doors (H8, H13 , H14, D10, D11, SI and S2 in Figure 1) during the explosion tests. In addition, the frame bay ducts that connect 3 the torpedo room and...appreciable impact on the overpressure, explosion tests were run with and without the dummy ordnance. Two replicate tests of each configuration were conducted
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagaraty, G.; Johnson, J.; Middlebrooks, P.
The Phase II EBS results document the extent of environmental contamination believed to be present on McCormick Ranch. Explosive test areas having the greatest potential for containing soil contaminants were identified using several geophysical survey methods: EM 31 terrain conductivity meter, magnetometer/gradiometer, and ground penetrating radar. From the geophysical surveys, five areas were selected to conduct further environmental analysis. A total of 310 soil samples were collected from the five areas and 13 specific high explosive test sites. The samples were screened for semi-volatile organic compounds, PETN, TNT, TNT-degradation products, nitrates and radioactivity. Laboratory analyses were performed and no explosivesmore » or degradation products were identified. Semi-volatile organic compounds were found in 2 samples, manganese was detected in 3 samples, nitrates were discovered below soil action levels, and radiation levels were below background. Consequently, it is unlikely that significant contamination exists.« less
NASA Astrophysics Data System (ADS)
Phelan, Brian R.; Gallagher, Kyle A.; Sherbondy, Kelly D.; Ranney, Kenneth I.; Narayanan, Ram M.
2014-11-01
Under support from the Army Research Laboratory's Partnerships in Research Transition program, a stepped-frequency radar (SFR) is currently under development, which allows for manipulation of the radiated spectrum while still maintaining an effective ultra-wide bandwidth. The SFR is a vehicle-mounted forward-looking ground-penetrating radar designed for high-resolution detection of buried landmines and improvised explosive devices. The SFR can be configured to precisely excise prohibited or interfering frequency bands and also possesses frequency-hopping capabilities. This paper discusses the expected performance features of the SFR as derived from laboratory testing and characterization. Ghosts and artifacts appearing in the range profile arise from gaps in the operating band when the system is configured to omit specific frequencies. An analysis of these effects is discussed and our current solution is presented. Future prospects for the SFR are also discussed, including data collection campaigns at the Army's Adelphi Laboratory Center and the Countermine Test Site.
Woo, J; Wolfgang, S; Batista, H
2008-03-01
Americans benefit from one of the safest drug supplies and one of the highest standards of consumer protection in the world. Over the past decade, though, a general trend toward globalization of the supply chains for finished pharmaceutical products and active pharmaceutical ingredients has created new challenges for the Food and Drug Administration (FDA) in ensuring the safety and quality of the drug supply. Explosive growth in pharmaceutical manufacturing for the US market is particularly evident in the developing regions of Asia. Manufacturing sites in China and India now comprise approximately 40% of all FDA-registered foreign sites, having increased from 30% in 2002. (In 2001, when legislation first went into effect requiring registration of all foreign drug manufacturing sites, 140 registered sites in China listed 797 drug items for potential importation; as of 1 October 2007, that number had grown to 815 registered sites and well over 3,000 listed items.) In total in 2006, the United States received >145,000 line entries of imported drug products from >160 countries, up from only 1,300 line entries in 2000. FDA regulatory oversight resources (e.g., those allocated to inspection and testing of imports) are being challenged to keep up with the explosive growth of imported drugs. (In 2006, the FDA performed inspections at 212 foreign drug firms. This number has remained relatively consistent over the past 6 years, starting at 249 in 2001 and ranging from 190 to 260 on an annual basis.)
National Emission Standards for Hazardous Air Pollutants Calendar Year 2001
DOE Office of Scientific and Technical Information (OSTI.GOV)
Y. E. Townsend
2002-06-01
The Nevada Test Site (NTS) is operated by the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Operations Office (NNSA/NV) as the site for nuclear weapons testing, now limited to readiness activities, experiments in support of the national Stockpile Stewardship Program, and the activities listed below. Located in Nye County, Nevada, the site's southeast corner is about 88 km (55 mi) northwest of the major population center, Las Vegas, Nevada. The NTS covers about 3,561 km2 (1,375 mi2), an area larger than Rhode Island. Its size is 46 to 56 km (28 to 35 mi) east to westmore » and from 64 to 88 km (40 to 55 mi) north to south. The NTS is surrounded, except on the south side, by public exclusion areas (Nellis Air Force Range [NAFR]) that provide another 24 to 104 km (15 to 65 mi) between the NTS and public lands (Figure 1.0). The NTS is characterized by desert valley and Great Basin mountain topography, with a climate, flora, and fauna typical of the southwest deserts. Population density within 150 km (93 mi) of the NTS is only about 0.2 persons per square kilometer, excluding the Las Vegas area. Restricted access, low population density in the surrounding area, and extended wind transport times are advantageous factors for the activities conducted at the NTS. Surface waters are scarce on the NTS, and slow-moving groundwater is present hundreds to thousands of feet below the land surface. The sources of radionuclides include current and previous activities conducted on the NTS (Figure 2.0). The NTS was the primary location for testing of nuclear explosives in the Continental U.S. between 1951 and 1992. Historical testing above or at ground surface has included (1) atmospheric testing in the 1950s and early 1960s, (2) earth-cratering experiments, and (3) open-air nuclear reactor and rocket engine testing. Since the mid-1950s, testing of nuclear explosive devices has occurred underground in drilled vertical holes or in mined tunnels (DOE 1996a). No such tests have been conducted since September 23, 1992 (DOE 2000). Limited non-nuclear testing includes spills of hazardous materials at the Hazardous Materials Spill Center, private technology development, aerospace and demilitarization activities, and site remediating activities. Processing of radioactive materials is limited to laboratory analyses, and handling is restricted to transport, storage, and assembly of nuclear explosive devices and operation of radioactive waste management sites (RWMSs) for low-level radioactive and mixed waste (DOE 1996a). Monitoring and evaluation of the various activities conducted onsite indicate that the potential sources of offsite radiation exposure in CY 2001 were releases from (1) evaporation of tritiated water (HTO) from containment ponds that receive drainage water from E Tunnel in Area 12 and from discharges of two wells (Well U-3cn PS No. 2 and Well ER-20-5 No.3) into lined ponds, (2) onsite radio analytical laboratories, (3) the Area 5 RWMS (RWMS-5) facility, and (4) diffuse sources of tritium and re- suspension of plutonium and americium. The following sections present a general description of the present sources on the NTS and at the North Las Vegas Facility.« less
Identifying isotropic events using a regional moment tensor inversion
Ford, Sean R.; Dreger, Douglas S.; Walter, William R.
2009-01-17
We calculate the deviatoric and isotropic source components for 17 explosions at the Nevada Test Site, as well as 12 earthquakes and 3 collapses in the surrounding region of the western United States, using a regional time domain full waveform inversion for the complete moment tensor. The events separate into specific populations according to their deviation from a pure double-couple and ratio of isotropic to deviatoric energy. The separation allows for anomalous event identification and discrimination between explosions, earthquakes, and collapses. Confidence regions of the model parameters are estimated from the data misfit by assuming normally distributed parameter values. Wemore » investigate the sensitivity of the resolved parameters of an explosion to imperfect Earth models, inaccurate event depths, and data with low signal-to-noise ratio (SNR) assuming a reasonable azimuthal distribution of stations. In the band of interest (0.02–0.10 Hz) the source-type calculated from complete moment tensor inversion is insensitive to velocity model perturbations that cause less than a half-cycle shift (<5 s) in arrival time error if shifting of the waveforms is allowed. The explosion source-type is insensitive to an incorrect depth assumption (for a true depth of 1 km), and the goodness of fit of the inversion result cannot be used to resolve the true depth of the explosion. Noise degrades the explosive character of the result, and a good fit and accurate result are obtained when the signal-to-noise ratio is greater than 5. We assess the depth and frequency dependence upon the resolved explosive moment. As the depth decreases from 1 km to 200 m, the isotropic moment is no longer accurately resolved and is in error between 50 and 200%. Furthermore, even at the most shallow depth the resultant moment tensor is dominated by the explosive component when the data have a good SNR.« less
Code of Federal Regulations, 2012 CFR
2012-04-01
... or modified explosive materials; (2) Training in explosives detection or development or testing of explosives detection equipment; or (3) Forensic science purposes; or (b) Was plastic explosive that, by April... 555.182 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES...
Code of Federal Regulations, 2011 CFR
2011-04-01
... or modified explosive materials; (2) Training in explosives detection or development or testing of explosives detection equipment; or (3) Forensic science purposes; or (b) Was plastic explosive that, by April... 555.182 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES...
Explosives Safety Requirements Manual
DOT National Transportation Integrated Search
1996-03-29
This Manual describes the Department of Energy's (DOE's) explosives safety requirements applicable to operations involving the development, testing, handling, and processing of explosives or assemblies containing explosives. It is intended to reflect...
Explosion probability of unexploded ordnance: expert beliefs.
MacDonald, Jacqueline Anne; Small, Mitchell J; Morgan, M G
2008-08-01
This article reports on a study to quantify expert beliefs about the explosion probability of unexploded ordnance (UXO). Some 1,976 sites at closed military bases in the United States are contaminated with UXO and are slated for cleanup, at an estimated cost of $15-140 billion. Because no available technology can guarantee 100% removal of UXO, information about explosion probability is needed to assess the residual risks of civilian reuse of closed military bases and to make decisions about how much to invest in cleanup. This study elicited probability distributions for the chance of UXO explosion from 25 experts in explosive ordnance disposal, all of whom have had field experience in UXO identification and deactivation. The study considered six different scenarios: three different types of UXO handled in two different ways (one involving children and the other involving construction workers). We also asked the experts to rank by sensitivity to explosion 20 different kinds of UXO found at a case study site at Fort Ord, California. We found that the experts do not agree about the probability of UXO explosion, with significant differences among experts in their mean estimates of explosion probabilities and in the amount of uncertainty that they express in their estimates. In three of the six scenarios, the divergence was so great that the average of all the expert probability distributions was statistically indistinguishable from a uniform (0, 1) distribution-suggesting that the sum of expert opinion provides no information at all about the explosion risk. The experts' opinions on the relative sensitivity to explosion of the 20 UXO items also diverged. The average correlation between rankings of any pair of experts was 0.41, which, statistically, is barely significant (p= 0.049) at the 95% confidence level. Thus, one expert's rankings provide little predictive information about another's rankings. The lack of consensus among experts suggests that empirical studies are needed to better understand the explosion risks of UXO.
Prediction of the explosion effect of aluminized explosives
NASA Astrophysics Data System (ADS)
Zhang, Qi; Xiang, Cong; Liang, HuiMin
2013-05-01
We present an approach to predict the explosion load for aluminized explosives using a numerical calculation. A code to calculate the species of detonation products of high energy ingredients and those of the secondary reaction of aluminum and the detonation products, velocity of detonation, pressure, temperature and JWL parameters of aluminized explosives has been developed in this study. Through numerical calculations carried out with this code, the predicted JWL parameters for aluminized explosives have been compared with those measured by the cylinder test. The predicted JWL parameters with this code agree with those measured by the cylinder test. Furthermore, the load of explosion for the aluminized explosive was calculated using the numerical simulation by using the JWL equation of state. The loads of explosion for the aluminized explosive obtained using the predicted JWL parameters have been compared with those using the measured JWL parameters. Both of them are almost the same. The numerical results using the predicted JWL parameters show that the explosion air shock wave is the strongest when the mass fraction of aluminum powder in the explosive mixtures is 30%. This result agrees with the empirical data.
Long-term ecological effects of exposure to uranium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, W.C.; Miera, F.R. Jr.
1976-03-01
The consequences of releasing natural and depleted uranium to terrestrial ecosystems during development and testing of depleted uranium munitions were investigated. At Eglin Air Force Base, Florida, soil at various distances from armor plate target butts struck by depleted uranium penetrators was sampled. The upper 5 cm of soil at the target bases contained an average of 800 ppM of depleted uranium, about 30 times as much as soil at 5- to 10-cm depth, indicating some vertical movement of depleted uranium. Samples collected beyond about 20 m from the targets showed near-background natural uranium levels, about 1.3 +- 0.3 ..mu..g/gmore » or ppM. Two explosives-testing areas at the Los Alamos Scientific Laboratory (LASL) were selected because of their use history. E-F Site soil averaged 2400 ppM of uranium in the upper 5 cm and 1600 ppM at 5-10 cm. Lower Slobovia Site soil from two subplots averaged about 2.5 and 0.6 percent of the E-F Site concentrations. Important uranium concentration differences with depth and distance from detonation points were ascribed to the different explosive tests conducted in each area. E-F Site vegetation samples contained about 320 ppM of uranium in November 1974 and about 125 ppM in June 1975. Small mammals trapped in the study areas in November contained a maximum of 210 ppM of uranium in the gastrointestinal tract contents, 24 ppM in the pelt, and 4 ppM in the remaining carcass. In June, maximum concentrations were 110, 50, and 2 ppM in similar samples and 6 ppM in lungs. These data emphasized the importance of resuspension of respirable particles in the upper few millimeters of soil as a contamination mechanism for several components of the LASL ecosystem.« less
Predicting Lg Coda Using Synthetic Seismograms and Media With Stochastic Heterogeneity
NASA Astrophysics Data System (ADS)
Tibuleac, I. M.; Stroujkova, A.; Bonner, J. L.; Mayeda, K.
2005-12-01
Recent examinations of the characteristics of coda-derived Sn and Lg spectra for yield estimation have shown that the spectral peak of Nevada Test Site (NTS) explosion spectra is depth-of-burial dependent, and that this peak is shifted to higher frequencies for Lop Nor explosions at the same depths. To confidently use coda-based yield formulas, we need to understand and predict coda spectral shape variations with depth, source media, velocity structure, topography, and geological heterogeneity. We present results of a coda modeling study to predict Lg coda. During the initial stages of this research, we have acquired and parameterized a deterministic 6 deg. x 6 deg. velocity and attenuation model centered on the Nevada Test Site. Near-source data are used to constrain density and attenuation profiles for the upper five km. The upper crust velocity profiles are quilted into a background velocity profile at depths greater than five km. The model is parameterized for use in a modified version of the Generalized Fourier Method in two dimensions (GFM2D). We modify this model to include stochastic heterogeneities of varying correlation lengths within the crust. Correlation length, Hurst number and fractional velocity perturbation of the heterogeneities are used to construct different realizations of the random media. We use nuclear explosion and earthquake cluster waveform analysis, as well as well log and geological information to constrain the stochastic parameters for a path between the NTS and the seismic stations near Mina, Nevada. Using multiple runs, we quantify the effects of variations in the stochastic parameters, of heterogeneity location in the crust and attenuation on coda amplitude and spectral characteristics. We calibrate these parameters by matching synthetic earthquake Lg coda envelopes to coda envelopes of local earthquakes with well-defined moments and mechanisms. We generate explosion synthetics for these calibrated deterministic and stochastic models. Secondary effects, including a compensated linear vector dipole source, are superposed on the synthetics in order to adequately characterize the Lg generation. We use this technique to characterize the effects of depth of burial on the coda spectral shapes.
NASA Astrophysics Data System (ADS)
Khairetdinov, Marat; Voskoboynikova, Gyulnara; Sedukhina, Galina
2016-04-01
This paper presents the results of experimental investigations of an original ecologically safe approach, proposed by the authors, to assessment of the geoecological risk from powerful mass explosions for the social and natural environment. In this approach, seismic vibrators are used as sources imitating explosions but having, in contrast to them, a much smaller power. Such sources can simultaneously excite in the medium seismic and acoustic (vibro-seismo-acoustic) oscillations with precision power and frequency-time characteristics. A comparative analysis of seismic and acoustic wave levels allows us to conclude that the major ecologically dangerous effect of ground-based test site explosions is due to acoustic waves whose energy is an order of magnitude greater than that of seismic waves. Calculated azimuthal dependencies of the focusing effect of acoustic waves in the infralow frequency range at different wind velocities and "source-receiver" distances by vibrator CV-40 were obtained . It was found that meteorological conditions have a greater influence on acoustic wave focusing in experiments that according to theoretical results. The effects of focusing of acoustic oscillations in space were revealed and estimated quantitatively. Specifically, it was proved that even at a weak wind of 2-4 m/s the ratio between the maximal and minimal acoustic wave levels depending on the azimuthal direction can reach 50. This can be a reason for great ecological hazard of technogenic explosions. The received results are new and original. The received results are new and original.
Detonation Initiation of Heterogeneous Melt-Cast High Explosives
NASA Astrophysics Data System (ADS)
Chuzeville, Vincent; Baudin, Gerard; Lefrancois, Alexandre; Boulanger, Remi; Catoire, Laurent
2015-06-01
The melt-cast explosives' shock initiation mechanisms are less investigated than pressed and cast-cured ones. If the existence of hot-spots is widely recognized, their formation mechanism is not yet established. We study here two melt-cast explosives, NTO-TNT 60:40 and RDX-TNT 60:40 in order to establish a relation between the microstructure and the reaction rate using a two-phase model based on a ZND approach. Such a model requires the reaction rate, the equations of state of the unreacted phase and of the detonation products and an interaction model between the two phases to describe the reaction zone thermodynamics. The reaction rate law can be written in a factorized form including the number of initiation sites, the explosive's deflagration velocity around hot spots and a function depending on gas volume fraction produced by the deflagration front propagation. The deflagration velocity mainly depends on pressure and is determined from pop-plot tests using the hypothesis of the single curve build-up. This hypothesis has been verified for our two melt-cast explosives. The function depending on gas volume fraction is deduced from microstructural observations and from an analogy with the solid nucleation and growth theory. It has been established for deflagration fronts growing from grain's surface and a given initial grain size distribution. The model requires only a few parameters, calibrated thanks to an inversion method. A good agreement is obtained between experiments and numerical simulations.
Effectiveness of quality-control aids in verifying K-9-team explosive detection performance
NASA Astrophysics Data System (ADS)
Hallowell, Susan F.; Fischer, Douglas S.; Brasher, Jeffrey D.; Malone, Robert L.; Gresham, Garold L.; Rae, Cathy
1997-02-01
The Federal Aviation Administration (FAA) and supporting agencies conducted a developmental test and evaluation (DTE) to determine if quality control aids (QCAs) could be developed that would provide effective surrogates to actual explosives used for training and testing K-9 explosives detection teams. Non-detonable surrogates are required to alleviate logistics and contamination issues with explosives used sa training aids. Comparative K-9 team detection performance for explosives used as training aids and QCAs configurations of each explosive type were evaluated to determine the optimal configuration for the QCA configuration of each explosive type were evaluated to determine the optimal configuration for the QCAs. The configurations were a paper patch impregnated with a solution of the explosive, a cloth pouch filed with small amounts of solid explosive, and the non-hazardous explosive for security training and testing material. The DTE was conducted at Lackland Air Force Base in San Antonio, Texas, where the K-9 teams undergo initial training. Six FAA certified operational teams participated. All explosives and QCAs were presented to the K-9 teams using a 10 scent box protocol. The results show that K-9 team as are more sensitive to explosives than the candidate QCAs. More importantly, it was discovered that the explosives at Lackland AFB are cross-contaminated, meaning that explosives possessed volatile artifacts from other explosives. There are two potential hypotheses explaining why the dogs did not detect the QCAs. First, the cross-contamination of Lackland training explosives may mean that K-9 teams are only trained to detect the explosives with the most volatile chemical signatures. Alternatively, the QCA configurations may have been below the trained detection threshold of the K-9s. It is recommended that K-9 teams train on uncontaminated odors from properly designed QCAs to ensure that dogs respond to the appropriate explosive components, and not some other constituent or contaminant.
Validity and Reliability of a Medicine Ball Explosive Power Test.
ERIC Educational Resources Information Center
Stockbrugger, Barry A.; Haennel, Robert G.
2001-01-01
Evaluated the validity and reliability of a medicine ball throw test to evaluate explosive power. Data on competitive sand volleyball players who performed a medicine ball throw and a standard countermovement jump indicated that the medicine ball throw test was a valid and reliable way to assess explosive power for an analogous total-body movement…
Measurements of Argon-39 at the U20az underground nuclear explosion site.
McIntyre, J I; Aalseth, C E; Alexander, T R; Back, H O; Bellgraph, B J; Bowyer, T W; Chipman, V; Cooper, M W; Day, A R; Drellack, S; Foxe, M P; Fritz, B G; Hayes, J C; Humble, P; Keillor, M E; Kirkham, R R; Krogstad, E J; Lowrey, J D; Mace, E K; Mayer, M F; Milbrath, B D; Misner, A; Morley, S M; Panisko, M E; Olsen, K B; Ripplinger, M D; Seifert, A; Suarez, R
2017-11-01
Pacific Northwest National Laboratory reports on the detection of 39 Ar at the location of an underground nuclear explosion on the Nevada Nuclear Security Site. The presence of 39 Ar was not anticipated at the outset of the experimental campaign but results from this work demonstrated that it is present, along with 37 Ar and 85 Kr in the subsurface at the site of an underground nuclear explosion. Our analysis showed that by using state-of-the-art technology optimized for radioargon measurements, it was difficult to distinguish 39 Ar from the fission product 85 Kr. Proportional counters are currently used for high-sensitivity measurement of 37 Ar and 39 Ar. Physical and chemical separation processes are used to separate argon from air or soil gas, yielding pure argon with contaminant gases reduced to the parts-per-million level or below. However, even with purification at these levels, the beta decay signature of 85 Kr can be mistaken for that of 39 Ar, and the presence of either isotope increases the measurement background level for the measurement of 37 Ar. Measured values for the 39 Ar measured at the site ranged from 36,000 milli- Becquerel/standard-cubic-meter-of-air (mBq/SCM) for shallow bore holes to 997,000 mBq/SCM from the rubble chimney from the underground nuclear explosion. Published by Elsevier Ltd.
Hashimoto, Yuichiro
2017-01-01
The development of a robust ionization source using the counter-flow APCI, miniature mass spectrometer, and an automated sampling system for detecting explosives are described. These development efforts using mass spectrometry were made in order to improve the efficiencies of on-site detection in areas such as security, environmental, and industrial applications. A development team, including the author, has struggled for nearly 20 years to enhance the robustness and reduce the size of mass spectrometers to meet the requirements needed for on-site applications. This article focuses on the recent results related to the detection of explosive materials where automated particle sampling using a cyclone concentrator permitted the inspection time to be successfully reduced to 3 s. PMID:28337396
LeBlanc, Denis R.
2003-01-01
Diffusion samplers and temporary drive points were used to test for ordnance-related compounds in ground water discharging to Snake Pond near Camp Edwards at the Massachusetts Military Reservation, Cape Cod, MA. The contamination resulted from artillery use and weapons testing at various ranges upgradient of the pond.The diffusion samplers were constructed with a high-grade cellulose membrane that allowed diffusion of explosive compounds, such as RDX (Hexahydro-1,3,5-trinitro-1,3,5-triazine) and HMX (Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine), into deionized water inside the samplers. Laboratory tests confirmed that the cellulose membrane was permeable to RDX and HMX. One transect of 22 diffusion samplers was installed and retrieved in August-September 2001, and 12 transects with a total of 108 samplers were installed and retrieved in September-October 2001. The diffusion samplers were buried about 0.5 feet into the pond-bottom sediments by scuba divers and allowed to equilibrate with the ground water beneath the pond bottom for 13 to 27 days before retrieval. Water samples were collected from temporary well points driven about 2-4 feet into the pond bottom at 21 sites in December 2001 and March 2002 for analysis of explosives and perchlorate to confirm the diffusion-sampling results. The water samples from the diffusion samplers exhibited numerous chromatographic peaks, but evaluation of the photo-diode-array spectra indicated that most of the peaks did not represent the target compounds. The peaks probably are associated with natural organic compounds present in the soft, organically enriched pond-bottom sediments. The presence of four explosive compounds at five widely spaced sites was confirmed by the photo-diode-array analysis, but the compounds are not generally found in contaminated ground water near the ranges. No explosives were detected in water samples obtained from the drive points. Perchlorate was detected at less than 1 microgram per liter in two drive-point samples collected at the same site on two dates about 3 months apart. The source of the perchlorate in the samples could not be related directly to other contamination from Camp Edwards with the available information. The results from the diffusion and drive-point sampling do not indicate an area of ground-water discharge with concentrations of the ordnance-related compounds that are sufficiently elevated to be detected by these sampling methods. The diffusion and drive-point sampling data cannot be interpreted further without additional information concerning the pattern of ground-water flow at Snake Pond and the distributions of RDX, HMX, and perchlorate in ground water in the aquifer near the pond.
Threshold Studies on TNT, Composition B, and C-4 Explosives Using the Steven Impact Test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vandersall, K S; Switzer, L L; Garcia, F
2005-09-26
Steven Impact Tests were performed at low velocity on the explosives TNT, Comp B, and C-4 in attempts to obtain a threshold for reaction. A 76 mm helium driven gas gun was used to accelerate the Steven Test projectiles up to approximately 200 m/s in attempts to react (ignite) the explosive samples. Blast overpressure gauges, acoustic microphones, standard video and high-speed photography were used to characterize the level of any high explosive reaction violence. No bulk reactions were observed in the TNT, Composition B, or C-4 explosive samples impacted up to velocities in the range of 190-200 m/s. This workmore » will outline the experimental details and discuss the lack of reaction when compared to the reaction thresholds of other common explosives.« less
Sensitivity to friction for primary explosives.
Matyáš, Robert; Šelešovský, Jakub; Musil, Tomáš
2012-04-30
The sensitivity to friction for a selection of primary explosives has been studied using a small BAM friction apparatus. The probit analysis was used for the construction of a sensitivity curve for each primary explosive tested. Two groups of primary explosives were chosen for measurement (a) the most commonly used industrially produced primary explosives (e.g. lead azide, tetrazene, dinol, lead styphnate) and (b) the most produced improvised primary explosives (e.g. triacetone triperoxide, hexamethylenetriperoxide diamine, mercury fulminate, acetylides of heavy metals). A knowledge of friction sensitivity is very important for determining manipulation safety for primary explosives. All the primary explosives tested were carefully characterised (synthesis procedure, shape and size of crystals). The sensitivity curves obtained represent a unique set of data, which cannot be found anywhere else in the available literature. Copyright © 2012 Elsevier B.V. All rights reserved.
Long-Term Consequences of Radioactive Fallout From Conflicts Involving Nuclear Explosions
NASA Astrophysics Data System (ADS)
Simon, S. L.; Bouville, A.
2006-12-01
This presentation will summarize past exposures of the public to radioactive fallout from nuclear testing and extrapolate to the possible fallout-related consequences from detonation of multiple warheads that might accompany international conflicts. Long-term consequences could be of three distinct types: (1) the abandonment of living areas that might be heavily contaminated; (2) the necessity to curtail use of particular agricultural products and foods, and (3) life-shortening due to increased rates of cancer and possibly some non-cancer diseases among the exposed populations. While the actual health and economic impact on the surviving public after such conflicts could vary tremendously depending on the number and sizes of explosions (fission yields), height of detonations, and the public's proximity to explosion sites, it is clear that multiple detonations would disperse radioactive products over large geographic areas. Our understanding of radioactive fallout is based on studies carried out for more than five decades on weapons testing fallout that originated from sites worldwide including Nevada, the Soviet Union, four locations in the Pacific, and elsewhere. Those studies have led to an understanding of the composition of radioactive fallout, of its radioactive qualities, and of its capacity to contaminate ground and agricultural products, as well as dwellings and workplaces located from a few km to tens of thousands of km from the explosion site. Though the most severe individual health consequences from exposure to fallout would most likely develop relatively close to the detonation sites (within a few hundred km), wide geographic distribution of fallout, well beyond the borders of the nations involved in the conflict, would affect much larger populations and would likely cause elevated cancer rates and cancer-related deaths among them for many decades following. While acute radiation symptoms (and even death) can result from very high short-term exposures (on the order of a few thousand times the annual dose from natural background radiation), the increase in the long-term rate of cancer development as a result of lower, chronic exposures due to the contamination of the habitat and of the dietary foodstuffs, will pose very difficult scientific, economic, political, and societal problems. Most areas close to sites of detonation (i.e., within about 1000 km) would be primarily impacted by radionuclides with shorter half-lives (i.e., less than 2 months), e.g., Zirconium-95, Niobium-95, Iodine-131, Iodine-132, Iodine-133, Barium-140, Lanthanum-140, and Strontium-89. Conversely, most areas at further distances would be primarily impacted by radionuclides with longer half-lives, e.g., Strontium-90 and Cesium-137 (each with half-lives of 30 years). Contaminating radionuclides with very long half-lives, e.g., Plutonium-239, which has a half-life of 24,000 years, will almost never limit habitation despite widespread fear of them.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burnett, Jonathan L.; Miley, Harry S.; Milbrath, Brian D.
In 2014 the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) undertook the Integrated Field Exercise (IFE) in Jordan. The exercise consisted of a simulated 0.5 – 2 kT underground explosion triggering an On-site Inspection (OSI) to search for evidence of a Treaty violation. This research evaluates two of the OSI techniques, including laboratory-based gamma-spectrometry of soil samples and in situ gamma-spectrometry for 17 particulate radionuclides indicative of nuclear weapon tests. The detection sensitivity is evaluated using real IFE and model data. It indicates that higher sensitivity laboratory measurements are the optimum technique during the IFE and OSI timeframes.
Ramzaev, V; Repin, V; Medvedev, A; Khramtsov, E; Timofeeva, M; Yakovlev, V
2011-07-01
In the summer of 2009, we performed a field survey of the "Taiga" peaceful underground nuclear explosion site, the Perm region, Russia (61.30° N, 56.60° E). The explosion was carried out by the USSR in 1971. This paper provides an extended summary of the available published data on the "Taiga" experiment. A detailed description of the site is illustrated by original aerial and ground-level photos. A large artificial lake (700 m long and 350 m wide) currently occupies the central area of the experimental site. The ground lip surrounding the lake is covered by a newly grown mixed forest. In situ measurements, performed in August 2009, revealed elevated levels of the γ-ray dose rate in air on the banks of the lake "Taiga". Two hot spots were detected on the eastern bank of the lake. The excess of the γ-ray radiation is attributable to the man-made radionuclides (60)Co and (137)Cs. The current external γ-ray dose rate to a human from the contaminations associated with the "Taiga" experiment was between 9 and 70 μSv per week. Periodic monitoring the site is recommended. 2011 Elsevier Ltd. All rights reserved.
Evaluating of NASA-Langley Research Center explosion seam welding
NASA Technical Reports Server (NTRS)
Otto, H. E.; Wittman, R.
1977-01-01
An explosion bonding technique to meet current fabrication requirements was demonstrated. A test program was conducted on explosion bonded joints, compared to fusion joints in 6061-T6 aluminum. The comparison was made in required fixtures, non-destructive testing, static strength and fatigue strength.
Field demonstration of on-site analytical methods for TNT and RDX in ground water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craig, H.; Ferguson, G.; Markos, A.
1996-12-31
A field demonstration was conducted to assess the performance of eight commercially-available and emerging colorimetric, immunoassay, and biosensor on-site analytical methods for explosives 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in ground water and leachate at the Umatilla Army Depot Activity, Hermiston, Oregon and US Naval Submarine Base, Bangor, Washington, Superfund sites. Ground water samples were analyzed by each of the on-site methods and results compared to laboratory analysis using high performance liquid chromatography (HPLC) with EPA SW-846 Method 8330. The commercial methods evaluated include the EnSys, Inc., TNT and RDX colorimetric test kits (EPA SW-846 Methods 8515 and 8510) with amore » solid phase extraction (SPE) step, the DTECH/EM Science TNT and RDX immunoassay test kits (EPA SW-846 Methods 4050 and 4051), and the Ohmicron TNT immunoassay test kit. The emerging methods tested include the antibody-based Naval Research Laboratory (NRL) Continuous Flow Immunosensor (CFI) for TNT and RDX, and the Fiber Optic Biosensor (FOB) for TNT. Accuracy of the on-site methods were evaluated using linear regression analysis and relative percent difference (RPD) comparison criteria. Over the range of conditions tested, the colorimetric methods for TNT and RDX showed the highest accuracy of the emerging methods for TNT and RDX. The colorimetric method was selected for routine ground water monitoring at the Umatilla site, and further field testing on the NRL CFI and FOB biosensors will continue at both Superfund sites.« less
Detection of vehicle-based improvised explosives using ultra-trace detection equipment
NASA Astrophysics Data System (ADS)
Fisher, Mark; Sikes, John; Prather, Mark; Wichert, Clint
2005-05-01
Vehicle-borne improvised explosive devices (VBIEDs) have become the weapon of choice for insurgents in Iraq. At the same time, these devices are becoming increasingly sophisticated and effective. VBIEDs can be difficult to detect during visual inspection of vehicles. This is especially true when explosives have been hidden behind a vehicle"s panels, inside seat cushions, under floorboards, or behind cargo. Even though the explosive may not be visible, vapors of explosive emanating from the device are often present in the vehicle, but the current generation of trace detection equipment has not been sensitive enough to detect these low concentrations of vapor. This paper presents initial test results using the Nomadics Fido sensor for detection of VBIEDs. The sensor is a small, explosives detector with unprecedented levels of sensitivity for detection of nitroaromatic explosives. Fido utilizes fluorescence quenching of novel polymer materials to detect traces of explosive vapor emanating from targets containing explosives. These materials, developed by collaborators at the Massachusetts Institute of Technology (MIT), amplify the quenching response that occurs when molecules of explosive bind to films of the polymer. These materials have enabled development of sensors with performance approaching that of canines trained to detect explosives. The ability of the sensor to detect explosives in vehicles and on persons who have recently been in close proximity to explosives has recently been demonstrated. In these tests, simulated targets were quickly and easily detected using a Fido sensor in conjunction with both direct vapor and swipe sampling methods. The results of these tests suggest that chemical vapor sensing has utility as a means of screening vehicles for explosives at checkpoints and on patrols.
Evseeva, T I; Geras'kin, S A; Maĭstrenko, T A; Belykh, E S
2011-01-01
Degree of the soil cover degradation at the "Balapan" and "Experimental field" test sites was assessed based on Allium-test of soil toxicity results and international guidelines on radioactive restriction of solid materials (IAEA, 2004) and environment (Smith, 2005). Soil cover degradation maps of large-scale (1 : 25000) were made. The main part of the area mapped belongs to high-contaminated toxic degraded soil. A relationship between the soil toxicity and the total radionuclide activity concentrations was found to be described by power functions. When the calculated value (equal to 413-415 Bq/kg of air dry soil) increases, the soil becomes toxic for plants. This value is 7.8 times higher than the maximal value for background territories (53 Bq/kg) surrounding SNTS. Russian sanitary and hygienic guidelines (Radiation safety norms, 2009; Sanitary regulations of radioactive waste management, 2003) underestimate the degree of soil radioactive contamination for plants.
Lotufo, Guilherme R; Biedenbach, James M; Sims, Jerre G; Chappell, Pornsawan; Stanley, Jacob K; Gust, Kurt A
2015-04-01
The manufacturing of explosives and their loading, assembling, and packing into munitions for use in testing on training sites or battlefields has resulted in contamination of terrestrial and aquatic sites that may pose risk to populations of sensitive species. The bioaccumulative potential of the conventional explosives 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and of the insensitive munitions (i.e., less shock sensitive) compound 2,4-dinitroanisole (DNAN) were assessed using the Northern leopard frog, Rana pipiens. Trinitrotoluene entering the organism was readily biotransformed to aminodinitrotoluenes, whereas no transformation products were measured for RDX or DNAN. Uptake clearance rates were relatively slow and similar among compounds (1.32-2.19 L kg(-1) h(-1) ). Upon transfer to uncontaminated water, elimination rate was very fast, resulting in the prediction of fast time to approach steady state (5 h or less) and short elimination half-lives (1.2 h or less). A preliminary bioconcentration factor of 0.25 L kg(-1) was determined for the insensitive munitions compound 3-nitro-1,2,4-trizole-5-one (NTO) indicating negligible bioaccumulative potential. Because of the rapid elimination rate for explosives, tadpoles inhabiting contaminated areas are expected to experience harmful effects only if under constant exposure conditions given that body burdens can rapidly depurate preventing tissue concentrations from persisting at levels that may cause detrimental biological effects. © 2014 SETAC.
6 CFR 27.225 - Site security plans.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) Identify and describe how security measures selected by the facility will address the applicable risk-based... explosive devices, water-borne explosive devices, ground assault, or other modes or potential modes identified by the Department; (3) Identify and describe how security measures selected and utilized by the...
15 CFR 265.39 - Weapons and explosives.
Code of Federal Regulations, 2010 CFR
2010-01-01
... INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE REGULATIONS GOVERNING TRAFFIC AND CONDUCT REGULATIONS GOVERNING TRAFFIC AND CONDUCT ON THE GROUNDS OF THE NATIONAL INSTITUTE OF STANDARDS & TECHNOLOGY... explosives. Except in connection with the conduct of official business on the site, no person other than...
NASA Astrophysics Data System (ADS)
Hsu, P. C.; Hust, G.; Zhang, M. X.; Lorenz, T. K.; Reynolds, J. G.; Fried, L.; Springer, H. K.; Maienschein, J. L.
2014-05-01
Incidents caused by fire and combat operations can heat energetic materials that may lead to thermal explosion and result in structural damage and casualty. Some explosives may thermally explode at fairly low temperatures (< 100 °C) and the violence from thermal explosion may cause significant damage. Thus it is important to understand the response of energetic materials to thermal insults. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory has been used for decades to measure times to explosion, threshold thermal explosion temperature, and determine kinetic parameters of energetic materials. Samples of different configurations (pressed part, powder, paste, and liquid) can be tested in the system. The ODTX testing can also provide useful data for assessing the thermal explosion violence of energetic materials. Recent ODTX experimental data are reported in the paper.
One-Dimensional Time to Explosion (Thermal Sensitivity) of ANPZ
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, P.; Hust, G.; McClelland, M.
Incidents caused by fire and combat operations can heat energetic materials that may lead to thermal explosion and result in structural damage and casualty. Some explosives may thermally explode at fairly low temperatures (< 100 C) and the violence from thermal explosion may cause a significant damage. Thus it is important to understand the response of energetic materials to thermal insults. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory has been used for decades to measure times to explosion, threshold thermal explosion temperature, and determine kinetic parameters of energetic materials. Samples of different configurationsmore » (pressed part, powder, paste, and liquid) can be tested in the system. The ODTX testing can also provide useful data for assessing the thermal explosion violence of energetic materials. This report summarizes the recent ODTX experimental data and modeling results for 2,6-diamino-3,5-dintropyrazine (ANPZ).« less
1976-09-21
Ranges Environmental Effects of Explosions 20. ABSTRACT (Continue on reverse side It necessary and Identify by block number; The experiment...CHESAPEAKE BAY TESTS The Navy is required to consider the possible adverse environmental effects of its research operations. When such operations involve...the detonation of underwater explosions, one of the environmental factors to be evaluated is the effect of these explosions on nearby marine life
NASA Astrophysics Data System (ADS)
Brinovar, Iztok; Srpčič, Gregor; Seme, Sebastijan; Štumberger, Bojan; Hadžiselimović, Miralem
2017-07-01
This article deals with the classification of explosion-proof protected induction motors, which are used in hazardous areas, into adequate temperature and efficiency class. Hazardous areas are defined as locations with a potentially explosive atmosphere where explosion may occur due to present of flammable gasses, liquids or combustible dusts (industrial plants, mines, etc.). Electric motors and electrical equipment used in such locations must be specially designed and tested to prevent electrical initiation of explosion due to high surface temperature and arcing contacts. This article presents the basic tests of three-phase explosion-proof protected induction motor with special emphasis on the measuring system and temperature rise test. All the measurements were performed with high-accuracy instrumentation and accessory equipment and carried out at the Institute of energy technology in the Electric machines and drives laboratory and Applied electrical engineering laboratory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallegos, Gretchen M.; Terusaki, Stan H.
2013-12-01
An ecological risk assessment is required as part of the Resource Recovery and Conservation Act (RCRA) permit renewal process for Miscellaneous Units subject to 22 CCR 66270.23. This risk assessment is prepared in support of the RCRA permit renewal for the Explosives Waste Treatment Facility (EWTF) at Site 300 of the Lawrence Livermore National Laboratory (LLNL). LLNL collected soil samples and used the resulting data to produce a scoping-level ecological risk assessment pursuant to the Department of Toxic Substances Control, Guidance for Ecological Risk Assessment at Hazardous Waste Sites and Permitted Facilities, Part A: Overview, July 4, 1996. The scoping-levelmore » ecological risk assessment provides a framework to determine the potential interaction between ecological receptors and chemicals of concern from hazardous waste treatment operations in the area of EWTF. A scoping-level ecological risk assessment includes the step of conducting soil sampling in the area of the treatment units. The Sampling Plan in Support of the Human Health and Ecological Risk Assessment for the Operation of the Explosives Waste Treatment Facility at Site 300 of the Lawrence Livermore National Laboratory, (Terusaki, 2007), outlines the EWTF project-specific soil sampling requirements. Soil samples were obtained and analyzed for constituents from four chemical groups: furans, explosives, semi-volatiles and metals. Analytical results showed that furans, explosives and semi-volatiles were not detected; therefore, no further analysis was conducted. The soil samples did show the presence of metals. Soil samples analyzed for metals were compared to site-wide background levels, which had been developed for site -wide cleanup activities pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). Total metal concentrations from 28 discrete soil samples obtained in the EWTF area were all below CERCLA-developed background levels. Therefore, following DTSC 1996 guidance, the EWTF hazardous waste treatment units exit the ecological risk evaluation process upon completion of the requirements of a scoping-level assessment report. This summary report documents that the requirements of a scoping-level assessment have been met.« less
Eisentraeger, Adolf; Reifferscheid, Georg; Dardenne, Freddy; Blust, Ronny; Schofer, Andrea
2007-04-01
More than 100,000 tons of 2,4,6-trinitrotoluene were produced at the former ammunition site Werk Tanne in Clausthal-Zellerfeld, Germany. The production of explosives and consequent detonation in approximately 1944 by the Allies caused great pollution in this area. Four soil samples and three water samples were taken from this site and characterized by applying chemical-analytical methods and several bioassays. Ecotoxicological test systems, such as the algal growth inhibition assay with Desmodesmus subspicatus, and genotoxicity tests, such as the umu and NM2009 tests, were performed. Also applied were the Ames test, according to International Organization for Standardization 16240, and an Ames fluctuation test. The toxic mode of action was examined using bacterial gene profiling assays with a battery of Escherichia coli strains and with the human liver cell line hepG2 using the PIQOR Toxicology cDNA microarray. Additionally, the molecular mechanism of 2,4,6-trinitrotoluene in hepG2 cells was analyzed. The present assessment indicates a danger of pollutant leaching for the soil-groundwater path. A possible impact for human health is discussed, because the groundwater in this area serves as drinking water.
The Miniaturization and Reproducibilty of the Cylinder Expansion Test
2011-10-01
new miniaturized and the standard one-inch test has been performed using the liquid explosive PLX ( nitromethane sensitized with ethylene diamine). The...explosive PLX ( nitromethane sensitized with ethylene diamine). The resulting velocity and displacement profiles obtained from the streak records...performing a measurement systems analysis on both the half- and one-inch tests using the liquid explosive PLX ( nitromethane sensitized with 5% (by wt
The High Energy Lightning Simulator (HELS) Test Facility for Testing Explosive Items
1996-08-01
Center, Redstone Arsenal, AL Thomas E. Roy and David W. Bagwell AMTEC Corporation, Huntsville, AL ABSTRACT Details of the High Energy Lightning...simulated lightning testing of inerted missiles and inerted explosive items containing electrically initiated explosive trains is to determine the...penetrate the safety cages, which are electrically conductive and grounded, without loss of current. This transmission system consists of six large
Yield and Blast Analyses with a Unified Theory of Explosions
1982-08-01
and afterburning of PBXN 103. The ambient conditions are for the test site at Socorro, NM, altitude -- 5200 feet. The input mass was 1038 pounds...essentially the warhead, most of which is PBXN -103. This was the very first test of the code. The relative yield is plFj.ed as T (time). The TOA yield, .90...YO =YO*1.0 ’Relative yields from earlier runs or fits 52 ’ 1 G = 106 cal = 4pi/3*le6 kg m^2/m^3/sec^2 53 AB=.00 ’Afterburning fraction 56 YO = Y0*(I
1998-08-01
Biomarkers 39 Task Wet weight, g DNA analyses 84 Microbial lipid analyses 84 Radiorespirometry 160 Explosives analyses 20 Phytoremediation 1...Task Wet weight, g Explosives analyses 10 Particle size 70 DNA and lipid biomarkers 60 Phytoremediation 1 1 Geochemistry 132 | Other analyses 60...of numerical solution techniques. One parameter that controls the amount of leachate entering the unsaturated zone is the infiltration rate. The
Monitoring underwater explosions in the habitat of resident bottlenose dolphins.
dos Santos, Manuel E; Couchinho, Miguel N; Rita Luís, Ana; Gonçalves, Emanuel J
2010-12-01
Maintenance work on the harbor of Setúbal, in Portugal, required the removal of a 14-m deep rocky outcrop at the ship maneuver area, using about 35 kg of Gelamonite, a nitroglycerin-based high-explosive. This important harbor is located in the Sado estuary, a biologically rich environment and an important feeding area for a resident community of bottlenose dolphins. Using different safe range calculation models, a mitigation and monitoring plan was developed that minimized the risks of these underwater explosions for the dolphins. At our monitoring station, at 2 km from the demolition site, acoustic pressure levels in excess of 170 dB re 1 μPa (root-mean-square) were measured. Samples of dead fish collected at the site were indicative of shock trauma from the blasts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Lucia, Frank C. Jr.; Gottfried, Jennifer L.; Munson, Chase A.
2008-11-01
A technique being evaluated for standoff explosives detection is laser-induced breakdown spectroscopy (LIBS). LIBS is a real-time sensor technology that uses components that can be configured into a ruggedized standoff instrument. The U.S. Army Research Laboratory has been coupling standoff LIBS spectra with chemometrics for several years now in order to discriminate between explosives and nonexplosives. We have investigated the use of partial least squares discriminant analysis (PLS-DA) for explosives detection. We have extended our study of PLS-DA to more complex sample types, including binary mixtures, different types of explosives, and samples not included in the model. We demonstrate themore » importance of building the PLS-DA model by iteratively testing it against sample test sets. Independent test sets are used to test the robustness of the final model.« less
LX-04 VIOLENCE MEASUREMENTS- STEVEN TESTS IMPACTED BY PROJECTILES SHOT FROM A HOWITZER GUN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chidester, S K; Vandersall, K S; Switzer, L L
Characterization of the reaction violence of LX-04 explosive (85% HMX and 15% Viton A by weight) was obtained from Steven Impact Tests performed above the reaction initiation threshold. A 155 mm Howitzer propellant driven gas gun was used to accelerate the Steven Test projectiles in the range of approximately 170-300 m/s to react (ignite) the LX-04 explosive. Blast overpressure gauges, acoustic microphones, and high-speed photography characterized the level of high explosive reaction violence. A detonation in this velocity range was not observed and when comparing these results (and the Susan test results) with that of other HMX based explosives, LX-04more » has a more gradual reaction violence slope as the impact velocity increases. The high binder content (15%) of the LX-04 explosive is believed to be the key factor to the lower level of violence.« less
Source-Type Inversion of the September 03, 2017 DPRK Nuclear Test
NASA Astrophysics Data System (ADS)
Dreger, D. S.; Ichinose, G.; Wang, T.
2017-12-01
On September 3, 2017, the DPRK announced a nuclear test at their Punggye-ri site. This explosion registered a mb 6.3, and was well recorded by global and regional seismic networks. We apply the source-type inversion method (e.g. Ford et al., 2012; Nayak and Dreger, 2015), and the MDJ2 seismic velocity model (Ford et al., 2009) to invert low frequency (0.02 to 0.05 Hz) complete three-component waveforms, and first-motion polarities to map the goodness of fit in source-type space. We have used waveform data from the New China Digital Seismic Network (BJT, HIA, MDJ), Korean Seismic Network (TJN), and the Global Seismograph Network (INCN, MAJO). From this analysis, the event discriminates as an explosion. For a pure explosion model, we find a scalar seismic moment of 5.77e+16 Nm (Mw 5.1), however this model fails to fit the large Love waves registered on the transverse components. The best fitting complete solution finds a total moment of 8.90e+16 Nm (Mw 5.2) that is decomposed as 53% isotropic, 40% double-couple, and 7% CLVD, although the range of isotropic moment from the source-type analysis indicates that it could be as high as 60-80%. The isotropic moment in the source-type inversion is 4.75e16 Nm (Mw 5.05). Assuming elastic moduli from model MDJ2 the explosion cavity radius is approximately 51m, and the yield estimated using Denny and Johnson (1991) is 246kt. Approximately 8.5 minutes after the blast a second seismic event was registered, which is best characterized as a vertically closing horizontal crack, perhaps representing the partial collapse of the blast cavity, and/or a service tunnel. The total moment of the collapse is 3.34e+16 Nm (Mw 4.95). The volumetric moment of the collapse is 1.91e+16 Nm, approximately 1/3 to 1/2 of the explosive moment. German TerraSAR-X observations of deformation (Wang et al., 2017) reveal large radial outward motions consistent with expected deformation for an explosive source, but lack significant vertical motions above the shot point. Forward elastic half-space modeling of the static deformation field indicates that the combination of the explosion and collapse explains the observed deformation to first order. We will present these results as well as a two-step inversion of the explosion in an attempt to better resolve the nature of the non-isotropic radiation of the event.
Small-Scale Thermal Violence Cook Off Test
NASA Astrophysics Data System (ADS)
Cook, Malcolm; Curtis, John; Stennett, Christopher
2015-06-01
The Small-Scale thermal Violence Test (SSVT) is designed to quantify the violence (explosiveness) of test materials by means of observing the velocity history of a metal burst disk that forms one end of a strong thick-walled cylindrical test vehicle. A copper heating block is placed to the rear of, but in contact with, the sample and provides sealing. The difference in thermal conductivity between copper and steel is sufficient that thermal runaway is induced near to the explosive / copper interface in an unlagged test. A series of experiments has been made, in which explosive specimens were confined and heated to explosion. A high-accuracy velocity measurement system was used to record the motion of the bursting disk. These experiments have shown that the early-time motion of the bursting disk corresponds qualitatively to the onset of thermal explosion and growth of reaction within the explosive specimens. However, the velocity history traces are more complex than had been anticipated. In particular, unexplained shoulders were observed in the Phase-Doppler Velocimeter (PDV) data. Some preliminary modelling studies have been carried out in order to shed light on the complex shapes of the projectile velocity histories.
Analysis of xRAGE and flag high explosive burn models with PBX 9404 cylinder tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrier, Danielle; Andersen, Kyle Richard
High explosives are energetic materials that release their chemical energy in a short interval of time. They are able to generate extreme heat and pressure by a shock driven chemical decomposition reaction, which makes them valuable tools that must be understood. This study investigated the accuracy and performance of two Los Alamos National Laboratory hydrodynamic codes, which are used to determine the behavior of explosives within a variety of systems: xRAGE which utilizes an Eulerian mesh, and FLAG with utilizes a Lagrangian mesh. Various programmed and reactive burn models within both codes were tested using a copper cylinder expansion test.more » The test was based on a recent experimental setup which contained the plastic bonded explosive PBX 9404. Detonation velocity versus time curves for this explosive were obtained using Photon Doppler Velocimetry (PDV). The modeled results from each of the burn models tested were then compared to one another and to the experimental results. This study validate« less
NASA Astrophysics Data System (ADS)
Kaya, Yakup; Kahraman, Nizamettin; Durgutlu, Ahmet; Gülenç, Behçet
2017-08-01
Grade A ship-building steel-AISI 2304 duplex stainless steel composite plates were manufactured via explosive welding. The AISI 2304 plates were used to clad the Grade A plates. Optical microscopy studies were conducted on the joining interface for characterization of the manufactured composite plates. Notch impact, tensile-shear, microhardness, bending and twisting tests were carried out to determine the mechanical properties of the composites. In addition, the surfaces of fractured samples were examined by scanning electron microscopy (SEM), and neutral salt spray (NSS) and potentiodynamic polarization tests were performed to examine corrosion behavior. Near the explosion zone, the interface was completely flat, but became wavy as the distance from the explosion zone increased. The notch impact tests indicated that the impact strength of the composites decreased with increasing distance from the explosion zone. The SEM studies detected brittle behavior below the impact transition temperature and ductile behavior above this temperature. Microhardness tests revealed that the hardness values increased with increasing distance from the explosion zone and mechanical tests showed that no visible cracking or separation had occurred on the joining interface. The NSS and potentiodynamic polarization tests determined that the AISI 2304 exhibited higher corrosion resistance than the Grade A steel.
THRESHOLD STUDIES ON TNT, COMPOSITION B, C-4, AND ANFO EXPLOSIVES USING THE STEVEN IMPACT TEST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vandersall, K S; Switzer, L L; Garcia, F
2006-06-20
Steven Impact Tests were performed at low velocity on the explosives TNT (trinitrotolulene), Composition B (63% RDX, 36% TNT, and 1% wax by weight), C-4 (91% RDX, 5.3% Di (2-ethylhexyl) sebacate, 2.1% Polyisobutylene, and 1.6% motor oil by weight) and ANFO (94% ammonium Nitrate with 6% Fuel Oil) in attempts to obtain a threshold for reaction. A 76 mm helium driven gas gun was used to accelerate the Steven Test projectiles up to approximately 200 m/s in attempts to react (ignite) the explosive samples. Blast overpressure gauges, acoustic microphones, standard video and high-speed photography were used to characterize the levelmore » of any high explosive reaction violence. No bulk reactions were observed in the TNT, Composition B, C-4 or ANFO explosive samples impacted up to velocities in the range of 190-200 m/s. This work will outline the experimental details and discuss the lack of reaction when compared to the reaction thresholds of other common explosives. These results will also be compared to that of the Susan Test and reaction thresholds observed in the common small-scale safety tests such as the drop hammer and friction tests in hopes of drawing a correlation.« less
Analysis of Xrage and Flag High Explosive Burn Models with PBX 9404 Cylinder Tests
NASA Astrophysics Data System (ADS)
Harrier, Danielle; Fessenden, Julianna; Ramsey, Scott
2016-11-01
High explosives are energetic materials that release their chemical energy in a short interval of time. They are able to generate extreme heat and pressure by a shock driven chemical decomposition reaction, which makes them valuable tools that must be understood. This study investigated the accuracy and performance of two Los Alamos National Laboratory hydrodynamic codes, which are used to determine the behavior of explosives within a variety of systems: xRAGE which utilizes an Eulerian mesh, and FLAG with utilizes a Lagrangian mesh. Various programmed and reactive burn models within both codes were tested, using a copper cylinder expansion test. The test was based off of a recent experimental setup which contained the plastic bonded explosive PBX 9404. Detonation velocity versus time curves for this explosive were obtained from the experimental velocity data collected using Photon Doppler Velocimetry (PDV). The modeled results from each of the burn models tested were then compared to one another and to the experimental results using the Jones-Wilkins-Lee (JWL) equation of state parameters that were determined and adjusted from the experimental tests. This study is important to validate the accuracy of our high explosive burn models and the calibrated EOS parameters, which are important for many research topics in physical sciences.
Swell Sleeves for Testing Explosive Devices
NASA Technical Reports Server (NTRS)
Hinkel, Todd J.; Dean, Richard J.; Hohmann, Carl W.; Hacker, Scott C.; Harrington, Douglas W.; Bacak, James W.
2003-01-01
A method of testing explosive and pyrotechnic devices involves exploding the devices inside swell sleeves. Swell sleeves have been used previously for measuring forces. In the present method, they are used to obtain quantitative indications of the energy released in explosions of the devices under test. A swell sleeve is basically a thick-walled, hollow metal cylinder threaded at one end to accept a threaded surface on a device to be tested (see Figure 1). Once the device has been tightly threaded in place in the swell sleeve, the device-and-swell-sleeve assembly is placed in a test fixture, then the device is detonated. After the explosion, the assembly is removed from the test fixture and placed in a coordinate-measuring machine for measurement of the diameter of the swell sleeve as a function of axial position. For each axial position, the original diameter of the sleeve is subtracted from the diameter of the sleeve as swollen by the explosion to obtain the diametral swelling as a function of axial position (see Figure 2). The amount of swelling is taken as a measure of the energy released in the explosion. The amount of swelling can be compared to a standard amount of swelling to determine whether the pyrotechnic device functioned as specified.
NASA Astrophysics Data System (ADS)
Pyle, M. L.; Walter, W. R.
2017-12-01
Discrimination between underground explosions and naturally occurring earthquakes is an important endeavor for global security and test-ban treaty monitoring, and ratios of seismic P to S-wave amplitudes at regional distances have proven to be an effective discriminant. The use of the P/S ratio is rooted in the idea that explosive sources should theoretically only generate compressional energy. While, in practice, shear energy is observed from explosions, generally when corrections are made for magnitude and distance, P/S ratios from explosions are higher than those from surrounding earthquakes. At local distances (< 200 km) that might be needed to detect smaller events, however, this discriminant becomes less reliable. While ratios at some stations still show separation between earthquake and explosion populations, at other stations the populations are indistinguishable. There is no clear distance or azimuthal trend for which stations show discriminating abilities and which do not. A number of factors may play a role in differences we see between regional and local discrimination, including source effects such as depth and radiation pattern, and path effects such as laterally varying attenuation and focusing/defocusing from layers and scattering. We use data from the Source Physics Experiment (SPE) to investigate some of these effects. SPE is a series of chemical explosions at the Nevada National Security Site (NNSS) designed to improve our understanding and modeling capabilities of shear waves generated by explosions. Phase I consisted of 5 explosions in granite and Phase II will move to a contrasting dry alluvium geology. We apply a high-resolution 2D attenuation model to events near the NNSS to examine what effect path plays in local P/S ratios, and how well an earthquake-derived model can account for shallower explosion paths. The model incorporates both intrinsic attenuation and scattering effects and extends to 16 Hz, allowing us to make lateral path corrections and consider high-frequency ratios. Preliminary work suggests that while 2D path corrections modestly improve earthquake amplitude predictions, explosion amplitudes are not well matched, and so P/S ratios do not necessarily improve. Further work is needed to better understand the uses and limitation of 2D path corrections for local P/S ratios.
Solid Rocket Launch Vehicle Explosion Environments
NASA Technical Reports Server (NTRS)
Richardson, E. H.; Blackwood, J. M.; Hays, M. J.; Skinner, T.
2014-01-01
Empirical explosion data from full scale solid rocket launch vehicle accidents and tests were collected from all available literature from the 1950s to the present. In general data included peak blast overpressure, blast impulse, fragment size, fragment speed, and fragment dispersion. Most propellants were 1.1 explosives but a few were 1.3. Oftentimes the data from a single accident was disjointed and/or missing key aspects. Despite this fact, once the data as a whole was digitized, categorized, and plotted clear trends appeared. Particular emphasis was placed on tests or accidents that would be applicable to scenarios from which a crew might need to escape. Therefore, such tests where a large quantity of high explosive was used to initiate the solid rocket explosion were differentiated. Also, high speed ground impacts or tests used to simulate such were also culled. It was found that the explosions from all accidents and applicable tests could be described using only the pressurized gas energy stored in the chamber at the time of failure. Additionally, fragmentation trends were produced. Only one accident mentioned the elusive "small" propellant fragments, but upon further analysis it was found that these were most likely produced as secondary fragments when larger primary fragments impacted the ground. Finally, a brief discussion of how this data is used in a new launch vehicle explosion model for improving crew/payload survival is presented.
77 FR 32136 - Agency Information Collection Activities:
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-31
... Fire Safety Authority of Storage of Explosive Materials. (3) Agency form number, if any, and the... safety of emergency response personnel responding to fires at sites where explosives are stored. The information is provided both orally and in writing to the authority having jurisdiction for fire safety in the...
Detonation corner turning in vapor-deposited explosives using the micromushroom test
NASA Astrophysics Data System (ADS)
Tappan, Alexander S.; Yarrington, Cole D.; Knepper, Robert
2017-06-01
Detonation corner turning describes the ability of a detonation wave to propagate into unreacted explosive that is not immediately in the path normal to the wave. The classic example of corner turning is cylindrical and involves a small diameter explosive propagating into a larger diameter explosive as described by Los Alamos' Mushroom test (e.g. (Hill, Seitz et al. 1998)), where corner turning is inferred from optical breakout of the detonation wave. We present a complimentary method to study corner turning in millimeter-scale explosives through the use of vapor deposition to prepare the slab (quasi-2D) analog of the axisymmetric mushroom test. Because the samples are in a slab configuration, optical access to the explosive is excellent and direct imaging of the detonation wave and ``dead zone'' that results during corner turning is possible. Results are compared for explosives that demonstrate a range of behaviors, from pentaerythritol tetranitrate (PETN), which has corner turning properties that are nearly ideal; to HNAB (hexanitroazobenzene), which has corner turning properties that reveal a substantial dead zone. Results are discussed in the context of microstructure and detonation failure thickness.
Technical note: Headspace analysis of explosive compounds using a novel sampling chamber.
DeGreeff, Lauryn; Rogers, Duane A; Katilie, Christopher; Johnson, Kevin; Rose-Pehrsson, Susan
2015-03-01
The development of instruments and methods for explosive vapor detection is a continually evolving field of interest. A thorough understanding of the characteristic vapor signatures of explosive material is imperative for the development and testing of new and current detectors. In this research a headspace sampling chamber was designed to contain explosive materials for the controlled, reproducible sampling and characterization of vapors associated with these materials. In a detonation test, the chamber was shown to contain an explosion equivalent to three grams of trinitrotoluene (TNT) without damage to the chamber. The efficacy of the chamber in controlled headspace sampling was evaluated in laboratory tests with bulk explosive materials. Small quantities of TNT, triacetone triperoxide (TATP) and hexamethylene triperoxide diamine (HMTD) were separately placed in the sampling chamber, and the headspace of each material was analyzed by gas chromatography/mass spectrometry (GC/MS) with online cryogenic trapping to yield characteristic vapor signatures for each explosive compound. Chamber sampling conditions, temperature and sampling time, were varied to demonstrate suitability for precise headspace analysis. Published by Elsevier Ireland Ltd.
NASA Astrophysics Data System (ADS)
Carmichael, J.
2016-12-01
Waveform correlation detectors used in seismic monitoring scan multichannel data to test two competing hypotheses: that data contain (1) a noisy, amplitude-scaled version of a template waveform, or, (2) only noise. In reality, seismic wavefields include signals triggered by non-target sources (background seismicity) and target signals that are only partially correlated with the waveform template. We reform the waveform correlation detector hypothesis test to accommodate deterministic uncertainty in template/target waveform similarity and thereby derive a new detector from convex set projections (the "cone detector") for use in explosion monitoring. Our analyses give probability density functions that quantify the detectors' degraded performance with decreasing waveform similarity. We then apply our results to three announced North Korean nuclear tests and use International Monitoring System (IMS) arrays to determine the probability that low magnitude, off-site explosions can be reliably detected with a given waveform template. We demonstrate that cone detectors provide (1) an improved predictive capability over correlation detectors to identify such spatially separated explosive sources, (2) competitive detection rates, and (3) reduced false alarms on background seismicity. Figure Caption: Observed and predicted receiver operating characteristic curves for correlation statistic r(x) (left) and cone statistic s(x) (right) versus semi-empirical explosion magnitude. a: Shaded region shows range of ROC curves for r(x) that give the predicted detection performance in noise conditions recorded over 24 hrs on 8 October 2006. Superimposed stair plot shows the empirical detection performance (recorded detections/total events) averaged over 24 hr of data. Error bars indicate the demeaned range in observed detection probability over the day; means are removed to avoid risk of misinterpreting range to indicate probabilities can exceed one. b: Shaded region shows range of ROC curves for s(x) that give the predicted detection performance for the cone detector. Superimposed stair plot show observed detection performance averaged over 24 hr of data analogous to that shown in a.
Investigation of Key Parameters of Rock Cracking Using the Expansion of Vermiculite Materials
Ahn, Chi-Hyung; Hu, Jong Wan
2015-01-01
The demand for the development of underground spaces has been sharply increased in lieu of saturated ground spaces because the residents of cities have steadily increased since the 1980s. The traditional widely used excavation methods (i.e., explosion and shield) have caused many problems, such as noise, vibration, extended schedule, and increased costs. The vibration-free (and explosion-free) excavation method has currently attracted attention in the construction site because of the advantage of definitively solving these issues. For such reason, a new excavation method that utilizes the expansion of vermiculite with relatively fewer defects is proposed in this study. In general, vermiculite materials are rapidly expanded in volume when they receive thermal energy. Expansion pressure can be produced by thermal expansion of vermiculite in a steel tube, and measured by laboratory tests. The experimental tests are performed with various influencing parameters in an effort to seek the optimal condition to effectively increase expansion pressure at the same temperature. Then, calibrated expansion pressure is estimated, and compared to each model. After analyzing test results for expansion pressure, it is verified that vermiculite expanded by heat can provide enough internal pressure to break hard rock during tunneling work. PMID:28793610
Investigation of Key Parameters of Rock Cracking Using the Expansion of Vermiculite Materia.
Ahn, Chi-Hyung; Hu, Jong Wan
2015-10-12
The demand for the development of underground spaces has been sharply increased in lieu of saturated ground spaces because the residents of cities have steadily increased since the 1980s. The traditional widely used excavation methods ( i.e ., explosion and shield) have caused many problems, such as noise, vibration, extended schedule, and increased costs. The vibration-free (and explosion-free) excavation method has currently attracted attention in the construction site because of the advantage of definitively solving these issues. For such reason, a new excavation method that utilizes the expansion of vermiculite with relatively fewer defects is proposed in this study. In general, vermiculite materials are rapidly expanded in volume when they receive thermal energy. Expansion pressure can be produced by thermal expansion of vermiculite in a steel tube, and measured by laboratory tests. The experimental tests are performed with various influencing parameters in an effort to seek the optimal condition to effectively increase expansion pressure at the same temperature. Then, calibrated expansion pressure is estimated, and compared to each model. After analyzing test results for expansion pressure, it is verified that vermiculite expanded by heat can provide enough internal pressure to break hard rock during tunneling work.
Explosives mimic for testing, training, and monitoring
Reynolds, John G.; Durban, Matthew M.; Gash, Alexander E.; Grapes, Michael D.; Kelley, Ryan S.; Sullivan, Kyle T.
2018-02-13
Additive Manufacturing (AM) is used to make mimics for explosives. The process uses mixtures of explosives and matrices commonly used in AM. The explosives are formulated into a mixture with the matrix and printed using AM techniques and equipment. The explosive concentrations are kept less than 10% by wt. of the mixture to conform to requirements of shipping and handling.
Imanaka, Tetsuji; Yamamoto, Masayoshi; Kawai, Kenta; Sakaguchi, Aya; Hoshi, Masaharu; Chaizhunusova, Nailya; Apsalikov, Kazbek
2010-11-01
After the disintegration of the USSR in end of 1991, it became possible for foreign scientists to visit Kazakhstan, in order to investigate the radiological consequences of nuclear explosions that had been conducted at the Semipalatinsk nuclear test site (SNTS). Since the first visit in 1994, our group has been continuing expeditions for soil sampling at various areas around SNTS. The current level of local fallout at SNTS was studied through γ-spectrometry for (137)Cs as well as α-spectrometry for (239,240)Pu. Average values of soil inventory from wide areas around SNTS were 3,500 and 3,700 Bq m(-2) for (137)Cs and (239,240)Pu, respectively, as of January 1, 2000. The average level of (137)Cs is comparable to that in Japan due to global fallout, while the level of (239,240)Pu is several tens of times larger than that in Japan. Areas of strong contamination were found along the trajectories of radioactive fallout, information on which was declassified after the collapse of the USSR. Our recent efforts of soil sampling were concentrated on the area around the Dolon village heavily affected by the radioactive plume from the first USSR atomic bomb test in 1949 and located 110 km east from ground zero of the explosion. Using soil inventory data, retrospective dosimetry was attempted by reconstructing γ-ray exposure from fission product nuclides deposited on the ground. Adopting representative parameters for the initial (137)Cs deposition (13 kBq m(-2)), the refractory/volatile deposition ratio (3.8) and the plume arrival time after explosion (2.5 h), an absorbed dose in air of 600 mGy was obtained for the 1-year cumulative dose in Dolon village, due to the first bomb test in 1949. Considering possible ranges of the parameters, 350 and 910 mGy were estimated for high and low cases of γ-ray dose in air, respectively. It was encouraging that the deduced value was consistent with other estimations using thermal luminescence and archived monitoring data. The present method can be applied to other settlements affected by local fallout from SNTS.
11. BUILDING NO. 620B. INTERIOR VIEW LOOKING NORTH, SHOWING PENDULUM ...
11. BUILDING NO. 620-B. INTERIOR VIEW LOOKING NORTH, SHOWING PENDULUM AND FRAME IN FOREGROUND, SHIELD FOR OPERATORS IN BACKGROUND. FRICTION TEST IS OBSERVED FROM BEHIND BLAST SHIELD BY A SERIES OF MIRRORS. ANVIL IN CENTER OF PENDULUM FRAME HOLDS EXPLOSIVE WHOSE SENSITIVITY TO FRICTION IS TO BE TESTED. PANS ON EITHER SIDE CATCH ANY UNBURNT EXPLOSIVE SLUNG FROM ANVIL DURING TEST TO PREVENT EXPLOSIVE HAZARD. - Picatinny Arsenal, 600 Area, Test Areas District, State Route 15 near I-80, Dover, Morris County, NJ
[Radiobiological effects on plants and animals within Semipalatinsk Test Site (Kazakhstan)].
Mozolin, E M; Geras'kin, S A; Minkenova, K S
2008-01-01
The Semipalatinsk Test Site (STS) was the main place of nuclear devices tests in the former Soviet Union. From 1949 to 1989 about 460 nuclear explosions have been carried out at STS. Radioactive contamination of STS territory has the extremely non-uniform character. The main dose-forming radionuclides are 137Cs, 90Sr, 152Eu, as well as 154Eu, 60CO, 239,240Pu and 241Am. The greatest specific activity of 137Cs and 239,240Pu in ground are n x 10(3) kBk/kg, 152Eu - 96 kBk/kg, 154Eu - 10.4 kBk/kg, 60Co - 20.5 kBk/kg, 241Am - 15 kBk/kg. However, up to now, within STS sites exists where gamma-dose rate comes to 60 microGy/h, that is enough for induction reliable biological effects in animals and plants. Inhabiting territory of STS plants and animals are characterized by increased level of mutagenesis, changes of morpho-anatomic indices and parameters of peripheral blood, by the increase of asymmetry bilateral indices, change of composition and structure of communities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Black, S.C.; Townsend, Y.E.
1997-02-01
The Nevada Test Site (NTS), located in southern Nevada, has been the primary location for testing of nuclear explosives in the continental US. Testing began in 1951 and continued until the moratorium in 1992. Waste storage and disposal facilities for defense radioactive and mixed waste are located in Areas 3 and 5. At the Area 5 Radioactive Waste Management Site (RWMS-5), low-level wastes (LLW) from US Department of Energy (DOE) affiliated onsite and offsite generators are disposed of using standard shallow land disposal techniques. Transuranic wastes are retrievably stored at the RWMS-5 in containers on a surface pad, pending shipmentmore » to the Waste Isolation Pilot Plant facility in New Mexico. Nonradioactive hazardous wastes are accumulated at a special site before shipment to a licensed offsite disposal facility. Non-standard packages of LLW are buried in subsidence craters in the Area 3 RWMS. This report describes these activities on and around the NTS and includes a listing of the results obtained from environmental surveillance activities during the second calendar quarter of 1996.« less
Visible-Near Infrared Imaging Spectrometer Data of Explosion Craters
NASA Technical Reports Server (NTRS)
Farr, T. G.
2005-01-01
In a continuing study to capture a realistic terrain applicable to studies of cratering processes and landing hazards on Mars, we have obtained new high resolution visible-near infrared images of several explosion craters at the Nevada Test Site. We used the Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) to obtain images in 224 spectral bands from 0.4-2.5 microns [1]. The main craters that were imaged were Sedan, Scooter, Schooner, Buggy, and Danny Boy [2]. The 390 m diameter Sedan crater, located on Yucca Flat, is the largest and freshest explosion crater on Earth that was formed under conditions similar to hypervelocity impact cratering. As such, it is effectively pristine, having been formed in 1962 as a result of the detonation of a 104 kiloton thermonuclear device, buried at the appropriate equivalent depth of burst required to make a "simple" crater [2]. Sedan was formed in alluvium of mixed lithology [3] and subsequently studied using a variety of field-based methods. Nearby secondary craters were also formed at the time and were also imaged by AVIRIS. Adjacent to Sedan and also in alluvium is Scooter, about 90 m in diameter and formed by a high-explosive event. Schooner (240 m) and Danny Boy (80 m, Fig. 1) craters were also important targets for AVIRIS as they were excavated in hard welded tuff and basaltic andesite, respectively [3, 4]. This variation in targets will allow the study of ejecta patterns, compositional modifications due to the explosions, and the role of craters as subsurface probes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wogman, Ned A.; Milbrath, Brian D.; Payne, Rosara F.
This paper is intended to serve as a scientific basis to start discussions of the available environmental sampling techniques and equipment that have been used in the past that could be considered for use within the context of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) on-site inspections (OSI). This work contains information on the techniques, equipment, costs, and some operational procedures associated with environmental sampling that have actually been used in the past by the United States for the detection of nuclear explosions. This paper also includes a discussion of issues, recommendations, and questions needing further study within the context of themore » sampling and analysis of aquatic materials, atmospheric gases, atmospheric particulates, vegetation, sediments and soils, fauna, and drill-back materials.« less
14 CFR Appendix E to Part 420 - Tables for Explosive Site Plan
Code of Federal Regulations, 2010 CFR
2010-01-01
.... Table E-2—Liquid Propellant Explosive Equivalents Propellant combinations Explosive equivalent LO2/LH2 The larger of: 8W2/3 where W is the weight of LO2/LH2, or14% of W. LO2/LH2 + LO2/RP-1 Sum of (20% for LO2/RP-1) + the larger of: 8W2/3 where W is the weight of LO2/LH2, or14% of W. LO2/R-1 20% of W up to...
NASA Technical Reports Server (NTRS)
Warren, Paul H.; Kallemeyn, Gregory W.
1992-01-01
A new model of the production of the uniformly low plagioclase and Al contents of ureilites is proposed. It is argued that those contents are consequences of widespread explosive volcanism during the evolution of the parent asteroid(s). It is noted that the great abundance of graphite on the ureilite asteroid(s) made them ideal sites for explosive volcanism driven by oxidation of graphite in partial melts ascending within the asteroid(s).
NASA Astrophysics Data System (ADS)
Walter, W. R.; Ford, S. R.; Pitarka, A.; Pyle, M. L.; Pasyanos, M.; Mellors, R. J.; Dodge, D. A.
2017-12-01
The relative amplitudes of seismic P-waves to S-waves are effective at identifying underground explosions among a background of natural earthquakes. These P/S methods appear to work best at frequencies above 2 Hz and at regional distances ( >200 km). We illustrate this with a variety of historic nuclear explosion data as well as with the recent DPRK nuclear tests. However, the physical basis for the generation of explosion S-waves, and therefore the predictability of this P/S technique as a function of path, frequency and event properties such as size, depth, and geology, remains incompletely understood. A goal of current research, such as the Source Physics Experiments (SPE), is to improve our physical understanding of the mechanisms of explosion S-wave generation and advance our ability to numerically model and predict them. The SPE conducted six chemical explosions between 2011 and 2016 in the same borehole in granite in southern Nevada. The explosions were at a variety of depths and sizes, ranging from 0.1 to 5 tons TNT equivalent yield. The largest were observed at near regional distances, with P/S ratios comparable to much larger historic nuclear tests. If we control for material property effects, the explosions have very similar P/S ratios independent of yield or magnitude. These results are consistent with explosion S-waves coming mainly from conversion of P- and surface waves, and are inconsistent with source-size based models. A dense sensor deployment for the largest SPE explosion allowed this conversion to be mapped in detail. This is good news for P/S explosion identification, which can work well for very small explosions and may be ultimately limited by S-wave detection thresholds. The SPE also showed explosion P-wave source models need to be updated for small and/or deeply buried cases. We are developing new P- and S-wave explosion models that better match all the empirical data. Historic nuclear explosion seismic data shows that the media in which the explosion takes place is quite important. These material property effects can surprisingly degrade the seismic waveform correlation of even closely spaced explosions in different media. The next phase of the SPE will contrast chemical explosions in dry alluvium with the prior SPE explosions in granite and historic nuclear tests in a variety of media.
Elements of a CERCLA action at a former Army ammunition plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tucker, D.F.; Marotz, G.A.; Frazier, G.F.
1999-07-01
The Sunflower Army Ammunition Plant covers 44 km{sup 2} and is located near several large population centers. Leased sites within the plant are now being used for various activities including recreation and manufacturing. Plans are in place for conversion of an additional 3,000 ha to a commercial amusement park. Some 400 structures from the plant remain and most must be removed if further ventures are to take place. Many of the buildings are structurally unsound or contain potentially hazardous materials, such as explosive residues, lead sheathing or asbestos shingles, that were stored or used in the construction of the structures.more » State and federal agencies agreed that the buildings should be destroyed, but the method to do so was unclear. Analysis on building by building basis revealed that in many cases explosive residue made it unsafe to remove the buildings by any other method rather than combustion. Completion of a comprehensive destruction plan that included ground-level monitoring of combustion plumes, and burn scheduling under tightly prescribed micro and mesoscale meteorological conditions was approved by the EPA as a non-time critical removal action under CERCLA in 1996; the US Army was designated as the lead agency. Personnel at the University of Kansas assisted in developing the destruction plan and helped conduct two test burns using the comprehensive plan protocols. Results of one test burn scenario on June 26, 1997, intended as a test of probable dispersion safety margin and covered extensively by print and television media, the EPA and State agencies, are described in this paper. The selected building was smaller than typical of the buildings on the plant site. The events leading to a burn decision on the test day are used to illustrate the decision-making process.« less
Molecular hydrodynamics of high explosives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belak, J.
1994-11-01
High explosives release mechanical energy through chemical reactions. Applications of high explosives are vast in the mining and military industries and are beginning to see more civilian applications such as the deployment of airbags in modern automobiles. One of the central issues surrounding explosive materials is decreasing their sensitivity, necessary for their safe handling, while maintaining a high yield. Many practical tests have been devised to determine the sensitivity of explosive materials to shock, to impact, to spark, and to friction. These tests have great value in determining yield and setting precautions for safe handling but tell little of themore » mechanisms of initiation. How is the mechanical energy of impact or friction transformed into the chemical excitation that initiates explosion? The answer is intimately related to the structure of the explosive material, the size and distribution of grains, the size and presence of open areas such as voids and gas bubbles, and inevitably the bonding between explosive molecules.« less
Explosive materials equivalency, test methods and evaluation
NASA Technical Reports Server (NTRS)
Koger, D. M.; Mcintyre, F. L.
1980-01-01
Attention is given to concepts of explosive equivalency of energetic materials based on specific airblast parameters. A description is provided of a wide bandwidth high accuracy instrumentation system which has been used extensively in obtaining pressure time profiles of energetic materials. The object of the considered test method is to determine the maximum output from the detonation of explosive materials in terms of airblast overpressure and positive impulse. The measured pressure and impulse values are compared with known characteristics of hemispherical TNT data to determine the equivalency of the test material in relation to TNT. An investigation shows that meaningful comparisons between various explosives and a standard reference material such as TNT should be based upon the same parameters. The tests should be conducted under the same conditions.
Impact sensitivity test of liquid energetic materials
NASA Astrophysics Data System (ADS)
Tiutiaev, A.; Dolzhikov, A.; Zvereva, I.
2017-10-01
This paper presents new experimental method for sensitivity evaluation at the impact. A large number of researches shown that the probability of explosion initiating of liquid explosives by impact depends on the chemical nature and the various external characteristics. But the sensitivity of liquid explosive in the presence of gas bubbles increases many times as compared with the liquid without gas bubbles. In this case local chemical reaction focus are formed as a result of compression and heating of the gas inside the bubbles. In the liquid as a result of convection, wave motion, shock, etc. gas bubbles are easily generated, it is necessary to develop methods for determining sensitivity of liquid explosives to impact and to research the explosives ignition with bubbles. For the experimental investigation, the well-known impact machine and the so-called appliance 1 were used. Instead of the metal cup in the standard method in this paper polyurethane foam cylindrical container with liquid explosive was used. Polyurethane foam cylindrical container is easily deforms by impact. A large number of tests with different liquid explosives were made. It was found that the test liquid explosive to impact in appliance 1 with polyurethane foam to a large extent reflect the real mechanical sensitivity due to the small loss of impact energy on the deformation of the metal cup, as well as the best differentiation liquid explosive sensitivity due to the higher resolution method.
NASA Astrophysics Data System (ADS)
Hsu, Peter; Hust, Gary; Reynolds, John; Springer, Keo; Fried, Larry; Maienschein, Jon
2013-06-01
Incidents caused by fire and combat operations in battlefields can expose energetic materials to unexpected heat that may cause thermal explosion, structural damage and casualty. Some explosives may thermally explode at fairly low temperatures (<100 C) and the violence from thermal explosion may cause a significant damage. Thus it is important to understand the response of energetic materials to thermal insults. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory can measure times to explosion, threshold thermal explosion temperature, and determine kinetic parameters of energetic materials. Samples of different configurations (pressed part, powder, paste, and liquid) can be tested in the system. The ODTX testing can also provide useful data for assessing the thermal explosion violence of energetic materials. In this paper, we will present some recent ODTX experimental data and compare thermal explosion violence of different energetic materials. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Military applications and examples of near-surface seismic surface wave methods (Invited)
NASA Astrophysics Data System (ADS)
sloan, S.; Stevens, R.
2013-12-01
Although not always widely known or publicized, the military uses a variety of geophysical methods for a wide range of applications--some that are already common practice in the industry while others are truly novel. Some of those applications include unexploded ordnance detection, general site characterization, anomaly detection, countering improvised explosive devices (IEDs), and security monitoring, to name a few. Techniques used may include, but are not limited to, ground penetrating radar, seismic, electrical, gravity, and electromagnetic methods. Seismic methods employed include surface wave analysis, refraction tomography, and high-resolution reflection methods. Although the military employs geophysical methods, that does not necessarily mean that those methods enable or support combat operations--often times they are being used for humanitarian applications within the military's area of operations to support local populations. The work presented here will focus on the applied use of seismic surface wave methods, including multichannel analysis of surface waves (MASW) and backscattered surface waves, often in conjunction with other methods such as refraction tomography or body-wave diffraction analysis. Multiple field examples will be shown, including explosives testing, tunnel detection, pre-construction site characterization, and cavity detection.
Physical structure changes of solid medium by steam explosion sterilization.
Zhao, Zhi-Min; Wang, Lan; Chen, Hong-Zhang
2016-03-01
Physical structure changes of solid medium were investigated to reveal effects of steam explosion sterilization on solid-state fermentation (SSF). Results indicated that steam explosion changed the structure of solid medium at both molecular and three-dimensional structural levels, which exposed hydrophilic groups and enlarged pores and cavities. It was interesting to find that pores where capillary water located were the active sites for SSF, due to the close relationship among capillary water relaxation time, specific surface area and fermentation performance. Therefore, steam explosion sterilization increased the effective contact area for microbial cells on solid medium, which contributed to improving SSF performance. Combined with the previous research, mechanisms of SSF improvement by steam explosion sterilization contained both chemical and physical effects. Copyright © 2015 Elsevier Ltd. All rights reserved.
2004-12-01
Explosive Materials/Subsystems Don Ragland, Technical Writer/Editor Energy Infrastructure and DER Department Sandia National Laboratories P.O. Box 5800...and the culvert measured 2.4 meters in diameter. From these detonations, the shock wave was felt at a town 22 km from the test site. Vander Molen ...and Nicholls – 1979 [Vander Molen and Nicholls 1979] Experiments were performed to measure the effect of ethane addition to methane air clouds on
1991-12-04
ADDRESS(ES) 10. SPONSORING/MONITORING DARPA/NMRO Phillips Laboratory AGENCY REPORT NUMBER (Attn: Dr. A. Ryall) Hanscom AFB, MA 01731-5000 3701 North...areas and media at the USERDA Nevada Test Site, UCRL -51948, Lawrence Livermore La- boratory, Livermore, California. Stead, R. J. and D. V. HeImberger...University Park, PA 16802 Blacksburg, VA 24061 Dr. Ralph Alewine, III Dr. Stephen Bratt DARPA/NMRO Center for Seismic Studies 3701 North Fairfax Drive 1300
2003-05-01
I I I I FINAL • Composition B (TNT, RDX and wax), • Tetryl, • Smokeless Powder ( Nitrocellulose /Nitrogylcerin), and • HBX (TNT, RDX, aluminum...operating-cost system. Because of its temporary, on-site configuration, this is an inherently low-cost method to decontaminate range residue. On... methods ) were evaluated and progressively improved during each test run. 022/masterdocument.doc 4-12 I I I I I I I I I I I I I I I I
Regional Amplitude-Distance Relations, Discrimination and Detection
1981-07-13
amplitudes from eight NTS explosions along a profile to Ordway, Colorado . A short spread of instru- ments was set out at 28 locations along the profile so...34Itver. geiK u el it i I, -1L it Iiiie r exii.Siifs arid] recorded at 31 locationis 1wtwevn tie Nevada test site (IN’S) and Ordwa%, Colorado , are diuused...The nIme of recording stations crosses the eastern part of thle Basin and Range province, the Colorado plateaus, and the southern Rocky Mountains
Aided target recognition processing of MUDSS sonar data
NASA Astrophysics Data System (ADS)
Lau, Brian; Chao, Tien-Hsin
1998-09-01
The Mobile Underwater Debris Survey System (MUDSS) is a collaborative effort by the Navy and the Jet Propulsion Lab to demonstrate multi-sensor, real-time, survey of underwater sites for ordnance and explosive waste (OEW). We describe the sonar processing algorithm, a novel target recognition algorithm incorporating wavelets, morphological image processing, expansion by Hermite polynomials, and neural networks. This algorithm has found all planted targets in MUDSS tests and has achieved spectacular success upon another Coastal Systems Station (CSS) sonar image database.
1979-03-01
to over 10 feet, overlying the fluvial Kayenta sandstone. Tha upper several feet of the Kayenta formation con- sisted of a ’transitional zone of...weathered sandstone. The Kayenta sandstone is a very competent sandsto,,e forming the caprock for the cliffs and the monoliths in the nearby Colorado...National Monument. The surface alluvial soil and weathered Kayenta sandstone in the test area site normally contain 3 to 5 percent water by weight. For
Science and technology in the stockpile stewardship program, S & TR reprints
DOE Office of Scientific and Technical Information (OSTI.GOV)
Storm, E
This document reports on these topics: Computer Simulations in Support of National Security; Enhanced Surveillance of Aging Weapons; A New Precision Cutting Tool: The Femtosecond Laser; Superlasers as a Tool of Stockpile Stewardship; Nova Laser Experiments and Stockpile Stewardship; Transforming Explosive Art into Science; Better Flash Radiography Using the FXR; Preserving Nuclear Weapons Information; Site 300Õs New Contained Firing Facility; The Linear Electric Motor: Instability at 1,000 gÕs; A Powerful New Tool to Detect Clandestine Nuclear Tests; High Explosives in Stockpile Surveillance Indicate Constancy; Addressing a Cold War Legacy with a New Way to Produce TATB; JumpinÕ Jupiter! Metallic Hydrogen;more » Keeping the Nuclear Stockpile Safe, Secure, and Reliable; The Multibeam FabryÐPerot Velocimeter: Efficient Measurements of High Velocities; Theory and Modeling in Material Science; The Diamond Anvil Cell; Gamma-Ray Imaging Spectrometry; X-Ray Lasers and High-Density Plasma« less
Isolator fragmentation and explosive initiation tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickson, Peter; Rae, Philip John; Foley, Timothy J.
2016-09-19
Three tests were conducted to evaluate the effects of firing an isolator in proximity to a barrier or explosive charge. The tests with explosive were conducted without a barrier, on the basis that since any barrier will reduce the shock transmitted to the explosive, bare explosive represents the worst-case from an inadvertent initiation perspective. No reaction was observed. The shock caused by the impact of a representative plastic material on both bare and cased PBX 9501 is calculated in the worst-case, 1-D limit, and the known shock response of the HE is used to estimate minimum run-to-detonation lengths. The estimatesmore » demonstrate that even 1-D impacts would not be of concern and that, accordingly, the divergent shocks due to isolator fragment impact are of no concern as initiating stimuli.« less
Isolator fragmentation and explosive initiation tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickson, Peter; Rae, Philip John; Foley, Timothy J.
2015-09-30
Three tests were conducted to evaluate the effects of firing an isolator in proximity to a barrier or explosive charge. The tests with explosive were conducted without barrier, on the basis that since any barrier will reduce the shock transmitted to the explosive, bare explosive represents the worst-case from an inadvertent initiation perspective. No reaction was observed. The shock caused by the impact of a representative plastic material on both bare and cased PBX9501 is calculated in the worst-case, 1-D limit, and the known shock response of the HE is used to estimate minimum run-to-detonation lengths. The estimates demonstrate thatmore » even 1-D impacts would not be of concern and that, accordingly, the divergent shocks due to isolator fragment impact are of no concern as initiating stimuli.« less
Big Explosives Experimental Facility - BEEF
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The Big Explosives Experimental Facility or BEEF is a ten acre fenced high explosive testing facility that provides data to support stockpile stewardship and other national security programs. At BEEF conventional high explosives experiments are safely conducted providing sophisticated diagnostics such as high speed optics and x-ray radiography.
Big Explosives Experimental Facility - BEEF
None
2018-01-16
The Big Explosives Experimental Facility or BEEF is a ten acre fenced high explosive testing facility that provides data to support stockpile stewardship and other national security programs. At BEEF conventional high explosives experiments are safely conducted providing sophisticated diagnostics such as high speed optics and x-ray radiography.
Long Term Hydrological (Radiological) Site Monitoring Data
Quality Data Asset includes all current and historical data on the quality of water with regard to the presence of water pollutants of all kinds regulated by the Clean Water Act. Under the new Interagency Agreement with the Department of Energy (DOE), the Radiation & Indoor Environments National Laboratory (R&IE), Office of Radiation and Indoor Air (ORIA), EPA, located in Las Vegas, NV, conducts a Long-Term Hydrological Monitoring Program (LTHMP) providing laboratory sampling/analysis and Quality Assurance and Control to measure radioactivity concentrations in the water sources near the sites of former underground nuclear explosions. The results of the LTHMP provide assurance that radioactive material from the tests have not migrated into water supplies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richard Catanach; Larry Hill; Herbert Harry
1999-10-01
The purpose of the cylinder testis two-fold: (1) to characterize the metal-pushing ability of an explosive relative to that of other explosives as evaluated by the E{sub 19} cylinder energy and the G{sub 19} Gurney energy and (2) to help establish the explosive product equation-of-state (historically, the Jones-Wilkins-Lee (JWL) equation). This specification details the material requirements and procedures necessary to assemble and fire a typical Los Alamos National Laboratory (LANL) cylinder test. Strict adherence to the cylinder. material properties, machining tolerances, material heat-treatment and etching processes, and high explosive machining tolerances is essential for test-to-test consistency and to maximize radialmore » wall expansions. Assembly and setup of the cylinder test require precise attention to detail, especially when placing intricate pin wires on the cylinder wall. The cylinder test is typically fired outdoors and at ambient temperature.« less
An unusual case of carbon monoxide poisoning.
Auger, P L; Levesque, B; Martel, R; Prud'homme, H; Bellemare, D; Barbeau, C; Lachance, P; Rhainds, M
1999-01-01
Carbon monoxide, a gas originating from incomplete combustion of carbon-based fuels, is an important cause of human deaths. In this paper, we describe an unusual carbon monoxide poisoning in a dwelling without obvious sources of combustion gases, for which two adults had to be treated in a hyperbaric chamber. Carbon monoxide readings were taken in the house and in the neighboring homes. Methane gas and nitrogen oxide levels were also monitored in the house air. Soil samples were collected around the house and tested for hydrocarbon residues. The investigation revealed the presence of a pocket of carbon monoxide under the foundation of the house. The first readings revealed carbon monoxide levels of 500 ppm in the basement. The contamination lasted for a week. The investigation indicated that the probable source of contamination was the use of explosives at a nearby rain sewer construction site. The use of explosives in a residential area can constitute a major source of carbon monoxide for the neighboring populations. This must be investigated, and public health authorities, primary-care physicians, governmental authorities, and users and manufacturers of explosives must be made aware of this problem. Images Figure 1 Figure 2 PMID:10379009
30 CFR 18.62 - Tests to determine explosion-proof characteristics.
Code of Federal Regulations, 2010 CFR
2010-07-01
... TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES... be varied. Motor armatures and/or rotors will be stationary in some tests and revolving in others... electrical components during some of the tests. Not less than 16 explosion tests shall be conducted; however...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiappetta, R.F.
An explosive`s velocity of detonation (VOD), can be used to indicate a number of important characteristics regarding the product`s performance under specific field and test conditions. A number of new characteristic and transient VOD curves have been identified in the field, which can be used to evaluate explosive performance, control ground vibration amplitudes and frequencies, select the correct amount and type of stemming for use at the collar and in stem decks, eliminate explosive desensitization, evaluate primer performance, design air deck based blasts, evaluate contaminated explosives and to overcome post blast noxious fumes. Tests were conducted over a six yearmore » period in single and multi-hole blasts using laboratory and full scale blast environments. Explosives tested ranged from pure Emulsion to Anfo and various grades of Emulsion/Anfo blends. Field test parameters were; borehole diameter (1 1/2--30 inches), hole depths (10--120 feet), primer size (0.5--6.4 pounds) and the blast environment varied from soft, jelly-like tar sands to some of the hardest iron ore formations. Most tests were instrumented with an array of blast monitoring instrumentation systems consisting of continuous velocity of detonation recorders, high-speed 16 mm cameras, laser-surveying instrumentation and seismographs which were placed in the near and far fields.« less
2018-03-30
ARL-TR-8335•MAR 2018 US Army Research Laboratory Influence of Test Section Geometry on theBlast Environment in an Explosively DrivenConical Shock...ARL-TR-8335•MAR 2018 US Army Research Laboratory Influence of Test Section Geometry on theBlast Environment in an Explosively DrivenConical Shock...Tube by Joel B Stewart Weapons and Materials Research Directorate, ARL Approved for public release; distribution is unlimited. REPORT DOCUMENTATION
Sorption kinetics of TNT and RDX in anaerobic freshwater and marine sediments: Batch studies.
Ariyarathna, Thivanka; Vlahos, Penny; Tobias, Craig; Smith, Richard
2016-01-01
Examination of the partitioning of explosives onto sediment in marine environments is critical to predict the toxicological impacts of worldwide explosive-contaminated sites adjacent to estuaries, wetlands, and the coastal ocean. Marine sediments have been identified as sites of enhanced munitions removal, yet most studies addressing these interactions focus on soils and freshwater sediments. The present study measured the kinetics of 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) sorption onto 2 marine sediments of varying grain sizes (silt vs sand) and organic carbon (OC) content. Abiotic sediment sorption tests were performed at 23 °C, 15 °C, and 4 °C by spiking TNT and RDX solutions directly into anaerobic sediment slurries. Marine sediments showed significantly higher compound uptake rates (0.30-0.80 h(-1) ) than freshwater silt (0.0046-0.0065 h(-1) ) for both compounds, probably because of lower compound solubilities and a higher pH in marine systems. Equilibrium partition constants are on the same order of magnitude for marine silt (1.1-2.0 L kg(-1) sediment) and freshwater silt (1.4-3.1 L kg(-1) sediment) but lower for marine sand (0.72-0.92 L kg(-1) sediment). Total organic carbon content in marine sediments varied linearly with equilibrium partition constants for TNT and was moderately linear for RDX. Uptake rates and equilibrium constants of explosives are inversely correlated to temperature regardless of sediment type because of kinetic barriers associated with low temperatures. © 2015 SETAC.
Keller, David C.; Fresquez, Philip R.; Hansen, Leslie A.; ...
2015-12-28
Breeding bird abundance, species richness, evenness, diversity, composition, productivity, and survivorship were determined near a high-explosive detonation site at Los Alamos National Laboratory, New Mexico, USA, during pre-operation (1997-1999) and operation (2000-2014) periods. The operation periods consisted of detonations (<23 kg in yield and <3 per breeding season) in open air (2000-2002), within foam containment (2003-2006) and within steel vessel containment (2007-2014) systems; the latter two were employed to reduce noise and dispersal of high-explosives residues. A total of 2952 bird captures, representing 80 species, was recorded during 18 years of mist net operations using the Monitoring Avian Productivity andmore » Survivorship protocol. Individuals captured were identified to species, aged, sexed, and banded during May through August of each year. There were no significant differences (p > 0.05) in mean avian abundance and species evenness in any of the operation periods as compared with the pre-operation period. Species richness and diversity were significantly higher (p < 0.05) during the vessel containment period (2007-2014) than the pre-operation period. The time period of this study coincided with a wildfire (2000), a bark beetle infestation (2002), and two periods of drought (Nov 1999-Mar 2004 and Dec 2005-Dec 2014) that affected the study area. Furthermore, analysis of aerial photos determined that the average percent canopy cover of mature ponderosa pines (Pinus ponderosa) within 100 feet of mist net sites declined from 12% to 3% between 1991 and 2014 and the percent cover of shrubs slightly increased.« less
30 CFR 15.10 - Post-approval product audit.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Post-approval product audit. 15.10 Section 15... General Provisions § 15.10 Post-approval product audit. (a) Approved explosives and sheathed explosive... observe any tests conducted during this audit. (c) An approved explosive or sheathed explosive unit shall...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stofleth, Jerome H.; Tribble, Megan Kimberly; Crocker, Robert W.
2017-05-01
The V27 containment vessel was procured by the US Army Recovered Chemical Material Directorate ( RCMD ) as a replacement vessel for use on the P2 Explosive Destruction Systems. It is the third EDS vessel to be fabricated under Code Case 2564 of the ASME Boiler and Pressure Vessel Code, which provides rules for the design of impulsively loaded vessels. The explosive rating for the vessel, based on the Code Case, is nine (9) pounds TNT - equivalent for up to 637 detonations . This report documents the results of explosive tests that were done on the vessel at Sandiamore » National Laboratories in Albuquerque New Mexico to qualify the vessel for explosive use . The primary qualification test consisted of si x 1.5 pound charges of Composition C - 4 (equivalent to 11.25 pounds TNT) distributed around the vessel in accordance with the User Design Specification. Four subsequent tests using less explosive evaluated the effects of slight variations in orientation of the charges . All vessel acceptance criteria were met.« less
2018-04-26
decomposition of explosives, test materials and their mixtures. A DSC for each individual explosive, test material and mixture shall be run in duplicate... run in duplicate • Explosives and test materials are mixed in a 1:1 (w/w) ratio • Samples are heated at a rate of 5°C/min from room temperature to...warrants it. If a reaction occurs in ten trials, the load is reduced until there are no reactions observed in ten trials. The ESD test was run per a
Analysis of the Source Physics Experiment SPE4 Prime Using State-Of Parallel Numerical Tools.
NASA Astrophysics Data System (ADS)
Vorobiev, O.; Ezzedine, S. M.; Antoun, T.; Glenn, L.
2015-12-01
This work describes a methodology used for large scale modeling of wave propagation from underground chemical explosions conducted at the Nevada National Security Site (NNSS) fractured granitic rock. We show that the discrete natures of rock masses as well as the spatial variability of the fabric of rock properties are very important to understand ground motions induced by underground explosions. In order to build a credible conceptual model of the subsurface we integrated the geological, geomechanical and geophysical characterizations conducted during recent test at the NNSS as well as historical data from the characterization during the underground nuclear test conducted at the NNSS. Because detailed site characterization is limited, expensive and, in some instances, impossible we have numerically investigated the effects of the characterization gaps on the overall response of the system. We performed several computational studies to identify the key important geologic features specific to fractured media mainly the joints characterized at the NNSS. We have also explored common key features to both geological environments such as saturation and topography and assess which characteristics affect the most the ground motion in the near-field and in the far-field. Stochastic representation of these features based on the field characterizations has been implemented into LLNL's Geodyn-L hydrocode. Simulations were used to guide site characterization efforts in order to provide the essential data to the modeling community. We validate our computational results by comparing the measured and computed ground motion at various ranges for the recently executed SPE4 prime experiment. We have also conducted a comparative study between SPE4 prime and previous experiments SPE1 and SPE3 to assess similarities and differences and draw conclusions on designing SPE5.
Numerical modelling of underwater detonation of non-ideal condensed-phase explosives
NASA Astrophysics Data System (ADS)
Schoch, Stefan; Nikiforakis, Nikolaos
2015-01-01
The interest in underwater detonation tests originated from the military, since the expansion and subsequent collapse of the explosive bubble can cause considerable damage to surrounding structures or vessels. In military applications, the explosive is typically represented as a pre-burned material under high pressure, a reasonable assumption due to the short reaction zone lengths, and complete detonation of the unreacted explosive. Hence, numerical simulations of underwater detonation tests have been primarily concerned with the prediction of target loading and the damage incurred rather than the accurate modelling of the underwater detonation process. The mining industry in contrast has adopted the underwater detonation test as a means to experimentally characterise the energy output of their highly non-ideal explosives depending on explosive type and charge configuration. This characterisation requires a good understanding of how the charge shape, pond topography, charge depth, and additional charge confinement affect the energy release, some of which can be successfully quantified with the support of accurate numerical simulations. In this work, we propose a numerical framework which is able to capture the non-ideal explosive behaviour and in addition is capable of capturing both length scales: the reaction zone and the pond domain. The length scale problem is overcome with adaptive mesh refinement, which, along with the explosive model, is validated against experimental data of various TNT underwater detonations. The variety of detonation and bubble behaviour observed in non-ideal detonations is demonstrated in a parameter study over the reactivity of TNT. A representative underwater mining test containing an ammonium-nitrate fuel-oil ratestick charge is carried out to demonstrate that the presented method can be readily applied alongside experimental underwater detonation tests.
Airport testing an explosives detection portal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rhykerd, C.; Linker, K.; Hannum, D.
1998-08-01
At the direction of the US Congress, following the Pan Am 103 and TWA 800 crashes, the Federal Aviation Administration funded development of non-invasive techniques to screen airline passengers for explosives. Such an explosives detection portal, developed at Sandia National Laboratories, was field tested at the Albuquerque International airport in September 1997. During the 2-week field trial, 2,400 passengers were screened and 500 surveyed. Throughput, reliability, maintenance and sensitivity were studied. Follow-up testing at Sandia and at Idaho National Engineering and Environmental Laboratory was conducted. A passenger stands in the portal for five seconds while overhead fans blow air overmore » his body. Any explosive vapors or dislodged particles are collected in vents at the feet. Explosives are removed from the air in a preconcentrator and subsequently directed into an ion mobility spectrometer for detection. Throughput measured 300 passengers per hour. The non-invasive portal can detect subfingerprint levels of explosives residue on clothing. A survey of 500 passengers showed a 97% approval rating, with 99% stating that such portals, if effective, should be installed in airports to improve security. Results of the airport test, as well as operational issues, are discussed.« less
Equations of state for detonation products of high energy PBX explosives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, E. L.; Helm, F. H.; Finger, M.
1977-08-01
It has become apparent that the accumulated changes in the analysis of cylinder test data, in the material specifications, and in the hydrodynamic code simulation of the cylinder test necessitated an update of the detonation product EOS description for explosives in common use at LLL. The explosives reviewed are PBX-9404-3, LX-04-1, LX-10-1, LX-14-0 and LX-09-1. In order to maintain the proper relation of predicted performance of these standard explosives, they have been revised as a single set.
Report on Transport and Loading of Explosives in the Femtosecond Tank, Room 1711A HEAF 00-010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, D L
2002-04-25
The current OSP associated with Room 1711A located in Building 191 (HEAF) sets a limit of 5 grams Net Explosive Weight (NEW) of explosives for the room. A question was raised as to the capability of that room to withstand the overpressure created by a detonation of 5 grams NEW of explosives. Calculations were inconclusive, but indicated the wallboard would not remain intact if there was a detonation of 5 grams NEW at a distance of eight feet from the wall. These calculations did not seem logical. To verify the hypothesis, a series of experiments were conducted in the 1more » Kilogram tank. The experiments consisted of exposing a pre-built double-sided wall with the same stud spacing and drywall thickness found in the walls of Room 1711A to various amounts of explosives to create expected overpressures. The objective of this test was to prove or disprove that the walls in room 1711A could withstand a detonation of 5 grams of high explosives and to determine if larger quantities of explosives could be worked on in the room while still providing the required level of protection for personnel outside the room. Testing has verified that not only can the walls withstand a 5 gram explosion, but a 10.75 gram explosion as well. A second test was conducted using 20 grams of explosive plus a detonator. Although the inner piece of drywall cracked, the outer piece of drywall maintained its integrity, thereby confining the effects of the anticipated overpressure to the room.« less
An experimental study of steam explosions involving chemically reactive metal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, D.H.; Armstrong, D.R.; Gunther, W.H.
1997-07-01
An experimental study of molten zirconium-water explosions was conducted. A 1-kg mass of zirconium melt was dropped into a column of water. Explosions took place only when an external trigger was used. In the triggered tests, the extent of oxidation of the zirconium melt was very extensive. However, the explosion energetics estimated were found to be very small compared to the potential chemical energy available from the oxidation reaction. Zirconium is of particular interest, since it is a component of the core materials of the current nuclear power reactors. This paper describes the test apparatus and summarizes the results ofmore » four tests conducted using pure zirconium melt.« less
Rg to Lg Scattering Observations and Modeling
NASA Astrophysics Data System (ADS)
Baker, G. E.; Stevens, J. L.; Xu, H.
2005-12-01
Lg is important to explosion yield estimation and earthquake/explosion discrimination, but the source of explosion generated Lg is still an area of active investigation. We investigate the contribution of Rg scattering to Lg. Common spectral nulls in vertical component Rg and Lg have been interpreted as evidence that scattered Rg is the dominant source of Lg in some areas. The nulls are assumed to result from non-spherical components of the explosion source, modeled as a CLVD located above the explosion. We compare Rg with 3-component Sg and Lg spectra in different source areas. Wavenumber synthetics and nonlinear source calculations constrain the predicted source spectra of Rg and directly generated Lg. Modal scattering calculations place bounds on the contribution of Rg to Lg relative to pS, S*, and directly generated S-waves. Rg recorded east and west of the Quartz 3 Deep Seismic Sounding explosion have persistent spectral nulls, but at different frequencies. The azimuthal dependence of the source spectra suggests that it may not be simply related to a CLVD source. The spectral nulls of Sg, Lg, and Lg coda do not correspond to the Rg spectral nulls, so for this overburied source, the spectral observations do not indicate that Rg scattering is a dominant contributor to Lg. Preliminary comparisons of Rg with Lg spectra for events from the Semipalatinsk Test Site yield a similar result. We compare Rg at 20-100 km with Lg at 650 km for Balapan and Degelen explosions with known yield and source depth. The events range from 130 to 50 percent of theoretical containment depth, so relative contributions from a CLVD are expected to vary significantly. For studied previously NTS and Kazakh depth of burial data, the use of 3-components provides further insight into scattering between components. In a complementary analysis, to assess whether S-wave generation is affected by source depth or scaled depth, we have examined regional phase amplitudes of 13 Degelen explosions with known yields and source depths. Initial Pn, the entire P wavetrain, Sn, Lg, and Lg coda have similar log amplitude vs. log yield curves. The slope of those curves varies with frequency, from approximately 0.84 at 0.6 Hz to 0.65 at 6 Hz. We will complement these results with similar observations of Balapan explosion records.
Laser-based standoff detection of explosives: a critical review.
Wallin, Sara; Pettersson, Anna; Ostmark, Henric; Hobro, Alison
2009-09-01
A review of standoff detection technologies for explosives has been made. The review is focused on trace detection methods (methods aiming to detect traces from handling explosives or the vapours surrounding an explosive charge due to the vapour pressure of the explosive) rather than bulk detection methods (methods aiming to detect the bulk explosive charge). The requirements for standoff detection technologies are discussed. The technologies discussed are mostly laser-based trace detection technologies, such as laser-induced-breakdown spectroscopy, Raman spectroscopy, laser-induced-fluorescence spectroscopy and IR spectroscopy but the bulk detection technologies millimetre wave imaging and terahertz spectroscopy are also discussed as a complement to the laser-based methods. The review includes novel techniques, not yet tested in realistic environments, more mature technologies which have been tested outdoors in realistic environments as well as the most mature millimetre wave imaging technique.
EDS V25 containment vessel explosive qualification test report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudolphi, John Joseph
2012-04-01
The V25 containment vessel was procured by the Project Manager, Non-Stockpile Chemical Materiel (PMNSCM) as a replacement vessel for use on the P2 Explosive Destruction Systems. It is the first EDS vessel to be fabricated under Code Case 2564 of the ASME Boiler and Pressure Vessel Code, which provides rules for the design of impulsively loaded vessels. The explosive rating for the vessel based on the Code Case is nine (9) pounds TNT-equivalent for up to 637 detonations. This limit is an increase from the 4.8 pounds TNT-equivalency rating for previous vessels. This report describes the explosive qualification tests thatmore » were performed in the vessel as part of the process for qualifying the vessel for explosive use. The tests consisted of a 11.25 pound TNT equivalent bare charge detonation followed by a 9 pound TNT equivalent detonation.« less
Chemical Reactivity Test (CRT)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaka, F.
The Chemical Reactivity Test (CRT) is used to determine the thermal stability of High Explosives (HEs) and chemical compatibility between (HEs) and alien materials. The CRT is one of the small-scale safety tests performed on HE at the High Explosives Applications Facility (HEAF).
NASA Astrophysics Data System (ADS)
Reynolds, J. G.; Sandstrom, M. M.; Brown, G. W.; Warner, K. F.; Phillips, J. J.; Shelley, T. J.; Reyes, J. A.; Hsu, P. C.
2014-05-01
One of the first steps in establishing safe handling procedures for explosives is small-scale safety and thermal (SSST) testing. To better understand the response of improvised materials or homemade explosives (HMEs) to SSST testing, 16 HME materials were compared to three standard military explosives in a proficiency-type round robin study among five laboratories-two DoD and three DOE-sponsored by DHS. The testing matrix has been designed to address problems encountered with improvised materials-powder mixtures, liquid suspensions, partially wetted solids, immiscible liquids, and reactive materials. More than 30 issues have been identified that indicate standard test methods may require modification when applied to HMEs to derive accurate sensitivity assessments needed for developing safe handling and storage practices. This paper presents a generalized comparison of the results among the testing participants, comparison of friction results from BAM (German Bundesanstalt für Materi-alprüfung) and ABL (Allegany Ballistics Laboratory) designed testing equipment, and an overview of the statistical results from the RDX (1,3,5-Trinitroperhydro-1,3,5-triazine) standard tested throughout the proficiency test.
49 CFR 173.51 - Authorization to offer and transport explosives.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 2 2011-10-01 2011-10-01 false Authorization to offer and transport explosives... Class 1 § 173.51 Authorization to offer and transport explosives. (a) Unless otherwise provided in this subpart, no person may offer for transportation or transport an explosive, unless it has been tested and...
49 CFR 173.51 - Authorization to offer and transport explosives.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Authorization to offer and transport explosives... Class 1 § 173.51 Authorization to offer and transport explosives. (a) Unless otherwise provided in this subpart, no person may offer for transportation or transport an explosive, unless it has been tested and...
A New Triage Support Tool in Case of Explosion.
Yavari-Sartakhti, Olivier; Briche, Frédérique; Jost, Daniel; Michaud, Nicolas; Bignand, Michel; Tourtier, Jean-Pierre
2018-04-01
Deafness frequently observed in explosion victims, currently following terrorist attack, is a barrier to communication between victims and first responders. This may result in a delay in the initial triage and evacuation. In such situations, Paris Fire Brigade (Paris, France) proposes the use of assistance cards to help conscious, but deafened patients at the site of an attack where there may be numerous victims. Yavari-Sartakhti O , Briche F , Jost D , Michaud N , Bignand M , Tourtier JP . A new triage support tool in case of explosion. Prehosp Disaster Med. 2018;33(2):213-214.
Sub-Nanogram Detection of RDX Explosive by Monoclonal Antibodies.
Ulaeto, David O; Hutchinson, Alistair P; Nicklin, Stephen
2015-08-01
Polyclonal and monoclonal antibodies were raised to protein carrier molecules haptenized with RDX, a major component of many plastic explosives including Semtex. Sera from immunized mice detected RDX protein conjugates in standard ELISA. Clonally purified monoclonal antibodies had detection limits in the sub-ng/mL range for underivatized RDX in competition ELISA. The monoclonal antibodies are not dependent on the presence of taggants added during the manufacturing process, and are likely to have utility in the detection of any explosive containing RDX, or RDX contamination of environmental sites.
Sub-Nanogram Detection of RDX Explosive by Monoclonal Antibodies
Hutchinson, Alistair P.; Nicklin, Stephen
2015-01-01
Polyclonal and monoclonal antibodies were raised to protein carrier molecules haptenized with RDX, a major component of many plastic explosives including Semtex. Sera from immunized mice detected RDX protein conjugates in standard ELISA. Clonally purified monoclonal antibodies had detection limits in the sub-ng/mL range for underivatized RDX in competition ELISA. The monoclonal antibodies are not dependent on the presence of taggants added during the manufacturing process, and are likely to have utility in the detection of any explosive containing RDX, or RDX contamination of environmental sites. PMID:26252765
30 CFR 27.33 - Test to determine explosion-proof construction.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Test to determine explosion-proof construction. 27.33 Section 27.33 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Test Requirements § 27.33...
30 CFR 27.33 - Test to determine explosion-proof construction.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Test to determine explosion-proof construction. 27.33 Section 27.33 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Test Requirements § 27.33...
Utility of Characterizing and Monitoring Suspected Underground Nuclear Sites with VideoSAR
NASA Astrophysics Data System (ADS)
Dauphin, S. M.; Yocky, D. A.; Riley, R.; Calloway, T. M.; Wahl, D. E.
2016-12-01
Sandia National Laboratories proposed using airborne synthetic aperture RADAR (SAR) collected in VideoSAR mode to characterize the Underground Nuclear Explosion Signature Experiment (UNESE) test bed site at the Nevada National Security Site (NNSS). The SNL SAR collected airborne, Ku-band (16.8 GHz center frequency), 0.2032 meter ground resolution over NNSS in August 2014 and X-band (9.6 GHz), 0.1016 meter ground resolution fully-polarimetric SAR in April 2015. This paper reports the findings of processing and exploiting VideoSAR for creating digital elevation maps, detecting cultural artifacts and exploiting full-circle polarimetric signatures. VideoSAR collects a continuous circle of phase history data, therefore, imagery can be formed over the 360-degrees of the site. Since the Ku-band VideoSAR had two antennas suitable for interferometric digital elevation mapping (DEM), DEMs could be generated over numerous aspect angles, filling in holes created by targets with height by imaging from all sides. Also, since the X-band VideoSAR was fully-polarimetric, scattering signatures could be gleaned from all angles also. Both of these collections can be used to find man-made objects and changes in elevation that might indicate testing activities. VideoSAR provides a unique, coherent measure of ground objects allowing one to create accurate DEMS, locate man-made objects, and identify scattering signatures via polarimetric exploitation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The authors would like to thank the National Nuclear Security Administration, Defense Nuclear Nonproliferation Research and Development, for sponsoring this work. We would also like to thank the Underground Nuclear Explosion Signatures Experiment team, a multi-institutional and interdisciplinary group of scientists and engineers, for its technical contributions.
Environmental Restoration of Diesel-Range Organics from Project Chariot, Cape Thompson, Alaska
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kautsky, Mark; Hutton, Rick; Miller, Judy
The Chariot site is located in the Ogotoruk Valley in the Cape Thompson region of northwest Alaska. Project Chariot was part of the Plowshare Program, created in 1957 by the US Atomic Energy Commission (AEC), a predecessor agency of the US Department of Energy (DOE), to study peaceful uses for atomic energy. Project Chariot began in 1958 when a scientific field team chose Cape Thompson as a potential site to excavate a harbor using a series of nuclear explosions. AEC, with assistance from other agencies, conducted more than 40 pretest bioenvironmental studies of the Cape Thompson area between 1959 andmore » 1962; however, the Plowshare Program work at the Project Chariot site (Figure 1) was cancelled because of strong public opposition [1]. No nuclear explosions were ever conducted at the site.« less
Seismic-refraction measurements of crustal structure between Nevada Test Site and Ludlow, California
Gibbs, J.F.; Roller, J.C.
1964-01-01
Seismic-refraction measurements from nuclear and chemical explosions were made along a line from the Nevada Test Site (NTS) to Ludlow, California, and additional recordings from nuclear explosions were made southward toward Calexico, California. The time of first arrivals from the Ludlow shotpoint is expressed as T0 = 0.00 + Δ/2.50 (assumed), T1 = 1.00 + Δ6.10, T2 = 2.81 + Δ/6.80, and T3 = 5.48 + ~7.76, where T is in seconds and distance Δ is in km. First arrival times from NTS fit the lines T1 = 0.74 + Δ/6.10, T2 = 2.81 + Δ/6.80 (assumed), T3 = 6.70 + Δ/8.04 to a distance of 265 km, beyond 265 km T3 = 5.83 + Δ/7.75. The difference in the apparent velocities of the Pn (T3) arrival is caused by variations in the dip of the Mohorovicic discontinuity. The thickness of the successive layers at NTS are H0 s 1.0 km (V0 ~ 2.5 km/sec), H1 = 13 km (v1 = 6.1 km/sec), and H2 = 20 km (v2 = 6.8 km/ sec); the total crustal thickness is 34 km. The successive crustal layers at Ludlow have a thickness of H0 = 1.4 km, H1 = 13 km, and H2 = 13 km; the total crustal thickness is 27 km.
77 FR 55108 - Explosive Siting Requirements
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-07
... against hazardous fragments, which are defined as having a kinetic energy of 58 foot-pounds, which is a level of kinetic energy capable of causing a fatality. The probability of a person six feet tall and one.... Explosions are due to the sudden release of energy over a short period of time and may or may not involve...
Quantification of non-ideal explosion violence with a shock tube
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, Scott I; Hill, Larry G
There is significant interest in quantifying the blast violence associated with various nonideal explosions. Such data is essential to evaluate the damage potential of both explosive cookoff and terrorist explosive scenarios. We present a technique designed to measure the source energy associated with a non-ideal, asymmetrical, and three-dimensional explosion. A tube is used to confine and focus energy from a blast event into a one-dimensional, quasi-planar shock front. During propagation along the length of the tube, the wave is allowed to shocksteepen into a more ideal form. Pressure transducers then measure the shock overpressure as a function of the distancemore » from the source. One-dimensional blast scaling theory allows calculation of the source energy from this data. This small-scale test method addresses cost and noise concerns as well as boosting and symmetry issues associated with large-scale, three-dimensional, blast arena tests. Results from both ideal explosives and non-ideal explosives are discussed.« less
Printable sensors for explosive detonation
NASA Astrophysics Data System (ADS)
Griffith, Matthew J.; Cooling, Nathan A.; Elkington, Daniel C.; Muller, Elmar; Belcher, Warwick J.; Dastoor, Paul C.
2014-10-01
Here, we report the development of an organic thin film transistor (OTFT) based on printable solution processed polymers and employing a quantum tunnelling composite material as a sensor to convert the pressure wave output from detonation transmission tubing (shock tube) into an inherently amplified electronic signal for explosives initiation. The organic electronic detector allows detection of the signal in a low voltage operating range, an essential feature for sites employing live ordinances that is not provided by conventional electronic devices. We show that a 30-fold change in detector response is possible using the presented detector assembly. Degradation of the OTFT response with both time and repeated voltage scans was characterised, and device lifetime is shown to be consistent with the requirements for on-site printing and usage. The integration of a low cost organic electronic detector with inexpensive shock tube transmission fuse presents attractive avenues for the development of cheap and simple assemblies for precisely timed initiation of explosive chains.
Matter-Radiation Interactions in Extremes
to resolve this capability gap. An experimental explosive is shown igniting during small-scale impact testing. An experimental explosive is shown igniting during small-scale impact testing. Accelerating in to
Locating bomb factories by detecting hydrogen peroxide.
Romolo, Francesco Saverio; Connell, Samantha; Ferrari, Carlotta; Suarez, Guillaume; Sauvain, Jean-Jacques; Hopf, Nancy B
2016-11-01
The analytical capability to detect hydrogen peroxide vapour can play a key role in localizing a site where a H2O2 based Improvised Explosive (IE) is manufactured. In security activities it is very important to obtain information in a short time. For this reason, an analytical method to be used in security activity needs portable devices. The authors have developed the first analytical method based on a portable luminometer, specifically designed and validated to locate IE manufacturing sites using quantitative on-site vapour analysis for H2O2. The method was tested both indoor and outdoor. The results demonstrate that the detection of H2O2 vapours could allow police forces to locate the site, while terrorists are preparing an attack. The collected data are also very important in developing new sensors, able to give an early alarm if located at a proper distance from a site where an H2O2 based IE is prepared. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Knox, H. A.; Abbott, R. E.; Bonal, N. D.; Aldridge, D. F.; Preston, L. A.; Ober, C.
2012-12-01
In support of the Source Physics Experiment (SPE) at the Nevada National Security Site (NNSS), we have conducted two cross-borehole seismic experiments in the Climax Stock. The first experiment was conducted prior to the third shot in this multi-detonation program using two available boreholes and the shot hole, while the second experiment was conducted after the shot using four of the available boreholes. The first study focused on developing a well-characterized 2D pre-explosion Vp model including two VSPs and a seismic refraction survey, as well as quantifying baseline waveform similarity at reoccupied sites. This was accomplished by recording both "sparker" and accelerated weight drop sources on a hydrophone string and surface geophones. In total more than 18,500 unique source-receiver pairs were acquired during this testing. In the second experiment, we reacquired aproximately 8,800 source-receiver pairs and performed a cross-line survey allowing for a 3D post-explosion Vp model. The data acquired from the reoccupied sites was processed using cross-correlation methods and change detection methodologies, including comparison of the tomographic images. The survey design and subsequent processing provided an opportunity to investigate seismic wave propagation through damaged rock. We also performed full waveform forward modelling for a granitic body hosting a perched aquifer. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
A compilation of nuclear weapons test detonation data for U.S. Pacific ocean tests.
Simon, S L; Robison, W L
1997-07-01
Prior to December 1993, the explosive yields of 44 of 66 nuclear tests conducted by the United States in the Marshall Islands were still classified. Following a request from the Government of the Republic of the Marshall Islands to the U.S. Department of Energy to release this information, the Secretary of Energy declassified and released to the public the explosive yields of the Pacific nuclear tests. This paper presents a synopsis of information on nuclear test detonations in the Marshall Islands and other locations in the mid-Pacific including dates, explosive yields, locations, weapon placement, and summary statistics.
How Unique is Any Given Seismogram? - Exploring Correlation Methods to Identify Explosions
NASA Astrophysics Data System (ADS)
Walter, W. R.; Dodge, D. A.; Ford, S. R.; Pyle, M. L.; Hauk, T. F.
2015-12-01
As with conventional wisdom about snowflakes, we would expect it unlikely that any two broadband seismograms would ever be exactly identical. However depending upon the resolution of our comparison metric, we do expect, and often find, bandpassed seismograms that correlate to very high levels (>0.99). In fact regional (e.g. Schaff and Richards, 2011) and global investigations (e.g. Dodge and Walter, 2015) find large numbers of highly correlated seismograms. Decreasing computational costs are increasing the tremendous potential for correlation in lowering detection, location and identification thresholds for explosion monitoring (e.g. Schaff et al., 2012, Gibbons and Ringdal, 2012; Zhang and Wen, 2015). We have shown in the case of Source Physics Experiment (SPE) chemical explosions, templates at local and near regional stations can detect, locate and identify very small explosions, which might be applied to monitoring active test sites (Ford and Walter, 2015). In terms of elastic theory, seismograms are the convolution between source and Green function terms. Thus high correlation implies similar sources, closely located. How do we quantify this physically? For example it is well known that as the template event and target events are increasingly separated spatially, their correlation diminishes, as the difference in the Green function between the two events grows larger. This is related to the event separation in terms of wavelength, the heterogeneity of the Earth structure, and the time-bandwidth of the correlation parameters used, but this has not been well quantified. We are using the historic dataset of nuclear explosions in southern Nevada to explore empirically where and how well these events correlate as a function of location, depth, size, time-bandwidth and other parameters. A goal is to develop more meaningful and physical metrics that go beyond the correlation coefficient and can be applied to explosion monitoring problems, particularly event identification.
Updates to concepts on phreatomagmatic maar-diatremes and their pyroclastic deposits
NASA Astrophysics Data System (ADS)
Valentine, Greg A.; White, James D. L.; Ross, Pierre-Simon; Graettinger, Alison H.; Sonder, Ingo
2017-08-01
Recent work is changing our understanding of phreatomagmatic maar-diatreme eruptions and resulting deposits. In previous models, explosions were often inferred to take place only at the base of a diatreme, with progressive downward migration due to a cone of depression in the host aquifer. However, diatremes themselves contain much water that is heterogeneously distributed, and field evidence supports the existence of explosion sites at many vertical and lateral locations within them. Crater sizes have been used to estimate explosion energies, but this only works for single-explosion craters where the depth of explosion is independently known, and has limited value for multi-explosion maar-diatremes. Deep-seated lithic clasts in tephra ring beds have been taken to indicate the depth of the explosion that produced that bed. However, only relatively shallow explosions actually vent to the surface, and deep-seated lithics are gradually brought to shallow depths through step-wise mixing of multiple subsurface explosions. Grain-size of tephra-ring deposits is often inferred to indicate fragmentation efficiency. However, other factors strongly influence deposit grain size, including the scaled depth of an explosion and the interaction of an erupting jet with topography around a vent (e.g., crater), along with long recognized effects of mechanical properties of host rocks and recycling within the vent/diatreme. These insights provide a foundation for future research into this important volcano type.
The Effects of Heterogeneities on Seismic Wave Propagation in the Climax Stock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagan Webb, C., Snelson, C. M., White, R., Emmitt, R., Barker, D., Abbott, R., Bonal, N.
2011-12-01
The Comprehensive Nuclear Test-Ban Treaty requires the ability to detect low-yield (less than 150kton) nuclear events. This kind of monitoring can only be done seismically on a regional scale (within 2000km). At this level, it is difficult to distinguish between low-yield nuclear events and non-nuclear events of similar magnitude. In order to confidently identify a nuclear event, a more detailed understanding of nuclear seismic sources is needed. In particular, it is important to know the effects of local geology on the seismic signal. This study focuses on P-wave velocity in heterogeneous granitoid. The Source Physics Experiment (SPE) is currently performingmore » low-yield tests with chemical explosives at the Nevada National Security Site (NNSS). The exact test site was chosen to be in the Climax Stock, a cretaceous granodiorite and quartz-monzonite pluton located in Area 15 of the NNSS. It has been used in the past for the Hard Hat and Pile Driver nuclear tests, which provided legacy data that can be used to simulate wave propagation. The Climax Stock was originally chosen as the site of the SPE partly because of its assumed homogeneity. It has since been discovered that the area of the stock where the SPE tests are being performed contains a perched water table. In addition, the stock is known to contain an extensive network of faults, joints, and fractures, but the exact effect of these structural features on seismic wave velocity is not fully understood. The SPE tests are designed to seismically capture the explosion phenomena from the near- to the far-field transition of the seismic waveform. In the first SPE experiment, 100kg of chemical explosives were set off at a depth of 55m. The blast was recorded with an array of sensors and diagnostics, including accelerometers, geophones, rotational sensors, short-period and broadband seismic sensors, Continuous Reflectometry for Radius vs. Time Experiment, Time of Arrival, Velocity of Detonation, and infrasound sensors. The focus of this study is two-fold: (1) the geophone array that was focused over the SPE shot and (2) a high-resolution seismic profile that was recently acquired at the field site. The geophone array was placed radially around the SPE shot in five directions with 100m spacing and out to a distance of 2 km. The high-resolution profile was about 475m in length with station and shot spacing of 5m using a 7000lb mini-vibe as a source. In both data sets, the first arrivals will be used to develop velocity models. For the geophone array, 1-D P-wave velocity models will be developed to determine an average apparent velocity of the Climax Stock. The high-resolution data will be used to develop a 2-D P-wave velocity model along the seismic profile. This is in an effort to elucidate the water table in more detail and provide additional information on the near-surface structure. These results will be used in the overall modeling effort to fully characterize the test bed and develop a physics-based model to simulate seismic energy from the SPE events.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
HSU, P C; Hust, G; May, C
Some energetic materials may explode at fairly low temperatures and the violence from thermal explosion may cause a significant damage. Thus it is important to understand the response of energetic materials to thermal insults for safe handling and storage of energetic materials. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory can measure times to explosion, lowest explosion temperatures, and determine kinetic parameters of energetic materials. Samples of different configurations can be tested in the system. The ODTX testing can also generate useful data for determining thermal explosion violence of energetic materials. We also performedmore » detonation experiments of LX-10 in aluminum anvils to determine the detonation violence and validated the Zerilli Armstrong aluminum model. Results of the detonation experiments agreed well with the model prediction.« less
Impact fuze testing at 3000 m/sec employing explosively accelerating plates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gill, W.
1981-01-01
The Explosives Testing Division at Sandia has developed a method of simulating a re-entry vehicle impacting the ground. The purpose of the simulation is to evaluate different fusing concepts. The design and operation of this impact testing facility are described.
Colorimetric chemical analysis sampler for the presence of explosives
Nunes, Peter J [Danville, CA; Del Eckels, Joel [Livermore, CA; Reynolds, John G [San Ramon, CA; Pagoria, Philip F [Livermore, CA; Simpson, Randall L [Livermore, CA
2011-09-27
A tester for testing for explosives comprising a body, a lateral flow swab unit operably connected to the body, a explosives detecting reagent contained in the body, and a dispenser operatively connected to the body and the lateral flow swab unit. The dispenser selectively allows the explosives detecting reagent to be delivered to the lateral flow swab unit.
Colorimetric chemical analysis sampler for the presence of explosives
Nunes, Peter J.; Eckels, Joel Del; Reynolds, John G.; Pagoria, Philip F.; Simpson, Randall L.
2014-07-01
A tester for testing for explosives comprising a body, a lateral flow swab unit operably connected to the body, a explosives detecting reagent contained in the body, and a dispenser operatively connected to the body and the lateral flow swab unit. The dispenser selectively allows the explosives detecting reagent to be delivered to the lateral flow swab unit.
Infrasound Sensor and Porous-Hose Filter Characterization Results
NASA Astrophysics Data System (ADS)
Hart, D. M.; Harris, J. M.
2008-12-01
The Ground-Based Nuclear Explosion Monitoring Research and Development (GNEM R&D) program at Sandia National Laboratories (SNL) is regarded as the primary center for unbiased expertise in testing and evaluation of geophysical sensors and instrumentation for nuclear explosion monitoring. Over the past year much of our work has focused in the area of infrasound sensor characterization through the continuing development of an infrasound sensor characterization test-bed. Our main areas of focus have been in new sensor characterization and understanding the effects of porous-hose filters for reducing acoustic background signals. Three infrasound sensors were evaluated for characteristics of instrument response, linearity and self-noise. The sensors tested were Chaparral Physics model 2.5 low-gain, New Mexico Tech All-Sensor and the Inter-Mountain Labs model SS avalanche sensor. For the infrasound sensors tested, the test results allow us to conclude that two of the three sensors had sufficiently quiet noise floor to be at or below the Acoustic low-noise model from 0.1 to 7 Hz, which make those sensors suitable to explosion monitoring. The other area of focus has been to understand the characteristics of porous-hose filters used at some monitoring sites. For this, an experiment was designed in which two infrasound sensors were co- located. One sensor was connected to a typical porous-hose spatial filter consisting of eight individual hoses covering a 30m aperture and the second sensor was left open to unimpeded acoustic input. Data were collected for several days, power spectrum computed for two-hour windows and the relative gain of the porous-hose filters were estimated by dividing the power spectrum. The porous-hose filter appears to attenuate less than 3 dB (rel 1 Pa**2/Hz) below 0.1 Hz and as much as 25 dB at 1 Hz and between 20 to 10 dB above 10 Hz. Several more experiments will be designed to address the effects of different characteristics of the individual porous-hoses, such as length, number and geometric arrangement. This work directly impacts the Ground-Based Nuclear Explosion Monitoring mission by providing a facility, equipment, and personnel to give the operational monitoring agencies confidence in deployed instrumentation and capability for mission success.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Programs
2010-06-17
The Area 5 Hazardous Waste Storage Unit (HWSU) was established to support testing, research, and remediation activities at the Nevada Test Site (NTS), a large-quantity generator of hazardous waste. The HWSU, located adjacent to the Area 5 Radioactive Waste Management Site (RWMS), is a prefabricated, rigid steel-framed, roofed shelter used to store hazardous nonradioactive waste generated on the NTS. No offsite generated wastes are managed at the HWSU. Waste managed at the HWSU includes the following categories: Flammables/Combustibles; Acid Corrosives; Alkali Corrosives; Oxidizers/Reactives; Toxics/Poisons; and Other Regulated Materials (ORMs). A list of the regulated waste codes accepted for storage atmore » the HWSU is provided in Section B.2. Hazardous wastes stored at the HWSU are stored in U.S. Department of Transportation (DOT) compliant containers, compatible with the stored waste. Waste transfer (between containers) is not allowed at the HWSU and containers remain closed at all times. Containers are stored on secondary containment pallets and the unit is inspected monthly. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational Resource Conservation and Recovery Act (RCRA) units at the NTS and their respective regulatory status.« less
NV/YMP radiological control manual, Revision 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gile, A.L.
The Nevada Test Site (NTS) and the adjacent Yucca Mountain Project (YMP) are located in Nye County, Nevada. The NTS has been the primary location for testing nuclear explosives in the continental US since 1951. Current activities include operating low-level radioactive and mixed waste disposal facilities for US defense-generated waste, assembly/disassembly of special experiments, surface cleanup and site characterization of contaminated land areas, and non-nuclear test operations such as controlled spills of hazardous materials at the hazardous Materials (HAZMAT) Spill Center (HSC). Currently, the major potential for occupational radiation exposure is associated with the burial of low-level nuclear waste andmore » the handling of radioactive sources. Planned future remediation of contaminated land areas may also result in radiological exposures. The NV/YMP Radiological Control Manual, Revision 2, represents DOE-accepted guidelines and best practices for implementing Nevada Test Site and Yucca Mountain Project Radiation Protection Programs in accordance with the requirements of Title 10 Code of Federal Regulations Part 835, Occupational Radiation Protection. These programs provide protection for approximately 3,000 employees and visitors annually and include coverage for the on-site activities for both personnel and the environment. The personnel protection effort includes a DOE Laboratory Accreditation Program accredited dosimetry and personnel bioassay programs including in-vivo counting, routine workplace air sampling, personnel monitoring, and programmatic and job-specific As Low as Reasonably Achievable considerations.« less
Nuclear Explosion Monitoring History and Research and Development
NASA Astrophysics Data System (ADS)
Hawkins, W. L.; Zucca, J. J.
2008-12-01
Within a year after the nuclear detonations over Hiroshima and Nagasaki the Baruch Plan was presented to the newly formed United Nations Atomic Energy Commission (June 14, 1946) to establish nuclear disarmament and international control over all nuclear activities. These controls would allow only the peaceful use of atomic energy. The plan was rejected through a Security Council veto primarily because of the resistance to unlimited inspections. Since that time there have been many multilateral, and bilateral agreements, and unilateral declarations to limit or eliminate nuclear detonations. Almost all of theses agreements (i.e. treaties) call for some type of monitoring. We will review a timeline showing the history of nuclear testing and the more important treaties. We will also describe testing operations, containment, phenomenology, and observations. The Comprehensive Nuclear Test Ban Treaty (CTBT) which has been signed by 179 countries (ratified by 144) established the International Monitoring System global verification regime which employs seismic, infrasound, hydroacoustic and radionuclide monitoring techniques. The CTBT also includes on-site inspection to clarify whether a nuclear explosion has been carried out in violation of the Treaty. The US Department of Energy (DOE) through its National Nuclear Security Agency's Ground-Based Nuclear Explosion Monitoring R&D Program supports research by US National Laboratories, and universities and industry internationally to detect, locate, and identify nuclear detonations. This research program builds on the broad base of monitoring expertise developed over several decades. Annually the DOE and the US Department of Defense jointly solicit monitoring research proposals. Areas of research include: seismic regional characterization and wave propagation, seismic event detection and location, seismic identification and source characterization, hydroacoustic monitoring, radionuclide monitoring, infrasound monitoring, and data processing and analysis. Reports from the selected research projects are published in the proceedings of the annual Monitoring Research Review conference.
Numerical simulation study on thermal response of PBX 9501 to low velocity impact
NASA Astrophysics Data System (ADS)
Lou, Jianfeng; Zhou, Tingting; Zhang, Yangeng; Zhang, Xiaoli
2017-01-01
Impact sensitivity of solid high explosives, an important index in evaluating the safety and performance of explosives, is an important concern in handling, storage, and shipping procedures. It is a great threat for either bare dynamite or shell charge when subjected to low velocity impact involved in traffic accidents or charge piece drops. The Steven test is an effective tool to study the relative sensitivity of various explosives. In this paper, we built the numerical simulation method involving mechanical, thermo and chemical properties of Steven test based on the thermo-mechanical coupled material model. In the model, the stress-strain relationship is described by dynamic plasticity model, the thermal effect of the explosive induced by impact is depicted by isotropic thermal material model, the chemical reaction of explosives is described by Arrhenius reaction rate law, and the effects of heating and melting on mechanical properties and thermal properties of materials are also taken into account. Specific to the standard Steven test, the thermal and mechanical response rules of PBX 9501 at various impact velocities were numerically analyzed, and the threshold velocity of explosive initiation was obtained, which is in good agreement with experimental results. In addition, the effect of confine condition of test device to the threshold velocity was explored.
Stockpile Stewardship: How We Ensure the Nuclear Deterrent Without Testing
None
2018-01-16
In the 1990s, the U.S. nuclear weapons program shifted emphasis from developing new designs to dismantling thousands of existing weapons and maintaining a much smaller enduring stockpile. The United States ceased underground nuclear testing, and the Department of Energy created the Stockpile Stewardship Program to maintain the safety, security, and reliability of the U.S. nuclear deterrent without full-scale testing. This video gives a behind the scenes look at a set of unique capabilities at Lawrence Livermore that are indispensable to the Stockpile Stewardship Program: high performance computing, the Superblock category II nuclear facility, the JASPER a two stage gas gun, the High Explosive Applications Facility (HEAF), the National Ignition Facility (NIF), and the Site 300 contained firing facility.
Flammability of gas mixtures. Part 1: fire potential.
Schröder, Volkmar; Molnarne, Maria
2005-05-20
International and European dangerous substances and dangerous goods regulations refer to the standard ISO 10156 (1996). This standard includes a test method and a calculation procedure for the determination of the flammability of gases and gas mixtures in air. The substance indices for the calculation, the so called "Tci values", which characterise the fire potential, are provided as well. These ISO Tci values are derived from explosion diagrams of older literature sources which do not take into account the test method and the test apparatus. However, since the explosion limits are influenced by apparatus parameters, the Tci values and lower explosion limits, given by the ISO tables, are inconsistent with those measured according to the test method of the same standard. In consequence, applying the ISO Tci values can result in wrong classifications. In this paper internationally accepted explosion limit test methods were evaluated and Tci values were derived from explosion diagrams. Therefore, an "open vessel" method with flame propagation criterion was favoured. These values were compared with the Tci values listed in ISO 10156. In most cases, significant deviations were found. A detailed study about the influence of inert gases on flammability is the objective of Part 2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maienschein, J L; Wardell, J F; Reaugh, J E
We developed the Scaled Thermal Explosion Experiment (STEX) to provide a database of reaction violence from thermal explosion of explosives of interest. A cylinder of explosive, 1, 2 or 4 inches in diameter, is confined in a steel cylinder with heavy end caps, and heated under controlled conditions until it explodes. Reaction violence is quantified by micropower radar measurement of the cylinder wall velocity, and by strain gauge data at reaction onset. Here we describe the test concept and design, show that the conditions are well understood, and present initial data with HMX-based explosives. The HMX results show that anmore » explosive with high binder content yields less-violent reactions that an explosive with low binder content, and that the HMX phase at the time of explosion plays a key role in reaction violence.« less
NASA Astrophysics Data System (ADS)
Sexton, E. A.; Snelson, C. M.; Chipman, V.; Emer, D. F.; White, R. L.; Emmitt, R.; Wright, A. A.; Drellack, S.; Huckins-Gang, H.; Mercadante, J.; Floyd, M.; McGowin, C.; Cothrun, C.; Bonal, N.
2013-12-01
An objective of the Source Physics Experiment (SPE) is to identify low-yield nuclear explosions from a regional distance. Low-yield nuclear explosions can often be difficult to discriminate among the clutter of natural and man-made explosive events (e.g., earthquakes and mine blasts). The SPE is broken into three phases. Phase I has provided the first of the physics-based data to test the empirical models that have been used to discriminate nuclear events. The Phase I series of tests were placed within a highly fractured granite body. The evolution of the project has led to development of Phase II, to be placed within the opposite end member of geology, an alluvium environment, thereby increasing the database of waveforms to build upon in the discrimination models. Both the granite and alluvium sites have hosted nearby nuclear tests, which provide comparisons for the chemical test data. Phase III of the SPE is yet to be determined. For Phase II of the experiment, characterization of the location is required to develop the geologic/geophysical models for the execution of the experiment. Criteria for the location are alluvium thickness of approximately 170 m and a water table below 170 m; minimal fracturing would be ideal. A P-wave mini-vibroseis survey was conducted at a potential site in alluvium to map out the subsurface geology. The seismic reflection profile consisted of 168 geophone stations, spaced 5 m apart. The mini-vibe was a 7,000-lb peak-force source, starting 57.5 m off the north end of the profile and ending 57.5 m past the southern-most geophone. The length of the profile was 835 m. The source points were placed every 5 m, equally spaced between geophones to reduce clipping. The vibroseis sweep was from 20 Hz down to 180 Hz over 8 seconds, and four sweeps were stacked at each shot location. The shot gathers show high signal-to-noise ratios with clear first arrivals across the entire spread and the suggestion of some shallow reflectors. The data were processed using Seismic Processing Workshop in a standard reflection processing flow. The results from this vibroseis survey will contribute to the characterization of the location for Phase II of the SPE in order to appropriately execute the experiment. This work was done by National Security Technologies, LLC, under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy. DOE/NV/25946--1836. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
A Mouse Model of Blast-Induced mild Traumatic Brain Injury
Rubovitch, Vardit; Ten-Bosch, Meital; Zohar, Ofer; Harrison, Catherine R.; Tempel-Brami, Catherine; Stein, Elliot; Hoffer, Barry J.; Balaban, Carey D.; Schreiber, Shaul; Chiu, Wen-Ta; Pick, Chaim G.
2011-01-01
Improvised explosive devices (IEDs) are one of the main causes for casualties among civilians and military personnel in the present war against terror. Mild traumatic brain injury from IEDs induces various degrees of cognitive, emotional and behavioral disturbances but knowledge of the exact brain pathophysiology following exposure to blast is poorly understood. The study was aimed at establishing a murine model for a mild BI-TBI that isolates low-level blast pressure effects to the brain without systemic injuries. An open-field explosives detonation was used to replicate, as closely as possible, low-level blast trauma in the battlefield or at a terror-attack site. No alterations in basic neurological assessment or brain gross pathology were found acutely in the blast-exposed mice. At 7 days post blast, cognitive and behavioral tests revealed significantly decreased performance at both 4 and 7 meters distance from the blast (5.5 and 2.5 PSI, respectively). At 30 days post-blast, clear differences were found in animals at both distances in the object recognition test, and in the 7 m group in the Y maze test. Using MRI, T1 weighted images showed an increased BBB permeability one month post-blast. DTI analysis showed an increase in fractional anisotropy (FA) and a decrease in radial diffusivity. These changes correlated with sites of up-regulation of manganese superoxide dismutase 2 in neurons and CXC-motif chemokine receptor 3 around blood vessels in fiber tracts. These results may represent brain axonal and myelin abnormalities. Cellular and biochemical studies are underway in order to further correlate the blast-induced cognitive and behavioral changes and to identify possible underlying mechanisms that may help develop treatment- and neuroprotective modalities. PMID:21946269
Explosives for Lunar Seismic Profiling Experiment (LSPE)
NASA Technical Reports Server (NTRS)
1973-01-01
Explosive charges of various sizes were investigated for use in lunar seismic studies. Program logistics, and the specifications for procurement of bulk explosives are described. The differential analysis, thermal properties, and detonation velocity measurements on HNS/Teflon 7C 90/10 are reported along with the field tests of the hardware. It is concluded that nearly all large explosive charges crack after fabrication, from aging or thermal shock. The cracks do not affect the safety, or reliability of the explosives.
The behavior limestone under explosive load
NASA Astrophysics Data System (ADS)
Orlov, M. Yu; Orlova, Yu N.; Bogomolov, G. N.
2016-11-01
Limestone behavior under explosive loading was investigated. The behavior of the limestone by the action of the three types of explosives, including granular, ammonite and emulsion explosives was studied in detail. The shape and diameter of the explosion craters were obtained. The observed fragments after the blast have been classified as large, medium and small fragments. Three full-scale experiments were carried out. The research results can be used as a qualitative test for the approbation of numerical methods.
RDX (hexahydro-1 ,3,5-trinitro-1 ,3,5-triazine, hexogen, Royal Demolition eXplosive) is an explosive widely used by the military and has been found in soil and ground water in and surrounding training ranges, creating potential hazards to the environment and human health. Oral RD...
Uptake of explosives from contaminated soil by existing vegetation at the Iowa Army Ammunition Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, J.F.; Zellmer, S.D.; Tomczyk, N.A.
This study examines the uptake of explosives by existing vegetation growing in soils contaminated with 2,4,6-trinitrotoluene (TNT) and 1,3,5-trinitro-3,5-triazine (RDX) in three areas at the Iowa Army Ammunition Plant (IAAP). To determine explosives uptake under natural environmental conditions, existing plant materials and soil from the root zone were sampled at different locations in each area, and plant materials were separated by species. Standard methods were used to determine the concentrations of explosives, their derivatives, and metabolites in the soil samples. Plant materials were also analyzed. The compound TNT was not detected in the aboveground portion of plants, and vegetation growingmore » on TNT-contaminated soils is not considered a health hazard. However, soil and plant roots may contain TNT degradation products that may be toxic; hence, their consumption is not advised. The compound RDX was found in the tops and roots of plants growing on RDX-contaminated soils at all surveyed sites. Although RDX is not a listed carcinogen, several of its potentially present degradation products are carcinogens. Therefore, the consumption of any plant tissues growing on RDX-contaminated sites should be considered a potential health hazard.« less
Velocity Model Using the Large-N Seismic Array from the Source Physics Experiment (SPE)
NASA Astrophysics Data System (ADS)
Chen, T.; Snelson, C. M.
2016-12-01
The Source Physics Experiment (SPE) is a multi-institutional, multi-disciplinary project that consists of a series of chemical explosions conducted at the Nevada National Security Site (NNSS). The goal of SPE is to understand the complicated effect of geological structures on seismic wave propagation and source energy partitioning, develop and validate physics-based modeling, and ultimately better monitor low-yield nuclear explosions. A Large-N seismic array was deployed at the SPE site to image the full 3D wavefield from the most recent SPE-5 explosion on April 26, 2016. The Large-N seismic array consists of 996 geophones (half three-component and half vertical-component sensors), and operated for one month, recording the SPE-5 shot, ambient noise, and additional controlled-sources (a large hammer). This study uses Large-N array recordings of the SPE-5 chemical explosion to develop high resolution images of local geologic structures. We analyze different phases of recorded seismic data and construct a velocity model based on arrival times. The results of this study will be incorporated into the large modeling and simulation efforts as ground-truth further validating the models.
Al-Dhabaan, Fahad Abdullah M; Bakhali, Ali Hassan
2017-05-01
Routine manufacture, detonation and disposal of explosives in land and groundwater have resulted in complete pollution. Explosives are xenobiotic compounds, being toxic to biological systems, and their recalcitrance leads to persistence in the environment. The methods currently used for the remediation of explosive contaminated sites are expensive and can result in the formation of toxic products. The present study aimed to investigate the bacterial strains using the Biolog plates in the soil from the Riyadh community. The microbial strains were isolated using the spread plate technique and were identified using the Biolog method. In this study we have analyzed from bacterial families of soil samples, obtained from the different sites in 5 regions at Explosive Institute. Our results conclude that Biolog MicroPlates were developed for the rapid identification of bacterial isolates by sole-carbon source utilization and can be used for the identification of bacteria. Out of five communities, only four families of bacteria indicate that the microbial community lacks significant diversity in region one from the Riyadh community in Saudi Arabia. More studies are needed to be carried out in different regions to validate our results.
Test of the stress sensitization model in adolescents following the pipeline explosion.
Shao, Di; Gao, Qing-Ling; Li, Jie; Xue, Jiao-Mei; Guo, Wei; Long, Zhou-Ting; Cao, Feng-Lin
2015-10-01
The stress sensitization model states that early traumatic experiences increase vulnerability to the adverse effects of subsequent stressful life events. This study examined the effect of stress sensitization on development of posttraumatic stress disorder (PTSD) symptoms in Chinese adolescents who experienced the pipeline explosion. A total of 670 participants completed self-administered questionnaires on demographic characteristics and degree of explosion exposure, the Childhood Trauma Questionnaire (CTQ), and the Posttraumatic Stress Disorder Checklist-Civilian Version (PCL-C). Associations among the variables were explored using MANOVA, and main effects and interactions were analyzed. Overall MANOVA tests with the PCL-C indicated significant differences for gender (F=6.86, p=.000), emotional abuse (F=6.79, p=.000), and explosion exposure (F=22.40, p=.000). There were significant interactions between emotional abuse and explosion exposure (F=3.98, p=.008) and gender and explosion exposure (F=2.93, p=.033). Being female, childhood emotional abuse, and a high explosion exposure were associated with high PTSD symptom levels. Childhood emotional abuse moderated the effect of explosion exposure on PTSD symptoms. Thus, stress sensitization influenced the development of PTSD symptoms in Chinese adolescents who experienced the pipeline explosion as predicted by the model. Copyright © 2015 Elsevier Inc. All rights reserved.
Scaling multiblast craters: General approach and application to volcanic craters
NASA Astrophysics Data System (ADS)
Sonder, I.; Graettinger, A. H.; Valentine, G. A.
2015-09-01
Most volcanic explosions leave a crater in the surface around the center of the explosions. Such craters differ from products of single events like meteorite impacts or those produced by military testing because they typically result from multiple, rather than single, explosions. Here we analyze the evolution of experimental craters that were created by several detonations of chemical explosives in layered aggregates. An empirical relationship for the scaled crater radius as a function of scaled explosion depth for single blasts in flat test beds is derived from experimental data, which differs from existing relations and has better applicability for deep blasts. A method to calculate an effective explosion depth for nonflat topography (e.g., for explosions below existing craters) is derived, showing how multiblast crater sizes differ from the single-blast case: Sizes of natural caters (radii and volumes) are not characteristic of the number of explosions, nor therefore of the total acting energy, that formed a crater. Also, the crater size is not simply related to the largest explosion in a sequence but depends upon that explosion and the energy of that single blast and on the cumulative energy of all blasts that formed a crater. The two energies can be combined to form an effective number of explosions that is characteristic for the crater evolution. The multiblast crater size evolution has implications on the estimates of volcanic eruption energies, indicating that it is not correct to estimate explosion energy from crater size using previously published relationships that were derived for single-blast cases.
30 CFR 18.14 - Identification of tested noncertified explosion-proof enclosures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Identification of tested noncertified explosion-proof enclosures. 18.14 Section 18.14 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT...
Radiostrontium contamination of soil and vegetation within the Semipalatinsk test site.
Howard, B J; Semioschkina, N; Voigt, G; Mukusheva, M; Clifford, J
2004-12-01
The Semipalatinsk nuclear test site (STS) in the Republic of Kazakhstan was an important site for testing atomic bombs and other civil and military nuclear devices of the former Soviet Union. Results are presented from investigations on the extent of radiostrontium contamination in soils and vegetation at the technical areas of the STS, where the tests were conducted and in pastures used by farmers for grazing animals or for hay production. Our data are compared with those reported largely in the recent Russian language literature that has been reviewed. The extent of (90)Sr contamination of soil is highly variable over the STS with the highest values associated with the technical areas, particularly the Degelen mountains. Recently measured values in both the present data and the Russian language literature confirm the relatively high current contamination of soil and vegetation in the vicinity of tunnels and associated watercourses in the Degelen area. The proportion of (90)Sr in soil which could not be extracted with 6 M HCl was only an average of 20%, which is low compared to other test site areas and possibly indicates a relatively high mobility in this area, because the (90)Sr is derived from leakage from explosion tunnels along watercourses rather than being associated with fused silicates. A comparison of relative activity concentrations in soil and vegetation suggests that the transfer of (90)Sr to vegetation on the STS is high compared to that of (137)Cs and plutonium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loftin, B.; Abramczyk, G.
Destructive testing of an ES-3100 Shipping Container was completed by the Packaging Technology and Pressurized Systems organization within the Savannah River National Laboratory in order to qualify the ES-3100 as a candidate storage and transport package for applications at various facilities at the Savannah River Site. The testing consisted of the detonation of three explosive charges at separate locations on a single ES-3100. The locations for the placement were chosen based the design of the ES-3100 as well as the most likely places for the package to incur damage as a result of the detonation. The testing was completed atmore » an offsite location, which raised challenges as well as allowed for development of new partnerships for this testing and for potential future testing. The results of the testing, the methods used to complete the testing, and similar, potential future work will be discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richards, Paul G.
A comprehensive ban on nuclear explosive testing is briefly characterized as an arms control initiative related to the Non-Proliferation Treaty. The work of monitoring for nuclear explosions uses several technologies of which the most important is seismology-a physics discipline that draws upon extensive and ever-growing assets to monitor for earthquakes and other ground-motion phenomena as well as for explosions. This paper outlines the basic methods of seismic monitoring within that wider context, and lists web-based and other resources for learning details. It also summarizes the main conclusions, concerning capability to monitor for test-ban treaty compliance, contained in a major studymore » published in March 2012 by the US National Academy of Sciences.« less
Detection of bottled explosives by near infrared
NASA Astrophysics Data System (ADS)
Itozaki, Hideo; Sato-Akaba, Hideo
2013-10-01
Bottled liquids are not allowed through the security gate in the airport, because liquid explosives have been used by the terrorists. However, passengers have a lot of trouble if they cannot bring their own bottles. For example, a mother would like to carry her own milk in the airplane for her baby. Therefore the detection technology of liquid explosives should be developed as soon as possible. This paper shows that near infrared spectroscopy can detect bottled explosives quickly. The transmission method cannot deal with milk in the sense of liquid inspection. Here we examined the reflection method to the test of milk. The inspection method with light cannot make test for the metal can. We also use ultrasonic method to check metal can simultaneously in order to expand test targets.
49 CFR Appendix D to Part 173 - Test Methods for Dynamite (Explosive, Blasting, Type A)
Code of Federal Regulations, 2010 CFR
2010-10-01
..., Type A) D Appendix D to Part 173 Transportation Other Regulations Relating to Transportation PIPELINE... REGULATIONS SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Pt. 173, App. D Appendix D to Part 173—Test Methods for Dynamite (Explosive, Blasting, Type A) 1. Test method D-1—Leakage Test A wooden stick...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pyle, Moira L.; Walter, William R.; Pasyanos, Michael E.
Here, we develop high–resolution, laterally varying attenuation models for the regional crustal phases of Pg and Lg in the area surrounding the Basin and Range Province in the western United States. The models are part of the characterization effort for the Source Physics Experiment (SPE), a series of chemical explosions at the Nevada National Security Site designed to improve our understanding of explosion source phenomenology. To aid in SPE modeling efforts, we focus on improving our ability to accurately predict amplitudes in a set of narrow frequency bands ranging from 0.5 to 16.0 Hz. To explore constraints at higher frequenciesmore » where data become more sparse, we test the robustness of the empirically observed power–law relationship between quality factor Q and frequency (Q=Q 0f γ). Our methodology uses a staged approach to consider attenuation, physics–based source terms, site terms, and geometrical spreading contributions to amplitude measurements. Tomographic inversion results indicate that the frequency dependence is a reasonable assumption as attenuation varies laterally for this region through all frequency bands considered. Our 2D Pg and Lg attenuation models correlate with underlying physiographic provinces, with the highest Q located in the Sierra Nevada Mountains and the Colorado plateau. Compared to a best–fitting 1D model for the region, the 2D model provides an 81% variance reduction overall for Lg residuals and a 75% reduction for Pg. These detailed attenuation maps at high frequencies will facilitate further study of local and regional distance P/S amplitude discriminants that are typically used to distinguish between earthquakes and underground explosions.« less
Near-field non-radial motion generation from underground chemical explosions in jointed granite
NASA Astrophysics Data System (ADS)
Vorobiev, Oleg; Ezzedine, Souheil; Hurley, Ryan
2018-01-01
This paper describes analysis of non-radial ground motion generated by chemical explosions in a jointed rock formation during the Source Physics Experiment (SPE). Such motion makes it difficult to discriminate between various subsurface events such as explosions, implosions (i.e. mine collapse) and earthquakes. We apply 3-D numerical simulations to understand experimental data collected during the SPEs. The joints are modelled explicitly as compliant thin inclusions embedded into the rock mass. Mechanical properties of the rock and the joints as well as the joint spacing and orientation are inferred from experimental test data, and geophysical and geological characterization of the SPE site which is dominantly Climax Stock granitic outcrop. The role of various factors characterizing the joints such as joint spacing, frictional properties, orientation and persistence in generation of non-radial motion is addressed. The joints in granite at the SPE site are oriented in nearly orthogonal directions with two vertical sets dipping at 70-80 degrees with the same strike angle, one vertical set almost orthogonal to the first two and one shallow angle joint set dipping 15 degrees. In this study we establish the relationship between the joint orientation and azimuthal variations in the polarity of the observed shear motion. The majority of the shear motion is generated due to the effects of non-elastic sliding on the joints near the source, where the wave can create significant shear stress to overcome the cohesive forces at the joints. Near the surface the joints are less confined and are subject to sliding when the pressure waves are reflected. In the far field, where the cohesive forces on the joints cannot be overcome, additional shear motion can be generated due to elastic anisotropy of the rock mass given by preferred spatial orientations of compliant joints.
Pyle, Moira L.; Walter, William R.; Pasyanos, Michael E.
2017-10-24
Here, we develop high–resolution, laterally varying attenuation models for the regional crustal phases of Pg and Lg in the area surrounding the Basin and Range Province in the western United States. The models are part of the characterization effort for the Source Physics Experiment (SPE), a series of chemical explosions at the Nevada National Security Site designed to improve our understanding of explosion source phenomenology. To aid in SPE modeling efforts, we focus on improving our ability to accurately predict amplitudes in a set of narrow frequency bands ranging from 0.5 to 16.0 Hz. To explore constraints at higher frequenciesmore » where data become more sparse, we test the robustness of the empirically observed power–law relationship between quality factor Q and frequency (Q=Q 0f γ). Our methodology uses a staged approach to consider attenuation, physics–based source terms, site terms, and geometrical spreading contributions to amplitude measurements. Tomographic inversion results indicate that the frequency dependence is a reasonable assumption as attenuation varies laterally for this region through all frequency bands considered. Our 2D Pg and Lg attenuation models correlate with underlying physiographic provinces, with the highest Q located in the Sierra Nevada Mountains and the Colorado plateau. Compared to a best–fitting 1D model for the region, the 2D model provides an 81% variance reduction overall for Lg residuals and a 75% reduction for Pg. These detailed attenuation maps at high frequencies will facilitate further study of local and regional distance P/S amplitude discriminants that are typically used to distinguish between earthquakes and underground explosions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pyle, Moira L.; Walter, William R.; Pasyanos, Michael E.
2017-10-24
Here, we develop high–resolution, laterally varying attenuation models for the regional crustal phases of Pg and Lg in the area surrounding the Basin and Range Province in the western United States. The models are part of the characterization effort for the Source Physics Experiment (SPE), a series of chemical explosions at the Nevada National Security Site designed to improve our understanding of explosion source phenomenology. To aid in SPE modeling efforts, we focus on improving our ability to accurately predict amplitudes in a set of narrow frequency bands ranging from 0.5 to 16.0 Hz. To explore constraints at higher frequenciesmore » where data become more sparse, we test the robustness of the empirically observed power–law relationship between quality factor Q and frequency (Q=Q 0f γ). Our methodology uses a staged approach to consider attenuation, physics–based source terms, site terms, and geometrical spreading contributions to amplitude measurements. Tomographic inversion results indicate that the frequency dependence is a reasonable assumption as attenuation varies laterally for this region through all frequency bands considered. Our 2D Pg and Lg attenuation models correlate with underlying physiographic provinces, with the highest Q located in the Sierra Nevada Mountains and the Colorado plateau. Compared to a best–fitting 1D model for the region, the 2D model provides an 81% variance reduction overall for Lg residuals and a 75% reduction for Pg. These detailed attenuation maps at high frequencies will facilitate further study of local and regional distance P/S amplitude discriminants that are typically used to distinguish between earthquakes and underground explosions.« less
Gordeev, Konstantin; Shinkarev, Sergey; Ilyin, Leonid; Bouville, André; Hoshi, Masaharu; Luckyanov, Nickolas; Simon, Steven L
2006-02-01
A methodology to assess internal exposure to thyroid from radioiodines for the residents living in settlements located in the vicinity of the Semipalatinsk Nuclear Test Site is described that is the result of many years of research, primarily at the Moscow Institute of Biophysics. This methodology introduces two important concepts. First, the biologically active fraction, is defined as the fraction of the total activity on fallout particles with diameter less than 50 microns. That fraction is retained by vegetation and will ultimately result in contamination of dairy products. Second, the relative distance is derived as a dimensionless quantity from information on test yield, maximum height of cloud, and average wind velocity and describes how the biologically active fraction is distributed with distance from the site of the explosion. The parameter is derived in such a way that at locations with equal values of relative distance, the biologically active fraction will be the same for any test. The estimates of internal exposure to thyroid for the residents of Dolon and Kanonerka villages, for which the external exposure were assessed and given in a companion paper (Gordeev et al. 2006) in this conference, are presented. The main sources of uncertainty in the estimates are identified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terusaki, Stanley; Gallegos, Gretchen; MacQueen, Donald
2012-10-02
LLNL Site 300 has applied to renew the permits for its Explosives Waste Treatment Facility (EWTF), Explosives Waste Storage Facility (EWSF) and Building 883 Storage Facility. As a part of the permit renewal process, the Department of Toxic Substances Control (DTSC) requested LLNL to obtain soil samples in order to conduct a scoping-level ecological risk assessment pursuant to the Department of Toxic Substances Control, Guidance for Ecological Risk Assessment at Hazardous Waste Sites and Permitted Facilities, Part A: Overview, July 4, 1996. As stated in the guidance document, the scoping-level ecological risk assessment provides a framework to determine the potentialmore » interaction ecological receptors and chemicals of concern from hazardous waste treatment operations in the area of EWTF.« less
An Overview of the Launch Vehicle Blast Environments Development Efforts
NASA Technical Reports Server (NTRS)
Richardson, Erin; Bangham, Mike; Blackwood, James; Skinner, Troy; Hays, Michael; Jackson, Austin; Richman, Ben
2014-01-01
NASA has been funding an ongoing development program to characterize the explosive environments produced during a catastrophic launch vehicle accident. These studies and small-scale tests are focused on the near field environments that threaten the crew. The results indicate that these environments are unlikely to result in immediate destruction of the crew modules. The effort began as an independent assessment by NASA safety organizations, followed by the Ares program and NASA Engineering and Safety Center and now as a Space Launch Systems (SLS) focused effort. The development effort is using the test and accident data available from public or NASA sources as well as focused scaled tests that are examining the fundamental aspects of uncontained explosions of Hydrogen and air and Hydrogen and Oxygen. The primary risk to the crew appears to be the high-energy fragments and these are being characterized for the SLS. The development efforts will characterize the thermal environment of the explosions as well to ensure that the risk is well understood and to document the overall energy balance of an explosion. The effort is multi-path in that analytical, computational and focused testing is being used to develop the knowledge to understand potential SLS explosions. This is an ongoing program with plans that expand the development from fundamental testing at small-scale levels to large-scale tests that can be used to validate models for commercial programs. The ultimate goal is to develop a knowledge base that can be used by vehicle designers to maximize crew survival in an explosion.
Research and Development of High-performance Explosives
Cornell, Rodger; Wrobel, Erik; Anderson, Paul E.
2016-01-01
Developmental testing of high explosives for military applications involves small-scale formulation, safety testing, and finally detonation performance tests to verify theoretical calculations. small-scale For newly developed formulations, the process begins with small-scale mixes, thermal testing, and impact and friction sensitivity. Only then do subsequent larger scale formulations proceed to detonation testing, which will be covered in this paper. Recent advances in characterization techniques have led to unparalleled precision in the characterization of early-time evolution of detonations. The new technique of photo-Doppler velocimetry (PDV) for the measurement of detonation pressure and velocity will be shared and compared with traditional fiber-optic detonation velocity and plate-dent calculation of detonation pressure. In particular, the role of aluminum in explosive formulations will be discussed. Recent developments led to the development of explosive formulations that result in reaction of aluminum very early in the detonation product expansion. This enhanced reaction leads to changes in the detonation velocity and pressure due to reaction of the aluminum with oxygen in the expanding gas products. PMID:26966969
Design and analysis of a personnel blast shield for different explosives applications
NASA Astrophysics Data System (ADS)
Lozano, Eduardo
The use of explosives brings countless benefits to our everyday lives in areas such as mining, oil and gas exploration, demolition, and avalanche control. However, because of the potential destructive power of explosives, strict safety procedures must be an integral part of any explosives operation. The goal of this work is to provide a solution to protect against the hazards that accompany the general use of explosives, specifically in avalanche control. For this reason, a blast shield was designed and tested to protect the Colorado Department of Transportation personnel against these unpredictable effects. This document will develop a complete analysis to answer the following questions: what are the potential hazards from the detonation of high explosives, what are their effects, and how can we protect ourselves against them. To answer these questions theoretical, analytical, and numerical calculations were performed. Finally, a full blast shield prototype was tested under different simulated operational environments proving its effectiveness as safety device. The Colorado Department of Transportation currently owns more than fifteen shields that are used during every operation involving explosive materials.
Evaluation test program, valve, explosive actuated, normally closed Pyronetics model 1400
NASA Technical Reports Server (NTRS)
Avalos, E.
1971-01-01
Evaluation tests of the explosive actuated normally closed valves used to control and isolate hydrazine flow in the TOPS spacecraft, are presented. The malfunctions, modifications, service life, and reliability of the valve are also outlined.
Mid-IR DIAL for high-resolution mapping of explosive precursors
NASA Astrophysics Data System (ADS)
Mitev, V.; Babichenko, S.; Bennes, J.; Borelli, R.; Dolfi-Bouteyre, A.; Fiorani, L.; Hespel, L.; Huet, T.; Palucci, A.; Pistilli, M.; Puiu, A.; Rebane, O.; Sobolev, I.
2013-10-01
A DIAL instrument on a moving platform is seen as a valuable remote sensing component in a sensor network for area monitoring, targeting sites involved in unauthorised explosive manufacturing. Such instrument will perform the area mapping of the vapour concentration of key substances, known to be used as precursors in explosive fabrication, such as acetone and nitromethane. The IR spectra of acetone and nitromethane vapours have been defined from available spectroscopy databases and from laboratory measurements as showing optimal spectral band for the DIAL operation in the spectral range of 3.0 μm - 3.5 μm. The DIAL operation has been numerically simulated, with inputs based on the HITRAN database, the U.S. Standard Atmosphere and aerosol simulation software package OPAC. A combination of OPO and OPA has been chosen as a transmitter, where the idler wavelength is used for probing, with wavelength tuning in sequence. A scanner mounted on top of the coaxially aligned laser and receiver, is capable of covering almost 360 degrees horizontally and +/-30 degrees vertically. The detection is performed by a photovoltaic photodiode with 4-stage cooling, with a signal digitalisation having 14 bit amplitude resolution and 125 Ms/s sampling rate. Here we present the development and the first test of the DIAL instrument.
Kim, Tae Kyung; Lee, Jae Hwa; Moon, Dohyun; Moon, Hoi Ri
2013-01-18
A luminescent lithium metal-organic framework (MOF) is constructed from the solvothermal reaction of Li(+) and a well-designed organic ligand, bis(4-carboxyphenyl)-N-methylamine (H(2)CPMA). A Li-based MOF can detect an explosive aromatic compound containing nitro groups as an explosophore, by showing a dramatic color change with concurrent luminescence quenching in the solid state. The detection sites are proven directly through single-crystal-to-single-crystal transformations, which show strong interactions between the aromatic rings of the electron-rich CPMA(2-) molecules and the electron-deficient nitrobenzene.
Application of paper spray ionization for explosives analysis.
Tsai, Chia-Wei; Tipple, Christopher A; Yost, Richard A
2017-10-15
A desired feature in the analysis of explosives is to decrease the time of the entire analysis procedure, including sampling. A recently utilized ambient ionization technique, paper spray ionization (PSI), provides the possibility of combining sampling and ionization. However, an interesting phenomenon that occurs in generating negatively charged ions pose some challenges in applying PSI to explosives analysis. The goal of this work is to investigate the possible solutions for generating explosives ions in negative mode PSI. The analysis of 2,4,6-trinitrotoluene (TNT), pentaerythritol tetranitrate (PETN), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), and 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) was performed. Several solvent systems with different surface tensions and additives were compared to determine their effect on the ionization of explosives. The solvents tested include tert-butanol, isopropanol, methanol, and acetonitrile. The additives tested were carbon tetrachloride and ammonium nitrate. Of the solvents tested, isopropanol yielded the best results. In addition, adding ammonium nitrate to the isopropanol enhanced the analyte signal. Experimentally determined limits of detection (LODs) as low as 0.06 ng for PETN, on paper, were observed with isopropanol and the addition of 0.4 mM ammonium nitrate as the spray solution. In addition, the explosive components of two plastic explosive samples, Composition 4 and Semtex, were successfully analyzed via surface sampling when using the developed method. The analysis of explosives using PSI-MS in negative ion mode was achieved. The addition of ammonium nitrate to isopropanol, in general, enhanced the analyte signal and yielded better ionization stability. Real-world explosive samples were analyzed, which demonstrates one of the potential applications of PSI-MS analysis. Copyright © 2017 John Wiley & Sons, Ltd.
The Bayo Canyon/radioactive lanthanum (RaLa) program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dummer, J.E.; Taschner, J.C.; Courtright, C.C.
1996-04-01
LANL conducted 254 radioactive lanthanum (RaLa) implosion experiments Sept. 1944-March 1962, in order to test implosion designs for nuclear weapons. High explosives surrounding common metals (surrogates for Pu) and a radioactive source containing up to several thousand curies of La, were involved in each experiment. The resulting cloud was deposited as fallout, often to distances of several miles. This report was prepared to summarize existing records as an aid in evaluating the off-site impact, if any, of this 18-year program. The report provides a historical setting for the program, which was conducted in Technical Area 10, Bayo Canyon about 3more » miles east of Los Alamos. A description of the site is followed by a discussion of collateral experiments conducted in 1950 by US Air Force for developing an airborne detector for tracking atmospheric nuclear weapons tests. All known off-site data from the RaLa program are tabulated and discussed. Besides the radiolanthanum, other potential trace radioactive material that may have been present in the fallout is discussed and amounts estimated. Off-site safety considerations are discussed; a preliminary off-site dose assessment is made. Bibliographical data on 33 persons important to the program are presented as footnotes.« less
Plasma Discharge Initiation of Explosives in Rock Blasting Application: A Case Study
NASA Astrophysics Data System (ADS)
Jae-Ou, Chae; Young-Jun, Jeong; V, M. Shmelev; A, A. Denicaev; V, M. Poutchkov; V, Ravi
2006-07-01
A plasma discharge initiation system for the explosive volumetric combustion charge was designed, investigated and developed for practical application. Laboratory scale experiments were carried out before conducting the large scale field tests. The resultant explosions gave rise to less noise, insignificant seismic vibrations and good specific explosive consumption for rock blasting. Importantly, the technique was found to be safe and environmentally friendly.
Planar blast scaling with condensed-phase explosives in a shock tube
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, Scott L
2011-01-25
Blast waves are strong shock waves that result from large power density deposition into a fluid. The rapid energy release of high-explosive (HE) detonation provides sufficiently high power density for blast wave generation. Often it is desirable to quantify the energy released by such an event and to determine that energy relative to other reference explosives to derive an explosive-equivalence value. In this study, we use condensed-phase explosives to drive a blast wave in a shock tube. The explosive material and quantity were varied to produce blast waves of differing strengths. Pressure transducers at varying lengths measured the post-shock pressure,more » shock-wave arrival time and sidewall impulse associated with each test. Blast-scaling concepts in a one-dimensional geometry were then used to both determine the energy release associated with each test and to verify the scaling of the shock position versus time, overpressure versus distance, and impulse. Most blast scaling measurements to-date have been performed in a three-dimensional geometry such as a blast arena. Testing in a three-dimensional geometry can be challenging, however, as spherical shock-wave symmetry is required for good measurements. Additionally, the spherical wave strength decays rapidly with distance and it can be necessary to utilize larger (several kg) quantities of explosive to prevent significant decay from occurring before an idealized blast wave has formed. Such a mode of testing can be expensive, require large quantities of explosive, and be limited by both atmospheric conditions (such as rain) and by noise complaints from the population density near the test arena. Testing is possible in more compact geometries, however. Non-planar blast waves can be formed into a quasi-planar shape by confining the shock diffraction with the walls of a shock tube. Regardless of the initial form, the wave shape will begin to approximate a planar front after successive wave reflections from the tube walls. Such a technique has previously been used to obtain blast scaling measurements in the planar geometry with gaseous explosives and the condensed-phase explosive nitroguanidine. Recently, there has been much interest in the blast characterization of various non-ideal high explosive (NIHE) materials. With non-ideals, the detonation reaction zone is significantly larger (up to several cm for ANFO) than more ideal explosives. Wave curvature, induced by charge-geometry, can significantly affect the energy release associated with NIHEs. To measure maximum NIHE energy release accurately, it is desirable to minimize any such curvature and, if possible, to overdrive the detonation shock to ensure completion of chemical reactions ahead of the sonic locus associated with the reaction zone. This is achieved in the current study through use of a powerful booster HE and a charge geometry consisting of short cylindrical lengths of NIHE initiated along the charge centerline.« less
Rotor Systems Research Aircraft /RSRA/ canopy explosive severance/fracture
NASA Technical Reports Server (NTRS)
Bement, L. J.
1976-01-01
The Rotor Systems Research Aircraft (RSRA), a compound rotor/fixed-wing aircraft, incorporates an emergency escape system for the three crew members; to achieve unobstructed egress, the overhead acrylic canopies of each crew member will be explosively severed and fractured into predictably small, low-mass pieces. A canopy explosive severance/fracture system was developed under this investigation that included the following system design considerations: selection of canopy and explosive materials, determining the acrylic's explosive severance and fracture characteristics, evaluating the effects of installation variables and temperature, determining the most effective explosive patterns, conducting full-scale, flat and double-curvature canopy tests, and evaluating the effects of back-blast of the explosive into the cockpit.
2000-08-01
ERDC/SL ; TR-00-4) Includes bibliographic references. 1. Underwater explosions - Testing. 2. Shock waves. 3. Air curtains. 4. Wilmington, (N.C...water is the placement of air curtains or bubble screens around the underwater explosive source. Bubble screens are generated by pumping air into a...Geomechanics and Explosion Effects Division (GEED), Structures Laboratory (SL), Waterways Experiment Station (WES), U. S. Army Engineer Research and
A Review of Safety Practices and Safety Training for the Explosives Field
1985-02-01
reworking. This was discovered when an impact test was run on the received material and a "GO" occurred. If the received material bad been handled as...exist, small quantities of the explosive or explosive mixture should -be subjected to- sensitivity tests (including at least spark sensitivity, impact ...increases more energy is put into the nix which must be considered with respect to blending speeds and tolerances in equip- ment and temperatures. Also
A two-phase model for aluminized explosives on the ballistic and brisance performance
NASA Astrophysics Data System (ADS)
Kim, Wuhyun; Gwak, Min-cheol; Lee, Young-hun; Yoh, Jack J.
2018-02-01
The performance of aluminized high explosives is considered by varying the aluminum (Al) mass fraction in a heterogeneous mixture model. Since the time scales of the characteristic induction and combustion of high explosives and Al particles differ, the process of energy release behind the leading detonation wave front occurs over an extended period of time. For simulating the performance of aluminized explosives with varying Al mass fraction, HMX (1,3,5,7-tetrahexmine-1,3,5,7-tetrazocane) is considered as a base explosive when formulating the multiphase conservation laws of mass, momentum, and energy exchanges between the HMX product gases and Al particles. In the current study, a two-phase model is utilized in order to determine the effects of the Al mass fraction in a condensed phase explosive. First, two types of confined rate stick tests are considered to investigate the detonation velocity and the acceleration ability, which refers to the radial expansion velocity of the confinement shell. The simulation results of the confined rate stick test are compared with the experimental data for the Al mass fraction range of 0%-25%, and the optimal Al mass fraction is provided, which is consistent with the experimental observations. Additionally, a series of plate dent test simulations are conducted, the results of which show the same tendency as those of the experimental tests with varying Al mass fractions.
NASA Astrophysics Data System (ADS)
Rougier, E.; Knight, E. E.
2015-12-01
The Source Physics Experiments (SPE) is a project funded by the U.S. Department of Energy at the National Nuclear Security Site. The project consists of a series of underground explosive tests designed to gain more insight on the generation and propagation of seismic energy from underground explosions in hard rock media, granite. Until now, four tests (SPE-1, SPE-2, SPE-3 and SPE-4Prime) with yields ranging from 87 kg to 1000 kg have been conducted in the same borehole. The generation and propagation of seismic waves is heavily influenced by the different damage mechanisms occurring at different ranges from the explosive source. These damage mechanisms include pore crushing, compressive (shear) damage, joint damage, spallation and fracture and fragmentation, etc. Understanding these mechanisms and how they interact with each other is essential to the interpretation of the characteristics of close-in seismic observables. Recent observations demonstrate that, for relatively small and shallow chemical explosions in granite, such as SPE-1, -2 and -3, the formation of a cavity around the working point is not the main mechanism responsible for the release of seismic moment. Shear dilatancy (bulking occurring as a consequence of compressive damage) of the medium around the source has been proposed as an alternative damage mechanism that explains the seismic moment release observed in the experiments. In this work, the interaction between cavity formation and bulking is investigated via a series of computer simulations for the SPE-2 event. The simulations are conducted using a newly developed material model, called AZ_Frac. AZ_Frac is a continuum-based-visco-plastic strain-rate-dependent material model. One of its key features is its ability to describe continuum fracture processes, while properly handling anisotropic material characteristics. The implications of the near source numerical results on the close-in seismic quantities, such as reduced displacement potentials and source spectra are presented.
High explosive corner turning performance and the LANL Mushroom test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, L.G.; Seitz, W.L.; Forest, C.A.
1997-09-01
The Mushroom test is designed to characterize the corner turning performance of a new generation of less insensitive booster explosives. The test is described in detail, and three corner turning figures-of-merit are examined using pure TATB (both Livermore`s Ultrafine and a Los Alamos research blend) and PBX9504 as examples.
30 CFR 36.46 - Explosion tests of intake and exhaust systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
.... 36.46 Section 36.46 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...) Explosion tests shall be made with the engine at rest and with the flammable natural gas-air mixtures in the intake and exhaust systems. In other tests with the flammable mixture in motion, the engine shall be...
30 CFR 36.46 - Explosion tests of intake and exhaust systems.
Code of Federal Regulations, 2011 CFR
2011-07-01
.... 36.46 Section 36.46 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...) Explosion tests shall be made with the engine at rest and with the flammable natural gas-air mixtures in the intake and exhaust systems. In other tests with the flammable mixture in motion, the engine shall be...
30 CFR 36.46 - Explosion tests of intake and exhaust systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... 36.46 Section 36.46 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...) Explosion tests shall be made with the engine at rest and with the flammable natural gas-air mixtures in the intake and exhaust systems. In other tests with the flammable mixture in motion, the engine shall be...
30 CFR 36.46 - Explosion tests of intake and exhaust systems.
Code of Federal Regulations, 2013 CFR
2013-07-01
.... 36.46 Section 36.46 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...) Explosion tests shall be made with the engine at rest and with the flammable natural gas-air mixtures in the intake and exhaust systems. In other tests with the flammable mixture in motion, the engine shall be...
30 CFR 36.46 - Explosion tests of intake and exhaust systems.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... 36.46 Section 36.46 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...) Explosion tests shall be made with the engine at rest and with the flammable natural gas-air mixtures in the intake and exhaust systems. In other tests with the flammable mixture in motion, the engine shall be...
Setback Test Users Manual (U.S. Army Armament Research, Development and Engineering Center’s Method)
2011-09-01
Picatinny Arsenal, New Jersey. This ARDEC setback test method collapses a planer air gap against an explosive sample in a manner to mimic what could...Research, Development and Engineering Center (ARDEC), Picatinny Arsenal, New Jersey setback test collapses a planer air gap against an explosive sample