Science.gov

Sample records for explosively launched spores

  1. Explosively launched spores of ascomycete fungi have drag-minimizing shapes.

    PubMed

    Roper, Marcus; Pepper, Rachel E; Brenner, Michael P; Pringle, Anne

    2008-12-30

    The forcibly launched spores of ascomycete fungi must eject through several millimeters of nearly still air surrounding fruiting bodies to reach dispersive air flows. Because of their microscopic size, spores experience great fluid drag, and although this drag can aid transport by slowing sedimentation out of dispersive air flows, it also causes spores to decelerate rapidly after launch. We hypothesize that spores are shaped to maximize their range in the nearly still air surrounding fruiting bodies. To test this hypothesis we numerically calculate optimal spore shapes-shapes of minimum drag for prescribed volumes-and compare these shapes with real spore shapes taken from a phylogeny of >100 species. Our analysis shows that spores are constrained to remain within 1% of the minimum possible drag for their size. From the spore shapes we predict the speed of spore launch, and confirm this prediction through high-speed imaging of ejection in Neurospora tetrasperma. By reconstructing the evolutionary history of spore shapes within a single ascomycete family we measure the relative contributions of drag minimization and other shape determinants to spore shape evolution. Our study uses biomechanical optimization as an organizing principle for explaining shape in a mega-diverse group of species and provides a framework for future measurements of the forces of selection toward physical optima.

  2. Solid Rocket Launch Vehicle Explosion Environments

    NASA Technical Reports Server (NTRS)

    Richardson, E. H.; Blackwood, J. M.; Hays, M. J.; Skinner, T.

    2014-01-01

    Empirical explosion data from full scale solid rocket launch vehicle accidents and tests were collected from all available literature from the 1950s to the present. In general data included peak blast overpressure, blast impulse, fragment size, fragment speed, and fragment dispersion. Most propellants were 1.1 explosives but a few were 1.3. Oftentimes the data from a single accident was disjointed and/or missing key aspects. Despite this fact, once the data as a whole was digitized, categorized, and plotted clear trends appeared. Particular emphasis was placed on tests or accidents that would be applicable to scenarios from which a crew might need to escape. Therefore, such tests where a large quantity of high explosive was used to initiate the solid rocket explosion were differentiated. Also, high speed ground impacts or tests used to simulate such were also culled. It was found that the explosions from all accidents and applicable tests could be described using only the pressurized gas energy stored in the chamber at the time of failure. Additionally, fragmentation trends were produced. Only one accident mentioned the elusive "small" propellant fragments, but upon further analysis it was found that these were most likely produced as secondary fragments when larger primary fragments impacted the ground. Finally, a brief discussion of how this data is used in a new launch vehicle explosion model for improving crew/payload survival is presented.

  3. On high explosive launching of projectiles for shock physics experiments

    NASA Astrophysics Data System (ADS)

    Swift, Damian C.; Forest, Charles A.; Clark, David A.; Buttler, William T.; Marr-Lyon, Mark; Rightley, Paul

    2007-06-01

    The hydrodynamic operation of the "Forest Flyer" type of explosive launching system for shock physics projectiles was investigated in detail using one and two dimensional continuum dynamics simulations. The simulations were numerically converged and insensitive to uncertainties in the material properties; they reproduced the speed of the projectile and the shape of its rear surface. The most commonly used variant, with an Al alloy case, was predicted to produce a slightly curved projectile, subjected to some shock heating and likely exhibiting some porosity from tensile damage. The curvature is caused by a shock reflected from the case; tensile damage is caused by the interaction of the Taylor wave pressure profile from the detonation wave with the free surface of the projectile. The simulations gave only an indication of tensile damage in the projectile, as damage is not understood well enough for predictions in this loading regime. The flatness can be improved by using a case of lower shock impedance, such as polymethyl methacrylate. High-impedance cases, including Al alloys but with denser materials improving the launching efficiency, can be used if designed according to the physics of oblique shock reflection, which indicates an appropriate case taper for any combination of explosive and case material. The tensile stress induced in the projectile depends on the relative thickness of the explosive, expansion gap, and projectile. The thinner the projectile with respect to the explosive, the smaller the tensile stress. Thus if the explosive is initiated with a plane wave lens, the tensile stress is lower than that for initiation with multiple detonators over a plane. The previous plane wave lens designs did, however, induce a tensile stress close to the spall strength of the projectile. The tensile stress can be reduced by changes in the component thicknesses. Experiments verifying the operation of explosively launched projectiles should attempt to measure

  4. On high explosive launching of projectiles for shock physics experiments.

    PubMed

    Swift, Damian C; Forest, Charles A; Clark, David A; Buttler, William T; Marr-Lyon, Mark; Rightley, Paul

    2007-06-01

    The hydrodynamic operation of the "Forest Flyer" type of explosive launching system for shock physics projectiles was investigated in detail using one and two dimensional continuum dynamics simulations. The simulations were numerically converged and insensitive to uncertainties in the material properties; they reproduced the speed of the projectile and the shape of its rear surface. The most commonly used variant, with an Al alloy case, was predicted to produce a slightly curved projectile, subjected to some shock heating and likely exhibiting some porosity from tensile damage. The curvature is caused by a shock reflected from the case; tensile damage is caused by the interaction of the Taylor wave pressure profile from the detonation wave with the free surface of the projectile. The simulations gave only an indication of tensile damage in the projectile, as damage is not understood well enough for predictions in this loading regime. The flatness can be improved by using a case of lower shock impedance, such as polymethyl methacrylate. High-impedance cases, including Al alloys but with denser materials improving the launching efficiency, can be used if designed according to the physics of oblique shock reflection, which indicates an appropriate case taper for any combination of explosive and case material. The tensile stress induced in the projectile depends on the relative thickness of the explosive, expansion gap, and projectile. The thinner the projectile with respect to the explosive, the smaller the tensile stress. Thus if the explosive is initiated with a plane wave lens, the tensile stress is lower than that for initiation with multiple detonators over a plane. The previous plane wave lens designs did, however, induce a tensile stress close to the spall strength of the projectile. The tensile stress can be reduced by changes in the component thicknesses. Experiments verifying the operation of explosively launched projectiles should attempt to measure

  5. Bacterial spores in granite survive hypervelocity launch by spallation: implications for lithopanspermia.

    PubMed

    Fajardo-Cavazos, Patricia; Langenhorst, Falko; Melosh, H Jay; Nicholson, Wayne L

    2009-09-01

    Bacterial spores are considered good candidates for endolithic life-forms that could survive interplanetary transport by natural impact processes, i.e., lithopanspermia. Organisms within rock can only embark on an interplanetary journey if they survive ejection from the surface of the donor planet and the associated extremes of compressional shock, heating, and acceleration. Previous simulation experiments have measured each of these three stresses more or less in isolation of one another, and results to date indicate that spores of the model organism Bacillus subtilis can survive each stress applied singly. Few simulations, however, have combined all three stresses simultaneously. Because considerable experimental and theoretical evidence supports a spallation mechanism for launch, we devised an experimental simulation of launch by spallation using the Ames Vertical Gun Range (AVGR). B. subtilis spores were applied to the surface of a granite target that was impacted from above by an aluminum projectile fired at 5.4 km/s. Granite spall fragments were captured in a foam recovery fixture and then recovered and assayed for shock damage by transmission electron microscopy and for spore survival by viability assays. Peak shock pressure at the impact site was calculated to be 57.1 GPa, though recovered spall fragments were only very lightly shocked at pressures of 5-7 GPa. Spore survival was calculated to be on the order of 10(-5), which is in agreement with results of previous static compressional shock experiments. These results demonstrate that endolithic spores can survive launch by spallation from a hypervelocity impact, which lends further evidence in favor of lithopanspermia theory.

  6. Bacterial Spores in Granite Survive Hypervelocity Launch by Spallation: Implications for Lithopanspermia

    NASA Astrophysics Data System (ADS)

    Fajardo-Cavazos, Patricia; Langenhorst, Falko; Melosh, H. Jay; Nicholson, Wayne L.

    2009-09-01

    Bacterial spores are considered good candidates for endolithic life-forms that could survive interplanetary transport by natural impact processes, i. e., lithopanspermia. Organisms within rock can only embark on an interplanetary journey if they survive ejection from the surface of the donor planet and the associated extremes of compressional shock, heating, and acceleration. Previous simulation experiments have measured each of these three stresses more or less in isolation of one another, and results to date indicate that spores of the model organism Bacillus subtilis can survive each stress applied singly. Few simulations, however, have combined all three stresses simultaneously. Because considerable experimental and theoretical evidence supports a spallation mechanism for launch, we devised an experimental simulation of launch by spallation using the Ames Vertical Gun Range (AVGR). B. subtilis spores were applied to the surface of a granite target that was impacted from above by an aluminum projectile fired at 5.4 km/s. Granite spall fragments were captured in a foam recovery fixture and then recovered and assayed for shock damage by transmission electron microscopy and for spore survival by viability assays. Peak shock pressure at the impact site was calculated to be 57.1 Pa, though recovered spall fragments were only very lightly shocked at pressures of 5-7 GPa. Spore survival was calculated to be on the order of 10-5, which is in agreement with results of previous static compressional shock experiments. These results demonstrate that endolithic spores can survive launch by spallation from a hypervelocity impact, which lends further evidence in favor of lithopanspermia theory.

  7. An Empirical Non-TNT Approach to Launch Vehicle Explosion Modeling

    NASA Technical Reports Server (NTRS)

    Blackwood, James M.; Skinner, Troy; Richardson, Erin H.; Bangham, Michal E.

    2015-01-01

    In an effort to increase crew survivability from catastrophic explosions of Launch Vehicles (LV), a study was conducted to determine the best method for predicting LV explosion environments in the near field. After reviewing such methods as TNT equivalence, Vapor Cloud Explosion (VCE) theory, and Computational Fluid Dynamics (CFD), it was determined that the best approach for this study was to assemble all available empirical data from full scale launch vehicle explosion tests and accidents. Approximately 25 accidents or full-scale tests were found that had some amount of measured blast wave, thermal, or fragment explosion environment characteristics. Blast wave overpressure was found to be much lower in the near field than predicted by most TNT equivalence methods. Additionally, fragments tended to be larger, fewer, and slower than expected if the driving force was from a high explosive type event. In light of these discoveries, a simple model for cryogenic rocket explosions is presented. Predictions from this model encompass all known applicable full scale launch vehicle explosion data. Finally, a brief description of on-going analysis and testing to further refine the launch vehicle explosion environment is discussed.

  8. Explosion/Blast Dynamics for Constellation Launch Vehicles Assessment

    NASA Technical Reports Server (NTRS)

    Baer, Mel; Crawford, Dave; Hickox, Charles; Kipp, Marlin; Hertel, Gene; Morgan, Hal; Ratzel, Arthur; Cragg, Clinton H.

    2009-01-01

    An assessment methodology is developed to guide quantitative predictions of adverse physical environments and the subsequent effects on the Ares-1 crew launch vehicle associated with the loss of containment of cryogenic liquid propellants from the upper stage during ascent. Development of the methodology is led by a team at Sandia National Laboratories (SNL) with guidance and support from a number of National Aeronautics and Space Administration (NASA) personnel. The methodology is based on the current Ares-1 design and feasible accident scenarios. These scenarios address containment failure from debris impact or structural response to pressure or blast loading from an external source. Once containment is breached, the envisioned assessment methodology includes predictions for the sequence of physical processes stemming from cryogenic tank failure. The investigative techniques, analysis paths, and numerical simulations that comprise the proposed methodology are summarized and appropriate simulation software is identified in this report.

  9. Apollo Spacecraft and Saturn V Launch Vehicle Pyrotechnics/Explosive Devices

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael

    2009-01-01

    The Apollo Mission employs more than 210 pyrotechnic devices per mission.These devices are either automatic of commanded from the Apollo spacecraft systems. All devices require high reliability and safety and most are classified as either crew safety critical or mission critical. Pyrotechnic devices have a wide variety of applications including: launch escape tower separation, separation rocket ignition, parachute deployment and release and electrical circuit opening and closing. This viewgraph presentation identifies critical performance, design requirements and safety measures used to ensure quality, reliability and performance of Apollo pyrotechnic/explosive devices. The major components and functions of a typical Apollo pyrotechnic/explosive device are listed and described (initiators, cartridge assemblies, detonators, core charges). The presentation also identifies the major locations and uses for the devices on: the Command and Service Module, Lunar Module and all stages of the launch vehicle.

  10. Analysis of a Hypergolic Propellant Explosion During Processing of a Launch Vehicles in the VAB

    DTIC Science & Technology

    2010-07-01

    5 Analysis of a Hypergolic Propellant Explosion During Processing of a Launch Vehicles in the VAB Principal Author: Jon D. Chrostowski and...the Vehicle Assembly Building ( VAB ) at Kennedy Space Center (KSC) and typically include a fueled spacecraft (SC) that sits on top of one or more...stages. The processing of a fueled SC involves hazardous operations when it is brought into the VAB Transfer Aisle and lifted a significant height for

  11. On the hazard of hydrogen explosions at space shuttle launch pads

    NASA Technical Reports Server (NTRS)

    Russell, John M.

    1988-01-01

    This report was prepared in support of efforts to assess the hazard of accidental explosions of unburned hydrogen at space shuttle launch pads. It begins with presentation of fundamental detonation theory and a review of relevent experiments. A scenario for a catastrophic explosion at a KSC launch pad and a list of necessary conditions contributing to it is proposed with a view to identifying those conditions which, if blocked, would prevent a catastrophe. The balance of the report is devoted to juxtaposition of reassuring and disquieting facts, presentation of a set of recommendations that ignition of hydrogen-air mixtures by weak ignition sources in unconfined geometries may produce a detonation, provided the effective flame area in the initial fireball is rapidly increased by turbulent mixing. Another conclusion is that detonability limits can be different from and narrower than flammability limits only if one restricts the rate of work that can be done on a flammable gas by mechanical agencies acting on its boundaries.

  12. Analysis of a Hypergolic Propellant Explosion During Processing of Launch Vehicles in the VAB

    NASA Technical Reports Server (NTRS)

    Chrostowski, Jon D.; Gan Wenshui; Campbell, Michael D.

    2010-01-01

    NASA is developing launch vehicles to support missions to Low Earth Orbit (LEO), the moon and deep space. Whether manned or unmanned, the vehicle components will likely be integrated in the Vehicle Assembly Building (VAB) at Kennedy Space Center (KSC) and typically include a fueled spacecraft (SC) that sits on top of one or more stages. The processing of a fueled SC involves hazardous operations when it is brought into the VAB Transfer Aisle and lifted a significant height for mating with lower stages. Accidents resulting from these hazardous operations could impact unrelated personnel working in buildings adjacent to the VAB. Safe separation distances based on the DOD Explosives Standards Quantity-Distance (Q-D) approach result in large IBD arcs. This paper presents site-specific air blast and fragmentation hazard analyses for comparison with the Q-D arcs as well as consequence and risk analyses to provide added information for the decision maker. A new physics-based fragmentation model is presented that includes: a) the development of a primary fragment list (which defines the fragment characteristics) associated with a hypergolic propellant explosion, b) a description of a 3D fragment bounce model, c) the results of probabilistic Monte-Carlo simulations (that include uncertainties in the fragment characteristics) to determine: i) the hazardous fragment density distance, ii) the expected number of wall/roof impacts and penetrations to over 40 buildings adjacent to the VAB, and iii) the risk to building occupants.

  13. Nuclear Power System Architecture and Safety Study- Feasibility of Launch Pad Explosion Simulation using Radios

    NASA Astrophysics Data System (ADS)

    Destefanis, Stefano; Tracino, Emanuele; Giraudo, Martina

    2014-06-01

    During a mission involving a spacecraft using nuclear power sources (NPS), the consequences to the population induced by an accident has to be taken into account carefully.Part of the study (led by AREVA, with TAS-I as one of the involved parties) was devoted to "Worst Case Scenario Consolidation". In particular, one of the activities carried out by TAS-I had the aim of characterizing the accidental environment (explosion on launch pad or during launch) and consolidate the requirements given as input in the study. The resulting requirements became inputs for Nuclear Power Source container design.To do so, TAS-I did first an overview of the available technical literature (mostly developed in the frame of NASA Mercury / Apollo program), to identify the key parameters to be used for analytical assessment (blast pressure wave, fragments size, speed and distribution, TNT equivalent of liquid propellant).Then, a simplified Radioss model was setup, to verify both the cards needed for blast / fragment impact analysis and the consistency between preliminary results and available technical literature (Radioss is commonly used to design mine - resistant vehicles, by simulating the effect of blasts onto structural elements, and it is used in TAS-I for several types of analysis, including land impact, water impact and fluid - structure interaction).The obtained results (albeit produced by a very simplified model) are encouraging, showing that the analytical tool and the selected key parameters represent a step in the right direction.

  14. Paleoenvironmental changes affected on the diversity explosion and extinction events of the fossil diatom resting spore assemblage across the E/O boundary

    NASA Astrophysics Data System (ADS)

    Suto, I.; Jordan, R. W.; Watanabe, M.

    2007-12-01

    The marine diatom genus Chaetoceros is known as a major contributor to primary production in near-shore upwelling regions and coastal areas, where it accounts for 20-25% of the total marine primary production. They produce heavily silicified resting spores which are easily preserved as fossils under nutrient-poor conditions. The diatom resting spores are therefore preserved as significant constituents in fossil marine diatom assemblages providing useful information for reconstructing paleoproductivity and paleoenvironmental changes. However, due to the importance of Chaetoceros in marine primary production, it is crucial to investigate fossil resting spores in upwelling regions. As the result of revising the taxonomy of fossil diatom Chaetoceros resting spores using DSDP 338, 436 and 438, and onland-samples (Newport Beach Section, California) from the late Eocene to the Recent, the Chaetoceros Explosion Event (when there was an increase in diversity and abundance, and a 50% reduction in valve size) across the Eocene/Oligocene (E/O) boundary was clarified. On the other hand, investigation of middle Eocene samples from the Integrated Ocean Drilling Program (IODP) Expedition 302, revealed an Extinction Event across the E/O boundary of diatom resting spores other than Chaetoceros. These two events indicate increased amounts of nutrient supply via upwelling and a change from a stable water column with a constant nutrient supply in the Eocene to an unstable one with sporadic nutrient supply due to increased vertical mixing in the Oligocene.

  15. Results of a preliminary assessment of an explosive projectile launch system

    SciTech Connect

    Reaugh, J.E.

    1995-07-31

    This report presents results on a preliminary assessment of accelerating a projectile by a sequence of timed explosions. Computerized simulations were performed with CALE, a two-dimensional Arbitrary Language Eulerian program to examine principles and preferred operating parameters.

  16. The designing of launch vehicles with liquid propulsion engines ensuring fire, explosion and environmental safety requirements of worked-off stages

    NASA Astrophysics Data System (ADS)

    Trushlyakov, V.; Shatrov, Ya.; Sujmenbaev, B.; Baranov, D.

    2017-02-01

    The paper addresses the problem of the launch vehicles (LV) with main liquid propulsion engines launch technogenic impact in different environment areas. Therefore, as the study subjects were chosen the worked-off stages (WS) with unused propellant residues in tanks, the cosmodrome ecological monitoring system, the worked-off stage design and construction solutions development system and the unified system with the "WS+the cosmodrome ecological monitoring system+design and construction solutions development system" feedback allowing to form the optimal ways of the WS design and construction parameters variations for its fire and explosion hazard management in different areas of the environment. It is demonstrated that the fire hazard effects of propellant residues in WS tanks increase the ecosystem disorder level for the Vostochny cosmodrome impact area ecosystem. Applying the system analysis, the proposals on the selection of technologies, schematic and WS design and construction solutions aimed to the fire and explosion safety improvement during the LV worked-off stages with the main liquid propulsion engines operation were formulated. Among them are the following: firstly, the unused propellant residues in tanks convective gasification based on the hot gas (heat carrier) supply in WS tanks after main liquid propulsion engines cutoff is proposed as the basic technology; secondly, the obtained unused propellant residues in WS tanks gasification products (evaporated propellant residues + pressurizing agent + heat carrier) are used for WS stabilization and orientation while descending trajectory moving. The applying of the proposed technologies allows providing fire and explosion safety requirements of LV with main liquid propulsion engines practically.

  17. 14 CFR 420.63 - Explosive siting.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Explosive siting. 420.63 Section 420.63... TRANSPORTATION LICENSING LICENSE TO OPERATE A LAUNCH SITE Responsibilities of a Licensee § 420.63 Explosive... configuration of the launch site follows its explosive site plan, and the licensee's explosive site...

  18. 14 CFR 420.63 - Explosive siting.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Explosive siting. 420.63 Section 420.63... TRANSPORTATION LICENSING LICENSE TO OPERATE A LAUNCH SITE Responsibilities of a Licensee § 420.63 Explosive... configuration of the launch site follows its explosive site plan, and the licensee's explosive site...

  19. Sphagnum moss disperses spores with vortex rings.

    PubMed

    Whitaker, Dwight L; Edwards, Joan

    2010-07-23

    Sphagnum spores, which have low terminal velocities, are carried by turbulent wind currents to establish colonies many kilometers away. However, spores that are easily kept aloft are also rapidly decelerated in still air; thus, dispersal range depends strongly on release height. Vascular plants grow tall to lift spores into sufficient wind currents for dispersal, but nonvascular plants such as Sphagnum cannot grow sufficiently high. High-speed videos show that exploding capsules of Sphagnum generate vortex rings to efficiently carry spores high enough to be dispersed by turbulent air currents. Spores launched ballistically at similar speeds through still air would travel a few millimeters and not easily reach turbulent air. Vortex rings are used by animals; here, we report vortex rings generated by plants.

  20. Spores Disperse, Too!

    ERIC Educational Resources Information Center

    Schumann, Donna N.

    1981-01-01

    Suggests the use of spores and spore-producing structures to show adaptations facilitating spore dispersal and dispersal to favorable environments. Describes several activities using horsetails, ferns, and mosses. Lists five safety factors related to use of mold spores in the classroom. (DS)

  1. Spores Disperse, Too!

    ERIC Educational Resources Information Center

    Schumann, Donna N.

    1981-01-01

    Suggests the use of spores and spore-producing structures to show adaptations facilitating spore dispersal and dispersal to favorable environments. Describes several activities using horsetails, ferns, and mosses. Lists five safety factors related to use of mold spores in the classroom. (DS)

  2. 14 CFR 420.63 - Explosive siting.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Explosive siting. 420.63 Section 420.63... TRANSPORTATION LICENSING LICENSE TO OPERATE A LAUNCH SITE Responsibilities of a Licensee § 420.63 Explosive... the configuration of the launch site is in accordance with an explosive site plan, and that...

  3. 14 CFR 420.63 - Explosive siting.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Explosive siting. 420.63 Section 420.63... TRANSPORTATION LICENSING LICENSE TO OPERATE A LAUNCH SITE Responsibilities of a Licensee § 420.63 Explosive... the configuration of the launch site is in accordance with an explosive site plan, and that...

  4. 14 CFR 420.63 - Explosive siting.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Explosive siting. 420.63 Section 420.63... TRANSPORTATION LICENSING LICENSE TO OPERATE A LAUNCH SITE Responsibilities of a Licensee § 420.63 Explosive... the configuration of the launch site is in accordance with an explosive site plan, and that...

  5. Size matters for violent discharge height and settling speed of Sphagnum spores: important attributes for dispersal potential.

    PubMed

    Sundberg, Sebastian

    2010-02-01

    Initial release height and settling speed of diaspores are biologically controlled components which are key to modelling wind dispersal. Most Sphagnum (peat moss) species have explosive spore liberation. In this study, how capsule and spore sizes affect the height to which spores are propelled were measured, and how spore size and spore number of discharged particles relate to settling speed in the aspherical Sphagnum spores. Spore discharge and spore cloud development were filmed in a closed chamber (nine species). Measurements were taken from snapshots at three stages of cloud development. Settling speed of spores (14 species) and clusters were timed in a glass tube. The maximum discharge speed measured was 3.6 m s(-1). Spores reached a maximum height of 20 cm (average: 15 cm) above the capsule. The cloud dimensions at all stages were related positively to capsule size (R(2) = 0.58-0.65). Thus species with large shoots (because they have large capsules) have a dispersal advantage. Half of the spores were released as singles and the rest as clusters (usually two to four spores). Single spores settled at 0.84-1.86 cm s(-1), about 52 % slower than expected for spherical spores with the same diameters. Settling speed displayed a positive curvilinear relationship with spore size, close to predictions by Stokes' law for spherical spores with 68 % of the actual diameters. Light-coloured spores settled slower than dark spores. Settling speed of spore clusters agrees with earlier studies. Effective spore discharge and small, slowly settling spores appear particularly important for species in forested habitats. The spore discharge heights in Sphagnum are among the greatest for small, wind-dispersed propagules. The discharge heights and the slow settling of spores affect dispersal distances positively and may help to explain the wide distribution of most boreal Sphagnum species.

  6. Hydrazine inactivates bacillus spores

    NASA Technical Reports Server (NTRS)

    Schubert, Wayne; Plett, G. A.; Yavrouian, A. H.; Barengoltz, J.

    2005-01-01

    Planetary Protection places requirements on the maximum number of viable bacterial spores that may be delivered by a spacecraft to another solar system body. Therefore, for such space missions, the spores that may be found in hydrazine are of concern. A proposed change in processing procedures that eliminated a 0.2 um filtration step propmpted this study to ensure microbial contamination issue existed, especially since no information was found in the literature to substantiate bacterial spore inactivation by hydrazine.

  7. Cryopreservation of fern spores

    USDA-ARS?s Scientific Manuscript database

    Spore banks for ferns are analogous to seed banks for angiosperms and provide a promising ex situ conservation tool because large quantities of germplasm with high genetic variation can be conserved in a small space with low economic and technical costs. Ferns produce two types of spores with very ...

  8. 78 FR 1143 - Explosive Siting Requirements; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-08

    ... Federal Aviation Administration 14 CFR Part 420 RIN 2120-AJ73 Explosive Siting Requirements; Correction... regulations to the requirements for siting explosives under a license to operate a launch site. The rule... liquids and explosives. The FAA inadvertently did not correctly identify the Department of...

  9. A natural O-ring optimizes the dispersal of fungal spores

    PubMed Central

    Fritz, Joerg A.; Seminara, Agnese; Roper, Marcus; Pringle, Anne; Brenner, Michael P.

    2013-01-01

    The forcibly ejected spores of ascomycete fungi must penetrate several millimetres of nearly still air surrounding sporocarps to reach dispersive airflows, and escape is facilitated when a spore is launched with large velocity. To launch, the spores of thousands of species are ejected through an apical ring, a small elastic pore. The startling diversity of apical ring and spore shapes and dimensions make them favoured characters for both species descriptions and the subsequent inference of relationships among species. However, the physical constraints shaping this diversity and the adaptive benefits of specific morphologies are not understood. Here, we develop an elastohydrodynamic theory of the spore's ejection through the apical ring and demonstrate that to avoid enormous energy losses during spore ejection, the four principal morphological dimensions of spore and apical ring must cluster within a nonlinear one-dimensional subspace. We test this prediction using morphological data for 45 fungal species from two different classes and 18 families. Our sampling encompasses multiple loss and gain events and potentially independent origins of this spore ejection mechanism. Although the individual dimensions of the spore and apical ring are only weakly correlated with each other, they collapse into the predicted subspace with high accuracy. The launch velocity appears to be within 2 per cent of the optimum for over 90 per cent of all forcibly ejected species. Although the morphological diversity of apical rings and spores appears startlingly diverse, a simple principle can be used to organize it. PMID:23782534

  10. 14 CFR 417.417 - Propellants and explosives.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Propellants and explosives. 417.417 Section..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Ground Safety § 417.417 Propellants and explosives. (a) A launch operator must comply with the explosive safety criteria in part 420 of this chapter. (b)...

  11. 14 CFR 417.417 - Propellants and explosives.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Propellants and explosives. 417.417 Section..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Ground Safety § 417.417 Propellants and explosives. (a) A launch operator must comply with the explosive safety criteria in part 420 of this chapter. (b)...

  12. 14 CFR 417.417 - Propellants and explosives.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Propellants and explosives. 417.417 Section..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Ground Safety § 417.417 Propellants and explosives. (a) A launch operator must comply with the explosive safety criteria in part 420 of this chapter. (b)...

  13. 14 CFR 417.417 - Propellants and explosives.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Propellants and explosives. 417.417 Section..., DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Ground Safety § 417.417 Propellants and explosives. (a) A launch operator must comply with the explosive safety criteria in part 420 of this chapter. (b)...

  14. Explosives tester

    DOEpatents

    Haas, Jeffrey S [San Ramon, CA; Howard, Douglas E [Livermore, CA; Eckels, Joel D [Livermore, CA; Nunes, Peter J [Danville, CA

    2011-01-11

    An explosives tester that can be used anywhere as a screening tool by non-technical personnel to determine whether a surface contains explosives. First and second explosives detecting reagent holders and dispensers are provided. A heater is provided for receiving the first and second explosives detecting reagent holders and dispensers.

  15. Bacillus subtilis Spore Coat

    PubMed Central

    Driks, Adam

    1999-01-01

    In response to starvation, bacilli and clostridia undergo a specialized program of development that results in the production of a highly resistant dormant cell type known as the spore. A proteinacious shell, called the coat, encases the spore and plays a major role in spore survival. The coat is composed of over 25 polypeptide species, organized into several morphologically distinct layers. The mechanisms that guide coat assembly have been largely unknown until recently. We now know that proper formation of the coat relies on the genetic program that guides the synthesis of spore components during development as well as on morphogenetic proteins dedicated to coat assembly. Over 20 structural and morphogenetic genes have been cloned. In this review, we consider the contributions of the known coat and morphogenetic proteins to coat function and assembly. We present a model that describes how morphogenetic proteins direct coat assembly to the specific subcellular site of the nascent spore surface and how they establish the coat layers. We also discuss the importance of posttranslational processing of coat proteins in coat morphogenesis. Finally, we review some of the major outstanding questions in the field. PMID:10066829

  16. Clostridium difficile spore biology: sporulation, germination, and spore structural proteins

    PubMed Central

    Paredes-Sabja, Daniel; Shen, Aimee; Sorg, Joseph A.

    2014-01-01

    Clostridium difficile is a Gram-positive, spore-forming obligate anaerobe and a major nosocomial pathogen of world-wide concern. Due to its strict anaerobic requirements, the infectious and transmissible morphotype is the dormant spore. In susceptible patients, C. difficile spores germinate in the colon to form the vegetative cells that initiate Clostridium difficile infections (CDI). During CDI, C. difficile induces a sporulation pathway that produces more spores; these spores are responsible for the persistence of C. difficile in patients and horizontal transmission between hospitalized patients. While important to the C. difficile lifecycle, the C. difficile spore proteome is poorly conserved when compared to members of the Bacillus genus. Further, recent studies have revealed significant differences between C. difficile and B. subtilis at the level of sporulation, germination and spore coat and exosporium morphogenesis. In this review, the regulation of the sporulation and germination pathways and the morphogenesis of the spore coat and exosporium will be discussed. PMID:24814671

  17. Accidental explosions

    SciTech Connect

    Medard, L.A.

    1989-01-01

    This book presents a survey of accidental explosions, their nature and their causes. It covers the physical and chemical conditions governing accidental explosions, whether in the gas phase, or in the liquid or solid state. The theoretical background of the kinetics and thermochemistry of explosions is outlined, followed by a detailed study of the explosion and detonation properties of both gas and condensed explosives. The author surveys a wide variety of substances in daily use in industry which can give rise to accidental explosions. Their properties and hazards are spelt out in detail, the discussion drawing on a long history of sometimes catastrophic accidents. Includes case studies, tables of physical and chemical data.

  18. Spores do travel.

    PubMed

    Dam, Nico

    2013-01-01

    Model calculations are presented on the horizontal dispersal distance of basidiospores from their source (any typical agaric). The results are compared to old and recent experimental data obtained by sampling on sticky microscope slides placed on soil. I argue that such experimental data alone are insufficient to determine the dispersion kernel because of sampling paucity: Only a minor fraction of the released spores is sampled, and the fate of the rest is unknown. Spore dispersal is determined largely by wind, whereas deposition may be due predominantly to wash-out by rainfall.

  19. Launch Vehicles

    NASA Image and Video Library

    2007-09-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. Launch Pad 39B of the Kennedy Space Flight Center (KSC), currently used for Space Shuttle launches, will be revised to host the Ares launch vehicles. The fixed and rotating service structures standing at the pad will be dismantled sometime after the Ares I-X test flight. A new launch tower for Ares I will be built onto a new mobile launch platform. The gantry for the shuttle doesn't reach much higher than the top of the four segments of the solid rocket booster. Pad access above the current shuttle launch pad structure will not be required for Ares I-X because the stages above the solid rocket booster are inert. For the test scheduled in 2012 or for the crewed flights, workers and astronauts will need access to the highest levels of the rocket and capsule. When the Ares I rocket rolls out to the launch pad on the back of the same crawler-transporters used now, its launch gantry will be with it. The mobile launchers will nestle under three lightning protection towers to be erected around the pad area. Ares time at the launch pad will be significantly less than the three weeks or more the shuttle requires. This “clean pad” approach minimizes equipment and servicing at the launch pad. It is the same plan NASA used with the Saturn V rockets and industry employs it with more modern launchers. The launch pad will also get a new emergency escape system for astronauts, one that looks very much like a roller coaster. Cars riding on a rail will replace the familiar baskets hanging from steel cables. This artist's concept illustrates the Ares I on launch pad 39B.

  20. Launch vehicle

    NASA Astrophysics Data System (ADS)

    Rutledge, William S.

    1994-06-01

    Concentrated efforts by NASA and the DOD to begin development of a new large launch vehicle have been under way for over a decade. Options include the National Launch System, Advanced Launch System, a heavy lift vehicle, a Shuttle-derived vehicle, a Titan-derived vehicle, Single stage To Orbit, NASP and Spacelifter, to name a few. All initially promised low operations costs achieved at development costs in the $5 billion - $10 billion range. However, none has obtained approval for development, primarily because it became apparent that these cost goals could not realistically be met.

  1. Fifth international fungus spore conference

    SciTech Connect

    Timberlake, W.E.

    1993-04-01

    This folio contains the proceedings of the Fifth International Fungal Spore Conference held August 17-21, 1991 at the Unicoi State Park at Helen, Georgia. The volume contains abstracts of each oral presentation as well as a collection of abstracts describing the poster sessions. Presentations were organized around the themes (1) Induction of Sporulation, (2) Nuclear Division, (3) Spore Formation, (4) Spore Release and Dispersal, and (4) Spore Germination.

  2. NPP Launch

    NASA Image and Video Library

    NASA's National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) spacecraft was launched aboard a Delta II rocket at 5:48 a.m. EDT today, on a mission to measure ...

  3. Orion Launch

    NASA Image and Video Library

    2014-12-05

    A Delta IV Heavy rocket lifts off from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida carrying NASA's Orion spacecraft on an unpiloted flight test to Earth orbit. Liftoff was at 7:05 a.m. EST. During the two-orbit, four-and-a-half hour mission, engineers will evaluate the systems critical to crew safety, the launch abort system, the heat shield and the parachute system.

  4. Anthrax Spores under a microscope

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Anthrax spores are inactive forms of Bacillus anthracis. They can survive for decades inside a spore's tough protective coating; they become active when inhaled by humans. A result of NASA- and industry-sponsored research to develop small greenhouses for space research is the unique AiroCide TiO2 system that kills anthrax spores and other pathogens.

  5. Anthrax Spores under a microscope

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Anthrax spores are inactive forms of Bacillus anthracis. They can survive for decades inside a spore's tough protective coating; they become active when inhaled by humans. A result of NASA- and industry-sponsored research to develop small greenhouses for space research is the unique AiroCide TiO2 system that kills anthrax spores and other pathogens.

  6. Biomarkers of Aspergillus spores

    NASA Astrophysics Data System (ADS)

    Sulc, Miroslav; Peslova, Katerina; Zabka, Martin; Hajduch, Marian; Havlicek, Vladimir

    2009-02-01

    We applied both matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometric and 1D sodium dodecylsulfate polyacrylamide gel electrophoretic (1D-PAGE) approaches for direct analysis of intact fungal spores of twenty four Aspergillus species. In parallel, we optimized various protocols for protein extraction from Aspergillus spores using acidic conditions, step organic gradient and variable sonication treatment. The MALDI-TOF mass spectra obtained from optimally prepared samples provided a reproducible fingerprint demonstrating the capability of the MALDI-TOF approach to type and characterize different fungal strains within the Aspergillus genus. Mass spectra of intact fungal spores provided signals mostly below 20 kDa. The minimum material amount represented 0.3 [mu]g (10,000 spores). Proteins with higher molecular weight were detected by 1D-PAGEE Eleven proteins were identified from three selected strains in the range 5-25 kDa by the proteomic approach. Hemolysin and hydrophobin have the highest relevance in host-pathogen interactions.

  7. Insensitive explosive

    SciTech Connect

    Lee, Kien-yin; Storm, C.B.

    1991-12-31

    This invention relates to the field of chemistry and, more particularly, to explosives. This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36). It is desirable to use explosives in weapons and other applications which are less sensitive than the common explosives RDX, TNT, and HMX, since there have been catastrophic explosions of munitions which use these compounds. In preliminary characterization and sensitivity testing, it has been found that 3-amino-5-nitro-1,2,4-triazole (ANTA) is a promising insensitive high explosive. This report details the safety, production, and physical properties of ANTA.

  8. Launch Vehicles

    NASA Image and Video Library

    1961-01-01

    This is a comparison illustration of the Redstone, Jupiter-C, and Mercury Redstone launch vehicles. The Redstone ballistic missile was a high-accuracy, liquid-propelled, surface-to-surface missile. Originally developed as a nose cone re-entry test vehicle for the Jupiter intermediate range ballistic missile, the Jupiter-C was a modification of the Redstone missile and successfully launched the first American Satellite, Explorer-1, in orbit on January 31, 1958. The Mercury Redstone lifted off carrying the first American, astronaut Alan Shepard, in his Mercury spacecraft Freedom 7, on May 5, 1961.

  9. Detonation wave profiles in HMX based explosives

    SciTech Connect

    Gustavsen, R.L.; Sheffield, S.A.; Alcon, R.R.

    1997-11-01

    Detonation wave profiles have been measured in several HMX based plastic bonded explosives including PBX9404, PBX9501, and EDC-37, as well as two HMX powders (coarse and fine) pressed to 65% of crystal density. The powders had 120 and 10 {micro}m average grain sizes, respectively. Planar detonations were produced by impacting the explosive with projectiles launched in a 72-mm bore gas gun. Impactors, impact velocity, and explosive thickness were chosen so that the run distance to detonation was always less than half the explosive thickness. For the high density plastic bonded explosives, particle velocity wave profiles were measured at an explosive/window interface using two VISAR interferometers. PMMA windows with vapor deposited aluminum mirrors were used for all experiments. Wave profiles for the powdered explosives were measured using magnetic particle velocity gauges. Estimates of the reaction zone parameters were obtained from the profiles using Hugoniots of the explosive and window.

  10. Spore: Spawning Evolutionary Misconceptions?

    NASA Astrophysics Data System (ADS)

    Bean, Thomas E.; Sinatra, Gale M.; Schrader, P. G.

    2010-10-01

    The use of computer simulations as educational tools may afford the means to develop understanding of evolution as a natural, emergent, and decentralized process. However, special consideration of developmental constraints on learning may be necessary when using these technologies. Specifically, the essentialist (biological forms possess an immutable essence), teleological (assignment of purpose to living things and/or parts of living things that may not be purposeful), and intentionality (assumption that events are caused by an intelligent agent) biases may be reinforced through the use of computer simulations, rather than addressed with instruction. We examine the video game Spore for its depiction of evolutionary content and its potential to reinforce these cognitive biases. In particular, we discuss three pedagogical strategies to mitigate weaknesses of Spore and other computer simulations: directly targeting misconceptions through refutational approaches, targeting specific principles of scientific inquiry, and directly addressing issues related to models as cognitive tools.

  11. Thermal Spore Exposure Vessels

    NASA Technical Reports Server (NTRS)

    Beaudet, Robert A.; Kempf, Michael; Kirschner, Larry

    2006-01-01

    Thermal spore exposure vessels (TSEVs) are laboratory containers designed for use in measuring rates of death or survival of microbial spores at elevated temperatures. A major consideration in the design of a TSEV is minimizing thermal mass in order to minimize heating and cooling times. This is necessary in order to minimize the number of microbes killed before and after exposure at the test temperature, so that the results of the test accurately reflect the effect of the test temperature. A typical prototype TSEV (see figure) includes a flat-bottomed stainless-steel cylinder 4 in. (10.16 cm) long, 0.5 in. (1.27 cm) in diameter, having a wall thickness of 0.010 plus or minus 0.002 in. (0.254 plus or minus 0.051 mm). Microbial spores are deposited in the bottom of the cylinder, then the top of the cylinder is closed with a sterile rubber stopper. Hypodermic needles are used to puncture the rubber stopper to evacuate the inside of the cylinder or to purge the inside of the cylinder with a gas. In a typical application, the inside of the cylinder is purged with dry nitrogen prior to a test. During a test, the lower portion of the cylinder is immersed in a silicone-oil bath that has been preheated to and maintained at the test temperature. Test temperatures up to 220 C have been used. Because the spores are in direct contact with the thin cylinder wall, they quickly become heated to the test temperature.

  12. Launching "Dunno"

    ERIC Educational Resources Information Center

    Inson, Peter

    2005-01-01

    This article, written in response to an invitation from "CLE," describes the origins and controversial content of "dunno," a first novel, self-published by Peter Inson, a former teacher and headmaster. Inson considers influences upon his writing, the thinking which led him towards self-publication and the process of personally launching and…

  13. Spore collection and elimination apparatus and method

    DOEpatents

    Czajkowski, Carl; Warren, Barbara Panessa

    2007-04-03

    The present invention is for a spore collection apparatus and its method of use. The portable spore collection apparatus includes a suction source, a nebulizer, an ionization chamber and a filter canister. The suction source collects the spores from a surface. The spores are activated by heating whereby spore dormancy is broken. Moisture is then applied to the spores to begin germination. The spores are then exposed to alpha particles causing extinction.

  14. Spore coat architecture of Clostridium novyi NT spores.

    PubMed

    Plomp, Marco; McCaffery, J Michael; Cheong, Ian; Huang, Xin; Bettegowda, Chetan; Kinzler, Kenneth W; Zhou, Shibin; Vogelstein, Bert; Malkin, Alexander J

    2007-09-01

    Spores of the anaerobic bacterium Clostridium novyi NT are able to germinate in and destroy hypoxic regions of tumors in experimental animals. Future progress in this area will benefit from a better understanding of the germination and outgrowth processes that are essential for the tumorilytic properties of these spores. Toward this end, we have used both transmission electron microscopy and atomic force microscopy to determine the structure of both dormant and germinating spores. We found that the spores are surrounded by an amorphous layer intertwined with honeycomb parasporal layers. Moreover, the spore coat layers had apparently self-assembled, and this assembly was likely to be governed by crystal growth principles. During germination and outgrowth, the honeycomb layers, as well as the underlying spore coat and undercoat layers, sequentially dissolved until the vegetative cell was released. In addition to their implications for understanding the biology of C. novyi NT, these studies document the presence of proteinaceous growth spirals in a biological organism.

  15. Clostridium difficile spore-macrophage interactions: spore survival.

    PubMed

    Paredes-Sabja, Daniel; Cofre-Araneda, Glenda; Brito-Silva, Christian; Pizarro-Guajardo, Marjorie; Sarker, Mahfuzur R

    2012-01-01

    Clostridium difficile is the main cause of nosocomial infections including antibiotic associated diarrhea, pseudomembranous colitis and toxic megacolon. During the course of Clostridium difficile infections (CDI), C. difficile undergoes sporulation and releases spores to the colonic environment. The elevated relapse rates of CDI suggest that C. difficile spores has a mechanism(s) to efficiently persist in the host colonic environment. In this work, we provide evidence that C. difficile spores are well suited to survive the host's innate immune system. Electron microscopy results show that C. difficile spores are recognized by discrete patchy regions on the surface of macrophage Raw 264.7 cells, and phagocytosis was actin polymerization dependent. Fluorescence microscopy results show that >80% of Raw 264.7 cells had at least one C. difficile spore adhered, and that ∼60% of C. difficile spores were phagocytosed by Raw 264.7 cells. Strikingly, presence of complement decreased Raw 264.7 cells' ability to phagocytose C. difficile spores. Due to the ability of C. difficile spores to remain dormant inside Raw 264.7 cells, they were able to survive up to 72 h of macrophage infection. Interestingly, transmission electron micrographs showed interactions between the surface proteins of C. difficile spores and the phagosome membrane of Raw 264.7 cells. In addition, infection of Raw 264.7 cells with C. difficile spores for 48 h produced significant Raw 264.7 cell death as demonstrated by trypan blue assay, and nuclei staining by ethidium homodimer-1. These results demonstrate that despite efficient recognition and phagocytosis of C. difficile spores by Raw 264.7 cells, spores remain dormant and are able to survive and produce cytotoxic effects on Raw 264.7 cells.

  16. Clostridium difficile Spore-Macrophage Interactions: Spore Survival

    PubMed Central

    Paredes-Sabja, Daniel; Cofre-Araneda, Glenda; Brito-Silva, Christian; Pizarro-Guajardo, Marjorie; Sarker, Mahfuzur R.

    2012-01-01

    Background Clostridium difficile is the main cause of nosocomial infections including antibiotic associated diarrhea, pseudomembranous colitis and toxic megacolon. During the course of Clostridium difficile infections (CDI), C. difficile undergoes sporulation and releases spores to the colonic environment. The elevated relapse rates of CDI suggest that C. difficile spores has a mechanism(s) to efficiently persist in the host colonic environment. Methodology/Principal Findings In this work, we provide evidence that C. difficile spores are well suited to survive the host’s innate immune system. Electron microscopy results show that C. difficile spores are recognized by discrete patchy regions on the surface of macrophage Raw 264.7 cells, and phagocytosis was actin polymerization dependent. Fluorescence microscopy results show that >80% of Raw 264.7 cells had at least one C. difficile spore adhered, and that ∼60% of C. difficile spores were phagocytosed by Raw 264.7 cells. Strikingly, presence of complement decreased Raw 264.7 cells’ ability to phagocytose C. difficile spores. Due to the ability of C. difficile spores to remain dormant inside Raw 264.7 cells, they were able to survive up to 72 h of macrophage infection. Interestingly, transmission electron micrographs showed interactions between the surface proteins of C. difficile spores and the phagosome membrane of Raw 264.7 cells. In addition, infection of Raw 264.7 cells with C. difficile spores for 48 h produced significant Raw 264.7 cell death as demonstrated by trypan blue assay, and nuclei staining by ethidium homodimer-1. Conclusions/Significance These results demonstrate that despite efficient recognition and phagocytosis of C. difficile spores by Raw 264.7 cells, spores remain dormant and are able to survive and produce cytotoxic effects on Raw 264.7 cells. PMID:22952726

  17. Launch vehicles

    NASA Astrophysics Data System (ADS)

    Moss, J. B.

    The basic principles which determine launcher design and hence constrain the spacecraft payload are determined. Some key features of the principal launcher alternatives in Europe and the U.S., namely, the unmanned, expendable Ariane and the manned, substantially reusable, Space Shuttle, are outlined. The equations of motion of the rocket are specialized to the vertical plane, parallel and normal to the flight direction, and to the motion of the center of mass and the pitch rotation. A typical Ariane 2 flight profile for transfer into GTO is illustrated. Some representative mission requirements for spacecraft launches are reviewed. Launch vehicle burnout velocities for spacecraft emplacement are given. Geostationary orbit emplacement, orbital mission performance, and configuration interactions are discussed.

  18. Inactivation of Bacillus anthracis Spores

    PubMed Central

    Whitney, Ellen A. Spotts; Beatty, Mark E.; Taylor, Thomas H.; Weyant, Robbin; Sobel, Jeremy; Arduino, Matthew J.

    2003-01-01

    After the intentional release of Bacillus anthracis through the U.S. Postal Service in the fall of 2001, many environments were contaminated with B. anthracis spores, and frequent inquiries were made regarding the science of destroying these spores. We conducted a survey of the literature that had potential application to the inactivation of B. anthracis spores. This article provides a tabular summary of the results. PMID:12780999

  19. LADEE Launch

    NASA Image and Video Library

    2013-09-07

    NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) observatory launches aboard the Minotaur V rocket from the Mid-Atlantic Regional Spaceport (MARS) at NASA's Wallops Flight Facility, Friday, Sept. 6, 2013 in Virginia. LADEE is a robotic mission that will orbit the moon where it will provide unprecedented information about the environment around the moon and give scientists a better understanding of other planetary bodies in our solar system and beyond. Photo Credit: (NASA/Carla Cioffi)

  20. Launch Vehicles

    NASA Image and Video Library

    2004-04-15

    The Titan II liftoff. The Titan II launch vehicle was used for carrying astronauts on the Gemini mission. The Gemini Program was an intermediate step between the Project Mercury and the Apollo Program. The major objectives were to subject are two men and supporting equipment to long duration flights, to effect rendezvous and docking with other orbiting vehicle, and to perfect methods of reentry, and landing the spacecraft.

  1. Launch Vehicles

    NASA Image and Video Library

    2007-07-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. In this HD video image, an Ares I x-test involves the upper stage separating from the first stage. This particular test was conducted at the NASA Langley Research Center in July 2007. (Highest resolution available)

  2. The Fastest Flights in Nature: High-Speed Spore Discharge Mechanisms among Fungi

    PubMed Central

    Yafetto, Levi; Carroll, Loran; Cui, Yunluan; Davis, Diana J.; Fischer, Mark W. F.; Henterly, Andrew C.; Kessler, Jordan D.; Kilroy, Hayley A.; Shidler, Jacob B.; Stolze-Rybczynski, Jessica L.; Sugawara, Zachary; Money, Nicholas P.

    2008-01-01

    Background A variety of spore discharge processes have evolved among the fungi. Those with the longest ranges are powered by hydrostatic pressure and include “squirt guns” that are most common in the Ascomycota and Zygomycota. In these fungi, fluid-filled stalks that support single spores or spore-filled sporangia, or cells called asci that contain multiple spores, are pressurized by osmosis. Because spores are discharged at such high speeds, most of the information on launch processes from previous studies has been inferred from mathematical models and is subject to a number of errors. Methodology/Principal Findings In this study, we have used ultra-high-speed video cameras running at maximum frame rates of 250,000 fps to analyze the entire launch process in four species of fungi that grow on the dung of herbivores. For the first time we have direct measurements of launch speeds and empirical estimates of acceleration in these fungi. Launch speeds ranged from 2 to 25 m s−1 and corresponding accelerations of 20,000 to 180,000 g propelled spores over distances of up to 2.5 meters. In addition, quantitative spectroscopic methods were used to identify the organic and inorganic osmolytes responsible for generating the turgor pressures that drive spore discharge. Conclusions/Significance The new video data allowed us to test different models for the effect of viscous drag and identify errors in the previous approaches to modeling spore motion. The spectroscopic data show that high speed spore discharge mechanisms in fungi are powered by the same levels of turgor pressure that are characteristic of fungal hyphae and do not require any special mechanisms of osmolyte accumulation. PMID:18797504

  3. Science hub spore data

    EPA Pesticide Factsheets

    Data set includes UV dose, and Bacillus pumilus spore plate counts in colony forming unitsThis dataset is associated with the following publication:Boczek , L., E. Rhodes , J. Cashdollar, J. Ryu, J. Popovici , J. Hoelle , M. Sivaganesan , S. Hayes , M. Rodgers , and H. Ryu. Applicability of UV resistant Bacillus pumilus endospores as a human adenovirus surrogate for evaluating the effectiveness of virus inactivation in low-pressure UV treatment systems. JOURNAL OF MICROBIOLOGICAL METHODS. Elsevier Science Ltd, New York, NY, USA, 122: 43-49, (2016).

  4. Clostridium difficile spore biology: sporulation, germination, and spore structural proteins.

    PubMed

    Paredes-Sabja, Daniel; Shen, Aimee; Sorg, Joseph A

    2014-07-01

    Clostridium difficile is a Gram-positive, spore-forming obligate anaerobe and a major nosocomial pathogen of worldwide concern. Owing to its strict anaerobic requirements, the infectious and transmissible morphotype is the dormant spore. In susceptible patients, C. difficile spores germinate in the colon to form the vegetative cells that initiate Clostridium difficile infections (CDI). During CDI, C. difficile induces a sporulation pathway that produces more spores; these spores are responsible for the persistence of C. difficile in patients and horizontal transmission between hospitalized patients. Although important to the C. difficile lifecycle, the C. difficile spore proteome is poorly conserved when compared to members of the Bacillus genus. Further, recent studies have revealed significant differences between C. difficile and Bacillus subtilis at the level of sporulation, germination, and spore coat and exosporium morphogenesis. In this review, the regulation of the sporulation and germination pathways and the morphogenesis of the spore coat and exosporium will be discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Launch Vehicles

    NASA Image and Video Library

    2007-08-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts the preparation and placement of a confidence ring for friction stir welding used in manufacturing aluminum panels that will fabricate the Ares I upper stage barrel. The aluminum panels are manufactured and subjected to confidence tests during which the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)

  6. Launch Vehicles

    NASA Image and Video Library

    2006-09-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. In this HD video image, the first stage reentry parachute drop test is conducted at the Yuma, Arizona proving ground. The parachute tests demonstrated a three-stage deployment sequence that included the use of an Orbiter drag chute to properly stage the unfurling of the main chute. The parachute recovery system for Orion will be similar to the system used for Apollo command module landings and include two drogue, three pilot, and three main parachutes. (Highest resolution available)

  7. Launch Vehicles

    NASA Image and Video Library

    2007-09-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. In this HD video image, the first stage reentry parachute drop test is conducted at the Yuma, Arizona proving ground. The parachute tests demonstrated a three-stage deployment sequence that included the use of an Orbiter drag chute to properly stage the unfurling of the main chute. The parachute recovery system for Orion will be similar to the system used for Apollo command module landings and include two drogue, three pilot, and three main parachutes. (Highest resolution available)

  8. Launch Vehicles

    NASA Image and Video Library

    2007-08-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. In this HD video image, processes for upper stage barrel fabrication are talking place. Aluminum panels are manufacturing process demonstration articles that will undergo testing until perfected. The panels are built by AMRO Manufacturing located in El Monte, California. (Largest resolution available)

  9. Launch Vehicles

    NASA Image and Video Library

    2007-08-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts the manufacturing of aluminum panels that will be used to form the Ares I barrel. The panels are manufacturing process demonstration articles that will undergo testing until perfected. The panels are built by AMRO Manufacturing located in El Monte, California. (Highest resolution available)

  10. Launch Vehicles

    NASA Image and Video Library

    2007-08-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts friction stir welding used in manufacturing aluminum panels that will fabricate the Ares I upper stage barrel. The panels are subjected to confidence tests in which the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)

  11. Launch Vehicles

    NASA Image and Video Library

    2007-08-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image, depicts a manufactured aluminum panel, that will be used to fabricate the Ares I upper stage barrel, undergoing a confidence panel test. In this test, the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)

  12. Launch Vehicles

    NASA Image and Video Library

    2006-08-08

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts a manufactured aluminum panel that will be used to fabricate the Ares I upper stage barrel, undergoing a confidence panel test. In this test, the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)

  13. Launch Vehicles

    NASA Image and Video Library

    2007-08-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts confidence testing of a manufactured aluminum panel that will fabricate the Ares I upper stage barrel. In this test, bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)

  14. Launch Vehicles

    NASA Image and Video Library

    2006-08-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts a manufactured aluminum panel, that will fabricate the Ares I upper stage barrel, undergoing a confidence panel test. In this test, bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)

  15. Launch Vehicles

    NASA Image and Video Library

    2007-08-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts a manufactured aluminum panel, that will fabricate the Ares I upper stage barrel, undergoing a confidence panel test. In this test, the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)

  16. An Orientation to Explosive Safety.

    ERIC Educational Resources Information Center

    Harris, Betty W.

    1987-01-01

    Provides an overview of various types of explosives. Classifies and describes explosives as initiating or primary explosives, low explosives, and high (secondary explosives). Discusses detonating devices, domestic explosive systems, the sensitivity of explosives, explosive reactions, and emergency responses. (TW)

  17. An Orientation to Explosive Safety.

    ERIC Educational Resources Information Center

    Harris, Betty W.

    1987-01-01

    Provides an overview of various types of explosives. Classifies and describes explosives as initiating or primary explosives, low explosives, and high (secondary explosives). Discusses detonating devices, domestic explosive systems, the sensitivity of explosives, explosive reactions, and emergency responses. (TW)

  18. "Spore" and the Sociocultural Moment

    ERIC Educational Resources Information Center

    Meyer, W. Max

    2012-01-01

    Analyses of the game "Spore" have centered on the important issues of accuracy of evolution content and engendering interest in science. This paper suggests that examination of the degree of scaffolding necessary to use the game in pedagogy is a missing part of the discussion, and then questions the longevity of the "Spore" discussion relative to…

  19. "Spore" and the Sociocultural Moment

    ERIC Educational Resources Information Center

    Meyer, W. Max

    2012-01-01

    Analyses of the game "Spore" have centered on the important issues of accuracy of evolution content and engendering interest in science. This paper suggests that examination of the degree of scaffolding necessary to use the game in pedagogy is a missing part of the discussion, and then questions the longevity of the "Spore" discussion relative to…

  20. PROPERTIES OF ELECTRODIALYZED BACTERIAL SPORES

    PubMed Central

    Harper, M. K.; Curran, H. R.; Pallansch, M. J.

    1964-01-01

    Harper, M. K. (U.S. Department of Agriculture, Washington, D.C.), H. R. Curran, and M. J. Pallansch. Properties of electrodialyzed bacterial spores. J. Bacteriol. 88:1338–1340. 1964.—Washed spores of Bacillus cereus, B. megaterium, and B. stearothermophilis suspended in distilled water were electrodialyzed at a potential of 250 v, 50 ma, for 6.5 hr, under conditions which precluded rise in temperature or shift in pH. Dipicolinic acid (DPA) was not released from the spores by electrodialysis, as indicated by essentially complete recovery of residual DPA from the treated spores. Uptake of stain, heat stability, and viability of the electrodialyzed spores were comparable to the nondialyzed controls. These findings are discussed in relation to those reported by Rode and Foster. PMID:14234790

  1. Ultrastructure and properties of Paecilomyces lilacinus spores.

    PubMed

    Holland, R J; Gunasekera, T S; Williams, K L; Nevalainen, K M H

    2002-10-01

    Strains of the filamentous soil fungus Paecilomyces lilacinus are currently being developed for use as biological control agents against root-knot, cyst, and other plant-parasitic nematodes. The inoculum applied in the field consists mainly of spores. This study was undertaken to examine the size, ultrastructure, and rodlet layers of P. lilacinus spores and the effect of the culture method on structural and functional spore properties. A rodlet layer was identified on aerial spores only. Other differences noted between aerial spores and those produced in submerged culture included the size and appearance of spores and thickness of spore coat layers when examined with transmission electron microscopy. The two spore types differed in UV tolerance, with aerial spores being less sensitive to environmentally relevant UV radiation. Also, viability after drying and storage was better with the aerial spores. Both spore types exhibited similar nematophagous ability.

  2. Hydrazine vapor inactivates Bacillus spores

    NASA Astrophysics Data System (ADS)

    Schubert, Wayne W.; Engler, Diane L.; Beaudet, Robert A.

    2016-05-01

    NASA policy restricts the total number of bacterial spores that can remain on a spacecraft traveling to any planetary body which might harbor life or have evidence of past life. Hydrazine, N2H4, is commonly used as a propellant on spacecraft. Hydrazine as a liquid is known to inactivate bacterial spores. We have now verified that hydrazine vapor also inactivates bacterial spores. After Bacillus atrophaeus ATCC 9372 spores deposited on stainless steel coupons were exposed to saturated hydrazine vapor in closed containers, the spores were recovered from the coupons, serially diluted, pour plated and the surviving bacterial colonies were counted. The exposure times required to reduce the spore population by a factor of ten, known as the D-value, were 4.70 ± 0.50 h at 25 °C and 2.85 ± 0.13 h at 35 °C. These inactivation rates are short enough to ensure that the bioburden of the surfaces and volumes would be negligible after prolonged exposure to hydrazine vapor. Thus, all the propellant tubing and internal tank surfaces exposed to hydrazine vapor do not contribute to the total spore count.

  3. Spore and the sociocultural moment

    NASA Astrophysics Data System (ADS)

    Meyer, W. Max

    2012-12-01

    Analyses of the game Spore have centered on the important issues of accuracy of evolution content and engendering interest in science. This paper suggests that examination of the degree of scaffolding necessary to use the game in pedagogy is a missing part of the discussion, and then questions the longevity of the Spore discussion relative to the general dissatisfaction with the science presented in the game. The paper proposes that analysis of Spore and other technological tools in science education may be embedded in an historical moment which directs the discussion towards satisfying sociocultural and organizational needs and away from pedagogical ones.

  4. Microbial profile modification with spores

    SciTech Connect

    Bae, J.H.; Chambers, K.T.; Lee, H.O.

    1996-08-01

    To overcome the shortcomings of conventional, near-wellbore profile modification methods, a microbial profile modification (MPM) method with spores was investigated. A halotolerant, spore-forming mesophile was isolated and characterized. These biopolymer-producing spores propagate easily in Berea cores with permeabilities more than about 500 md. With a specifically formulated nutrient package, they are readily germinated and produce biofilm, which reduces the permeability of the rock. The depth of penetration and the degree of permeability reduction can be controlled by varying injection schemes.

  5. Spore Coat Architecture of Clostridium novyi-NT spores

    SciTech Connect

    Plomp, M; McCafferey, J; Cheong, I; Huang, X; Bettegowda, C; Kinzler, K; Zhou, S; Vogelstein, B; Malkin, A

    2007-05-07

    Spores of the anaerobic bacterium Clostridium novyi-NT are able to germinate in and destroy hypoxic regions of tumors in experimental animals. Future progress in this area will benefit from a better understanding of the germination and outgrowth processes that are essential for the tumorilytic properties of these spores. Towards this end, we have used both transmission electron microscopy and atomic force microscopy to determine the structure of dormant as well as germinating spores. We found that the spores are surrounded by an amorphous layer intertwined with honeycomb parasporal layers. Moreover, the spore coat layers had apparently self-assembled and this assembly was likely to be governed by crystal growth principles. During germination and outgrowth, the honeycomb layers as well as the underlying spore coat and undercoat layers sequentially dissolved until the vegetative cell was released. In addition to their implications for understanding the biology of C. novyi-NT, these studies document the presence of proteinaceous growth spirals in a biological organism.

  6. Life cycle and spore resistance of spore-forming Bacillus atrophaeus.

    PubMed

    Sella, Sandra R B R; Vandenberghe, Luciana P S; Soccol, Carlos Ricardo

    2014-12-01

    Bacillus endospores have a wide variety of important medical and industrial applications. This is an overview of the fundamental aspects of the life cycle, spore structure and factors that influence the spore resistance of spore-forming Bacillus. Bacillus atrophaeus was used as reference microorganism for this review because their spores are widely used to study spore resistance and morphology. Understanding the mechanisms involved in the cell cycle and spore survival is important for developing strategies for spore killing; producing highly resistant spores for biodefense, food and pharmaceutical applications; and developing new bioactive molecules and methods for spore surface display.

  7. Bacterial Spores as Vaccine Vehicles

    PubMed Central

    Duc, Le H.; Hong, Huynh A.; Fairweather, Neil; Ricca, Ezio; Cutting, Simon M.

    2003-01-01

    For the first time, bacterial spores have been evaluated as vaccine vehicles. Bacillus subtilis spores displaying the tetanus toxin fragment C (TTFC) antigen were used for oral and intranasal immunization and were shown to generate mucosal and systemic responses in a murine model. TTFC-specific immunoglobulin G titers in serum (determined by enzyme-linked immunosorbent assay) reached significant levels 33 days after oral dosing, while responses against the spore coat proteins were relatively low. Tetanus antitoxin levels were sufficient to protect against an otherwise lethal challenge of tetanus toxin (20 50% lethal doses). The robustness and long-term storage properties of bacterial spores, coupled with simplified genetic manipulation and cost-effective manufacturing, make them particularly attractive vehicles for oral and intranasal vaccination. PMID:12704155

  8. Nanoengineered explosives

    DOEpatents

    Makowiecki, D.M.

    1996-04-09

    A complex modulated structure is described for reactive elements that have the capability of considerably more heat than organic explosives while generating a working fluid or gas. The explosive and method of fabricating same involves a plurality of very thin, stacked, multilayer structures, each composed of reactive components, such as aluminum, separated from a less reactive element, such as copper oxide, by a separator material, such as carbon. The separator material not only separates the reactive materials, but it reacts therewith when detonated to generate higher temperatures. The various layers of material, thickness of 10 to 10,000 angstroms, can be deposited by magnetron sputter deposition. The explosive detonates and combusts a high velocity generating a gas, such as CO, and high temperatures. 2 figs.

  9. Nanoengineered explosives

    DOEpatents

    Makowiecki, Daniel M.

    1996-01-01

    A complex modulated structure of reactive elements that have the capability of considerably more heat than organic explosives while generating a working fluid or gas. The explosive and method of fabricating same involves a plurality of very thin, stacked, multilayer structures, each composed of reactive components, such as aluminum, separated from a less reactive element, such as copper oxide, by a separator material, such as carbon. The separator material not only separates the reactive materials, but it reacts therewith when detonated to generate higher temperatures. The various layers of material, thickness of 10 to 10,000 angstroms, can be deposited by magnetron sputter deposition. The explosive detonates and combusts a high velocity generating a gas, such as CO, and high temperatures.

  10. Explosive Welding of Pipes

    NASA Astrophysics Data System (ADS)

    Drennov, Oleg; Drennov, Andrey; Burtseva, Olga

    2013-06-01

    For connection by welding it is suggested to use the explosive welding method. This method is rather new. Nevertheless, it has become commonly used among the technological developments. This method can be advantageous (saving material and physical resources) comparing to its statical analogs (electron-beam welding, argon-arc welding, plasma welding, gas welding, etc.), in particular, in hard-to-reach areas due to their geographic and climatic conditions. Explosive welding of cylindrical surfaces is performed by launching of welded layer along longitudinal axis of construction. During this procedure, it is required to provide reliable resistance against radial convergent strains. The traditional method is application of fillers of pipe cavity, which are dense cylindrical objects having special designs. However, when connecting pipes consecutively in pipelines by explosive welding, removal of the fillers becomes difficult and sometimes impossible. The suggestion is to use water as filler. The principle of non-compressibility of liquid under quasi-dynamic loading is used. In one-dimensional gasdynamic and elastic-plastic calculations we determined non-deformed mass of water (perturbations, which are moving in the axial direction with sound velocity, should not reach the layer end boundaries for 5-7 circulations of shock waves in the radial direction). Linear dimension of the water layer from the zone of pipe coupling along axis in each direction is >= 2R, where R is the internal radius of pipe.

  11. Spore Size Comparison Between Several Bacillus Species

    DTIC Science & Technology

    2005-10-01

    Spore Size Comparison Between Several Bacillus Species Ruben O. Zandomeni1, Joseph E. Fitzgibbon2, Monica Carrera1, Edward Stuebing2, James E...OCT 2005 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Spore Size Comparison Between Several Bacillus Species 5a. CONTRACT...Systematic comparison of the size of B.anthracis spores to size of other Bacillus spores (simulants/surrogates) - all spores produced under the same

  12. NASA Facts: SporeSat

    NASA Technical Reports Server (NTRS)

    Martinez, Andres; Cappuccio, Gelsomina; Tomko, David

    2013-01-01

    SporeSat is an autonomous, free-flying three-unit (3U) spacecraft that will be used to conduct scientific experiments to gain a deeper knowledge of the mechanisms of plant cell gravity sensing. SporeSat is being developed through a partnership between NASAs Ames Research Center and the Department of Agricultural and Biological Engineering at Purdue University. Amani Salim and Jenna L. Rickus are the Purdue University Principal Investigators. The SporeSat mission will be flown using a 3U nanosatellite weighing approximately 12 pounds and measuring 14 inches long by 4 inches wide by 4 inches tall. SporeSat will utilize flight-proven spacecraft technologies demonstrated on prior Ames nanosatellite missions such as PharmaSat and OrganismOrganic Exposure to Orbital Stresses (OOREOS) as well as upgrades that increase the hardware integration capabilities with SporeSat science instrumentation. In addition, the SporeSat science payload will serve as a technology platform to evaluate new microsensor technologies for enabling future fundamental biology missions.

  13. Identifying and Inactivating Bacterial Spores

    NASA Technical Reports Server (NTRS)

    Newcombe, David; Dekas, Anne; Venkateswaran, Kasthuri

    2009-01-01

    Problems associated with, and new strategies for, inactivating resistant organisms like Bacillus canaveralius (found at Kennedy Space Center during a survey of three NASA cleanrooms) have been defined. Identifying the particular component of the spore that allows its heightened resistance can guide the development of sterilization procedures that are targeted to the specific molecules responsible for resistance, while avoiding using unduly harsh methods that jeopardize equipment. The key element of spore resistance is a multilayered protein shell that encases the spore called the spore coat. The coat of the best-studied spore-forming microbe, B. subtilis, consists of at least 45 proteins, most of which are poorly characterized. Several protective roles for the coat are well characterized including resistance to desiccation, large toxic molecules, ortho-phthalaldehyde, and ultraviolet (UV) radiation. One important long-term specific goal is an improved sterilization procedure that will enable NASA to meet planetary protection requirements without a terminal heat sterilization step. This would support the implementation of planetary protection policies for life-detection missions. Typically, hospitals and government agencies use biological indicators to ensure the quality control of sterilization processes. The spores of B. canaveralius that are more resistant to osmotic stress would serve as a better biological indicator for potential survival than those in use currently.

  14. Explosive laser

    DOEpatents

    Robinson, C.P.; Jensen, R.J.; Davis, W.C.; Sullivan, J.A.

    1975-09-01

    This patent relates to a laser system wherein reaction products from the detonation of a condensed explosive expand to form a gaseous medium with low translational temperature but high vibration population. Thermal pumping of the upper laser level and de-excitation of the lower laser level occur during the expansion, resulting in a population inversion. The expansion may be free or through a nozzle as in a gas-dynamic configuration. In one preferred embodiment, the explosive is such that its reaction products are CO$sub 2$ and other species that are beneficial or at least benign to CO$sub 2$ lasing. (auth)

  15. Comparison of Bacillus atrophaeus spore viability following exposure to detonation of C4 and to deflagration of halogen-containing thermites

    NASA Astrophysics Data System (ADS)

    Tringe, J. W.; Létant, S. E.; Dugan, L. C.; Levie, H. W.; Kuhl, A. L.; Murphy, G. A.; Alves, S. W.; Vandersall, K. S.; Pantoya, M. L.

    2013-12-01

    Energetic materials are being considered for the neutralization of spore-forming bacteria. In this study, the neutralization effects of a monomolecular explosive were compared to the effects of halogen-containing thermites. Bacillus atrophaeus spores were exposed to the post-detonation environment of a 100 g charge of the military explosive C-4 at a range of 50 cm. These tests were performed in the thermodynamically closed environment of a 506-l barometric calorimeter. Associated temperatures were calculated using a thermodynamic model informed by calculations with the Cheetah thermochemical code. Temperatures in the range of 2300-2800 K were calculated to persist for nearly the full 4 ms pressure observation time. After the detonation event, spores were characterized using optical microscopy and the number of viable spores was assessed. Results showed live spore survival rates in the range of 0.01%-1%. For the thermite tests, a similar, smaller-scale configuration was employed that examined the spore neutralization effects of two thermites: aluminum with iodine pentoxide and aluminum with potassium chlorate. Only the former mixture resulted in spore neutralization. These results indicate that the detonation environment produced by an explosive with no chemical biocides may provide effective spore neutralization similar to a deflagrating thermite containing iodine.

  16. Comparison of Bacillus atrophaeus spore viability following exposure to detonation of C4 and to deflagration of halogen-containing thermites

    SciTech Connect

    Tringe, J. W.; Létant, S. E.; Dugan, L. C.; Levie, H. W.; Kuhl, A. L.; Murphy, G. A.; Alves, S. W.; Vandersall, K. S.; Pantoya, M. L.

    2013-12-21

    Energetic materials are being considered for the neutralization of spore-forming bacteria. In this study, the neutralization effects of a monomolecular explosive were compared to the effects of halogen-containing thermites. Bacillus atrophaeus spores were exposed to the post-detonation environment of a 100 g charge of the military explosive C-4 at a range of 50 cm. These tests were performed in the thermodynamically closed environment of a 506-l barometric calorimeter. Associated temperatures were calculated using a thermodynamic model informed by calculations with the Cheetah thermochemical code. Temperatures in the range of 2300–2800 K were calculated to persist for nearly the full 4 ms pressure observation time. After the detonation event, spores were characterized using optical microscopy and the number of viable spores was assessed. Results showed live spore survival rates in the range of 0.01%–1%. For the thermite tests, a similar, smaller-scale configuration was employed that examined the spore neutralization effects of two thermites: aluminum with iodine pentoxide and aluminum with potassium chlorate. Only the former mixture resulted in spore neutralization. These results indicate that the detonation environment produced by an explosive with no chemical biocides may provide effective spore neutralization similar to a deflagrating thermite containing iodine.

  17. Comparison of Bacillus atrophaeus spore viability following exposure to detonation of C4 and to deflagration of halogen-containing thermites

    DOE PAGES

    Tringe, J. W.; Letant, S. E.; Dugan, L. C.; ...

    2013-12-17

    We found that energetic materials are being considered for the neutralization of spore-forming bacteria. In this study, the neutralization effects of a monomolecular explosive were compared to the effects of halogen-containing thermites. Bacillus atrophaeus spores were exposed to the post-detonation environment of a 100 g charge of the military explosive C-4 at a range of 50 cm. These tests were performed in the thermodynamically closed environment of a 506-l barometric calorimeter. Associated temperatures were calculated using a thermodynamic model informed by calculations with the Cheetah thermochemicalcode. Temperatures in the range of 2300–2800 K were calculated to persist for nearly themore » full 4 ms pressure observation time. After the detonation event, spores were characterized using optical microscopy and the number of viable spores was assessed. These results showed live spore survival rates in the range of 0.01%–1%. For the thermite tests, a similar, smaller-scale configuration was employed that examined the spore neutralization effects of two thermites: aluminum with iodine pentoxide andaluminum with potassium chlorate. Only the former mixture resulted in spore neutralization. Our results indicate that the detonation environment produced by an explosive with no chemical biocides may provide effective spore neutralization similar to a deflagrating thermite containing iodine.« less

  18. Comparison of Bacillus atrophaeus spore viability following exposure to detonation of C4 and to deflagration of halogen-containing thermites

    SciTech Connect

    Tringe, J. W.; Letant, S. E.; Dugan, L. C.; Levie, H. W.; Kuhl, A. L.; Murphy, G. A.; Alves, S. W.; Vandersall, K. S.; Pantoya, M. L.

    2013-12-17

    We found that energetic materials are being considered for the neutralization of spore-forming bacteria. In this study, the neutralization effects of a monomolecular explosive were compared to the effects of halogen-containing thermites. Bacillus atrophaeus spores were exposed to the post-detonation environment of a 100 g charge of the military explosive C-4 at a range of 50 cm. These tests were performed in the thermodynamically closed environment of a 506-l barometric calorimeter. Associated temperatures were calculated using a thermodynamic model informed by calculations with the Cheetah thermochemicalcode. Temperatures in the range of 2300–2800 K were calculated to persist for nearly the full 4 ms pressure observation time. After the detonation event, spores were characterized using optical microscopy and the number of viable spores was assessed. These results showed live spore survival rates in the range of 0.01%–1%. For the thermite tests, a similar, smaller-scale configuration was employed that examined the spore neutralization effects of two thermites: aluminum with iodine pentoxide andaluminum with potassium chlorate. Only the former mixture resulted in spore neutralization. Our results indicate that the detonation environment produced by an explosive with no chemical biocides may provide effective spore neutralization similar to a deflagrating thermite containing iodine.

  19. Solving the aerodynamics of fungal flight: How air viscosity slows spore motion

    PubMed Central

    Fischer, Mark W. F.; Stolze-Rybczynski, Jessica L.; Davis, Diana J.; Cui, Yunluan; Money, Nicholas P.

    2010-01-01

    Viscous drag causes the rapid deceleration of fungal spores after high-speed launches and limits discharge distance. Stokes' law posits a linear relationship between drag force and velocity. It provides an excellent fit to experimental measurements of the terminal velocity of free-falling spores and other instances of low Reynolds number motion (Re<1). More complex, non-linear drag models have been devised for movements characterized by higher Re, but their effectiveness for modeling the launch of fast-moving fungal spores has not been tested. In this paper, we use data on spore discharge processes obtained from ultra-high-speed video recordings to evaluate the effects of air viscosity predicted by Stokes' law and a commonly used non-linear drag model. We find that discharge distances predicted from launch speeds by Stokes' model provide a much better match to measured distances than estimates from the more complex drag model. Stokes' model works better over a wide range projectile sizes, launch speeds, and discharge distances, from microscopic mushroom ballistospores discharged at <1 m/s over a distance of <0.1 mm (Re<1.0), to macroscopic sporangia of Pilobolus that are launched at >10 m/s and travel as far as 2.5 m (Re>100). PMID:21036338

  20. Solving the aerodynamics of fungal flight: how air viscosity slows spore motion.

    PubMed

    Fischer, Mark W F; Stolze-Rybczynski, Jessica L; Davis, Diana J; Cui, Yunluan; Money, Nicholas P

    2010-01-01

    Viscous drag causes the rapid deceleration of fungal spores after high-speed launches and limits discharge distance. Stokes' law posits a linear relationship between drag force and velocity. It provides an excellent fit to experimental measurements of the terminal velocity of free-falling spores and other instances of low Reynolds number motion (Re<1). More complex, non-linear drag models have been devised for movements characterized by higher Re, but their effectiveness for modeling the launch of fast-moving fungal spores has not been tested. In this paper, we use data on spore discharge processes obtained from ultra-high-speed video recordings to evaluate the effects of air viscosity predicted by Stokes' law and a commonly used non-linear drag model. We find that discharge distances predicted from launch speeds by Stokes' model provide a much better match to measured distances than estimates from the more complex drag model. Stokes' model works better over a wide range projectile sizes, launch speeds, and discharge distances, from microscopic mushroom ballistospores discharged at <1 m s(-1) over a distance of <0.1mm (Re<1.0), to macroscopic sporangia of Pilobolus that are launched at >10 m s(-1) and travel as far as 2.5m (Re>100).

  1. Effects of meteorological conditions on spore plumes.

    PubMed

    Burch, M; Levetin, E

    2002-08-01

    Fungal spores are an ever-present component of the atmosphere, and have long been known to trigger asthma and hay fever symptoms in sensitive individuals. The atmosphere around Tulsa has been monitored for airborne spores and pollen with Burkard spore traps at several sampling stations. This study involved the examination of the hourly spore concentrations on days that had average daily concentrations near 50,000 spores/m(3) or greater. Hourly concentrations of Cladosporium, Alternaria, Epicoccum, Curvularia, Pithomyces, Drechslera, smut spores, ascospores, basidiospores, other, and total spores were determined on 4 days at three sites and then correlated with hourly meteorological data including temperature, rainfall, wind speed, dew point, air pressure, and wind direction. On each of these days there was a spore plume, a phenomenon in which spore concentrations increased dramatically over a very short period of time. Spore plumes generally occurred near midday, and concentrations were seen to increase from lows around 20,000 total spores/m(3) to highs over 170,000 total spores/m(3) in 2 h. Multiple regression analysis of the data indicated that increases in temperature, dew point, and air pressure correlated with the increase in spore concentrations, but no single weather variable predicted the appearance of a spore plume. The proper combination of changes in these meteorological parameters that result in a spore plume may be due to the changing weather conditions associated with thunderstorms, as on 3 of the 4 days when spore plumes occurred there were thunderstorms later that evening. The occurrence of spore plumes may have clinical significance, because other studies have shown that sensitization to certain spore types can occur during exposure to high spore concentrations.

  2. Effects of meteorological conditions on spore plumes

    NASA Astrophysics Data System (ADS)

    Burch, M.; Levetin, E.

    2002-05-01

    Fungal spores are an ever-present component of the atmosphere, and have long been known to trigger asthma and hay fever symptoms in sensitive individuals. The atmosphere around Tulsa has been monitored for airborne spores and pollen with Burkard spore traps at several sampling stations. This study involved the examination of the hourly spore concentrations on days that had average daily concentrations near 50,000 spores/m3 or greater. Hourly concentrations of Cladosporium, Alternaria, Epicoccum, Curvularia, Pithomyces, Drechslera, smut spores, ascospores, basidiospores, other, and total spores were determined on 4 days at three sites and then correlated with hourly meteorological data including temperature, rainfall, wind speed, dew point, air pressure, and wind direction. On each of these days there was a spore plume, a phenomenon in which spore concentrations increased dramatically over a very short period of time. Spore plumes generally occurred near midday, and concentrations were seen to increase from lows around 20,000 total spores/m3 to highs over 170,000 total spores/m3 in 2 h. Multiple regression analysis of the data indicated that increases in temperature, dew point, and air pressure correlated with the increase in spore concentrations, but no single weather variable predicted the appearance of a spore plume. The proper combination of changes in these meteorological parameters that result in a spore plume may be due to the changing weather conditions associated with thunderstorms, as on 3 of the 4 days when spore plumes occurred there were thunderstorms later that evening. The occurrence of spore plumes may have clinical significance, because other studies have shown that sensitization to certain spore types can occur during exposure to high spore concentrations.

  3. Niche explosion.

    PubMed

    Normark, Benjamin B; Johnson, Norman A

    2011-05-01

    The following syndrome of features occurs in several groups of phytophagous insects: (1) wingless females, (2) dispersal by larvae, (3) woody hosts, (4) extreme polyphagy, (5) high abundance, resulting in status as economic pests, (6) invasiveness, and (7) obligate parthenogenesis in some populations. If extreme polyphagy is defined as feeding on 20 or more families of hostplants, this syndrome is found convergently in several species of bagworm moths, tussock moths, root weevils, and 5 families of scale insects. We hypothesize that extreme polyphagy in these taxa results from "niche explosion", a positive feedback loop connecting large population size to broad host range. The niche explosion has a demographic component (sometimes called the "amplification effect" in studies of pathogens) as well as a population-genetic component, due mainly to the increased effectiveness of natural selection in larger populations. The frequent origins of parthenogenesis in extreme polyphages are, in our interpretation, a consequence of this increased effectiveness of natural selection and consequent reduced importance of sexuality. The niche explosion hypothesis makes detailed predictions about the comparative genomics and population genetics of extreme polyphages and related specialists. It has a number of potentially important implications, including an explanation for the lack of observed trade-offs between generalists and specialists, a re-interpretation of the ecological correlates of parthenogenesis, and a general expectation that Malthusian population explosions may be amplified by Darwinian effects.

  4. Explosive complexes

    DOEpatents

    Huynh, My Hang V [Los Alamos, NM

    2009-09-22

    Lead-free primary explosives of the formula [M.sup.II(A).sub.R(B.sup.X).sub.S](C.sup.Y).sub.T, where A is 1,5-diaminotetrazole, and syntheses thereof are described. Substantially stoichiometric equivalents of the reactants lead to high yields of pure compositions thereby avoiding dangerous purification steps.

  5. Explosive complexes

    DOEpatents

    Huynh, My Hang V [Los Alamos, NM

    2011-08-16

    Lead-free primary explosives of the formula [M.sup.II(A).sub.R(B.sup.X).sub.S](C.sup.Y).sub.T, where A is 1,5-diaminotetrazole, and syntheses thereof are described. Substantially stoichiometric equivalents of the reactants lead to high yields of pure compositions thereby avoiding dangerous purification steps.

  6. Recent advances in germination of Clostridium spores.

    PubMed

    Olguín-Araneda, Valeria; Banawas, Saeed; Sarker, Mahfuzur R; Paredes-Sabja, Daniel

    2015-05-01

    Members of Clostridium genus are a diverse group of anaerobic spore-formers that includes several pathogenic species. Their anaerobic requirement enhances the importance of the dormant spore morphotype during infection, persistence and transmission. Bacterial spores are metabolically inactive and may survive for long times in the environment and germinate in presence of nutrients termed germinants. Recent progress with spores of several Clostridium species has identified the germinant receptors (GRs) involved in nutrient germinant recognition and initiation of spore germination. Signal transduction from GRs to the downstream effectors remains poorly understood but involves the release of dipicolinic acid. Two mechanistically different cortex hydrolytic machineries are present in Clostridium spores. Recent studies have also shed light into novel biological events that occur during spore formation (accumulation of transcriptional units) and transcription during early spore outgrowth. In summary, this review will cover all of the recent advances in Clostridium spore germination. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  7. Role of DNA protection and repair in resistance of Bacillus subtilis spores to ultrahigh shock pressures simulating hypervelocity impacts.

    PubMed

    Moeller, Ralf; Horneck, Gerda; Rabbow, Elke; Reitz, Günther; Meyer, Cornelia; Hornemann, Ulrich; Stöffler, Dieter

    2008-11-01

    Impact-induced ejections of rocks from planetary surfaces are frequent events in the early history of the terrestrial planets and have been considered as a possible first step in the potential interplanetary transfer of microorganisms. Spores of Bacillus subtilis were used as a model system to study the effects of a simulated impact-caused ejection on rock-colonizing microorganisms using a high-explosive plane wave setup. Embedded in different types of rock material, spores were subjected to extremely high shock pressures (5 to 50 GPa) lasting for fractions of microseconds to seconds. Nearly exponential pressure response curves were obtained for spore survival and linear dependency for the induction of sporulation-defective mutants. Spores of strains defective in major small, acid-soluble spore proteins (SASP) (alpha/beta-type SASP) that largely protect the spore DNA and spores of strains deficient in nonhomologous-end-joining DNA repair were significantly more sensitive to the applied shock pressure than were wild-type spores. These results indicate that DNA may be the sensitive target of spores exposed to ultrahigh shock pressures. To assess the nature of the critical physical parameter responsible for spore inactivation by ultrahigh shock pressures, the resulting peak temperature was varied by lowering the preshock temperature, changing the rock composition and porosity, or increasing the water content of the samples. Increased peak temperatures led to increased spore inactivation and reduced mutation rates. The data suggested that besides the potential mechanical stress exerted by the shock pressure, the accompanying high peak temperatures were a critical stress parameter that spores had to cope with.

  8. Role of DNA Protection and Repair in Resistance of Bacillus subtilis Spores to Ultrahigh Shock Pressures Simulating Hypervelocity Impacts▿

    PubMed Central

    Moeller, Ralf; Horneck, Gerda; Rabbow, Elke; Reitz, Günther; Meyer, Cornelia; Hornemann, Ulrich; Stöffler, Dieter

    2008-01-01

    Impact-induced ejections of rocks from planetary surfaces are frequent events in the early history of the terrestrial planets and have been considered as a possible first step in the potential interplanetary transfer of microorganisms. Spores of Bacillus subtilis were used as a model system to study the effects of a simulated impact-caused ejection on rock-colonizing microorganisms using a high-explosive plane wave setup. Embedded in different types of rock material, spores were subjected to extremely high shock pressures (5 to 50 GPa) lasting for fractions of microseconds to seconds. Nearly exponential pressure response curves were obtained for spore survival and linear dependency for the induction of sporulation-defective mutants. Spores of strains defective in major small, acid-soluble spore proteins (SASP) (α/β-type SASP) that largely protect the spore DNA and spores of strains deficient in nonhomologous-end-joining DNA repair were significantly more sensitive to the applied shock pressure than were wild-type spores. These results indicate that DNA may be the sensitive target of spores exposed to ultrahigh shock pressures. To assess the nature of the critical physical parameter responsible for spore inactivation by ultrahigh shock pressures, the resulting peak temperature was varied by lowering the preshock temperature, changing the rock composition and porosity, or increasing the water content of the samples. Increased peak temperatures led to increased spore inactivation and reduced mutation rates. The data suggested that besides the potential mechanical stress exerted by the shock pressure, the accompanying high peak temperatures were a critical stress parameter that spores had to cope with. PMID:18791028

  9. Measuring Total and Germinable Spore Populations

    NASA Technical Reports Server (NTRS)

    Noell, A.C.; Yung, P.T.; Yang, W.; Lee, C.; Ponce, A.

    2011-01-01

    It has been shown that bacterial endospores can be enumerated using a microscopy based assay that images the luminescent halos from terbium ions bound to dipicolinic acid, a spore specific chemical marker released upon spore germination. Further development of the instrument has simplified it towards automation while at the same time improving image quality. Enumeration of total spore populations has also been developed allowing measurement of the percentage of viable spores in any population by comparing the germinable/culturable spores to the total. Percentage viability will allow a more quantitative comparison of the ability of spores to survive across a wide range of extreme environments.

  10. Measuring Total and Germinable Spore Populations

    NASA Technical Reports Server (NTRS)

    Noell, A.C.; Yung, P.T.; Yang, W.; Lee, C.; Ponce, A.

    2011-01-01

    It has been shown that bacterial endospores can be enumerated using a microscopy based assay that images the luminescent halos from terbium ions bound to dipicolinic acid, a spore specific chemical marker released upon spore germination. Further development of the instrument has simplified it towards automation while at the same time improving image quality. Enumeration of total spore populations has also been developed allowing measurement of the percentage of viable spores in any population by comparing the germinable/culturable spores to the total. Percentage viability will allow a more quantitative comparison of the ability of spores to survive across a wide range of extreme environments.

  11. Demonstration Explosion

    NASA Astrophysics Data System (ADS)

    Lee, Charles "Skip"

    1998-05-01

    Last week I did a demonstration that produced a serious explosion. After putting methanol in a big glass carboy and rotating the carboy to build up some methanol vapor, I lit the mouth of the carboy. What normally happens is a "jet engine" effect out of the mouth of the carboy. In my case, the carboy exploded. Two polycarbonate blast shields were shattered and glass was blown as far as 15 feet away. I was not seriously cut and bruised, but had I not been using the two blast shields, I would have been severely injured. At this time, I am not sure what caused the explosion. I have done this demonstration around one hundred times with no problem using the exact same amount of methanol and technique. I think it is important to get the word out that this demonstration may be more dangerous than previously thought. I would also welcome any hypotheses concerning what caused the carboy to explode.

  12. Explosive Joining

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Laurence J. Bement of Langley Research Center invented a technique to permit metal joining operations under hazardous or inaccessible conditions. The process, which provides a joint with double the strength of the parent metal, involves the use of very small quantities of ribbon explosive to create hermetically sealed joints. When the metal plates are slammed together by the explosion's force, joining is accomplished. The collision causes a skin deep melt and ejection of oxide films on the surfaces, allowing a linkup of electrons that produce superstrong, uniform joints. The technique can be used to join metals that otherwise would not join and offers advantages over mechanical fasteners and adhesives. With Langley assistance, Demex International Ltd. refined and commercialized the technology. Applications include plugging leaking tubes in feedwater heaters. Demex produces the small plugs, associated sleeves and detonators. The technology allows faster plugging, reduces downtime, cuts plugging costs and increases reliability.

  13. Venture Class Launch Services

    NASA Technical Reports Server (NTRS)

    Wiese, Mark

    2016-01-01

    Provide an introduction to the Launch Services Program, and specifically the strategic initiative that drove the Venture Class Launch Services contracts. Provide information from the VCLS request for proposals, as well as the Agency's CubeSat Launch Initiative.

  14. Launch summary for 1978

    NASA Technical Reports Server (NTRS)

    Vostreys, R. W.

    1978-01-01

    Sounding rocket, satellite, and space probe launchings are presented. Time, date, and location of the launches are provided. The sponsoring countries and the institutions responsible for the launch are listed.

  15. Sporangium Exposure and Spore Release in the Peruvian Maidenhair Fern (Adiantum peruvianum, Pteridaceae).

    PubMed

    Poppinga, Simon; Haushahn, Tobias; Warnke, Markus; Masselter, Tom; Speck, Thomas

    2015-01-01

    We investigated the different processes involved in spore liberation in the polypod fern Adiantum peruvianum (Pteridaceae). Sporangia are being produced on the undersides of so-called false indusia, which are situated at the abaxial surface of the pinnule margins, and become exposed by a desiccation-induced movement of these pinnule flaps. The complex folding kinematics and functional morphology of false indusia are being described, and we discuss scenarios of movement initiation and passive hydraulic actuation of these structures. High-speed cinematography allowed for analyses of fast sporangium motion and for tracking ejected spores. Separation and liberation of spores from the sporangia are induced by relaxation of the annulus (the 'throwing arm' of the sporangium catapult) and conservation of momentum generated during this process, which leads to sporangium bouncing. The ultra-lightweight spores travel through air with a maximum velocity of ~5 m s(-1), and a launch acceleration of ~6300 g is measured. In some cases, the whole sporangium, or parts of it, together with contained spores break away from the false indusium and are shed as a whole. Also, spores can stick together and form spore clumps. Both findings are discussed in the context of wind dispersal.

  16. Sporangium Exposure and Spore Release in the Peruvian Maidenhair Fern (Adiantum peruvianum, Pteridaceae)

    PubMed Central

    Poppinga, Simon; Haushahn, Tobias; Warnke, Markus; Masselter, Tom; Speck, Thomas

    2015-01-01

    We investigated the different processes involved in spore liberation in the polypod fern Adiantum peruvianum (Pteridaceae). Sporangia are being produced on the undersides of so-called false indusia, which are situated at the abaxial surface of the pinnule margins, and become exposed by a desiccation-induced movement of these pinnule flaps. The complex folding kinematics and functional morphology of false indusia are being described, and we discuss scenarios of movement initiation and passive hydraulic actuation of these structures. High-speed cinematography allowed for analyses of fast sporangium motion and for tracking ejected spores. Separation and liberation of spores from the sporangia are induced by relaxation of the annulus (the ‘throwing arm’ of the sporangium catapult) and conservation of momentum generated during this process, which leads to sporangium bouncing. The ultra-lightweight spores travel through air with a maximum velocity of ~5 m s-1, and a launch acceleration of ~6300g is measured. In some cases, the whole sporangium, or parts of it, together with contained spores break away from the false indusium and are shed as a whole. Also, spores can stick together and form spore clumps. Both findings are discussed in the context of wind dispersal. PMID:26444002

  17. Fungal spores: hazardous to health?

    PubMed Central

    Sorenson, W G

    1999-01-01

    Fungi have long been known to affect human well being in various ways, including disease of essential crop plants, decay of stored foods with possible concomitant production of mycotoxins, superficial and systemic infection of human tissues, and disease associated with immune stimulation such as hypersensitivity pneumonitis and toxic pneumonitis. The spores of a large number of important fungi are less than 5 microm aerodynamic diameter, and therefore are able to enter the lungs. They also may contain significant amounts of mycotoxins. Diseases associated with inhalation of fungal spores include toxic pneumonitis, hypersensitivity pneumonitis, tremors, chronic fatigue syndrome, kidney failure, and cancer. PMID:10423389

  18. Explosive simulants for testing explosive detection systems

    DOEpatents

    Kury, John W.; Anderson, Brian L.

    1999-09-28

    Explosives simulants that include non-explosive components are disclosed that facilitate testing of equipment designed to remotely detect explosives. The simulants are non-explosive, non-hazardous materials that can be safely handled without any significant precautions. The simulants imitate real explosives in terms of mass density, effective atomic number, x-ray transmission properties, and physical form, including moldable plastics and emulsions/gels.

  19. "Explosive" Physics.

    ERIC Educational Resources Information Center

    Kienzynski, Mark J.

    1998-01-01

    Describes a physics demonstration in which two-liter plastic bottles can be used to show how force relates to pressure and area. Identical drinking straws are launched out of similar plastic bottles with different-sized openings. This demonstration proves qualitatively that pressure is inversely proportional to the area exposed to an object when a…

  20. [Aerosol disinfection of bacterial spores].

    PubMed

    Theilen, U; Wilsberg, F J; Böhm, R; Strauch, D

    1987-06-01

    The present investigations are divided into two parts. First it is tested which commercial disinfectants are efficient in aerosol disinfection of bacterial spores. This part is carried out in an aerosol chamber with airborne spores (laboratory experiments). The best results are obtained with peracetic acid, hydrogen peroxide and formaldehyde are effective with some restrictions. With these disinfectants it is tested in the second part if the aerosol disinfecting-method is capable for disinfecting rooms with electronic equipment. This part is carried out in a vessel under open air conditions (field experiments). Bacterial spores dried on germ carriers of limewood, aluminium and rusty iron are exposed to disinfectant aerosols under those temperature and relative humidity conditions which are representative for the four seasons in Germany. In these investigations there are also included germ carriers with spores, that have been lyophilized without any protective substances respectively with Bentonite, Mixtura desiccans and Silicagel + Serum as protective substances. To check the corrosive effect of disinfectant aerosols electronic pocket calculators and pocket transistor receivers have been exposed to the aerosols. The best results are obtained with formaldehyde at temperatures above 10 degrees C and relative humidities within 65% to 95%. At temperatures and relative humidity conditions outside of this optimal range the effectiveness of formaldehyde tends to zero. Hydrogen peroxide is capable for disinfecting spores on germ carriers of limewood and aluminium at all temperature and relative humidity conditions; on germ carriers of rusty iron the effectiveness is reduced strongly. Same results could be obtained with peracetic acid respectively a mixture of peracetic acid and hydrogen peroxide. With these disinfectants a decontamination of rusty iron surfaces is impossible too except the germ concentration on the surface is below 10(4) CFU/cm2. As to the protective

  1. STS-120 launch

    NASA Image and Video Library

    2007-10-23

    STS120-S-026 (23 Oct. 2007) --- In the firing room of the Kennedy Space Center in Florida, NASA Shuttle Launch Director Michael Leinbach (second right) and launch managers watch the 11:38 a.m. (EDT) launch of Space Shuttle Discovery. Discovery launched Oct. 23 on a 14-day construction mission to the International Space Station. Photo credit: NASA/Bill Ingalls

  2. Space Shuttle Discovery Launch

    NASA Image and Video Library

    2008-05-31

    NASA Shuttle Launch Director Michael Leinbach, left, STS-124 Assistant Launch Director Ed Mango, center, and Flow Director for Space Shuttle Discovery Stephanie Stilson clap in the the Launch Control Center after the main engine cut off and successful launch of the Space Shuttle Discovery (STS-124) Saturday, May 31, 2008, at the Kennedy Space Center in Cape Canaveral, Fla. The Shuttle lifted off from launch pad 39A at 5:02 p.m. EDT. Photo Credit: (NASA/Bill Ingalls)

  3. Optimizing Bacillus subtilis spore isolation and quantifying spore harvest purity.

    PubMed

    Harrold, Zoë R; Hertel, Mikaela R; Gorman-Lewis, Drew

    2011-12-01

    Investigating the biochemistry, resilience and environmental interactions of bacterial endospores often requires a pure endospore biomass free of vegetative cells. Numerous endospore isolation methods, however, neglect to quantify the purity of the final endospore biomass. To ensure low vegetative cell contamination we developed a quality control technique that enables rapid quantification of endospore harvest purity. This method quantifies spore purity using bright-field and fluorescence microscopy imaging in conjunction with automated cell counting software. We applied this method to Bacillus subtilis endospore harvests isolated using a two-phase separation method that utilizes mild chemicals. The average spore purity of twenty-two harvests was 88±11% (error is 1σ) with a median value of 93%. A spearman coefficient of 0.97 correlating automated and manual bacterial counts confirms the accuracy of software generated data.

  4. 76 FR 8923 - Explosive Siting Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-16

    ... separation distances required for division 1.1 explosives and liquid propellants with trinitrotoluene (TNT... requirements creates conditions requiring the FAA to reconcile its launch vehicle liquid propellant... changes are the ones relevant to this rulemaking. The new standard bases its separation distances...

  5. Photometric immersion refractometry of bacterial spores.

    PubMed Central

    Gerhardt, P; Beaman, T C; Corner, T R; Greenamyre, J T; Tisa, L S

    1982-01-01

    Photometric immersion refractometry was used to determine the average apparent refractive index (n) of five types of dormant Bacillus spores representing a 600-fold range in moist-heat resistance determined as a D100 value. The n of a spore type increased as the molecular size of various immersion solutes decreased. For comparison of the spore types, the n of the entire spore and of the isolated integument was determined by use of bovine serum albumin, which is excluded from permeating into them. The n of the sporoplast (the structures bounded by the outer pericortex membrane) was determined by use of glucose, which was shown to permeate into the spore only as deeply as the pericortex membrane. Among the various spore types, an exponential increase in the heat resistance correlated with the n of the entire spore and of the sporoplast, but not of the isolated perisporoplast integument. Correlation of the n with the solids content of the entire spore provided a method of experimentally obtaining the refractive index increment (dn/dc), which was constant for the various spore types and enables the calculation of solids and water content from an n. Altogether, the results showed that the total water content is distributed unequally within the dormant spore, with less water in the sporoplast than in the perisporoplast integument, and that the sporoplast becomes more refractile and therefore more dehydrated as the heat resistance becomes greater among the various spore types. PMID:6802796

  6. Explosives Safety Training

    DTIC Science & Technology

    2010-07-13

    Safety Awareness in NATO and Multi- National Operations *Explosives Safety “ Rosetta Stone ” *under development Distance Learning/ Instructor-Led Training...and Multi- National Operations *Explosives Safety “ Rosetta Stone ” Ammo-18 (Basics of Naval Explosives Hazard Control) Ammo-29 (Electrical Explosives...National Operations *Explosives Safety “ Rosetta Stone ” Ammo-47 (Lightning Protection for Air Force Facilities) *Explosives Safety Awareness in NATO and

  7. Small, Low Cost, Launch Capability Development

    NASA Technical Reports Server (NTRS)

    Brown, Thomas

    2014-01-01

    A recent explosion in nano-sat, small-sat, and university class payloads has been driven by low cost electronics and sensors, wide component availability, as well as low cost, miniature computational capability and open source code. Increasing numbers of these very small spacecraft are being launched as secondary payloads, dramatically decreasing costs, and allowing greater access to operations and experimentation using actual space flight systems. While manifesting as a secondary payload provides inexpensive rides to orbit, these arrangements also have certain limitations. Small, secondary payloads are typically included with very limited payload accommodations, supported on a non interference basis (to the prime payload), and are delivered to orbital conditions driven by the primary launch customer. Integration of propulsion systems or other hazardous capabilities will further complicate secondary launch arrangements, and accommodation requirements. The National Aeronautics and Space Administration's Marshall Space Flight Center has begun work on the development of small, low cost launch system concepts that could provide dedicated, affordable launch alternatives to small, high risk university type payloads and spacecraft. These efforts include development of small propulsion systems and highly optimized structural efficiency, utilizing modern advanced manufacturing techniques. This paper outlines the plans and accomplishments of these efforts and investigates opportunities for truly revolutionary reductions in launch and operations costs. Both evolution of existing sounding rocket systems to orbital delivery, and the development of clean sheet, optimized small launch systems are addressed.

  8. Internet Based Simulations of Debris Dispersion of Shuttle Launch

    NASA Technical Reports Server (NTRS)

    Bardina, Jorge; Thirumalainambi, Rajkumar

    2004-01-01

    The debris dispersion model (which dispersion model?) is so heterogeneous and interrelated with various factors, 3D graphics combined with physical models are useful in understanding the complexity of launch and range operations. Modeling and simulation in this area mainly focuses on orbital dynamics and range safety concepts, including destruct limits, telemetry and tracking, and population risk. Particle explosion modeling is the process of simulating an explosion by breaking the rocket into many pieces. The particles are scattered throughout their motion using the laws of physics eventually coming to rest. The size of the foot print explains the type of explosion and distribution of the particles. The shuttle launch and range operations in this paper are discussed based on the operations of the Kennedy Space Center, Florida, USA. Java 3D graphics provides geometric and visual content with suitable modeling behaviors of Shuttle launches.

  9. Ultraviolet-Resistant Bacterial Spores

    NASA Technical Reports Server (NTRS)

    Venkateswaran, Kasthuri; Newcombe, David; LaDuc, Myron T.; Osman, Shariff R.

    2007-01-01

    A document summarizes a study in which it was found that spores of the SAFR-032 strain of Bacillus pumilus can survive doses of ultraviolet (UV) radiation, radiation, and hydrogen peroxide in proportions much greater than those of other bacteria. The study was part of a continuing effort to understand the survivability of bacteria under harsh conditions and develop means of sterilizing spacecraft to prevent biocontamination of Mars that could interfere with the search for life there.

  10. Fifth FLTSATCOM to be launched

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Launch of the FLTSATOOM-E, into an elliptical orbit by the Atlas Centaur launch vehicle is announced. The launch and relevant launch operations are described. A chart of the launch sequence for FLTSATCOM-E communication satellite is given.

  11. Reaerosolization of Fluidized Spores in Ventilation Systems▿

    PubMed Central

    Krauter, Paula; Biermann, Arthur

    2007-01-01

    This project examined dry, fluidized spore reaerosolization in a heating, ventilating, and air conditioning duct system. Experiments using spores of Bacillus atrophaeus, a nonpathogenic surrogate for Bacillus anthracis, were conducted to delineate the extent of spore reaerosolization behavior under normal indoor airflow conditions. Short-term (five air-volume exchanges), long-term (up to 21,000 air-volume exchanges), and cycled (on-off) reaerosolization tests were conducted using two common duct materials. Spores were released into the test apparatus in turbulent airflow (Reynolds number, 26,000). After the initial pulse of spores (approximately 1010 to 1011 viable spores) was released, high-efficiency particulate air filters were added to the air intake. Airflow was again used to perturb the spores that had previously deposited onto the duct. Resuspension rates on both steel and plastic duct materials were between 10−3 and 10−5 per second, which decreased to 10 times less than initial rates within 30 min. Pulsed flow caused an initial spike in spore resuspension concentration that rapidly decreased. The resuspension rates were greater than those predicted by resuspension models for contamination in the environment, a result attributed to surface roughness differences. There was no difference between spore reaerosolization from metal and that from plastic duct surfaces over 5 hours of constant airflow. The spores that deposited onto the duct remained a persistent source of contamination over a period of several hours. PMID:17293522

  12. IRIS Launch Animation

    NASA Image and Video Library

    This animation demonstrates the launch and deployment of NASA's Interface Region Imaging Spectrograph (IRIS) mission satellite via a Pegasus rocket. The launch is scheduled for June 26, 2013 from V...

  13. Shuttle Era: Launch Directors

    NASA Image and Video Library

    A space shuttle launch director is the leader of the complex choreography that goes into a shuttle liftoff. Ten people have served as shuttle launch directors, making the final decision whether the...

  14. Space Launch System Animation

    NASA Image and Video Library

    NASA is ready to move forward with the development of the Space Launch System -- an advanced heavy-lift launch vehicle that will provide an entirely new national capability for human exploration be...

  15. STS-135 Atlantis Launch

    NASA Image and Video Library

    2011-07-07

    NASA Administrator Charles Bolden, right, participates in the post launch traditional beans and cornbread at the NASA Kennedy Space Center, Launch Control Center (LCC) shortly after the space shuttle Atlantis, STS-135, launched on Friday, July 8, 2011, in Cape Canaveral, Fla. The launch of Atlantis is the final flight of the shuttle program, a 12-day mission to the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  16. Launch Vehicle Operations Simulator

    NASA Technical Reports Server (NTRS)

    Blackledge, J. W.

    1974-01-01

    The Saturn Launch Vehicle Operations Simulator (LVOS) was developed for NASA at Kennedy Space Center. LVOS simulates the Saturn launch vehicle and its ground support equipment. The simulator was intended primarily to be used as a launch crew trainer but it is also being used for test procedure and software validation. A NASA/contractor team of engineers and programmers implemented the simulator after the Apollo XI lunar landing during the low activity periods between launches.

  17. STS-135 Atlantis Launch

    NASA Image and Video Library

    2011-07-07

    NASA Photographer Kim Shiflett, left, and Videographer Glenn Benson capture a group photo of the launch team in Firing Room Four of the NASA Kennedy Space Center Launch Control Center (LCC) shortly after the space shuttle Atlantis, STS-135, launched on Friday, July 8, 2011, in Cape Canaveral, Fla. The launch of Atlantis is the final flight of the shuttle program, a 12-day mission to the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  18. STS-135 Atlantis Launch

    NASA Image and Video Library

    2011-07-07

    NASA Kennedy Space Center worker Dwayne Hutcheson sweeps the Launch Control Center (LCC) lobby floor in preparation for the post launch tradition of corn bread and beans after a successful launch of the space shuttle Atlantis from pad 39A on Friday, July 8, 2011, in Cape Canaveral, Fla. The launch of Atlantis, STS-135, is the final flight of the shuttle program, a 12-day mission to the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  19. Effects of steam autoclave treatment on Geobacillus stearothermophilus spores.

    PubMed

    Huesca-Espitia, L C; Suvira, M; Rosenbeck, K; Korza, G; Setlow, B; Li, W; Wang, S; Li, Y-Q; Setlow, P

    2016-11-01

    To determine the mechanism of autoclave killing of Geobacillus stearothermophilus spores used in biological indicators (BIs) for steam autoclave sterilization, and rates of loss of spore viability and a spore enzyme used in BIs. Spore viability, dipicolinic acid (DPA) release, nucleic acid staining, α-glucosidase activity, protein structure and mutagenesis were measured during autoclaving of G. stearothermophilus spores. Loss of DPA and increases in spore core nucleic acid staining were slower than loss of spore viability. Spore core α-glucosidase was also lost more slowly than spore viability, although soluble α-glucosidase in spore preparations was lost more rapidly. However, spores exposed to an effective autoclave sterilization lost all viability and α-glucosidase activity. Apparently killed autoclaved spores were not recovered by artificial germination in supportive media, much spore protein was denatured during autoclaving, and partially killed autoclave-treated spore preparations did not acquire mutations. These results indicate that autoclave-killed spores cannot be revived, spore killing by autoclaving is likely by protein damage, and spore core α-glucosidase activity is lost more slowly than spore viability. This work provides insight into the mechanism of autoclave killing of spores of an organism used in BIs, and that a spore enzyme in a BI is more stable to autoclaving than spore viability. © 2016 The Society for Applied Microbiology.

  20. Launch Summary for 1979

    NASA Technical Reports Server (NTRS)

    Vostreys, R. W.

    1980-01-01

    Spacecraft launching for 1979 are identified and listed under the categories of (1) sounding rockets, and (2) artificial Earth satellites and space probes. The sounding rockets section includes a listing of the experiments, index of launch sites and tables of the meanings and codes used in the launch listing.

  1. LAUNCH Health Forum

    NASA Image and Video Library

    2010-10-30

    Tom Kalil, Deputy Director of the White House Office of Science and Technology Policy, opens the LAUNCH: Health forum at NASA's Kennedy Space Center in Florida on Saturday, Oct. 30, 2010. LAUNCH: Health provides a forum to discuss accelerating innovation for a sustainable future. LAUNCH: Health partners include NASA, USAID and Nike. Photo Credit: (NASA/Bill Ingalls)

  2. Extrusion cast explosive

    DOEpatents

    Scribner, Kenneth J.

    1985-01-01

    Improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst are disclosed. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants.

  3. Triterpenoids from the spores of Ganoderma lucidum

    PubMed Central

    Ma, Bingji; Ren, Wei; Zhou, Yan; Ma, Jinchuan; Ruan, Yuan; Wen, Chun-Nan

    2011-01-01

    Recently a series of triterpenoids were isolated from ganoderma spores and have drawn the attention of chemists and pharmacists. The aim of this review is to summarize the triterpenoids and their bioactivities of ganoderma spores. The chemical and biological literatures of ganoderma spores dealing with the structural analysis and bioactivity assay were selected. Triterpenoids isolated from ganoderma spores showed significantly anti-HIV-1 protease, anti-tumor, and anti-complement activities. Triterpenoids are the main active constituents of ganoderma spores and show various bioactivities for its medicinal use. In addition, biological activities of ganoderma spores still need further assessment before they can be accepted not only by the traditional Asian medicine community, but also by western science and medicine. PMID:22361494

  4. On the fate of ingested Bacillus spores.

    PubMed

    Spinosa, M R; Braccini, T; Ricca, E; De Felice, M; Morelli, L; Pozzi, G; Oggioni, M R

    2000-06-01

    Spores of various Bacillus species, including B. subtilis, B. cereus and B. clausii, are used as probiotics, although they are generally absent from the normal microflora of man. We used two nonpathogenic Bacillus species, B. subtilis and B. clausii, to follow the fate of spores inoculated intragastrically in mice. We did not find detectable amounts of vegetative cells in intestinal samples, probably because of high toxicity of the conjugated bile salt taurodeoxycholic acid against Bacillus species. Both spores and cells were detected in the lymph nodes and spleen of one mouse. Our results indicate that Bacillus is present in the intestinal tract solely as spores and that nonpathogenic Bacillus spores may germinate in lymphoid organs, a finding reminiscent of B. anthracis germination in macrophages. These results indicate that any claimed probiotic effect of B. subtilis should be due to spores or, alternatively, to vegetative growth outside the intestine.

  5. Chromospheric explosions

    NASA Technical Reports Server (NTRS)

    Doschek, G. A.; theory. (3) Resolved: Most chromospheric h; theory. (3) Resolved: Most chromospheric h

    1986-01-01

    Three issues relative to chromospheric explosions were debated. (1) Resolved: The blue-shifted components of x-ray spectral lines are signatures of chromospheric evaporation. It was concluded that the plasma rising with the corona is indeed the primary source of thermal plasma observed in the corona during flares. (2) Resolved: The excess line broading of UV and X-ray lines is accounted for by a convective velocity distribution in evaporation. It is concluded that the hypothesis that convective evaporation produces the observed X-ray line widths in flares is no more than a hypothesis. It is not supported by any self-consistent physical theory. (3) Resolved: Most chromospheric heating is driven by electron beams. Although it is possible to cast doubt on many lines of evidence for electron beams in the chromosphere, a balanced view that debaters on both sides of the question might agree to is that electron beams probably heat the low corona and upper chromosphere, but their direct impact on evaporating the chromosphere is energetically unimportant when compared to conduction. This represents a major departure from the thick-target flare models that were popular before the Workshop.

  6. Launch summary for 1980

    NASA Technical Reports Server (NTRS)

    Vostreys, R. W.

    1981-01-01

    Sounding rockets, artificial Earth satellites, and space probes launched betweeen January 1 and December 31, 1980 are listed. Data tabulated for the rocket launchings show launching site, instruments carried, date of launch, agency rocket identification, sponsoring country, experiment discipline, peak altitude, and the experimenter or institution responsible. Tables for satellites and space probes show COSPAR designation, spacecraft name, country, launch date, epoch date, orbit type, apoapsis, periapsis and inclination period. The functions and responsibilities of the World Data Center and the areas of scientific interest at the seven subcenters are defined. An alphabetical listing of experimenters using the sounding rockets is also provided.

  7. Morphogenesis of the Bacillus anthracis Spore

    DTIC Science & Technology

    2007-02-01

    major layers: a darkly staining outer layer and a lighter- staining inner layer (1, 86). In contrast, the Bacillus anthracis coat appears thin and...pyruvate. Spore survival was measured by in vitro assays, and spores were observed within macrophages by staining as described previously by Welkos et al...proteins. Spore extracts were fractionated on 15% polyacrylamide gels and stained with Coomassie brilliant blue. Lanes: 1, Sterne strain of B. anthracis

  8. Ammonium nitrate explosive systems

    DOEpatents

    Stinecipher, Mary M.; Coburn, Michael D.

    1981-01-01

    Novel explosives which comprise mixtures of ammonium nitrate and an ammonium salt of a nitroazole in desired ratios are disclosed. A preferred nitroazole is 3,5-dinitro-1,2,4-triazole. The explosive and physical properties of these explosives may readily be varied by the addition of other explosives and oxidizers. Certain of these mixtures have been found to act as ideal explosives.

  9. Use of UV Sources for Detection and Identification of Explosives

    NASA Technical Reports Server (NTRS)

    Hug, William; Reid, Ray; Bhartia, Rohit; Lane, Arthur

    2009-01-01

    Measurement of Raman and native fluorescence emission using ultraviolet (UV) sources (<400 nm) on targeted materials is suitable for both sensitive detection and accurate identification of explosive materials. When the UV emission data are analyzed using a combination of Principal Component Analysis (PCA) and cluster analysis, chemicals and biological samples can be differentiated based on the geometric arrangement of molecules, the number of repeating aromatic rings, associated functional groups (nitrogen, sulfur, hydroxyl, and methyl), microbial life cycles (spores vs. vegetative cells), and the number of conjugated bonds. Explosive materials can be separated from one another as well as from a range of possible background materials, which includes microbes, car doors, motor oil, and fingerprints on car doors, etc. Many explosives are comprised of similar atomic constituents found in potential background samples such as fingerprint oils/skin, motor oil, and soil. This technique is sensitive to chemical bonds between the elements that lead to the discriminating separability between backgrounds and explosive materials.

  10. The Rockot launch system

    NASA Astrophysics Data System (ADS)

    Stamerjohanns, G.; Kinnersley, M.

    1999-09-01

    EUROCKOT Launch Services GmbH has been founded by Daimler-Benz Aerospace of Germany and Khrunichev State Research and Production Space Center of Russia to offer world-wide cost effective launch services on the Rockot launch system. The Rockot commercial program is described. Rockot can launch satellites weighing up to 1850 kg into polar and other low earth (LEO) orbits. The Rockot launch vehicle is based on the former Russian SS-19 strategic missile. The first and second stages are inherited from the SS-19, the third stage named Breeze is newly developed and has multiple ignition capability. The Rockot launch system is flight proven. In addition to the currently adapted Rockot launch site Plesetsk for high inclinations, EUROCKOT is in the process to also adapt the Baykonur cosmodrome as their complementary Rockot launch site for lower inclinations. The wide range of Rockot performance is provided. The first commercial launch is foreseen in the middle of 1999. The expected launch capacity for Plesetsk and Baykonur will exceed 10 launches per year. The complete Rockot system including performance is presented.

  11. Electron launching voltage monitor

    DOEpatents

    Mendel, Clifford W.; Savage, Mark E.

    1992-01-01

    An electron launching voltage monitor measures MITL voltage using a relationship between anode electric field and electron current launched from a cathode-mounted perturbation. An electron launching probe extends through and is spaced from the edge of an opening in a first MITL conductor, one end of the launching probe being in the gap between the MITL conductor, the other end being adjacent a first side of the first conductor away from the second conductor. A housing surrounds the launching probe and electrically connects the first side of the first conductor to the other end of the launching probe. A detector detects the current passing through the housing to the launching probe, the detected current being representative of the voltage between the conductors.

  12. Electron launching voltage monitor

    DOEpatents

    Mendel, C.W.; Savage, M.E.

    1992-03-17

    An electron launching voltage monitor measures MITL voltage using a relationship between anode electric field and electron current launched from a cathode-mounted perturbation. An electron launching probe extends through and is spaced from the edge of an opening in a first MITL conductor, one end of the launching probe being in the gap between the MITL conductor, the other end being adjacent a first side of the first conductor away from the second conductor. A housing surrounds the launching probe and electrically connects the first side of the first conductor to the other end of the launching probe. A detector detects the current passing through the housing to the launching probe, the detected current being representative of the voltage between the conductors. 5 figs.

  13. Railgun launch of small bodies

    SciTech Connect

    Drobyshevski, E.M.; Zhukov, B.G.; Sakharov, V.A.

    1995-01-01

    The small body launching using gas or plasma faces the fundamental problem caused by excess energy loss due to great wall surface/volume of the barrel ratio. That is why the efficiency of the plasma armature (PA) railgun acceleration is maximum for 8--10 mm-size bodies and drops as their size decreases. For the nuclear fusion applications, where {number_sign}1--2 mm-size pellets at 5--10 km/s velocity are desirable, one is forced to search for compromise between the body size (3--4 mm) and its velocity (3 km/s). Under these conditions, EM launchers did not demonstrate an advantage over the light-gas guns. When elaborating the {number_sign}1 mm railgun, the authors made use of the ideology of the body launching at constant acceleration close to the body strength or the electrode skin-layer explosion limits. That shortened the barrel length sufficiently. The system becomes highly compact thus permitting rapid test of new operation modes and different modifications of the design including the magnetic field augmentation. As a result of these refinements, the difficulties caused by the catastrophic supply of mass ablated from the electrodes were overcome and regimes of {number_sign}1 mm body non-sabot speed-up to 4.5 km/s were found. Potentialities of the small system created are far from being exhausted.

  14. Distinction of broken cellular wall Ganoderma lucidum spores and G. lucidum spores using FTIR microspectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Xianliang; Liu, Xingcun; Sheng, Daping; Huang, Dake; Li, Weizu; Wang, Xin

    2012-11-01

    In this paper, FTIR microspectroscopy was used to identify broken cellular wall Ganoderma lucidum spores and G. lucidum spores. For IR spectra, broken cellular wall G. lucidum spores and G. lucidum spores were mainly different in the regions of 3000-2800, 1660-1600, 1400-1200 and 1100-1000 cm-1. For curve fitting, the results showed the differences in the protein secondary structures and the polysaccharide structures/content between broken cellular wall G. lucidum spores and G. lucidum spores. Moreover, the value of A1078/A1741 might be a potentially useful factor to distinguish broken cellular wall G. lucidum spores from G. lucidum spores. Additionally, FTIR microspectroscopy could identify broken cellular wall G. lucidum spores and G. lucidum spores accurately when it was combined with hierarchical cluster analysis. The result suggests FTIR microspectroscopy is very simple and efficient for distinction of broken cellular wall G. lucidum spores and G. lucidum spores. The result also indicates FTIR microspectroscopy may be useful for TCM identification.

  15. Anthrax Toxins in Context of Bacillus anthracis Spores and Spore Germination.

    PubMed

    Cote, Christopher K; Welkos, Susan L

    2015-08-17

    The interaction of anthrax toxin or toxin components with B. anthracis spores has been demonstrated. Germinating spores can produce significant amounts of toxin components very soon after the initiation of germination. In this review, we will summarize the work performed that has led to our understanding of toxin and spore interactions and discuss the complexities associated with these interactions.

  16. Spore-to-spore agar culture of the myxomycete Physarum globuliferum.

    PubMed

    Liu, Pu; Wang, Qi; Li, Yu

    2010-02-01

    The ontogeny of the myxomycete Physarum globuliferum was observed on corn meal agar and hanging drop cultures without adding sterile oat flakes, bacteria or other microorganisms. Its complete life cycle including spore germination, myxamoebae, swarm cells, plasmodial development, and maturity of fructifications was demonstrated. Details of spore-to-spore development are described and illustrated.

  17. Anthrax Toxins in Context of Bacillus anthracis Spores and Spore Germination

    PubMed Central

    Cote, Christopher K.; Welkos, Susan L.

    2015-01-01

    The interaction of anthrax toxin or toxin components with B. anthracis spores has been demonstrated. Germinating spores can produce significant amounts of toxin components very soon after the initiation of germination. In this review, we will summarize the work performed that has led to our understanding of toxin and spore interactions and discuss the complexities associated with these interactions. PMID:26287244

  18. Shape characteristics of biological spores

    NASA Astrophysics Data System (ADS)

    Hahn, Daniel V.; Limsui, Diane; Joseph, Richard I.; Baldwin, Kevin C.; Boggs, Nathan T.; Carr, Alison K.; Carter, Christopher C.; Han, Timothy S.; Thomas, Michael E.

    2008-04-01

    Calculation of scattering properties of biological materials has classically been addressed using numerical calculations based on T-matrix theory. These calculations use bulk optical properties, particle size distribution, and a limited selection of shape descriptors to calculate the resulting aerosol properties. However, the most applicable shape available in T-matrix codes, the spheroid, is not the best descriptor of most biological materials. Based on imagery of the spores of Bacillus atrophaeus and Bacillus anthracis, capsule and egg shapes are mathematically described and programmed into the Amsterdam Discrete Dipole Approximation (ADDA). Spectrally dependent cross sections and depolarization ratios are calculated and a comparison made to spheroidal shapes of equivalent sizes.

  19. Thermal and Mechanical Response of TOPAZ II to Pre-Launch and Launch Accidents

    NASA Astrophysics Data System (ADS)

    Eliassi, Mehdi; Mims, James E.

    1994-07-01

    The mechanical and thermal response of Topaz II space nuclear reactor as a result of pre-launch and launch accidents is analyzed. Various accident scenarios such as land and water impact, propellant fires, and propellant explosions are examined. Emphasis is placed on the possibilities of loss of geometry leading to inadvertent criticality and dispersion of fresh fuel and toxic material as a result of these accidents. The preliminary findings indicate that accidental criticality as a result of compaction from land impact and propellant explosion does not appear to be possible. Current analysis shows that solid propellant fires can melt the emitter and might result in fuel ejection. The high melting temperature of uranium dioxide, however, prevents the melting or vaporization of the fresh fuel.

  20. Spores

    MedlinePlus

    ... Schmucker R, Bryant K. Antibiotic-associated colitis. In: Cherry JD, Harrison GJ, Kaplan SL, Steinbach WJ, Hotez PJ, eds. Feigin and Cherry's Textbook of Pediatric Infectious Diseases . 7th ed. Philadelphia, ...

  1. COSMOS Launch Services

    NASA Astrophysics Data System (ADS)

    Kalnins, Indulis

    2002-01-01

    COSMOS-3M is a two stage launcher with liquid propellant rocket engines. Since 1960's COSMOS has launched satellites of up to 1.500kg in both circular low Earth and elliptical orbits with high inclination. The direct SSO ascent is available from Plesetsk launch site. The very high number of 759 launches and the achieved success rate of 97,4% makes this space transportation system one of the most reliable and successful launchers in the world. The German small satellite company OHB System co-operates since 1994 with the COSMOS manufacturer POLYOT, Omsk, in Russia. They have created the joint venture COSMOS International and successfully launched five German and Italian satellites in 1999 and 2000. The next commercial launches are contracted for 2002 and 2003. In 2005 -2007 COSMOS will be also used for the new German reconnaissance satellite launches. This paper provides an overview of COSMOS-3M launcher: its heritage and performance, examples of scientific and commercial primary and piggyback payload launches, the launch service organization and international cooperation. The COSMOS launch service business strategy main points are depicted. The current and future position of COSMOS in the worldwide market of launch services is outlined.

  2. Bacillus anthracis Spore Surface Protein BclA Mediates Complement Factor H Binding to Spores and Promotes Spore Persistence.

    PubMed

    Wang, Yanyu; Jenkins, Sarah A; Gu, Chunfang; Shree, Ankita; Martinez-Moczygemba, Margarita; Herold, Jennifer; Botto, Marina; Wetsel, Rick A; Xu, Yi

    2016-06-01

    Spores of Bacillus anthracis, the causative agent of anthrax, are known to persist in the host lungs for prolonged periods of time, however the underlying mechanism is poorly understood. In this study, we demonstrated that BclA, a major surface protein of B. anthracis spores, mediated direct binding of complement factor H (CFH) to spores. The surface bound CFH retained its regulatory cofactor activity resulting in C3 degradation and inhibition of downstream complement activation. By comparing results from wild type C57BL/6 mice and complement deficient mice, we further showed that BclA significantly contributed to spore persistence in the mouse lungs and dampened antibody responses to spores in a complement C3-dependent manner. In addition, prior exposure to BclA deletion spores (ΔbclA) provided significant protection against lethal challenges by B. anthracis, whereas the isogenic parent spores did not, indicating that BclA may also impair protective immunity. These results describe for the first time an immune inhibition mechanism of B. anthracis mediated by BclA and CFH that promotes spore persistence in vivo. The findings also suggested an important role of complement in persistent infections and thus have broad implications.

  3. Bioremediation of high explosives

    SciTech Connect

    Kitts, C.L.; Alvarez, M.A.; Hanners, J.L.; Ogden, K.L.; Vanderberg-Twary, L.; Unkefer, P.J.

    1995-09-01

    Manufacture and use of high explosives has resulted in contamination of ground water and soils throughout the world. The use of biological methods for remediation of high explosives contamination has received considerable attention in recent years. Biodegradation is most easily studied using organisms in liquid cultures. Thus, the amount of explosive that can be degraded in liquid culture is quite small. However, these experiments are useful for gathering basic information about the biochemical pathways of biodegradation, identifying appropriate organisms and obtaining rates of degradation. The authors` laboratory has investigated all three major areas of explosives bioremediation: explosives in solution, explosives in soil, and the disposal of bulk explosives from demilitarization operations. They investigated the three explosives most commonly used in modern high explosive formulations: 2,4,6-trinitrotoluene (TNT), hexahydro 1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX).

  4. Trends in explosive contamination.

    PubMed

    Oxley, Jimmie C; Smith, James L; Resende, Elmo; Pearce, Evan; Chamberlain, Thomas

    2003-03-01

    This study sought to assign a rough order of magnitude for the amount of explosive residue likely to be available in real-world searches for clandestine explosives. A variety of explosives (TNT, TATP, HMX, AN, RDX, PETN) in various forms (powder, flake, detonating cord, plastic) were carefully weighed or cut into containers, and the amount of residue inadvertently remaining on the work area, hands, or containers was quantified. This was used to evaluate the spillage potential of each explosive. The adhesion of each explosive to a glass surface was quantified from amount of explosive adhering to the inside of a glass vial into which the explosive had been placed and then removed by vigorous tapping. In powdered form, most of the explosives--TNT, PETN, RDX, HMX, and TATP--exhibited similar spillage and adhesion to glass. However, PETN as sheet explosive and plasticized RDX (C-4), showed very little potential to contaminate surfaces, either by spillage or adhesion to glass.

  5. Optical Chromatography of Bacterial Spores

    NASA Astrophysics Data System (ADS)

    Sundbeck, Steven; Terray, Alex; Arnold, Jonathan; Leski, Tomasz; Hart, Sean

    2007-03-01

    The technique of optical chromatography uses a laser mildly focused against fluid flow in a microfluidic channel to trap microscopic particles. Particles in the channel near the focal point of the laser are drawn toward the beam axis and then accelerated via optical pressure against the fluid flow, reaching an equilibrium point when the optical and fluidic forces on the particle are balanced. This equilibrium point may occur at differing distances from the focal point for microscopic particles with differing properties, such as size, shape, morphology, and refractive index. Thus, identification and separation of particles may be achieved in the system. Optical chromatography may be used as a detection technique for biological particles of interest, either directly or as a means of concentrating and filtering a sample. Of particular interest would be reliable methods for detection of Bacillus anthracis, a common weaponized biological agent. In this work we present optical chromatography experiments on bacterial spores which may be environmentally present with B. anthracis spores and interfere with detection.

  6. Antares Rocket Test Launch

    NASA Image and Video Library

    2013-04-21

    The Orbital Sciences Corporation Antares rocket is seen as it launches from Pad-0A of the Mid-Atlantic Regional Spaceport (MARS) at the NASA Wallops Flight Facility in Virginia, Sunday, April 21, 2013. The test launch marked the first flight of Antares and the first rocket launch from Pad-0A. The Antares rocket delivered the equivalent mass of a spacecraft, a so-called mass simulated payload, into Earth's orbit. Photo Credit: (NASA/Bill Ingalls)

  7. STS-135 Atlantis Launch

    NASA Image and Video Library

    2011-07-07

    NASA Administrator Charles Bolden speaks to visitors at the NASA Kennedy Space Center Banana Creek viewing site prior to going to the Launch Control Center (LCC) for the planned launch of the space shuttle Atlantis from pad 39A on Friday, July 8, 2011, in Cape Canaveral, Fla. The launch of Atlantis, STS-135, is the final flight of the shuttle program, a 12-day mission to the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  8. Launch the Litening Pod!

    DTIC Science & Technology

    2008-02-19

    Launch the LITENING Pod ! EWS Contemporary Issue Paper Submitted by Captain Fausett, Brian M. to Major G.A. Thiele, CG 2 19...TITLE AND SUBTITLE Launch the Litening Pod ! 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e...ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 2 “Launch the LITENING pod

  9. MAVEN Atlas V Launch

    NASA Image and Video Library

    2013-11-18

    The United Launch Alliance Atlas V rocket with NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft launches from the Cape Canaveral Air Force Station Space Launch Complex 41, Monday, Nov. 18, 2013, Cape Canaveral, Florida. NASA’s Mars-bound spacecraft, the Mars Atmosphere and Volatile EvolutionN, or MAVEN, is the first spacecraft devoted to exploring and understanding the Martian upper atmosphere. Photo Credit: (NASA/Bill Ingalls)

  10. LAUNCH - STS-4 - KSC

    NASA Image and Video Library

    1982-07-06

    S82-33288 (27 June 1982) --- This horizontal view of the space shuttle Columbia captures the flight of water birds disturbed by the activity at launch Pad 39A. Launch occurred at 10:59:59 a.m. (EDT), June 27, 1982. Astronauts Thomas K. Mattingly II and Henry W. Hartsfield Jr. are aboard for NASA's final orbital flight test before launching into a new space era with the first operational flight planned for fall of this year. Photo credit: NASA

  11. MAVEN Atlas V Launch

    NASA Image and Video Library

    2013-11-18

    The United Launch Alliance Atlas V rocket with NASA’s Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft launches from the Cape Canaveral Air Force Station Space Launch Complex 41, Monday, Nov. 18, 2013, Cape Canaveral, Florida. NASA’s Mars-bound spacecraft, the Mars Atmosphere and Volatile EvolutioN, or MAVEN, is the first spacecraft devoted to exploring and understanding the Martian upper atmosphere. Photo Credit: (NASA/Bill Ingalls)

  12. Modeling Thermal Inactivation of Bacillus Spores

    DTIC Science & Technology

    2009-03-01

    up of peptidoglycan . The cortex reduces the water content of the spore core by allowing small molecules, like water, to pass through. Similarly, the...cortex keeps DNA, which lies in the core, dry. The germ cell wall which is also made up of peptidoglycan becomes the cell wall of the outgrowing spore

  13. Expedition 27 Launch

    NASA Image and Video Library

    2010-04-01

    The Soyuz TMA-21 launches from the Baikonur Cosmodrome in Kazakhstan on Tuesday, April 5, 2011 carrying Expedition 27 Soyuz Commander Alexander Samokutyaev, NASA Flight Engineer Ron Garan and Russian Flight Engineer Andrey Borisenko to the International Space Station. The Soyuz, which has been dubbed "Gagarin", is launching one week shy of the 50th anniversary of the launch of Yuri Gagarin from the same launch pad in Baikonur on April 12, 1961 to become the first human to fly in space. Photo Credit: (NASA/Victor Zelentsov)

  14. Expedition 27 Launch

    NASA Image and Video Library

    2011-04-04

    The Soyuz TMA-21 launches from the Baikonur Cosmodrome in Kazakhstan on Tuesday, April 5, 2011 carrying Expedition 27 Soyuz Commander Alexander Samokutyaev, NASA Flight Engineer Ron Garan and Russian Flight Engineer Andrey Borisenko to the International Space Station. The Soyuz, which has been dubbed "Gagarin", is launching one week shy of the 50th anniversary of the launch of Yuri Gagarin from the same launch pad in Baikonur on April 12, 1961 to become the first human to fly in space. Photo Credit: (NASA/Carla Cioffi)

  15. Launch Services Safety Overview

    NASA Technical Reports Server (NTRS)

    Loftin, Charles E.

    2008-01-01

    NASA/KSC Launch Services Division Safety (SA-D) services include: (1) Assessing the safety of the launch vehicle (2) Assessing the safety of NASA ELV spacecraft (S/C) / launch vehicle (LV) interfaces (3) Assessing the safety of spacecraft processing to ensure resource protection of: - KSC facilities - KSC VAFB facilities - KSC controlled property - Other NASA assets (4) NASA personnel safety (5) Interfacing with payload organizations to review spacecraft for adequate safety implementation and compliance for integrated activities (6) Assisting in the integration of safety activities between the payload, launch vehicle, and processing facilities

  16. Antares Rocket Test Launch

    NASA Image and Video Library

    2013-04-21

    NASA Administrator Charles Bolden congratulates the Orbital Sciences Corporation launch team and management in the Range Control Center at the NASA Wallops Flight Facility after the successful launch of the Orbital Sciences Antares rocket from the Mid-Atlantic Regional Spaceport (MARS) in Virginia, Sunday, April 21, 2013. The test launch marked the first flight of Antares and the first rocket launch from Pad-0A. The Antares rocket delivered the equivalent mass of a spacecraft, a so-called mass simulated payload, into Earth's orbit. Photo Credit: (NASA/Bill Ingalls)

  17. GPM: Waiting for Launch

    NASA Image and Video Library

    The Global Precipitation Measurement mission's Core Observatory is poised for launch from the Japan Aerospace Exploration Agency's Tanegashima Space Center, scheduled for the afternoon of Feb. 27, ...

  18. Kestrel balloon launch system

    SciTech Connect

    Newman, M.J.

    1991-10-01

    Kestrel is a high-altitude, Helium-gas-filled-balloon system used to launch scientific payloads in winds up to 20 knots, from small platforms or ships, anywhere over land or water, with a minimal crew and be able to hold in standby conditions. Its major components consist of two balloons (a tow balloon and a main balloon), the main deployment system, helium measurement system, a parachute recovery unit, and the scientific payload package. The main scope of the launch system was to eliminate the problems of being dependent of launching on long airfield runways, low wind conditions, and long launch preparation time. These objectives were clearly met with Kestrel 3.

  19. Emerging Applications of Bacterial Spores in Nanobiotechnology

    PubMed Central

    Ricca, Ezio; Cutting, Simon M

    2003-01-01

    Bacterial spores are robust and dormant life forms with formidable resistance properties, in part, attributable to the multiple layers of protein that encase the spore in a protective and flexible shield. The coat has a number of features pertinent to the emerging field of nanobiotechnology including self-assembling protomers and the capacity for engineering and delivery of foreign molecules. This review gives an account of recent progress describing the use of the spore, and specifically, the spore coat as a vehicle for heterologous antigen presentation and protective immunization (vaccination). As interest in the spore coat increases it seems likely that they will be exploited further for drug and enzyme delivery as well as a source of novel self-assembling proteins. PMID:14675488

  20. Examination of B. subtilis var. niger Spore Killing by Dry Heat Methods

    NASA Technical Reports Server (NTRS)

    Kempf, Michael J.; Kirschner, Larry E.

    2004-01-01

    Dry heat microbial reduction is the only NASA approved sterilization method to reduce the microbial bioburden on space-flight hardware prior to launch. Reduction of the microbial bioburden on spacecraft is necessary to meet planetary protection requirements specific for the mission. Microbial bioburden reduction also occurs if a spacecraft enters a planetary atmosphere (e.g., Mars) and is heated due to frictional forces. Temperatures reached during atmospheric entry events (>200 C) are sufficient to damage or destroy flight hardware and also kill microbial spores that reside on the in-bound spacecraft. The goal of this research is to determine the survival rates of bacterial spores when they are subjected to conditions similar to those the spacecraft would encounter (i.e., temperature, pressure, etc.). B. subtilis var. niger spore coupons were exposed to a range of temperatures from 125 C to 200 C in a vacuum oven (at <1 Torr). After the exposures, the spores were removed by sonication, dilutions were made, and the spores were plated using the pour plate method with tryptic soy agar. After 3 days incubation at 32 C, the number of colony-forming units was counted. Lethality rate constants and D-values were calculated at each temperature. The calculated D-values were: 27 minutes (at 125 C), 13 minutes (at 135 C), and <0.1 minutes (at 150 C). The 125 C and 135 C survivor curves appeared as concavedownward curves. The 150 C survivor curve appeared as a straight-line. Due to the prolonged ramp-up time to the exposure conditions, spore killing during the ramp-up resulted in insufficient data to draw curves for exposures at 160 C, 175 C, and 200 C. Exploratory experiments using novel techniques, with short ramp times, for performing high temperature exposures were also examined. Several of these techniques, such as vacuum furnaces, thermal spore exposure vessels, and laser heating of the coupons, will be discussed.

  1. Examination of B. subtilis var. niger Spore Killing by Dry Heat Methods

    NASA Technical Reports Server (NTRS)

    Kempf, Michael J.; Kirschner, Larry E.

    2004-01-01

    Dry heat microbial reduction is the only NASA approved sterilization method to reduce the microbial bioburden on space-flight hardware prior to launch. Reduction of the microbial bioburden on spacecraft is necessary to meet planetary protection requirements specific for the mission. Microbial bioburden reduction also occurs if a spacecraft enters a planetary atmosphere (e.g., Mars) and is heated due to frictional forces. Temperatures reached during atmospheric entry events (>200 C) are sufficient to damage or destroy flight hardware and also kill microbial spores that reside on the in-bound spacecraft. The goal of this research is to determine the survival rates of bacterial spores when they are subjected to conditions similar to those the spacecraft would encounter (i.e., temperature, pressure, etc.). B. subtilis var. niger spore coupons were exposed to a range of temperatures from 125 C to 200 C in a vacuum oven (at <1 Torr). After the exposures, the spores were removed by sonication, dilutions were made, and the spores were plated using the pour plate method with tryptic soy agar. After 3 days incubation at 32 C, the number of colony-forming units was counted. Lethality rate constants and D-values were calculated at each temperature. The calculated D-values were: 27 minutes (at 125 C), 13 minutes (at 135 C), and <0.1 minutes (at 150 C). The 125 C and 135 C survivor curves appeared as concavedownward curves. The 150 C survivor curve appeared as a straight-line. Due to the prolonged ramp-up time to the exposure conditions, spore killing during the ramp-up resulted in insufficient data to draw curves for exposures at 160 C, 175 C, and 200 C. Exploratory experiments using novel techniques, with short ramp times, for performing high temperature exposures were also examined. Several of these techniques, such as vacuum furnaces, thermal spore exposure vessels, and laser heating of the coupons, will be discussed.

  2. Totally confined explosive welding

    NASA Technical Reports Server (NTRS)

    Bement, L. J. (Inventor)

    1978-01-01

    The undesirable by-products of explosive welding are confined and the association noise is reduced by the use of a simple enclosure into which the explosive is placed and in which the explosion occurs. An infrangible enclosure is removably attached to one of the members to be bonded at the point directly opposite the bond area. An explosive is completely confined within the enclosure at a point in close proximity to the member to be bonded and a detonating means is attached to the explosive. The balance of the enclosure, not occupied by explosive, is filled with a shaped material which directs the explosive pressure toward the bond area. A detonator adaptor controls the expansion of the enclosure by the explosive force so that the enclosure at no point experiences a discontinuity in expansion which causes rupture. The use of the technique is practical in the restricted area of a space station.

  3. Cell phone explosion.

    PubMed

    Atreya, Alok; Kanchan, Tanuj; Nepal, Samata; Pandey, Bhuwan Raj

    2016-03-01

    Cell phone explosions and resultant burn injuries are rarely reported in the scientific literature. We report a case of cell phone explosion that occurred when a young male was listening to music while the mobile was plugged in for charging.

  4. Explosive Line Wave Generators

    DTIC Science & Technology

    2013-12-01

    curvature produced by each line wave generator. Piezoelectric pins were used for an additional assessment of the explosive lens design...to a visual assessment of the wave curvature from the high speed camera images, the explosive lens design was also evaluated using piezoelectric pins...High Explosive Firing Complex (HEFC). The various explosive line wave generators were taped vertically on a supporting board and the detonation wave

  5. Inspection tester for explosives

    DOEpatents

    Haas, Jeffrey S.; Simpson, Randall L.; Satcher, Joe H.

    2007-11-13

    An inspection tester that can be used anywhere as a primary screening tool by non-technical personnel to determine whether a surface contains explosives. It includes a body with a sample pad. First and second explosives detecting reagent holders and dispensers are operatively connected to the body and the sample pad. The first and second explosives detecting reagent holders and dispensers are positioned to deliver the explosives detecting reagents to the sample pad. A is heater operatively connected to the sample pad.

  6. Inspection tester for explosives

    DOEpatents

    Haas, Jeffrey S.; Simpson, Randall L.; Satcher, Joe H.

    2010-10-05

    An inspection tester that can be used anywhere as a primary screening tool by non-technical personnel to determine whether a surface contains explosives. It includes a body with a sample pad. First and second explosives detecting reagent holders and dispensers are operatively connected to the body and the sample pad. The first and second explosives detecting reagent holders and dispensers are positioned to deliver the explosives detecting reagents to the sample pad. A is heater operatively connected to the sample pad.

  7. Extrusion cast explosive

    DOEpatents

    Scribner, K.J.

    1985-01-29

    Improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst are disclosed. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants. 1 fig.

  8. Extrusion cast explosive

    DOEpatents

    Scribner, K.J.

    1985-11-26

    Disclosed is an improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants. 1 fig.

  9. Expedition 24 Launch Day

    NASA Image and Video Library

    2010-06-14

    Expedition 24 NASA Flight Engineer Shannon Walker has her Russian Sokol suit prepared for launch by technicians at the Baikonur Cosmodrome in Baikonur, Kazakhstan, Tuesday, June 15, 2010. Walker, Soyuz Commander Fyodor Yurchikhin and Flight Engineer Doug Wheelock launched in their Soyuz TMA-19 rocket from the Baikonur Cosmodrome in Kazakhstan on Wednesday, June 16, 2010. (Photo Credit: NASA/Carla Cioffi)

  10. Expedition 24 Launch Day

    NASA Image and Video Library

    2010-06-14

    Expedition 24 NASA Flight Engineer Doug Wheelock, center, has his Russian Sokol suit prepared for launch by a technician at the Baikonur Cosmodrome in Baikonur, Kazakhstan, Tuesday, June 15, 2010. Wheelock, Soyuz Commander Fyodor Yurchikhin and Flight Engineer Shannon Walker launched in their Soyuz TMA-19 rocket from the Baikonur Cosmodrome in Kazakhstan on Wednesday, June 16, 2010. (Photo Credit: NASA/Carla Cioffi)

  11. Expedition 24 Launch Day

    NASA Image and Video Library

    2010-06-14

    Expedition 24 NASA Flight Engineer Doug Wheelock has his Russian Sokol suit prepared for launch by a technician at the Baikonur Cosmodrome in Baikonur, Kazakhstan, Tuesday, June 15, 2010. Wheelock, Soyuz Commander Fyodor Yurchikhin and Flight Engineer Shannon Walker launched in their Soyuz TMA-19 rocket from the Baikonur Cosmodrome in Kazakhstan on Wednesday, June 16, 2010. (Photo Credit: NASA/Carla Cioffi)

  12. Saturn IB Launch

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The Saturn IB launch vehicle lifting off from Launch Complex 39B at 9:01 a.m. EST. The Skylab 4 astronauts Gerald P. Carr, Dr. Edward G. Gibson, and William R. Pogue, were onboard for the third and final mission to the orbiting space station.

  13. Saturn IB Launch Summary

    NASA Technical Reports Server (NTRS)

    1973-01-01

    This chart provides a launch summary of the Saturn IB launch vehicle as of 1973. Developed by the Marshall Space Flight Center (MSFC) as an interim vehicle in MSFC's 'building block' approach to the Saturn rocket development, the Saturn IB utilized Saturn I technology to further develop and refine the larger boosters and the Apollo spacecraft capabilities required for the marned lunar missions.

  14. Expedition 8 Launch Briefing

    NASA Image and Video Library

    2003-10-15

    Expedition 8 Soyuz Commander and Flight Engineer Alexander Kaleri and European Space Agency astronaut Pedro Duque of Spain are briefed on launch procedures from a Russian trainer at their crew quarters in Baikonur, Kazakhstan, Wednesday, Oct. 15, 2003 as they prepare for launch Oct. 18 in a Soyuz TMA-3 vehicle to the International Space Station. Photo Credit (NASA/Bill Ingalls)

  15. Launch Collision Probability

    NASA Technical Reports Server (NTRS)

    Bollenbacher, Gary; Guptill, James D.

    1999-01-01

    This report analyzes the probability of a launch vehicle colliding with one of the nearly 10,000 tracked objects orbiting the Earth, given that an object on a near-collision course with the launch vehicle has been identified. Knowledge of the probability of collision throughout the launch window can be used to avoid launching at times when the probability of collision is unacceptably high. The analysis in this report assumes that the positions of the orbiting objects and the launch vehicle can be predicted as a function of time and therefore that any tracked object which comes close to the launch vehicle can be identified. The analysis further assumes that the position uncertainty of the launch vehicle and the approaching space object can be described with position covariance matrices. With these and some additional simplifying assumptions, a closed-form solution is developed using two approaches. The solution shows that the probability of collision is a function of position uncertainties, the size of the two potentially colliding objects, and the nominal separation distance at the point of closest approach. ne impact of the simplifying assumptions on the accuracy of the final result is assessed and the application of the results to the Cassini mission, launched in October 1997, is described. Other factors that affect the probability of collision are also discussed. Finally, the report offers alternative approaches that can be used to evaluate the probability of collision.

  16. STS-135 Atlantis Launch

    NASA Image and Video Library

    2011-07-08

    Space shuttle Atlantis is seen as it launches from pad 39A on Friday, July 8, 2011, at NASA's Kennedy Space Center in Cape Canaveral, Fla. The launch of Atlantis, STS-135, is the final flight of the shuttle program, a 12-day mission to the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  17. 75 FR 5545 - Explosives

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-03

    ... for classifying, labeling, and providing safety data sheets for explosives. By withdrawing this.... OSHA-S031-2006-0665 and OSHA-S-031)] RIN 1218-AC09 Explosives AGENCY: Occupational Safety and Health... the rulemaking to amend its Explosives and Blasting Agents Standard at 29 CFR 1910.109. OSHA is...

  18. Protection of Bacillus pumilus spores by catalases.

    PubMed

    Checinska, Aleksandra; Burbank, Malcolm; Paszczynski, Andrzej J

    2012-09-01

    Bacillus pumilus SAFR-032, isolated at spacecraft assembly facilities of the National Aeronautics and Space Administration Jet Propulsion Laboratory, is difficult to kill by the sterilization method of choice, which uses liquid or vapor hydrogen peroxide. We identified two manganese catalases, YjqC and BPUM_1305, in spore protein extracts of several B. pumilus strains by using PAGE and mass spectrometric analyses. While the BPUM_1305 catalase was present in six of the B. pumilus strains tested, YjqC was not detected in ATCC 7061 and BG-B79. Furthermore, both catalases were localized in the spore coat layer along with laccase and superoxide dismutase. Although the initial catalase activity in ATCC 7061 spores was higher, it was less stable over time than the SAFR-032 enzyme. We propose that synergistic activity of YjqC and BPUM_1305, along with other coat oxidoreductases, contributes to the enhanced resistance of B. pumilus spores to hydrogen peroxide. We observed that the product of the catalase reaction, gaseous oxygen, forms expanding vesicles on the spore surface, affecting the mechanical integrity of the coat layer, resulting in aggregation of the spores. The accumulation of oxygen gas and aggregations may play a crucial role in limiting further exposure of Bacilli spore surfaces to hydrogen peroxide or other toxic chemicals when water is present.

  19. Protection of Bacillus pumilus Spores by Catalases

    PubMed Central

    Checinska, Aleksandra; Burbank, Malcolm

    2012-01-01

    Bacillus pumilus SAFR-032, isolated at spacecraft assembly facilities of the National Aeronautics and Space Administration Jet Propulsion Laboratory, is difficult to kill by the sterilization method of choice, which uses liquid or vapor hydrogen peroxide. We identified two manganese catalases, YjqC and BPUM_1305, in spore protein extracts of several B. pumilus strains by using PAGE and mass spectrometric analyses. While the BPUM_1305 catalase was present in six of the B. pumilus strains tested, YjqC was not detected in ATCC 7061 and BG-B79. Furthermore, both catalases were localized in the spore coat layer along with laccase and superoxide dismutase. Although the initial catalase activity in ATCC 7061 spores was higher, it was less stable over time than the SAFR-032 enzyme. We propose that synergistic activity of YjqC and BPUM_1305, along with other coat oxidoreductases, contributes to the enhanced resistance of B. pumilus spores to hydrogen peroxide. We observed that the product of the catalase reaction, gaseous oxygen, forms expanding vesicles on the spore surface, affecting the mechanical integrity of the coat layer, resulting in aggregation of the spores. The accumulation of oxygen gas and aggregations may play a crucial role in limiting further exposure of Bacilli spore surfaces to hydrogen peroxide or other toxic chemicals when water is present. PMID:22752169

  20. Fern spore extracts can damage DNA

    PubMed Central

    Simán, S E; Povey, A C; Ward, T H; Margison, G P; Sheffield, E

    2000-01-01

    The carcinogenicity of the vegetative tissues of bracken fern (Pteridium) has long been established. More recently, the carcinogenic effects of the spores of bracken have also been recognized. Both vegetative tissues and spores of bracken can induce adducts in DNA in animal tissues, but the possible genotoxic or carcinogenic effects of spores from fern species other than bracken are unknown. The single-cell gel electrophoresis (‘comet’) assay was used to investigate whether fern spores can cause DNA damage in vitro. Extracts of spores from six fern species were administered to cultured human premyeloid leukaemia (K562) cells. Spore extracts of five fern species: Anemia phyllitidis, Dicksonia antarctica, Pteridium aquilinum, Pteris vittata and Sadleria pallida, induced significantly more DNA strand breaks than those in the control groups. Only in one species, Osmunda regalis, was the effect no different from that in the control groups. Using extracts from A. phyllitidis and P. vittata, the extent of DNA damage was increased by increasing the original dose 10 times, whereas an experiment in which exposure times were varied suggested that the highest levels of strand breaks appear after 2 h exposure. Simultaneous incubation with human S9 liver enzyme mix ablated the damaging effect of the extracts. Our data show that fern spore extracts can cause DNA damage in human cells in vitro. Considering the strong correlation between DNA damage and carcinogenic events, the observations made in this report may well have some implications for human health. © 2000 Cancer Research Campaign PMID:10883670

  1. Explosive Testing of Class 1.3 Rocket Booster Propellant

    DTIC Science & Technology

    1994-08-01

    solids HTPB /Al/AP propellant similar to what could be used in space launch boosters. The program tested propellant charges as large as 22 inches in...Since solid propellants used in large space boosters have an explosive nature, studying explosive characteristics of the ever more popular HTPB type of...hazards alone. Emerging space boosters and upper stages use HTPB propellants . In the future all solid propellant space boosters may use HTPB

  2. Micro-sonicator for spore lysis

    DOEpatents

    Miles, Robin R.; Belgrader, Phillip; Nasarabadi, Shanavaz L.

    2000-01-01

    A micro-sonicator for spore lysis. Using micromachining technology, the micro-sonicator uses ultrasonic excitation of spores to perform spore and cell lysis. The micro-sonicator comprises a container with a cavity therein for retaining the sample in an ultrasonic transmission medium, the cavity being closed by a silicon membrane to which an electrode and piezoelectric material are attached, with the electrode and piezoelectric material being electrically connected to an AC signal generator which causes the membrane to flex and vibrate at the frequency of the applied voltage.

  3. 65. DETAIL OF ASSISTANT LAUNCH CONTROLLER AND LAUNCH CONTROLLER PANELS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    65. DETAIL OF ASSISTANT LAUNCH CONTROLLER AND LAUNCH CONTROLLER PANELS LOCATED NEAR CENTER OF SLC-3E CONTROL ROOM. NOTE 30-CHANNEL COMMUNICATIONS PANELS. PAYLOAD ENVIRONMENTAL CONTROL AND MONITORING PANELS (LEFT) AND LAUNCH OPERATORS PANEL (RIGHT) IN BACKGROUND. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  4. Antares Rocket Test Launch

    NASA Image and Video Library

    2013-04-21

    NASA Deputy Administrator Lori Garver and other guests react after having watched the successful launch of the Orbital Sciences Corporation Antares rocket from the Mid-Atlantic Regional Spaceport (MARS) at the NASA Wallops Flight Facility in Virginia, Sunday, April 21, 2013. The test launch marked the first flight of Antares and the first rocket launch from Pad-0A. The Antares rocket delivered the equivalent mass of a spacecraft, a so-called mass simulated payload, into Earth's orbit. Photo Credit: (NASA/Bill Ingalls)

  5. Antares Rocket Test Launch

    NASA Image and Video Library

    2013-04-21

    NASA Administrator Charles Bolden and NASA Deputy Administrator Lori Garver and other guests react after having watched the successful launch of the Orbital Sciences Corporation Antares rocket from the Mid-Atlantic Regional Spaceport (MARS) at the NASA Wallops Flight Facility in Virginia, Sunday, April 21, 2013. The test launch marked the first flight of Antares and the first rocket launch from Pad-0A. The Antares rocket delivered the equivalent mass of a spacecraft, a so-called mass simulated payload, into Earth's orbit. Photo Credit: (NASA/Bill Ingalls)

  6. STS-135 Launch Day

    NASA Image and Video Library

    2011-07-07

    NASA Chief, Astronaut Office, Johnson Space Center Peggy Whitson deals cards during a traditional game that is played at the NASA Kennedy Space Center Operations and Checkout Building with the shuttle crew prior to them leaving for the launch pad, on Friday, July 8, 2011 in Cape Canaveral, Fla. The point of the game is that the commander must use up all his or her bad luck before launch, so the crew can only leave for the pad after the commander loses. The launch of Atlantis, STS-135, is the final flight of the shuttle program, a 12-day mission to the International Space Station. Photo Credit: (NASA/Jerry Ross)

  7. STS-135 Atlantis Launch

    NASA Image and Video Library

    2011-07-08

    Space shuttle Atlantis is seen through the window of a Shuttle Training Aircraft (STA) as it launches from launch pad 39A at Kennedy Space Center on the STS-135 mission, Friday, July 8, 2011 in Cape Canaveral, Fla. Atlantis launched on the final flight of the shuttle program on a 12-day mission to the International Space Station. The STS-135 crew will deliver the Raffaello multipurpose logistics module containing supplies and spare parts for the space station. Photo Credit: (NASA/Dick Clark)

  8. Bacterial spores in food: how phenotypic variability complicates prediction of spore properties and bacterial behavior.

    PubMed

    Eijlander, Robyn T; Abee, Tjakko; Kuipers, Oscar P

    2011-04-01

    Bacillus spores are a known cause of food spoilage and their increased resistance poses a major challenge in efficient elimination. Recent studies on bacterial cultures at the single cell level have revealed how minor differences in essential spore properties, such as core water content or germinant receptor levels, can cause the observed differences in spore germination and outgrowth behavior. Moreover, heterogeneous behavior is influenced by commonly accepted food preservation techniques, such as heating or the usage of weak organic acids. Understanding the underlying molecular mechanisms and key players involved in phenotypic heterogeneity of spores, while taking the spore's history into account, will improve predictability of the spore's behavior to various treatments and triggers. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Quantification and Single-Spore Detection of Phakopsora pachyrhizi

    USDA-ARS?s Scientific Manuscript database

    The microscopic identification and quantification of Phakopsora pachyrhizi spores from environmental samples, spore traps, and laboratory specimens can represent a challenge. Such reports, especially from passive spore traps, commonly describe the number of “rust-like” spores; for other forensic sa...

  10. Launch of Juno!

    NASA Image and Video Library

    An Atlas V rocket lofted the Juno spacecraft toward Jupiter from Space Launch Complex-41. The 4-ton Juno spacecraft will take five years to reach Jupiter on a mission to study its structure and dec...

  11. Anchor Trial Launch

    Cancer.gov

    NCI has launched a multicenter phase III clinical trial called the ANCHOR Study -- Anal Cancer HSIL (High-grade Squamous Intraepithelial Lesion) Outcomes Research Study -- to determine if treatment of HSIL in HIV-infected individuals can prevent anal canc

  12. Genomic Data Commons launches

    Cancer.gov

    The Genomic Data Commons (GDC), a unified data system that promotes sharing of genomic and clinical data between researchers, launched today with a visit from Vice President Joe Biden to the operations center at the University of Chicago.

  13. Hi-C Launch

    NASA Image and Video Library

    The High resolution Coronal Imager (Hi-C) was launched on a NASA Black Brant IX two-stage rocket from White Sands Missile Range in New Mexico July 11, 2012. The experiment reached a maximum velocit...

  14. Launch - STS-6 - KSC

    NASA Image and Video Library

    1983-04-12

    S83-30222 (4 April 1983) --- The second reusable spacecraft in history successfully launches from Launch Pad 39A at 1:30:00:88 p.m. (EST) on April 4, 1983, and heads for its history making five-day mission in Earth orbit. The space shuttle Challenger, its two solid rocket boosters (SRB), and a new lightweight?external fuel tank were captured on film by an automatically-tripped camera in a protected station nearer to the launch pad than human beings are able to be at launch time. Onboard the spacecraft are astronauts Paul J. Wietz, Karol J. Bobko, Dr. Story Musgrave and Donald H. Peterson. Photo credit: NASA

  15. First Accessible Boat Launch

    EPA Pesticide Factsheets

    This is a story about how the Northwest Indiana urban waters partnership location supported the process to create and open the first handicap accessible canoe and kayak launch in the state of Indiana.

  16. IRVE 3 Launch

    NASA Image and Video Library

    The Inflatable Reentry Vehicle Experiment, or IRVE-3, launched on July 23, 2012, from NASA's Wallops Flight Facility. The purpose of the IRVE-3 test was to show that a space capsule can use an infl...

  17. GPM Launch Coverage

    NASA Image and Video Library

    A Japanese H-IIA rocket with the NASA-Japan Aerospace Exploration Agency (JAXA) Global Precipitation Measurement (GPM) Core Observatory aboard, launched from the Tanegashima Space Center in Japan o...

  18. NASA Now: Glory Launch

    NASA Image and Video Library

    In this episode of NASA Now, Dr. Hal Maring joins us to explain why the upcoming launch of the Glory satellite is so important to further our understanding of climate change. He also will speak on ...

  19. Vertical Launch Alignment Transfer Apparatus.

    DTIC Science & Technology

    A launch mechanism for vertically launching missiles carried in launch tubes disposed in a pod . The launch mechanism includes apparatus for... pod and v-groove elements are secured in the launch tubes and oriented to the northfinder. Rods are secured on opposite sides of each missile and are

  20. 33. Launch Control Center, close view of launch key inserted ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. Launch Control Center, close view of launch key inserted in the launch panel. Lyon - Whiteman Air Force Base, Oscar O-1 Minuteman Missile Alert Facility, Southeast corner of Twelfth & Vendenberg Avenues, Knob Noster, Johnson County, MO

  1. Bacillus spore inactivation methods affect detection assays.

    PubMed

    Dang, J L; Heroux, K; Kearney, J; Arasteh, A; Gostomski, M; Emanuel, P A

    2001-08-01

    Detection of biological weapons is a primary concern in force protection, treaty verification, and safeguarding civilian populations against domestic terrorism. One great concern is the detection of Bacillus anthracis, the causative agent of anthrax. Assays for detection in the laboratory often employ inactivated preparations of spores or nonpathogenic simulants. This study uses several common biodetection platforms to detect B. anthracis spores that have been inactivated by two methods and compares those data to detection of spores that have not been inactivated. The data demonstrate that inactivation methods can affect the sensitivity of nucleic acid- and antibody-based assays for the detection of B. anthracis spores. These effects should be taken into consideration when comparing laboratory results to data collected and assayed during field deployment.

  2. Bacillus Spore Inactivation Methods Affect Detection Assays

    PubMed Central

    Dang, Jessica L.; Heroux, Karen; Kearney, John; Arasteh, Ameneh; Gostomski, Mark; Emanuel, Peter A.

    2001-01-01

    Detection of biological weapons is a primary concern in force protection, treaty verification, and safeguarding civilian populations against domestic terrorism. One great concern is the detection of Bacillus anthracis, the causative agent of anthrax. Assays for detection in the laboratory often employ inactivated preparations of spores or nonpathogenic simulants. This study uses several common biodetection platforms to detect B. anthracis spores that have been inactivated by two methods and compares those data to detection of spores that have not been inactivated. The data demonstrate that inactivation methods can affect the sensitivity of nucleic acid- and antibody-based assays for the detection of B. anthracis spores. These effects should be taken into consideration when comparing laboratory results to data collected and assayed during field deployment. PMID:11472945

  3. Bacterial Spores Survive Electrospray Charging and Desolvation

    NASA Astrophysics Data System (ADS)

    Pratt, Sara N.; Austin, Daniel E.

    2014-05-01

    The survivability of Bacillus subtilis spores and vegetative Escherichia coli cells after electrospray from aqueous suspension was tested using mobility experiments at atmospheric pressure. E. coli did not survive electrospray charging and desolvation, but B. subtilis did. Experimental conditions ensured that any surviving bacteria were de-agglomerated, desolvated, and electrically charged. Based on mobility measurements, B. subtilis spores survived even with 2,000-20,000 positive charges. B. subtilis was also found to survive introduction into vacuum after either positive or negative electrospray. Attempts to measure the charge distribution of viable B. subtilis spores using electrostatic deflection in vacuum were inconclusive; however, viable spores with low charge states (less than 42 positive or less than 26 negative charges) were observed.

  4. Experiences with Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.

    2006-01-01

    The presentation "NASA Experience with Launch Vehicles" is a compilation of Mr. Dumbacher's career experiences with the Space Shuttle Program, the Delta - Clipper Experimental flight test project, the X-33 demonstrator project, and recent experiences with the Orbital Spaceplane Program agd the current NASA effort on Exploration Launch Systems. Mr. Dumbacher will discuss his personal experiences and provide lessons learned from each program. The accounts provided by Mr. Dumbacher are his own and do not necessarily represent the official NASA position.

  5. STS-130 Launch Attempt

    NASA Image and Video Library

    2010-02-07

    NASA Associate Administrator for Space Operations Bill Gerstenmaier, center, reacts to an updated weather report during the countdown of the launch of the space shuttle Endeavour and the start of the STS-130 mission at NASA Kennedy Space Center in Cape Canaveral, Fla. on Sunday Feb. 7, 2010. Space shuttle Endeavour's launch attempt was scrubbed due to a low cloud ceiling over Kennedy Space Center. Photo Credit: (NASA/Bill Ingalls)

  6. STS-132 Launch Tweetup

    NASA Image and Video Library

    2010-05-12

    Jon Cowart @Rocky_Sci, orbiter engineering manager, Space Shuttle Program, interacts with Tweetup participant, Jen Vargas, @jenvargus, as he speaks to participants at the two-day STS-132 Launch Tweetup at Kennedy Space Center, Thursday, May 13, 2010, in Cape Canaveral, Fla. NASA Twitter followers in attendance will have the opportunity to take a tour of NASA's Kennedy Space Center, view the space shuttle launch and speak with shuttle technicians, engineers, astronauts and managers. Photo Credit: (NASA/Paul E. Alers)

  7. Expedition 23 Launch Day

    NASA Image and Video Library

    2010-04-01

    Expedition 23 Flight Engineer Mikhail Kornienko of the Russia has his Russian Sokol suit prepared for launch by a technician at the Baikonur Cosmodrome in Baikonur, Kazakhstan, Friday, April 2, 2010. Kornienko and fellow Expedition 23 crewmembers Soyuz Commander Alexander Skvortsov and NASA Flight Engineer Tracy Caldwell Dyson of the U.S. launched in their Soyuz TMA-18 rocket from the Baikonur Cosmodrome in Kazakhstan on Friday, April 2, 2010. Photo Credit: (NASA/Carla Cioffi)

  8. Expedition 23 Launch Day

    NASA Image and Video Library

    2010-04-01

    Expedition 23 Soyuz Commander Alexander Skvortsov has his Russian Sokol suit prepared for launch by a technician at the Baikonur Cosmodrome in Baikonur, Kazakhstan, Friday, April 2, 2010. Skvortsov and fellow Expedition 23 crewmembers Flight Engineer Mikhail Kornienko of the Russia and NASA Flight Engineer Tracy Caldwell Dyson of the U.S. launched in their Soyuz TMA-18 rocket from the Baikonur Cosmodrome in Kazakhstan on Friday, April 2, 2010. Photo Credit: (NASA/Carla Cioffi)

  9. Expedition 22 Launch Day

    NASA Image and Video Library

    2009-12-20

    Expedition 22 Flight Engineer Soichi Noguchi of Japan has his Russian Sokol suit prepared for launch by a technician at the Baikonur Cosmodrome in Baikonur, Kazakhstan, Sunday, Dec. 20, 2009. Soichi and fellow Expedition 22 crew members NASA Flight Engineer Timothy J. Creamer of the U.S., Soyuz Commander Oleg Kotov of Russia launched in their Soyuz TMA-17 rocket from the Baikonur Cosmodrome in Kazakhstan on Monday, Dec. 21, 2009. (Photo Credit: NASA/Bill Ingalls)

  10. Expedition 23 Launch Day

    NASA Image and Video Library

    2010-04-01

    Expedition 23 NASA Flight Engineer Tracy Caldwell Dyson, left, talks with Soyuz Commander Alexander Skvortsov of Russia, while Flight Engineer Mikhail Kornienko of Russia has his Russian Sokol suit prepared for launch at the Baikonur Cosmodrome in Baikonur, Kazakhstan, Friday, April 2, 2010. The Expedition 23 crew members launched in their Soyuz TMA-18 rocket from the Baikonur Cosmodrome in Kazakhstan on Friday, April 2, 2010. (Photo Credit: NASA/Bill Ingalls)

  11. Expedition 23 Launch Day

    NASA Image and Video Library

    2010-04-01

    Expedition 23 NASA Flight Engineer Tracy Caldwell Dyson of the U.S. has her Russian Sokol suit prepared for launch by a technician at the Baikonur Cosmodrome in Baikonur, Kazakhstan, Friday, April 2, 2010. Caldwell Dyson and fellow Expedition 23 crew members Soyuz Commander Alexander Skvortsov and Flight Engineer Mikhail Kornienko of Russia launched in their Soyuz TMA-18 rocket from the Baikonur Cosmodrome in Kazakhstan on Friday, April 2, 2010. Photo Credit: (NASA/Carla Cioffi)

  12. Expedition 25 Launch

    NASA Image and Video Library

    2010-10-07

    Expedition 25 NASA Flight Engineer Scott Kelly of the U.S. has his Russian Sokol suit prepared for launch by a technician at the Baikonur Cosmodrome in Baikonur, Kazakhstan, Friday, Oct. 8, 2010. Kelly and fellow Expedition 25 crew members Soyuz Commander Alexander Kaleri and Flight Engineer Oleg Skripochka launched in their Soyuz TMA-01M at 5:10 a.m. Friday morning. (Photo Credit: NASA/Carla Cioffi)

  13. Expedition 25 Launch

    NASA Image and Video Library

    2010-10-07

    The Soyuz TMA-01M rocket launches from the Baikonur Cosmodrome in Kazakhstan on Friday, October 8, 2010 carrying Expedition 25 Soyuz Commander Alexander Kaleri of Russia, NASA Flight Engineer Scott J. Kelly and Russian Flight Engineer Oleg Skripochka to the International Space Station. Their Soyuz TMA-01M rocket launched at 5:10 a.m Kazakhstan time. (Photo Credit: NASA/Carla Cioffi)

  14. Expedition 25 Launch

    NASA Image and Video Library

    2010-10-07

    Expedition 25 NASA Flight Engineer Scott Kelly of the U.S. has his Russian Sokol suit prepared for launch by a technician at the Baikonur Cosmodrome in Kazakhstan, Friday, Oct. 8, 2010. Kelly and fellow Expedition 25 crew members Soyuz Commander Alexander Kaleri and Flight Engineer Oleg Skripochka launched in their Soyuz TMA-01M at 5:10 a.m. Friday morning. (Photo Credit: NASA/Carla Cioffi)

  15. STS-64 launch view

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Passing through some of the trailer clouds of an overcast sky which temporarily postponed its launch, the Space Shuttle Discovery heads for its 19th Earth orbital flight. Several kilometers away, astronaut John H. Casper, Jr., who took this picture, was piloting the Shuttle Training Aircraft (STA) from which the launch and landing area weather was being monitored. Onboard Discovery were astronauts Richard N. Richards, L. Blaine Hammond, Jr., Mark C. Lee, Carl J. Meade, Susan J. Helms, and Jerry M. Linenger.

  16. Orion EFT-1 Launch

    NASA Image and Video Library

    2014-12-05

    A Delta IV Heavy rocket lifts off from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida carrying NASA's Orion spacecraft on an unpiloted flight test to Earth orbit. Liftoff was at 7:05 a.m. EST. During the two-orbit, four-and-a-half hour mission, engineers will evaluate the systems critical to crew safety, the launch abort system, the heat shield and the parachute system.

  17. Expedition 22 Launch Day

    NASA Image and Video Library

    2009-12-21

    Expedition 22 Soyuz Commander Oleg Kotov of Russia, left, NASA Flight Engineer Timothy J. Creamer of the U.S., back center, and Flight Engineer Soichi Noguchi of Japan are walked from their bus to the soyuz rocket at the launch pad at the Baikonur Cosmodrome in Baikonur, Kazakhstan, Monday, Dec. 21, 2009. Kotov, Creamer and Noguchi launched in their Soyuz TMA-17 rocket from the Baikonur Cosmodrome in Kazakhstan on Monday, Dec. 21, 2009. (Photo Credit: NASA/Bill Ingalls)

  18. Expedition 22 Launch Day

    NASA Image and Video Library

    2009-12-20

    Expedition 22 Soyuz Commander Oleg Kotov of Russia, center, has his Russian Sokol suit prepared for launch while NASA Flight Engineer Timothy J. Creamer of the U.S., left, and Flight Engineer Soichi Noguchi of Japan wait at the Baikonur Cosmodrome in Baikonur, Kazakhstan, Sunday, Dec. 20, 2009. The Expedition 22 crew members launched in their Soyuz TMA-17 rocket from the Baikonur Cosmodrome in Kazakhstan on Monday, Dec. 21, 2009. (Photo Credit: NASA/Bill Ingalls)

  19. Expedition 22 Launch Day

    NASA Image and Video Library

    2009-12-20

    Expedition 22 NASA Flight Engineer Timothy J. Creamer of the U.S. has his Russian Sokol suit prepared for launch by a technician at the Baikonur Cosmodrome in Baikonur, Kazakhstan, Sunday, Dec. 20, 2009. Creamer and fellow Expedition 22 crew members, Soyuz Commander Oleg Kotov of Russia, Flight Engineer Soichi Noguchi of Japan launched in their Soyuz TMA-17 rocket from the Baikonur Cosmodrome in Kazakhstan on Monday, Dec. 21, 2009. (Photo Credit: NASA/Bill Ingalls)

  20. Expedition 22 Launch Day

    NASA Image and Video Library

    2009-12-20

    Expedition 22 NASA Flight Engineer Timothy J. Creamer of the U.S., left, talks with Soyuz Commander Oleg Kotov of Russia, right, while Flight Engineer Soichi Noguchi of Japan has his Russian Sokol suit prepared for launch at the Baikonur Cosmodrome in Baikonur, Kazakhstan, Sunday, Dec. 20, 2009. The Expedition 22 crew members launched in their Soyuz TMA-17 rocket from the Baikonur Cosmodrome in Kazakhstan on Monday, Dec. 21, 2009. (Photo Credit: NASA/Bill Ingalls)

  1. Magnetic Launch Assist

    NASA Technical Reports Server (NTRS)

    Perez, Jose

    2000-01-01

    The objectives of this program are to: (1) To develop a safe, reliable, inexpensive, and minimum operation launch assist system for sending payloads into orbit using ground powered, magnetic suspension and propulsion technologies; (2) Improve safety, reliability, operability for third generation Reusable Launch Vehicles (RLV); (3) Reduce vehicle weight and increase payload capacity; and (4) Support operational testing of Rocket Based Combine Cycle (RBCC) engines.

  2. STS-132 Launch Tweetup

    NASA Image and Video Library

    2010-05-12

    Kendal Van Dyke, a database professional that is followed on Twitter @twitter.com/sqldba, takes part in the two-day STS-132 Launch Tweetup at Kennedy Space Center, Thursday, May 13, 2010, in Cape Canaveral, Fla. NASA Twitter followers in attendance will have the opportunity to take a tour of NASA's Kennedy Space Center, view the space shuttle launch and speak with shuttle technicians, engineers, astronauts and managers. Photo Credit: (NASA/Paul E. Alers)

  3. Expedition 8 Launch Day

    NASA Image and Video Library

    2003-10-18

    Technicians conduct a leak check on the spacesuit of Expedition 8 Soyuz Commander Alexander Kaleri at the Baikonur Cosmodrome, Saturday, Oct. 18, 2003, prior to his departure for the launch pad with Expedition 8 Commander and NASA Science Officer Mike Foale and European Space Agency astronaut Pedro Duque of Spain. The trio were launched on a Soyuz TMA-3 vehicle to the International Space Station, arriving on Oct. 20. Photo Credit (NASA/Bill Ingalls)

  4. Expedition 8 Launch Day

    NASA Image and Video Library

    2003-10-18

    Technicians conduct a leak check on the spacesuit of European Space Agency astronaut Pedro Duque of Spain at the Baikonur Cosmodrome, Saturday, Oct. 18, 2003, prior to his departure for the launch pad with Expedition 8 Commander and NASA Science Officer Mike Foale and Soyuz Commander Alexander Kaleri. The trio were launched on a Soyuz TMA-3 vehicle to the International Space Station, arriving on Oct. 20. Photo Credit (NASA/Bill Ingalls)

  5. Expedition 8 Launch Day

    NASA Image and Video Library

    2003-10-18

    Expedition 8 Commander and NASA Science Officer Michael Foale completes suiting up at the Baikonur Cosmodrome in Kazakhstan, Saturday, Oct. 18, 2003, prior to departing for the launch pad with Expedition 8 Soyuz Commander Alexander Kaleri and European Space Agency astronaut Pedro Duque of Spain. The trio were launched on the Soyuz TMA-3 vehicle to the International Space Station, arriving on Oct. 20. Photo Credit (NASA/Bill Ingalls)

  6. Launch Vehicle Communications

    NASA Technical Reports Server (NTRS)

    Welch, Bryan; Greenfeld, Israel

    2005-01-01

    As the National Aeronautics and Space Administration's (NASA) planning for updated launch vehicle operations progresses, there is a need to consider improved methods. This study considers the use of phased array antennas mounted on launch vehicles and transmitting data to either NASA's Tracking and Data Relay Satellite System (TDRSS) satellites or to the commercial Iridium, Intelsat, or Inmarsat communications satellites. Different data rate requirements are analyzed to determine size and weight of resulting antennas.

  7. STS-135 Atlantis Launch

    NASA Image and Video Library

    2011-07-08

    Guests look on from the terrace of Operations Support Building II as space shuttle Atlantis launches from launch pad 39A on the STS-135 mission Friday, July 8, 2011, at Kennedy Space Center in Cape Canaveral, Fla. Atlantis and its crew will deliver to the International Space Station the Raffaello multipurpose logistics module containing supplies and spare parts for the space station. Photo Credit: (NASA/Carla Cioffi)

  8. STS-135 Atlantis Launch

    NASA Image and Video Library

    2011-07-08

    Space shuttle Atlantis, STS-135, launches skyward on a 12-day mission to the International Space Station (ISS), Friday, July 8, 2011, at NASA's Kennedy Space Center in Cape Canaveral, Fla. The launch of Atlantis is the final flight of the shuttle program and will carry the Raffaello multipurpose logistics module containing supplies and spare parts for the space station. Photo Credit: (NASA/Paul E. Alers)

  9. Orion EFT-1 Launch

    NASA Image and Video Library

    2014-12-05

    A Delta IV Heavy rocket roars to life at Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The launch vehicle is carrying NASA's Orion spacecraft on an unpiloted flight test to Earth orbit. Liftoff was at 7:05 a.m. EST. The flight will send Orion 3,600 miles in altitude beyond the Earth's surface on a four-and-a-half hour mission.

  10. STS-132 Launch Tweetup

    NASA Image and Video Library

    2010-05-12

    Ron Woods, an equipment specialist, who has been a space suit designer from Mercury to now speaks to participants at the two-day STS-132 Launch Tweetup at Kennedy Space Center, Thursday, May 13, 2010, in Cape Canaveral, Fla. NASA Twitter followers in attendance will have the opportunity to take a tour of NASA's Kennedy Space Center, view the space shuttle launch and speak with shuttle technicians, engineers, astronauts and managers. Photo Credit: (NASA/Paul E. Alers)

  11. Mitochondrial biogenesis during fungal spore germination: respiratory cytochromes of dormant and germinating spores of Botryodiplodia.

    PubMed Central

    Brambl, R; Josephson, M

    1977-01-01

    The mitochondrial respiratory cytochrome contents of dormant and germinating conidia of Botryodiplodia theobromae were examined. Oxidized versus reduced difference spectra at 77 degrees K of whole mitochondria from physiologically mature germinated spores showed a typical a-band pattern for cytochromes c, b, and a, with absorption maxima at 549, 554 + 559, and 604 nm, respectively, whereas the difference spectrum of the counterpart mitochondrial fraction from dormant spores showed no cytochrome a bands. However, a fraction prepared from dormant spore mitochondria by detergent extraction and (NH4)2SO4 fractionation contained readily detectable quantities of cytochromes c and b (as shown by the a and Soret absorption bands), but it did not contain the a or Soret bands of cytochrome a observed in a counterpart preparation from germinated spores. The pyridine hemochromogen preparation from the dormant spore mitochondria contained no material that is spectroscopically characteristic of a-type heme and protoheme. These results suggest that cytochrome a is not present as a functional molecule in dormant spores. The first spectroscopically detectable cytochromes were observed in whole mitochondria at 210 min of spore germination, and the amount of each of the cytochromes increased with cell growth. A precursor of the heme porphyrin, delta-[4-14C]aminolevulinic acid, was first incorporated (at accelerating rates) into acid-insoluble spore material at 180 min of germination, which appears to be the approximate time of organization of new mitochondria in these spores. PMID:187569

  12. Culturability of Bacillus spores on aerosol collection filters exposed to airborne combustion products of Al, Mg, and B·Ti.

    PubMed

    Adhikari, Atin; Yermakov, Michael; Indugula, Reshmi; Reponen, Tiina; Driks, Adam; Grinshpun, Sergey A

    2016-05-01

    Destruction of bioweapon facilities due to explosion or fire could aerosolize highly pathogenic microorganisms. The post-event air quality assessment is conducted through air sampling. A bioaerosol sample (often collected on a filter for further culture-based analysis) also contains combustion products, which may influence the microbial culturability and, thus, impact the outcome. We have examined the interaction between spores deposited on collection filters using two simulants of Bacillus anthracis [B. thuringiensis (Bt) and B. atrophaeus (referred to as BG)] and incoming combustion products of Al as well as Mg and B·Ti (common ingredient of metalized explosives). Spores extracted from Teflon, polycarbonate, mixed cellulose ester (MCE), and gelatin filters (most common filter media for bioaerosol sampling), which were exposed to combustion products during a short-term sampling, were analyzed by cultivation. Surprisingly, we observed that aluminum combustion products enhanced the culturability of Bt (but not BG) spores on Teflon filters increasing the culturable count by more than an order of magnitude. Testing polycarbonate and MCE filter materials also revealed a moderate increase of culturability although gelatin did not. No effect was observed with either of the two species interacting on either filter media with products originated by combustion of Mg and B·Ti. Sample contamination, spore agglomeration, effect of a filter material on the spore survival, changes in the spore wall ultrastructure and germination, as well as other factors were explored to interpret the findings. The study raises a question about the reliability of certain filter materials for collecting airborne bio-threat agents in combustion environments. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Electromagnetic Launch to Space

    NASA Astrophysics Data System (ADS)

    McNab, I. R.

    Many advances in electromagnetic (EM) propulsion technology have occurred in recent years. Linear motor technology for low-velocity and high-mass applications is being developed for naval catapults. Such technology could serve as the basis for a first-stage booster launch--as suggested by the US National Aeronautics and Space Administration (NASA) in the Maglifter concept. Using railguns, laboratory experiments have demonstrated launch velocities of 2-3 km/s and muzzle energies > 8 MJ. The extension of this technology to the muzzle velocities ( 7500 m/s) and energies ( 10 GJ) needed for the direct launch of payloads into orbit is very challenging but may not be impossible. For launch to orbit, even long launchers (> 1000 m) would need to operate at accelerations > 1000 G to reach the required velocities, so it would only be possible to launch rugged payloads, such as fuel, water, and materiel. Interest is being shown in such concepts by US, European, Russian, and Chinese researchers. An intermediate step proposed in France could be to launch payloads to sounding rocket altitudes for ionospheric research.

  14. [Overview of study on Bacillus subtilis spores].

    PubMed

    Watabe, Kazuhito

    2013-01-01

    This review documents my research for the past 29 years in the work of bacterial sporulation. The Gram-positive bacterium Bacillus subtilis forms spores when conditions are unsuitable for growth. The mature spores remain for long periods of starvation and are resistant to harsh environment. This property is attributed mainly to the unique figures of spore's outer layers, spore coat. The protein composition of the spores was comprehensively analyzed by a combination of SDS-PAGE and LC-MS/MS. The total of 154 proteins were identified and 69 of them were novel. The expression of the genes encoding them was dependent on sporulation-specific sigma factors, σF, σE, σG and σK. The expression of a coat protein gene, cotS, was dependent on σK and GerE. CotE is essential for the assembly of CotS in the coat layer. Many coat genes were identified by reverse genetics and the regulation of the gene expression was studied in detail. Some cot genes are functioned in the resistance to heat and lysozyme, and some of the coat proteins are involved in the specificity of germinants. The yrbA is essential in spore development, yrbA deficient cells revealed abnormal figures of spore coat structure and changed the response to germinants. The location of 16 coat proteins was determined by the observation of fluorescence microscopy using fluorescence-labelled proteins. One protein was assigned to the cortex, nine to the inner coat, and four to the outer coat. In addition, CotZ and CgeA appeared in the outermost layer of the spore coat.

  15. Rapid onsite assessment of spore viability.

    SciTech Connect

    Branda, Steven; Lane, Todd W.; VanderNoot, Victoria A.; Gaucher, Sara P.; Jokerst, Amanda S.

    2005-12-01

    This one year LDRD addresses problems of threat assessment and restoration of facilities following a bioterror incident like the incident that closed down mail facilities in late 2001. Facilities that are contaminated with pathogenic spores such as B. anthracis spores must be shut down while they are treated with a sporicidal agent and the effectiveness of the treatment is ascertained. This process involves measuring the viability of spore test strips, laid out in a grid throughout the facility; the CDC accepted methodologies require transporting the samples to a laboratory and carrying out a 48 hr outgrowth experiment. We proposed developing a technique that will ultimately lead to a fieldable microfluidic device that can rapidly assess (ideally less than 30 min) spore viability and effectiveness of sporicidal treatment, returning facilities to use in hours not days. The proposed method will determine viability of spores by detecting early protein synthesis after chemical germination. During this year, we established the feasibility of this approach and gathered preliminary results that should fuel a future more comprehensive effort. Such a proposal is currently under review with the NIH. Proteomic signatures of Bacillus spores and vegetative cells were assessed by both slab gel electrophoresis as well as microchip based gel electrophoresis employing sensitive laser-induced fluorescence detection. The conditions for germination using a number of chemical germinants were evaluated and optimized and the time course of protein synthesis was ascertained. Microseparations were carried out using both viable spores and spores inactivated by two different methods. A select number of the early synthesis proteins were digested into peptides for analysis by mass spectrometry.

  16. New Mix Explosives for Explosive Welding

    NASA Astrophysics Data System (ADS)

    Andreevskikh, Leonid

    2011-06-01

    Suggested and tested were some mix explosives--powder mixtures of a brisant high explosive (HE = RDX, PETN) and an inert diluent (baking soda)--for use in explosive welding. RDX and PETN were selected in view of their high throwing ability and low critical diameter. Since the decomposition of baking soda yields a huge amount of gaseous products, its presence ensures (even at a low HE percentage) a throwing speed that is sufficient for realization of explosive welding, at a reduced brisant action of charge. Mix chargers containing 30-70 wt % HE (the rest baking soda) have been tested experimentally and optimized. For study of possibility to reduce critical diameter of HE mixture, the mixture was prepared where HE crystal sizes did not exceed 10 μm. The tests, which were performed with this HE, revealed that the mixture detonated stably with the velocity D ~ 2 km/s, if the layer thickness was d = 2 mm. The above explosives afford to markedly diminish deformations within the oblique impact zone and thus to carry out explosive welding of hollow items and thin metallic foils.

  17. Bacillus anthracis spore decontamination in food grease.

    PubMed

    Amoako, Kingsley K; Santiago-Mateo, Kristina; Shields, Michael J; Rohonczy, Elizabeth

    2013-04-01

    Bacillus anthracis Sterne strain spores were analyzed for their resistance against five disinfectants: commercial sodium hypochlorite, Spor-Klenz Ready-to-Use Cold Sterilant, accelerated hydrogen peroxide (AHP), Virkon, and surface decontamination foam (SDF). The aim of this study was to find an effective disinfectant that would reduce the viability of B. anthracis Sterne spores at ≥6 log in the presence of variables such as animal grease and fat, stainless steel, and temperature (room temperature and 4 °C). SDF and 10% sodium hypochlorite consistently reduced the growth of viable B. anthracis Sterne spores after 5 min in the presence of stainless steel at room temperature. It took at least 10 min of contact time for AHP to consistently reduce spore growth by ≥6 log, while it took at least 20 min for 5% bleach and Spor-Klenz to consistently inactivate ≥6 log spores in the presence of stainless steel at room temperature. AHP was the only disinfectant that reduced the viability of B. anthracis Sterne spores at ≥6 log in the presence of stainless steel and animal grease, both at room temperature and 4 °C after 24 h of contact time.

  18. Bacterial spores in silage and raw milk.

    PubMed

    te Giffel, M C; Wagendorp, A; Herrewegh, A; Driehuis, F

    2002-08-01

    Spore-forming bacteria can survive food-processing treatments. In the dairy industry, Bacillus and Clostridium species determine the shelf-life of a variety of heat-treated milk products, mainly if the level of post-process contamination is low. In order to minimize problems caused by bacterial spores in foods and food production processes a chain management approach, from raw materials, ingredients and environmental sources to final product storage conditions, is most effective. Silage is considered to be a significant source of contamination of raw milk with spores. PCR-RAPD fingerprinting and heat resistance studies of populations of aerobic spore-formers isolated from grass and maize silage and from raw milk confirmed this assumption. Prevention of outgrowth of aerobic spores in silage will contribute to reduction of the total spore load of raw milk. Therefore, it is important that the silage fermentation process is controlled. Application of cultures of lactic acid bacteria or chemical additives can aid silage fermentation and improve aerobic stability.

  19. 78 FR 64246 - Commerce in Explosives; List of Explosives Materials

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-28

    ... Bureau of Alcohol, Tobacco, Firearms, and Explosives Commerce in Explosives; List of Explosives Materials... of list of explosives materials. SUMMARY: Pursuant to 18 U.S.C. 841(d) and 27 CFR 555.23, the... blasting agents and detonators, all of which are defined as explosive materials in 18 U.S.C. 841(c). The...

  20. Killing the spores of Bacillus species by molecular iodine.

    PubMed

    Li, Q; Korza, G; Setlow, P

    2017-01-01

    To determine the responses of spores of Bacillus subtilis and Bacillus anthracis surrogate Bacillus thuringiensis Al Hakam to I2 treatment. Spores of B. subtilis and B. thuringiensis killed by aqueous 30°C-I2 could germinate, and their inner membrane (IM) was intact. Spore coats were important in I2 resistance, DNA-protective proteins were not important, and survivors of I2 treatment were not mutagenized. Viabilities of I2 -treated, 90-98% killed spores were much lower on high-salinity media, and the treated spores were more heat sensitive than the untreated spores. Germinated I2 -killed spores were dead as determined by staining with nucleic acid dyes, and many appeared to have been lysed. Aqueous I2 appeared to kill B. subtilis and B. thuringiensis spores such that spores lyse soon after they germinate, and not by causing DNA damage or rupture of spores' IM. I2 treatment also generated many damaged spores that could only be recovered under nonstressful conditions. This work shows that spores of the model organism B. subtilis, and B. thuringiensis, a surrogate for B. anthracis spores, exhibit similar mechanisms of resistance to and killing by I2 . Generation by I2 treatment of conditionally dead spores indicates that appropriate media are essential to efficiently enumerate viable I2 -treated spores. © 2016 The Society for Applied Microbiology.

  1. Free radical explosive composition

    DOEpatents

    Walker, Franklin E.; Wasley, Richard J.

    1979-01-01

    An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1500 and 10,000 meters per second and a minor amount of a getter additive comprising a compound or mixture of compounds capable of capturing or deactivating free radicals or ions under mechanical or electrical shock conditions and which is not an explosive. Exemplary getter additives are isocyanates, olefins and iodine.

  2. Explosive Generation of Chaff

    DTIC Science & Technology

    1979-06-01

    aluminium coated glass fibre . v. 6. Example of birdnesting of stainless steel wire By 7. Distribution of dipoles from static firing Av’t 1...manner and filled with explosive. The explosive used in most cases was PE4 but in some experiments a polymer bonded explosive containing 88% RDX was used...experiments other than those mentioned in Section 2.1 designed solely to assess cutter p!rformanceo thu dipole material was wound onto a spool of fibre

  3. Explosives tester with heater

    DOEpatents

    Del Eckels, Joel [Livermore, CA; Nunes, Peter J [Danville, CA; Simpson, Randall L [Livermore, CA; Whipple, Richard E [Livermore, CA; Carter, J Chance [Livermore, CA; Reynolds, John G [San Ramon, CA

    2010-08-10

    An inspection tester system for testing for explosives. The tester includes a body and a swab unit adapted to be removeably connected to the body. At least one reagent holder and dispenser is operatively connected to the body. The reagent holder and dispenser contains an explosives detecting reagent and is positioned to deliver the explosives detecting reagent to the swab unit. A heater is operatively connected to the body and the swab unit is adapted to be operatively connected to the heater.

  4. GPM Core Observatory Launch Animation

    NASA Image and Video Library

    This animation depicts the launch of the Global Precipitation Measurement (GPM) Core Observatory satellite from Tanegashima Space Center, Japan. The launch is currently scheduled for Feb. 27, 2014....

  5. High calcium content in Streptomyces spores and its release as an early event during spore germination.

    PubMed Central

    Salas, J A; Guijarro, J A; Hardisson, C

    1983-01-01

    The metal ion content of spores of five Streptomyces species was studied. A general feature of this study was the finding of a very high calcium content (1.1 to 2.1% of the dry weight). Accumulation of calcium occurred preferentially during the sporulation process. Spore calcium was located in the integument fraction, and more than 95% of the calcium was removed from intact spores by ethylene glycol-bis(beta-aminoethyl ether)-N,N-tetraacetic acid. Several divalent cations (Mg2+, Mn2+, Zn2+, and Fe2+) which induced darkening of spores and loss of heat resistance also caused the release of calcium from spores. In addition, darkening of spores was blocked by metabolic inhibitors, whereas calcium excretion was not affected. Two different categories of events in the initiation of germination may be differentiated; first, calcium release from spores which is not energy dependent and is a consequence of triggering of germination by some divalent cations, and second, some other events including loss of heat resistance, loss of spore refractility, and a decrease in absorbance, with at least one energy-dependent step. PMID:6411686

  6. Manganese Oxidation by Spores and Spore Coats of a Marine Bacillus Species

    PubMed Central

    de Vrind, Johannes P. M.; de Vrind-de Jong, Elisabeth W.; de Voogt, Jan-Willem H.; Westbroek, Peter; Boogerd, Fred C.; Rosson, Reinhardt A.

    1986-01-01

    Bacillus sp. strain SG-1 is a marine bacterial species isolated from a near-shore manganese sediment sample. Its mature dormant spores promote the oxidation of Mn2+ to MnO2. By quantifying the amounts of immobilized and oxidized manganese, it was established that bound manganese was almost instantaneously oxidized. When the final oxidation of manganese by the spores was partly inhibited by NaN3 or anaerobiosis, an equivalent decrease in manganese immobilization was observed. After formation of a certain amount of MnO2 by the spores, the oxidation rate decreased. A maximal encrustment was observed after which no further oxidation occurred. The oxidizing activity could be recovered by reduction of the MnO2 with hydroxylamine. Once the spores were encrusted, they could bind significant amounts of manganese, even when no oxidation occurred. Purified spore coat preparations oxidized manganese at the same rate as intact spores. During the oxidation of manganese in spore coat preparations, molecular oxygen was consumed and protons were liberated. The data indicate that a spore coat component promoted the oxidation of Mn2+ in a biologically catalyzed process, after adsorption of the ion to incipiently formed MnO2. Eventually, when large amounts of MnO2 were allowed to accumulate, the active sites were masked and further oxidation was prevented. PMID:16347208

  7. Sensitive, Rapid Detection of Bacterial Spores

    NASA Technical Reports Server (NTRS)

    Kern, Roger G.; Venkateswaran, Kasthuri; Chen, Fei; Pickett, Molly; Matsuyama, Asahi

    2009-01-01

    A method of sensitive detection of bacterial spores within delays of no more than a few hours has been developed to provide an alternative to a prior three-day NASA standard culture-based assay. A capability for relatively rapid detection of bacterial spores would be beneficial for many endeavors, a few examples being agriculture, medicine, public health, defense against biowarfare, water supply, sanitation, hygiene, and the food-packaging and medical-equipment industries. The method involves the use of a commercial rapid microbial detection system (RMDS) that utilizes a combination of membrane filtration, adenosine triphosphate (ATP) bioluminescence chemistry, and analysis of luminescence images detected by a charge-coupled-device camera. This RMDS has been demonstrated to be highly sensitive in enumerating microbes (it can detect as little as one colony-forming unit per sample) and has been found to yield data in excellent correlation with those of culture-based methods. What makes the present method necessary is that the specific RMDS and the original protocols for its use are not designed for discriminating between bacterial spores and other microbes. In this method, a heat-shock procedure is added prior to an incubation procedure that is specified in the original RMDS protocols. In this heat-shock procedure (which was also described in a prior NASA Tech Briefs article on enumerating sporeforming bacteria), a sample is exposed to a temperature of 80 C for 15 minutes. Spores can survive the heat shock, but nonspore- forming bacteria and spore-forming bacteria that are not in spore form cannot survive. Therefore, any colonies that grow during incubation after the heat shock are deemed to have originated as spores.

  8. Ultrastructure of spore development in Scutellospora heterogama.

    PubMed

    Jeffries, Peter; Robinson-Boyer, Louisa; Rice, Paul; Newsam, Ray J; Dodd, John C

    2007-07-01

    The ultrastructural detail of spore development in Scutellospora heterogama is described. Although the main ontogenetic events are similar to those described from light microscopy, the complexity of wall layering is greater when examined at an ultrastructural level. The basic concept of a rigid spore wall enclosing two inner, flexible walls still holds true, but there are additional zones within these three walls distinguishable using electron microscopy, including an inner layer that is involved in the formation of the germination shield. The spore wall has three layers rather than the two reported previously. An outer, thin ornamented layer and an inner, thicker layer are both derived from the hyphal wall and present at all stages of development. These layers differentiate into the outer spore layer visible at the light microscope level. A third inner layer unique to the spore develops during spore swelling and rapidly expands before contracting back to form the second wall layer visible by light microscopy. The two inner flexible walls also are more complex than light microscopy suggests. The close association with the inner flexible walls with germination shield formation consolidates the preferred use of the term 'germinal walls' for these structures. A thin electron-dense layer separates the two germinal walls and is the region in which the germination shield forms. The inner germinal wall develops at least two sub-layers, one of which has an appearance similar to that of the expanding layer of the outer spore wall. An electron-dense layer is formed on the inner surface of the inner germinal wall as the germination shield develops, and this forms the wall surrounding the germination shield as well as the germination tube. At maturity, the outer germinal wall develops a thin, striate layer within its substructure.

  9. Ares Launch Vehicles Overview

    NASA Technical Reports Server (NTRS)

    Vanhooser, Teresa

    2009-01-01

    Since 2005, the Ares Projects have been building the nation s next generation of crew and cargo launch vehicles. As part of the Constellation Program, the Ares vehicles will enable astronauts in the Orion crew exploration vehicle and Altair lunar lander to reach the Moon and beyond. These vehicles draw upon hardware and experienced developed over 50 years of exploration, while also incorporating technology and management practices from today. Ares is concentrating on building the Ares I crew launch vehicle to ensure America s continued ability to send crews to the International Space Station. Progress has been made on design, fabrication, and testing for the first stage, upper stage, upper stage engine, and integrated vehicle. This presentation will provide an overview of the Ares launch vehicles architecture, milestone progress, and top project risks.

  10. STS-133 launch

    NASA Image and Video Library

    2011-02-24

    STS133-S-067 (24 Feb. 2011) --- In Firing Room 4 of the Launch Control Center at NASA's Kennedy Space Center in Florida, NASA's Discovery Flow Director Stephanie Stilson, left, STS-133 Assistant Shuttle Launch Director and lead NASA Test Director Charlie Blackwell-Thompson and Shuttle Launch Director Mike Leinbach watch space shuttle Discovery head toward Earth orbit on the STS-133 mission to the International Space Station. Discovery and its six-member crew are on a mission to deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the orbiting outpost. Discovery is making its 39th mission and is scheduled to be retired following STS-133. This is the 133rd Space Shuttle Program mission and the 35th shuttle voyage to the space station. Photo credit: NASA or National Aeronautics and Space Administration

  11. STS-135 Launch Day

    NASA Image and Video Library

    2011-07-07

    NASA Chief, Astronaut Office, Johnson Space Center Peggy Whitson, center, STS-135 Astronauts, Rex Walheim, left, and Commander Chris Ferguson are seen as the entire crew plays a traditional card game at the NASA Kennedy Space Center Operations and Checkout Building prior to them leaving for the launch pad, on Friday, July 8, 2011 in Cape Canaveral, Fla. The point of the game is that the commander must use up all his or her bad luck before launch, so the crew can only leave for the pad after the commander loses. The launch of Atlantis, STS-135, is the final flight of the shuttle program, a 12-day mission to the International Space Station. Photo Credit: (NASA/Jerry Ross)

  12. Antares Rocket Test Launch

    NASA Image and Video Library

    2013-04-21

    NASA Deputy Administrator Lori Garver talks with CEO and President of Orbital Sciences Corporation David Thompson, left, Executive Vice President and Chief Technical Officer, Orbital Sciences Corporation Antonio Elias, second from left, and Executive Director, Va. Commercial Space Flight Authority Dale Nash, background, in the Range Control Center at the NASA Wallops Flight Facility after the successful launch of the Orbital Sciences Antares rocket from the Mid-Atlantic Regional Spaceport (MARS) in Virginia, Sunday, April 21, 2013. The test launch marked the first flight of Antares and the first rocket launch from Pad-0A. The Antares rocket delivered the equivalent mass of a spacecraft, a so-called mass simulated payload, into Earth's orbit. Photo Credit: (NASA/Bill Ingalls)

  13. The Influence of Sporulation Conditions on the Spore Coat Protein Composition of Bacillus subtilis Spores

    PubMed Central

    Abhyankar, Wishwas R.; Kamphorst, Kiki; Swarge, Bhagyashree N.; van Veen, Henk; van der Wel, Nicole N.; Brul, Stanley; de Koster, Chris G.; de Koning, Leo J.

    2016-01-01

    Spores are of high interest to the food and health sectors because of their extreme resistance to harsh conditions, especially against heat. Earlier research has shown that spores prepared on solid agar plates have a higher heat resistance than those prepared under a liquid medium condition. It has also been shown that the more mature a spore is, the higher is its heat resistance most likely mediated, at least in part, by the progressive cross-linking of coat proteins. The current study for the first time assesses, at the proteomic level, the effect of two commonly used sporulation conditions on spore protein presence. 14N spores prepared on solid Schaeffer’s-glucose (SG) agar plates and 15N metabolically labeled spores prepared in shake flasks containing 3-(N-morpholino) propane sulfonic acid (MOPS) buffered defined liquid medium differ in their coat protein composition as revealed by LC-FT-MS/MS analyses. The former condition mimics the industrial settings while the latter conditions mimic the routine laboratory environment wherein spores are developed. As seen previously in many studies, the spores prepared on the solid agar plates show a higher thermal resistance than the spores prepared under liquid culture conditions. The 14N:15N isotopic ratio of the 1:1 mixture of the spore suspensions exposes that most of the identified inner coat and crust proteins are significantly more abundant while most of the outer coat proteins are significantly less abundant for the spores prepared on solid SG agar plates relative to the spores prepared in the liquid MOPS buffered defined medium. Sporulation condition-specific differences and variation in isotopic ratios between the tryptic peptides of expected cross-linked proteins suggest that the coat protein cross-linking may also be condition specific. Since the core dipicolinic acid content is found to be similar in both the spore populations, it appears that the difference in wet heat resistance is connected to the

  14. The Influence of Sporulation Conditions on the Spore Coat Protein Composition of Bacillus subtilis Spores.

    PubMed

    Abhyankar, Wishwas R; Kamphorst, Kiki; Swarge, Bhagyashree N; van Veen, Henk; van der Wel, Nicole N; Brul, Stanley; de Koster, Chris G; de Koning, Leo J

    2016-01-01

    Spores are of high interest to the food and health sectors because of their extreme resistance to harsh conditions, especially against heat. Earlier research has shown that spores prepared on solid agar plates have a higher heat resistance than those prepared under a liquid medium condition. It has also been shown that the more mature a spore is, the higher is its heat resistance most likely mediated, at least in part, by the progressive cross-linking of coat proteins. The current study for the first time assesses, at the proteomic level, the effect of two commonly used sporulation conditions on spore protein presence. (14)N spores prepared on solid Schaeffer's-glucose (SG) agar plates and (15)N metabolically labeled spores prepared in shake flasks containing 3-(N-morpholino) propane sulfonic acid (MOPS) buffered defined liquid medium differ in their coat protein composition as revealed by LC-FT-MS/MS analyses. The former condition mimics the industrial settings while the latter conditions mimic the routine laboratory environment wherein spores are developed. As seen previously in many studies, the spores prepared on the solid agar plates show a higher thermal resistance than the spores prepared under liquid culture conditions. The (14)N:(15)N isotopic ratio of the 1:1 mixture of the spore suspensions exposes that most of the identified inner coat and crust proteins are significantly more abundant while most of the outer coat proteins are significantly less abundant for the spores prepared on solid SG agar plates relative to the spores prepared in the liquid MOPS buffered defined medium. Sporulation condition-specific differences and variation in isotopic ratios between the tryptic peptides of expected cross-linked proteins suggest that the coat protein cross-linking may also be condition specific. Since the core dipicolinic acid content is found to be similar in both the spore populations, it appears that the difference in wet heat resistance is connected to the

  15. Bacillus subtilis spores on artificial meteorites survive hypervelocity atmospheric entry: implications for Lithopanspermia.

    PubMed

    Fajardo-Cavazos, Patricia; Link, Lindsey; Melosh, H Jay; Nicholson, Wayne L

    2005-12-01

    An important but untested aspect of the lithopanspermia hypothesis is that microbes situated on or within meteorites could survive hypervelocity entry from space through Earth's atmosphere. The use of high-altitude sounding rockets to test this notion was explored. Granite samples permeated with spores of Bacillus subtilis strain WN511 were attached to the exterior telemetry module of a sounding rocket and launched from White Sands Missile Range, New Mexico into space, reaching maximum atmospheric entry velocity of 1.2 km/s. Maximum recorded temperature during the flight was measured at 145 degrees C. The surfaces of the post-flight granite samples were swabbed and tested for recovery and survival of WN511 spores, using genetic markers and the unique DNA fingerprint of WN511 as recovery criteria. Spore survivors were isolated at high frequency, ranging from 1.2% to 4.4% compared with ground controls, from all surfaces except the forward-facing surface. Sporulation-defective mutants were noted among the spaceflight survivors at high frequency (4%). These experiments constitute the first report of spore survival to hypervelocity atmospheric transit, and indicate that sounding rocket flights can be used to model the high-speed atmospheric entry of bacteria-laden artificial meteorites.

  16. AXONOMETRIC, LAUNCH DOOR AND DOOR CYLINDER, LAUNCH PLATFORM ROLLER GUIDE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AXONOMETRIC, LAUNCH DOOR AND DOOR CYLINDER, LAUNCH PLATFORM ROLLER GUIDE, CRIB SUSPENSION SHOCK STRUT, LAUNCH PLATFORM - Dyess Air Force Base, Atlas F Missle Site S-8, Launch Facility, Approximately 3 miles east of Winters, 500 feet southwest of Highway 1770, center of complex, Winters, Runnels County, TX

  17. FORMATION AND STRUCTURE OF THE SPORE OF BACILLUS COAGULANS

    PubMed Central

    Ohye, D. F.; Murrell, W. G.

    1962-01-01

    Spore formation in Bacillus coagulans has been studied by electron microscopy using an epoxy resin (Araldite) embedding technique. The developmental stages from the origin of the initial spore septum to the mature spore were investigated. The two forespore membranes developed from the double layer of cytoplasmic membrane. The cortex was progressively deposited between these two membranes. The inner membrane finally became the spore protoplasmic membrane, and the outer membrane part of the inner spore coat or the outer spore coat itself. In the mature spore the completed integuments around the spore protoplasm consisted of the cortex, a laminated inner coat, and a dense outer coat. No exosporium was observed. The method of formation of the cortex and the spore coats is discussed. PMID:14481435

  18. Launch of Vanguard

    NASA Technical Reports Server (NTRS)

    1955-01-01

    Launch of a three-stage Vanguard (SLV-7) from Cape Canaveral, Florida, September 18, 1959. Designated Vanguard III, the 100-pound satellite was used to study the magnetic field and radiation belt. In September 1955, the Department of Defense recommended and authorized the new program, known as Project Vanguard, to launch Vanguard booster to carry an upper atmosphere research satellite in orbit. The Vanguard vehicles were used in conjunction with later booster vehicle such as the Thor and Atlas, and the technique of gimbaled (movable) engines for directional control was adapted to other rockets.

  19. Expedition 18 Launch Day

    NASA Image and Video Library

    2008-10-11

    Expedition 18 Flight Engineer Yuri V. Lonchakov, bottom, Expedition 18 Commander Michael Fincke and American spaceflight participant Richard Garriott, top, wave farewell from the steps of the Soyuz launch pad prior to their launch in the Soyuz TMA-13 spacecraft, Sunday, Oct. 12, 2008 from the Baikonur Cosmodrome in Kazakhstan. The three crew members are scheduled to dock with the International Space Station on Oct. 14. Fincke and Lonchakov will spend six months on the station, while Garriott will return to Earth Oct. 24 with two of the Expedition 17 crew members currently on the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  20. LAUNCH - APOLLO 9 - CAPE

    NASA Image and Video Library

    1969-03-03

    S69-25862 (3 March 1969) --- Framed by palm trees in the foreground, the Apollo 9 (Spacecraft 104/Lunar Module 3/ Saturn 504) space vehicle is launched from Pad A, Launch Complex 39, Kennedy Space Center (KSC) at 11 a.m. (EST), March 3, 1969. Aboard the spacecraft are astronauts James A. McDivitt, commander; David R. Scott, command module pilot; and Russell L. Schweickart, lunar module pilot. The Apollo 9 mission will evaluate spacecraft lunar module systems performance during manned Earth-orbital flight. Apollo 9 is the second manned Saturn V mission.

  1. APOLLO VII - LAUNCH - KSC

    NASA Image and Video Library

    1968-10-11

    S68-48662 (11 Oct. 1968) --- The Apollo 7/Saturn IB space vehicle is launched from the Kennedy Space Center's Launch Complex 34 at 11:03 a.m. (EDT), Oct. 11, 1968. Apollo 7 (Spacecraft 101/Saturn 205) is the first of several manned flights aimed at qualifying the spacecraft for the half-million mile round trip to the moon. Aboard the Apollo spacecraft are astronauts Walter M. Schirra Jr., commander; Donn F. Eisele, command module pilot; and Walter Cunningham, lunar module pilot. (This view is framed by palm trees on either side).

  2. NPP Satellite Launch

    NASA Image and Video Library

    2011-10-28

    The Satellite Operations Facility of the National Oceanic and Atmospheric Administration (NOAA) is seen here minutes before the launch of the National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) on Friday, Oct. 28, 2011 in Suitland, Md. NPP is a joint venture between NASA and NOAA, and is the nation's newest Earth-observing satellite, which will provide data on climate change science, allow for accurate weather forecasts and advance warning for severe weather. NPP was launched from Vandenberg Air Force Base in California. Photo Credit: (NASA/Carla Cioffi)

  3. NPP Satellite Launch

    NASA Image and Video Library

    2011-10-28

    Dr. Kathy Sullivan, center, Deputy Administrator of the National Oceanic and Atmospheric Administration (NOAA) and former NASA astronaut is interviewed by a local television network at NOAA's Satellite Operations Facility in Suitland, Md. after the successful launch of the National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) on Friday, Oct. 28, 2011. NPP is a joint venture between NASA and NOAA, and is the nation's newest Earth-observing satellite, which will provide data on climate change science, allow for accurate weather forecasts and advance warning for severe weather. NPP was launched from Vandenberg Air Force Base in California. Photo Credit: (NASA/Carla Cioffi)

  4. NPP Satellite Launch

    NASA Image and Video Library

    2011-10-28

    NASA Deputy Administrator Lori Garver, left, watches the launch of the National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) at the National Oceanic and Atmospheric Administration (NOAA) Satellite Operations Center on Friday, Oct. 28, 2011 in Suitland, Md. U.S Congresswoman Donna Edwards, D-Md., is seen next to Garver. NPP is a joint venture between NASA and NOAA, and is the nation's newest Earth-observing satellite, which will provide data on climate change science, allow for accurate weather forecasts and advance warning for severe weather. NPP was launched from Vandenberg Air Force Base in California. Photo Credit: (NASA/Carla Cioffi)

  5. Expedition 8 Launch Day

    NASA Image and Video Library

    2003-10-18

    With a throng of reporters looking on, the prime and backup crews for the Expedition 8 mission to the International Space Station and the prime and backup European Space Agency Astronauts receive final well-wishes from Russian and U.S. space officials at the Baikonur Cosmodrome in Kazakhstan, Saturday, Oct. 18, 2003, before heading to the launch pad. Expedition 8 Commander and NASA Science Officer Michael Foale, Expedition 8 Soyuz Commander Alexander Kaleri and ESA's Pedro Duque of Spain were launched on a Soyuz TMA-3 vehicle, arriving at the ISS on Oct. 20. Photo Credit (NASA/Bill Ingalls)

  6. LDSD Ready for Launch

    NASA Image and Video Library

    2015-06-05

    NASA's Low-Density Supersonic Decelerator (LDSD) hangs from a launch tower at U.S. Navy's Pacific Missile Range Facility in Kauai, Hawaii. The saucer-shaped vehicle will test two devices for landing heavy payloads on Mars: an inflatable donut-shaped device and a supersonic parachute. The launch tower helps link the vehicle to a balloon; once the balloon floats up, the vehicle is released from the tower and the balloon carries it to high altitudes. The vehicle's rocket takes it to even higher altitudes, to the top of the stratosphere, where the supersonic test begins. http://photojournal.jpl.nasa.gov/catalog/PIA19342

  7. STS-64 launch view

    NASA Technical Reports Server (NTRS)

    1994-01-01

    With a crew of six NASA astronauts aboard, the Space Shuttle Discovery heads for its nineteenth Earth-orbital mission. Launch was delayed because of weather, but all systems were 'go,' and the spacecraft left the launch pad at 6:23 p.m. (EDT) on September 9, 1994. Onboard were astronauts Richard N. Richards, L. Blaine Hammond, Carl J. Meade, Mark C. Lee, Susan J. Helms, and Jerry M. Linenger (051-2); Making a bright reflection in nearby marsh waters, the Space Shuttle Discovery heads for its 19th mission in earth orbit (053).

  8. STS-64 launch view

    NASA Technical Reports Server (NTRS)

    1994-01-01

    With a crew of six NASA astronauts aboard, the Space Shuttle Discovery heads for its nineteenth Earth-orbital mission. Launch was delayed because of weather, but all systems were 'go,' and the spacecraft left the launch pad at 6:23 p.m. (EDT) on September 9, 1994. Onboard were astronauts Richard N. Richards, L. Blaine Hammond, Carl J. Meade, Mark C. Lee, Susan J. Helms, and Jerry M. Linenger (051-2); Making a bright reflection in nearby marsh waters, the Space Shuttle Discovery heads for its 19th mission in earth orbit (053).

  9. Expedition 22 Launch Day

    NASA Image and Video Library

    2009-12-20

    Expedition 22 Flight Engineer Soichi Noguchi of Japan has his Russian Sokol suit prepared for launch by a technician while space agency photographers document the process at the Baikonur Cosmodrome in Baikonur, Kazakhstan, Sunday, Dec. 20, 2009. Soichi and fellow Expedition 22 crew members NASA Flight Engineer Timothy J. Creamer of the U.S., Soyuz Commander Oleg Kotov of Russia launched in their Soyuz TMA-17 rocket from the Baikonur Cosmodrome in Kazakhstan on Monday, Dec. 21, 2009. (Photo Credit: NASA/Bill Ingalls)

  10. Launch - STS-6 - KSC

    NASA Image and Video Library

    1983-04-06

    S83-30134 (7 April 1983) --- Flare from the first launch of the space shuttle Challenger is reflected in the Atlantic Ocean?s Cape Canaveral beach waters shortly after 1:30 p.m. (EST) on April 7, 1983. Only the tips of the orbiter?s wings are visible in this south looking view, as the manned portion of the launch cluster is obscured by its new lightweight external fuel tank (ET) and two solid rocket boosters (SRB). Onboard the spacecraft are astronauts Paul J. Weitz, Karol J. Bobko, Dr. F. Story Musgrave and Donald H. Peterson. Photo credit: NASA

  11. STS-56 Launch

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The second try works like a charm as the Space Shuttle Discovery lifts off from Launch Pad 39B on Mission STS-56 at 1:29:00 a.m., EDT, April 8. First attempt to launch Discovery on its 16th space voyage was halted at T-11 seconds on April 6. Aboard for the second Space Shuttle mission of 1993 are a crew of five and the Atmospheric Laboratory for Applications and Science 2 (ATLAS 2), the second in a series of missions to study the sun's energy output and Earth's middle atmosphere chemical makeup, and how these factors affect levels of ozone.

  12. Survival of Bacillus thuringiensis Spores in Soil †

    PubMed Central

    Petras, Stephen F.; Casida, L. E.

    1985-01-01

    Bacillus thuringiensis spores and parasporal crystals were incubated in natural soil, both in the laboratory and in nature. During the first 2 weeks, the spore count decreased by approximately 1 log. Thereafter, the number of spore CFU remained constant for at least 8 months. B. thuringiensis did not lose its ability to make the parasporal crystals during its residence in soil. Spore survival was similar for a commercial spore-crystal preparation (the insecticide) and for laboratory-grown spores. In contrast to these results, spores that were produced in situ in soil through multiplication of added vegetative cells survived for only a short time. For spore additions to soil, variations in soil pH had little effect on survival for those spores that survived the first 2 weeks of incubation. Also without effect were various pretreatments of the spores before incubation in soil or nutritional amendment or desiccation of the soil. Remoistening of a desiccated soil, however, caused a decrease in spore numbers. Spores incubated in soil in the field did not show this, but the degree of soil desiccation in nature probably never reached that for the laboratory samples. The good survival of B. thuringiensis spores after the first 2 weeks in soil seemed to be a result of their inability to germinate in soil. We found no evidence for the hypothesis that rapid germination ability for spores in soil conferred a survival advantage. PMID:16346949

  13. Assessment of disinfectants in explosive destruction system for biological agent destruction : LDRD final report FY04.

    SciTech Connect

    Simmons, Blake Alexander; Didlake, John E. Jr.; Bradshaw, Robert W.; Crooker, Paul J.; Buffleben, George M.

    2005-01-01

    Treatment systems that can neutralize biological agents are needed to mitigate risks from novel and legacy biohazards. Tests with Bacillus thuringiensis and Bacillus steurothemophilus spores were performed in a 190-liter, 1-112 lb TNT equivalent rated Explosive Destruction System (EDS) system to evaluate its capability to treat and destroy biological agents. Five tests were conducted using three different agents to kill the spores. The EDS was operated in steam autoclave, gas fumigation and liquid decontamination modes. The first three tests used EDS as an autoclave, which uses pressurized steam to kill the spores. Autoclaving was performed at 130-140 deg C for up to 2-hours. Tests with chlorine dioxide at 750 ppm concentration for 1 hour and 10% (vol) aqueous chlorine bleach solution for 1 hour were also performed. All tests resulted in complete neutralization of the bacterial spores based on no bacterial growth in post-treatment incubations. Explosively opening a glass container to expose the bacterial spores for treatment with steam was demonstrated and could easily be done for chlorine dioxide gas or liquid bleach.

  14. Dynamic Modeling of Ascent Abort Scenarios for Crewed Launches

    NASA Technical Reports Server (NTRS)

    Bigler, Mark; Boyer, Roger L.

    2015-01-01

    For the last 30 years, the United States's human space program has been focused on low Earth orbit exploration and operations with the Space Shuttle and International Space Station programs. After nearly 50 years, the U.S. is again working to return humans beyond Earth orbit. To do so, NASA is developing a new launch vehicle and spacecraft to provide this capability. The launch vehicle is referred to as the Space Launch System (SLS) and the spacecraft is called Orion. The new launch system is being developed with an abort system that will enable the crew to escape launch failures that would otherwise be catastrophic as well as probabilistic design requirements set for probability of loss of crew (LOC) and loss of mission (LOM). In order to optimize the risk associated with designing this new launch system, as well as verifying the associated requirements, NASA has developed a comprehensive Probabilistic Risk Assessment (PRA) of the integrated ascent phase of the mission that includes the launch vehicle, spacecraft and ground launch facilities. Given the dynamic nature of rocket launches and the potential for things to go wrong, developing a PRA to assess the risk can be a very challenging effort. Prior to launch and after the crew has boarded the spacecraft, the risk exposure time can be on the order of three hours. During this time, events may initiate from either of the spacecraft, the launch vehicle, or the ground systems, thus requiring an emergency egress from the spacecraft to a safe ground location or a pad abort via the spacecraft's launch abort system. Following launch, again either the spacecraft or the launch vehicle can initiate the need for the crew to abort the mission and return to the home. Obviously, there are thousands of scenarios whose outcome depends on when the abort is initiated during ascent as to how the abort is performed. This includes modeling the risk associated with explosions and benign system failures that require aborting a

  15. Method for collecting spores from a mold

    DOEpatents

    Au, Frederick H. F.; Beckert, Werner F.

    1977-01-01

    A technique and apparatus used therewith for determining the uptake of plutonium and other contaminants by soil microorganisms which, in turn, gives a measure of the plutonium and/or other contaminants available to the biosphere at that particular time. A measured quantity of uncontaminated spores of a selected mold is added to a moistened sample of the soil to be tested. The mixture is allowed to sit a predetermined number of days under specified temperature conditions. An agar layer is then applied to the top of the sample. After three or more days, when spores of the mold growing in the sample have formed, the spores are collected by a miniature vacuum collection apparatus operated under preselected vacuum conditions, which collect only the spores with essentially no contamination by mycelial fragments or culture medium. After collection, the fungal spores are dried and analyzed for the plutonium and/or other contaminants. The apparatus is also suitable for collection of pollen, small insects, dust and other small particles, material from thin-layer chromatography plates, etc.

  16. Aerodynamics of puffball mushroom spore dispersal

    NASA Astrophysics Data System (ADS)

    Amador, Guillermo; Barberie, Alex; Hu, David

    2012-11-01

    Puffball mushrooms Lycoperdon are spherical fungi that release a cloud of spores in response to raindrop impacts. In this combined experimental and theoretical study, we elucidate the aerodynamics of this unique impact-based spore-dispersal. We characterize live puffball ejections by high speed video, the geometry and elasticity of their shells by cantilever experiments, and the packing fraction and size of their spores by scanning electron microscope. We build a dynamically similar puffball mimic composed of a tied-off latex balloon filled with baby powder and topped with a 1-cm slit. A jet of powder is elicited by steady lateral compression of the mimic between two plates. The jet height is a bell-shaped function of force applied, with a peak of 18 cm at loads of 45 N. We rationalize the increase in jet height with force using Darcy's Law: the applied force generates an overpressure maintained by the air-tight elastic membrane. Pressure is relieved as the air travels through the spore interstitial spaces, entrains spores, and exits through the puffball orifice. This mechanism demonstrates how powder-filled elastic shells can generate high-speed jets using energy harvested from rain.

  17. Oxidative Activation of Bacillus cereus Spores

    PubMed Central

    Cochran, Stuart A.; Ordal, Z. John

    1973-01-01

    A study was made of the activation of Bacillus cereus strain T spores by using the oxidizing agent sodium perborate. The degree of activation was measured with constant germination conditions by using L-alanine, inosine, adenosine, and L-alanine plus adenosine as germination stimulants. The germinal response following the various treatments was compared with the responses obtained with heat activation. It was concluded that the optimal time for activation with 30 mM sodium perborate at room temperature was about 4 hr. If the exposure time was greatly extended, the spores would germinate spontaneously. When the perborate treatment followed heat activation, the germinal response to L-alanine was stimulated, to inosine retarded and without apparent effect for adenosine or L-alanine plus adenosine. Results of experiments designed to demonstrate deactivation by slow oxidation showed that spores activated with sodium perborate were not deactivated by slow oxidation, whereas those activated by heat were. A deactivation study using mercaptoethanol as the deactivation agent showed that both methods of activation could be deactivated after a 24-hr exposure, but this deactivation was reversible by extending the exposure to mercaptoethanol. The results of heat-sensitivity studies revealed that about 70% of the sodium perborate-activated spores were heat sensitive after 60 min in a germination menstruum of L-alanine plus adenosine, whereas similarly treated heat-activated and nonactivated spores were about 99.99% heat sensitive, respectively. PMID:4632848

  18. 14 CFR 417.417 - Propellants and explosives.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 417.417 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION... radio frequency radiation sources in a radio frequency radiation exclusion area. A launch operator must determine the vulnerability of its electro-explosive devices and systems to radio frequency radiation...

  19. Photoacoustic Sensing of Explosives

    DTIC Science & Technology

    2013-11-01

    the ultrasonic frequency band, well above human hearing. This work is sponsored by the Department of Defense under U.S. Air Force contract, FA8721-05...discrimination—distinguishing between explosives and diverse background materials. PHASE’s noncontact standoff explosives-sensing system achieves

  20. Explosively pumped laser light

    DOEpatents

    Piltch, Martin S.; Michelotti, Roy A.

    1991-01-01

    A single shot laser pumped by detonation of an explosive in a shell casing. The shock wave from detonation of the explosive causes a rare gas to luminesce. The high intensity light from the gas enters a lasing medium, which thereafter outputs a pulse of laser light to disable optical sensors and personnel.

  1. NASA Launch Services Program Overview

    NASA Technical Reports Server (NTRS)

    Higginbotham, Scott

    2016-01-01

    The National Aeronautics and Space Administration (NASA) has need to procure a variety of launch vehicles and services for its unmanned spacecraft. The Launch Services Program (LSP) provides the Agency with a single focus for the acquisition and management of Expendable Launch Vehicle (ELV) launch services. This presentation will provide an overview of the LSP and its organization, approach, and activities.

  2. Voyager 1's Launch Vehicle

    NASA Image and Video Library

    1977-09-05

    The Titan/Centaur-6 launch vehicle was moved to Launch Complex 41 at Kennedy Space Center in Florida to complete checkout procedures in preparation for launch. The photo is dated January 1977. This launch vehicle carried Voyager 1 into space on September 5, 1977. https://photojournal.jpl.nasa.gov/catalog/PIA21739

  3. SPIDER Readied for Launch

    NASA Image and Video Library

    2015-01-22

    Prior to launch, the team laid out the parachute and hang lines in front of SPIDER, seen in the distance. The long-duration balloon that would carry SPIDER into the sky is attached to the end of the parachute shown here in the foreground. http://photojournal.jpl.nasa.gov/catalog/PIA19177

  4. NanoLaunch

    NASA Technical Reports Server (NTRS)

    Jones, Jonathan; Harris, Lawanna

    2015-01-01

    NASA's NanoLaunch effort will provide the framework to mature both Earth-to-orbit and on-orbit propulsion and avionics technologies while also providing affordable, dedicated access to low-Earth orbit for CubeSat-class payloads. The project will also serve as an early career personnel training opportunity with mentors to gain hands-on project experience.

  5. Expedition 23 Launch Day

    NASA Image and Video Library

    2010-04-01

    Expedition 23 Flight Engineer Tracy Caldwell Dyson performs the traditional door signing Friday, April 2, 2010 at the Cosmonaut Hotel in Baikonur, Kazakhstan. Caldwell Dyson was launched onboard the Soyuz rocket later that day with Expedition 23 Soyuz Commander Alexander Skvortsov and Flight Engineer Mikhail Kornienko on a mission to the International Space Station (ISS). Photo Credit: (NASA/Carla Cioffi)

  6. STS-120 launch

    NASA Image and Video Library

    2007-10-23

    STS120-S-025 (23 Oct. 2007) --- In the firing room at NASA's Kennedy Space Center, NASA Associate Administrator Chris Scolese and other managers watch the Space Shuttle Discovery launch of the STS-120 mission at 11:38 a.m. (EDT), Oct. 23, 2007. William Gerstenmaier is in right foreground. Photo credit: NASA/Bill Ingalls

  7. Expedition 8 Launch Briefing

    NASA Image and Video Library

    2003-10-12

    Backup Expedition 8 Commander Bill McArthur, left, and prime Expedition 8 Commander Michael Foale practice procedures with a satellite phone during final training at their crew quarters in Baikonur, Kazakhstan, Wednesday, Oct. 15, 2003, for launch on a Soyuz TMA-3 vehicle Oct. 18 to the International Space Station. Photo Credit (NASA/Bill Ingalls)

  8. Expedition 25 Launch

    NASA Image and Video Library

    2010-10-07

    Expedition 25 NASA Flight Engineer Scott Kelly of the U.S., left, Soyuz Commander Alexander Kaleri and Flight Engineer Oleg Skripochka, right, have their Russian Sokol suits prepared for launch by technicians at the Baikonur Cosmodrome in Kazakhstan, Friday, Oct. 8, 2010. (Photo Credit: NASA/Carla Cioffi)

  9. Expedition 25 Launch

    NASA Image and Video Library

    2010-10-07

    Expedition 25 crew members prepare to have their Russian Sokol Suits pressure checked at the Baikonur Cosmodrome in Kazakhstan on Friday, Oct. 8, 2010. Soyuz Commander Alexander Kaleri, NASA Flight Engineer Scott Kelly and Flight Engineer Oleg Skripochka launched in their Soyuz TMA-01M at 5:10 a.m. Friday morning. (Photo Credit: NASA/Carla Cioffi)

  10. Expedition 25 Launch

    NASA Image and Video Library

    2010-10-07

    Expedition 25 Soyuz Commander Alexander Kaleri awaits to have his Russian Sokol Suit pressure checked at the Baikonur Cosmodrome on Friday, Oct. 8, 2010 in Kazakhstan. Kaleri and fellow Expedition 25 crew members Flight Engineers Scott Kelly and Oleg Skripochka launched in their Soyuz TMA-01M at 5:10 a.m. Friday morning. (Photo Credit: NASA/Carla Cioffi)

  11. Expedition 25 Launch

    NASA Image and Video Library

    2010-10-07

    Expedition 25 Soyuz Commander Alexander Kaleri awaits to have his Russian Sokol Suit pressure checked at the Baikonur Cosmodrome on Friday, Oct. 8, 2010 in Baikonur, Kazakhstan. Kaleri and fellow Expedition 25 crew members Flight Engineers Scott Kelly and Oleg Skripochka launched in their Soyuz TMA-01M at 5:10 a.m. Friday morning. (Photo Credit: NASA/Carla Cioffi)

  12. Expedition 25 Launch

    NASA Image and Video Library

    2010-10-07

    Expedition 25 NASA Flight Engineer Scott Kelly of the U.S., left, and Soyuz Commander Alexander Kaleri have their Russian Sokol suits prepared for launch by technicians at the Baikonur Cosmodrome in Kazakhstan, Friday, Oct. 8, 2010. (Photo Credit: NASA/Carla Cioffi)

  13. Expedition 25 Launch

    NASA Image and Video Library

    2010-10-07

    Expedition 25 Flight Engineer Oleg Skripochka awaits to have his Russian Sokol Suit pressure checked at the Baikonur Cosmodrome on Friday, Oct. 8, 2010 in Kazakhstan. Skripochka, Soyuz Commander Alexander Kaleri and NASA Flight Engineer Scott Kelly launched in their Soyuz TMA-01M at 5:10 a.m. Friday morning. (Photo Credit: NASA/Carla Cioffi)

  14. Expedition 22 Launch Day

    NASA Image and Video Library

    2009-12-20

    Expedition 22 Soyuz Commander Oleg Kotov of Russia smiles for photographers after performing the traditional door signing at the Cosmonaut Hotel in Baikonur, Kazakhstan before departing with fellow crew members, NASA Flight Engineer Timothy J. Creamer of the U.S., and Flight Engineer Soichi Noguchi of Japan to suit up for their launch, Sunday, Dec. 20, 2009. Photo Credit: (NASA/Bill Ingalls)

  15. Expedition 22 Launch Day

    NASA Image and Video Library

    2009-12-20

    Expedition 22 Flight Engineer Soichi Noguchi of Japan smiles for photographers after performing the traditional door signing at the Cosmonaut Hotel in Baikonur, Kazakhstan before departing with fellow crew members, Soyuz Commander Oleg Kotov of Russia, and NASA Flight Engineer Timothy J. Creamer of the U.S. to suit up for their launch, Sunday, Dec. 20, 2009. Photo Credit: (NASA/Bill Ingalls)

  16. Expedition 22 Launch Day

    NASA Image and Video Library

    2009-12-20

    Expedition 22 NASA Flight Engineer Timothy J. Creamer of the U.S. smiles for photographers after performing the traditional door signing at the Cosmonaut Hotel in Baikonur, Kazakhstan before departing with fellow crew members, Soyuz Commander Oleg Kotov of Russia, and Flight Engineer Soichi Noguchi of Japan to suit up for their launch, Sunday, Dec. 20, 2009. Photo Credit: (NASA/Bill Ingalls)

  17. The Personnel Launch System

    NASA Technical Reports Server (NTRS)

    Piland, William M.; Talay, Theodore A.; Stone, Howard W.

    1990-01-01

    NASA has begun to study candidate vehicles for manned access to space in support of the Space Station or other future missions requiring on-demand transportation of people to and from earth orbit. One such system, which would be used to complement the present Shuttle or an upgraded version, is the Personnel Launch System (PLS), which is envisioned as a reusable priority vehicle to place people and small payloads into orbit using an experimental launch vehicle. The design of the PLS is based on a Space Station crew changeout requirement whereby eight passengers and two crew members are flown to the station and a like number are returned within a 72 hour mission duration. Experimental and computational aerothermodynamic heating studies have been conducted using a new two-color thermographic technique that involved coating the model with a phosphor that radiates at varying color intensities as a function of temperature when illuminated with UV light. A full-scale model, the HL-20, has been produced and will be used for man-machine research. Three launch vehicle concepts are being considered, a Titan IV, the Advanced Launch System, and a Shuttle equipped with liquid rocket boosters.

  18. Expedition 8 Launch Day

    NASA Image and Video Library

    2003-10-18

    Expedition 8 Commander and NASA Science Officer Michael Foale smiles for the camera during the short bus ride to the launch pad for liftoff in a Soyuz TMA-3 vehicle to the International Space Station, Saturday, Oct. 18, 2003, at the Baikonur Cosmodrome, Kazakhstan. Photo Credit (NASA/Bill Ingalls)

  19. Expedition 8 Launch Briefing

    NASA Image and Video Library

    2003-10-12

    European Space Agency astronaut Pedro Duque of Spain listens to a briefing on mission activities from a Russian trainer at his crew quarters in Baikonur, Kazakhstan, Wednesday, Oct. 15, 2003 as he prepares for his launch to the International Space Station Oct. 18 in a Soyuz TMA-3 vehicle. Photo Credit (NASA/Bill Ingalls)

  20. AST Launch Vehicle Acoustics

    NASA Technical Reports Server (NTRS)

    Houston, Janice; Counter, D.; Giacomoni, D.

    2015-01-01

    The liftoff phase induces acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are then used in the prediction of internal vibration responses of the vehicle and components which result in the qualification levels. Thus, predicting these liftoff acoustic (LOA) environments is critical to the design requirements of any launch vehicle. If there is a significant amount of uncertainty in the predictions or if acoustic mitigation options must be implemented, a subscale acoustic test is a feasible pre-launch test option to verify the LOA environments. The NASA Space Launch System (SLS) program initiated the Scale Model Acoustic Test (SMAT) to verify the predicted SLS LOA environments and to determine the acoustic reduction with an above deck water sound suppression system. The SMAT was conducted at Marshall Space Flight Center and the test article included a 5% scale SLS vehicle model, tower and Mobile Launcher. Acoustic and pressure data were measured by approximately 250 instruments. The SMAT liftoff acoustic results are presented, findings are discussed and a comparison is shown to the Ares I Scale Model Acoustic Test (ASMAT) results.

  1. Non-detonable explosive simulators

    SciTech Connect

    Simpson, R.L.; Pruneda, C.O.

    1994-11-01

    A simulator which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules. 5 figs.

  2. Non-detonable explosive simulators

    SciTech Connect

    Simpson, Randall L.; Pruneda, Cesar O.

    1994-01-01

    A simulator which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules.

  3. Non-detonable explosive simulators

    DOEpatents

    Simpson, R.L.; Pruneda, C.O.

    1994-11-01

    A simulator which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules. 5 figs.

  4. Successful launch of SOHO

    NASA Astrophysics Data System (ADS)

    1995-12-01

    "Understanding how the Sun behaves is of crucial importance to all of us on Earth. It affects our everyday lives" said Roger Bonnet, Director of Science at ESA, who witnessed SOHO's spectacular nighttime launch from Cape Canaveral. "When SOHO begins work in four months time, scientists will, for the first time, be able to study this star 24 hours a day, 365 days a year". The 12 instruments on SOHO will probe the Sun inside out, from the star's very centre to the solar wind that blasts its way through the solar system. It will even listen to sounds, like musical notes, deep within the star by recording their vibrations when they reach the surface. SOHO was launched from Cape Canaveral Air Station, Florida, atop an Atlas IIAS rocket, at 09:08 CET on Saturday 2 December 1995. The 1.6 tonne observatory was released into its transfer orbit from the rocket's Centaur upper stage about two hours after launch. It will take four months for the satellite to reach its final position, a unique vantage point, located 1.5 million kilometres from Earth, where the gravitational pull of the Earth and Sun are equal. From here, the Lagrange point, SOHO will have an unobstructed view of the Sun all year round. SOHO's launch was delayed from 23 November because a flaw was discovered in a precision regulator, which throttles the power of the booster engine on the Atlas rocket. The system was replaced and retested before the launch. SOHO is a project of international cooperation between ESA and NASA. The spacecraft was designed and built in Europe, NASA provided the launch and will operate the satellite from its Goddard Space Flight Center, Maryland. European scientists provided eight of the observatory's instruments and US scientists a further three. The spacecraft is part of the international Solar-Terrestrial Science Programme, the next member of which is Cluster, a flotilla of four spacecraft that will study how the Sun affects Earth and surrounding space. Cluster is scheduled for

  5. Launch Vehicle Debris Models and Crew Vehicle Ascent Abort Risk

    NASA Technical Reports Server (NTRS)

    Gee, Ken; Lawrence, Scott

    2013-01-01

    For manned space launch systems, a reliable abort system is required to reduce the risks associated with a launch vehicle failure during ascent. Understanding the risks associated with failure environments can be achieved through the use of physics-based models of these environments. Debris fields due to destruction of the launch vehicle is one such environment. To better analyze the risk posed by debris, a physics-based model for generating launch vehicle debris catalogs has been developed. The model predicts the mass distribution of the debris field based on formulae developed from analysis of explosions. Imparted velocity distributions are computed using a shock-physics code to model the explosions within the launch vehicle. A comparison of the debris catalog with an existing catalog for the Shuttle external tank show good comparison in the debris characteristics and the predicted debris strike probability. The model is used to analyze the effects of number of debris pieces and velocity distributions on the strike probability and risk.

  6. Structural Characterization of Clostridium sordellii Spores of Diverse Human, Animal, and Environmental Origin and Comparison to Clostridium difficile Spores.

    PubMed

    Rabi, Rebecca; Turnbull, Lynne; Whitchurch, Cynthia B; Awad, Milena; Lyras, Dena

    2017-01-01

    Clostridium sordellii is an often-lethal bacterium causing human and animal disease. Crucial to the infectious cycle of C. sordellii is its ability to produce spores, which can germinate into toxin-producing vegetative bacteria under favorable conditions. However, structural details of the C. sordellii spore are lacking. Here, we used a range of electron microscopy techniques together with superresolution optical microscopy to characterize the C. sordellii spore morphology with an emphasis on the exosporium. The C. sordellii spore is made up of multiple layers with the exosporium presenting as a smooth balloon-like structure that is open at the spore poles. Focusing on the outer spore layers, we compared the morphologies of C. sordellii spores derived from different strains and determined that there is some variation between the spores, most notably with spores of some strains having tubular appendages. Since Clostridium difficile is a close relative of C. sordellii, their spores were compared by electron microscopy and their exosporia were found to be distinctly different from each other. This study therefore provides new structural details of the C. sordellii spore and offers insights into the physical structure of the exosporium across clostridial species. IMPORTANCEClostridium sordellii is a significant pathogen with mortality rates approaching 100%. It is the bacterial spore that is critical in initiating infection and disease. An understanding of spore structures as well as spore morphology across a range of strains may lead to a better understanding of C. sordellii infection and disease. However, the structural characteristics of the C. sordellii spores are limited. In this work, we have addressed this lack of detail and characterized the C. sordellii spore morphology. The use of traditional and advanced microscopy techniques has provided detailed new observations of C. sordellii spore structural features, which serve as a reference point for

  7. NLS Advanced Development - Launch operations

    NASA Technical Reports Server (NTRS)

    Parrish, Carrie L.

    1992-01-01

    Attention is given to Autonomous Launch Operations (ALO), one of a number of the USAF's National Launch System (NLS) Launch Operations projects whose aim is to research, develop and apply new technologies and more efficient approaches toward launch operations. The goal of the ALO project is to develop generic control and monitor software for launch operation subsystems. The result is enhanced reliability of system design, and reduced software development and retention of expert knowledge throughout the life-cycle of the system.

  8. Contracting and launching small satellites with the Rockot launch vehicle

    NASA Astrophysics Data System (ADS)

    Kinnersley, M.; Zorina, A.; Leclerc, J.

    2004-11-01

    Arranging secondary payload 'rides' with launch vehicles can be a lengthy and often frustrating process, especially with a shared or cluster launch with a multitude of customers that need to be coordinated. Eurockot's point of view on what can be done to improve this process is given. The objective is to initiate discussions within the community on how to improve access to launch services whilst mutually benefiting both the provider and end user. Eurockot is one of the most active launch service companies in the world for providing small satellite launch services. In 2003, Eurockot placed nine payloads into three different orbits during one launch, including the first Cubesats to be orbited. In particular the results of the most recent launches will be reported. The flexibility and capabilities of the Rockot launch vehicle for launching small satellites especially in the secondary or shared payloads sector will also be shown.

  9. The SPORES experiment of the EXPOSE-R mission: Bacillus subtilis spores in artificial meteorites

    NASA Astrophysics Data System (ADS)

    Panitz, Corinna; Horneck, Gerda; Rabbow, Elke; Rettberg, Petra; Moeller, Ralf; Cadet, Jean; Douki, Thierry

    2015-01-01

    The experiment SPORES `Spores in artificial meteorites' was part of European Space Agency's EXPOSE-R mission, which exposed chemical and biological samples for nearly 2 years (March 10, 2009 to February 21, 2011) to outer space, when attached to the outside of the Russian Zvezda module of the International Space Station. The overall objective of the SPORES experiment was to address the question whether the meteorite material offers enough protection against the harsh environment of space for spores to survive a long-term journey in space by experimentally mimicking the hypothetical scenario of Lithopanspermia, which assumes interplanetary transfer of life via impact-ejected rocks. For this purpose, spores of Bacillus subtilis 168 were exposed to selected parameters of outer space (solar ultraviolet (UV) radiation at λ>110 or >200 nm, space vacuum, galactic cosmic radiation and temperature fluctuations) either as a pure spore monolayer or mixed with different concentrations of artificial meteorite powder. Total fluence of solar UV radiation (100-400 nm) during the mission was 859 MJ m-2. After retrieval the viability of the samples was analysed. A Mission Ground Reference program was performed in parallel to the flight experiment. The results of SPORES demonstrate the high inactivating potential of extraterrestrial UV radiation as one of the most harmful factors of space, especially UV at λ>110 nm. The UV-induced inactivation is mainly caused by photodamaging of the DNA, as documented by the identification of the spore photoproduct 5,6-dihydro-5(α-thyminyl)thymine. The data disclose the limits of Lithopanspermia for spores located in the upper layers of impact-ejected rocks due to access of harmful extraterrestrial solar UV radiation.

  10. High-Resolution Spore Coat Architecture and Assembly of Bacillus Spores

    SciTech Connect

    Malkin, A J; Elhadj, S; Plomp, M

    2011-03-14

    Elucidating the molecular architecture of bacterial and cellular surfaces and its structural dynamics is essential to understanding mechanisms of pathogenesis, immune response, physicochemical interactions, environmental resistance, and provide the means for identifying spore formulation and processing attributes. I will discuss the application of in vitro atomic force microscopy (AFM) for studies of high-resolution coat architecture and assembly of several Bacillus spore species. We have demonstrated that bacterial spore coat structures are phylogenetically and growth medium determined. We have proposed that strikingly different species-dependent coat structures of bacterial spore species are a consequence of sporulation media-dependent nucleation and crystallization mechanisms that regulate the assembly of the outer spore coat. Spore coat layers were found to exhibit screw dislocations and two-dimensional nuclei typically observed on inorganic and macromolecular crystals. This presents the first case of non-mineral crystal growth patterns being revealed for a biological organism, which provides an unexpected example of nature exploiting fundamental materials science mechanisms for the morphogenetic control of biological ultrastructures. We have discovered and validated, distinctive formulation-specific high-resolution structural spore coat and dimensional signatures of B. anthracis spores (Sterne strain) grown in different formulation condition. We further demonstrated that measurement of the dimensional characteristics of B. anthracis spores provides formulation classification and sample matching with high sensitivity and specificity. I will present data on the development of an AFM-based immunolabeling technique for the proteomic mapping of macromolecular structures on the B. anthracis surfaces. These studies demonstrate that AFM can probe microbial surface architecture, environmental dynamics and the life cycle of bacterial and cellular systems at near

  11. Gunshot and Explosion Injuries

    PubMed Central

    Peleg, Kobi; Aharonson-Daniel, Limor; Stein, Michael; Michaelson, Moshe; Kluger, Yoram; Simon, Daniel; Noji, Eric K.

    2004-01-01

    Context: An increase of terror-related activities may necessitate treatment of mass casualty incidents, requiring a broadening of existing skills and knowledge of various injury mechanisms. Objective: To characterize and compare injuries from gunshot and explosion caused by terrorist acts. Methods: A retrospective cohort study of patients recorded in the Israeli National Trauma Registry (ITR), all due to terror-related injuries, between October 1, 2000, to June 30, 2002. The ITR records all casualty admissions to hospitals, in-hospital deaths, and transfers at 9 of the 23 trauma centers in Israel. All 6 level I trauma centers and 3 of the largest regional trauma centers in the country are included. The registry includes the majority of severe terror-related injuries. Injury diagnoses, severity scores, hospital resource utilization parameters, length of stay (LOS), survival, and disposition. Results: A total of 1155 terror-related injuries: 54% by explosion, 36% gunshot wounds (GSW), and 10% by other means. This paper focused on the 2 larger patient subsets: 1033 patients injured by terror-related explosion or GSW. Seventy-one percent of the patients were male, 84% in the GSW group and 63% in the explosion group. More than half (53%) of the patients were 15 to 29 years old, 59% in the GSW group and 48% in the explosion group. GSW patients suffered higher proportions of open wounds (63% versus 53%) and fractures (42% versus 31%). Multiple body-regions injured in a single patient occurred in 62% of explosion victims versus 47% in GSW patients. GSW patients had double the proportion of moderate injuries than explosion victims. Explosion victims have a larger proportion of minor injuries on one hand and critical to fatal injuries on the other. LOS was longer than 2 weeks for 20% (22% in explosion, 18% in GSW). Fifty-one percent of the patients underwent a surgical procedure, 58% in the GSW group and 46% in explosion group. Inpatient death rate was 6.3% (65 patients), 7

  12. Bacterial spores and chemical sporicidal agents.

    PubMed Central

    Russell, A D

    1990-01-01

    Bacterial spores are among the most resistant of all living cells to biocides, although the response depends on the stage of sporulation. The development of resistance to some agents such as chlorhexidine occurs much earlier in sporulation than does resistance to glutaraldehyde, which is a very late event. During germination or outgrowth or both, resistance is lost and the cells become as susceptible to biocides as nonsporulating bacteria. Mechanisms of spore resistance to, and the action of, biocides are discussed, and possible means of enhancing antispore activity are considered. The clinical and other uses of sporicidal and sporostatic chemical agents are described. Images PMID:2187595

  13. Factors affecting spore germination in algae - review.

    PubMed

    Agrawal, S C

    2009-01-01

    This review surveys whatever little is known on the influence of different environmental factors like light, temperature, nutrients, chemicals (such as plant hormones, vitamins, etc.), pH of the medium, biotic factors (such as algal extracellular substances, algal concentration, bacterial extracellular products, animal grazing and animal extracellular products), water movement, water stress, antibiotics, UV light, X-rays, gamma-rays, and pollution on the spore germination in algae. The work done on the dormancy of algal spores and on the role of vegetative cells in tolerating environmental stress is also incorporated.

  14. Cassini launch contingency effort

    NASA Astrophysics Data System (ADS)

    Chang, Yale; O'Neil, John M.; McGrath, Brian E.; Heyler, Gene A.; Brenza, Pete T.

    2002-01-01

    On 15 October 1997 at 4:43 AM EDT, the Cassini spacecraft was successfully launched on a Titan IVB/Centaur on a mission to explore the Saturnian system. It carried three Radioisotope Thermoelectric Generators (RTGs) and 117 Light Weight Radioisotope Heater Units (LWRHUs). As part of the joint National Aeronautics and Space Administration (NASA)/U.S. Department of Energy (DoE) safety effort, a contingency plan was prepared to address the unlikely events of an accidental suborbital reentry or out-of-orbital reentry. The objective of the plan was to develop procedures to predict, within hours, the Earth impact footprints (EIFs) for the nuclear heat sources released during the atmospheric reentry. The footprint predictions would be used in subsequent notification and recovery efforts. As part of a multi-agency team, The Johns Hopkins University Applied Physics Laboratory (JHU/APL) had the responsibility to predict the EIFs of the heat sources after a reentry, given the heat sources' release conditions from the main spacecraft. (No ablation burn-through of the heat sources' aeroshells was expected, as a result of earlier testing.) JHU/APL's other role was to predict the time of reentry from a potential orbital decay. The tools used were a three degree-of-freedom trajectory code, a database of aerodynamic coefficients for the heat sources, secure links to obtain tracking data, and a high fidelity special perturbation orbit integrator code to predict time of spacecraft reentry from orbital decay. In the weeks and days prior to launch, all the codes and procedures were exercised. Notional EIFs were derived from hypothetical reentry conditions. EIFs predicted by JHU/APL were compared to those by JPL and US SPACECOM, and were found to be in good agreement. The reentry time from orbital decay for a booster rocket for the Russian Progress M-36 freighter, a cargo ship for the Mir space station, was predicted to within 5 minutes more than two hours before reentry. For the

  15. Analysis of the Spore Membrane Proteome in Clostridium perfringens Implicates Cyanophycin in Spore Assembly.

    PubMed

    Liu, Hualan; Ray, W Keith; Helm, Richard F; Popham, David L; Melville, Stephen B

    2016-06-15

    Heat-resistant endospore formation plays an important role in Clostridium perfringens-associated foodborne illnesses. The spores allow the bacterium to survive heating during normal cooking processes, followed by germination and outgrowth of the bacterium in contaminated foods. To identify proteins associated with germination and other spore functions, a comparative spore membrane proteome analysis of dormant and germinated spores of C. perfringens strain SM101 was performed by using gel-based protein separation and liquid chromatography coupled with matrix-assisted laser desorption ionization-tandem time of flight (MALDI-TOF/TOF) mass spectrometry. A total of 494 proteins were identified, and 117 of them were predicted to be integral membrane or membrane-associated proteins. Among these membrane proteins, 16 and 26 were detected only in dormant and germinated spores, respectively. One protein that was detected only in germinated spore membranes was the enzyme cyanophycinase, a protease that cleaves the polymer cyanophycin, which is composed of l-arginine-poly(l-aspartic acid), to β-Asp-Arg. Genes encoding cyanophycinase and cyanophycin synthetase have been observed in many species of Clostridium, but their role has not been defined. To determine the function of cyanophycin in C. perfringens, a mutation was introduced into the cphA gene, encoding cyanophycin synthetase. In comparison to parent strain SM101, the spores of the mutant strain retained wild-type levels of heat resistance, but fewer spores were made, and they were smaller, suggesting that cyanophycin synthesis plays a role in spore assembly. Although cyanophycin could not be extracted from sporulating C. perfringens cells, an Escherichia coli strain expressing the cphA gene made copious amounts of cyanophycin, confirming that cphA encodes a cyanophycin synthetase. Clostridium perfringens is a common cause of food poisoning, and germination of spores after cooking is thought to play a significant role in

  16. Spore Cortex Hydrolysis Precedes Dipicolinic Acid Release during Clostridium difficile Spore Germination

    PubMed Central

    Francis, Michael B.; Allen, Charlotte A.

    2015-01-01

    ABSTRACT Bacterial spore germination is a process whereby a dormant spore returns to active, vegetative growth, and this process has largely been studied in the model organism Bacillus subtilis. In B. subtilis, the initiation of germinant receptor-mediated spore germination is divided into two genetically separable stages. Stage I is characterized by the release of dipicolinic acid (DPA) from the spore core. Stage II is characterized by cortex degradation, and stage II is activated by the DPA released during stage I. Thus, DPA release precedes cortex hydrolysis during B. subtilis spore germination. Here, we investigated the timing of DPA release and cortex hydrolysis during Clostridium difficile spore germination and found that cortex hydrolysis precedes DPA release. Inactivation of either the bile acid germinant receptor, cspC, or the cortex hydrolase, sleC, prevented both cortex hydrolysis and DPA release. Because both cortex hydrolysis and DPA release during C. difficile spore germination are dependent on the presence of the germinant receptor and the cortex hydrolase, the release of DPA from the core may rely on the osmotic swelling of the core upon cortex hydrolysis. These results have implications for the hypothesized glycine receptor and suggest that the initiation of germinant receptor-mediated C. difficile spore germination proceeds through a novel germination pathway. IMPORTANCE Clostridium difficile infects antibiotic-treated hosts and spreads between hosts as a dormant spore. In a host, spores germinate to the vegetative form that produces the toxins necessary for disease. C. difficile spore germination is stimulated by certain bile acids and glycine. We recently identified the bile acid germinant receptor as the germination-specific, protease-like CspC. CspC is likely cortex localized, where it can transmit the bile acid signal to the cortex hydrolase, SleC. Due to the differences in location of CspC compared to the Bacillus subtilis germinant

  17. 77 FR 58410 - Commerce in Explosives; List of Explosive Materials (2012R-10T)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    .... Ammonal. Ammonium nitrate explosive mixtures (cap sensitive). * Ammonium nitrate explosive mixtures (non.... * Blasting agents, nitro-carbo-nitrates, including non-cap sensitive slurry and water gel explosives... Calcium nitrate explosive mixture. Cellulose hexanitrate explosive mixture. Chlorate explosive...

  18. Production and counting of spores of Clostridium chauvoei.

    PubMed

    Bagadi, H O

    1977-06-01

    The concentration and viability of spores produced by four different strains of Clostridium chauvoei (C. feseri) grown in a modified medium for 18 days are described. The medium yielded enough viable spores for experimental work.

  19. Comparison of hand hygiene procedures for removing Bacillus cereus spores.

    PubMed

    Sasahara, Teppei; Hayashi, Shunji; Hosoda, Kouichi; Morisawa, Yuji; Hirai, Yoshikazu

    2014-01-01

    Bacillus cereus is a spore-forming bacterium. B. cereus occasionally causes nosocomial infections, in which hand contamination with the spores plays an important role. Therefore, hand hygiene is the most important practice for controlling nosocomial B. cereus infections. This study aimed to determine the appropriate hand hygiene procedure for removing B. cereus spores. Thirty volunteers' hands were experimentally contaminated with B. cereus spores, after which they performed 6 different hand hygiene procedures. We compared the efficacy of the procedures in removing the spores from hands. The alcohol-based hand-rubbing procedures scarcely removed them. The soap washing procedures reduced the number of spores by more than 2 log10. Extending the washing time increased the spore-removing efficacy of the washing procedures. There was no significant difference in efficacy between the use of plain soap and antiseptic soap. Handwashing with soap is appropriate for removing B. cereus spores from hands. Alcohol-based hand-rubbing is not effective.

  20. Reevaluation of Bacitracin as a Spore Coat Component

    PubMed Central

    Marschke, C. K.; Bernlohr, R. W.

    1970-01-01

    Analysis of hydrolysates of highly purified spore coats revealed only small quantities of ornithine, a component of bacitracin. We conclude that the peptide, bacitracin, is not a significant component of spore coats. PMID:5437729

  1. Surface tension propulsion of fungal spores by use of microdroplets

    NASA Astrophysics Data System (ADS)

    Noblin, Xavier; Yang, Sylvia; Dumais, Jacques

    2010-11-01

    Most basidiomycete fungi (such as edible mushrooms) actively eject their spores. The process begins with the condensation of a water droplet at the base of the spore. The fusion of the droplet onto the spore creates a momentum that propels the spore forward. The use of surface tension for spore ejection offers a new paradigm to perform work at small length scales. However, this mechanism of force generation remains poorly understood. To elucidate how fungal spores make effective use of surface tension, we performed high-speed video imaging of spore ejection in Auricularia auricula and Sporobolomyces yeast, along with a detailed mechanical analysis of the spore ejection. We developed an explicit relation for the conversion of surface energy into kinetic energy during the coalescence process. The relation was validated with a simple artificial system.

  2. A perfect launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Billows of smoke and steam spread across Launch Pad 39A as Space Shuttle Discovery lifts off on mission STS-92 to the International Space Station. The perfect on-time liftoff occurred at 7:17 p.m. EDT, sending a crew of seven on the 100th launch in the history of the Shuttle program. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. Discovery's landing is expected Oct. 22 at 2:10 p.m. EDT.

  3. STS-133 launch

    NASA Image and Video Library

    2011-02-24

    STS133-S-066 (24 Feb. 2011) --- In Firing Room 4 of the Launch Control Center at NASA's Kennedy Space Center in Florida, Shuttle Launch Director Mike Leinbach watches space shuttle Discovery head toward Earth orbit on the STS-133 mission to the International Space Station. Discovery and its six-member crew are on a mission to deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, the dexterous humanoid astronaut helper, to the orbiting outpost. Discovery is making its 39th mission and is scheduled to be retired following STS-133. This is the 133rd Space Shuttle Program mission and the 35th shuttle voyage to the space station. Photo credit: NASA or National Aeronautics and Space Administration

  4. LAUNCH - STS-7 - KSC

    NASA Image and Video Library

    1983-06-18

    S83-35620 (18 June 1983) --- The space shuttle Challenger, its two solid rocket boosters and an external fuel tank carry the five-member STS-7 astronaut crew toward a six-day mission in Earth orbit. This high-angle view of the liftoff, a lengthy stretch of Florida Atlantic coastline and a number of large cumulus clouds was photographed with a handheld 70mm camera by astronaut John W. Young. Young usually pilots the Shuttle Training Aircraft (STA) for weather monitoring at launch and landing sites for STS missions. The Challenger?s second launch occurred at 7:33 a.m. (EDT) on 18 June 1983. Photo credit: NASA

  5. STS-121 Launch

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Space Shuttle Discovery and its seven-member crew launched at 2:38 p.m. (EDT) to begin the two-day journey to the International Space Station (ISS) on the historic Return to Flight STS-121 mission. The shuttle made history as it was the first human-occupying spacecraft to launch on Independence Day. During its 12-day mission, this utilization and logistics flight delivered a multipurpose logistics module (MPLM) to the ISS with several thousand pounds of new supplies and experiments. In addition, some new orbital replacement units (ORUs) were delivered and stowed externally on the ISS on a special pallet. These ORUs are spares for critical machinery located on the outside of the ISS. During this mission the crew also carried out testing of Shuttle inspection and repair hardware, as well as evaluated operational techniques and concepts for conducting on-orbit inspection and repair.

  6. STS-116 Launch

    NASA Image and Video Library

    2006-12-09

    STS116-S-021 (9 Dec. 2006) --- Against a black night sky, the Space Shuttle Discovery and its seven-member crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from the Kennedy Space Center's launch pad 39B occurred at 8:47 p.m. (EST) on Dec. 9, 2006 in what was the first evening shuttle launch since 2002. The STS-116 crew will link up with the station on Monday, Dec. 11, to begin a complex, week-long stay that will rewire the outpost and increase its power supply. During three spacewalks and intricate choreography with ground controllers, the astronauts will bring electrical power on line generated by a giant solar array wing delivered to the station in September.

  7. STS-116 Launch

    NASA Image and Video Library

    2006-12-09

    STS116-S-009 (9 Dec. 2006) --- Against a black night sky, the Space Shuttle Discovery and its seven-member crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from the Kennedy Space Center's launch pad 39B occurred at 8:47 p.m. (EST) on Dec. 9, 2006 in what was the first evening shuttle launch since 2002. The STS-116 crew will link up with the station on Monday, Dec. 11, to begin a complex, week-long stay that will rewire the outpost and increase its power supply. During three spacewalks and intricate choreography with ground controllers, the astronauts will bring electrical power on line generated by a giant solar array wing delivered to the station in September.

  8. STS-116 Launch

    NASA Image and Video Library

    2006-12-09

    STS116-S-008 (9 Dec. 2006) --- Against a black night sky, the Space Shuttle Discovery and its seven-member crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from the Kennedy Space Center's launch pad 39B occurred at 8:47 p.m. (EST) on Dec. 9, 2006 in what was the first evening shuttle launch since 2002. The STS-116 crew will link up with the station on Monday, Dec. 11, to begin a complex, week-long stay that will rewire the outpost and increase its power supply. During three spacewalks and intricate choreography with ground controllers, the astronauts will bring electrical power on line generated by a giant solar array wing delivered to the station in September.

  9. STS-116 Launch

    NASA Image and Video Library

    2006-12-09

    STS116-S-011 (9 Dec. 2006) --- Against a black night sky, the Space Shuttle Discovery and its seven-member crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from the Kennedy Space Center's launch pad 39B occurred at 8:47 p.m. (EST) on Dec. 9, 2006 in what was the first evening shuttle launch since 2002. The STS-116 crew will link up with the station on Monday, Dec. 11, to begin a complex, week-long stay that will rewire the outpost and increase its power supply. During three spacewalks and intricate choreography with ground controllers, the astronauts will bring electrical power on line generated by a giant solar array wing delivered to the station in September.

  10. STS-116 Launch

    NASA Image and Video Library

    2006-12-09

    STS116-S-016 (9 Dec. 2006) --- Against a black night sky, the Space Shuttle Discovery and its seven-member crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from the Kennedy Space Center's launch pad 39B occurred at 8:47 p.m. (EST) on Dec. 9, 2006 in what was the first evening shuttle launch since 2002. The STS-116 crew will link up with the station on Monday, Dec. 11, to begin a complex, week-long stay that will rewire the outpost and increase its power supply. During three spacewalks and intricate choreography with ground controllers, the astronauts will bring electrical power on line generated by a giant solar array wing delivered to the station in September.

  11. STS-116 Launch

    NASA Image and Video Library

    2006-12-09

    STS116-S-014 (9 Dec. 2006) --- Against a black night sky, the Space Shuttle Discovery and its seven-member crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from the Kennedy Space Center's launch pad 39B occurred at 8:47 p.m. (EST) on Dec. 9, 2006 in what was the first evening shuttle launch since 2002. The STS-116 crew will link up with the station on Monday, Dec. 11, to begin a complex, week-long stay that will rewire the outpost and increase its power supply. During three spacewalks and intricate choreography with ground controllers, the astronauts will bring electrical power on line generated by a giant solar array wing delivered to the station in September.

  12. STS-116 Launch

    NASA Image and Video Library

    2006-12-09

    STS116-S-018 (9 Dec. 2006) --- Against a black night sky, the Space Shuttle Discovery and its seven-member crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from the Kennedy Space Center's launch pad 39B occurred at 8:47 p.m. (EST) on Dec. 9, 2006 in what was the first evening shuttle launch since 2002. The STS-116 crew will link up with the station on Monday, Dec. 11, to begin a complex, week-long stay that will rewire the outpost and increase its power supply. During three spacewalks and intricate choreography with ground controllers, the astronauts will bring electrical power on line generated by a giant solar array wing delivered to the station in September.

  13. STS-116 Launch

    NASA Image and Video Library

    2006-12-09

    STS116-S-010 (9 Dec. 2006) --- Against a black night sky, the Space Shuttle Discovery and its seven-member crew head toward Earth-orbit and a scheduled link-up with the International Space Station. Liftoff from the Kennedy Space Center's launch pad 39B occurred at 8:47 p.m. (EST) on Dec. 9, 2006 in what was the first evening shuttle launch since 2002. The STS-116 crew will link up with the station on Monday, Dec. 11, to begin a complex, week-long stay that will rewire the outpost and increase its power supply. During three spacewalks and intricate choreography with ground controllers, the astronauts will bring electrical power on line generated by a giant solar array wing delivered to the station in September.

  14. An Overview of the Launch Vehicle Blast Environments Development Efforts

    NASA Technical Reports Server (NTRS)

    Richardson, Erin; Bangham, Mike; Blackwood, James; Skinner, Troy; Hays, Michael; Jackson, Austin; Richman, Ben

    2014-01-01

    NASA has been funding an ongoing development program to characterize the explosive environments produced during a catastrophic launch vehicle accident. These studies and small-scale tests are focused on the near field environments that threaten the crew. The results indicate that these environments are unlikely to result in immediate destruction of the crew modules. The effort began as an independent assessment by NASA safety organizations, followed by the Ares program and NASA Engineering and Safety Center and now as a Space Launch Systems (SLS) focused effort. The development effort is using the test and accident data available from public or NASA sources as well as focused scaled tests that are examining the fundamental aspects of uncontained explosions of Hydrogen and air and Hydrogen and Oxygen. The primary risk to the crew appears to be the high-energy fragments and these are being characterized for the SLS. The development efforts will characterize the thermal environment of the explosions as well to ensure that the risk is well understood and to document the overall energy balance of an explosion. The effort is multi-path in that analytical, computational and focused testing is being used to develop the knowledge to understand potential SLS explosions. This is an ongoing program with plans that expand the development from fundamental testing at small-scale levels to large-scale tests that can be used to validate models for commercial programs. The ultimate goal is to develop a knowledge base that can be used by vehicle designers to maximize crew survival in an explosion.

  15. Expedition 11 Launch Day

    NASA Image and Video Library

    2005-04-15

    Unidentified family members of NASA astronaut John Phillips waves offers up best wishes for a safe mission and a happy birthday prior to launch, Friday, April 15, 2005, aboard the Soyuz TMA-6 spacecraft from the Baikonur Cosmodrome in Kazakhstan for a two-day trip to the International Space Station where he will spend six months living in space. Photo Credit: (NASA/Bill Ingalls)

  16. Space Shuttle Discovery Launch

    NASA Image and Video Library

    2011-02-24

    NASA Administrator Charles Bolden and other NASA management watch the launch of space shuttle Discovery (STS-133) from the firing room at Kennedy Space Center, Thursday, Feb. 24, 2011, in Cape Canaveral, Fla. Discovery, on its 39th and final flight, is carrying the Italian-built Permanent Multipurpose Module (PMM), Express Logistics Carrier 4 (ELC4) and Robonaut 2, the first humanoid robot in space to the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  17. Space Shuttle Discovery Launch

    NASA Image and Video Library

    2011-02-24

    NASA management watch the launch of space shuttle Discovery (STS-133) from the firing room at Kennedy Space Center, Thursday, Feb. 24, 2011, in Cape Canaveral, Fla. Discovery, on its 39th and final flight, is carrying the Italian-built Permanent Multipurpose Module (PMM), Express Logistics Carrier 4 (ELC4) and Robonaut 2, the first humanoid robot in space to the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  18. Expendable launch vehicle propulsion

    NASA Technical Reports Server (NTRS)

    Fuller, Paul N.

    1991-01-01

    The current status is reviewed of the U.S. Expendable Launch Vehicle (ELV) fleet, the international competition, and the propulsion technology of both domestic and foreign ELVs. The ELV propulsion technology areas where research, development, and demonstration are most needed are identified. These propulsion technology recommendations are based on the work performed by the Commercial Space Transportation Advisory Committee (COMSTAC), an industry panel established by the Dept. of Transportation.

  19. Launch of Zoological Letters.

    PubMed

    Fukatsu, Takema; Kuratani, Shigeru

    2016-02-01

    A new open-access journal, Zoological Letters, was launched as a sister journal to Zoological Science, in January 2015. The new journal aims at publishing topical papers of high quality from a wide range of basic zoological research fields. This review highlights the notable reviews and research articles that have been published in the first year of Zoological Letters, providing an overview on the current achievements and future directions of the journal.

  20. Expedition 22 Launch Day

    NASA Image and Video Library

    2009-12-21

    Expedition 22 NASA Flight Engineer Timothy J. Creamer of the U.S. prepares to have his Russian Sokol suit pressure checked at the Baikonur Cosmodrome in Baikonur, Kazakhstan, Monday, Dec. 21, 2009. Creamer and fellow Expedition 22 crew members, Soyuz Commander Oleg Kotov of Russia, and Flight Engineer Soichi Noguchi of Japan launched in their Soyuz TMA-17 rocket from the Baikonur Cosmodrome in Kazakhstan on Monday, Dec. 21, 2009. (Photo Credit: NASA/Bill Ingalls)

  1. Expedition 24 Launch Day

    NASA Image and Video Library

    2010-06-14

    Expedition 24 Flight Engineer Doug Wheelock has his Russian Sokol suit pressure checked at the Baikonur Cosmodrome in Baikonur, Kazakhstan, Tuesday, June 15, 2010. Wheelock and fellow Expedition 24 crew members Flight Engineer Shannon Walker and Soyuz Commander Fyodor Yurchikhin launched in their Soyuz TMA-19 rocket from the Baikonur Cosmodrome in Kazakhstan on Wednesday, June 16, 2010 at 3:35 a.m. Kazakhstan time. (Photo Credit: NASA/Carla Cioffi)

  2. Expedition 23 Launch Day

    NASA Image and Video Library

    2010-04-01

    Expedition 23 NASA Flight Engineer Tracy Caldwell Dyson of the U.S. prepares to have her Russian Sokol suit pressure checked at the Baikonur Cosmodrome in Baikonur, Kazakhstan, Friday, April 2, 2010. Caldwell Dyson and fellow Expedition 23 crewmembers Soyuz Commander Alexander Skvortsov and Flight Engineer Mikhail Kornienko of Russia launched in their Soyuz TMA-18 rocket from the Baikonur Cosmodrome in Kazakhstan on Friday, April 2, 2010. Photo Credit: (NASA/Carla Cioffi)

  3. Expedition 22 Launch Day

    NASA Image and Video Library

    2009-12-21

    Expedition 22 NASA Flight Engineer Timothy J. Creamer of the U.S. waves after having his Russian Sokol suit pressure checked at the Baikonur Cosmodrome in Baikonur, Kazakhstan, Monday, Dec. 21, 2009. Creamer and fellow Expedition 22 crew members, Soyuz Commander Oleg Kotov of Russia, and Flight Engineer Soichi Noguchi of Japan launched in their Soyuz TMA-17 rocket from the Baikonur Cosmodrome in Kazakhstan on Monday, Dec. 21, 2009. (Photo Credit: NASA/Bill Ingalls)

  4. Expedition 22 Launch Day

    NASA Image and Video Library

    2009-12-21

    Expedition 22 NASA Flight Engineer Timothy J. Creamer of the U.S. has his Russian Sokol suit pressure checked at the Baikonur Cosmodrome in Baikonur, Kazakhstan, Monday, Dec. 21, 2009. Creamer and fellow Expedition 22 crew members, Soyuz Commander Oleg Kotov of Russia, and Flight Engineer Soichi Noguchi of Japan launched in their Soyuz TMA-17 rocket from the Baikonur Cosmodrome in Kazakhstan on Monday, Dec. 21, 2009. (Photo Credit: NASA/Bill Ingalls)

  5. Expedition 23 Launch Day

    NASA Image and Video Library

    2010-04-01

    Expedition 23 Soyuz Commander Alexander Skvortsov has his Russian Sokol suit pressure checked at the Baikonur Cosmodrome in Baikonur, Kazakhstan, Friday, April 2, 2010. Skvortsov and fellow Expedition 23 crew members Flight Engineer Mikhail Kornienko of Russia and NASA Flight Engineer Tracy Caldwell Dyson launched in their Soyuz TMA-18 rocket from the Baikonur Cosmodrome in Kazakhstan on Friday, April 2, 2010. Photo Credit: (NASA/Carla Cioffi)

  6. Expedition 23 Launch Day

    NASA Image and Video Library

    2010-04-01

    Expedition 23 Flight Engineer Mikhail Kornienko of Russia prepares to have his Russian Sokol suit pressure checked at the Baikonur Cosmodrome in Baikonur, Kazakhstan, Friday, April 2, 2010. Kornienko and fellow Expedition 23 crewmembers Soyuz Commander Alexander Skvortsov and NASA Flight Engineer Tracy Caldwell Dyson launched in their Soyuz TMA-18 rocket from the Baikonur Cosmodrome in Kazakhstan on Friday, April 2, 2010. Photo Credit: (NASA/Carla Cioffi)

  7. Expedition 24 Launch Day

    NASA Image and Video Library

    2010-06-14

    Expedition 24 Flight Engineer Shannon Walker has her Russian Sokol suit pressure checked at the Baikonur Cosmodrome in Baikonur, Kazakhstan, Tuesday, June 15, 2010. Walker and fellow Expedition 24 crew members Flight Engineers Doug Wheelock and Soyuz Commander Fyodor Yurchikhin launched in their Soyuz TMA-19 rocket from the Baikonur Cosmodrome in Kazakhstan on Wednesday, June 16, 2010 at 3:35 a.m. Kazakhstan time. (Photo Credit: NASA/Carla Cioffi)

  8. Expedition 23 Launch Day

    NASA Image and Video Library

    2010-04-01

    Expedition 23 Flight Engineer Mikhail Kornienko of Russia has his Russian Sokol suit pressure checked at the Baikonur Cosmodrome in Baikonur, Kazakhstan, Friday, April 2, 2010. Kornienko and fellow Expedition 23 crewmembers Soyuz Commander Alexander Skvortsov and NASA Flight Engineer Tracy Caldwell Dyson launched in their Soyuz TMA-18 rocket from the Baikonur Cosmodrome in Kazakhstan on Friday, April 2, 2010. Photo Credit: (NASA/Bill Ingalls)

  9. Expedition 19 Launch Day

    NASA Image and Video Library

    2009-03-25

    The prime and backup crew buses drive under police escort to building 254 of the Baikonur Cosmodrome where Expedition 19 Commander Gennady I. Padalka, Flight Engineer Michael R. Barratt and Spaceflight Participant Charles Simonyi will don their Russian Sokol suits in preparation for their Soyuz launch to the International Space Station on Thursday, March 26, 2009 in Baikonur, Kazakhstan. (Photo Credit: NASA/Bill Ingalls)

  10. Space Probe Launch

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Managed by Marshall Space Flight Center, the Space Tug was a reusable multipurpose space vehicle designed to transport payloads to different orbital inclinations. Utilizing mission-specific combinations of its three primary modules (crew, propulsion, and cargo) and a variety of supplementary kits, the Space Tug was capable of numerous space applications. This 1970 artist's concept depicts the Tug's propulsion module launching a space probe into lunar orbit.

  11. Space Shuttle Endeavour launch

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A smooth countdown culminated in a picture-perfect launch as the Space Shuttle Endeavour (STS-47) climbed skyward atop a ladder of billowing smoke. Primary payload for the plarned seven-day flight was Spacelab-J science laboratory. The second flight of Endeavour marks a number of historic firsts: the first space flight of an African-American woman, the first Japanese citizen to fly on a Space Shuttle, and the first married couple to fly in space.

  12. Expedition 22 Launch Day

    NASA Image and Video Library

    2009-12-21

    Expedition 22 Soyuz Commander Oleg Kotov of Russia, bottom, NASA Flight Engineer Timothy J. Creamer of the U.S., center, and Flight Engineer Soichi Noguchi of Japan wave farewell from the bottom of the soyuz rocket at the Baikonur Cosmodrome in Baikonur, Kazakhstan, Monday, Dec. 21, 2009. Kotov, Creamer and Noguchi launched in their Soyuz TMA-17 rocket from the Baikonur Cosmodrome in Kazakhstan on Monday, Dec. 21, 2009. (Photo Credit: NASA/Bill Ingalls)

  13. Expedition 22 Launch Day

    NASA Image and Video Library

    2009-12-21

    The Soyuz TMA-17 rocket is seen moments after Expedition 22 Soyuz Commander Oleg Kotov of Russia, NASA Flight Engineer Timothy J. Creamer of the U.S., and Flight Engineer Soichi Noguchi of Japan boarded the spacecraft at the Baikonur Cosmodrome in Kazakhstan on Monday, Dec. 21, 2009. Kotov, Creamer and Noguchi launched in their Soyuz TMA-17 rocket from the Baikonur Cosmodrome in Kazakhstan on Monday, Dec. 21, 2009. (Photo Credit: NASA/Bill Ingalls)

  14. Expedition 22 Launch Day

    NASA Image and Video Library

    2009-12-20

    Expedition 22 Flight Engineer Soichi Noguchi of Japan prepares to have his Russian Sokol suit pressure checked at the Baikonur Cosmodrome in Baikonur, Kazakhstan, Sunday, Dec. 20, 2009. Soichi and fellow Expedition 22 crew members NASA Flight Engineer Timothy J. Creamer of the U.S., Soyuz Commander Oleg Kotov of Russia launched in their Soyuz TMA-17 rocket from the Baikonur Cosmodrome in Kazakhstan on Monday, Dec. 21, 2009. (Photo Credit: NASA/Bill Ingalls)

  15. Expedition 22 Launch Day

    NASA Image and Video Library

    2009-12-21

    The Soyuz TMA-17 rocket is seen several hours before its launch from the Baikonur Cosmodrome in Kazakhstan on Monday, Dec. 21, 2009. The Soyuz rocket will carry Expedition 22 NASA Flight Engineer Timothy J. Creamer of the U.S., Soyuz Commander Oleg Kotov of Russia and Flight Engineer Soichi Noguchi of Japan to the International Space Station. (Photo Credit: NASA/Bill Ingalls)

  16. Expedition 22 Launch Day

    NASA Image and Video Library

    2009-12-20

    Expedition 22 Soyuz Commander Oleg Kotov of Russia, seated left, dons his Russian Sokol as Flight Engineer Soichi Noguchi of Japan, seated right, looks on at the Baikonur Cosmodrome in Baikonur, Kazakhstan, Sunday, Dec. 20, 2009. Kotov, Noguchi and NASA Flight Engineer Timothy J. Creamer of the U.S. launched in their Soyuz TMA-17 rocket from the Baikonur Cosmodrome in Kazakhstan on Monday, Dec. 21, 2009. (Photo Credit: NASA/Bill Ingalls)

  17. Reflexive Launch Strategies.

    DTIC Science & Technology

    1980-06-01

    ballistic-missile submarines, would cause 16.3 million fatalities.... 15 The problem of analyzing the potential vulnerability of U.S. land-based ICBMs...problems, are the main deficiencies of the system. Among the princi- pal advantages of standard ICBMs are autonomy after launch and relative simplicity...have looked at this problem agree that once we make it an accepted or standard procedure to fire ICBMs on warning, it begins to get very easy to write

  18. Space Logistics: Launch Capabilities

    NASA Technical Reports Server (NTRS)

    Furnas, Randall B.

    1989-01-01

    The current maximum launch capability for the United States are shown. The predicted Earth-to-orbit requirements for the United States are presented. Contrasting the two indicates the strong National need for a major increase in Earth-to-orbit lift capability. Approximate weights for planned payloads are shown. NASA is studying the following options to meet the need for a new heavy-lift capability by mid to late 1990's: (1) Shuttle-C for near term (include growth versions); and (2) the Advanced Lauching System (ALS) for the long term. The current baseline two-engine Shuttle-C has a 15 x 82 ft payload bay and an expected lift capability of 82,000 lb to Low Earth Orbit. Several options are being considered which have expanded diameter payload bays. A three-engine Shuttle-C with an expected lift of 145,000 lb to LEO is being evaluated as well. The Advanced Launch System (ALS) is a potential joint development between the Air Force and NASA. This program is focused toward long-term launch requirements, specifically beyond the year 2000. The basic approach is to develop a family of vehicles with the same high reliability as the Shuttle system, yet offering a much greater lift capability at a greatly reduced cost (per pound of payload). The ALS unmanned family of vehicles will provide a low end lift capability equivalent to Titan IV, and a high end lift capability greater than the Soviet Energia if requirements for such a high-end vehicle are defined.In conclusion, the planning of the next generation space telescope should not be constrained to the current launch vehicles. New vehicle designs will be driven by the needs of anticipated heavy users.

  19. Expedition 22 Launch Day

    NASA Image and Video Library

    2009-12-20

    Expedition 22 Soyuz Commander Oleg Kotov of Russia listens to an audio check on his headset after donning his Russian Sokol suit at the Baikonur Cosmodrome in Baikonur, Kazakhstan, Sunday, Dec. 20, 2009. Kotov and fellow Expedition 22 crew members, NASA Flight Engineer Timothy J. Creamer of the U.S., and Flight Engineer Soichi Noguchi of Japan launched in their Soyuz TMA-17 rocket from the Baikonur Cosmodrome in Kazakhstan on Monday, Dec. 21, 2009. (Photo Credit: NASA/Bill Ingalls)

  20. Expedition 8 Launch Day

    NASA Image and Video Library

    2003-10-18

    Expedition 8 Soyuz Commander Alexander Kaleri, left foreground, European Space Agency astronaut Pedro Duque of Spain and Expedition 8 Commander and NASA Science Officer Michael Foale walk to a bus at the Baikonur Cosmodrome in Kazakhstan, Saturday, Oct. 18, 2003, for transportation to the launch pad to liftoff in a Soyuz TMA-3 vehicle to the International Space Station. The trio arrived at the ISS Oct. 20. Photo Credit (NASA/Bill Ingalls)

  1. Expedition 8 Launch Day

    NASA Image and Video Library

    2003-10-18

    Expedition 8 Soyuz Commander Alexander Kaleri, left, European Space Agency astronaut Pedro Duque of Spain and Expedition 8 Commander and NASA Science Officer Michael Foale, right, prepare to board a bus at the Baikonur Cosmodrome in Kazakhstan, Saturday, Oct. 18, 2003, for transportation to the launch pad to liftoff in a Soyuz TMA-3 vehicle to the International Space Station. The trio arrived at the ISS Oct. 20. Photo Credit (NASA/Bill Ingalls)

  2. Expedition 8 Launch Day

    NASA Image and Video Library

    2003-10-18

    European Space Agency astronaut Pedro Duque of Spain, bottom, Expedition 8 Soyuz Commander Alexander Kaleri, top and Expedition 8 Commander and NASA Science Officer Michael Foale, receive final well wishes from Russian and U.S. officials at the base of the Soyuz rocket at the Baikonur Cosmodrome in Kazakhstan, Saturday, Oct. 18, 2003. The trio were launched on a Soyuz TMA-3 vehicle to the International Space Station, arriving on Oct. 20. Photo Credit (NASA/Bill Ingalls)

  3. Expedition 8 Launch Briefing

    NASA Image and Video Library

    2003-10-12

    Expedition 8 Commander and NASA Science Officer Michael Foale talks to a colleague on his cell phone from his crew quarters at the Cosmonaut Hotel in Baikonur, Kazakhstan, Wednesday, Oct. 15, 2003. Foale along with Expedition 8 Soyuz Commander Alexander Kaleri and European Space Agency astronaut Pedro Duuque of Spain, launched on a Soyuz TMA-3 vehicle to the International Space Station. Photo Credit (NASA/Bill Ingalls)

  4. Space Logistics: Launch Capabilities

    NASA Technical Reports Server (NTRS)

    Furnas, Randall B.

    1989-01-01

    The current maximum launch capability for the United States are shown. The predicted Earth-to-orbit requirements for the United States are presented. Contrasting the two indicates the strong National need for a major increase in Earth-to-orbit lift capability. Approximate weights for planned payloads are shown. NASA is studying the following options to meet the need for a new heavy-lift capability by mid to late 1990's: (1) Shuttle-C for near term (include growth versions); and (2) the Advanced Lauching System (ALS) for the long term. The current baseline two-engine Shuttle-C has a 15 x 82 ft payload bay and an expected lift capability of 82,000 lb to Low Earth Orbit. Several options are being considered which have expanded diameter payload bays. A three-engine Shuttle-C with an expected lift of 145,000 lb to LEO is being evaluated as well. The Advanced Launch System (ALS) is a potential joint development between the Air Force and NASA. This program is focused toward long-term launch requirements, specifically beyond the year 2000. The basic approach is to develop a family of vehicles with the same high reliability as the Shuttle system, yet offering a much greater lift capability at a greatly reduced cost (per pound of payload). The ALS unmanned family of vehicles will provide a low end lift capability equivalent to Titan IV, and a high end lift capability greater than the Soviet Energia if requirements for such a high-end vehicle are defined.In conclusion, the planning of the next generation space telescope should not be constrained to the current launch vehicles. New vehicle designs will be driven by the needs of anticipated heavy users.

  5. Expedition 50 Soyuz Launch

    NASA Image and Video Library

    2016-11-18

    nhq201611180002 (Nov. 18, 2016) --- In this one second exposure photograph, the Soyuz MS-03 spacecraft is seen launching from the Baikonur Cosmodrome with Expedition 50 crewmembers NASA astronaut Peggy Whitson, Russian cosmonaut Oleg Novitskiy of Roscosmos, and ESA astronaut Thomas Pesquet from the Baikonur Cosmodrome in Kazakhstan, Friday, Nov. 18, 2016, (Kazakh time) (Nov 17 Eastern time). Whitson, Novitskiy, and Pesquet will spend approximately six months on the orbital complex. Photo Credit: (NASA/Bill Ingalls)

  6. STS-129 Atlantis Launch

    NASA Image and Video Library

    2009-11-16

    Guests at NASA's Kennedy Space Center view the launch of space shuttle Atlantis in Cape Canaveral, Fla., on Monday, Nov. 16, 2009. Space shuttle Atlantis and its six-member crew began the 11-day STS-129 mission to the International Space Station. The shuttle will transport spare hardware to the outpost and return a station crew member who spent more than two months in space. Photo Credit: (NASA/Carla Cioffi)

  7. How far and how fast can mushroom spores fly? Physical limits on ballistospore size and discharge distance in the Basidiomycota

    PubMed Central

    Fischer, Mark W. F.; Stolze-Rybczynski, Jessica L.; Cui, Yunluan; Money, Nicholas P.

    2010-01-01

    Active discharge of basidiospores in most species of Basidiomycota is powered by the rapid movement of a droplet of fluid, called Buller’s drop, over the spore surface. This paper is concerned with the operation of the launch mechanism in species with the largest and smallest ballistospores. Aleurodiscus gigasporus (Russulales) produces the largest basidiospores on record. The maximum dimensions of the spores, 34 × 28 µm, correspond to a volume of 14 pL and to an estimated mass of 17 ng. The smallest recorded basidiospores are produced by Hyphodontia latitans (Hymenochaetales). Minimum spore dimensions in this species, 3.5 × 0.5 µm, correspond to a volume of 0.5 fL and mass of 0.6 pg. Neither species has been studied using high-speed video microscopy, but this technique was used to examine ballistospore discharge in species with spores of similar sizes (slightly smaller than A. gigasporus and slightly larger than those of H. latitans). Extrapolation of velocity measurements from these fungi provided estimates of discharge distances ranging from a maximum of almost 2 mm in A. gigasporus to a minimum of 4 µm in H. latitans. These are, respectively, the longest and shortest predicted discharge distances for ballistospores. Limitations to the distances traveled by basidiospores are discussed in relation to the mechanics of the discharge process and the types of fruit-bodies from which the spores are released. PMID:20835365

  8. Lithium niobate explosion monitor

    DOEpatents

    Bundy, Charles H.; Graham, Robert A.; Kuehn, Stephen F.; Precit, Richard R.; Rogers, Michael S.

    1990-01-01

    Monitoring explosive devices is accomplished with a substantially z-cut lithium niobate crystal in abutment with the explosive device. Upon impact by a shock wave from detonation of the explosive device, the crystal emits a current pulse prior to destruction of the crystal. The current pulse is detected by a current viewing transformer and recorded as a function of time in nanoseconds. In order to self-check the crystal, the crystal has a chromium film resistor deposited thereon which may be heated by a current pulse prior to detonation. This generates a charge which is detected by a charge amplifier.

  9. Lithium niobate explosion monitor

    DOEpatents

    Bundy, C.H.; Graham, R.A.; Kuehn, S.F.; Precit, R.R.; Rogers, M.S.

    1990-01-09

    Monitoring explosive devices is accomplished with a substantially z-cut lithium niobate crystal in abutment with the explosive device. Upon impact by a shock wave from detonation of the explosive device, the crystal emits a current pulse prior to destruction of the crystal. The current pulse is detected by a current viewing transformer and recorded as a function of time in nanoseconds. In order to self-check the crystal, the crystal has a chromium film resistor deposited thereon which may be heated by a current pulse prior to detonation. This generates a charge which is detected by a charge amplifier. 8 figs.

  10. Launch Control Network Engineer

    NASA Technical Reports Server (NTRS)

    Medeiros, Samantha

    2017-01-01

    The Spaceport Command and Control System (SCCS) is being built at the Kennedy Space Center in order to successfully launch NASA’s revolutionary vehicle that allows humans to explore further into space than ever before. During my internship, I worked with the Network, Firewall, and Hardware teams that are all contributing to the huge SCCS network project effort. I learned the SCCS network design and the several concepts that are running in the background. I also updated and designed documentation for physical networks that are part of SCCS. This includes being able to assist and build physical installations as well as configurations. I worked with the network design for vehicle telemetry interfaces to the Launch Control System (LCS); this allows the interface to interact with other systems at other NASA locations. This network design includes the Space Launch System (SLS), Interim Cryogenic Propulsion Stage (ICPS), and the Orion Multipurpose Crew Vehicle (MPCV). I worked on the network design and implementation in the Customer Avionics Interface Development and Analysis (CAIDA) lab.

  11. Nanomechanical Characterization of Bacillus anthracis Spores by Atomic Force Microscopy

    PubMed Central

    Burggraf, Larry W.; Xing, Yun

    2016-01-01

    ABSTRACT The study of structures and properties of bacterial spores is important to understanding spore formation and biological responses to environmental stresses. While significant progress has been made over the years in elucidating the multilayer architecture of spores, the mechanical properties of the spore interior are not known. Here, we present a thermal atomic force microscopy (AFM) study of the nanomechanical properties of internal structures of Bacillus anthracis spores. We developed a nanosurgical sectioning method in which a stiff diamond AFM tip was used to cut an individual spore, exposing its internal structure, and a soft AFM tip was used to image and characterize the spore interior on the nanometer scale. We observed that the elastic modulus and adhesion force, including their thermal responses at elevated temperatures, varied significantly in different regions of the spore section. Our AFM images indicated that the peptidoglycan (PG) cortex of Bacillus anthracis spores consisted of rod-like nanometer-sized structures that are oriented in the direction perpendicular to the spore surface. Our findings may shed light on the spore architecture and properties. IMPORTANCE A nanosurgical AFM method was developed that can be used to probe the structure and properties of the spore interior. The previously unknown ultrastructure of the PG cortex of Bacillus anthracis spores was observed to consist of nanometer-sized rod-like structures that are oriented in the direction perpendicular to the spore surface. The variations in the nanomechanical properties of the spore section were largely correlated with its chemical composition. Different components of the spore materials showed different thermal responses at elevated temperatures. PMID:26969703

  12. Viability and infectivity of fresh and cryopreserved Nosema ceranae spores.

    PubMed

    McGowan, Janine; De la Mora, Alvaro; Goodwin, Paul H; Habash, Marc; Hamiduzzaman, Mollah Md; Kelly, Paul G; Guzman-Novoa, Ernesto

    2016-12-01

    The microsporidium fungus Nosema ceranae is an intracellular parasite that infects the midgut of the honey bee, Apis mellifera. A major limitation of research on N. ceranae is that the fungus is non-culturable and thus studying it depends on the seasonal availability of Nosema spores. Also, spore viability and infectivity can vary considerably, and thus there is a need for reliable methods for determining those traits. This study examined different conditions for N. ceranae spore cryopreservation at -70°C, assessing spore viability and infectivity. Viability was determined by a staining procedure counting total spores numbers with bright field microscopy and un-viable spore numbers with the fluorescent dye, propidium iodide. Spore infectivity was determined with a dilution inoculation assay. Infectivity was dependent on the inoculum dose for the proportion of bees with detectable Nosema infections based on the number of spores per bee at 18days after inoculation; 4000 spores per bee or higher were needed to get approx. 100% of the inoculated bees infected. The median infective dose (ID50) was 149 spores per bee, and the minimum dose capable of causing a detectable infection was 1.28 spores. The proportion of N. ceranae infected bees correlated significantly with the number of spores per bee (r=0.98, P<0.0001). N. ceranae spores cryopreserved in water or 10% glycerol did not differ in viability compared to fresh spores, but lost infectivity when inoculated into bees. This study shows that while cryopreservation of N. ceranae spores can preserve viability, the spores can have reduced infectivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Fifth international fungus spore conference. [Abstracts]: Final technical report

    SciTech Connect

    Timberlake, W.E.

    1993-04-01

    This folio contains the proceedings of the Fifth International Fungal Spore Conference held August 17-21, 1991 at the Unicoi State Park at Helen, Georgia. The volume contains abstracts of each oral presentation as well as a collection of abstracts describing the poster sessions. Presentations were organized around the themes (1) Induction of Sporulation, (2) Nuclear Division, (3) Spore Formation, (4) Spore Release and Dispersal, and (4) Spore Germination.

  14. Growth of ferns from spores in axenic culture.

    PubMed

    Ford, M V; Fay, M F

    1990-01-01

    In this chapter, a method by which many fern species can be successfully grown from spores in axenic culture will be described. Unlike the conventional method of sowing the spores on compost, this method allows spore populations free from contamination by spores of other species to be sown. The method can be used for the production of mature sporophytes or to provide a controllable system for biosystematic studies of, or experimentation with, fern gametophytes (1,2).

  15. 32. Launch Control Center, commander's console. Note launch key at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. Launch Control Center, commander's console. Note launch key at right. Lyon - Whiteman Air Force Base, Oscar O-1 Minuteman Missile Alert Facility, Southeast corner of Twelfth & Vendenberg Avenues, Knob Noster, Johnson County, MO

  16. Launch window extensions and launch opportunities for Navstar GPS

    NASA Astrophysics Data System (ADS)

    Vaughan, Scott H.; Mullikin, Thomas L.

    The original nine minute launch window for Navstar Global Positioning System vehicles allowed a very limited capability to overcome problems late in the countdown sequence. A longer launch window was desired in order to minimize the chance of an aborted launch attempt. However, the methods used to determine the original launch window could not provide an extended window without producing a conflict with the tight tolerances required for the final orbit plane. By taking full advantage of the dynamics and geometry of the plane change maneuver, we have developed a launch window definition that will provide as much as a 32 minute window. This definition maintains tight orbit plane tolerances and identifies all possible launch opportunities. The extended launch window has been in use since the eighth Navstar launch and has been highly successful.

  17. Russian Soyuz in Launch Position

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Soyuz TM-31 launch vehicle is shown in the vertical position for its launch from Baikonur, carrying the first resident crew to the International Space Station. The Russian Soyuz launch vehicle is an expendable spacecraft that evolved out of the original Class A (Sputnik). From the early 1960s until today, the Soyuz launch vehicle has been the backbone of Russia's marned and unmanned space launch fleet. Today, the Soyuz launch vehicle is marketed internationally by a joint Russian/French consortium called STARSEM. As of August 2001, there have been ten Soyuz missions under the STARSEM banner.

  18. Dynamic Modeling of Ascent Abort Scenarios for Crewed Launches

    NASA Technical Reports Server (NTRS)

    Bigler, Mark; Boyer, Roger L.

    2015-01-01

    For the last 30 years, the United States' human space program has been focused on low Earth orbit exploration and operations with the Space Shuttle and International Space Station programs. After over 40 years, the U.S. is again working to return humans beyond Earth orbit. To do so, NASA is developing a new launch vehicle and spacecraft to provide this capability. The launch vehicle is referred to as the Space Launch System (SLS) and the spacecraft is called Orion. The new launch system is being developed with an abort system that will enable the crew to escape launch failures that would otherwise be catastrophic as well as probabilistic design requirements set for probability of loss of crew (LOC) and loss of mission (LOM). In order to optimize the risk associated with designing this new launch system, as well as verifying the associated requirements, NASA has developed a comprehensive Probabilistic Risk Assessment (PRA) of the integrated ascent phase of the mission that includes the launch vehicle, spacecraft and ground launch facilities. Given the dynamic nature of rocket launches and the potential for things to go wrong, developing a PRA to assess the risk can be a very challenging effort. Prior to launch and after the crew has boarded the spacecraft, the risk exposure time can be on the order of three hours. During this time, events may initiate from either the spacecraft, the launch vehicle, or the ground systems, thus requiring an emergency egress from the spacecraft to a safe ground location or a pad abort via the spacecraft's launch abort system. Following launch, again either the spacecraft or the launch vehicle can initiate the need for the crew to abort the mission and return home. Obviously, there are thousands of scenarios whose outcome depends on when the abort is initiated during ascent and how the abort is performed. This includes modeling the risk associated with explosions and benign system failures that require aborting a spacecraft under very

  19. Imaging bacterial spores by soft-x-ray microscopy

    SciTech Connect

    Stead, A.D.; Ford, T.W.; Judge, J.

    1997-04-01

    Bacterial spores are able to survive dehydration, but neither the physiological nor structural basis of this have been fully elucidated. Furthermore, once hydrated, spores often require activation before they will germinate. Several treatments can be used to activate spores, but in the case of Bacillus subtlis the most effective is heat treatment. The physiological mechanism associated with activation is also not understood, but some workers suggest that the loss of calcium from the spores may be critical. However, just prior to germination, the spores change from being phase bright to phase dark when viewed by light microscopy. Imaging spores by soft x-ray microscopy is possible without fixation. Thus, in contrast to electron microscopy, it is possible to compare the structure of dehydrated and hydrated spores in a manner not possible previously. A further advantage is that it is possible to monitor individual spores by phase contrast light microscopy immediately prior to imaging with soft x-rays; whereas, with both electron microscopy and biochemical studies, it is a population of spores being studied without knowledge of the phase characteristics of individual spores. This study has therefore tried to compare dehydrated and hydrated spores and to determine if there is a mass loss from individual spores as they pass the transition from being phase bright to phase dark.

  20. Mechanisms of Bacterial Spore Germination and Its Heterogeneity

    DTIC Science & Technology

    2015-01-10

    Bacillus species germinate normally with high pressure, peptidoglycan fragments and bryostatin. , Journal of Bacteriology, (01 2010): . doi: L...proteins in degrading cortex peptidoglycan of spores of Bacillus species in vitro and during spore germination, Journal of Bacteriology, (06 2013... Peptidoglycan Structure and Cortex Hydrolysis on the Kinetics of Ca2+-Dipicolinic Acid Release During Bacillus subtilis Spore Germination, Journal of

  1. 9 CFR 113.66 - Anthrax Spore Vaccine-Nonencapsulated.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Anthrax Spore Vaccine-Nonencapsulated. 113.66 Section 113.66 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE... REQUIREMENTS Live Bacterial Vaccines § 113.66 Anthrax Spore Vaccine—Nonencapsulated. Anthrax Spore Vaccine...

  2. 9 CFR 113.66 - Anthrax Spore Vaccine-Nonencapsulated.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Anthrax Spore Vaccine-Nonencapsulated. 113.66 Section 113.66 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE... REQUIREMENTS Live Bacterial Vaccines § 113.66 Anthrax Spore Vaccine—Nonencapsulated. Anthrax Spore Vaccine...

  3. 9 CFR 113.66 - Anthrax Spore Vaccine-Nonencapsulated.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Anthrax Spore Vaccine-Nonencapsulated. 113.66 Section 113.66 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE... REQUIREMENTS Live Bacterial Vaccines § 113.66 Anthrax Spore Vaccine—Nonencapsulated. Anthrax Spore Vaccine...

  4. 9 CFR 113.66 - Anthrax Spore Vaccine-Nonencapsulated.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Anthrax Spore Vaccine-Nonencapsulated. 113.66 Section 113.66 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE... REQUIREMENTS Live Bacterial Vaccines § 113.66 Anthrax Spore Vaccine—Nonencapsulated. Anthrax Spore Vaccine...

  5. 9 CFR 113.66 - Anthrax Spore Vaccine-Nonencapsulated.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Anthrax Spore Vaccine-Nonencapsulated. 113.66 Section 113.66 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE... REQUIREMENTS Live Bacterial Vaccines § 113.66 Anthrax Spore Vaccine—Nonencapsulated. Anthrax Spore Vaccine...

  6. Classification of Streptomyces Spore Surfaces into Five Groups

    PubMed Central

    Dietz, Alma; Mathews, John

    1971-01-01

    Streptomyces spores surfaces have been classified into five groups, smooth, warty, spiny, hairy, and rugose, by examination of carbon replicas of spores with the transmission electron microscope and by direct examination of spores with the scanning electron microscope. Images PMID:4928607

  7. Use of molecular methods for the detection of fungal spores.

    PubMed

    Ward, Elaine

    2009-01-01

    Traditional methods for the isolation and identification of fungal spores can be time-consuming and laborious. DNA-based methods for fungal detection can be used to detect the spores of plant-pathogenic fungi. Air borne spores can be collected and identified by PCR allowing identification of the species.

  8. Airborne myxomycete spores: detection using molecular techniques.

    PubMed

    Kamono, Akiko; Kojima, Hisaya; Matsumoto, Jun; Kawamura, Kimitaka; Fukui, Manabu

    2009-01-01

    Myxomycetes are organisms characterized by a life cycle that includes a fruiting body stage. Myxomycete fruiting bodies contain spores, and wind dispersal of the spores is considered important for this organism to colonize new areas. In this study, the presence of airborne myxomycetes and the temporal changes in the myxomycete composition of atmospheric particles (aerosols) were investigated with a polymerase chain reaction (PCR)-based method for Didymiaceae and Physaraceae. Twenty-one aerosol samples were collected on the roof of a three-story building located in Sapporo, Hokkaido Island, northern Japan. PCR analysis of DNA extracts from the aerosol samples indicated the presence of airborne myxomycetes in all the samples, except for the one collected during the snowfall season. Denaturing gradient gel electrophoresis (DGGE) analysis of the PCR products showed seasonally varying banding patterns. The detected DGGE bands were subjected to sequence analyses, and four out of nine obtained sequences were identical to those of fruiting body samples collected in Hokkaido Island. It appears that the difference in the fruiting period of each species was correlated with the seasonal changes in the myxomycete composition of the aerosols. Molecular evidence shows that newly formed spores are released and dispersed in the air, suggesting that wind-driven dispersal of spores is an important process in the life history of myxomycetes. This study is the first to detect airborne myxomycetes with the use of molecular ecological analyses and to characterize their seasonal distribution.

  9. Pollen and spores of terrestrial plants

    USGS Publications Warehouse

    Bernhardt, Christopher E.; Willard, Debra A.; Shennan, Ian; Long, Antony J.; Horton, Benjamin P.

    2015-01-01

    Pollen and spores are valuable tools in reconstructing past sea level and climate because of their ubiquity, abundance, and durability as well as their reciprocity with source vegetation to environmental change (Cronin, 1999; Traverse, 2007; Willard and Bernhardt, 2011). Pollan is found in many sedimentary environments, from freshwater to saltwater, terrestrial to marine. It can be abundant in a minimal amount of sample material, for example half a gram, as concentrations can be as high as four million grains per gram (Traverse, 2007). The abundance of pollen in a sample lends it to robust statistical analysis for the quantitative reconstruction of environments. The outer cell wall is resistant to decay in sediments and allows palynomorphs (pollen and spores) to record changes in plant communities and sea level over millions of years. These characteristics make pollen and spores a powerful tool to use in sea-level research.This chapter describes the biology of pollen and spores and how they are transported and preserved in sediments. We present a methodology for isolating pollen from sediments and a general language and framework to identify pollen as well as light micrographs of a selection of common pollen grains, We then discuss their utility in sea-level research.

  10. Mechanisms of Resistance in Microbial Spores

    DTIC Science & Technology

    1990-12-20

    solids (and water) content by immersion refractometry . Heat-activated spores of Bacillus stearotherrnophilus were found to be separable into two...incrC· ment of bacterial cells, enabling determination of their solids content by immersion refractometry . The results agreed well with values for

  11. Radiation Inactivation of Bacterial Spores on Mars

    NASA Technical Reports Server (NTRS)

    Bada, J. L.; Kminek, G.

    2004-01-01

    The conditions on Mars are thought to have been more conducive for life during its early history, about 3 billion years ago. If life ever evolved on Mars, would it be possible to see the remnants of a long-extinct biosphere today? Or even more interesting, would it be possible to find Martian bacterial spores that survived for billions of years on Mars?

  12. Myxomycete (slime mold) spores: unrecognized aeroallergens?

    PubMed

    Lierl, Michelle B

    2013-12-01

    Myxomycete spores are present in the outdoor air but have not been studied for allergenicity. To determine whether patients with seasonal allergic rhinitis (SAR) symptoms are sensitized to myxomycete spores. Myxomycete specimens were collected in the field. Nine species of myxomycetes were collected and identified: Arcyria cinerea, Ceratiomyxa fruticulosa, Fuligo septica, Hemitrichia clavata, Lycogala epidendrum, Metatrichia vesparium, Stemonitis nigrescens, Tubifera ferruginosa, and Trichea favoginea. Allergen extracts were made for each species. Protein content of each extract was measured by bicinchoninic acid assay. Protein electrophoresis was performed. Subjects with a history of SAR symptoms were enrolled, and allergy skin prick testing was performed with each extract. Protein content of the extracts ranged from 1.05 to 5.8 mg/mL. Protein bands were seen at 10 to 250 kD. Allergy prick testing was performed in 69 subjects; 42% of subjects had positive prick test results for at least 1 myxomycete extract, with 9% to 22% reacting to each extract. Five of the 12 subjects who tested negative for all allergens on the standard aeroallergen panel had positive prick test results for myxomycetes. Forty-two percent of subjects with SAR were sensitized to myxomycete spores. A significant subset of subjects who had SAR symptoms and otherwise negative skin test results showed sensitization to myxomycetes. These spores are present in the outdoor air during the summer and autumn and might be significant aeroallergens. Copyright © 2013 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  13. Airborne myxomycete spores: detection using molecular techniques

    NASA Astrophysics Data System (ADS)

    Kamono, Akiko; Kojima, Hisaya; Matsumoto, Jun; Kawamura, Kimitaka; Fukui, Manabu

    2009-01-01

    Myxomycetes are organisms characterized by a life cycle that includes a fruiting body stage. Myxomycete fruiting bodies contain spores, and wind dispersal of the spores is considered important for this organism to colonize new areas. In this study, the presence of airborne myxomycetes and the temporal changes in the myxomycete composition of atmospheric particles (aerosols) were investigated with a polymerase chain reaction (PCR)-based method for Didymiaceae and Physaraceae. Twenty-one aerosol samples were collected on the roof of a three-story building located in Sapporo, Hokkaido Island, northern Japan. PCR analysis of DNA extracts from the aerosol samples indicated the presence of airborne myxomycetes in all the samples, except for the one collected during the snowfall season. Denaturing gradient gel electrophoresis (DGGE) analysis of the PCR products showed seasonally varying banding patterns. The detected DGGE bands were subjected to sequence analyses, and four out of nine obtained sequences were identical to those of fruiting body samples collected in Hokkaido Island. It appears that the difference in the fruiting period of each species was correlated with the seasonal changes in the myxomycete composition of the aerosols. Molecular evidence shows that newly formed spores are released and dispersed in the air, suggesting that wind-driven dispersal of spores is an important process in the life history of myxomycetes. This study is the first to detect airborne myxomycetes with the use of molecular ecological analyses and to characterize their seasonal distribution.

  14. Real time viability detection of bacterial spores

    DOEpatents

    Vanderberg, Laura A.; Herdendorf, Timothy J.; Obiso, Richard J.

    2003-07-29

    This invention relates to a process for detecting the presence of viable bacterial spores in a sample and to a spore detection system, the process including placing a sample in a germination medium for a period of time sufficient for commitment of any present viable bacterial spores to occur, mixing the sample with a solution of a lanthanide capable of forming a fluorescent complex with dipicolinic acid, and, measuring the sample for the presence of dipicolinic acid, and the system including a germination chamber having inlets from a sample chamber, a germinant chamber and a bleach chamber, the germination chamber further including an outlet through a filtering means, the outlet connected to a detection chamber, the detection chamber having an inlet from a fluorescence promoting metal chamber and the detection chamber including a spectral excitation source and a means of measuring emission spectra from a sample, the detection chamber further connected to a waste chamber. A germination reaction mixture useful for promoting commitment of any viable bacterial spores in a sample including a combination of L-alanine, L-asparagine and D-glucose is also described.

  15. The Conserved Spore Coat Protein SpoVM Is Largely Dispensable in Clostridium difficile Spore Formation

    PubMed Central

    Ribis, John W.; Ravichandran, Priyanka; Putnam, Emily E.; Pishdadian, Keyan

    2017-01-01

    ABSTRACT The spore-forming bacterial pathogen Clostridium difficile is a leading cause of health care-associated infections in the United States. In order for this obligate anaerobe to transmit infection, it must form metabolically dormant spores prior to exiting the host. A key step during this process is the assembly of a protective, multilayered proteinaceous coat around the spore. Coat assembly depends on coat morphogenetic proteins recruiting distinct subsets of coat proteins to the developing spore. While 10 coat morphogenetic proteins have been identified in Bacillus subtilis, only two of these morphogenetic proteins have homologs in the Clostridia: SpoIVA and SpoVM. C. difficile SpoIVA is critical for proper coat assembly and functional spore formation, but the requirement for SpoVM during this process was unknown. Here, we show that SpoVM is largely dispensable for C. difficile spore formation, in contrast with B. subtilis. Loss of C. difficile SpoVM resulted in modest decreases (~3-fold) in heat- and chloroform-resistant spore formation, while morphological defects such as coat detachment from the forespore and abnormal cortex thickness were observed in ~30% of spoVM mutant cells. Biochemical analyses revealed that C. difficile SpoIVA and SpoVM directly interact, similarly to their B. subtilis counterparts. However, in contrast with B. subtilis, C. difficile SpoVM was not essential for SpoIVA to encase the forespore. Since C. difficile coat morphogenesis requires SpoIVA-interacting protein L (SipL), which is conserved exclusively in the Clostridia, but not the more broadly conserved SpoVM, our results reveal another key difference between C. difficile and B. subtilis spore assembly pathways. IMPORTANCE The spore-forming obligate anaerobe Clostridium difficile is the leading cause of antibiotic-associated diarrheal disease in the United States. When C. difficile spores are ingested by susceptible individuals, they germinate within the gut and

  16. 73. VIEW OF LAUNCH OPERATOR AND LAUNCH ANAYLST PANELS LOCATED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    73. VIEW OF LAUNCH OPERATOR AND LAUNCH ANAYLST PANELS LOCATED NEAR CENTER OF SOUTH WALL OF SLC-3E CONTROL ROOM. FROM LEFT TO RIGHT ON WALL IN BACKGROUND: COMMUNICATIONS HEADSET AND FOOT PEDAL IN FORGROUND. ACCIDENT REPORTING EMERGENCY NOTIFICATION SYSTEM TELEPHONE, ATLAS H FUEL COUNTER, AND DIGITAL COUNTDOWN CLOCK. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  17. Studies on Bacterial Spore Ultraviolet Light Resistance and Regulation of the Activity of a Spore Protease

    DTIC Science & Technology

    1993-12-08

    fluorescence microscopy using a DNA stain ~that the forespore nucleoid becomes quite (> 2-3 fold) condensed early in sporulation. Analysis of this event...Setlow, P., Spore structural proteins, In Bacillus subtilis and other Gram -positive bacteria: biochemistry, physiology, and molecular genetics (J.A...SASP) of bacteria, FEBS Lett. 3M5, 115-120 (1992). Popham, D. and P. Setlow, The cortical peptidoglycan from spores of Bacillus megaterium and Bacillus

  18. 25. Corridor between the Launch Control Center and the Launch ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. Corridor between the Launch Control Center and the Launch Control Equipment Room, view from Launch Control Center. Thalheimer - Whiteman Air Force Base, Oscar O-1 Minuteman Missile Alert Facility, Southeast corner of Twelfth & Vendenberg Avenues, Knob Noster, Johnson County, MO

  19. Polymeric binder for explosives

    NASA Technical Reports Server (NTRS)

    Bissell, E. R.

    1972-01-01

    Chemical reaction for producing a polymer which can be mixed with explosives to produce a rigid material is discussed. Physical and chemical properties of polymers are described and chemical structure of the polymer is illustrated.

  20. Saturn's Hot Plasma Explosions

    NASA Image and Video Library

    This animation based on data obtained by NASA's Cassini Spacecraft shows how the "explosions" of hot plasma on the night side (orange and white) periodically inflate Saturn's magnetic field (white ...

  1. Idaho Explosive Detection System

    ScienceCinema

    Klinger, Jeff

    2016-07-12

    Learn how INL researchers are making the world safer by developing an explosives detection system that can inspect cargo. For more information about INL security research, visit http://www.facebook.com/idahonationallaboratory

  2. Modeling nuclear explosion

    NASA Astrophysics Data System (ADS)

    Redd, Jeremy; Panin, Alexander

    2012-10-01

    As a result of the Nuclear Test Ban Treaty, no nuclear explosion tests have been performed by the US since 1992. This appreciably limits valuable experimental data needed for improvement of existing weapons and development of new ones, as well as for use of nuclear devices in non-military applications (such as making underground oil reservoirs or compressed air energy storages). This in turn increases the value of numerical modeling of nuclear explosions and of their effects on the environment. We develop numerical codes simulating fission chain reactions in a supercritical U and Pu core and the dynamics of the subsequent expansion of generated hot plasma in order to better understand the impact of such explosions on their surroundings. The results of our simulations (of both above ground and underground explosions) of various energy yields are presented.

  3. Parametric Explosion Spectral Model

    SciTech Connect

    Ford, S R; Walter, W R

    2012-01-19

    Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never before occurred. We develop a parametric model of the nuclear explosion seismic source spectrum derived from regional phases that is compatible with earthquake-based geometrical spreading and attenuation. Earthquake spectra are fit with a generalized version of the Brune spectrum, which is a three-parameter model that describes the long-period level, corner-frequency, and spectral slope at high-frequencies. Explosion spectra can be fit with similar spectral models whose parameters are then correlated with near-source geology and containment conditions. We observe a correlation of high gas-porosity (low-strength) with increased spectral slope. The relationship between the parametric equations and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source.

  4. Explosion suppression system

    DOEpatents

    Sapko, Michael J.; Cortese, Robert A.

    1992-01-01

    An explosion suppression system and triggering apparatus therefor are provided for quenching gas and dust explosions. An electrically actuated suppression mechanism which dispenses an extinguishing agent into the path ahead of the propagating flame is actuated by a triggering device which is light powered. This triggering device is located upstream of the propagating flame and converts light from the flame to an electrical actuation signal. A pressure arming device electrically connects the triggering device to the suppression device only when the explosion is sensed by a further characteristic thereof beside the flame such as the pioneer pressure wave. The light powered triggering device includes a solar panel which is disposed in the path of the explosion and oriented between horizontally downward and vertical. Testing mechanisms are also preferably provided to test the operation of the solar panel and detonator as well as the pressure arming mechanism.

  5. Idaho Explosives Detection System

    SciTech Connect

    Edward L. Reber; J. Keith Jewell; Larry G. Blackwood; Andrew J. Edwards; Kenneth W. Rohde; Edward H. Seabury

    2004-10-01

    The Idaho Explosives Detection System (IEDS) was developed at the Idaho National Laboratory (INL) to respond to threats imposed by delivery trucks carrying explosives into military bases. A full-scale prototype system has been built and is currently undergoing testing. The system consists of two racks, one on each side of a subject vehicle. Each rack includes a neutron generator and an array of NaI detectors. The two neutron generators are pulsed and synchronized. A laptop computer controls the entire system. The control software is easily operable by minimally trained staff. The system was developed to detect explosives in a medium size truck within a 5-minute measurement time. System performance was successfully demonstrated with explosives at the INL in June 2004 and at Andrews Air Force Base in July 2004.

  6. Idaho Explosives Detection System

    SciTech Connect

    Edward L. Reber; Larry G. Blackwood; Andrew J. Edwards; J. Keith Jewell; Kenneth W. Rohde; Edward H. Seabury; Jeffery B. Klinger

    2005-12-01

    The Idaho Explosives Detection System was developed at the Idaho National Laboratory (INL) to respond to threats imposed by delivery trucks potentially carrying explosives into military bases. A full-scale prototype system has been built and is currently undergoing testing. The system consists of two racks, one on each side of a subject vehicle. Each rack includes a neutron generator and an array of NaI detectors. The two neutron generators are pulsed and synchronized. A laptop computer controls the entire system. The control software is easily operable by minimally trained staff. The system was developed to detect explosives in a medium size truck within a 5-min measurement time. System performance was successfully demonstrated with explosives at the INL in June 2004 and at Andrews Air Force Base in July 2004.

  7. Saturn Hot Plasma Explosions

    NASA Image and Video Library

    2010-12-14

    This frame from an animation based on data obtained by NASA Cassini spacecraft shows how the explosions of hot plasma on the night side orange and white periodically inflate Saturn magnetic field white lines.

  8. Idaho Explosive Detection System

    SciTech Connect

    Klinger, Jeff

    2011-01-01

    Learn how INL researchers are making the world safer by developing an explosives detection system that can inspect cargo. For more information about INL security research, visit http://www.facebook.com/idahonationallaboratory

  9. An explosively driven, fast shock tube

    SciTech Connect

    Tan, T.H.; Marsh, S.

    1992-01-01

    A simple, cylindrically configured fast shock tube (FST) has been employed as a tool to investigate the hydrodynamics of plate drive under a very high impulse-loading condition. The shock tube has a high-explosive outer shell and a low-density foam core. The implosion produces a well-defined Mach disk that is then subsequently used to drive a metallic plate. A thin stainless steel (SS) plate has been successfully launched to 9 km/s with this device. The experimental results from the study of material flow will be presented and compared with numerical calculation. Various interesting measurement techniques will also be discussed.

  10. An explosively driven, fast shock tube

    SciTech Connect

    Tan, T.H.; Marsh, S.

    1992-03-01

    A simple, cylindrically configured fast shock tube (FST) has been employed as a tool to investigate the hydrodynamics of plate drive under a very high impulse-loading condition. The shock tube has a high-explosive outer shell and a low-density foam core. The implosion produces a well-defined Mach disk that is then subsequently used to drive a metallic plate. A thin stainless steel (SS) plate has been successfully launched to 9 km/s with this device. The experimental results from the study of material flow will be presented and compared with numerical calculation. Various interesting measurement techniques will also be discussed.

  11. Inactivation of Spores of Bacillus Species by Wet Heat: Studies on Single Spores Using Laser Tweezers Taman Spectroscopy

    DTIC Science & Technology

    2013-02-01

    determined kinetic change in spore state and Ca-DPA levels in single spores of Bacillus and Clostridium species during heat activation; (2...Bacillus and Clostridium species during heat activation; (2) measured the rates of Ca-DPA release and protein denaturation of individual spores when...Y.Q. Li. Effects of wet heat-treatment on the germination of individual spores of Clostridium perfringens, J Appl Microiol, (08 2012): 0. doi: 08/19

  12. Implementing planetary protection on the Atlas V fairing and ground systems used to launch the Mars Science Laboratory.

    PubMed

    Benardini, James N; La Duc, Myron T; Ballou, David; Koukol, Robert

    2014-01-01

    On November 26, 2011, the Mars Science Laboratory (MSL) launched from Florida's Cape Canaveral Air Force Station aboard an Atlas V 541 rocket, taking its first step toward exploring the past habitability of Mars' Gale Crater. Because microbial contamination could profoundly impact the integrity of the mission, and compliance with international treaty was a necessity, planetary protection measures were implemented on all MSL hardware to verify that bioburden levels complied with NASA regulations. The cleanliness of the Atlas V payload fairing (PLF) and associated ground support systems used to launch MSL were also evaluated. By applying proper recontamination countermeasures early and often in the encapsulation process, the PLF was kept extremely clean and was shown to pose little threat of recontaminating the enclosed MSL flight system upon launch. Contrary to prelaunch estimates that assumed that the interior PLF spore burden ranged from 500 to 1000 spores/m², the interior surfaces of the Atlas V PLF were extremely clean, housing a mere 4.65 spores/m². Reported here are the practices and results of the campaign to implement and verify planetary protection measures on the Atlas V launch vehicle and associated ground support systems used to launch MSL. All these facilities and systems were very well kept and exceeded the levels of cleanliness and rigor required in launching the MSL payload.

  13. Genome Diversity of Spore-Forming Firmicutes

    PubMed Central

    Galperin, Michael Y.

    2015-01-01

    Summary Formation of heat-resistant endospores is a specific property of the members of the phylum Firmicutes (low-G+C Gram-positive bacteria). It is found in representatives of four different classes of Firmicutes: Bacilli, Clostridia, Erysipelotrichia, and Negativicutes, which all encode similar sets of core sporulation proteins. Each of these classes also includes non-spore-forming organisms that sometimes belong to the same genus or even species as their spore-forming relatives. This chapter reviews the diversity of the members of phylum Firmicutes, its current taxonomy, and the status of genome sequencing projects for various subgroups within the phylum. It also discusses the evolution of the Firmicutes from their apparently spore-forming common ancestor and the independent loss of sporulation genes in several different lineages (staphylococci, streptococci, listeria, lactobacilli, ruminococci) in the course of their adaptation to the saprophytic lifestyle in nutrient-rich environment. It argues that systematics of Firmicutes is a rapidly developing area of research that benefits from the evolutionary approaches to the ever-increasing amount of genomic and phenotypic data and allows arranging these data into a common framework. Later the Bacillus filaments begin to prepare for spore formation. In their homogenous contents strongly refracting bodies appear. From each of these bodies develops an oblong or shortly cylindrical, strongly refracting, dark-rimmed spore. Ferdinand Cohn. 1876. Untersuchungen über Bacterien. IV. Beiträge zur Biologie der Bacillen. Beiträge zur Biologie der Pflanzen, vol. 2, pp. 249–276. (Studies on the biology of the bacilli. In: Milestones in Microbiology: 1546 to 1940. Translated and edited by Thomas D. Brock. Prentice-Hall, Englewood Cliffs, NJ, 1961, pp. 49–56). PMID:26184964

  14. Nuclear explosive safety study process

    SciTech Connect

    1997-01-01

    Nuclear explosives by their design and intended use require collocation of high explosives and fissile material. The design agencies are responsible for designing safety into the nuclear explosive and processes involving the nuclear explosive. The methodology for ensuring safety consists of independent review processes that include the national laboratories, Operations Offices, Headquarters, and responsible Area Offices and operating contractors with expertise in nuclear explosive safety. A NES Study is an evaluation of the adequacy of positive measures to minimize the possibility of an inadvertent or deliberate unauthorized nuclear detonation, high explosive detonation or deflagration, fire, or fissile material dispersal from the pit. The Nuclear Explosive Safety Study Group (NESSG) evaluates nuclear explosive operations against the Nuclear Explosive Safety Standards specified in DOE O 452.2 using systematic evaluation techniques. These Safety Standards must be satisfied for nuclear explosive operations.

  15. Overview of Explosive Initiators

    DTIC Science & Technology

    2015-11-01

    Primary explosive Initiator Detonator Primer Blasting cap Lead azide Lead styphnate 16. SECURITY CLASSIFICATION OF...Conclusions 13 References 15 Distribution List 17 FIGURES 1 Decomposition reaction of lead azide in the presence of carbon dioxide and water (ref...the world, currently the most popular are lead azide (Pb(N3)2) and lead styphnate (both normal and basic forms) and tetrazene. With its high explosive

  16. Modeling of interior explosions

    NASA Astrophysics Data System (ADS)

    Zakharova, Y. V.; Fedorova, N. N.; Fedorov, A. V.

    2016-10-01

    The results of numerical simulation of an interior explosion are presented. The main purpose of the work is an investigation of shock-wave structure caused by explosion and estimation of pressure level on building walls. The numerical simulation was carried out by means of ANSYS AUTODYN software at normal atmospheric conditions with different mass of charge and internal geometry of room. The effect of mass charge and presence of vent area were shown. The calculation results are compared with published experimental data.

  17. Combined Effects Aluminized Explosives

    DTIC Science & Technology

    2010-07-01

    to traditional blast explosives. Traditional Chapman - Jouguet detonation theory does not explain the observed detonation states achieved by these...aluminum Hugoniot for a given explosive and does not represent traditional Chapman - Jouguet sonic conditions. It appears that with small aluminum particles...the never achieved 100% aluminum reaction Chapman - Jouguet (C-J) point for which the calculated detonation velocity is 8.21 km/s: P = 358 kbar and T

  18. Explosions from stellar collapse

    NASA Astrophysics Data System (ADS)

    Fryer, Chris L.

    The collapse of a massive star releases a considerable amount of gravitational potential energy. This energy is believed to be the power source of some of the largest explosions in the universe: supernovae, hypernovae, gamma-ray bursts. In this proceedings, we review the mechanisms by which the potential energy from stellar collapse can be tapped to produce these strong explosions, emphasizing how our understanding of massive stars can help constrain these mechanisms.

  19. Effects of Major Spore-Specific DNA Binding Proteins on Bacillus subtilis Sporulation and Spore Properties

    PubMed Central

    Setlow, Barbara; McGinnis, Kelly A.; Ragkousi, Katerina; Setlow, Peter

    2000-01-01

    Sporulation of a Bacillus subtilis strain (termed α− β−) lacking the majority of the α/β-type small, acid-soluble spore proteins (SASP) that are synthesized in the developing forespore and saturate spore DNA exhibited a number of differences from that of the wild-type strain, including delayed forespore accumulation of dipicolinic acid, overexpression of forespore-specific genes, and delayed expression of at least one mother cell-specific gene turned on late in sporulation, although genes turned on earlier in the mother cell were expressed normally in α− β− strains. The sporulation defects in α− β− strains were corrected by synthesis of chromosome-saturating levels of either of two wild-type, α/β-type SASP but not by a mutant SASP that binds DNA poorly. Spores from α− β− strains also exhibited less glutaraldehyde resistance and slower outgrowth than did wild-type spores, but at least some of these defects in α− β− spores were abolished by the synthesis of normal levels of α/β-type SASP. These results indicate that α/β-type SASP may well have global effects on gene expression during sporulation and spore outgrowth. PMID:11092849

  20. Launch Services Program EMC Issues

    NASA Technical Reports Server (NTRS)

    trout, Dawn

    2004-01-01

    Presentation covers these issues: (1) Vehicles of the Launch Services Program, (2) RF Environment, (3) Common EMC Launch Vehicle Payload Integration Issues, (4) RF Sensitive Missions and (5) Lightning Monitoring,

  1. Launch Vehicle Control Center Architectures

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Epps, Amy; Woodruff, Van; Vachon, Michael Jacob; Monreal, Julio; Williams, Randall; McLaughlin, Tom

    2014-01-01

    This analysis is a survey of control center architectures of the NASA Space Launch System (SLS), United Launch Alliance (ULA) Atlas V and Delta IV, and the European Space Agency (ESA) Ariane 5. Each of these control center architectures have similarities in basic structure, and differences in functional distribution of responsibilities for the phases of operations: (a) Launch vehicles in the international community vary greatly in configuration and process; (b) Each launch site has a unique processing flow based on the specific configurations; (c) Launch and flight operations are managed through a set of control centers associated with each launch site, however the flight operations may be a different control center than the launch center; and (d) The engineering support centers are primarily located at the design center with a small engineering support team at the launch site.

  2. Launching Garbage-Bag Balloons.

    ERIC Educational Resources Information Center

    Kim, Hy

    1997-01-01

    Presents a modification of a procedure for making and launching hot air balloons made out of garbage bags. Student instructions for balloon construction, launching instructions, and scale diagrams are included. (DDR)

  3. SMAP Launch and Deployment Sequence

    NASA Image and Video Library

    This video combines file footage of a Delta II rocket and computer animation to depict the launch and deployment of NASA's Soil Moisture Active Passive satellite. SMAP is scheduled to launch on Nov...

  4. Maturation of Released Spores Is Necessary for Acquisition of Full Spore Heat Resistance during Bacillus subtilis Sporulation ▿

    PubMed Central

    Sanchez-Salas, Jose-Luis; Setlow, Barbara; Zhang, Pengfei; Li, Yong-qing; Setlow, Peter

    2011-01-01

    The first ∼10% of spores released from sporangia (early spores) during Bacillus subtilis sporulation were isolated, and their properties were compared to those of the total spores produced from the same culture. The early spores had significantly lower resistance to wet heat and hypochlorite than the total spores but identical resistance to dry heat and UV radiation. Early and total spores also had the same levels of core water, dipicolinic acid, and Ca and germinated similarly with several nutrient germinants. The wet heat resistance of the early spores could be increased to that of total spores if early spores were incubated in conditioned sporulation medium for ∼24 h at 37°C (maturation), and some hypochlorite resistance was also restored. The maturation of early spores took place in pH 8 buffer with Ca2+ but was blocked by EDTA; maturation was also seen with early spores of strains lacking the CotE protein or the coat-associated transglutaminase, both of which are needed for normal coat structure. Nonetheless, it appears to be most likely that it is changes in coat structure that are responsible for the increased resistance to wet heat and hypochlorite upon early spore maturation. PMID:21821751

  5. Protective Role of Spore Structural Components in Determining Bacillus subtilis Spore Resistance to Simulated Mars Surface Conditions

    PubMed Central

    Schuerger, Andrew C.; Reitz, Günther; Nicholson, Wayne L.

    2012-01-01

    Spores of wild-type and mutant Bacillus subtilis strains lacking various structural components were exposed to simulated Martian atmospheric and UV irradiation conditions. Spore survival and mutagenesis were strongly dependent on the functionality of all of the structural components, with small acid-soluble spore proteins, coat layers, and dipicolinic acid as key protectants. PMID:23064347

  6. Cytological and Proteomic Analyses of Osmunda cinnamomea Germinating Spores Reveal Characteristics of Fern Spore Germination and Rhizoid Tip Growth*

    PubMed Central

    Suo, Jinwei; Zhao, Qi; Zhang, Zhengxiu; Chen, Sixue; Cao, Jian'guo; Liu, Guanjun; Wei, Xing; Wang, Tai; Yang, Chuanping; Dai, Shaojun

    2015-01-01

    Fern spore is a good single-cell model for studying the sophisticated molecular networks in asymmetric cell division, differentiation, and polar growth. Osmunda cinnamomea L. var. asiatica is one of the oldest fern species with typical separate-growing trophophyll and sporophyll. The chlorophyllous spores generated from sporophyll can germinate without dormancy. In this study, the spore ultrastructure, antioxidant enzyme activities, as well as protein and gene expression patterns were analyzed in the course of spore germination at five typical stages (i.e. mature spores, rehydrated spores, double-celled spores, germinated spores, and spores with protonemal cells). Proteomic analysis revealed 113 differentially expressed proteins, which were mainly involved in photosynthesis, reserve mobilization, energy supplying, protein synthesis and turnover, reactive oxygen species scavenging, signaling, and cell structure modulation. The presence of multiple proteoforms of 25 differentially expressed proteins implies that post-translational modification may play important roles in spore germination. The dynamic patterns of proteins and their encoding genes exhibited specific characteristics in the processes of cell division and rhizoid tip growth, which include heterotrophic and autotrophic metabolisms, de novo protein synthesis and active protein turnover, reactive oxygen species and hormone (brassinosteroid and ethylene) signaling, and vesicle trafficking and cytoskeleton dynamic. In addition, the function skew of proteins in fern spores highlights the unique and common mechanisms when compared with evolutionarily divergent spermatophyte pollen. These findings provide an improved understanding of the typical single-celled asymmetric division and polar growth during fern spore germination. PMID:26091698

  7. Development of an approach to analyze the interaction between Nosema bombycis (microsporidia) deproteinated chitin spore coats and spore wall proteins.

    PubMed

    Yang, Donglin; Dang, Xiaoqun; Tian, Rui; Long, Mengxian; Li, Chunfeng; Li, Tian; Chen, Jie; Li, Zhi; Pan, Guoqing; Zhou, Zeyang

    2014-01-01

    Nosema bombycis is an obligate intracellular parasite of the Bombyx mori insect. The spore wall of N. bombycis is composed of an electron-dense proteinaceous outer layer and an electron-transparent chitinous inner layer, and the spore wall is connected to the plasma membrane. In this study, the deproteinated chitin spore coats (DCSCs) were acquired by boiling N. bombycis in 1M NaOH. Under a transmission electron microscope, the chitin spore coat resembles a loosely curled ring with strong refractivity; organelles and nuclei were not observed inside the spore. The anti-SWP25, 26, 30 and 32 antibodies were used to detect whether spore wall proteins within the total soluble and mature spore proteins could bind to the DCSCs. Furthermore, a chitin binding assay showed that within the total soluble and mature spore proteins, the SWP26, SWP30 and SWP32 spore wall proteins, bound to the deproteinated chitin spore coats, although SWP25 was incapable of this interaction. Moreover, after the DCSCs were incubated with the alkali-soluble proteins, the latter were obtained by treating N. bombycis with 0.1M NaOH. Following this treatment, SWP32 was still capable of binding the DCSCs, while SWP26 and SWP30 were unable to bind. Collectively, the DCSCs are useful for investigating the arrangement of spore wall proteins, and they shed light on how the microsporidia spore wall is self-assembled. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Protective role of spore structural components in determining Bacillus subtilis spore resistance to simulated mars surface conditions.

    PubMed

    Moeller, Ralf; Schuerger, Andrew C; Reitz, Günther; Nicholson, Wayne L

    2012-12-01

    Spores of wild-type and mutant Bacillus subtilis strains lacking various structural components were exposed to simulated Martian atmospheric and UV irradiation conditions. Spore survival and mutagenesis were strongly dependent on the functionality of all of the structural components, with small acid-soluble spore proteins, coat layers, and dipicolinic acid as key protectants.

  9. Intelsat satellite scheduled for launch

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The launch schedule for Intelsat 5-B, the prime Intelsat satellite to provide communications services between the Americas, Europe, the Middle East, and Africa, is presented. The planned placement of the satellite into an elliptical transfer orbit, and circularization of the orbit at geosynchronous altitude over the equator are described. Characteristics of the Atlas Centaur launch vehicle, AC-56, are given. The launch operation is summarized and the launch sequence presented. The Intelsat team and contractors are listed.

  10. Official launching of FRIPON

    NASA Astrophysics Data System (ADS)

    Colas, François

    2016-02-01

    Tuesday May 31st, 2016 marks the official launch of FRIPON, a unique interconnected network to search for meteorites. Eventually comprising 100 cameras spread out all over France, FRIPON introduces a night and day 360° watch of the sky. Born from the joint scientific expertise of Observatoire de Paris, of Muséum national d’Histoire naturelle, of Université Paris-Sud, of Université Aix-Marseille and of CNRS, this network aims to detect meteorite falls, measure their trajectories and estimate their strewnfields so that field search campaigns can be organized.

  11. Launch team training system

    NASA Technical Reports Server (NTRS)

    Webb, J. T.

    1988-01-01

    A new approach to the training, certification, recertification, and proficiency maintenance of the Shuttle launch team is proposed. Previous training approaches are first reviewed. Short term program goals include expanding current training methods, improving the existing simulation capability, and scheduling training exercises with the same priority as hardware tests. Long-term goals include developing user requirements which would take advantage of state-of-the-art tools and techniques. Training requirements for the different groups of people to be trained are identified, and future goals are outlined.

  12. Expedition 18 Launch Day

    NASA Image and Video Library

    2008-10-11

    Expedition 18 Commander Michael Fincke waves goodbye to family and friends from the bus that will take him and fellow crew members Flight Engineer Yuri V. Lonchakov and American spaceflight participant Richard Garriott to the Soyuz TMA-13 spacecraft for launch, Sunday, Oct. 12, 2008 from the Baikonur Cosmodrome in Kazakhstan. The three crew members are scheduled to dock with the International Space Station on Oct. 14. Fincke and Lonchakov will spend six months on the station, while Garriott will return to Earth Oct. 24 with two of the Expedition 17 crew members currently on the International Space Station. Photo Credit: (NASA/Victor Zelentsov)

  13. Expedition 18 Launch Day

    NASA Image and Video Library

    2008-10-11

    Expedition 18 Flight Engineer Yuri V. Lonchakov walks from the crew bus to the Soyuz rocket with Expedition 18 Commander Michael Fincke, not pictured, and American spaceflight participant Richard Garriott, background left, prior to their launch in the Soyuz TMA-13 spacecraft, Sunday, Oct. 12, 2008 from the Baikonur Cosmodrome in Kazakhstan. The three crew members are scheduled to dock with the International Space Station on Oct. 14. Fincke and Lonchakov will spend six months on the station, while Garriott will return to Earth Oct. 24 with two of the Expedition 17 crew members currently on the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  14. Expedition 18 Launch Day

    NASA Image and Video Library

    2008-10-11

    Expedition 18 Commander Michael Fincke waves farewell from the crew bus as he and Flight Engineer Yuri V. Lonchakov and American spaceflight participant Richard Garriott depart the Cosmonaut Hotel to building 254 were they will don their flight suits prior to their launch, Sunday, Oct. 12, 2008, from the Baikonur Cosmodrome in Kazakhstan. The three crew members are scheduled to dock with the International Space Station on Oct. 14. Fincke and Lonchakov will spend six months on the station, while Garriott will return to Earth Oct. 24 with two of the Expedition 17 crew members currently on the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  15. Expedition 18 Launch Day

    NASA Image and Video Library

    2008-10-11

    American spaceflight participant Richard Garriott, left, Expedition 18 Flight Engineer Yuri V. Lonchakov and Expedition 18 Commander Michael Fincke, right, depart building 254 where the crew donned their spacesuits prior to launch in the Soyuz TMA-13 spacecraft, Sunday Oct. 12, 2008 from the Baikonur Cosmodrome in Kazakhstan. The crew is scheduled to dock to the International Space Station on Oct. 14. Fincke and Lonchakov will spend six months on the station, while Garriott will return to Earth Oct. 24 with two of the Expedition 17 crewmembers currently on the International Space Station. Photo Credit: (NASA/Victor Zelentsov)

  16. Expedition 18 Launch Day

    NASA Image and Video Library

    2008-10-11

    Expedition 18 Flight Engineer Yuri V. Lonchakov, bottom, Expedition 18 Commander Michael Fincke and American spaceflight participant Richard Garriott, top, board the Soyuz rocket prior to their launch in the Soyuz TMA-13 spacecraft, Sunday, Oct. 12, 2008 from the Baikonur Cosmodrome in Kazakhstan. The three crew members are scheduled to dock with the International Space Station on Oct. 14. Fincke and Lonchakov will spend six months on the station, while Garriott will return to Earth Oct. 24 with two of the Expedition 17 crew members currently on the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  17. Expedition 18 Launch Day

    NASA Image and Video Library

    2008-10-11

    American spaceflight participant Richard Garriott, left, Expedition 18 Flight Engineer Yuri V. Lonchakov and Expedition 18 Commander Michael Fincke, right, prepare to salute officials prior to launch in the Soyuz TMA-13 spacecraft, Sunday Oct. 12, 2008 from the Baikonur Cosmodrome in Kazakhstan. The crew is scheduled to dock to the International Space Station on Oct. 14. Fincke and Lonchakov will spend six months on the station, while Garriott will return to Earth Oct. 24 with two of the Expedition 17 crewmembers currently on the International Space Station. Photo Credit: (NASA/Victor Zelentsov)

  18. STS-127 Launch HD

    NASA Image and Video Library

    2009-11-16

    Space shuttle Atlantis and its six-member crew began an 11-day delivery flight to the International Space Station on Monday with a 2:28 p.m. EST launch from NASA's Kennedy Space Center in Florida. The shuttle will transport spare hardware to the outpost and return a station crew member who spent more than two months in space. Atlantis is carrying about 30,000 pounds of replacement parts for systems that provide power to the station, keep it from overheating, and maintain a proper orientation in space. The large equipment can best be transported using the shuttle's unique capabilities

  19. STS-69 launch views

    NASA Image and Video Library

    1996-09-07

    STS069-S-023 (7 September 1995) --- Liftoff of the Space Shuttle Endeavour from Launch Pad 39A occurred at 11:09:00:52 a.m. (EDT), September 7, 1995. The crew of five NASA astronauts was embarking on an 11-day multifaceted mission featuring two free-flying scientific research spacecraft, a spacewalk and a host of experiments in both the cargo bay and the middeck. Onboard were astronauts David M. Walker, Kenneth D. Cockrell, James S. Voss, James H. Newman and Michael L. Gernhardt.

  20. STS-69 launch views

    NASA Image and Video Library

    1996-09-07

    STS069-S-024 (7 September 1995) --- Trees and shrubs frame the liftoff phase of the Space Shuttle Endeavour as it begins the STS-69 mission. Liftoff from Launch Pad 39A occurred at 11:09:00:52 a.m. (EDT), September 7, 1995. The crew of five NASA astronauts is embarking on an 11-day multifaceted mission featuring two free-flying scientific research spacecraft, a spacewalk and a host of experiments in both the cargo bay and the middeck. Onboard were astronauts David M. Walker, Kenneth D. Cockrell, James S. Voss, James H. Newman and Michael L. Gernhardt.

  1. STS-69 launch views

    NASA Image and Video Library

    1996-09-07

    STS069-S-019 (7 September 1995) --- Florida shrubbery frames the liftoff phase of the Space Shuttle Endeavour as it begins the STS-69 mission. Liftoff from Launch Pad 39A occurred at 11:09:00:52 a.m. (EDT), September 7, 1995. The crew of five NASA astronauts is embarking on an 11-day multifaceted mission featuring two free-flying scientific research spacecraft, a spacewalk and a host of experiments in both the cargo bay and the middeck. Onboard were astronauts David M. Walker, Kenneth D. Cockrell, James S. Voss, James H. Newman and Michael L. Gernhardt.

  2. STS-69 launch views

    NASA Image and Video Library

    1996-09-07

    STS069-S-022 (7 September 1995) --- Marsh driftwood and Florida shrubbery frame the liftoff phase of the Space Shuttle Endeavour as it begins the STS-69 mission. Liftoff from Launch Pad 39A occurred at 11:09:00:52 a.m. (EDT), September 7, 1995. The crew of five NASA astronauts is embarking on an 11-day multifaceted mission featuring two free-flying scientific research spacecraft, a spacewalk and a host of experiments in both the cargo bay and the middeck. Onboard were astronauts David M. Walker, Kenneth D. Cockrell, James S. Voss, James H. Newman and Michael L. Gernhardt.

  3. Expedition 12 Launch

    NASA Image and Video Library

    2005-10-01

    JSC2005-E-40271 (1 Oct. 2005) --- A Soyuz rocket launches from the Baikonur Cosmodrome, Kazakhstan with astronaut William S. (Bill) McArthur, Jr., Expedition 12 commander; cosmonaut Valery I. Tokarev, flight engineer and Soyuz commander; and U.S. spaceflight participant Gregory Olsen aboard. The trio is on a mission to the International Space Station lasting six months for McArthur and Tokarev. Olsen will return with the current station crew, Expedition 11, after ten days in space under a commercial contract with the Russian Federal Space Agency. Photo Credit: NASA/Victor Zelentsov

  4. Expedition 22 Launch Day

    NASA Image and Video Library

    2009-12-20

    Expedition 22 NASA Flight Engineer Timothy J. Creamer of the U.S., left, and Flight Engineer Soichi Noguchi of Japan pose for a photograph with NASA Flight Surgeon Pete Bauer, standing left, and NASA Expedition 22 backup Astronaut Doug Wheelock at the Baikonur Cosmodrome in Baikonur, Kazakhstan, Sunday, Dec. 20, 2009. Creamer, Noguchi and fellow Expedition 22 crew member, Soyuz Commander Oleg Kotov of Russia, launched in their Soyuz TMA-17 rocket from the Baikonur Cosmodrome in Kazakhstan on Monday, Dec. 21, 2009. (Photo Credit: NASA/Bill Ingalls)

  5. LAUNCH - STS-8 - KSC

    NASA Image and Video Library

    1983-09-01

    S83-39513 (30 Aug. 1983) --- NASA's eighth space shuttle launch lights up the Florida sky at 2:32 a.m. (EDT), Aug. 30, 1983. The Challenger's third flight is the first to have its beginnings in darkness. Five astronauts and an assortment of experiments are aboard the reusable vehicle. Crew members are astronauts Richard H. Truly, STS-8 commander; Daniel C. Brandenstein, pilot; and Dale A. Gardner, Guion S. Bluford and William E. Thornton, all mission specialists. Photo credit: NASA

  6. LAUNCH - STS-8 - KSC

    NASA Image and Video Library

    1983-09-01

    S83-39512 (30 Aug. 1983) --- NASA's eighth space shuttle launch lights up the Florida sky at 2:32 a.m. (EDT), Aug. 30, 1983. The space shuttle Challenger's third flight is the first to have its beginnings in darkness. Five astronauts and an assortment of experiments are aboard the reusable vehicle. Crew members are astronauts Richard H. Truly, STS-8 commander; Daniel C. Brandenstein, pilot; and Dale A. Gardner, Guion S. Bluford and William E. Thornton, all mission specialists. Photo credit: NASA

  7. Apollo 13 Launch

    NASA Technical Reports Server (NTRS)

    1970-01-01

    The third marned lunar landing mission, Apollo 13 (SA-508), with three astronauts: Mission commander James A. Lovell Jr., Lunar Module pilot Fred W. Haise Jr., and Command Module pilot John L. Swigert Jr., lifted off from the Kennedy Space Center launch complex 39A on April 11, 1970. The mission was aborted after 56 hours of flight, 205,000 miles from Earth, when an oxygen tank in the service module exploded. The Command Module, Odyssey, carrying the three astronauts, safely splashed down in the Pacific Ocean at 1:08 p.m. EST, April 17, 1970.

  8. STS-115 Launch

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The Space Shuttle Atlantis and its six-member crew launched at 11:15 a.m. (EDT) on September 9, 2006 to begin the two-day journey to the International Space Station (ISS) on the STS-115 mission. During the 11-day mission, the STS-115 crew of six, along with station crews and ground teams, resumed construction of the ISS with the installation of a girder-like structure, known as the P3/P4 truss. The 35,000-pound piece includes a set of giant solar arrays, batteries and associated electronics. The arrays eventually will double the power capability of the Station.

  9. STS-39 Launch

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Launched aboard the Space Shuttle Discovery on April 28, 1991 at 7:33:14 am (EDT), STS-39 was a Department of Defense (DOD) mission. The crew included seven astronauts: Michael L. Coats, commander; L. Blaine Hammond, pilot; Guion S. Buford, Jr., mission specialist 1; Gregory J. Harbaugh, mission specialist 2; Richard J. Hieb, mission specialist 3; Donald R. McMonagle, mission specialist 4; and Charles L. Veach, mission specialist 5. The primary unclassified payload included the Air Force Program 675 (AFP-675), the Infrared Background Signature Survey (IBSS), and the Shuttle Pallet Satellite II (SPAS II).

  10. Apparatus and method for automated monitoring of airborne bacterial spores

    NASA Technical Reports Server (NTRS)

    Ponce, Adrian (Inventor)

    2009-01-01

    An apparatus and method for automated monitoring of airborne bacterial spores. The apparatus is provided with an air sampler, a surface for capturing airborne spores, a thermal lysis unit to release DPA from bacterial spores, a source of lanthanide ions, and a spectrometer for excitation and detection of the characteristic fluorescence of the aromatic molecules in bacterial spores complexed with lanthanide ions. In accordance with the method: computer-programmed steps allow for automation of the apparatus for the monitoring of airborne bacterial spores.

  11. Airborne mesophilic fungal spores in various residential environments

    NASA Astrophysics Data System (ADS)

    Pasanen, A.-L.

    In the present work viable fungal spore counts and flora of indoor air were compared in various residences. Total viable spore counts were lowest in the urban/suburban residences and highest in the rural residences. Moisture problems in the urban environment did not increase total viable spore count, but affected composition of fungal flora. In the rural environment, spore counts were much higher in the old houses than in the new ones. Penicillium was the most prevalent fungus in the air of all the residences studied. Airborne Aspergillus, Cladosporium spores and yeast cells were more common in the damp residences and the old rural houses than in the other residences.

  12. Launch summary for 1978 - 1982

    NASA Astrophysics Data System (ADS)

    Hills, H. K.

    1984-01-01

    Data pertinent to the launching of space probes, soundings rockets, and satellites presented in tables include launch date, time, and site; agency rocket identification; sponsoring country or countries; instruments carried for experiments; the peak altitude achieved by the rockets; and the apoapsis and periapsis for satellites. The experimenter or institution involved in the launching is also cited.

  13. Launch Vehicle Control Center Architectures

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Epps, Amy; Woodruff, Van; Vachon, Michael Jacob; Monreal, Julio; Levesque, Marl; Williams, Randall; Mclaughlin, Tom

    2014-01-01

    Launch vehicles within the international community vary greatly in their configuration and processing. Each launch site has a unique processing flow based on the specific launch vehicle configuration. Launch and flight operations are managed through a set of control centers associated with each launch site. Each launch site has a control center for launch operations; however flight operations support varies from being co-located with the launch site to being shared with the space vehicle control center. There is also a nuance of some having an engineering support center which may be co-located with either the launch or flight control center, or in a separate geographical location altogether. A survey of control center architectures is presented for various launch vehicles including the NASA Space Launch System (SLS), United Launch Alliance (ULA) Atlas V and Delta IV, and the European Space Agency (ESA) Ariane 5. Each of these control center architectures shares some similarities in basic structure while differences in functional distribution also exist. The driving functions which lead to these factors are considered and a model of control center architectures is proposed which supports these commonalities and variations.

  14. 49 CFR 172.522 - EXPLOSIVES 1.1, EXPLOSIVES 1.2 and EXPLOSIVES 1.3 placards.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false EXPLOSIVES 1.1, EXPLOSIVES 1.2 and EXPLOSIVES 1.3... INFORMATION, TRAINING REQUIREMENTS, AND SECURITY PLANS Placarding § 172.522 EXPLOSIVES 1.1, EXPLOSIVES 1.2 and EXPLOSIVES 1.3 placards. (a) Except for size and color, the EXPLOSIVES 1.1, EXPLOSIVES 1.2 and EXPLOSIVES...

  15. 49 CFR 172.522 - EXPLOSIVES 1.1, EXPLOSIVES 1.2 and EXPLOSIVES 1.3 placards.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false EXPLOSIVES 1.1, EXPLOSIVES 1.2 and EXPLOSIVES 1.3... INFORMATION, TRAINING REQUIREMENTS, AND SECURITY PLANS Placarding § 172.522 EXPLOSIVES 1.1, EXPLOSIVES 1.2 and EXPLOSIVES 1.3 placards. (a) Except for size and color, the EXPLOSIVES 1.1, EXPLOSIVES 1.2 and EXPLOSIVES...

  16. 49 CFR 172.522 - EXPLOSIVES 1.1, EXPLOSIVES 1.2 and EXPLOSIVES 1.3 placards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false EXPLOSIVES 1.1, EXPLOSIVES 1.2 and EXPLOSIVES 1.3... INFORMATION, TRAINING REQUIREMENTS, AND SECURITY PLANS Placarding § 172.522 EXPLOSIVES 1.1, EXPLOSIVES 1.2 and EXPLOSIVES 1.3 placards. (a) Except for size and color, the EXPLOSIVES 1.1, EXPLOSIVES 1.2 and EXPLOSIVES...

  17. 49 CFR 172.522 - EXPLOSIVES 1.1, EXPLOSIVES 1.2 and EXPLOSIVES 1.3 placards.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false EXPLOSIVES 1.1, EXPLOSIVES 1.2 and EXPLOSIVES 1.3... INFORMATION, TRAINING REQUIREMENTS, AND SECURITY PLANS Placarding § 172.522 EXPLOSIVES 1.1, EXPLOSIVES 1.2 and EXPLOSIVES 1.3 placards. (a) Except for size and color, the EXPLOSIVES 1.1, EXPLOSIVES 1.2 and EXPLOSIVES...

  18. Non-detonable and non-explosive explosive simulators

    SciTech Connect

    Simpson, Randall L.; Pruneda, Cesar O.

    1997-01-01

    A simulator which is chemically equivalent to an explosive, but is not detonable or explodable. The simulator is a combination of an explosive material with an inert material, either in a matrix or as a coating, where the explosive has a high surface ratio but small volume ratio. The simulator has particular use in the training of explosives detecting dogs, calibrating analytical instruments which are sensitive to either vapor or elemental composition, or other applications where the hazards associated with explosives is undesirable but where chemical and/or elemental equivalence is required. The explosive simulants may be fabricated by different techniques. A first method involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and a second method involves coating inert substrates with thin layers of explosive.

  19. Non-detonable and non-explosive explosive simulators

    SciTech Connect

    Simpson, R.L.; Pruneda, C.O.

    1997-07-15

    A simulator which is chemically equivalent to an explosive, but is not detonable or explodable is disclosed. The simulator is a combination of an explosive material with an inert material, either in a matrix or as a coating, where the explosive has a high surface ratio but small volume ratio. The simulator has particular use in the training of explosives detecting dogs, calibrating analytical instruments which are sensitive to either vapor or elemental composition, or other applications where the hazards associated with explosives is undesirable but where chemical and/or elemental equivalence is required. The explosive simulants may be fabricated by different techniques. A first method involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and a second method involves coating inert substrates with thin layers of explosive. 11 figs.

  20. Non-detonable and non-explosive explosive simulators

    DOEpatents

    Simpson, R.L.; Pruneda, C.O.

    1997-07-15

    A simulator which is chemically equivalent to an explosive, but is not detonable or explodable is disclosed. The simulator is a combination of an explosive material with an inert material, either in a matrix or as a coating, where the explosive has a high surface ratio but small volume ratio. The simulator has particular use in the training of explosives detecting dogs, calibrating analytical instruments which are sensitive to either vapor or elemental composition, or other applications where the hazards associated with explosives is undesirable but where chemical and/or elemental equivalence is required. The explosive simulants may be fabricated by different techniques. A first method involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and a second method involves coating inert substrates with thin layers of explosive. 11 figs.

  1. Sources of Variability in the Measurement of Fungal Spore Yields

    PubMed Central

    Smith, C. S.; Slade, S. J.; Nordheim, E. V.; Cascino, J. J.; Harris, R. F.; Andrews, J. H.

    1988-01-01

    Variability in the production of fungal spores and in the measurement of spore yields was investigated in four species of fungi: Colletotrichum gloeosporioides, Colletotrichum coccodes, Colletotrichum phomoides, and Acremonium strictum. When the fungi were grown on solid medium in microplates and spore yields were measured by counting the subsamples with a hemacytometer, the variability among hemacytometer squares was always the largest source of variation, accounting for 51 to 91% of the total variation. Variability among replicate cultures and results of repeat experiments were generally also significant. The effect of square-to-square variability on the precision of spore yield measurement was minimized by counting a moderate number (ca. 30) of squares per culture. Culture-to-culture variability limited the practical precision of spore production measurements to a 95% confidence interval of approximately the mean ± 25%. We provide guidelines for determining the number of replicate cultures required to attain this or other degrees of precision. Particle counter-derived spore counts and counts based on spore weights were much less variable than were hemacytometer counts, but they did not improve spore production estimates very much because of culture-to-culture variability. Results obtained by both of these methods differed from those obtained with a hemacytometer; particle counter measurements required a correction for spore pairs, while the relationship between spore weights and spore counts changed as the cultures aged. PMID:16347653

  2. Detection of chlorophylls in spores of seven ferns.

    PubMed

    Tseng, Mei-Hwei; Lin, Kuei-Huei; Huang, Yi-Jia; Chang, Ya-Lan; Huang, Sheng-Cih; Kuo, Li-Yaung; Huang, Yao-Moan

    2017-03-01

    Fern spores were traditionally classified into chlorophyllous (green) and nonchlorophyllous (nongreen) types based on the color visible to the naked eye. Recently, a third type, "cryptochlorophyllous spores", is recognized, and these spores are nongreen under white light but contain chlorophylls. Epifluorescence microscopy was previously used to detect chlorophylls in cryptochlorophyllous spores. In addition to epifluorescence microscopy, current study performed some other approaches, including spore-squash epifluorescence, absorption spectra, laser-induced fluorescence emission spectra, thin layer chromatography (TLC), and ultra-high performance liquid chromatography with ultraviolet and mass spectrometric detection (UHPLC-UV-MS) in order to detect chlorophylls of spores of seven ferns (Sphaeropteris lepifera, Ceratopteris thalictroides, Leptochilus wrightii, Leptochilus pothifolius, Lepidomicrosorum buergerianum, Osmunda banksiifolia, and Platycerium grande). Destructive methods, such as TLC and UHPLC-UV-MS, successfully detected chlorophylls inside the spores when their signals of red fluorescence under epifluorescence microscope were masked by spore wall. Although UHPLC-UV-MS analysis was the most sensitive and reliable for determining the chlorophylls of spores, spore-squash epifluorescence is not only reliable but also cost- and time-effective one among our study methods. In addition, we first confirmed that Lepidomicrosorium buergerianum, Leptochilus pothifolius, Leptochilus wrightii, and Platycerium grande, produce cryptochlorophyllous spores.

  3. Magnetic Launch Assist

    NASA Technical Reports Server (NTRS)

    Jacobs, W. A.

    2000-01-01

    With the ever-increasing cost of getting to space and the need for safe, reliable, and inexpensive ways to access space, NASA is taking a look at technologies that will get us there. One of these technologies is Magnetic Launch Assist (MagLev). This is the concept of using both magnetic levitation and magnetic propulsion to provide an initial velocity by using electrical power from ground sources. The use of ground based power can significantly reduce operational costs over the consumables necessary to attain the same velocity. The technologies to accomplish this are both old and new. The concept of MagLev has been around for a long time and several MagLev Trains have already been made. Where NASA's MagLev diverges from the traditional train is in the immense power required to propel this vehicle to 600 feet per second in less than 10 seconds. New technologies or the upgrade of existing technologies will need to be investigated in areas of energy storage and power switching. Plus the separation of a very large mass (the space vehicle) and the aerodynamics of that vehicle while on the carrier are also of great concern and require considerable study and testing. NASA's plan is to mature these technologies in the next 10 years to achieve our goal of launching a full sized space vehicle off a MagLev rail.

  4. New Product Launching Ideas

    NASA Astrophysics Data System (ADS)

    Kiruthika, E.

    2012-09-01

    Launching a new product can be a tense time for a small or large business. There are those moments when you wonder if all of the work done to develop the product will pay off in revenue, but there are many things are can do to help increase the likelihood of a successful product launch. An open-minded consumer-oriented approach is imperative in todayís diverse global marketplace so a firm can identify and serve its target market, minimize dissatisfaction, and stay ahead of competitors. Final consumers purchase for personal, family, or household use. Finally, the kind of information that the marketing team needs to provide customers in different buying situations. In high-involvement decisions, the marketer needs to provide a good deal of information about the positive consequences of buying. The sales force may need to stress the important attributes of the product, the advantages compared with the competition; and maybe even encourage ìtrialî or ìsamplingî of the product in the hope of securing the sale. The final stage is the post-purchase evaluation of the decision. It is common for customers to experience concerns after making a purchase decision. This arises from a concept that is known as ìcognitive dissonance

  5. Inactivation of Clostridium difficile spores by microwave irradiation.

    PubMed

    Ojha, Suvash Chandra; Chankhamhaengdecha, Surang; Singhakaew, Sombat; Ounjai, Puey; Janvilisri, Tavan

    2016-04-01

    Spores are a potent agent for Clostridium difficile transmission. Therefore, factors inhibiting spores have been of continued interest. In the present study, we investigated the influence of microwave irradiation in addition to conductive heating for C. difficile spore inactivation in aqueous suspension. The spores of 15 C. difficile isolates from different host origins were exposed to conductive heating and microwave irradiation. The complete inhibition of spore viability at 10(7) CFU/ml was encountered following microwave treatment at 800 W for 60 s, but was not observed in the conductive-heated spores at the same time-temperature exposure. The distinct patterns of ultrastructural alterations following microwave and conductive heat treatment were observed and the degree of damages by microwave was in the exposure time-dependent manner. Microwave would therefore be a simple and time-efficient tool to inactivate C. difficile spores, thus reducing the risk of C. difficile transmission.

  6. Mushrooms use convectively created airflows to disperse their spores.

    PubMed

    Dressaire, Emilie; Yamada, Lisa; Song, Boya; Roper, Marcus

    2016-03-15

    Thousands of basidiomycete fungal species rely on mushroom spores to spread across landscapes. It has long been thought that spores depend on favorable winds for dispersal--that active control of spore dispersal by the parent fungus is limited to an impulse delivered to the spores to carry them clear of the gill surface. Here we show that evaporative cooling of the air surrounding the pileus creates convective airflows capable of carrying spores at speeds of centimeters per second. Convective cells can transport spores from gaps that may be only 1 cm high and lift spores 10 cm or more into the air. This work reveals how mushrooms tolerate and even benefit from crowding and explains their high water needs.

  7. Mushrooms use convectively created airflows to disperse their spores

    PubMed Central

    Dressaire, Emilie; Yamada, Lisa; Song, Boya; Roper, Marcus

    2016-01-01

    Thousands of basidiomycete fungal species rely on mushroom spores to spread across landscapes. It has long been thought that spores depend on favorable winds for dispersal—that active control of spore dispersal by the parent fungus is limited to an impulse delivered to the spores to carry them clear of the gill surface. Here we show that evaporative cooling of the air surrounding the pileus creates convective airflows capable of carrying spores at speeds of centimeters per second. Convective cells can transport spores from gaps that may be only 1 cm high and lift spores 10 cm or more into the air. This work reveals how mushrooms tolerate and even benefit from crowding and explains their high water needs. PMID:26929324

  8. Fern Spore Longevity in Saline Water: Can Sea Bottom Sediments Maintain a Viable Spore Bank?

    PubMed Central

    de Groot, G. Arjen; During, Heinjo

    2013-01-01

    Freshwater and marine sediments often harbor reservoirs of plant diaspores, from which germination and establishment may occur whenever the sediment falls dry. Therewith, they form valuable records of historical inter- and intraspecific diversity, and are increasingly exploited to facilitate diversity establishment in new or restored nature areas. Yet, while ferns may constitute a considerable part of a vegetation’s diversity and sediments are known to contain fern spores, little is known about their longevity, which may suffer from inundation and - in sea bottoms - salt stress. We tested the potential of ferns to establish from a sea or lake bottom, using experimental studies on spore survival and gametophyte formation, as well as a spore bank analysis on sediments from a former Dutch inland sea. Our experimental results revealed clear differences among species. For Asplenium scolopendrium and Gymnocarpium dryopteris, spore germination was not affected by inundated storage alone, but decreased with rising salt concentrations. In contrast, for Asplenium trichomanes subsp. quadrivalens germination decreased following inundation, but not in response to salt. Germination rates decreased with time of storage in saline water. Smaller and less viable gametophytes were produced when saline storage lasted for a year. Effects on germination and gametophyte development clearly differed among genotypes of A. scolopendrium. Spore bank analyses detected no viable spores in marine sediment layers. Only two very small gametophytes (identified as Thelypteris palustris via DNA barcoding) emerged from freshwater sediments. Both died before maturation. We conclude that marine, and likely even freshwater sediments, will generally be of little value for long-term storage of fern diversity. The development of any fern vegetation on a former sea floor will depend heavily on the deposition of spores onto the drained land by natural or artificial means of dispersal. PMID:24223951

  9. Fern spore longevity in saline water: can sea bottom sediments maintain a viable spore bank?

    PubMed

    de Groot, G Arjen; During, Heinjo

    2013-01-01

    Freshwater and marine sediments often harbor reservoirs of plant diaspores, from which germination and establishment may occur whenever the sediment falls dry. Therewith, they form valuable records of historical inter- and intraspecific diversity, and are increasingly exploited to facilitate diversity establishment in new or restored nature areas. Yet, while ferns may constitute a considerable part of a vegetation's diversity and sediments are known to contain fern spores, little is known about their longevity, which may suffer from inundation and--in sea bottoms--salt stress. We tested the potential of ferns to establish from a sea or lake bottom, using experimental studies on spore survival and gametophyte formation, as well as a spore bank analysis on sediments from a former Dutch inland sea. Our experimental results revealed clear differences among species. For Asplenium scolopendrium and Gymnocarpium dryopteris, spore germination was not affected by inundated storage alone, but decreased with rising salt concentrations. In contrast, for Asplenium trichomanes subsp. quadrivalens germination decreased following inundation, but not in response to salt. Germination rates decreased with time of storage in saline water. Smaller and less viable gametophytes were produced when saline storage lasted for a year. Effects on germination and gametophyte development clearly differed among genotypes of A. scolopendrium. Spore bank analyses detected no viable spores in marine sediment layers. Only two very small gametophytes (identified as Thelypteris palustris via DNA barcoding) emerged from freshwater sediments. Both died before maturation. We conclude that marine, and likely even freshwater sediments, will generally be of little value for long-term storage of fern diversity. The development of any fern vegetation on a former sea floor will depend heavily on the deposition of spores onto the drained land by natural or artificial means of dispersal.

  10. Adaptation of the Spore Discharge Mechanism in the Basidiomycota

    PubMed Central

    Stolze-Rybczynski, Jessica L.; Cui, Yunluan; Stevens, M. Henry H.; Davis, Diana J.; Fischer, Mark W. F.; Money, Nicholas P.

    2009-01-01

    Background Spore discharge in the majority of the 30,000 described species of Basidiomycota is powered by the rapid motion of a fluid droplet, called Buller's drop, over the spore surface. In basidiomycete yeasts, and phytopathogenic rusts and smuts, spores are discharged directly into the airflow around the fungal colony. Maximum discharge distances of 1–2 mm have been reported for these fungi. In mushroom-forming species, however, spores are propelled over much shorter ranges. In gilled mushrooms, for example, discharge distances of <0.1 mm ensure that spores do not collide with opposing gill surfaces. The way in which the range of the mechanism is controlled has not been studied previously. Methodology/Principal Findings In this study, we report high-speed video analysis of spore discharge in selected basidiomycetes ranging from yeasts to wood-decay fungi with poroid fruiting bodies. Analysis of these video data and mathematical modeling show that discharge distance is determined by both spore size and the size of the Buller's drop. Furthermore, because the size of Buller's drop is controlled by spore shape, these experiments suggest that seemingly minor changes in spore morphology exert major effects upon discharge distance. Conclusions/Significance This biomechanical analysis of spore discharge mechanisms in mushroom-forming fungi and their relatives is the first of its kind and provides a novel view of the incredible variety of spore morphology that has been catalogued by traditional taxonomists for more than 200 years. Rather than representing non-selected variations in micromorphology, the new experiments show that changes in spore architecture have adaptive significance because they control the distance that the spores are shot through air. For this reason, evolutionary modifications to fruiting body architecture, including changes in gill separation and tube diameter in mushrooms, must be tightly linked to alterations in spore morphology. PMID:19129912

  11. Magnetic Launch Assist System Demonstration

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This Quick Time movie demonstrates the Magnetic Launch Assist system, previously referred to as the Magnetic Levitation (Maglev) system, for space launch using a 5 foot model of a reusable Bantam Class launch vehicle on a 50 foot track that provided 6-g acceleration and 6-g de-acceleration. Overcoming the grip of Earth's gravity is a supreme challenge for engineers who design rockets that leave the planet. Engineers at the Marshall Space Flight Center have developed and tested Magnetic Launch Assist technologies that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using electricity and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the takeoff, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  12. Magnetic Launch Assist System Demonstration

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This Quick Time movie demonstrates the Magnetic Launch Assist system, previously referred to as the Magnetic Levitation (Maglev) system, for space launch using a 5 foot model of a reusable Bantam Class launch vehicle on a 50 foot track that provided 6-g acceleration and 6-g de-acceleration. Overcoming the grip of Earth's gravity is a supreme challenge for engineers who design rockets that leave the planet. Engineers at the Marshall Space Flight Center have developed and tested Magnetic Launch Assist technologies that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using electricity and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the takeoff, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  13. Launch vehicle performance using metallized propellants

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.; Powell, Richard

    1991-01-01

    Metallized propellant propulsion systems are considered as replacements for the solid rocket boosters and liquid sustainer stages on the current launch vehicles: both the Space Transportation System (STS) and the Titan 4. Liquid rocket boosters for the STS were analyzed as replacements for current solid rocket boosters. These boosters can provide a liquid propulsion system within the volume constraints of a solid rocket booster. A replacement for the Space Shuttle Main Engines using metallized O2/H2/Al was studied. The liquid stages of the Titan 4 were also investigated; the Aerozine-50 (A-50) fuel was replaced with metallized storable A-50/Al. A metallized propellant is similar to a traditional liquid propellant. However, it has metal particles, such as aluminum, that are suspended in a gelled fuel, such as hydrogen, RP-1, A-50 or monomethyl hydrazine (MMH). The fuels then undergo combustion with liquid oxygen or nitrogen tetroxide (NTO). These propellants provide options for increasing the performance of existing launch vehicle chemical propulsion systems by increasing fuel density or specific impulse or both. These increases in density and specific impulse can significantly reduce the propulsion system liftoff weight and allow a liquid rocket booster to fit into the same volume as an existing solid rocket booster. Also, because gelled fuels are akin to liquid propellants, metallized systems can provide enhanced controllability over solid propulsion systems. Gelling of the propellant also reduces the sensitivity to impacts and consequently reduces the propellant explosion hazard.

  14. Launch vehicle selection model

    NASA Technical Reports Server (NTRS)

    Montoya, Alex J.

    1990-01-01

    Over the next 50 years, humans will be heading for the Moon and Mars to build scientific bases to gain further knowledge about the universe and to develop rewarding space activities. These large scale projects will last many years and will require large amounts of mass to be delivered to Low Earth Orbit (LEO). It will take a great deal of planning to complete these missions in an efficient manner. The planning of a future Heavy Lift Launch Vehicle (HLLV) will significantly impact the overall multi-year launching cost for the vehicle fleet depending upon when the HLLV will be ready for use. It is desirable to develop a model in which many trade studies can be performed. In one sample multi-year space program analysis, the total launch vehicle cost of implementing the program reduced from 50 percent to 25 percent. This indicates how critical it is to reduce space logistics costs. A linear programming model has been developed to answer such questions. The model is now in its second phase of development, and this paper will address the capabilities of the model and its intended uses. The main emphasis over the past year was to make the model user friendly and to incorporate additional realistic constraints that are difficult to represent mathematically. We have developed a methodology in which the user has to be knowledgeable about the mission model and the requirements of the payloads. We have found a representation that will cut down the solution space of the problem by inserting some preliminary tests to eliminate some infeasible vehicle solutions. The paper will address the handling of these additional constraints and the methodology for incorporating new costing information utilizing learning curve theory. The paper will review several test cases that will explore the preferred vehicle characteristics and the preferred period of construction, i.e., within the next decade, or in the first decade of the next century. Finally, the paper will explore the interaction

  15. Launch vehicle selection model

    NASA Technical Reports Server (NTRS)

    Montoya, Alex J.

    1990-01-01

    Over the next 50 years, humans will be heading for the Moon and Mars to build scientific bases to gain further knowledge about the universe and to develop rewarding space activities. These large scale projects will last many years and will require large amounts of mass to be delivered to Low Earth Orbit (LEO). It will take a great deal of planning to complete these missions in an efficient manner. The planning of a future Heavy Lift Launch Vehicle (HLLV) will significantly impact the overall multi-year launching cost for the vehicle fleet depending upon when the HLLV will be ready for use. It is desirable to develop a model in which many trade studies can be performed. In one sample multi-year space program analysis, the total launch vehicle cost of implementing the program reduced from 50 percent to 25 percent. This indicates how critical it is to reduce space logistics costs. A linear programming model has been developed to answer such questions. The model is now in its second phase of development, and this paper will address the capabilities of the model and its intended uses. The main emphasis over the past year was to make the model user friendly and to incorporate additional realistic constraints that are difficult to represent mathematically. We have developed a methodology in which the user has to be knowledgeable about the mission model and the requirements of the payloads. We have found a representation that will cut down the solution space of the problem by inserting some preliminary tests to eliminate some infeasible vehicle solutions. The paper will address the handling of these additional constraints and the methodology for incorporating new costing information utilizing learning curve theory. The paper will review several test cases that will explore the preferred vehicle characteristics and the preferred period of construction, i.e., within the next decade, or in the first decade of the next century. Finally, the paper will explore the interaction

  16. Explosively separable casing

    DOEpatents

    Jacobson, Albin K.; Rychnovsky, Raymond E.; Visbeck, Cornelius N.

    1985-01-01

    An explosively separable casing including a cylindrical afterbody and a circular cover for one end of the afterbody is disclosed. The afterbody has a cylindrical tongue extending longitudinally from one end which is matingly received in a corresponding groove in the cover. The groove is sized to provide a pocket between the end of the tongue and the remainder of the groove so that an explosive can be located therein. A seal is also provided between the tongue and the groove for sealing the pocket from the atmosphere. A frangible holding device is utilized to hold the cover to the afterbody. When the explosive is ignited, the increase in pressure in the pocket causes the cover to be accelerated away from the afterbody. Preferably, the inner wall of the afterbody is in the same plane as the inner wall of the tongue to provide a maximum space for storage in the afterbody and the side wall of the cover is thicker than the side wall of the afterbody so as to provide a sufficiently strong surrounding portion for the pocket in which the explosion takes place. The detonator for the explosive is also located on the cover and is carried away with the cover during separation. The seal is preferably located at the longitudinal end of the tongue and has a chevron cross section.

  17. Explosively separable casing

    DOEpatents

    Jacobson, A.K.; Rychnovsky, R.E.; Visbeck, C.N.

    An explosively separable casing including a cylindrical afterbody and a circular cover for one end of the afterbody is disclosed. The afterbody has a cylindrical tongue extending longitudinally from one end which is matingly received in a corresponding groove in the cover. The groove is sized to provide a picket between the end of the tongue and the remainder of the groove so that an explosive can be located therein. A seal is also provided between the tongue and the groove for sealing the pocket from the atmosphere. A frangible holding device is utilized to hold the cover to the afterbody. When the explosive is ignited, the increase in pressure in the pocket causes the cover to be accelerated away from the afterbody. Preferably, the inner wall of the afterbody is in the same plane as the inner wall of the tongue to provide a maximum space for storage in the afterbody and the side wall of the cover is thicker than the side wall of the afterbody so as to provide a sufficiently strong surrounding portion for the pocket in which the explosion takes place. The detonator for the explosive is also located on the cover and is carried away with the cover during separation. The seal is preferably located at the longitudinal end of the tongue and has a chevron cross section.

  18. Explosion containment device

    DOEpatents

    Benedick, William B.; Daniel, Charles J.

    1977-01-01

    The disclosure relates to an explosives storage container for absorbing and containing the blast, fragments and detonation products from a possible detonation of a contained explosive. The container comprises a layer of distended material having sufficient thickness to convert a portion of the kinetic energy of the explosion into thermal energy therein. A continuous wall of steel sufficiently thick to absorb most of the remaining kinetic energy by stretching and expanding, thereby reducing the momentum of detonation products and high velocity fragments, surrounds the layer of distended material. A crushable layer surrounds the continuous steel wall and accommodates the stretching and expanding thereof, transmitting a moderate load to the outer enclosure. These layers reduce the forces of the explosion and the momentum of the products thereof to zero. The outer enclosure comprises a continuous pressure wall enclosing all of the layers. In one embodiment, detonation of the contained explosive causes the outer enclosure to expand which indicates to a visual observer that a detonation has occurred.

  19. CLOSTRIDIUM SPORE ATTACHMENT TO HUMAN CELLS

    SciTech Connect

    PANESSA-WARREN,B.; TORTORA,G.; WARREN,J.

    1997-08-10

    This paper uses high resolution scanning electron microscopy (SEM) with a LaB6 gun and the newest commercial field emission guns, to obtain high magnification images of intact clostridial spores throughout the activation/germination/outgrowth process. By high resolution SEM, the clostridial exosporial membrane can be seen to produce numerous delicate projections (following activation), that extend from the exosporial surface to a nutritive substrate (agar), or cell surface when anaerobically incubated in the presence of human cells (embryonic fibroblasts and colon carcinoma cells). Magnifications of 20,000 to 200,000Xs at accelerating voltages low enough to minimize or eliminate specimen damage (1--5 kV) have permitted the entire surface of C.sporogenes and C.difficile endospores to be examined during all stages of germination. The relationships between the spore and the agar or human cell surface were also clearly visible.

  20. Viability of bacterial spores exposed to hydrazine

    NASA Astrophysics Data System (ADS)

    Schubert, W.; Plett, G.; Yavrouian, A.; Barengoltz, J.

    For the purposes of planetary protection a series of experiments were performed to answer a long-standing question about the potential of bacterial contamination of interplanetary spacecraft from liquid hydrazine Spores of Bacillus atrophaeus ATCC No 9372 also known as Bacillus subtilis var niger and BSN were exposed to hydrazine for various durations Then the survivors were enumerated using the NASA standard planetary protection pour plate assay It is important to note that in these experiments the hydrazine was removed prior to the assay This eliminated the possibility that the presence of hydrazine rather than a prior exposure was inhibiting germination and or reproduction Populations of 10 6 spores were eliminated within 30 minutes These results indicate that bulk hydrazine rocket propellant may be considered free of living bacterial cells for planetary protection compliance