Science.gov

Sample records for explosives detection systems

  1. Idaho Explosive Detection System

    ScienceCinema

    Klinger, Jeff

    2016-07-12

    Learn how INL researchers are making the world safer by developing an explosives detection system that can inspect cargo. For more information about INL security research, visit http://www.facebook.com/idahonationallaboratory

  2. Idaho Explosive Detection System

    SciTech Connect

    Klinger, Jeff

    2011-01-01

    Learn how INL researchers are making the world safer by developing an explosives detection system that can inspect cargo. For more information about INL security research, visit http://www.facebook.com/idahonationallaboratory

  3. Idaho Explosives Detection System

    SciTech Connect

    Edward L. Reber; J. Keith Jewell; Larry G. Blackwood; Andrew J. Edwards; Kenneth W. Rohde; Edward H. Seabury

    2004-10-01

    The Idaho Explosives Detection System (IEDS) was developed at the Idaho National Laboratory (INL) to respond to threats imposed by delivery trucks carrying explosives into military bases. A full-scale prototype system has been built and is currently undergoing testing. The system consists of two racks, one on each side of a subject vehicle. Each rack includes a neutron generator and an array of NaI detectors. The two neutron generators are pulsed and synchronized. A laptop computer controls the entire system. The control software is easily operable by minimally trained staff. The system was developed to detect explosives in a medium size truck within a 5-minute measurement time. System performance was successfully demonstrated with explosives at the INL in June 2004 and at Andrews Air Force Base in July 2004.

  4. Idaho Explosives Detection System

    SciTech Connect

    Edward L. Reber; Larry G. Blackwood; Andrew J. Edwards; J. Keith Jewell; Kenneth W. Rohde; Edward H. Seabury; Jeffery B. Klinger

    2005-12-01

    The Idaho Explosives Detection System was developed at the Idaho National Laboratory (INL) to respond to threats imposed by delivery trucks potentially carrying explosives into military bases. A full-scale prototype system has been built and is currently undergoing testing. The system consists of two racks, one on each side of a subject vehicle. Each rack includes a neutron generator and an array of NaI detectors. The two neutron generators are pulsed and synchronized. A laptop computer controls the entire system. The control software is easily operable by minimally trained staff. The system was developed to detect explosives in a medium size truck within a 5-min measurement time. System performance was successfully demonstrated with explosives at the INL in June 2004 and at Andrews Air Force Base in July 2004.

  5. Hand held explosives detection system

    DOEpatents

    Conrad, Frank J.

    1992-01-01

    The present invention is directed to a sensitive hand-held explosives detection device capable of detecting the presence of extremely low quantities of high explosives molecules, and which is applicable to sampling vapors from personnel, baggage, cargo, etc., as part of an explosives detection system.

  6. Explosive simulants for testing explosive detection systems

    DOEpatents

    Kury, John W.; Anderson, Brian L.

    1999-09-28

    Explosives simulants that include non-explosive components are disclosed that facilitate testing of equipment designed to remotely detect explosives. The simulants are non-explosive, non-hazardous materials that can be safely handled without any significant precautions. The simulants imitate real explosives in terms of mass density, effective atomic number, x-ray transmission properties, and physical form, including moldable plastics and emulsions/gels.

  7. Explosives detection system and method

    DOEpatents

    Reber, Edward L.; Jewell, James K.; Rohde, Kenneth W.; Seabury, Edward H.; Blackwood, Larry G.; Edwards, Andrew J.; Derr, Kurt W.

    2007-12-11

    A method of detecting explosives in a vehicle includes providing a first rack on one side of the vehicle, the rack including a neutron generator and a plurality of gamma ray detectors; providing a second rack on another side of the vehicle, the second rack including a neutron generator and a plurality of gamma ray detectors; providing a control system, remote from the first and second racks, coupled to the neutron generators and gamma ray detectors; using the control system, causing the neutron generators to generate neutrons; and performing gamma ray spectroscopy on spectra read by the gamma ray detectors to look for a signature indicative of presence of an explosive. Various apparatus and other methods are also provided.

  8. Method and system for detecting explosives

    DOEpatents

    Reber, Edward L.; Jewell, James K.; Rohde, Kenneth W.; Seabury, Edward H.; Blackwood, Larry G.; Edwards, Andrew J.; Derr, Kurt W.

    2009-03-10

    A method of detecting explosives in a vehicle includes providing a first rack on one side of the vehicle, the rack including a neutron generator and a plurality of gamma ray detectors; providing a second rack on another side of the vehicle, the second rack including a neutron generator and a plurality of gamma ray detectors; providing a control system, remote from the first and second racks, coupled to the neutron generators and gamma ray detectors; using the control system, causing the neutron generators to generate neutrons; and performing gamma ray spectroscopy on spectra read by the gamma ray detectors to look for a signature indicative of presence of an explosive. Various apparatus and other methods are also provided.

  9. Method and system for detecting an explosive

    DOEpatents

    Reber, Edward L.; Rohde, Kenneth W.; Blackwood, Larry G.

    2010-12-07

    A method and system for detecting at least one explosive in a vehicle using a neutron generator and a plurality of NaI detectors. Spectra read from the detectors is calibrated by performing Gaussian peak fitting to define peak regions, locating a Na peak and an annihilation peak doublet, assigning a predetermined energy level to one peak in the doublet, and predicting a hydrogen peak location based on a location of at least one peak of the doublet. The spectra are gain shifted to a common calibration, summed for respective groups of NaI detectors, and nitrogen detection analysis performed on the summed spectra for each group.

  10. Projection image enhancement for explosive detection systems

    NASA Astrophysics Data System (ADS)

    Yildiz, Yesna O.; Abraham, Douglas Q.; Agaian, Sos; Panetta, Karen

    2008-02-01

    Automated Explosive Detection Systems (EDS) utilizing Computed Tomography (CT) generate a series of 2-D projections from a series of X-ray scans OF luggage under inspection. 3-D volumetric images can also be generated from the collected data set. Extensive data manipulation of the 2-D and 3-D image sets for detecting the presence of explosives is done automatically by EDS. The results are then forwarded to human screeners for final review. The final determination as to whether the luggage contains an explosive and needs to be searched manually is performed by trained TSA (Transportation Security Administration) screeners following an approved TSA protocol. The TSA protocol has the screeners visually inspect the resulting images and the renderings from the EDS to determine if the luggage is suspicious and consequently should be searched manually. Enhancing those projection images delivers a higher quality screening, reduces screening time and also reduces the amount of luggage that needs to be manually searched otherwise. This paper presents a novel edge detection algorithm that is geared towards, though not exclusive to, automated explosive detection systems. The goal of these enhancements is to provide a higher quality screening process while reducing the overall screening time and luggage search rates. Accurately determining the location of edge pixels within 2-D signals, often the first step in segmentation and recognition systems indicates the boundary between overlapping objects in a luggage. Most of the edge detection algorithms such as Canny, Prewitt, Roberts, Sobel, and Laplacian methods are based on the first and second derivatives/difference operators. These operators detect the discontinuities in the differences of pixels. These approaches are sensitive to the presence of noise and could produce false edges in noisy images. Including large scale filters, may avoid errors generated by noise, but often simultaneously eliminating the finer edge details as

  11. Design of an explosive detection system using Monte Carlo method.

    PubMed

    Hernández-Adame, Pablo Luis; Medina-Castro, Diego; Rodriguez-Ibarra, Johanna Lizbeth; Salas-Luevano, Miguel Angel; Vega-Carrillo, Hector Rene

    2016-11-01

    Regardless the motivation terrorism is the most important risk for the national security in many countries. Attacks with explosives are the most common method used by terrorists. Therefore several procedures to detect explosives are utilized; among these methods are the use of neutrons and photons. In this study the Monte Carlo method an explosive detection system using a (241)AmBe neutron source was designed. In the design light water, paraffin, polyethylene, and graphite were used as moderators. In the work the explosive RDX was used and the induced gamma rays due to neutron capture in the explosive was estimated using NaI(Tl) and HPGe detectors. When light water is used as moderator and HPGe as the detector the system has the best performance allowing distinguishing between the explosive and urea. For the final design the Ambient dose equivalent for neutrons and photons were estimated along the radial and axial axis.

  12. Universal explosive detection system for homeland security applications

    NASA Astrophysics Data System (ADS)

    Lee, Vincent Y.; Bromberg, Edward E. A.

    2010-04-01

    L-3 Communications CyTerra Corporation has developed a high throughput universal explosive detection system (PassPort) to automatically screen the passengers in airports without requiring them to remove their shoes. The technical approach is based on the patented energetic material detection (EMD) technology. By analyzing the results of sample heating with an infrared camera, one can distinguish the deflagration or decomposition of an energetic material from other clutters such as flammables and general background substances. This becomes the basis of a universal explosive detection system that does not require a library and is capable of detecting trace levels of explosives with a low false alarm rate. The PassPort is a simple turnstile type device and integrates a non-intrusive aerodynamic sampling scheme that has been shown capable of detecting trace levels of explosives on shoes. A detailed description of the detection theory and the automated sampling techniques, as well as the field test results, will be presented.

  13. 49 CFR 1544.213 - Use of explosives detection systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... explosives detection system that uses X-ray technology to inspect checked baggage the aircraft operator must... and advise them to remove all X-ray, scientific, and high-speed film from checked baggage before...

  14. 49 CFR 1544.213 - Use of explosives detection systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... inspection of photographic equipment and film. (1) At locations at which an aircraft operator or TSA uses an... and advise them to remove all X-ray, scientific, and high-speed film from checked baggage before... photographic equipment and film packages without exposure to an explosives detection system. (2) If...

  15. 49 CFR 1544.213 - Use of explosives detection systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... inspection of photographic equipment and film. (1) At locations at which an aircraft operator or TSA uses an... and advise them to remove all X-ray, scientific, and high-speed film from checked baggage before... photographic equipment and film packages without exposure to an explosives detection system. (2) If...

  16. 49 CFR 1544.213 - Use of explosives detection systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 9 2013-10-01 2013-10-01 false Use of explosives detection systems. 1544.213 Section 1544.213 Transportation Other Regulations Relating to Transportation (Continued) TRANSPORTATION SECURITY ADMINISTRATION, DEPARTMENT OF HOMELAND SECURITY CIVIL AVIATION SECURITY AIRCRAFT OPERATOR...

  17. 49 CFR 1544.213 - Use of explosives detection systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 9 2011-10-01 2011-10-01 false Use of explosives detection systems. 1544.213 Section 1544.213 Transportation Other Regulations Relating to Transportation (Continued) TRANSPORTATION SECURITY ADMINISTRATION, DEPARTMENT OF HOMELAND SECURITY CIVIL AVIATION SECURITY AIRCRAFT OPERATOR...

  18. Gamma detectors in explosives and narcotics detection systems

    NASA Astrophysics Data System (ADS)

    Bystritsky, V. M.; Zubarev, E. V.; Krasnoperov, A. V.; Porohovoi, S. Yu.; Rapatskii, V. L.; Rogov, Yu. N.; Sadovskii, A. B.; Salamatin, A. V.; Salmin, R. A.; Slepnev, V. M.; Andreev, E. I.

    2013-11-01

    Gamma detectors based on BGO crystals were designed and developed at the Joint Institute for Nuclear Research. These detectors are used in explosives and narcotics detection systems. Key specifications and design features of the detectors are presented. A software temperature-compensation method that makes it possible to stabilize the gamma detector response and operate the detector in a temperature range from -20 to 50°C is described.

  19. Wireless system for explosion detection in underground structures

    NASA Astrophysics Data System (ADS)

    Chikhradze, M.; Bochorishvili, N.; Akhvlediani, I.; Kukhalashvili, D.; Kalichava, I.; Mataradze, E.

    2009-06-01

    Considering the growing threat of terrorist or accidental explosions in underground stations, underground highway and railway sections improvement of system for protecting people from explosions appears urgent. Current automatic protective devices with blast identification module and blast damping absorbers of various designs as their basic elements cannot be considered effective. Analysis revealed that low reliability of blast detection and delayed generation of start signal for the activation of an absorber are the major disadvantages of protective devices. Besides the transmission of trigger signal to an energy absorber through cable communication reduces the reliability of the operation of protective device due to a possible damage of electric wiring under blast or mechanical attack. This paper presents the outcomes of the studies conducted to select accurate criteria for blast identification and to design wireless system of activation of defensive device. The results of testing of blast detection methods (seismic, EMP, optical, on overpressure) showed that the proposed method, which implies constant monitoring of overpressure in terms of its reliability and response speed, best meets the requirements. Proposed wireless system for explosions identification and activation of protective device consists of transmitter and receiver modules. Transmitter module contains sensor and microprocessor equipped with blast identification software. Receiver module produces activation signal for operation of absorber. Tests were performed in the underground experimental base of Mining Institute. The time between the moment of receiving signal by the sensor and activation of absorber - 640 microsecond; distance between transmitter and receiver in direct tunnel - at least 150m; in tunnel with 900 bending - 50m. This research is sponsored by NATO's Public Diplomacy Division in the framework of "Science for Peace".

  20. Recent development of two new UV Raman standoff explosive detection systems

    NASA Astrophysics Data System (ADS)

    Waterbury, Rob; Babnick, Robert; Cooper, Justin L.; Ford, Alan R.; Herrera, Francisco; Hopkins, Adam J.; Pohl, Ken; Profeta, Luisa T. M.; Sandoval, Juan; Vunck, Darius

    2016-05-01

    Alakai Defense Systems has created two new short range UV Raman standoff explosive detection sensors. These are called the Critical Infrastructure Protection System (CIPS) and Portable Raman Improvised Explosive Detection System (PRIED) and work at standoff ranges of 10cm and 1-10m respectively. Both these systems are designed to detect neartrace quantities of explosives and Homemade Explosives. A short description of the instruments, design trades, and CONOPS of each design is presented. Data includes a wide variety of explosives, precursors, TIC/TIM's, narcotics, and CWA simulants

  1. A non-imaging polarized terahertz passive system for detecting and identifying concealed explosives

    NASA Astrophysics Data System (ADS)

    Karam, Mostafa A.; Meyer, Doug

    2011-06-01

    Existing terahertz THz systems for detecting concealed explosives are not capable of identifying explosive type which leads to higher false alarm rates. Moreover, some of those systems are imaging systems that invade personal privacy, and require more processing and computational resources. Other systems have no polarization preference which makes them incapable of capturing the geometric features of an explosive. In this study a non-imaging polarized THz passive system for detecting and identifying concealed explosives overcoming the forgoing shortcomings is developed. The system employs a polarized passive THz sensor in acquiring emitted data from a scene that may have concealed explosives. The acquired data are decomposed into their natural resonance frequencies, and the number of those frequencies is used as criteria in detecting the explosive presence. If the presence of an explosive is confirmed, a set of physically based retrieval algorithms is used in extracting the explosive dielectric constant/refractive index value from natural resonance frequencies and amplitudes of associated signals. Comparing the refractive index value against a database of refractive indexes of known explosives identifies the explosive type. As an application, a system having a dual polarized radiometer operating within the frequency band of 0.62- 0.82 THz is presented and used in detecting and identifying person borne C-4 explosive concealed under a cotton garment. The system showed higher efficiencies in detecting and identifying the explosive.

  2. Using Gunshot Detection Systems to Fight Explosive Fishing Practices

    NASA Astrophysics Data System (ADS)

    Showen, R. L.; Dunson, J. C.; Woodman, G.; Christopher, S.; Wilson, S.

    2015-12-01

    Blast fishing (using explosives to catch fish) causes extensive damage to coral reefs, especially in the Coral Triangle in Southeast Asia. Subsistence fishermen and larger consortiums, often with criminal links, throw an explosive into a school of fish, killing all sea life within range. This unsustainable practice is becoming more prevalent, and threatens the protein supply of as many as a billion people. Ending blast fishing will require combined technical and societal methods aimed at both deterring the practice, and catching those responsible. Our work aims to significantly improve enforcement. We are re-purposing SST's ShotSpotter gunshot detection system, (trusted and valued by police around the world), substituting hydrophones for the present microphones. Using multilateration and trained human reviewers, the system can give prompt blast alerts, location data, and acoustic waveforms to law enforcement officials. We hope to establish a prototype system in Malaysia in 2015, and have already secured governmental approvals for installation and tests with local law enforcement. The Scubazoo media firm in Malaysia is working with resorts, dive operations, and celebrity sponsors, and is planning to produce videos to illustrate the severity of the problem to both governments and the public. Because there is little hard data concerning the prevalence of blast fishing in either marine protected areas or open waters, the system can also indicate to the world the actual blast rates and patterns of use. The Teng Hoi environmental NGO in Hong Kong showed in 2004 that acoustic waves from typical bombs propagate on the order of 20 km, so an underwater locator system with a small number of sensors can feasibly cover a sizable coral region. Our present plans are to mount sensors on piers, buoys, and boats, but if possible we would also like to integrate with other existing acoustic arrays to strengthen the fight against blast fishing.

  3. Compact standoff Raman system for detection of homemade explosives

    NASA Astrophysics Data System (ADS)

    Misra, Anupam K.; Sharma, Shiv K.; Bates, David E.; Acosta, Tayro E.

    2010-04-01

    We present data on standoff detection of chemicals used in synthesis of homemade explosives (HME) using a compact portable standoff Raman system developed at the University of Hawaii. Data presented in this article show that good quality Raman spectra of various organic and inorganic chemicals, including hazardous chemicals such as ammonium nitrate, potassium nitrate, potassium perchlorate, sulfur, nitrobenzene, benzene, acetone, and gasoline, can be easily obtained from remote distances with a compact standoff Raman system utilizing only a regular 85 mm Nikon camera lens as collection optics. Raman spectra of various chemicals showing clear Raman fingerprints obtained from targets placed at 50 m distance in daylight with 1 to 10 second of integration time are presented in this article. A frequency-doubled mini Nd:YAG pulsed laser source (532 nm, 30 mJ/pulse, 20 Hz, pulse width 8 ns) is used in an oblique geometry to excite the target located at 50 m distance. The standoff Raman system uses a compact spectrograph of size 10 cm (length) × 8.2 cm (width) × 5.2 cm (height) with spectral coverage from 100 to 4500 cm-1 Stokes-Raman shifted from 532 nm laser excitation and is equipped with a gated thermo-electrically cooled ICCD detector. The system is capable of detecting both the target as well as the atmospheric gases before the target. Various chemicals could be easily identified through glass, plastic, and water media. Possible applications of the standoff Raman system for homeland security and environmental monitoring are discussed.

  4. Chemical sensing system for classification of mine-like objects by explosives detection

    SciTech Connect

    Chambers, W.B.; Rodacy, P.J.; Jones, E.E.; Gomez, B.J.; Woodfin, R.L.

    1998-04-01

    Sandia National Laboratories has conducted research in chemical sensing and analysis of explosives for many years. Recently, that experience has been directed towards detecting mines and unexploded ordnance (UXO) by sensing the low-level explosive signatures associated with these objects. The authors focus has been on the classification of UXO in shallow water and anti-personnel/anti tank mines on land. The objective of this work is to develop a field portable chemical sensing system which can be used to examine mine-like objects (MLO) to determine whether there are explosive molecules associated with the MLO. Two sampling subsystems have been designed, one for water collection and one for soil/vapor sampling. The water sampler utilizes a flow-through chemical adsorbent canister to extract and concentrate the explosive molecules. Explosive molecules are thermally desorbed from the concentrator and trapped in a focusing stage for rapid desorption into an ion-mobility spectrometer (IMS). The authors describe a prototype system which consists of a sampler, concentrator-focuser, and detector. The soil sampler employs a light-weight probe for extracting and concentrating explosive vapor from the soil in the vicinity of an MLO. The chemical sensing system is capable of sub-part-per-billion detection of TNT and related explosive munition compounds. They present the results of field and laboratory tests on buried landmines which demonstrate their ability to detect the explosive signatures associated with these objects.

  5. Chemical sensing system for classification of minelike objects by explosives detection

    NASA Astrophysics Data System (ADS)

    Chambers, William B.; Rodacy, Philip J.; Jones, Edwin E.; Gomez, Bernard J.; Woodfin, Ronald L.

    1998-09-01

    Sandia National Laboratories has conducted research in chemical sensing and analysis of explosives for many years. Recently, that experience has been directed towards detecting mines and unexploded ordnance (UXO) by sensing the low-level explosive signatures associated with these objects. Our focus has been on the classification of UXO in shallow water and anti-personnel/anti tank mines on land. The objective of this work is to develop a field portable chemical sensing system which can be used to examine mine-like objects (MLO) to determine whether there are explosive molecules associated with the MLO. Two sampling subsystems have been designed, one for water collection and one for soil/vapor sampling. The water sampler utilizes a flow-through chemical adsorbent canister to extract and concentrate the explosive molecules. Explosive molecules are thermally desorbed from the concentrator and trapped in a focusing stage for rapid desorption into an ion-mobility spectrometer (IMS). We will describe a prototype system which consists of a sampler, concentrator-focuser, and detector. The soil sampler employs a light-weight probe for extracting and concentrating explosive vapor from the soil in the vicinity of an MLO. The chemical sensing system is capable of sub-part-per-billion detection of TNT and related explosive munition compounds. We will present the results of field and laboratory tests on buried landmines, which demonstrate our ability to detect the explosive signatures associated with these objects.

  6. Prototype explosives detection system based on nuclear resonance absorption in nitrogen

    SciTech Connect

    Morgado, R.E.; Arnone, G.; Cappiello, C.C.; Gardner, S.D.; Hollas, C.L.; Ussery, L.E.; White, J.M.; Zahrt, J.D.; Krauss, R.A.

    1993-12-01

    A-prototype explosives detection system that was developed for experimental evaluation of a nuclear resonance absorption techniques is described. The major subsystems are a proton accelerator and beam transport, high-temperature proton target, an airline-luggage tomographic inspection station, and an image-processing/detection- alarm subsystem. The detection system performance, based on a limited experimental test, is reported.

  7. RoboHound:developing sample collection and preconcentration hardware for a remote trace explosives detection system.

    SciTech Connect

    Peterson, David J.; Denning, David J.; Hobart, Clinton G.; Lenz, Michael C.; Anderson, Robert J.; Carlson, Dennis L.; Hunter, John Anthony; Gladwell, T. Scott; Mitchell, Mary-Anne; Hannum, David W.; Baumann, Mark J.

    2005-09-01

    The RoboHound{trademark} Project was a three-year, multiphase project at Sandia National Laboratories to build and refine a working prototype trace explosive detection system as a tool for a commercial robot. The RoboHound system was envisioned to be a tool for emergency responders to test suspicious items (i.e., packages or vehicles) for explosives while maintaining a safe distance. The project investigated combining Sandia's expertise in trace explosives detection with a wheeled robotic platform that could be programmed to interrogate suspicious items remotely for the presence of explosives. All of the RoboHound field tests were successful, especially with regards to the ability to collect and detect trace samples of RDX. The project has gone from remote sampling with human intervention to a fully automatic system that requires no human intervention until the robot returns from a sortie. A proposal is being made for additional work leading towards commercialization.

  8. An explosives detection system for airline security using coherent x-ray scattering technology

    NASA Astrophysics Data System (ADS)

    Madden, Robert W.; Mahdavieh, Jacob; Smith, Richard C.; Subramanian, Ravi

    2008-08-01

    L-3 Communications Security and Detection Systems (SDS) has developed a new system for automated alarm resolution in airline baggage Explosive Detection Systems (EDS) based on coherent x-ray scattering spectroscopy. The capabilities of the system were demonstrated in tests with concealed explosives at the Transportation Security Laboratory and airline passenger baggage at Orlando International Airport. The system uses x-ray image information to identify suspicious objects and performs targeted diffraction measurements to classify them. This extra layer of detection capability affords a significant reduction in the rate of false alarm objects that must presently be resolved by opening passenger bags for hand inspection.

  9. Nuclear test monitoring system detected meteor explosion over Russia

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2013-10-01

    Sound waves from the Chelyabinsk meteor, which exploded over Russia on 15 February 2013, were detected by 20 infrasound stations that are part of the international monitoring system operated by the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO). The fireball was the most energetic event observed since the 1908 Tunguska meteorite impact and is the most energetic event detected by the CTBTO network.

  10. Portable raman explosives detection

    SciTech Connect

    Moore, David Steven; Scharff, Robert J

    2008-01-01

    Recent advances in portable Raman instruments have dramatically increased their application to emergency response and forensics, as well as homeland defense. This paper reviews the relevant attributes and disadvantages of portable Raman spectroscopy, both essentially and instrumentally, to the task of explosives detection in the field.

  11. Automated detection and cataloging of global explosive volcanism using the International Monitoring System infrasound network

    NASA Astrophysics Data System (ADS)

    Matoza, Robin S.; Green, David N.; Le Pichon, Alexis; Shearer, Peter M.; Fee, David; Mialle, Pierrick; Ceranna, Lars

    2017-04-01

    We experiment with a new method to search systematically through multiyear data from the International Monitoring System (IMS) infrasound network to identify explosive volcanic eruption signals originating anywhere on Earth. Detecting, quantifying, and cataloging the global occurrence of explosive volcanism helps toward several goals in Earth sciences and has direct applications in volcanic hazard mitigation. We combine infrasound signal association across multiple stations with source location using a brute-force, grid-search, cross-bearings approach. The algorithm corrects for a background prior rate of coherent unwanted infrasound signals (clutter) in a global grid, without needing to screen array processing detection lists from individual stations prior to association. We develop the algorithm using case studies of explosive eruptions: 2008 Kasatochi, Alaska; 2009 Sarychev Peak, Kurile Islands; and 2010 Eyjafjallajökull, Iceland. We apply the method to global IMS infrasound data from 2005-2010 to construct a preliminary acoustic catalog that emphasizes sustained explosive volcanic activity (long-duration signals or sequences of impulsive transients lasting hours to days). This work represents a step toward the goal of integrating IMS infrasound data products into global volcanic eruption early warning and notification systems. Additionally, a better understanding of volcanic signal detection and location with the IMS helps improve operational event detection, discrimination, and association capabilities.

  12. Mobile TNA system to detect explosives and drugs concealed in cars and trucks

    NASA Astrophysics Data System (ADS)

    Bendahan, Joseph; Gozani, Tsahi

    1998-12-01

    The drug problem in the U.S. is serious and efforts to fight it are constrained by the lack of adequate means to curb the inflow of smuggled narcotics into the country through cargo containers. Also, events such as the disastrous explosion in Oklahoma City, the IRA bombing in London, and the bombing of the U.S. military residence in Dharan make the development of new tools for the detection of explosives and drugs in vehicles imperative. Thermal neutron analysis (TNA) technology, developed for the detection of explosives in suitcases, and detection of landmines and unexploded ordnance is presently being applied to the nonintrusive detection of significant amounts of explosives and drugs concealed in cars, trucks and large cargo containers. TNA technology is based on the analysis of characteristic gamma rays emitted following thermal neutron capture. A TNA system can be used in a variety of operational scenarios, such as inspection before an unloaded cargo container from a spit is moved to temporary storage, inspection of trucks unloaded from a ferry, or inspection of vehicles parked close to Federal building or military bases. This paper will discuss the detection process and operational scenarios, and will present results from recent simulations and measurements.

  13. Explosive detection technology

    NASA Astrophysics Data System (ADS)

    Doremus, Steven; Crownover, Robin

    2017-05-01

    The continuing proliferation of improvised explosive devices is an omnipresent threat to civilians and members of military and law enforcement around the world. The ability to accurately and quickly detect explosive materials from a distance would be an extremely valuable tool for mitigating the risk posed by these devices. A variety of techniques exist that are capable of accurately identifying explosive compounds, but an effective standoff technique is still yet to be realized. Most of the methods being investigated to fill this gap in capabilities are laser based. Raman spectroscopy is one such technique that has been demonstrated to be effective at a distance. Spatially Offset Raman Spectroscopy (SORS) is a technique capable of identifying chemical compounds inside of containers, which could be used to detect hidden explosive devices. Coherent Anti-Stokes Raman Spectroscopy (CARS) utilized a coherent pair of lasers to excite a sample, greatly increasing the response of sample while decreasing the strength of the lasers being used, which significantly improves the eye safety issue that typically hinders laser-based detection methods. Time-gating techniques are also being developed to improve the data collection from Raman techniques, which are often hindered fluorescence of the test sample in addition to atmospheric, substrate, and contaminant responses. Ultraviolet based techniques have also shown significant promise by greatly improved signal strength from excitation of resonance in many explosive compounds. Raman spectroscopy, which identifies compounds based on their molecular response, can be coupled with Laser Induced Breakdown Spectroscopy (LIBS) capable of characterizing the sample's atomic composition using a single laser.

  14. Spot test kit for explosives detection

    DOEpatents

    Pagoria, Philip F; Whipple, Richard E; Nunes, Peter J; Eckels, Joel Del; Reynolds, John G; Miles, Robin R; Chiarappa-Zucca, Marina L

    2014-03-11

    An explosion tester system comprising a body, a lateral flow membrane swab unit adapted to be removeably connected to the body, a first explosives detecting reagent, a first reagent holder and dispenser operatively connected to the body, the first reagent holder and dispenser containing the first explosives detecting reagent and positioned to deliver the first explosives detecting reagent to the lateral flow membrane swab unit when the lateral flow membrane swab unit is connected to the body, a second explosives detecting reagent, and a second reagent holder and dispenser operatively connected to the body, the second reagent holder and dispenser containing the second explosives detecting reagent and positioned to deliver the second explosives detecting reagent to the lateral flow membrane swab unit when the lateral flow membrane swab unit is connected to the body.

  15. Miniaturized Explosive Preconcentrator for Use in a Man-Portable Field Detection System

    SciTech Connect

    Hannum, David W.; Linker, Kevin L.; Parmeter, John E.; Rhykerd, Charles L.; Varley, Nathan R.

    1999-08-02

    We discuss the design and testing of a miniaturized explosives preconcentrator that can be used to enhance the capabilities of man-portable field detection systems, such as those based on ion mobility spectrometry (IMS). The preconcentrator is a smaller version of a similar device that was developed recently at Sandia National Laboratories for use in a trace detection portal that screens personnel for explosives. Like its predecessor, this preconcentrator is basically a filtering device that allows a small amount of explosive residue in a large incoming airflow to be concentrated into a much smaller air volume via adsorption and resorption, prior to delivery into a chemical detector. We discuss laboratory testing of this preconcentrator interfaced to a commercially available IMS-based detection system, with emphasis on the explosives 2,4,6-trinitrotoluene (TNT) and cyclotrimethylenetrinitramine (RDX). The issues investigated include optimization of the preconcentrator volume and inlet airflow, the use of different types of adsorbing surfaces within the preconcentrator, Wd preconcentrator efficiency and concentration factor. We discuss potential field applications of the preconcentrator, as well as avenues for further investigations and improvements.

  16. Remote laser drilling and sampling system for the detection of concealed explosives

    NASA Astrophysics Data System (ADS)

    Wild, D.; Pschyklenk, L.; Theiß, C.; Holl, G.

    2017-05-01

    The detection of hazardous materials like explosives is a central issue in national security in the field of counterterrorism. One major task includes the development of new methods and sensor systems for the detection. Many existing remote or standoff methods like infrared or raman spectroscopy find their limits, if the hazardous material is concealed in an object. Imaging technologies using x-ray or terahertz radiation usually yield no information about the chemical content itself. However, the exact knowledge of the real threat potential of a suspicious object is crucial for disarming the device. A new approach deals with a laser drilling and sampling system for the use as verification detector for suspicious objects. Central part of the system is a miniaturised, diode pumped Nd:YAG laser oscillator-amplifier. The system allows drilling into most materials like metals, synthetics or textiles with bore hole diameters in the micron scale. During the drilling process, the hazardous material can be sampled for further investigation with suitable detection methods. In the reported work, laser induced breakdown spectroscopy (LIBS) is used to monitor the drilling process and to classify the drilled material. Also experiments were carried out to show the system's ability to not ignite even sensitive explosives like triacetone triperoxide (TATP). The detection of concealed hazardous material is shown for different explosives using liquid chromatography and ion mobility spectrometry.

  17. Detecting Surface Changes from an Underground Explosion in Granite Using Unmanned Aerial System Photogrammetry

    NASA Astrophysics Data System (ADS)

    Schultz-Fellenz, Emily S.; Coppersmith, Ryan T.; Sussman, Aviva J.; Swanson, Erika M.; Cooley, James A.

    2017-08-01

    Efficient detection and high-fidelity quantification of surface changes resulting from underground activities are important national and global security efforts. In this investigation, a team performed field-based topographic characterization by gathering high-quality photographs at very low altitudes from an unmanned aerial system (UAS)-borne camera platform. The data collection occurred shortly before and after a controlled underground chemical explosion as part of the United States Department of Energy's Source Physics Experiments (SPE-5) series. The high-resolution overlapping photographs were used to create 3D photogrammetric models of the site, which then served to map changes in the landscape down to 1-cm-scale. Separate models were created for two areas, herein referred to as the test table grid region and the nearfield grid region. The test table grid includes the region within 40 m from surface ground zero, with photographs collected at a flight altitude of 8.5 m above ground level (AGL). The near-field grid area covered a broader area, 90-130 m from surface ground zero, and collected at a flight altitude of 22 m AGL. The photographs, processed using Agisoft Photoscan® in conjunction with 125 surveyed ground control point targets, yielded a 6-mm pixel-size digital elevation model (DEM) for the test table grid region. This provided the ≤3 cm resolution in the topographic data to map in fine detail a suite of features related to the underground explosion: uplift, subsidence, surface fractures, and morphological change detection. The near-field grid region data collection resulted in a 2-cm pixel-size DEM, enabling mapping of a broader range of features related to the explosion, including: uplift and subsidence, rock fall, and slope sloughing. This study represents one of the first works to constrain, both temporally and spatially, explosion-related surface damage using a UAS photogrammetric platform; these data will help to advance the science of

  18. Monte Carlo simulation of explosive detection system based on a Deuterium-Deuterium (D-D) neutron generator.

    PubMed

    Bergaoui, K; Reguigui, N; Gary, C K; Brown, C; Cremer, J T; Vainionpaa, J H; Piestrup, M A

    2014-12-01

    An explosive detection system based on a Deuterium-Deuterium (D-D) neutron generator has been simulated using the Monte Carlo N-Particle Transport Code (MCNP5). Nuclear-based explosive detection methods can detect explosives by identifying their elemental components, especially nitrogen. Thermal neutron capture reactions have been used for detecting prompt gamma emission (10.82MeV) following radiative neutron capture by (14)N nuclei. The explosive detection system was built based on a fully high-voltage-shielded, axial D-D neutron generator with a radio frequency (RF) driven ion source and nominal yield of about 10(10) fast neutrons per second (E=2.5MeV). Polyethylene and paraffin were used as moderators with borated polyethylene and lead as neutron and gamma ray shielding, respectively. The shape and the thickness of the moderators and shields are optimized to produce the highest thermal neutron flux at the position of the explosive and the minimum total dose at the outer surfaces of the explosive detection system walls. In addition, simulation of the response functions of NaI, BGO, and LaBr3-based γ-ray detectors to different explosives is described.

  19. Potential for detection of explosive and biological hazards with electronic terahertz systems.

    PubMed

    Choi, Min Ki; Bettermann, Alan; van der Weide, D W

    2004-02-15

    The terahertz (THz) regime (0.1-10 THz) is rich with emerging possibilities in sensing, imaging and communications, with unique applications to screening for weapons, explosives and biohazards, imaging of concealed objects, water content and skin. Here we present initial surveys to evaluate the possibility of sensing plastic explosives and bacterial spores using field-deployable electronic THz techniques based on short-pulse generation and coherent detection using nonlinear transmission lines and diode sampling bridges. We also review the barriers and approaches to achieving greater sensing-at-a-distance (stand-off) capabilities for THz sensing systems. We have made several reflection measurements of metallic and non-metallic targets in our laboratory, and have observed high contrast relative to reflection from skin. In particular, we have taken small quantities of energetic materials such as plastic explosives and a variety of Bacillus spores, and measured them in transmission and in reflection using a broadband pulsed electronic THz reflectometer. The pattern of reflection versus frequency gives rise to signatures that are remarkably specific to the composition of the target, even though the target's morphology and position is varied. Although more work needs to be done to reduce the effects of standing waves through time-gating or attenuators, the possibility of mapping out this contrast for imaging and detection is very attractive.

  20. Liquids and homemade explosive detection

    NASA Astrophysics Data System (ADS)

    Ellenbogen, Michael; Bijjani, Richard

    2009-05-01

    Excerpt from the US Transportation Security Agency website: "The ban on liquids, aerosols and gels was implemented on August 10 after a terrorist plot was foiled. Since then, experts from around the government, including the FBI and our national labs have analyzed the information we now have and have conducted extensive explosives testing to get a better understanding of this specific threat." In order to lift the ban and ease the burden on the flying public, Reveal began an extensive effort in close collaboration with the US and several other governments to help identify these threats. This effort resulted in the successful development and testing of an automated explosive detection system capable of resolving these threats with a high probability of detection and a low false alarm rate. We will present here some of the methodology and approach we took to address this problem.

  1. Explosive Microsphere Particle Standards for Trace Explosive Detection Instruments

    NASA Astrophysics Data System (ADS)

    Staymates, Matthew; Fletcher, Robert; Gillen, Greg

    2007-11-01

    Increases in Homeland Security measures have led to a substantial deployment of trace explosive detection systems within the United States and US embassies around the world. One such system is a walk-through portal which aerodynamically screens people for trace explosive particles. Another system is a benchtop instrument that can detect explosives from swipes used to collect explosive particles from surfaces of luggage and clothing. The National Institute of Standards and Technology is involved in a chemical metrology program to support the operational deployment and effective utilization of trace explosive and narcotic detection devices and is working to develop a measurement infrastructure to optimize, calibrate and standardize these instruments. Well characterized test materials are essential for validating the performance of these systems. Particle size, chemical composition, and detector response are particularly important. Here, we describe one method for producing monodisperse polymer microspheres encapsulating trace explosives, simulants, and narcotics using a sonicated co-flow Berkland nozzle. The nozzle creates uniform droplets that undergo an oil/water emulsion process and cure to form hardened microspheres containing the desired analyte. Issues such as particle size, particle uniformity and levels of analyte composition will be discussed.

  2. Exploiting high resolution Fourier transform spectroscopy to inform the development of a quantum cascade laser based explosives detection systems

    NASA Astrophysics Data System (ADS)

    Carlysle, Felicity; Nic Daeid, Niamh; Normand, Erwan; McCulloch, Michael

    2012-10-01

    Fourier Transform infrared spectroscopy (FTIR) is regularly used in forensic analysis, however the application of high resolution Fourier Transform infrared spectroscopy for the detection of explosive materials and explosive precursors has not been fully explored. This project aimed to develop systematically a protocol for the analysis of explosives and precursors using Fourier Transform infrared spectroscopy and basic data analysis to enable the further development of a quantum cascade laser (QCL) based airport detection system. This paper details the development of the protocol and results of the initial analysis of compounds of interest.

  3. Detecting Surface Changes from an Underground Explosion in Granite Using Unmanned Aerial System Photogrammetry

    DOE PAGES

    Schultz-Fellenz, Emily S.; Coppersmith, Ryan T.; Sussman, Aviva J.; ...

    2017-08-19

    Efficient detection and high-fidelity quantification of surface changes resulting from underground activities are important national and global security efforts. In this investigation, a team performed field-based topographic characterization by gathering high-quality photographs at very low altitudes from an unmanned aerial system (UAS)-borne camera platform. The data collection occurred shortly before and after a controlled underground chemical explosion as part of the United States Department of Energy’s Source Physics Experiments (SPE-5) series. The high-resolution overlapping photographs were used to create 3D photogrammetric models of the site, which then served to map changes in the landscape down to 1-cm-scale. Separate models weremore » created for two areas, herein referred to as the test table grid region and the nearfield grid region. The test table grid includes the region within ~40 m from surface ground zero, with photographs collected at a flight altitude of 8.5 m above ground level (AGL). The near-field grid area covered a broader area, 90–130 m from surface ground zero, and collected at a flight altitude of 22 m AGL. The photographs, processed using Agisoft Photoscan® in conjunction with 125 surveyed ground control point targets, yielded a 6-mm pixel-size digital elevation model (DEM) for the test table grid region. This provided the ≤3 cm resolution in the topographic data to map in fine detail a suite of features related to the underground explosion: uplift, subsidence, surface fractures, and morphological change detection. The near-field grid region data collection resulted in a 2-cm pixel-size DEM, enabling mapping of a broader range of features related to the explosion, including: uplift and subsidence, rock fall, and slope sloughing. This study represents one of the first works to constrain, both temporally and spatially, explosion-related surface damage using a UAS photogrammetric platform; these data will help to advance the

  4. Portable detection system for standoff sensing of explosives and hazardous materials

    NASA Astrophysics Data System (ADS)

    Sharma, Ramesh C.; Kumar, Deepak; Bhardwaj, Neha; Gupta, Saurabh; Chandra, Hukum; Maini, Anil K.

    2013-11-01

    Standoff Quartz Enhanced Laser Photoacoustic Spectroscopy (QE-LPAS) technique is emerging as a powerful technique for detection of hazardous chemicals, biological and explosive agents. Experimentally, we have recorded standoff photoacoustic spectrum of hazardous molecules adsorbed at diffused surfaces from a distance of up to 25 m. Tunable mid infrared quantum cascade lasers (MIR-QCL) in the wavelength range 7.0-12.0 μm are being used as optical source. Samples of Dinitrotoluene (DNT), Pentaerythritoltetranitrate (PETN) having adsorbed concentration of approximately 5.0 μg/cm2 were detected. Acetone and nitrobenzene samples in liquid having concentration 200 nl approximately sealed in polythene sachet were detected from a standoff distance of up to 25 m. All the above measurements are reported for a Signal to Noise Ratio (SNR) of 10, optimized for maintaining very less false alarm rates for field measurements. A portable trolley mounted system has been developed for field applications.

  5. Trace Explosive Detection Using Nanosensors

    SciTech Connect

    Senesac, Larry R; Thundat, Thomas George

    2008-01-01

    Selective and sensitive detection of explosives is very important in countering terrorist threats. Detecting trace explosives has become a very complex and expensive endeavor because of a number of factors, such as the wide variety of materials that can be used as explosives, the lack of easily detectable signatures, the vast number of avenues by which these weapons can be deployed, and the lack of inexpensive sensors with high sensitivity and selectivity. High sensitivity and selectivity, combined with the ability to lower the deployment cost of sensors using mass production, is essential in winning the war on explosives-based terrorism. Nanosensors have the potential to satisfy all the requirements for an effective platform for the trace detection of explosives.

  6. Lidar Detection of Explosives Traces

    NASA Astrophysics Data System (ADS)

    Bobrovnikov, Sergei M.; Gorlov, Evgeny V.; Zharkov, Victor I.; Panchenko, Yury N.

    2016-06-01

    The possibility of remote detection of traces of explosives using laser fragmentation/laser-induced fluorescence (LF/LIF) is studied. Experimental data on the remote visualization of traces of trinitrotoluene (TNT), hexogen (RDX), trotyl-hexogen (Comp B), octogen (HMX), and tetryl with a scanning lidar detector of traces of nitrogen-containing explosives at a distance of 5 m are presented.

  7. Environmental assessment of the thermal neutron activation explosive detection system for concourse use at US airports

    SciTech Connect

    Jones, C.G.

    1990-08-01

    This document is an environmental assessment of a system designed to detect the presence of explosives in checked airline baggage or cargo. The system is meant to be installed at the concourse or lobby ticketing areas of US commercial airports and uses a sealed radioactive source of californium-252 to irradiate baggage items. The major impact of the use of this system arises from direct exposure of the public to scattered or leakage radiation from the source and to induced radioactivity in baggage items. Under normal operation and the most likely accident scenarios, the environmental impacts that would be created by the proposed licensing action would not be significant. 44 refs., 19 figs., 18 tabs.

  8. Portable standoff Raman system for fast detection of homemade explosives through glass, plastic, and water

    NASA Astrophysics Data System (ADS)

    Misra, Anupam K.; Sharma, Shiv K.; Acosta, Tayro E.; Porter, John N.; Lucey, Paul G.; Bates, David E.

    2012-06-01

    The University of Hawaii has been developing portable remote Raman systems capable of detecting chemicals in daylight from a safe standoff distance. We present data on standoff detection of chemicals used in the synthesis of homemade explosives (HME) using a portable standoff Raman system utilizing an 8-inch telescope. Data show that good-quality Raman spectra of various hazardous chemicals such as ammonium nitrate, potassium nitrate, potassium perchlorate, sulfur, nitrobenzene, benzene, acetone, various organic and inorganic chemicals etc. could be easily obtained from remote distances, tested up to 120 meters, with a single-pulse laser excitation and with detection time less than 1 μs. The system uses a frequency-doubled Nd:YAG pulsed laser source (532 nm, 100 mJ/pulse, 15 Hz, pulse width 10 ns) capable of firing a single or double pulse. The double-pulse configuration also allows the system to perform standoff LIBS (Laser-Induced Breakdown Spectroscopy) at 50 m range. In the standoff Raman detection, the doublepulse sequence simply doubles the signal to noise ratio. Significant improvement in the quality of Raman spectra is observed when the standoff detection is made with 1s integration time. The system uses a 50-micron slit and has spectral resolution of 8 cm-1. The HME chemicals could be easily detected through clear and brown glass bottles, PP and HDPE plastic bottles, and also through fluorescent plastic water bottles. Standoff Raman detection of HME chemical from a 10 m distance through non-visible concealed bottles in plastic bubble wrap packaging is demonstrated with 1 s integration time. Possible applications of the standoff Raman system for homeland security and environmental monitoring are discussed.

  9. Detection of explosives in soils

    DOEpatents

    Chambers, William B.; Rodacy, Philip J.; Phelan, James M.; Woodfin, Ronald L.

    2002-01-01

    An apparatus and method for detecting explosive-indicating compounds in subsurface soil. The apparatus has a probe with an adsorbent material on some portion of its surface that can be placed into soil beneath the ground surface, where the adsorbent material can adsorb at least one explosive-indicating compound. The apparatus additional has the capability to desorb the explosive-indicating compound through heating or solvent extraction. A diagnostic instrument attached to the probe detects the desorbed explosive-indicating compound. In the method for detecting explosive-indicating compounds in soil, the sampling probe with an adsorbent material on at least some portion of a surface of the sampling probe is inserted into the soil to contact the adsorbent material with the soil. The explosive-indicating compounds are then desorbed and transferred as either a liquid or gas sample to a diagnostic tool for analysis. The resulting gas or liquid sample is analyzed using at least one diagnostic tool selected from the group consisting of an ion-mobility spectrometer, a gas chromatograph, a high performance liquid chromatograph, a capillary electrophoresis chromatograph, a mass spectrometer, a Fourier-transform infrared spectrometer and a Raman spectrometer to detect the presence of explosive-indicating compounds.

  10. Advancing Explosives Detection Capabilities: Vapor Detection

    SciTech Connect

    Atkinson, David

    2012-10-15

    A new, PNNL-developed method provides direct, real-time detection of trace amounts of explosives such as RDX, PETN and C-4. The method selectively ionizes a sample before passing the sample through a mass spectrometer to detect explosive vapors. The method could be used at airports to improve aviation security.

  11. Advancing Explosives Detection Capabilities: Vapor Detection

    ScienceCinema

    Atkinson, David

    2016-07-12

    A new, PNNL-developed method provides direct, real-time detection of trace amounts of explosives such as RDX, PETN and C-4. The method selectively ionizes a sample before passing the sample through a mass spectrometer to detect explosive vapors. The method could be used at airports to improve aviation security.

  12. Explosive vapor detection payload for small robots

    NASA Astrophysics Data System (ADS)

    Stimac, Phil J.; Pettit, Michael; Wetzel, John P.; Haas, John W.

    2013-05-01

    Detection of explosive hazards is a critical component of enabling and improving operational mobility and protection of US Forces. The Autonomous Mine Detection System (AMDS) developed by the US Army RDECOM CERDEC Night Vision and Electronic Sensors Directorate (NVESD) is addressing this challenge for dismounted soldiers. Under the AMDS program, ARA has developed a vapor sampling system that enhances the detection of explosive residues using commercial-off-the-shelf (COTS) sensors. The Explosives Hazard Trace Detection (EHTD) payload is designed for plug-and-play installation and operation on small robotic platforms, addressing critical Army needs for more safely detecting concealed or exposed explosives in areas such as culverts, walls and vehicles. In this paper, we describe the development, robotic integration and performance of the explosive vapor sampling system, which consists of a sampling "head," a vapor transport tube and an extendable "boom." The sampling head and transport tube are integrated with the boom, allowing samples to be collected from targeted surfaces up to 7-ft away from the robotic platform. During sample collection, an IR lamp in the sampling head is used to heat a suspected object/surface and the vapors are drawn through the heated vapor transport tube to an ion mobility spectrometer (IMS) for detection. The EHTD payload is capable of quickly (less than 30 seconds) detecting explosives such as TNT, PETN, and RDX at nanogram levels on common surfaces (brick, concrete, wood, glass, etc.).

  13. MCNP Simulation Benchmarks for a Portable Inspection System for Narcotics, Explosives, and Nuclear Material Detection

    NASA Astrophysics Data System (ADS)

    Alfonso, Krystal; Elsalim, Mashal; King, Michael; Strellis, Dan; Gozani, Tsahi

    2013-04-01

    MCNPX simulations have been used to guide the development of a portable inspection system for narcotics, explosives, and special nuclear material (SNM) detection. The system seeks to address these threats to national security by utilizing a high-yield, compact neutron source to actively interrogate the threats and produce characteristic signatures that can then be detected by radiation detectors. The portability of the system enables rapid deployment and proximity to threats concealed in small spaces. Both dD and dT electronic neutron generators (ENG) were used to interrogate ammonium nitrate fuel oil (ANFO) and cocaine hydrochloride, and the detector response of NaI, CsI, and LaBr3 were compared. The effect of tungsten shielding on the neutron flux in the gamma ray detectors was investigated, while carbon, beryllium, and polyethylene ENG moderator materials were optimized by determining the reaction rate density in the threats. In order to benchmark the modeling results, experimental measurements are compared with MCNPX simulations. In addition, the efficiency and die-away time of a portable differential die-away analysis (DDAA) detector using 3He proportional counters for SNM detection has been determined.

  14. New, high-efficiency ion trap mobility detection system for narcotics and explosives

    NASA Astrophysics Data System (ADS)

    McGann, William J.; Bradley, V.; Borsody, A.; Lepine, S.

    1994-10-01

    A new patented Ion Trap Mobility Spectrometer (ITMS) design is presented. Conventional IMS designs typically operate below 0.1% efficiency. This is due primarily to electric field driven, sample ion discharge on a shutter grid. Since 99.9% of the sample ions generated in the reaction region are lost in this discharge process, the sensitivity of conventional systems is limited. The new design provides greater detection efficiency than conventional designs through the use of an `ion trap' concept. The paper describes the plasma and sample ion dynamics in the reaction region of the new detector and discusses the advantages of utilizing a `field-free' space to generate sample ions with high efficiency. Fast electronic switching is described which is used to perturb the field-free space and pulse the sample ions into the drift region for separation and subsequent detection using pseudo real-time software for analysis and display of the data. Many applications for this new detector are now being considered including the detection of narcotics and explosives. Preliminary ion spectra, reduced mobility data and sensitivity data are presented for fifteen narcotics, including cocaine, THC and LSD are reported.

  15. Optimal dynamic detection of explosives

    SciTech Connect

    Moore, David Steven; Mcgrane, Shawn D; Greenfield, Margo T; Scharff, R J; Rabitz, Herschel A; Roslund, J

    2009-01-01

    The detection of explosives is a notoriously difficult problem, especially at stand-off distances, due to their (generally) low vapor pressure, environmental and matrix interferences, and packaging. We are exploring optimal dynamic detection to exploit the best capabilities of recent advances in laser technology and recent discoveries in optimal shaping of laser pulses for control of molecular processes to significantly enhance the standoff detection of explosives. The core of the ODD-Ex technique is the introduction of optimally shaped laser pulses to simultaneously enhance sensitivity of explosives signatures while reducing the influence of noise and the signals from background interferents in the field (increase selectivity). These goals are being addressed by operating in an optimal nonlinear fashion, typically with a single shaped laser pulse inherently containing within it coherently locked control and probe sub-pulses. With sufficient bandwidth, the technique is capable of intrinsically providing orthogonal broad spectral information for data fusion, all from a single optimal pulse.

  16. Trace explosives detection by photoluminescence.

    PubMed

    Menzel, E Roland; Bouldin, Kimberly K; Murdock, Russell H

    2004-02-26

    Some field tests in counter-terrorism efforts to detect explosive traces employ chemistries that yield colored products. We have examined a test kit of this kind, ETK(Plus), based on widely used chemistries and employed extensively by the Israel Police. Our investigation focuses on the prospect of gaining sensitivity by replacing the normal colorimetric modality with photoluminescence detection, which, to our knowledge, has not been explored to date. We find two or more orders of magnitude sensitivity gains for all explosives studied, using field-worthy photoluminescence techniques. We have also investigated a general lanthanide-based photoluminescence approach which shows promise and the ability to photoluminescence-detect trace explosives in the presence of intense background color and/or background fluorescence by time-resolved imaging.

  17. Explosive Detection and Identification by PGNAA

    SciTech Connect

    E.H. Seabury; A.J. Caffrey

    2004-11-01

    The goal of this project was to determine the feasibility of using field-portable prompt gamma-ray neutron activation analysis (PGNAA) to detect and identify explosives in improvised nuclear devices (INDs). The studies were carried out using the Monte Carlo N-Particle (MCNP) code developed at Los Alamos National Laboratory. The model results were tested experimentally using explosive simulants and the PINS PGNAA system developed at Idaho National Engineering and Environmental Laboratory (INEEL). The results of the MCNP calculations and PINS measurements are presented in this report. The calculations and measurements were in good agreement and indicate that most explosives are readily distinguishable from one another.

  18. Explosion suppression system

    DOEpatents

    Sapko, Michael J.; Cortese, Robert A.

    1992-01-01

    An explosion suppression system and triggering apparatus therefor are provided for quenching gas and dust explosions. An electrically actuated suppression mechanism which dispenses an extinguishing agent into the path ahead of the propagating flame is actuated by a triggering device which is light powered. This triggering device is located upstream of the propagating flame and converts light from the flame to an electrical actuation signal. A pressure arming device electrically connects the triggering device to the suppression device only when the explosion is sensed by a further characteristic thereof beside the flame such as the pioneer pressure wave. The light powered triggering device includes a solar panel which is disposed in the path of the explosion and oriented between horizontally downward and vertical. Testing mechanisms are also preferably provided to test the operation of the solar panel and detonator as well as the pressure arming mechanism.

  19. Infrared hyperspectral standoff detection of explosives

    NASA Astrophysics Data System (ADS)

    Fuchs, F.; Hugger, S.; Jarvis, J.; Blattmann, V.; Kinzer, M.; Yang, Q. K.; Ostendorf, R.; Bronner, W.; Driad, R.; Aidam, R.; Wagner, J.

    2013-05-01

    In this work we demonstrate imaging standoff detection of solid traces of explosives using infrared laser backscattering spectroscopy. Our system relies on active laser illumination in the 7 μm-10 μm spectral range at fully eye-safe power levels. This spectral region comprises many characteristic absorption features of common explosives, and the atmospheric transmission is sufficiently high for stand-off detection. The key component of our system is an external cavity quantum cascade laser with a tuning range of 300 cm-1 that enables us to scan the illumination wavelength over several of the characteristic spectral features of a large number of different explosives using a single source. We employ advanced hyperspectral image analysis to obtain fully automated detection and identification of the target substances even on substrates that interfere with the fingerprint spectrum of the explosive to be detected due to their own wavelength-dependent scattering contributions to the measured backscattering spectrum. Only the pure target spectra of the explosives have to be provided to the detection routine that nevertheless accomplishes reliable background suppression without any a-priory-information about the substrate.

  20. Explosives Detection and Identification by PGNAA

    SciTech Connect

    E. H. Seabury; A. J. Caffrey

    2006-04-01

    The feasibility of using field-portable prompt gamma-ray neutron activation analysis (PGNAA) to detect and identify explosives in improvised nuclear devices has been studied computationally, using the Monte Carlo N-Particle (MCNP) code developed at Los Alamos National Laboratory. The Monte Carlo results, in turn were tested experimentally using explosive simulants and the PINS PGNAA system developed at Idaho National Laboratory (INL). The results of the MCNP calculations and PINS measurements have been previously reported. In this report we describe measurements performed on actual explosives and compare the results with calculations. The calculations and measurements were in good agreement and indicate that most explosives are readily distinguishable from one another by PGNAA

  1. Scientific Support for NQR Explosive Detection Development

    DTIC Science & Technology

    2006-07-01

    Final 3. DATES COVERED (From - To) 8 March 2004 - 7 March 2006 4. TITLE AND SUBTITLE Scientific Support for NQR Explosive Detection Development...Laboratory (NRL) to improve explosive detection using nuclear quadrupole resonance ( NQR ) is summarized. The work includes studies of the effects...superconducting coils for explosive detection. Additional studies involving slowly rotating NQR measurements were also pursued. 15. SUBJECT TERMS Nuclear

  2. Review of Nuclear Methodologies for Explosive Detection

    NASA Astrophysics Data System (ADS)

    Womble, Phillip C.; Vourvopoulos, George; Novikov, Ivan; Paschal, Jon

    2001-10-01

    Nuclear techniques show a number of advantages for non-destructive elemental characterization. These include the ability to examine bulk quantities with speed, high elemental specificity, and no memory effects from the previously measured object. These qualities are important for an effective detection system for explosives and drugs. High explosives (TNT, RDX, C-4, etc.) are composed primarily of the chemical elements hydrogen, carbon, nitrogen, and oxygen. Many innocuous materials are also primarily composed of these same elements. These elements, however, are found in each material with very different elemental ratios and concentrations. It is thus possible to identify and differentiate e.g. TNT from paraffin. For narcotics, the C/O ratio is at least a factor of two larger than the innocuous materials. Explosives have been shown to be differentiated by the utilization of both C/O ratio and N/O ratios. The problem of identifying explosives is thus reduced to the problem of elemental identification and quantization. We will review the methods of explosive detection with emphasis on nuclear techniques. We will discuss where improvements are desired on current techniques for landmine detection and unexploded ordnance.

  3. Large-volume sampling and preconcentration for trace explosives detection.

    SciTech Connect

    Linker, Kevin Lane

    2004-05-01

    A trace explosives detection system typically contains three subsystems: sample collection, preconcentration, and detection. Sample collection of trace explosives (vapor and particulate) through large volumes of airflow helps reduce sampling time while increasing the amount of dilute sample collected. Preconcentration of the collected sample before introduction into the detector improves the sensitivity of the detector because of the increase in sample concentration. By combining large-volume sample collection and preconcentration, an improvement in the detection of explosives is possible. Large-volume sampling and preconcentration is presented using a systems level approach. In addition, the engineering of large-volume sampling and preconcentration for the trace detection of explosives is explained.

  4. Ammonium nitrate explosive systems

    DOEpatents

    Stinecipher, Mary M.; Coburn, Michael D.

    1981-01-01

    Novel explosives which comprise mixtures of ammonium nitrate and an ammonium salt of a nitroazole in desired ratios are disclosed. A preferred nitroazole is 3,5-dinitro-1,2,4-triazole. The explosive and physical properties of these explosives may readily be varied by the addition of other explosives and oxidizers. Certain of these mixtures have been found to act as ideal explosives.

  5. Explosives detection with quadrupole resonance analysis

    NASA Astrophysics Data System (ADS)

    Rayner, Timothy J.; Thorson, Benjamin D.; Beevor, Simon; West, Rebecca; Krauss, Ronald A.

    1997-02-01

    The increase in international terrorist activity over the past decade has necessitated the exploration of new technologies for the detection of plastic explosives. Quadrupole resonance analysis (QRA) has proven effective as a technique for detecting the presence of plastic, sheet, and military explosive compounds in small quantities, and can also be used to identify narcotics such as heroin and cocaine base. QRA is similar to the widely used magnetic resonance (MR) and magnetic resonance imaging (MRI) techniques, but has the considerable advantage that the item being inspected does not need to be immersed in a steady, homogeneous magnetic field. The target compounds are conclusively identified by their unique quadrupole resonance frequencies. Quantum magnetics has develop and introduced a product line of explosives and narcotics detection devices based upon QRA technology. The work presented here concerns a multi-compound QRA detection system designed to screen checked baggage, cargo, and sacks of mail at airports and other high-security facilities. The design philosophy and performance are discussed and supported by test results from field trials conducted in the United States and the United Kingdom. This detection system represents the current state of QRA technology for field use in both commercial and government sectors.

  6. Explosives Detection: Exploitation of the Physical Signatures

    NASA Astrophysics Data System (ADS)

    Atkinson, David

    2010-10-01

    Explosives based terrorism is an ongoing threat that is evolving with respect to implementation, configuration and materials used. There are a variety of devices designed to detect explosive devices, however, each technology has limitations and operational constraints. A full understanding of the signatures available for detection coupled with the array of detection choices can be used to develop a conceptual model of an explosives screening operation. Physics based sensors provide a robust approach to explosives detection, typically through the identification of anomalies, and are currently used for screening in airports around the world. The next generation of detectors for explosives detection will need to be more sensitive and selective, as well as integrate seamlessly with devices focused on chemical signatures. An appreciation for the details of the physical signature exploitation in cluttered environments with time, space, and privacy constraints is necessary for effective explosives screening of people, luggage, cargo, and vehicles.

  7. Standoff detection of explosives: a challenging approach for optical technologies

    NASA Astrophysics Data System (ADS)

    Désilets, S.; Hô, N.; Mathieu, P.; Simard, J. R.; Puckrin, E.; Thériault, J. M.; Lavoie, H.; Théberge, F.; Babin, F.; Gay, D.; Forest, R.; Maheux, J.; Roy, G.; Châteauneuf, M.

    2011-06-01

    Standoff detection of explosives residues on surfaces at few meters was made using optical technologies based on Raman scattering, Laser-Induced Breakdown Spectroscopy (LIBS) and passive standoff FTIR radiometry. By comparison, detection and analysis of nanogram samples of different explosives was made with a microscope system where Raman scattering from a micron-size single point illuminated crystal of explosive was observed. Results from standoff detection experiments using a telescope were compared to experiments using a microscope to find out important parameters leading to the detection. While detection and spectral identification of the micron-size explosive particles was possible with a microscope, standoff detection of these particles was very challenging due to undesired light reflected and produced by the background surface or light coming from other contaminants. Results illustrated the challenging approach of detecting at a standoff distance the presence of low amount of micron or submicron explosive particles.

  8. Wireless sensor for detecting explosive material

    SciTech Connect

    Lamberti, Vincent E; Howell, Jr., Layton N; Mee, David K; Sepaniak, Michael J

    2014-10-28

    Disclosed is a sensor for detecting explosive devices. The sensor includes a ferromagnetic metal and a molecular recognition reagent coupled to the ferromagnetic metal. The molecular recognition reagent is operable to expand upon absorption of vapor from an explosive material such that the molecular recognition reagent changes a tensile stress upon the ferromagnetic metal. The explosive device is detected based on changes in the magnetic switching characteristics of the ferromagnetic metal caused by the tensile stress.

  9. Aspects of image recognition in Vivid Technologies' dual-energy x-ray system for explosives detection

    NASA Astrophysics Data System (ADS)

    Eilbert, Richard F.; Krug, Kristoph D.

    1993-04-01

    The Vivid Rapid Explosives Detection Systems is a true dual energy x-ray machine employing precision x-ray data acquisition in combination with unique algorithms and massive computation capability. Data from the system's 960 detectors is digitally stored and processed by powerful supermicro-computers organized as an expandable array of parallel processors. The algorithms operate on the dual energy attenuation image data to recognize and define objects in the milieu of the baggage contents. Each object is then systematically examined for a match to a specific effective atomic number, density, and mass threshold. Material properties are determined by comparing the relative attenuations of the 75 kVp and 150 kVp beams and electronically separating the object from its local background. Other heuristic algorithms search for specific configurations and provide additional information. The machine automatically detects explosive materials and identifies bomb components in luggage with high specificity and throughput, X-ray dose is comparable to that of current airport x-ray machines. The machine is also configured to find heroin, cocaine, and US currency by selecting appropriate settings on-site. Since January 1992, production units have been operationally deployed at U.S. and European airports for improved screening of checked baggage.

  10. Detecting explosive substances by the IR spectrography

    NASA Astrophysics Data System (ADS)

    Kuula, J.; Rinta, Heikki J.; Pölönen, I.; Puupponen, H.-H.; Haukkamäki, Marko; Teräväinen, T.

    2014-05-01

    Fast and safe detection methods of explosive substances are needed both before and after actualized explosions. This article presents an experiment of the detection of three selected explosives by the ATR FTIR spectrometer and by three different IR hyperspectral imaging devices. The IR spectrometers give accurate analyzing results, whereas hyperspectral imagers can detect and analyze desired samples without touching the unidentified target at all. In the controlled explosion experiment TNT, dynamite and PENO were at first analyzed as pure substances with the ATR FTIR spectrometer and with VNIR, SWIR and MWIR cameras. After three controlled explosions also the residues of TNT, dynamite and PENO were analyzed with the same IR devices. The experiments were performed in arctic outdoor conditions and the residues were collected on ten different surfaces. In the measurements the spectra of all three explosives were received as pure substances with all four IR devices. Also the explosion residues of TNT were found on cotton with the IR spectrometer and with VNIR, SWIR and MWIR hyperspectral imagers. All measurements were made directly on the test materials which had been placed on the explosion site and were collected for the analysis after each blast. Measurements were made with the IR spectrometer also on diluted sample. Although further tests are suggested, the results indicate that the IR spectrography is a potential detection method for explosive subjects, both as pure substances and as post-blast residues.

  11. Method and apparatus for detecting explosives

    DOEpatents

    Moore, David Steven [Santa Fe, NM

    2011-05-10

    A method and apparatus is provided for detecting explosives by thermal imaging. The explosive material is subjected to a high energy wave which can be either a sound wave or an electromagnetic wave which will initiate a chemical reaction in the explosive material which chemical reaction will produce heat. The heat is then sensed by a thermal imaging device which will provide a signal to a computing device which will alert a user of the apparatus to the possibility of an explosive device being present.

  12. High Explosive Radio Telemetry System

    SciTech Connect

    Bracht, R.R.; Crawford, T.R.; Johnson, R.L.; Mclaughlin, B.M.

    1998-11-04

    This paper overviews the High Explosive Radio Telemetry (HERT) system, under co-development by Los Alamos National Laboratories and Allied Signal Federal Manufacturing & Technologies. This telemetry system is designed to measure the initial performance of an explosive package under flight environment conditions, transmitting data from up to 64 sensors. It features high speed, accurate time resolution (10 ns) and has the ability to complete transmission of data before the system is destroyed by the explosion. In order to affect the resources and performance of a flight delivery vehicle as little as possible, the system is designed such that physical size, power requirements, and antenna demands are as small as possible.

  13. Explosive Vapor Detection Using Microcantilever Sensors

    SciTech Connect

    Pinnaduwage, Lal A

    2004-01-01

    MEMS-based microcantilever platforms have been used to develop extremely sensitive explosive vapour sensors. Two unique approaches of detecting of explosive vapours are demonstrated. In the first approach a cantilever beam coated with a selective layer undergoes bending and resonance frequency variation due to explosive vapour adsorption. The resonance frequency variation is due to mass loading while adsorption-induced cantilever bending is due to a differential stress due molecular adsorption. In the second approach that does not utilize selective coatings for speciation, detection is achieved by deflagration of adsorbed explosive molecules. Deflagration of adsorbed explosive molecules causes the cantilever to bend due to released heat while its resonance frequency decreases due to mass unloading.

  14. [Aging explosive detection using terahertz time-domain spectroscopy].

    PubMed

    Meng, Kun; Li, Ze-ren; Liu, Qiao

    2011-05-01

    Detecting the aging situation of stock explosive is essentially meaningful to the research on the capability, security and stability of explosive. Existing aging explosive detection techniques, such as scan microscope technique, Fourier transfer infrared spectrum technique, gas chromatogram mass spectrum technique and so on, are either not able to differentiate whether the explosive is aging or not, or not able to image the structure change of the molecule. In the present paper, using the density functional theory (DFT), the absorb spectrum changes after the explosive aging were calculated, from which we can clearly find the difference of spectrum between explosive molecule and aging ones in the terahertz band. The terahertz time-domain spectrum (THz-TDS) system as well as its frequency spectrum resolution and measured range are analyzed. Combined with the existing experimental results and the essential characters of the terahertz wave, the application of THz-TDS technique to the detection of aging explosive was demonstrated from the aspects of feasibility, veracity and practicability. On the base of that, the authors advance the new method of aging explosive detection using the terahertz time-domain spectrum technique.

  15. Vibrational spectroscopy standoff detection of explosives.

    PubMed

    Pacheco-Londoño, Leonardo C; Ortiz-Rivera, William; Primera-Pedrozo, Oliva M; Hernández-Rivera, Samuel P

    2009-09-01

    Standoff infrared and Raman spectroscopy (SIRS and SRS) detection systems were designed from commercial instrumentation and successfully tested in remote detection of high explosives (HE). The SIRS system was configured by coupling a Fourier-transform infrared interferometer to a gold mirror and detector. The SRS instrument was built by fiber coupling a spectrograph to a reflective telescope. HE samples were detected on stainless steel surfaces as thin films (2-30 microg/cm(2)) for SIRS experiments and as particles (3-85 mg) for SRS measurements. Nitroaromatic HEs: TNT, DNT, RDX, C4, and Semtex-H and TATP cyclic peroxide homemade explosive were used as targets. For the SIRS experiments, samples were placed at increasing distances and an infrared beam was reflected from the stainless steel surfaces coated with the target chemicals at an angle of approximately 180 degrees from surface normal. Stainless steel plates containing TNT and RDX were first characterized for coverage distribution and surface concentration by reflection-absorption infrared spectroscopy. Targets were then placed at the standoff distance and SIRS spectra were collected in active reflectance mode. Limits of detection (LOD) were determined for all distances measured for the target HE. LOD values of 18 and 20 microg/cm(2) were obtained for TNT and RDX, respectively, for the SIR longest standoff distance measured. For SRS experiments, as low as 3 mg of TNT and RDX were detected at 7 m source-target distance employing 488 and 514.5 nm excitation wavelengths. The first detection and quantification study of the important formulation C4 is reported. Detection limits as function of laser powers and acquisition times and at a standoff distance of 7 m were obtained.

  16. Portable sensors for drug and explosive detection

    NASA Astrophysics Data System (ADS)

    Leginus, Joseph M.

    1994-03-01

    Westinghouse Electric is developing portable, hand-held sensors capable of detecting numerous drugs of abuse (cocaine, heroin, amphetamines) and explosives (trinitrotoluene, pentaerythritol tetranitrate, nitroglycerin). The easy-to-use system consists of a reusable electronics module and disposable probes. The sensor illuminates and detects light transmitted through optical cells of the probe during an antibody-based latex agglutination reaction. Each probe contains all the necessary reagents to carry out a test in a single step. The probe has the ability to lift minute quantities of samples from a variety of surfaces and deliver the sample to a reaction region within the device. The sensor yields a qualitative answer in 30 to 45 seconds and is able to detect illicit substances at nanogram levels.

  17. A flag-based algorithm and associated neutron interrogation system for the detection of explosives in sea-land cargo containers

    NASA Astrophysics Data System (ADS)

    Lehnert, A. L.; Kearfott, K. J.

    2015-07-01

    Recent efforts in the simulation of sea-land cargo containers in active neutron interrogation scenarios resulted in the identification of several flags indicating the presence of conventional explosives. These flags, defined by specific mathematical manipulations of the neutron and photon spectra, have been combined into a detection algorithm for screening cargo containers at international borders and seaports. The detection algorithm's steps include classifying the cargo type, identifying containers filled with explosives, triggering in the presence of concealed explosives, and minimizing the number of false positives due to cargo heterogeneity. The algorithm has been implemented in a system that includes both neutron and photon detectors. This system will take about 10 min to scan a container and cost approximately 1M to construct. Dose calculations resulted in estimates of less than 0.5 mSv for a person hidden in the container, and an operator annual dose of less than 0.9 mSv.

  18. Current trends in explosive detection techniques.

    PubMed

    Caygill, J Sarah; Davis, Frank; Higson, Seamus P J

    2012-01-15

    The detection of explosives and explosive-related compounds has become a heightened priority in recent years for homeland security and counter-terrorism applications. There has been a huge increase in research within this area-through both the development of new, innovative detection approaches and the improvement of existing techniques. Developments for miniaturisation, portability, field-ruggedisation and improvements in stand-off distances, selectivity and sensitivity have been necessary to develop and improve techniques. This review provides a consolidation of information relating to recent advances in explosive detection techniques without being limited to one specific research area or explosive type. The focus of this review will be towards advances in the last 5 years, with the reader being referred to earlier reviews where appropriate. Copyright © 2011. Published by Elsevier B.V.

  19. Advances in neutron based bulk explosive detection

    NASA Astrophysics Data System (ADS)

    Gozani, Tsahi; Strellis, Dan

    2007-08-01

    Neutron based explosive inspection systems can detect a wide variety of national security threats. The inspection is founded on the detection of characteristic gamma rays emitted as the result of neutron interactions with materials. Generally these are gamma rays resulting from thermal neutron capture and inelastic scattering reactions in most materials and fast and thermal neutron fission in fissile (e.g.235U and 239Pu) and fertile (e.g.238U) materials. Cars or trucks laden with explosives, drugs, chemical agents and hazardous materials can be detected. Cargo material classification via its main elements and nuclear materials detection can also be accomplished with such neutron based platforms, when appropriate neutron sources, gamma ray spectroscopy, neutron detectors and suitable decision algorithms are employed. Neutron based techniques can be used in a variety of scenarios and operational modes. They can be used as stand alones for complete scan of objects such as vehicles, or for spot-checks to clear (or validate) alarms indicated by another inspection system such as X-ray radiography. The technologies developed over the last two decades are now being implemented with good results. Further advances have been made over the last few years that increase the sensitivity, applicability and robustness of these systems. The advances range from the synchronous inspection of two sides of vehicles, increasing throughput and sensitivity and reducing imparted dose to the inspected object and its occupants (if any), to taking advantage of the neutron kinetic behavior of cargo to remove systematic errors, reducing background effects and improving fast neutron signals.

  20. System for analysis of explosives

    SciTech Connect

    Haas, Jeffrey S

    2010-06-29

    A system for analysis of explosives. Samples are spotted on a thin layer chromatography plate. Multi-component explosives standards are spotted on the thin layer chromatography plate. The thin layer chromatography plate is dipped in a solvent mixture and chromatography is allowed to proceed. The thin layer chromatography plate is dipped in reagent 1. The thin layer chromatography plate is heated. The thin layer chromatography plate is dipped in reagent 2.

  1. Modeling of Qr Sensors for Optimized Explosives Detection

    NASA Astrophysics Data System (ADS)

    Robert, Hector; Bussandri, Alejandro; Derby, Kevin

    Quadrupole Resonance (QR) sensors have the unique capability of detecting explosives with remarkably high detection rates and low number of false alarms. The sensitivity of a QR-based sensor in inductive detection can be assessed in terms of the signal-to-noise ratio (SNR), which determines the Receiver Operating Characteristics (ROC) curves of the detector and provides a fundamental limitation to the performance of the QR explosive detection system. The main goal of the QR sensor design is, therefore, to maximize the SNR to achieve the highest possible detection performance with the lowest number of nuisances.

  2. Gamma ray spectroscopy features for detection of small explosives

    NASA Astrophysics Data System (ADS)

    Gozani, T.; Elsalim, M.; Ingle, M.; Phillips, E.

    2003-06-01

    Thermal neutron capture techniques, as embodied in Thermal Neutron Analysis (TNA ®) devices, provide a powerful tool for counter terrorism and environmental demilitarization. The common objective in both applications is the detection of explosives via their unique elemental constituents. In TNA, the primary explosive signature is the nitrogen concentration. Hydrogen is a secondary one. However, useful tertiary signatures exist in the full gamma-spectrum reflecting the explosive material itself and its surrounding. All these signatures, or spectra features, are derived from the analysis of the gamma-ray spectra collected by NaI detectors with a good energy resolution. This approach to the generation of explosive decision algorithms was incorporated in Ancore's Small Parcel Explosive Detection System (SPEDS) and other systems. The application described in this paper was the inspection airline passenger carry-on items such as laptop computers, briefcases, liquid bottles, etc., for the presence of small explosives. The feature analysis and the resulting excellent receiver operator characteristics are shown in the paper. The SPEDS was able to automatically detect less than 100 g of explosives in carry-on items, with a low false alarm rate.

  3. Explosives detection by nuclear quadrupole resonance (NQR)

    NASA Astrophysics Data System (ADS)

    Garroway, Allen N.; Buess, Michael L.; Yesinowski, James P.; Miller, Joel B.; Krauss, Ronald A.

    1994-10-01

    Pure nuclear quadrupole resonance (NQR) of 14N nuclei is quite promising as a method for detecting explosives such as RDX and contraband narcotics such as cocaine and heroin in quantities of interest. Pure NQR is conducted without an external applied magnetic field, so potential concerns about damage to magnetically encoded data or exposure of personnel to large magnetic fields are not relevant. Because NQR frequencies of different compounds are quite distinct, we do not encounter false alarms from the NQR signals of other benign materials. We have constructed a laboratory prototype NQR explosives detector which interrogates a volume of 300 liters (10 ft3). This paper presents abbreviated results from a demonstration of the laboratory prototype NQR explosives detector conducted at the Federal Aviation Administration Technical Center in May 1994 on RDX-based explosives.

  4. NQR detection of explosive simulants using RF atomic magnetometers

    NASA Astrophysics Data System (ADS)

    Monti, Mark C.; Alexson, Dimitri A.; Okamitsu, Jeffrey K.

    2016-05-01

    Nuclear Quadrupole Resonance (NQR) is a highly selective spectroscopic method that can be used to detect and identify a number of chemicals of interest to the defense, national security, and law enforcement community. In the past, there have been several documented attempts to utilize NQR to detect nitrogen bearing explosives using induction sensors to detect the NQR RF signatures. We present here our work on the NQR detection of explosive simulants using optically pumped RF atomic magnetometers. RF atomic magnetometers can provide an order of magnitude (or more) improvement in sensitivity versus induction sensors and can enable mitigation of RF interference, which has classically has been a problem for conventional NQR using induction sensors. We present the theory of operation of optically pumped RF atomic magnetometers along with the result of laboratory work on the detection of explosive simulant material. An outline of ongoing work will also be presented along with a path for a fieldable detection system.

  5. Reagent Selection Methodology for a Novel Explosives Detection Platform

    ScienceCinema

    None

    2016-07-12

    This video describes research being conducted by Dr. Marvin Warner, a research scientist at Pacific Northwest National Laboratory, in the individual pieces of antibodies used to set up a chemical reaction that will give off light just by mixing reagents together with a sample that contains an explosive molecule. This technology would help detect if explosives are present with just the use of a handheld system or container.

  6. Airport testing an explosives detection portal

    SciTech Connect

    Rhykerd, C.; Linker, K.; Hannum, D.; Bouchier, F.; Parmeter, J.

    1998-08-01

    At the direction of the US Congress, following the Pan Am 103 and TWA 800 crashes, the Federal Aviation Administration funded development of non-invasive techniques to screen airline passengers for explosives. Such an explosives detection portal, developed at Sandia National Laboratories, was field tested at the Albuquerque International airport in September 1997. During the 2-week field trial, 2,400 passengers were screened and 500 surveyed. Throughput, reliability, maintenance and sensitivity were studied. Follow-up testing at Sandia and at Idaho National Engineering and Environmental Laboratory was conducted. A passenger stands in the portal for five seconds while overhead fans blow air over his body. Any explosive vapors or dislodged particles are collected in vents at the feet. Explosives are removed from the air in a preconcentrator and subsequently directed into an ion mobility spectrometer for detection. Throughput measured 300 passengers per hour. The non-invasive portal can detect subfingerprint levels of explosives residue on clothing. A survey of 500 passengers showed a 97% approval rating, with 99% stating that such portals, if effective, should be installed in airports to improve security. Results of the airport test, as well as operational issues, are discussed.

  7. Detection of bottled explosives by near infrared

    NASA Astrophysics Data System (ADS)

    Itozaki, Hideo; Sato-Akaba, Hideo

    2013-10-01

    Bottled liquids are not allowed through the security gate in the airport, because liquid explosives have been used by the terrorists. However, passengers have a lot of trouble if they cannot bring their own bottles. For example, a mother would like to carry her own milk in the airplane for her baby. Therefore the detection technology of liquid explosives should be developed as soon as possible. This paper shows that near infrared spectroscopy can detect bottled explosives quickly. The transmission method cannot deal with milk in the sense of liquid inspection. Here we examined the reflection method to the test of milk. The inspection method with light cannot make test for the metal can. We also use ultrasonic method to check metal can simultaneously in order to expand test targets.

  8. Vapor generation methods for explosives detection research

    SciTech Connect

    Grate, Jay W.; Ewing, Robert G.; Atkinson, David A.

    2012-12-01

    The generation of calibrated vapor samples of explosives compounds remains a challenge due to the low vapor pressures of the explosives, adsorption of explosives on container and tubing walls, and the requirement to manage (typically) multiple temperature zones as the vapor is generated, diluted, and delivered. Methods that have been described to generate vapors can be classified as continuous or pulsed flow vapor generators. Vapor sources for continuous flow generators are typically explosives compounds supported on a solid support, or compounds contained in a permeation or diffusion device. Sources are held at elevated isothermal temperatures. Similar sources can be used for pulsed vapor generators; however, pulsed systems may also use injection of solutions onto heated surfaces with generation of both solvent and explosives vapors, transient peaks from a gas chromatograph, or vapors generated by s programmed thermal desorption. This article reviews vapor generator approaches with emphasis on the method of generating the vapors and on practical aspects of vapor dilution and handling. In addition, a gas chromatographic system with two ovens that is configurable with up to four heating ropes is proposed that could serve as a single integrated platform for explosives vapor generation and device testing. Issues related to standards, calibration, and safety are also discussed.

  9. Canine detection odor signatures for explosives

    NASA Astrophysics Data System (ADS)

    Williams, Marc; Johnston, J. M.; Cicoria, Matt; Paletz, E.; Waggoner, L. Paul; Edge, Cindy C.; Hallowell, Susan F.

    1998-12-01

    Dogs are capable of detecting and discriminating a number of compounds constituting a complex odor. However, they use only a few of these to recognize a substance. The focus of this research is to determine the compounds dogs learn to use in recognizing explosives. This is accomplished by training dogs under behavioral laboratory conditions to respond differentially on separate levers to 1) blank air, 2) a target odor, such as an explosive, and 3) all other odors (non-target odors). Vapor samples are generated by a serial dilution vapor generator whose operation and output is characterized by GC/MS. Once dogs learn this three-lever discrimination, testing sessions are conducted containing a number of probe trials in which vapor from constituent compounds of the target is presented. Which lever the dogs respond to on these probe trials indicates whether they can smell the compound at all (blank lever) or whether it smells like toe target odor (e.g., the explosive) or like something else. This method was conducted using TNT, C-4, and commercial dynamite. The data show the dogs' reactions to each of the constituent compounds tested for each explosive. Analysis of these data reveal the canine detection odor signature for these explosives.

  10. Microfluidic/SERS Detection of Trace Explosives

    DTIC Science & Technology

    2008-12-01

    1 Microfluidic/SERS Detection of Trace Explosives Carl Meinhart ,a Brian Piorek,a Seung Joon Lee,b Martin Moskovitsb, Craig Cummingsc...SUPPLEMENTARY NOTES See also ADM002187. Proceedings of the Army Science Conference (26th) Held in Orlando, Florida on 1-4 December 2008, The original

  11. Detection and classification of explosive compounds utilizing laser ion mobility spectrometry

    NASA Astrophysics Data System (ADS)

    Langmeier, A.; Heep, W.; Oberhuettinger, C.; Oberpriller, H.; Kessler, M.; Goebel, J.; Mueller, G.

    2009-05-01

    Detection of explosives by ion mobility spectroscopy has become common in recent years. We demonstrate explosive detection with a novel Laser Ion Mobility Spectrometer (LIMS) developed at EADS Innovation Works. A Laser operating at 266nm was used for the two-photon ionisation of dopant and calibrant substances. Quantitative measurements of trace residues of explosives have been performed to quantify the sensitivity of the LIMS system. Findings demonstrate the suitability of this technique as a screening tool for explosive compounds.

  12. Novel Methods for Detecting Buried Explosive Devices

    DTIC Science & Technology

    2007-04-10

    NQR ), and semiotic data fusion. Bioreporter bacteria look promising for third-world humanitarian applications; they are inexpensive, and...demining, NQR is a promising method for detecting explosive substances; of 50,000 substances that have been tested, none has an NQR signature that can be...approach to a cheap mine detector for humanitarian use. Real-time wavelet processing appears to be a key to extending NQR bomb detection into mine

  13. Explosives detection studies using Fast-Neutron Transmission Spectroscopy

    SciTech Connect

    Fink, C.L.; Micklich, B.J.; Sagalovsky, L.; Smith, D.L.; Yule, T.J.

    1996-12-31

    Fast-Neutron Transmission Spectroscopy (FNTS) is being investigated for detection of explosives in luggage or air cargo. We present here the principle results of a two-year study of a few-view tomographic FNTS system using the Monte Carlo radiation transport code MCNP to simulate neutron transmission through simple luggage phantoms and Receiver Operator Characteristic (ROC) curves to determine system performance. Elemental distributions along projections through the interrogated object are obtained by analyzing MCNP generated neutron transmission data. Transmission data for few (3-5) angles and relatively coarse resolution ({approximately}2 cm) are used to create a tomographic reconstruction of elemental distributions within the object. The elemental unfolding and tomographic reconstruction algorithms and the concept of transmission-derived cross sections for use in elemental analysis have been validated by application to experimental data. Elemental distributions are combined in an explosives detection algorithm to provide an indication of the presence or absence of explosives. The algorithm in current use, termed the ``equivalent explosive`` algorithm, determines the quantity of explosive that can be formed using the measured amount of the constituent elements in each pixel. Reconstruction and explosives detection algorithms have been applied to a series of randomly packed suitcases to generated ROC that describe system performance in terms of the probability of detection and of false alarms. System studies have been performed to study the operational characteristics and limitations of a FNTS system, and to determine the system`s sensitivity to several important parameters such as neutron source reaction and incident particle energy, flight path length, and the position of the interrogated object.

  14. Detection of Chemical Precursors of Explosives

    NASA Technical Reports Server (NTRS)

    Li, Jing

    2012-01-01

    Certain selected chemicals associated with terrorist activities are too unstable to be prepared in final form. These chemicals are often prepared as precursor components, to be combined at a time immediately preceding the detonation. One example is a liquid explosive, which usually requires an oxidizer, an energy source, and a chemical or physical mechanism to combine the other components. Detection of the oxidizer (e.g. H2O2) or the energy source (e.g., nitromethane) is often possible, but must be performed in a short time interval (e.g., 5 15 seconds) and in an environment with a very small concentration (e.g.,1 100 ppm), because the target chemical(s) is carried in a sealed container. These needs are met by this invention, which provides a system and associated method for detecting one or more chemical precursors (components) of a multi-component explosive compound. Different carbon nanotubes (CNTs) are loaded (by doping, impregnation, coating, or other functionalization process) for detecting of different chemical substances that are the chemical precursors, respectively, if these precursors are present in a gas to which the CNTs are exposed. After exposure to the gas, a measured electrical parameter (e.g. voltage or current that correlate to impedance, conductivity, capacitance, inductance, etc.) changes with time and concentration in a predictable manner if a selected chemical precursor is present, and will approach an asymptotic value promptly after exposure to the precursor. The measured voltage or current are compared with one or more sequences of their reference values for one or more known target precursor molecules, and a most probable concentration value is estimated for each one, two, or more target molecules. An error value is computed, based on differences of voltage or current for the measured and reference values, using the most probable concentration values. Where the error value is less than a threshold, the system concludes that the target

  15. Sandia Explosive Inventory and Information System

    SciTech Connect

    Clements, D.A.

    1994-08-01

    The Explosive Inventory and Information System (EIS) is being developed and implemented by Sandia National Laboratories (SNL) to incorporate a cradle to grave structure for all explosives and explosive containing devices and assemblies at SNL from acquisition through use, storage, reapplication, transfer or disposal. The system does more than track all material inventories. It provides information on material composition, characteristics, shipping requirements; life cycle cost information, plan of use; and duration of ownership. The system also provides for following the processes of explosive development; storage review; justification for retention; Resource, Recovery and Disposition Account (RRDA); disassembly and assembly; and job description, hazard analysis and training requirements for all locations and employees involved with explosive operations. In addition, other information systems will be provided through the system such as the Department of Energy (DOE) and SNL Explosive Safety manuals, the Navy`s Department of Defense (DoD) Explosive information system, and the Lawrence Livermore National Laboratories (LLNL) Handbook of Explosives.

  16. PINS Measurements and Simulations for Stand-Off Detection of High Explosives

    SciTech Connect

    E.H. Seabury

    2011-07-01

    There has been some interest in the ability of Idaho National Laboratory's (INL) Portable Isotopic Neutron Spectroscopy System's (PINS) ability to detect high explosives at a distance. In order to assess the system's ability to perform this task, laboratory experiments on simulated or mock explosives and Monte Carlo simulations using MCNP on both mock and real explosives have been performed. The simulations and experiments on mock explosives have essentially identical configurations, allowing the models to be confirmed with experiment. This provides greater confidence in the simulations on real explosives without the need for experiment on live explosives.

  17. Nitroaromatic explosives detection using electrochemically exfoliated graphene

    NASA Astrophysics Data System (ADS)

    Yew, Ying Teng; Ambrosi, Adriano; Pumera, Martin

    2016-09-01

    Detection of nitroaromatic explosives is of paramount importance from security point of view. Graphene sheets obtained from the electrochemical anodic exfoliation of graphite foil in different electrolytes (LiClO4 and Na2SO4) were compared and tested as electrode material for the electrochemical detection of 2,4-dinitrotoluene (DNT) and 2,4,6-trinitrotoluene (TNT) in seawater. Voltammetry analysis demonstrated the superior electrochemical performance of graphene produced in LiClO4, resulting in higher sensitivity and linearity for the explosives detection and lower limit of detection (LOD) compared to the graphene obtained in Na2SO4. We attribute this to the presence of oxygen functionalities onto the graphene material obtained in LiClO4 which enable charge electrostatic interactions with the –NO2 groups of the analyte, in addition to π-π stacking interactions with the aromatic moiety. Research findings obtained from this study would assist in the development of portable devices for the on-site detection of nitroaromatic explosives.

  18. Nitroaromatic explosives detection using electrochemically exfoliated graphene

    PubMed Central

    Yew, Ying Teng; Ambrosi, Adriano; Pumera, Martin

    2016-01-01

    Detection of nitroaromatic explosives is of paramount importance from security point of view. Graphene sheets obtained from the electrochemical anodic exfoliation of graphite foil in different electrolytes (LiClO4 and Na2SO4) were compared and tested as electrode material for the electrochemical detection of 2,4-dinitrotoluene (DNT) and 2,4,6-trinitrotoluene (TNT) in seawater. Voltammetry analysis demonstrated the superior electrochemical performance of graphene produced in LiClO4, resulting in higher sensitivity and linearity for the explosives detection and lower limit of detection (LOD) compared to the graphene obtained in Na2SO4. We attribute this to the presence of oxygen functionalities onto the graphene material obtained in LiClO4 which enable charge electrostatic interactions with the –NO2 groups of the analyte, in addition to π-π stacking interactions with the aromatic moiety. Research findings obtained from this study would assist in the development of portable devices for the on-site detection of nitroaromatic explosives. PMID:27633489

  19. Nitroaromatic explosives detection using electrochemically exfoliated graphene.

    PubMed

    Yew, Ying Teng; Ambrosi, Adriano; Pumera, Martin

    2016-09-16

    Detection of nitroaromatic explosives is of paramount importance from security point of view. Graphene sheets obtained from the electrochemical anodic exfoliation of graphite foil in different electrolytes (LiClO4 and Na2SO4) were compared and tested as electrode material for the electrochemical detection of 2,4-dinitrotoluene (DNT) and 2,4,6-trinitrotoluene (TNT) in seawater. Voltammetry analysis demonstrated the superior electrochemical performance of graphene produced in LiClO4, resulting in higher sensitivity and linearity for the explosives detection and lower limit of detection (LOD) compared to the graphene obtained in Na2SO4. We attribute this to the presence of oxygen functionalities onto the graphene material obtained in LiClO4 which enable charge electrostatic interactions with the -NO2 groups of the analyte, in addition to π-π stacking interactions with the aromatic moiety. Research findings obtained from this study would assist in the development of portable devices for the on-site detection of nitroaromatic explosives.

  20. Solid state gas sensors for detection of explosives and explosive precursors

    NASA Astrophysics Data System (ADS)

    Chu, Yun

    The increased number of terrorist attacks using improvised explosive devices (IEDs) over the past few years has made the trace detection of explosives a priority for the Department of Homeland Security. Considerable advances in early detection of trace explosives employing spectroscopic detection systems and other sensing devices have been made and have demonstrated outstanding performance. However, modern IEDs are not easily detectable by conventional methods and terrorists have adapted to avoid using metallic or nitro groups in the manufacturing of IEDs. Instead, more powerful but smaller compounds, such as TATP are being more frequently used. In addition, conventional detection techniques usually require large capital investment, labor costs and energy input and are incapable of real-time identification, limiting their application. Thus, a low cost detection system which is capable of continuous online monitoring in a passive mode is needed for explosive detection. In this dissertation, a thermodynamic based thin film gas sensor which can reliably detect various explosive compounds was developed and demonstrated. The principle of the sensors is based on measuring the heat effect associated with the catalytic decomposition of explosive compounds present in the vapor phase. The decomposition mechanism is complicated and not well known, but it can be affected by many parameters including catalyst, reaction temperature and humidity. Explosives that have relatively high vapor pressure and readily sublime at room temperature, like TATP and 2, 6-DNT, are ideal candidate for vapor phase detection using the thermodynamic gas sensor. ZnO, W2O 3, V2O5 and SnO2 were employed as catalysts. This sensor exhibited promising sensitivity results for TATP, but poor selectivity among peroxide based compounds. In order to improve the sensitivity and selectivity of the thermodynamic sensor, a Pd:SnO2 nanocomposite was fabricated and tested as part of this dissertation. A

  1. Explosive Detection in Aviation Applications Using CT

    SciTech Connect

    Martz, H E; Crawford, C R

    2011-02-15

    CT scanners are deployed world-wide to detect explosives in checked and carry-on baggage. Though very similar to single- and dual-energy multi-slice CT scanners used today in medical imaging, some recently developed explosives detection scanners employ multiple sources and detector arrays to eliminate mechanical rotation of a gantry, photon counting detectors for spectral imaging, and limited number of views to reduce cost. For each bag scanned, the resulting reconstructed images are first processed by automated threat recognition algorithms to screen for explosives and other threats. Human operators review the images only when these automated algorithms report the presence of possible threats. The US Department of Homeland Security (DHS) has requirements for future scanners that include dealing with a larger number of threats, higher probability of detection, lower false alarm rates and lower operating costs. One tactic that DHS is pursuing to achieve these requirements is to augment the capabilities of the established security vendors with third-party algorithm developers. A third-party in this context refers to academics and companies other than the established vendors. DHS is particularly interested in exploring the model that has been used very successfully by the medical imaging industry, in which university researchers develop algorithms that are eventually deployed in commercial medical imaging equipment. The purpose of this paper is to discuss opportunities for third-parties to develop advanced reconstruction and threat detection algorithms.

  2. Detecting underwater improvised explosive threats (DUIET)

    NASA Astrophysics Data System (ADS)

    Feeley, Terry

    2010-04-01

    Improvised Explosive Devices (IEDs) have presented a major threat in the wars in Afghanistan and Iraq. These devices are powerful homemade land mines that can be small and easily hidden near roadsides. They are then remotely detonated when Coalition Forces pass by either singly or in convoys. Their rapid detection, classification and destruction is key to the safety of troops in the area. These land based bombs will have an analogue in the underwater theater especially in ports, lakes, rivers and streams. These devices may be used against Americans on American soil as an element of the global war on terrorism (GWOT) Rapid detection and classification of underwater improvised explosive devices (UIED) is critical to protecting innocent lives and maintaining the day to day flow of commerce. This paper will discuss a strategy and tool set to deal with this potential threat.

  3. Scientists train honeybees to detect explosives

    SciTech Connect

    2008-03-21

    Members of the Los Alamos National Laboratory Stealthy Insect Sensor Project team have been able to harness the honeybee's exceptional olfactory sense by using the bees' natural reaction to nectar, a proboscis extension reflex (sticking out their tongue) to record an unmistakable response to a scent. Using Pavlovian techniques, researchers were able to train the bees to give a positive detection response via the PER when exposed to vapors from TNT, C4, and TATP explosives. The Stealthy Insect Sensor Project was born out of a global threat from the growing use of improvised explosive devices or IEDs, especially those that present a critical vulnerability for American military troops in Iraq and Afghanistan, and as an emerging danger for civilians worldwide. Current strategies to detect explosives are expensive and, in the case of trained detection dogs, too obtrusive to be used very discreetly. With bees however, they are small and discreet, offering the element of surprise. They're also are inexpensive to maintain and even easier to train than dogs. As a result of this need, initial funding for the work was provided by a development grant from the Defense Advanced Research Projects Agency.

  4. Scientists train honeybees to detect explosives

    ScienceCinema

    None

    2016-07-12

    Members of the Los Alamos National Laboratory Stealthy Insect Sensor Project team have been able to harness the honeybee's exceptional olfactory sense by using the bees' natural reaction to nectar, a proboscis extension reflex (sticking out their tongue) to record an unmistakable response to a scent. Using Pavlovian techniques, researchers were able to train the bees to give a positive detection response via the PER when exposed to vapors from TNT, C4, and TATP explosives. The Stealthy Insect Sensor Project was born out of a global threat from the growing use of improvised explosive devices or IEDs, especially those that present a critical vulnerability for American military troops in Iraq and Afghanistan, and as an emerging danger for civilians worldwide. Current strategies to detect explosives are expensive and, in the case of trained detection dogs, too obtrusive to be used very discreetly. With bees however, they are small and discreet, offering the element of surprise. They're also are inexpensive to maintain and even easier to train than dogs. As a result of this need, initial funding for the work was provided by a development grant from the Defense Advanced Research Projects Agency.

  5. Standoff trace detection of explosives with infrared hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Fuchs, F.; Hugger, S.; Jarvis, J.-P.; Yang, Q. K.; Zaum, F.; Ostendorf, R.; Schilling, Ch.; Bronner, W.; Driad, R.; Aidam, R.; Wagner, J.

    2015-05-01

    In this work we present a hyperspectral image sensor based on MIR-laser backscattering spectroscopy for contactless detection of explosive substance traces. The spectroscopy system comprises a tunable Quantum Cascade Laser (QCL) with a tuning range of 7.5 μm to 9.5 μm as an illumination source and a high performance MCT camera for collecting the backscattered light. The resulting measurement data forms a hyperspectral image, where each pixel vector contains the backscattering spectrum of a specific location in the scene. The hyperspectral image data is analyzed for traces of target substances using a state of the art target detection algorithm (the Adaptive Matched Subspace Detector) together with an appropriate background extraction method. The technique is eye-safe and allows imaging detection of a large variety of explosive substances including PETN, RDX, TNT and Ammonium Nitrate. For short stand-off detection distances (<3 m), residues of explosives at an amount of just a few 10 μg, i.e. traces corresponding to a single fingerprint, could be detected. For larger concentration of explosives, stand-off detection over distances of up to 20 m has already been demonstrated.

  6. Ultraviolet Resonance Raman Enhancements in the Detection of Explosives

    DTIC Science & Technology

    2009-06-01

    SUBJECT TERMS Raman Spectroscopy, Standoff Detection, High Explosives, Explosive Detection, Inelastic Scattering, Resonance Raman 16. PRICE CODE...absolute Raman cross sections of TATP, PETN, RDX and TNT explosives from 620 to 248 nm at a constant flux of 2.5 1024 quanta s1 cm2 using KNO3

  7. Optical detection of explosives: spectral signatures for the explosive bouquet

    NASA Astrophysics Data System (ADS)

    Osborn, Tabetha; Kaimal, Sindhu; Causey, Jason; Burns, William; Reeve, Scott

    2009-05-01

    Research with canines suggests that sniffer dogs alert not on the odor from a pure explosive, but rather on a set of far more volatile species present in an explosive as impurities. Following the explosive trained canine example, we have begun examining the vapor signatures for many of these volatile impurities utilizing high resolution spectroscopic techniques in several molecular fingerprint regions. Here we will describe some of these high resolution measurements and discuss strategies for selecting useful spectral signature regions for individual molecular markers of interest.

  8. Liquid explosive detection using near infrared LED

    NASA Astrophysics Data System (ADS)

    Itozaki, Hideo; Ito, Shiori; Sato-Akaba, Hideo; Miyato, Yuji

    2015-10-01

    A bottle scanner to detect liquid explosive has been developed using technologies of near infrared. Its detection rate of liquid explosive is quite high and its false alarm rate of safe liquids quite low. It uses a light source with wide spectrum such as a halogen lamp. Recently a variety of LEDs have been developed and some of them have near infrared spectrum. Here a near infrared LED is tested as a light source of the liquid explosive detector. Three infrared LEDs that have a main peak of spectrum at 901nm, 936nm, and 1028 nm have been used as a light source to scan liquids. Spectrum widths of these LEDs are quite narrow typically less than 100 nm. Ten typical liquids have been evaluated by these LEDs and the correlation coefficients of a spectrum by an LED and a tungsten lamp were more than 0.98. This experiment shows that the infrared LED can be used as a light source for the liquid scanner. An LED has some merits, such as long life of more than some ten thousand hours and small consumption electric power of less than 0.2 W. When the LED is used as a light source for the liquid scanner, it is also more compact and handy.

  9. Nanomaterial-Based Biosensors for Detection of Pesticides and Explosives

    SciTech Connect

    Wang, Jun; Lin, Yuehe

    2009-01-01

    In this chapter, we describe nanomaterial-based biosensors for detecting OP pesticides and explosives. CNTs and functionalized silica nanoparticles have been chosen for this study. The biosensors were combined with the flow-injection system, providing great advantages for onsite, real-time, and continuous detection of environmental pollutants such as OPs and TNT. The sensors take advantage of the electrocatalytic properties of CNTs, which makes it feasible to achieve a sensitive electrochemical detection of the products from enzymatic reactions at low potential. This approach uses a large aspect ratio of silica nanoparticles, which can be used as a carrier for loading a large amount of electroactive species, such as poly(guanine), for amplified detection of explosives. These methods offer a new environmental monitoring tool for rapid, inexpensive, and highly sensitive detection of OPs or TNT compounds.

  10. Explosives Detection in a Lasing Plasmon Nanocavity

    DTIC Science & Technology

    2014-08-01

    Explosives detection in a lasing plasmon nanocavity Ren-Min Ma1†, Sadao Ota1†, Yimin Li1, Sui Yang1 and Xiang Zhang1,2* Perhaps the most successful...application of plasmonics to date has been in sensing, where the interaction of a nanoscale loca- lized field with analytes leads to high-sensitivity... plasmon sensors with active excitation (gain-enhanced) can achieve much higher sensitivities due to the amplification of the surface plasmons10–12. Here

  11. Explosives detection in a lasing plasmon nanocavity.

    PubMed

    Ma, Ren-Min; Ota, Sadao; Li, Yimin; Yang, Sui; Zhang, Xiang

    2014-08-01

    Perhaps the most successful application of plasmonics to date has been in sensing, where the interaction of a nanoscale localized field with analytes leads to high-sensitivity detection in real time and in a label-free fashion. However, all previous designs have been based on passively excited surface plasmons, in which sensitivity is intrinsically limited by the low quality factors induced by metal losses. It has recently been proposed theoretically that surface plasmon sensors with active excitation (gain-enhanced) can achieve much higher sensitivities due to the amplification of the surface plasmons. Here, we experimentally demonstrate an active plasmon sensor that is free of metal losses and operating deep below the diffraction limit for visible light. Loss compensation leads to an intense and sharp lasing emission that is ultrasensitive to adsorbed molecules. We validated the efficacy of our sensor to detect explosives in air under normal conditions and have achieved a sub-part-per-billion detection limit, the lowest reported to date for plasmonic sensors with 2,4-dinitrotoluene and ammonium nitrate. The selectivity between 2,4-dinitrotoluene, ammonium nitrate and nitrobenzene is on a par with other state-of-the-art explosives detectors. Our results show that monitoring the change of the lasing intensity is a superior method than monitoring the wavelength shift, as is widely used in passive surface plasmon sensors. We therefore envisage that nanoscopic sensors that make use of plasmonic lasing could become an important tool in security screening and biomolecular diagnostics.

  12. Quantum control for initiation and detection of explosives

    SciTech Connect

    Greenfield, Margo T; Mc Grane, Shawn D; Scharff, R. Jason; Moore, David S

    2010-01-01

    We employ quantum control methods towards detection and quantum controlled initiation (QCI) of energetic materials. Ultrafast pulse shaping of broadband Infrared ({approx}750 nm to 850 run) and ultraviolet (266 nm, 400 nm) light is utilized for control. The underlying principals behind optimal control can be utilized to both detect and initiate explosives. In each case, time dependent phase shaped electric fields drive the chemical systems towards a desired state. For optimal dynamic detection of explosives (ODD-Ex) a phase specific broadband infrared pulse is created which increases not only the sensitivity of detection but also the selectivity of an explosive's spectral signatures in a background of interferents. QCI on the other hand, seeks to initiate explosives by employing shaped ultraviolet light. QCI is ideal for use with explosive detonators as it removes the possibility of unintentional initiation from an electrical source while adding an additional safety feature, initiation only with the proper pulse shape. Quantum control experiments require: (1) the ability to phase and amplitude shape the laser pulse and (2) the ability to effectively search for the pulse shape which controls the reaction. In these adaptive experiments we utilize both global and local optimization search routines such as genetic algorithm, differential evolution, and downhill simplex. Pulse shaping the broadband IR light, produced by focusing 800 nm light through a pressurized tube of Argon, is straightforward as commercial pulse shapers are available at and around 800 nm. Pulse shaping in the UV requires a home built shaper. Our system is an acoustic optical modulator (AOM) pulse shaper in which consists of a fused silica AOM crystal placed in the Fourier plane of a 4-f zero dispersion compressor.

  13. Detection of explosives using heated microcantilever sensors

    NASA Astrophysics Data System (ADS)

    Nelson, Ian C.; Banerjee, Debjyoti; Rogers, William J.; Mannan, M. Sam

    2006-05-01

    The objective of this study is to develop a portable micro-sensor platform for real-time detection of energetic materials (e.g., explosives) over a wide range of vapor pressures. The bending response of an electrically heated microcantilever thermal bi-morph array is used for specific detection of combustible substances using their calorimetric properties. Chemical reactions on the surface induce stress on a micro-cantilever which affects the bending and is measured in real-time using an optical apparatus. The threshold value of actuation current is found to provide a unique signature for identifying equilibrium concentration of iso-propyl alcohol, acetone and gasoline vapors at room temperature. The threshold current is found to scale with the vapor pressure of the volatile species and the ignition temperature. This shows that the sensors can be used for specific detection of different types of combustible materials. The sensor array can be used to detect, identify and monitor volatile combustible species in real time (response time in milliseconds) with the capability for redundancy checks and the ability to eliminate false positive/ false-negative results. The sensor is capable of remote monitoring on a continuous basis for indoor and outdoor applications - which protects the operator of the sensor instrument from explosive effects. The sensor design permits detection at a nominal distance away from the source without coming in contact with the contaminated surface. The sensor capability can be enhanced by specifically coating the micro-cantilever surfaces (e.g. using Dip Pen Nanolithography techniques) and can be integrated into a portable detection platform or instrument.

  14. Coded-aperture Raman imaging for standoff explosive detection

    NASA Astrophysics Data System (ADS)

    McCain, Scott T.; Guenther, B. D.; Brady, David J.; Krishnamurthy, Kalyani; Willett, Rebecca

    2012-06-01

    This paper describes the design of a deep-UV Raman imaging spectrometer operating with an excitation wavelength of 228 nm. The designed system will provide the ability to detect explosives (both traditional military explosives and home-made explosives) from standoff distances of 1-10 meters with an interrogation area of 1 mm x 1 mm to 200 mm x 200 mm. This excitation wavelength provides resonant enhancement of many common explosives, no background fluorescence, and an enhanced cross-section due to the inverse wavelength scaling of Raman scattering. A coded-aperture spectrograph combined with compressive imaging algorithms will allow for wide-area interrogation with fast acquisition rates. Coded-aperture spectral imaging exploits the compressibility of hyperspectral data-cubes to greatly reduce the amount of acquired data needed to interrogate an area. The resultant systems are able to cover wider areas much faster than traditional push-broom and tunable filter systems. The full system design will be presented along with initial data from the instrument. Estimates for area scanning rates and chemical sensitivity will be presented. The system components include a solid-state deep-UV laser operating at 228 nm, a spectrograph consisting of well-corrected refractive imaging optics and a reflective grating, an intensified solar-blind CCD camera, and a high-efficiency collection optic.

  15. Low cost mobile explosive/drug detection devices

    SciTech Connect

    Gozani, T.; Bendahan, J.

    1999-06-10

    Inspection technologies based on Thermal Neutron Analysis (TNA) and/or Fast Neutron Analysis (FNA) are the basis for relatively compact and low-cost, material-sensitive devices for a wide variety of inspection needs. The TNA allows the use of either isotropic neutron sources such as a {sup 252}Cf, or electronic neutron generators such as the d-T sealed neutron generator tubes. The latter could be used in a steady state mode or in slow (>{mu}s) pulsing mode, to separate the thermal neutron capture signatures following the pulse from the combination of the FNA plus TNA signatures during the pulse. Over the years, Ancore Corporation has built and is continuing to develop a variety of inspection devices based on its TNA and FNA technologies: SPEDS--an explosive detection device for small parcels, portable electronics, briefcases and other similar carry-on items; MDS - a system for the detection or confirmation of buried mines; VEDS - a system for the detection of varied amounts of explosives and/or drugs concealed in passenger vehicles, pallets, lightly loaded trucks or containers, etc.; ACD - a device to clear alarms from a primary, non-specific explosive detection system for passenger luggage. The principle and performance of these devices will be shown and discussed.

  16. Quantum Cascade Lasers (QCLs) for standoff explosives detection : LDRD 138733 final report.

    SciTech Connect

    Theisen, Lisa Anne; Linker, Kevin Lane

    2009-09-01

    Continued acts of terrorism using explosive materials throughout the world have led to great interest in explosives detection technology, especially technologies that have a potential for remote or standoff detection. This LDRD was undertaken to investigate the benefit of the possible use of quantum cascade lasers (QCLs) in standoff explosives detection equipment. Standoff detection of explosives is currently one of the most difficult problems facing the explosives detection community. Increased domestic and troop security could be achieved through the remote detection of explosives. An effective remote or standoff explosives detection capability would save lives and prevent losses of mission-critical resources by increasing the distance between the explosives and the intended targets and/or security forces. Many sectors of the US government are urgently attempting to obtain useful equipment to deploy to our troops currently serving in hostile environments. This LDRD was undertaken to investigate the potential benefits of utilizing quantum cascade lasers (QCLs) in standoff detection systems. This report documents the potential opportunities that Sandia National Laboratories can contribute to the field of QCL development. The following is a list of areas where SNL can contribute: (1) Determine optimal wavelengths for standoff explosives detection utilizing QCLs; (2) Optimize the photon collection and detection efficiency of a detection system for optical spectroscopy; (3) Develop QCLs with broader wavelength tunability (current technology is a 10% change in wavelength) while maintaining high efficiency; (4) Perform system engineering in the design of a complete detection system and not just the laser head; and (5) Perform real-world testing with explosive materials with commercial prototype detection systems.

  17. Time-of-flight mass spectrometry for explosives trace detection

    NASA Astrophysics Data System (ADS)

    Pettersson, Anna; Elfving, Anders; Elfsberg, Mattias; Hurtig, Tomas; Johansson, Niklas; Al-Khalili, Ahmed; Käck, Petra; Wallin, Sara; Östmark, Henric

    2012-06-01

    This paper presents the ongoing development of a laser ionization mass spectrometric system to be applied for screening for security related threat substances, specifically explosives. The system will be part of a larger security checkpoint system developed and demonstrated within the FP7 project EFFISEC to aid border police and customs at outer border checks. The laser ionization method of choice is SPI (single photon ionization), but the system also incorporates optional functionalities such as a cold trap and/or a particle concentrator to facilitate detection of minute amounts of explosives. The possibility of using jet-REMPI as a verification means is being scrutinized. Automated functionality and user friendliness is also considered in the demo system development.

  18. Trace Explosive Detection using Photothermal Deflection Spectroscopy

    SciTech Connect

    Krause, Adam R; Van Neste, Charles W; Senesac, Larry R; Thundat, Thomas George; Finot, Eric

    2008-01-01

    Satisfying the conditions of high sensitivity and high selectivity using portable sensors that are also reversible is a challenge. Miniature sensors such as microcantilevers offer high sensitivity but suffer from poor selectivity due to the lack of sufficiently selective receptors. Although many of the mass deployable spectroscopic techniques provide high selectivity, they do not have high sensitivity. Here, we show that this challenge can be overcome by combining photothermal spectroscopy on a bimaterial microcantilever with the mass induced change in the cantilever's resonance frequency. Detection using adsorption-induced resonant frequency shift together with photothermal deflection spectroscopy shows extremely high selectivity with a subnanogram limit of detection for vapor phase adsorbed explosives, such as pentaerythritol tetranitrate (PETN), cyclotrimethylene trinitramine (RDX), and trinitrotoluene (TNT).

  19. Remote Detection of Explosive Molecules by a Microfluidic SERS Device

    NASA Astrophysics Data System (ADS)

    Piorek, Brian; Lee, Seung Joon; Moskovits, Martin; Banerjee, Sanjoy; Meinhart, Carl

    2007-11-01

    Free-surface microfluidics (FSF) is combined with surface-enhanced Raman spectroscopy (SERS) to detect trace explosives vapors at room temperature and pressure. A free surface, with a large surface to volume ratio, is created using an open microchannel. Since surface tension is a dominant force at the microscale, it can be used to confine the fluid in the microchannel and create a pressure gradient to drive the flow with velocities ranging from ˜ 1um/s - 1mm/s. The curvature of the free surface is measured by confocal microscopy in order to determine the local Laplace pressure in the free-surface microchannel flow. The system has been used for the molecular-specific detection of vapor emanated from explosives such as DNT, TNT and picric acid. The system does not show signs of performance degradation from common interferents such as saturated gasoline vapor and perfume.

  20. Novel methods for detecting buried explosive devices

    SciTech Connect

    Kercel, S.W.; Burlage, R.S.; Patek, D.R.; Smith, C.M.; Hibbs, A.D.; Rayner, T.J.

    1997-04-01

    Oak Ridge National Laboratory (ORNL) and Quantum Magnetics, Inc. (QM) are exploring novel landmine detection technologies. Technologies considered here include bioreporter bacteria, swept acoustic resonance, nuclear quadrupole resonance (NQR), and semiotic data fusion. Bioreporter bacteria look promising for third-world humanitarian applications; they are inexpensive, and deployment does not require high-tech methods. Swept acoustic resonance may be a useful adjunct to magnetometers in humanitarian demining. For military demining, NQR is a promising method for detecting explosive substances; of 50,000 substances that have been tested, none has an NQR signature that can be mistaken for RDX or TNT. For both military and commercial demining, sensor fusion entails two daunting tasks, identifying fusible features in both present-day and emerging technologies, and devising a fusion algorithm that runs in real-time on cheap hardware. Preliminary research in these areas is encouraging. A bioreporter bacterium for TNT detection is under development. Investigation has just started in swept acoustic resonance as an approach to a cheap mine detector for humanitarian use. Real-time wavelet processing appears to be a key to extending NQR bomb detection into mine detection, including TNT-based mines. Recent discoveries in semiotics may be the breakthrough that will lead to a robust fused detection scheme.

  1. Active Water Explosion Suppression System

    DTIC Science & Technology

    2002-06-01

    efficient in eliminating the heat of detonation , thereby eliminating the heat of combustion and the associated burning of explosive by-products in the...efficiency in eliminating the heat of detonation . In any case, the net effect of the water absorbing the detonation energy of the explosive is a major

  2. Mass spectrometric detection of solid and vapor explosive materials

    NASA Astrophysics Data System (ADS)

    Stott, William R.; Green, D.; Mercado, Alvaro G.

    1994-10-01

    The detection by chemical sensors of explosive devices in a terrorist or contraband scenario usually involves the acquisition of material in the vapor or solid form. Whether in the vapor form in ambient air or in solid form in a matrix of innocuous material, the chemical compounds may be present at very low concentrations or may be present in concentrations higher by orders of magnitude. In this study, a characterization of a tandem mass spectrometer detection system has been made to evaluate a variety of parameters as it relates to explosive chemicals in both the vapor and solid phases. In particular, a range of concentrations of standard solutions of RDX, PETN and TNT have been injected in determine the sensitivity, dynamic range, and lower level of detection of the SCIEX contraband tandem quadrupole mass spectrometer. Techniques for the introduction of samples include heated nebulization and direct injection/thermal desorption from a real time sampler belt. As well, explosive vapors produced by a special generator were injected in a 1 l/min stream of room air and used to characterize instrumental performance. Solid material was presented in a form simulating fingerprint material and then transferred to the detector using a real time sampling system and then thermally desorbed into the mass spectrometer ionization chamber.

  3. A review on several key problems of standoff trace explosives detection by optical-related technology

    NASA Astrophysics Data System (ADS)

    Chen, Zhibin; Xiao, Cheng; Xiao, Wenjian; Qin, Mengze; Liu, Xianhong

    2016-01-01

    To prevent tragic disasters caused by terror acts and warfare threats, security check personnel must be capable of discovering, distinguishing and eliminating the explosives at multiple circumstances. Standoff technology for the remote detection of explosives and their traces on contaminated surfaces is a research field that has become a heightened priority in recent years for homeland security and counter-terrorism applications. There has been a huge increase in research within this area, the improvement of standoff trace explosives detection by optical-related technology. This paper provides a consolidation of information relating to recent advances in several key problems of, without being limited to one specific research area or explosive type. Working laser wavelength of detection system is discussed. Generation and collection of explosives spectra signal are summarized. Techniques for analysing explosives spectra signal are summed up.

  4. Visible Hyperspectral Imaging for Standoff Detection of Explosives on Surfaces

    SciTech Connect

    Bernacki, Bruce E.; Blake, Thomas A.; Mendoza, Albert; Johnson, Timothy J.

    2010-11-01

    There is an ever-increasing need to be able to detect the presence of explosives, preferably from standoff distances. This paper presents an application of visible hyperspectral imaging using anomaly, polarization and spectral identification approaches for the standoff detection (13 meters) of nitroaromatic explosives on realistic painted surfaces based upon the colorimetric differences between tetryl and TNT which are enhanced by solar irradiation.

  5. Improved thermal neutron activation sensor for detection of bulk explosives

    NASA Astrophysics Data System (ADS)

    McFee, John E.; Faust, Anthony A.; Andrews, H. Robert; Clifford, Edward T. H.; Mosquera, Cristian M.

    2012-06-01

    Defence R&D Canada - Suffield and Bubble Technology Industries have been developing thermal neutron activation (TNA) sensors for detection of buried bulk explosives since 1994. First generation sensors, employing an isotopic source and NaI(Tl) gamma ray detectors, were deployed by Canadian Forces in 2002 as confirmation sensors on the ILDS teleoperated, vehicle-mounted, multi-sensor anti-tank landmine detection systems. The first generation TNA could detect anti-tank mines buried 10 cm or less in no more than a minute, but deeper mines and those significantly displaced horizontally required considerably longer times. Mines as deep as 30 cm could be detected with long counting times (1000 s). The second generation TNA detector is being developed with a number of improvements aimed at increasing sensitivity and facilitating ease of operation. Among these are an electronic neutron generator to increase sensitivity for deeper and horizontally displaced explosives; LaBr3(Ce) scintillators, to improve time response and energy resolution; improved thermal and electronic stability; improved sensor head geometry to minimize spatial response nonuniformity; and more robust data processing. This improved sensitivity can translate to either decreased counting times, decreased minimum detectable explosive quantities, increased maximum sensor-to-target displacement, or a trade off among all three. Experiments to characterize the performance of the latest generation TNA in detecting buried landmines and IEDs hidden in culverts were conducted during 2011. This paper describes the second generation system. The experimental setup and methodology are detailed and preliminary comparisons between the performance of first and second generation systems are presented.

  6. Laser system to detonate explosive devices

    NASA Technical Reports Server (NTRS)

    Menichelli, V. J.; Yang, L. C.

    1974-01-01

    Detonating system is not affected by electromagnetic interference. System includes laser source, Q-switch, and optical fiber connected to explosive device. Fiber can be branched out and connected to several devices for simultaneous detonation.

  7. Sensor array and preconcentrator for the detection of explosives in water

    NASA Astrophysics Data System (ADS)

    Woodka, Marc D.; Shpil, J. Cory; Schnee, Vincent P.; Polcha, J. Michael P.

    2012-06-01

    A sensor system has been constructed that is capable of detecting and discriminating between various explosives presented in ocean water with detection limits at the 10-100 parts per trillion level. The sensor discriminates between different compounds using a biologically-inspired fluorescent polymer sensor array, which responds with a unique fluorescence quenching pattern during exposure to different analytes. The sensor array was made from commercially available fluorescent polymers coated onto glass beads, and was demonstrated to discriminate between different electron-withdrawing analytes delivered in salt water solutions, including the explosives 2,4,6-trinitrotoluene (TNT) and tetryl, the explosive hydrolysis products 2-amino-4,6-dinitrotoluene and 4-amino-2,6-dinitrotoluene, as well as other explosive-related compounds and explosive simulants. Sensitivities of 10-100 parts per trillion were achieved by employing a preconcentrator (PC) upstream of the sensor inlet. The PC consists of the porous polymer Tenax, which captures explosives from contaminated water as it passes through the PC. As the concentration of explosives in water decreased, longer loading times were required to concentrate a detectable amount of explosives within the PC. Explosives accumulated within the PC were released to the sensor array by heating the PC to 190 C. This approach yielded preconcentration factors of up to 100-1000x, however this increased sensitivity towards lower concentrations of explosives was achieved at the expense of proportionally longer sampling times. Strategies for decreasing this sampling time are discussed.

  8. Detecting buried explosive hazards with handheld GPR and deep learning

    NASA Astrophysics Data System (ADS)

    Besaw, Lance E.

    2016-05-01

    Buried explosive hazards (BEHs), including traditional landmines and homemade improvised explosives, have proven difficult to detect and defeat during and after conflicts around the world. Despite their various sizes, shapes and construction material, ground penetrating radar (GPR) is an excellent phenomenology for detecting BEHs due to its ability to sense localized differences in electromagnetic properties. Handheld GPR detectors are common equipment for detecting BEHs because of their flexibility (in part due to the human operator) and effectiveness in cluttered environments. With modern digital electronics and positioning systems, handheld GPR sensors can sense and map variation in electromagnetic properties while searching for BEHs. Additionally, large-scale computers have demonstrated an insatiable appetite for ingesting massive datasets and extracting meaningful relationships. This is no more evident than the maturation of deep learning artificial neural networks (ANNs) for image and speech recognition now commonplace in industry and academia. This confluence of sensing, computing and pattern recognition technologies offers great potential to develop automatic target recognition techniques to assist GPR operators searching for BEHs. In this work deep learning ANNs are used to detect BEHs and discriminate them from harmless clutter. We apply these techniques to a multi-antennae, handheld GPR with centimeter-accurate positioning system that was used to collect data over prepared lanes containing a wide range of BEHs. This work demonstrates that deep learning ANNs can automatically extract meaningful information from complex GPR signatures, complementing existing GPR anomaly detection and classification techniques.

  9. Surface enhanced vibrational spectroscopy for the detection of explosives

    NASA Astrophysics Data System (ADS)

    Büttner, Fritjof; Hagemann, Jan; Wellhausen, Mike; Funke, Sebastian; Lenth, Christoph; Rotter, Frank; Gundrum, Lars; Plachetka, Ulrich; Moormann, Christian; Strube, Moritz; Walte, Andreas; Wackerbarth, Hainer

    2013-10-01

    A detector which can detect a broad range of explosives without false alarms is urgently needed. Vibrational spectroscopy provides specific spectral information about molecules enabling the identification of analytes by their "fingerprint" spectra. The low detection limit caused by the inherent weak Raman process can be increased by the Surface Enhanced Raman (SER) effect. This is particularly attractive because it combines low detection limits with high information content for establishing molecular identity. Based on SER spectroscopy we have constructed a modular detection system. Here, we want to show a combination of SER spectroscopy and chemometrics to distinguish between chemically similar substances. Such an approach will finally reduce the false alarm rate. It is still a challenge to determine the limit of detection of the analyte on a SER substrate or its enhancement factor. For physisorbed molecules we have applied a novel approach. By this approach the performance of plasmonic substrates and Surface Enhanced Raman Scattering (SERS) enhancement of explosives can be evaluated. Moreover, novel nanostructured substrates for surface enhanced IR absorption (SEIRA) spectroscopy will be presented. The enhancement factor and a limit of detection are estimated.

  10. Digital micromirror devices in Raman trace detection of explosives

    NASA Astrophysics Data System (ADS)

    Glimtoft, Martin; Svanqvist, Mattias; Ågren, Matilda; Nordberg, Markus; Östmark, Henric

    2016-05-01

    Imaging Raman spectroscopy based on tunable filters is an established technique for detecting single explosives particles at stand-off distances. However, large light losses are inherent in the design due to sequential imaging at different wavelengths, leading to effective transmission often well below 1 %. The use of digital micromirror devices (DMD) and compressive sensing (CS) in imaging Raman explosives trace detection can improve light throughput and add significant flexibility compared to existing systems. DMDs are based on mature microelectronics technology, and are compact, scalable, and can be customized for specific tasks, including new functions not available with current technologies. This paper has been focusing on investigating how a DMD can be used when applying CS-based imaging Raman spectroscopy on stand-off explosives trace detection, and evaluating the performance in terms of light throughput, image reconstruction ability and potential detection limits. This type of setup also gives the possibility to combine imaging Raman with non-spatially resolved fluorescence suppression techniques, such as Kerr gating. The system used consists of a 2nd harmonics Nd:YAG laser for sample excitation, collection optics, DMD, CMOScamera and a spectrometer with ICCD camera for signal gating and detection. Initial results for compressive sensing imaging Raman shows a stable reconstruction procedure even at low signals and in presence of interfering background signal. It is also shown to give increased effective light transmission without sacrificing molecular specificity or area coverage compared to filter based imaging Raman. At the same time it adds flexibility so the setup can be customized for new functionality.

  11. Detection of homemade explosives using Raman excitation at 1064 nm

    NASA Astrophysics Data System (ADS)

    Roy, Eric G.; Dentinger, Claire; Robotham, Claude

    2015-05-01

    Raman spectroscopy is a powerful tool for obtaining molecular structure information of a sample. While Raman spectroscopy is a common laboratory based analytical tool, miniaturization of opto-electronic components has allowed handheld Raman analyzers to become commercially available. These handheld systems are utilized by Military and Bomb squad operators tasked with rapidly identifying explosives in the field, sometimes in clandestine laboratories. However, one limitation of many handheld Raman detection systems is strong interference caused by fluorescence of the sample or underlying surface which obscures the characteristic Raman signature of the target analyte. Homemade explosives (HMEs) are produced in clandestine laboratories, and the products under these conditions are typically contaminated with degradation products, contaminants, and unreacted precursors. These contaminations often will have strong fluorescence. In this work, Raman spectra of both commercial explosives and HMEs were collected using a handheld Raman spectrometer with a 1064 nm excitation laser. While Raman scattering generated by a 1064 nm laser is inherently less efficient than excitation at shorter wavelengths, high quality spectra were easily obtained due to significantly reduced fluorescence of HMEs.

  12. The detection of bulk explosives using nuclear-based techniques

    SciTech Connect

    Morgado, R.E.; Gozani, T.; Seher, C.C.

    1988-01-01

    In 1986 we presented a rationale for the detection of bulk explosives based on nuclear techniques that addressed the requirements of civil aviation security in the airport environment. Since then, efforts have intensified to implement a system based on thermal neutron activation (TNA), with new work developing in fast neutron and energetic photon reactions. In this paper we will describe these techniques and present new results from laboratory and airport testing. Based on preliminary results, we contended in our earlier paper that nuclear-based techniques did provide sufficiently penetrating probes and distinguishable detectable reaction products to achieve the FAA operational goals; new data have supported this contention. The status of nuclear-based techniques for the detection of bulk explosives presently under investigation by the US Federal Aviation Administration (FAA) is reviewed. These include thermal neutron activation (TNA), fast neutron activation (FNA), the associated particle technique, nuclear resonance absorption, and photoneutron activation. The results of comprehensive airport testing of the TNA system performed during 1987-88 are summarized. From a technical point of view, nuclear-based techniques now represent the most comprehensive and feasible approach for meeting the operational criteria of detection, false alarms, and throughput. 9 refs., 5 figs., 2 tabs.

  13. Nuclear quadrupole resonance detection of explosives: an overview

    NASA Astrophysics Data System (ADS)

    Miller, Joel B.

    2011-06-01

    Nuclear Quadrupole Resonance (NQR) is a spectroscopic technique closely related to Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI). These techniques, and NQR in particular, induce signals from the material being interrogated that are very specific to the chemical and physical structure of the material, but are relatively insensitive to the physical form of the material. NQR explosives detection exploits this specificity to detect explosive materials, in contrast to other well known techniques that are designed to detect explosive devices. The past two decades have seen a large research and development effort in NQR explosives detection in the United States aimed at transportation security and military applications. Here, I will briefly describe the physical basis for NQR before discussing NQR developments over the past decade, with particular emphasis on landmine detection and the use of NQR in combating IED's. Potential future directions for NQR research and development are discussed.

  14. Improving nuclear explosion detection using seismic and geomorphic data sets

    NASA Astrophysics Data System (ADS)

    Zeiler, Cleat Philip

    The ability to detect and locate nuclear explosions relies on the collection of seismic data, picking seismic phases, comparing amplitudes of seismic phases, and using velocity models to invert for location. The current monitoring system provides reliable results for large-yield sources detected at regional to teleseismic distances and at known test sites. With the increased availability of local datasets and the possibility of evasion scenarios that mask the yield, we improve the current methods of nuclear explosion detection by understanding local phase phenomena. The first chapter of this dissertation addresses the characterization of local/regional phase phenomena and source discrimination associated with near surface testing. I develop a local source discrimination technique and characterize the phases produced by near-surface explosions. We use the Source Phenomenology Experiment (SPE) broadband data set collected across the Colorado Plateau during the summer of 2003, which recorded explosions in hard and soft rock mines. We optimized a local surface wave magnitude scale derived from a stable, regional surface wave magnitude (Russell, 2006) for the explosions in each lithology. Magnitude scales for the local phases (Pg, Lg/Sg and Rg) were also tested and compared. The regional and teleseismic discrimination techniques employed were optimized for local distances to distinguish between source and rock type. We found that the magnitude and amplitude ratios were able to discriminate between small earthquakes and explosions at local distances, with each performing the best in the hardrock lithology. However, we believe that the ratio techniques would perform equally in both lithologies if multiple stations were used to establish the ratio values. We also determine that the source lithology and large-scale geologic features control most of the variability in the amplitude measurements. While several misclassifications are noted in the model, we designed the model

  15. Explosives detection using photoneutrons produced by X-rays

    NASA Astrophysics Data System (ADS)

    Yang, Yigang; Li, Yuanjing; Wang, Haidong; Li, Tiezhu; Wu, Bin

    2007-08-01

    The detection of explosives has become a critical issue after recent terrorist attacks. This paper describes research on explosives detection using photoneutrons from a photoneutron convertor that consists of 20 kg heavy water in an aluminum container whose shape was optimized to most effectively convert X-rays to photoneutrons. The X-rays were produced by a 9 MeV electron accelerator with an average electron current of 100 μA, resulted in a photoneutron yield of >10 11 n/s. Monte-Carlo simulations show that the radiation field is composed of X-ray pulses, fast neutron pulses and thermal neutrons. Both the X-ray and fast neutron pulses are 5 μs wide with a 300 Hz repetition frequency. The thermal neutron flux, which is higher than 10 4 n/cm 2/s, is essentially time invariant. A time shielding circuit was developed for the spectrometry system to halt the sampling process during the intense X-ray pulses. Paraffin, boron carbide and lead were used to protect the detector from interference from the X-rays, fast neutrons, thermal neutrons and background γ-rays coming from the system materials induced by photoneutrons. 5″×5″ NaI (Tl) scintillators were chosen as the detectors to detect the photoneutrons induced γ-rays from the inspected explosive simulant. Nitrogen (6.01 cps) 10.828 MeV γ-rays were detected with one detector from a 50 kg carbamide block placed 60 cm in front of the detector. A collimator was used to reduce the number of background 10.828 MeV γ-rays coming from the nitrogen in the air to improve the signal to background ratio from 0.136 to 1.81. A detector array of seven 5″×5″ NaI (Tl) detectors was used to measure the 2-D distributions of N and H in the sample. The combination of photoneutron analysis and X-ray imaging shows promise for enhancing explosives detection capabilities.

  16. Contributed Review: Quantum cascade laser based photoacoustic detection of explosives

    SciTech Connect

    Li, J. S. Yu, B.; Fischer, H.; Chen, W.; Yalin, A. P.

    2015-03-15

    Detecting trace explosives and explosive-related compounds has recently become a topic of utmost importance for increasing public security around the world. A wide variety of detection methods and an even wider range of physical chemistry issues are involved in this very challenging area. Optical sensing methods, in particular mid-infrared spectrometry techniques, have a great potential to become a more desirable tools for the detection of explosives. The small size, simplicity, high output power, long-term reliability make external cavity quantum cascade lasers (EC-QCLs) the promising spectroscopic sources for developing analytical instrumentation. This work reviews the current technical progress in EC-QCL-based photoacoustic spectroscopy for explosives detection. The potential for both close-contact and standoff configurations using this technique is completely presented over the course of approximately the last one decade.

  17. Contributed review: quantum cascade laser based photoacoustic detection of explosives.

    PubMed

    Li, J S; Yu, B; Fischer, H; Chen, W; Yalin, A P

    2015-03-01

    Detecting trace explosives and explosive-related compounds has recently become a topic of utmost importance for increasing public security around the world. A wide variety of detection methods and an even wider range of physical chemistry issues are involved in this very challenging area. Optical sensing methods, in particular mid-infrared spectrometry techniques, have a great potential to become a more desirable tools for the detection of explosives. The small size, simplicity, high output power, long-term reliability make external cavity quantum cascade lasers (EC-QCLs) the promising spectroscopic sources for developing analytical instrumentation. This work reviews the current technical progress in EC-QCL-based photoacoustic spectroscopy for explosives detection. The potential for both close-contact and standoff configurations using this technique is completely presented over the course of approximately the last one decade.

  18. Ultrafast laser based coherent control methods for explosives detection

    SciTech Connect

    Moore, David Steven

    2010-12-06

    The detection of explosives is a notoriously difficult problem, especially at stand-off, due to their (generally) low vapor pressure, environmental and matrix interferences, and packaging. We are exploring Optimal Dynamic Detection of Explosives (ODD-Ex), which exploits the best capabilities of recent advances in laser technology and recent discoveries in optimal shaping of laser pulses for control of molecular processes to significantly enhance the standoff detection of explosives. The core of the ODD-Ex technique is the introduction of optimally shaped laser pulses to simultaneously enhance sensitivity to explosives signatures while dramatically improving specificity, particularly against matrix materials and background interferences. These goals are being addressed by operating in an optimal non-linear fashion, typically with a single shaped laser pulse inherently containing within it coherently locked control and probe subpulses. Recent results will be presented.

  19. Neurophysiological Procedures for the Detection of Explosives

    DTIC Science & Technology

    1980-03-01

    34 behaviors such as feeding and reproduction. The laboratory rat was not initially considered a candidate fcr the bio- detection system, primarily...educational programs, language acquisition in humans and the traditional bar pressing of the laboratory rat . The behaviors emitted in operant conditioning

  20. The limit of detection for explosives in spectroscopic differential reflectometry

    NASA Astrophysics Data System (ADS)

    Dubroca, Thierry; Vishwanathan, Karthik; Hummel, Rolf E.

    2011-05-01

    In the wake of recent terrorist attacks, such as the 2008 Mumbai hotel explosion or the December 25th 2009 "underwear bomber", our group has developed a technique (US patent #7368292) to apply differential reflection spectroscopy to detect traces of explosives. Briefly, light (200-500 nm) is shone on a surface such as a piece of luggage at an airport. Upon reflection, the light is collected with a spectrometer combined with a CCD camera. A computer processes the data and produces in turn a differential reflection spectrum involving two adjacent areas of the surface. This differential technique is highly sensitive and provides spectroscopic data of explosives. As an example, 2,4,6, trinitrotoluene (TNT) displays strong and distinct features in differential reflectograms near 420 nm. Similar, but distinctly different features are observed for other explosives. One of the most important criteria for explosive detection techniques is the limit of detection. This limit is defined as the amount of explosive material necessary to produce a signal to noise ratio of three. We present here, a method to evaluate the limit of detection of our technique. Finally, we present our sample preparation method and experimental set-up specifically developed to measure the limit of detection for our technology. This results in a limit ranging from 100 nano-grams to 50 micro-grams depending on the method and the set-up parameters used, such as the detector-sample distance.

  1. Detection of Plastic Explosive Traces in the Human Thermal Plume

    NASA Astrophysics Data System (ADS)

    Gowadia, Huban A.; Settles, Gary S.

    1998-11-01

    Aviation security requires the detection of explosive devices which terrorists, posing as passengers, may conceal beneath their clothing. Our goal is to understand the generation, transport, and collection of trace signals from such concealed explosives, which are found in the natural convective plume produced by the human body. Previous work (APS/DFD96, CG10) has visualized this plume and shown that concealed volatile explosives (e.g. TNT) produce a detectable vapor signal therein. Plastic explosives, on the other hand, have vanishingly low vapor pressures and are thus considered very difficult to detect. Present experiments use a dispersal chamber to collect and sample the plumes of human subjects wearing concealed gauze patches containing milligrams of RDX, the primary component of plastic explosives such as C-4. These experiments address the effects of agitation, clothing, temperature and humidity on trace detectability. Further experiments address the effects of oily vs. dry skin, contaminated clothing vs. gauze patches, and residual contamination left on skin previously in contact with RDX. The key role of airborne contaminated textile fibers is noted. Knowledge thus gained contributes to the design of an explosive detection portal for aviation security screening. (Research supported by FAA Grant 93-G-052.)

  2. Direct Real-Time Detection of Vapors from Explosive Compounds

    SciTech Connect

    Ewing, Robert G.; Clowers, Brian H.; Atkinson, David A.

    2013-10-03

    The real-time detection of vapors from low volatility explosives including PETN, tetryl, RDX and nitroglycerine along with various compositions containing these substances is demonstrated. This was accomplished with an atmospheric flow tube (AFT) using a non-radioactive ionization source and coupled to a mass spectrometer. Direct vapor detection was demonstrated in less than 5 seconds at ambient temperature without sample pre-concentration. The several seconds of residence time of analytes in the AFT provides a significant opportunity for reactant ions to interact with analyte vapors to achieve ionization. This extended reaction time, combined with the selective ionization using the nitrate reactant ions (NO3- and NO3-•HNO3), enables highly sensitive explosives detection. Observed signals from diluted explosive vapors indicate detection limits below 10 ppqv using selected ion monitoring (SIM) of the explosive-nitrate adduct at m/z 349, 378, 284 and 289 for tetryl, PETN, RDX and NG respectively. Also provided is a demonstration of the vapor detection from 10 different energetic formulations, including double base propellants, plastic explosives and commercial blasting explosives using SIM for the NG, PETN and RDX product ions.

  3. Portable thin layer chromatography for field detection of explosives and propellants

    NASA Astrophysics Data System (ADS)

    Satcher, Joe H.; Maienschein, Jon L.; Pagoria, Philip F.; Racoveanu, Ana; Carman, M. Leslie; Whipple, Richard E.; Reynolds, John G.

    2012-06-01

    A field deployable detection kit for explosives and propellants using thin layer chromatography (TLC) has been developed at Lawrence Livermore National Laboratory (LLNL). The chemistry of the kit has been modified to allow for field detection of propellants (through propellant stabilizers), military explosives, peroxide explosives, nitrates and inorganic oxidizer precursors. For many of these target analytes, the detection limit is in the μg to pg range. A new miniaturized, bench prototype, field portable TLC (Micro TLC) kit has also been developed for the detection and identification of common military explosives. It has been demonstrated in a laboratory environment and is ready for field-testing. The kit is comprised of a low cost set of commercially available components specifically assembled for rapid identification needed in the field and identifies the common military explosives: HMX, RDX, Tetryl, Explosive D or picric acid, and TNT all on one plate. Additional modifications of the Micro TLC system have been made with fluorescent organosilicon co-polymer coatings to detect a large suite of explosives.

  4. Tagged neutron capabilities for detecting hidden explosives

    NASA Astrophysics Data System (ADS)

    Batyaev, V. F.; Belichenko, S. G.; Bestaev, R. R.; Gavryuchenkov, A. V.; Karetnikov, M. D.

    2015-05-01

    The work is devoted to illegal materials detection via tagged neutron method (TNM). The detection of hazardous substances is based on recording of gamma radiation from a neutron-irradiated object and analysis of its elemental composition. As against other neutron radiation methods the TNM enables to obtain 3D distribution of elements in the inspected area. The results of experimental part of the research show operational capabilities (probabilities of missing and false alarm) of a portable TNM inspection system when inspecting small hand-luggage-type objects.

  5. Fluorescence quenching as an indirect detection method for nitrated explosives.

    PubMed

    Goodpaster, J V; McGuffin, V L

    2001-05-01

    A novel approach based on fluorescence quenching is presented for the analysis of nitrated explosives. Seventeen common explosives and their degradation products are shown to be potent quenchers of pyrene, having Stern-Volmer constants that generally increase with the degree of nitration. Aromatic explosives such as 2,4,6-trinitrotoluene (2,4,6-TNT) are more effective quenchers than aliphatic or nitramine explosives. In addition, nitroaromatic explosives are found to have unique interactions with pyrene that lead to a wavelength dependence of their Stern-Volmer constants. This phenomenon allows for their differentiation from other nitrated explosives. The fluorescence quenching method is then applied to the determination of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazine(HMX), 2,4,6-TNT, nitromethane, and ammonium nitrate in various commercial explosive samples. The samples are separated by capillary liquid chromatography with post-column addition of the pyrene solution and detection by laser-induced fluorescence. The indirect fluorescence quenching method shows increased sensitivity and selectivity over traditional UV-visible absorbance as well as the ability to detect a wider range of organic and inorganic nitrated compounds.

  6. Atmospheric sampling glow discharge ionizataion and triple quadrupole tandem mass spectrometry for explosives vapor detection

    SciTech Connect

    McLuckey, S.A.; Goeringer, D.E.; Asano, K.G.; Hart, K.J.; Glish, G.L.; Grant, B.C.; Chambers, D.M.

    1993-08-01

    The detection and identification of trace vapors of hidden high explosives is an excellent example of a targeted analysis problem. It is desirable to push to ever lower levels the quantity or concentration of explosives material that provides an analytical signal, while at the same time discriminating against all other uninteresting material. The detection system must therefore combine high sensitivity with high specificity. This report describes the philosophy behind the use of atmospheric sampling glow discharge ionization, which is a sensitive, rugged, and convenient means for forming anions from explosives molecules, with tandem mass spectrometry, which provides unparalleled specificity in the identification of explosives-related ions. Forms of tandem mass spectrometry are compared and contrasted to provide a summary of the characteristics to be expected from an explosives detector employing mass spectrometry/mass spectrometry. The instrument developed for the FAA, an atmospheric sampling glow discharge/triple quadrupole mass spectrometer, is described in detail with particular emphasis on the ion source/spectrometer interface and on the capabilities of the spectrometer. Performance characteristics of the system are also described as they pertain to explosives of interest including a description of an automated procedure for the detection and identification of specific explosives. A comparison of various tandem mass spectrometers mated with atmospheric sampling glow discharge is then described and preliminary studies with a vapor preconcentration system provided by the FAA will be described.

  7. Detection of chemical explosives using multiple photon signatures.

    PubMed

    Loschke, K W; Dunn, W L

    2010-01-01

    A template-matching procedure is being investigated for rapid detection of improvised explosive devices at standoff distances. Photon-scattered and photon-induced positron annihilation radiation responses are being studied as a part of a signature-based radiation scanning approach. Back-streaming radiation responses, called signatures, are compared to templates, which are collections of the same signatures if the interrogated volume contained a significant amount of explosive. Experiments have been conducted that show that explosive surrogates (fertilizers) can be distinguished from several inert materials. Copyright 2009 Elsevier Ltd. All rights reserved.

  8. Explosive hazard detection using synthetic aperture acoustic sensing

    NASA Astrophysics Data System (ADS)

    Brewster, E.; Keller, J. M.; Stone, K.; Popescu, M.

    2016-05-01

    In this paper, we develop an approach to detect explosive hazards designed to attack vehicles from the side of a road, using a side looking synthetic aperture acoustic (SAA) sensor. This is done by first processing the raw data using a back-projection algorithm to form images. Next, an RX prescreener creates a list of possible targets, each with a designated confidence. Initial experiments are performed on libraries of the highest confidence hits for both target and false alarm classes generated by the prescreener. Image chips are extracted using pixel locations derived from the target's easting and northing. Several feature types are calculated from each image chip, including: histogram of oriented gradients (HOG), and generalized column projection features where the column aggregator takes the form of the minimum, maximum, mean, median, mode, standard deviation, variance, and the one-dimensional fast Fourier transform (FFT). A support vector machine (SVM) classifier is then utilized to evaluate feature type performance during training and testing in order to determine whether the two classes are separable. This will be used to build an online detection system for road-side explosive hazards.

  9. Multidimensional detection of explosives and explosive signatures via laser electrospray mass spectrometry

    NASA Astrophysics Data System (ADS)

    Brady, John J.; Flanigan, Paul M., IV; Perez, Johnny J.; Judge, Elizabeth J.; Levis, Robert J.

    2012-06-01

    Nitro- and inorganic-based energetic material is vaporized at atmospheric pressure using nonresonant, 70 femtosecond laser pulses prior to electrospray post-ionization and transfer into a time-of-flight mass spectrometer for mass analysis. Measurements of a nitro-based energetic molecule, cyclotrimethylenetrinitramine (RDX), adsorbed on metal and dielectric surfaces indicate nonresonant vaporization of intact molecules, demonstrating the universality of laser electrospray mass spectrometry (LEMS) technique for explosives. In addition, RDX is analyzed at a distance of 2 meters to demonstrate the remote detection capability of LEMS. Finally, the analysis and multivariate statistical classification of inorganic-based explosives containing ammonium nitrate, chlorate, perchlorate, black powder, and an organic-based explosive is presented, further expanding the capabilities of the LEMS technique for detection of energetic materials.

  10. Lidar Detection of Explosive Vapors in the Atmosphere

    NASA Astrophysics Data System (ADS)

    Bobrovnikov, S. M.; Vorozhtsov, A. B.; Gorlov, E. V.; Zharkov, V. I.; Maksimov, E. M.; Panchenko, Yu. N.; Sakovich, G. V.

    2016-01-01

    The paper presents results of studying the feasibility of remote detection of explosive vapors in the atmosphere based on the lidar principle using the method of laser fragmentation/laser-induced fluorescence. A project of the mobile, automated, fast-response scanning UV lidar for explosives detection at distances of 10-50 m is presented. Experimental data on the detection of trinitrotoluene (TNT), hexogen (RDX), and Composition B (CompB) vapors at a distance of 13 m are given. The threshold sensitivity of the lidar detector of explosive vapors is estimated. For TNT vapors, the threshold sensitivity of the lidar detector is estimated to be 1•10-12 g/cm-3 for the detection probability P = 97%.

  11. Sub-Nanogram Detection of RDX Explosive by Monoclonal Antibodies

    PubMed Central

    Hutchinson, Alistair P.; Nicklin, Stephen

    2015-01-01

    Polyclonal and monoclonal antibodies were raised to protein carrier molecules haptenized with RDX, a major component of many plastic explosives including Semtex. Sera from immunized mice detected RDX protein conjugates in standard ELISA. Clonally purified monoclonal antibodies had detection limits in the sub-ng/mL range for underivatized RDX in competition ELISA. The monoclonal antibodies are not dependent on the presence of taggants added during the manufacturing process, and are likely to have utility in the detection of any explosive containing RDX, or RDX contamination of environmental sites. PMID:26252765

  12. Sub-Nanogram Detection of RDX Explosive by Monoclonal Antibodies.

    PubMed

    Ulaeto, David O; Hutchinson, Alistair P; Nicklin, Stephen

    2015-08-01

    Polyclonal and monoclonal antibodies were raised to protein carrier molecules haptenized with RDX, a major component of many plastic explosives including Semtex. Sera from immunized mice detected RDX protein conjugates in standard ELISA. Clonally purified monoclonal antibodies had detection limits in the sub-ng/mL range for underivatized RDX in competition ELISA. The monoclonal antibodies are not dependent on the presence of taggants added during the manufacturing process, and are likely to have utility in the detection of any explosive containing RDX, or RDX contamination of environmental sites.

  13. Use of UV Sources for Detection and Identification of Explosives

    NASA Technical Reports Server (NTRS)

    Hug, William; Reid, Ray; Bhartia, Rohit; Lane, Arthur

    2009-01-01

    Measurement of Raman and native fluorescence emission using ultraviolet (UV) sources (<400 nm) on targeted materials is suitable for both sensitive detection and accurate identification of explosive materials. When the UV emission data are analyzed using a combination of Principal Component Analysis (PCA) and cluster analysis, chemicals and biological samples can be differentiated based on the geometric arrangement of molecules, the number of repeating aromatic rings, associated functional groups (nitrogen, sulfur, hydroxyl, and methyl), microbial life cycles (spores vs. vegetative cells), and the number of conjugated bonds. Explosive materials can be separated from one another as well as from a range of possible background materials, which includes microbes, car doors, motor oil, and fingerprints on car doors, etc. Many explosives are comprised of similar atomic constituents found in potential background samples such as fingerprint oils/skin, motor oil, and soil. This technique is sensitive to chemical bonds between the elements that lead to the discriminating separability between backgrounds and explosive materials.

  14. Ultrasensitive optoelectronic sensors for nitrogen oxides and explosives detection

    NASA Astrophysics Data System (ADS)

    Wojtas, J.; Bielecki, Z.; Stacewicz, T.; Mikolajczyk, J.

    2013-01-01

    The article describes application of cavity enhanced absorption spectroscopy (CEAS) for detection of nitrogen oxides and vapours of explosives. The oxides are important greenhouse gases that are of large influence on environment, living organisms and human health. These compounds are also markers of some human diseases as well as they are emitted by commonly used explosives. Therefore sensitive nitrogen oxides sensors are of great importance for many applications, e. g. for environment protection (air monitoring), for medicine investigation (analyzing of exhaled air) and finally for explosives detection. In the Institute of Optoelectronics MUT different types of optoelectronic sensors employing CEAS were developed. They were designed to measure trace concentration of nitrogen dioxide, nitric oxide, and nitrous oxide. The sensors provide opportunity for simultaneous measurement of these gases concentration at ppb level. Their sensitivity is comparable with sensitivities of instruments based on other methods, e.g. gas chromatography or mass spectrometry. Our sensors were used for some explosives detection as well. The experiment showed that the sensors provide possibility to detect explosive devices consisting of nitroglycerine, ammonium nitrate, TNT, PETN, RDX and HMX.

  15. Telemetered renal responses in dogs during detection of explosives.

    PubMed

    Rader, R D; Stevens, C M

    1975-01-01

    The primary objectove of this work was to develop and test a method of measuring and characterizing renal hemodynamic responses in unrestrained dogs. Recordings of left kidney blood flow and abdominal aortic pressure were obtained from unrestrained dogs through the use of a two-channel implanted telemetry system during episodes of search and detection of simulated explosives. In each of a number of sequences, the dog was first given a start signal, and after locating the hidden device, was rewarded with food. Data were assessed at the start, find, and recovery segments. The dynamic flow and pressure, together with a hydraulic renal model, were used to derive the total preglomerular and postglomerular vascular resistances and the mean level of glomerular hydrostatic pressure. Data from three dogs obtained by telemetry and analyzed through the use of the model have shown that compared to the start of the test, the location of hidden explosives results in a decrease in both the level of mean aortic blood pressure and the preglomerular resistance; whereas, the reward results in an elevation of mean blood pressure and preglomerular resistance. The postglomerular resistance varied less than the preglomerular resistance, and mean flow did not vary significantly. This work has shown that the stimulation of a reward and the successful performance of a task lead to significant renal responses in dogs. It has further shown that telemetry, when employed with improved data analysis techniques, permits renal hemodynamics to be assessed in unrestrained animal subjects.

  16. THz-Raman spectroscopy for explosives, chemical, and biological detection

    NASA Astrophysics Data System (ADS)

    Carriere, James T. A.; Havermeyer, Frank; Heyler, Randy A.

    2013-05-01

    Raman and Terahertz spectroscopy are both widely used for their ability to safely and remotely identify unknown materials. Each approach has its advantages and disadvantages. Traditional Raman spectroscopy typically measures molecular energy transitions in the 200-5000cm-1 region corresponding to sub-molecular stretching or bending transitions, while Terahertz spectroscopy measures molecular energy transitions in the 1-200cm-1 region (30GHz - 6THz) that correspond to low energy rotational modes or vibrational modes of the entire molecule. Many difficult to detect explosives and other hazardous chemicals are known to have multiple relatively strong transitions in this "Terahertz" (<200cm-1, <6THz) regime, suggesting this method as a powerful complementary approach for identification. However, THz signal generation is often expensive, many THz spectroscopy systems are limited to just a few THz range, and strong water absorption bands in this region can act to mask certain transitions if great care isn't taken during sample preparation. Alternatively, low-frequency or "THz-Raman" spectroscopy, which covers the ~5cm-1 to 200cm-1 (150GHz - 6 THz) regions and beyond, offers a powerful, compact and economical alternative to probe these low energy transitions. We present results from a new approach for extending the range of Raman spectroscopy into the Terahertz regime using an ultra-narrow-band volume holographic grating (VHG) based notch filter system. An integrated, compact Raman system is demonstrated utilizing a single stage spectrometer to show both Stokes and anti-Stokes measurements down to <10cm-1 on traditionally difficult to detect explosives, as well as other chemical and biological samples.

  17. Development of a trace explosives detection portal for personnel screening

    SciTech Connect

    Parmeter, J.E.; Linker, K.L.; Rhykerd, C.L. Jr.; Bouchier, F.A.; Hannum, D.W.

    1998-08-01

    The authors discuss the development, design, and operation of a walk-through trace detection portal designed to screen personnel for explosives. Developed at Sandia National Laboratories (SNL) with primary funding from the Federal Aviation Administration (FAA) and additional support from the Department of Energy office of Safeguards and Security, this portal is intended primarily for use in airport terminals and in other localities where a very high throughput of pedestrian traffic is combined with stringent security requirements. The portal is capable of detecting both vapor and particulate contamination, with the collection of explosive material being based upon the entrainment of that material in air flows over the body of the person being screened. This portal is capable of detecting most types of common high explosives of interest to the FAA. The authors discuss the results of field testing of the portal in the Albuquerque International Airport in September, 1997 and more recent steps towards commercialization of the portal.

  18. Training Protocols for the Detection of Explosive Vapors in Interior Spaces.

    SciTech Connect

    Phelan, James M.; Webb, Stephen W.

    2007-07-01

    Computational fluid dynamics simulations for dispersal of explosive vapors in interior spaces have been performed including details of typical ventilation systems. The interior spaces investigated include an office area, a single-family house, and a warehouse store. Explosive vapor sources are defined in the various interior spaces, and contours of the vapor concentration in the interior spaces relative to the source concentration are presented for relative concentrations down to 10-5. Training protocols for detection of explosive vapors in interior spaces should include an awareness of the time to equilibrium evident in these simulations as well as the significance of ventilation zones.3

  19. Observations on military exploitation of explosives detection technologies

    NASA Astrophysics Data System (ADS)

    Faust, Anthony A.; de Ruiter, C. J.; Ehlerding, Anneli; McFee, John E.; Svinsås, Eirik; van Rheenen, Arthur D.

    2011-06-01

    Accurate and timely detection of explosives, energetic materials, and their associated compounds would provide valuable information to military commanders in a wide range of military operations: protection of fast moving convoys from mobile or static IED threats; more deliberate countermine and counter-IED operations during route or area clearance; and static roles such as hasty or deliberate checkpoints, critical infrastructure protection and support to public security. The detection of hidden explosive hazards is an extremely challenging problem, as evidenced by the fact that related research has been ongoing in many countries for at least seven decades and no general purpose solution has yet been found. Technologies investigated have spanned all major scientific fields, with emphasis on the physical sciences, life sciences, engineering, robotics, computer technology and mathematics. This paper will present a limited, operationally-focused overview of the current status of detection technologies. Emphasis will be on those technologies that directly detect the explosive hazard, as opposed to those that detect secondary properties of the threat, such as the casing, associated wires or electronics. Technologies that detect explosives include those based on nuclear radiation and terahertz radiation, as well as trace and biological detection techniques. Current research areas of the authors will be used to illustrate the practical applications.

  20. Gamma-Ray Imaging for Explosives Detection

    NASA Technical Reports Server (NTRS)

    deNolfo, G. A.; Hunter, S. D.; Barbier, L. M.; Link, J. T.; Son, S.; Floyd, S. R.; Guardala, N.; Skopec, M.; Stark, B.

    2008-01-01

    We describe a gamma-ray imaging camera (GIC) for active interrogation of explosives being developed by NASA/GSFC and NSWCICarderock. The GIC is based on the Three-dimensional Track Imager (3-DTI) technology developed at GSFC for gamma-ray astrophysics. The 3-DTI, a large volume time-projection chamber, provides accurate, approx.0.4 mm resolution, 3-D tracking of charged particles. The incident direction of gamma rays, E, > 6 MeV, are reconstructed from the momenta and energies of the electron-positron pair resulting from interactions in the 3-DTI volume. The optimization of the 3-DTI technology for this specific application and the performance of the GIC from laboratory tests is presented.

  1. Standoff detection of explosive residues on unknown surfaces

    NASA Astrophysics Data System (ADS)

    Van Neste, C. W.; Liu, Xunchen; Gupta, Manisha; Kim, Seonghwan; Tsui, Ying; Thundat, T.

    2012-06-01

    Standoff identification of explosive residues may offer early warnings to many hazards plaguing present and future military operations. The greatest challenge is posed by the need for molecular recognition of trace explosive compounds on real-world surfaces. Most techniques that offer eye-safe, long-range detection fail when unknown surfaces with no prior knowledge of the surface spectral properties are interrogated. Inhomogeneity in the surface concentration and optical absorption from background molecules can introduce significant reproducibility challenges for reliable detection when surface residue concentrations are below tens of micrograms per square centimeter. Here we present a coupled standoff technique that allows identification of explosive residues concentrations in the sub microgram per square centimeter range on real-world surfaces. Our technique is a variation of standoff photoacoustic spectroscopy merged with ultraviolet chemical photodecomposition for selective identification of explosives. We demonstrate the detection of standard military grade explosives including RDX, PETN, and TNT along with a couple of common compounds such as diesel and sugar. We obtain identification at several hundred nanograms per centimeter square at a distance of four meters.

  2. Liquid explosive detection from outside of the bottle by IR

    NASA Astrophysics Data System (ADS)

    Itozaki, Hideo; Yamauchi, Yuji

    2009-05-01

    Liquid explosives have been used in terrorism recently. Inspection of bottles becomes very important, because these liquid explosive or it raw materials can be carried by bottles easily. Hydrogen peroxide is typical raw materials of liquid explosives. It was difficult to evaluate concentration of hydrogen peroxide in the drink in the bottle, because of similarity of its optical properties to those of water. Using near infrared spectrum and multivariate statistical analysis, concentration of percent order of hydrogen peroxide in the bottle can be evaluated from outside of the bottle instantly. Hydrogen peroxide has been detected in not only a clear PET or glass bottle but also a colored glass bottle. Hydrogen peroxide mixed by soft drink such as coke or orange juice with pulp also detected by this method easily. This technique can be applied to inspection of a bottle at airport security so on.

  3. Liquid explosive detection from outside of the bottle by NIR

    NASA Astrophysics Data System (ADS)

    Itozaki, Hideo; Yamauchi, Yuji

    2009-09-01

    Liquid explosives have recently been used in terrorism. Inspection of bottles has become very important, because these liquid explosives and their raw materials can be easily carried in bottles. Hydrogen peroxide is a typical raw material of liquid explosives. It was difficult to evaluate the concentration of hydrogen peroxide a bottled drink, because of the similarity of its optical properties to those of water. Using the near-infrared spectrum and multivariate statistical analysis, concentrations of a percent order of hydrogen peroxide can be evaluated from outside of the bottle instantly. Hydrogen peroxide has been detected not only in clear PET or glass bottles but also in colored glass bottles. Hydrogen peroxide mixed with soft drink such as coke or orange juice with pulp was also easily detected by this method. This technique can be applied to the inspection of bottles at airport security and so on.

  4. Canine detection odor signatures for mine-related explosives

    NASA Astrophysics Data System (ADS)

    Johnston, James M.; Williams, Marc; Waggoner, L. Paul; Edge, Cindy C.; Dugan, Regina E.; Hallowell, Susan F.

    1998-09-01

    Dogs are capable of detecting and discriminating a number of compounds constituting a complex odor. However, they use only a few of these to recognize a substance. The focus of this research is to determine the compounds dogs learn to use in recognizing explosives used in land mines. This is accomplished by training dogs under behavioral laboratory conditions to respond differentially on separate levers to (1) blank air, (2) a target odor such as an explosive, and (3) all other odors (non-target odors). Vapor samples are generated by a serial dilution vapor generator whose operation and output is characterized by GC/MS. Once dogs learn this three-lever discrimination, testing sessions are conducted containing a number of probe trials in which vapor from constituent compounds is presented. Which lever the dogs respond to on these probe trials indicates whether they can smell the compound at all (blank lever) or whether it smells like the target odor (e.g., the explosive) or like something else. This method was conducted using TNT and C-4. The data show the dogs' reactions to each of the constituent compounds tested for each explosive. Analysis of these data reveal the canine detection odor signature for these explosives.

  5. Standoff ultraviolet raman scattering detection of trace levels of explosives.

    SciTech Connect

    Kulp, Thomas J.; Bisson, Scott E.; Reichardt, Thomas A.

    2011-10-01

    Ultraviolet (UV) Raman scattering with a 244-nm laser is evaluated for standoff detection of explosive compounds. The measured Raman scattering albedo is incorporated into a performance model that focused on standoff detection of trace levels of explosives. This model shows that detection at {approx}100 m would likely require tens of seconds, discouraging application at such ranges, and prohibiting search-mode detection, while leaving open the possibility of short-range point-and-stare detection. UV Raman spectra are also acquired for a number of anticipated background surfaces: tile, concrete, aluminum, cloth, and two different car paints (black and silver). While these spectra contained features in the same spectral range as those for TNT, we do not observe any spectra similar to that of TNT.

  6. Active spectral imaging for standoff detection of explosives

    SciTech Connect

    Skvortsov, L A

    2011-12-31

    Laser methods of standoff detection of explosive traces on surfaces of objects are considered. These methods are based on active formation of multi- and hyperspectral images of an object examined. The possibilities of these methods and the prospects of their development are discussed. Emphasis is laid on the justification of the most preferred field of application of the technique under consideration.

  7. Improved explosive collection and detection with rationally assembled surface sampling materials

    SciTech Connect

    Chouyyok, Wilaiwan; Bays, J. Timothy; Gerasimenko, Aleksandr A.; Cinson, Anthony D.; Ewing, Robert G.; Atkinson, David A.; Addleman, R. Shane

    2016-01-01

    Sampling and detection of trace explosives is a key analytical process in modern transportation safety. In this work we have explored some of the fundamental analytical processes for collection and detection of trace level explosive on surfaces with the most widely utilized system, thermal desorption IMS. The performance of the standard muslin swipe material was compared with chemically modified fiberglass cloth. The fiberglass surface was modified to include phenyl functional groups. When compared to standard muslin, the phenyl functionalized fiberglass sampling material showed better analyte release from the sampling material as well as improved response and repeatability from multiple uses of the same swipe. The improved sample release of the functionalized fiberglass swipes resulted in a significant increase in sensitivity. Various physical and chemical properties were systematically explored to determine optimal performance. The results herein have relevance to improving the detection of other explosive compounds and potentially to a wide range of other chemical sampling and field detection challenges.

  8. Merging Infrasound and Electromagnetic Signals as a Means for Nuclear Explosion Detection

    NASA Astrophysics Data System (ADS)

    Ashkenazy, Joseph; Lipshtat, Azi; Kesar, Amit S.; Pistinner, Shlomo; Ben Horin, Yochai

    2016-04-01

    The infrasound monitoring network of the CTBT consists of 60 stations. These stations are capable of detecting atmospheric events, and may provide approximate location within time scale of a few hours. However, the nature of these events cannot be deduced from the infrasound signal. More than two decades ago it was proposed to use the electromagnetic pulse (EMP) as a means of discriminating nuclear explosion from other atmospheric events. An EMP is a unique signature of nuclear explosion and is not detected from chemical ones. Nevertheless, it was decided to exclude the EMP technology from the official CTBT verification regime, mainly because of the risk of high false alarm rate, due to lightning electromagnetic pulses [1]. Here we present a method of integrating the information retrieved from the infrasound system with the EMP signal which enables us to discriminate between lightning discharges and nuclear explosions. Furthermore, we show how spectral and other characteristics of the electromagnetic signal emitted from a nuclear explosion are distinguished from those of lightning discharge. We estimate the false alarm probability of detecting a lightning discharge from a given area of the infrasound event, and identifying it as a signature of a nuclear explosion. We show that this probability is very low and conclude that the combination of infrasound monitoring and EMP spectral analysis may produce a reliable method for identifying nuclear explosions. [1] R. Johnson, Unfinished Business: The Negotiation of the CTBT and the End of Nuclear Testing, United Nations Institute for Disarmament Research, 2009.

  9. Performance Assessment of the CTBTO Noble Gas Network to Detect Nuclear Explosions

    NASA Astrophysics Data System (ADS)

    Schoeppner, Michael

    2017-05-01

    Atmospheric radioxenon levels are monitored worldwide by the Comprehensive Nuclear-Test-Ban Treaty Organisation (CTBTO) to detect emissions from nuclear explosions. This paper examines the global network that has been set up to take routine air samples and to determine the atmospheric radioxenon concentrations. It is hypothesised that the monitoring system aims at the detection and localisation of radioxenon releases. Both capabilities are dependent on background levels, explosive yields, leakage rates, transport time, choice of xenon isotope and number and locations of monitoring stations. For each parameter, the global capabilities to detect and localise emissions from nuclear explosions are analysed. Recommendations for the future of the background sources and the development of the monitoring system are derived.

  10. Detection of explosives with laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Qian-Qian; Liu, Kai; Zhao, Hua; Ge, Cong-Hui; Huang, Zhi-Wen

    2012-12-01

    Our recent work on the detection of explosives by laser-induced breakdown spectroscopy (LIBS) is reviewed in this paper. We have studied the physical mechanism of laser-induced plasma of an organic explosive, TNT. The LIBS spectra of TNT under single-photon excitation are simulated using MATLAB. The variations of the atomic emission lines intensities of carbon, hydrogen, oxygen, and nitrogen versus the plasma temperature are simulated too. We also investigate the time-resolved LIBS spectra of a common inorganic explosive, black powder, in two kinds of surrounding atmospheres, air and argon, and find that the maximum value of the O atomic emission line SBR of black powder occurs at a gate delay of 596 ns. Another focus of our work is on using chemometic methods such as principle component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) to distinguish the organic explosives from organic materials such as plastics. A PLS-DA model for classification is built. TNT and seven types of plastics are chosen as samples to test the model. The experimental results demonstrate that LIBS coupled with the chemometric techniques has the capacity to discriminate organic explosive from plastics.

  11. Detection of explosive remnants of war by neutron thermalisation.

    PubMed

    Brooks, F D; Drosg, M; Smit, F D; Wikner, C

    2012-01-01

    The HYDAD-D landmine detector (Brooks and Drosg, 2005) has been modified and field-tested for 17 months in a variety of soil conditions. Test objects containing about the same mass of hydrogen (20g) as small explosive remnants of war, such as antipersonnel landmines, were detected with efficiency 100% when buried at cover depths up to 10cm. The false alarm rate under the same conditions was 9%. Plots of detection efficiency versus false alarm rate are presented.

  12. Fingerprinting postblast explosive residues by portable capillary electrophoresis with contactless conductivity detection.

    PubMed

    Kobrin, Eeva-Gerda; Lees, Heidi; Fomitšenko, Maria; Kubáň, Petr; Kaljurand, Mihkel

    2014-04-01

    A portable capillary electrophoretic system with contactless conductivity detection was used for fingerprint analysis of postblast explosive residues from commercial organic and improvised inorganic explosives on various surfaces (sand, concrete, metal witness plates). Simple extraction methods were developed for each of the surfaces for subsequent simultaneous capillary electrophoretic analysis of anions and cations. Dual-opposite end injection principle was used for fast (<4 min) separation of 10 common anions and cations from postblast residues using an optimized separation electrolyte composed of 20 mM MES, 20 mM l-histidine, 30 μM CTAB and 2 mM 18-crown-6. The concentrations of all ions obtained from the electropherograms were subjected to principal component analysis to classify the tested explosives on all tested surfaces, resulting in distinct cluster formations that could be used to verify (each) type of the explosive. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Neutron Resonance Radiography for Explosives Detection: Technical Challenges

    SciTech Connect

    Raas, W L; Blackburn, B; Boyd, E; Hall, J M; Kohse, G; Lanza, R; Rusnak, B; Watterson, J W

    2005-11-09

    Fast Neutron Resonance Radiography (NRR) has recently become a focus of investigation as a supplement to conventional x-ray systems as a non-invasive, non-destructive means of detecting explosive material concealed in checked luggage or cargo containers at airports. Using fast (1-6 MeV) neutrons produced by the D(d,n){sup 3}He reaction, NRR provides both an imaging capability and the ability to determine the chemical composition of materials in baggage or cargo. Elemental discrimination is achieved by exploiting the resonance features of the neutron cross-section for oxygen, nitrogen, carbon, and hydrogen. Simulations have shown the effectiveness of multiple-element NRR through Monte Carlo transport methods; this work is focused on the development of a prototype system that will incorporate an accelerator-based neutron source and a neutron detection and imaging system to demonstrate the realistic capabilities of NRR in distinguishing the elemental components of concealed objects. Preliminary experiments have exposed significant technical difficulties unapparent in simulations, including the presence of image contamination from gamma ray production, the detection of low-fluence fast neutrons in a gamma field, and the mechanical difficulties inherent in the use of thin foil windows for gas cell confinement. To mitigate these concerns, a new gas target has been developed to simultaneously reduce gamma ray production and increase structural integrity in high flux gas targets. Development of a neutron imaging system and neutron counting based on characteristic neutron pulse shapes have been investigated as a means of improving signal to noise ratios, reducing irradiation times, and increasing the accuracy of elemental determination.

  14. Detection of Explosive Devices using X-ray Backscatter Radiation

    NASA Astrophysics Data System (ADS)

    Faust, Anthony A.

    2002-09-01

    It is our goal to develop a coded aperture based X-ray backscatter imaging detector that will provide sufficient speed, contrast and spatial resolution to detect Antipersonnel Landmines and Improvised Explosive Devices (IED). While our final objective is to field a hand-held detector, we have currently constrained ourselves to a design that can be fielded on a small robotic platform. Coded aperture imaging has been used by the observational gamma astronomy community for a number of years. However, it has been the recent advances in the field of medical nuclear imaging which has allowed for the application of the technique to a backscatter scenario. In addition, driven by requirements in medical applications, advances in X-ray detection are continually being made, and detectors are now being produced that are faster, cheaper and lighter than those only a decade ago. With these advances, a coded aperture hand-held imaging system has only recently become a possibility. This paper will begin with an introduction to the technique, identify recent advances which have made this approach possible, present a simulated example case, and conclude with a discussion on future work.

  15. Application of Receiver Operating Characteristic (ROC) Curves for Explosives Detection Using Different Sampling and Detection Techniques

    PubMed Central

    Young, Mimy; Fan, Wen; Raeva, Anna; Almirall, Jose

    2013-01-01

    Reported for the first time are receiver operating characteristic (ROC) curves constructed to describe the performance of a sorbent-coated disk, planar solid phase microextraction (PSPME) unit for non-contact sampling of a variety of volatiles. The PSPME is coupled to ion mobility spectrometers (IMSs) for the detection of volatile chemical markers associated with the presence of smokeless powders, model systems of explosives containing diphenylamine (DPA), 2,4-dinitrotoluene (2,4-DNT) and nitroglycerin (NG) as the target analytes. The performance of the PSPME-IMS was compared with the widely accepted solid-phase microextraction (SPME), coupled to a GC-MS. A set of optimized sampling conditions for different volume containers (1–45 L) with various sample amounts of explosives, were studied in replicates (n = 30) to determine the true positive rates (TPR) and false positive detection rates (FPR) for the different scenarios. These studies were obtained in order to construct the ROC curves for two IMS instruments (a bench-top and field-portable system) and a bench top GC-MS system in low and high clutter environments. Both static and dynamic PSPME sampling were studied in which 10–500 mg quantities of smokeless powders were detected within 10 min of static sampling and 1 min of dynamic sampling.

  16. Microscale solid-phase extraction system for explosives.

    PubMed

    Smith, Matthew; Collins, Greg E; Wang, Joseph

    2003-04-04

    A simple, semi-automated, microcolumn solid-phase extraction (SPE) system is optimized for the extraction, preconcentration and HPLC analysis of seven different explosives and explosive derivatives contaminating seawater, river water and well water samples. The microcolumns were constructed from 1/16 in. O.D. PTFE tubing (1 in.=2.54 cm) packed with 0.5-1.5 mg of SPE material. LiChrolut EN or Porapak R. The extraction system consisted of two syringe pumps and several solenoid valves. Optimal detection limits were realized when the sample water flow-rate was maximally increased within the limits of the pump, 5-10 ml/min (despite exceeding the breakthrough threshold of the SPE microcolumn), and when the eluate volume collected from the column was minimized, <5 microl (despite very low recovery percentages).

  17. Chemicapacitive microsensors for detection of explosives and TICs

    NASA Astrophysics Data System (ADS)

    Patel, Sanjay V.; Hobson, Stephen T.; Cemalovic, Sabina; Mlsna, Todd E.

    2005-10-01

    Seacoast Science develops chemical sensors that use polymer-coated micromachined capacitors to measure the dielectric permittivity of an array of selectively absorbing materials. We present recent results demonstrating the sensor technology's capability to detect components in explosives and toxic industrial chemicals. These target chemicals are detected with functionalized polymers or network materials, chosen for their ability to adsorb chemicals. When exposed to vapors or gases, the permittivity of these sorbent materials changes depending on the strength of the vapor-sorbent interaction. Sensor arrays made of ten microcapacitors on a single chip have been previously shown to detect vapors of organic compounds (chemical warfare agents, industrial solvents, fuels) and inorganic gases (SO2, CO2, NO2). Two silicon microcapacitor structures were used, one with parallel electrode plates and the other with interdigitated "finger-like" electrodes. The parallel-plates were approximately 300 μm wide and separated by 750 nm. The interdigitated electrodes were approximately 400 μm long and were elevated above the substrate to provide faster vapor access. Eight to sixteen of these capacitors are fabricated on chips that are 5 x 2 mm and are packaged in less than 50 cm3 with supporting electronics and batteries, all weighing less than 500 grams. The capacitors can be individually coated with different materials creating a small electronic nose that produces different selectivity patterns in response to different chemicals. The resulting system's compact size, low-power consumption and low manufacturing costs make the technology ideal for integration into various systems for numerous applications.

  18. The Ranchero explosive pulsed power system

    SciTech Connect

    Goforth, J.H.; Atchison, W.L.; Bartram, D.E.

    1997-09-01

    The authors are currently developing a high explosive pulsed power system concept that they call Ranchero. Ranchero systems consist of series-parallel combinations of simultaneously initiated coaxial magnetic flux compression generators, and are intended to operate in the range from 50 MA to a few hundred MA currents. One example of a Ranchero system is shown here. The coaxial modules lend themselves to extracting the current output either from one end or along the generator midplane. They have previously published design considerations related to the different module configurations, and in this paper they concentrate on the system that they will use for their first imploding liner tests. A single module with end output. The module is 1.4-m long and expands the armature by a factor of two to reach the 30-cm OD stator. The first heavy liner implosion experiments will be conducted in the range of 40--50 MA currents. Electrical tests, to date, have employed high explosive (HE) charges 43-cm long. They have performed tests and related 1D MHD calculations at the 45-MA current level with small loads. From these results, they determine that they can deliver currents of approximately 50 MA to loads of 8 nH.

  19. Parameters of explosives detection through tagged neutron method

    NASA Astrophysics Data System (ADS)

    Bagdasaryan, Kh. E.; Batyaev, V. F.; Belichenko, S. G.; Bestaev, R. R.; Gavryuchenkov, A. V.; Karetnikov, M. D.

    2015-06-01

    The potentialities of tagged neutron method (TNM) for explosives detection are examined on the basis of an idealized geometrical model. The model includes ING-27 14 MeV neutron generator with a built-in α-detector, a LYSO γ-detector and samples of material to be identified of approximately 0.3 kg each: explosives imitators (trinitrotoluene - TNT, tetryl, RDX and ammonium nitrate), legal materials (sugar, water, silk and polyethylene). The samples were unshielded or shielded by a paper layer of various thicknesses. The experimental data were interpreted by numerical simulation using a Poisson distribution of signals with the statistical parameters defined experimentally. The detection parameters were obtained by a pattern classification theory and a Bayes classifier.

  20. Apparatus and methods for real-time detection of explosives devices

    DOEpatents

    Blackburn, Brandon W [Idaho Falls, ID; Hunt, Alan W [Pocatello, ID; Chichester, David L [Idaho Falls, ID

    2014-01-07

    The present disclosure relates, according to some embodiments, to apparatus, devices, systems, and/or methods for real-time detection of a concealed or camouflaged explosive device (e.g., EFPs and IEDs) from a safe stand-off distance. Apparatus, system and/or methods of the disclosure may also be operable to identify and/or spatially locate and/or detect an explosive device. An apparatus or system may comprise an x-ray generator that generates high-energy x-rays and/or electrons operable to contact and activate a metal comprised in an explosive device from a stand-off distance; and a detector operable to detect activation of the metal. Identifying an explosive device may comprise detecting characteristic radiation signatures emitted by metals specific to an EFP, an IED or a landmine. Apparatus and systems of the disclosure may be mounted on vehicles and methods of the disclosure may be performed while moving in the vehicle and from a safe stand-off distance.

  1. Detection of explosives traces on documents by attenuated total reflection method

    NASA Astrophysics Data System (ADS)

    Boreysho, A. S.; Bertseva, E. V.; Korepanov, V. S.; Morosov, A. V.; Savin, A. V.; Strakhov, S. Y.

    2007-06-01

    The technical devices of explosives trace detection are discussed in this work. The attenuated total reflection method (ATR) is considered for detection of explosives traces on different things (documents, clothes, fingers). The results of experiments with Fourier spectrometer and ATR attachment for explosive trace detection are presented. The optical scheme and design of the compact testing device are discussed. The device includes the document information scanner and at the same time - the trace detector of explosives on the document cover.

  2. Design and validation of inert homemade explosive simulants for X-ray-based inspection systems

    NASA Astrophysics Data System (ADS)

    Faust, Anthony A.; Nacson, Sabatino; Koffler, Bruce; Bourbeau, Éric; Gagne, Louis; Laing, Robin; Anderson, C. J.

    2014-05-01

    Transport Canada (TC), the Canadian Armed Forces, and other public security agencies have an interest in the assessment of the potential utility of advanced explosives detection technologies to aid in the detection and interdiction of commercial grade, military grade, and homemade or improvised explosives (HME or IE). The availability of suitable, non-hazardous, non-toxic, explosive simulants is of concern when assessing the potential utility of such detection systems. Lack of simulants limits the training opportunities, and ultimately the detection probability, of security personnel using these systems. While simulants for commercial and military grade explosives are available for a wide variety of detection technologies, the design and production of materials to simulate improvised explosives has not kept pace with this emerging threat. Funded by TC and the Canadian Safety and Security Program, Defence Research and Development Canada (DRDC), Visiontec Systems, and Optosecurity engaged in an effort to develop inert, non-toxic Xray interrogation simulants for IE materials such as ammonium nitrate, potassium chlorate, and triacetone triperoxide. These simulants were designed to mimic key X-ray interrogation-relevant material properties of real improvised explosives, principally their bulk density and effective atomic number. Different forms of the simulants were produced and tested, simulating the different explosive threat formulations that could be encountered by front line security workers. These simulants comply with safety and stability requirements, and as best as possible match form and homogeneity. This paper outlines the research program, simulant design, and validation.

  3. Detection and decontamination of residual energetics from ordnance and explosives scrap.

    PubMed

    Jung, Carina M; Newcombe, David A; Crawford, Don L; Crawford, Ronald L

    2004-02-01

    Extensive manufacturing of explosives in the last century has resulted in widespread contamination of soils and waters. Decommissioning and cleanup of these materials has also led to concerns about the explosive hazards associated with residual energetics still present on the surfaces of ordnance and explosives scrap. Typically, open burning or detonation is used to decontaminate ordinance and explosive scrap. Here the use of an anaerobic microbiological system applied as a bioslurry to decontaminate energetics from the surfaces of metal scrap is described. Decontamination of model metal scrap artificially contaminated with 2,4,6-trinitrotoluene and of decommissioned mortar rounds still containing explosives residue was examined. A portable ion mobility spectrometer was employed for the detection of residual explosives residues on the surfaces of the scrap. The mixed microbial populations of the bioslurries effectively decontaminated both the scrap and the mortar rounds. Use of the ion mobility spectrometer was an extremely sensitive field screening method for assessing decontamination and is a method by which minimally trained personnel can declare scrap clean with a high level of certainty.

  4. Explosives (and other threats) detection using pulsed neutron interrogation and optimized detectors

    NASA Astrophysics Data System (ADS)

    Strellis, Dan A.; Elsalim, Mashal; Gozani, Tsahi

    2011-06-01

    We have previously reported results from a human-portable system using neutron interrogation to detect contraband and explosives. We summarized our methodology for distinguishing threat materials such as narcotics, C4, and mustard gas in the myriad of backgrounds present in the maritime environment. We are expanding our mission for the Domestic Nuclear Detection Office (DNDO) to detect Special Nuclear Material (SNM) through the detection of multiple fission signatures without compromising the conventional threat detection performance. This paper covers our initial investigations into using neutrons from compact pulsed neutron generators via the d(D,n)3He or d(T,n)α reactions with energies of ~2.5 and 14 MeV, respectively, for explosives (and other threats) detection along with a variety of gamma-ray detectors. Fast neutrons and thermal neutrons (after successive collisions) can stimulate the emission of various threat detection signatures. For explosives detection, element-specific gamma-ray signatures via the (n,n'γ) inelastic scattering reaction and the (n,'γ) thermal capture reaction are detected. For SNM, delayed gamma-rays following fission can be measured with the same detector. Our initial trade-off investigations of several gamma-ray detectors types (NaI, CsI, LaBr3, HPGe) for measuring gamma-ray signatures in a pulsed neutron environment for potential application in a human-portable active interrogation system are covered in this paper.

  5. Nuclear explosion seismic wave detection based on the fiber Bragg grating geophone

    NASA Astrophysics Data System (ADS)

    Wu, Jianhui; Yang, Kuntao; Xiang, Qiaolian; Zhang, Nanyang

    2008-12-01

    Fiber Bragg Grating (FBG) is a basic component in optical communications and optical sensing of strain or pressure or temperature. In this paper, a novel geophone based on FBG is designed and used in the system of nuclear explosion seismic wave detection. The detection principle is analyzed and the mechanical model is established. According to the characteristics of the nuclear explosion seismic wave and the demands of the detection system, the parameters of the novel FBG geophone are calculated, and the results show that the sensitivity coefficient is 0.54pm/ms-2 and the work frequency bands are 0~653Hz and 2830~3266Hz. The prototype detection system is devised and tested through the simulation seismic wave. The experiment indicates that, compared with the traditional electronic sensors, the system has higher sensitivity and stability, the start time of the seismic wave arrived the detection position can be surveyed accurately. Combined with the nuclear explosion detecting sub-system based on the radiation, the distance between the bomb location and the detector can be calculated accurately.

  6. A Portable System for Nuclear, Chemical Agent and Explosives Identification

    SciTech Connect

    Parker, W.E.; Buckley, W.M.; Kreek, S.A.; Caffrey, A.J.; Mauger, G.J.; Lavietes, A.D.; Dougan, A.D.

    2000-09-29

    The FRIS/PINS hybrid integrates the LLNL-developed Field Radionuclide Identification System (FRIS) with the INEEL-developed Portable Isotopic Neutron Spectroscopy (PINS) chemical assay system to yield a combined general radioisotope, special nuclear material, and chemical weapons/explosives detection and identification system. The PINS system uses a neutron source and a high-purity germanium {gamma}-ray detector. The FRIS system uses an electrochemically cooled germanium detector and its own analysis software to detect and identify special nuclear material and other radioisotopes. The FRIS/PINS combined system also uses the electromechanically-cooled germanium detector. There is no other currently available integrated technology that can combine an active neutron interrogation and analysis capability for CWE with a passive radioisotope measurement and identification capability for special nuclear material.

  7. Detection of explosives via photolytic cleavage of nitroesters and nitramines.

    PubMed

    Andrew, Trisha L; Swager, Timothy M

    2011-05-06

    The nitramine-containing explosive RDX and the nitroester-containing explosive PETN are shown to be susceptible to photofragmentation upon exposure to sunlight. Model compounds containing nitroester and nitramine moieties are also shown to fragment upon exposure to UV irradiation. The products of this photofragmentation are reactive, electrophilic NO(x) species, such as nitrous and nitric acid, nitric oxide, and nitrogen dioxide. N,N-Dimethylaniline is capable of being nitrated by the reactive, electrophilic NO(x) photofragmentation products of RDX and PETN. A series of 9,9-disubstituted 9,10-dihydroacridines (DHAs) are synthesized from either N-phenylanthranilic acid methyl ester or a diphenylamine derivative and are similarly shown to be rapidly nitrated by the photofragmentation products of RDX and PETN. A new (turn-on) emission signal at 550 nm is observed upon nitration of DHAs due to the generation of fluorescent donor-acceptor chromophores. Using fluorescence spectroscopy, the presence of ca. 1.2 ng of RDX and 320 pg of PETN can be detected by DHA indicators in the solid state upon exposure to sunlight. The nitration of aromatic amines by the photofragmentation products of RDX and PETN is presented as a unique, highly selective detection mechanism for nitroester- and nitramine-containing explosives and DHAs are presented as inexpensive and impermanent fluorogenic indicators for the selective, standoff/remote identification of RDX and PETN. © 2011 American Chemical Society

  8. Improved method for the detection of TATP after explosion.

    PubMed

    Muller, D; Levy, A; Shelef, R; Abramovich-Bar, S; Sonenfeld, D; Tamiri, T

    2004-09-01

    TATP in post explosion exhibits was reported earlier to be best recovered from vapor phase. A typical procedure includes its adsorption on Amberlite XAD-7, elution with acetonitrile and analysis by GC/MS. In this work, improved recovery of TATP from the vapor phase was achieved by SPME using PDMS/DVB fiber and immediate sampling to GC/MS. The recovery of TATP by SPME was compared with headspace and with adsorption on Amberlite XAD-7 by spiking onto filter paper put in a 100 mL beaker. The limit of detection of TATP was 6.4 ng in these conditions, few orders magnitude more than in the other tested methods. Recovery of TATP in the presence of various solvents was also studied. Acetone, water, and mixtures of water:alcohols (1:1) were found to reduce the recovery of TATP. Using SPME, TATP has been identified in dozens of post-explosion cases.

  9. Associated particle technique in single-sided geometry for detection of explosives

    SciTech Connect

    Roy, Tushar Kashyap, Yogesh; Shukla, Mayank; Agrawal, Ashish; Bajpai, Shefali; Patel, Tarun; Sinha, Amar

    2015-03-23

    Associated particle technique (APT) for detection of explosives is well established but has been implemented mostly for fixed portal systems. In certain situations, a portable system is required where the suspect object cannot be moved from site. This paper discusses the development of a portable APT system in single-sided geometry which can be transported to site and requires only one-sided access to the object. The system comprised D-T neutron source and bismuth germanate (BGO) detectors fixed on a portable module. Different aspects of the system have been discussed such as background contribution, time selection, and elemental signatures. The system was used to detect benign samples and explosive simulants under laboratory condition. The elemental ratios obtained by analyzing the gamma spectra show good match with the theoretical ratios.

  10. MLM: Dust Explosion Potential Warning System

    NASA Astrophysics Data System (ADS)

    Foss, John; Lawrenz, Alan

    2011-11-01

    A quite large range of materials, when dispersed as a dust cloud in air, can support an explosion. Empirically derived minimum explosive concentration (MEC) values are typically in the range: 30-80 grams/m3; that is, nominally 2.5-8.3% of STP density. Currently, there is no field-deployable measurement system to determine the mass loading (grams/m3) of airborne dust. Proof-of-concept measurements for the MSU Mass Loading Monitor (MLM) are reported. A charge of dusty air, ingested into a cylinder, is accelerated (ap=ct) by a driving piston and partially (~8%) discharged from the open end of the cylinder. The deformable control volume momentum equation can be integrated with respect to time to yield α() -β() = γρ() where () will indicate with (w) or without (w/o) dust. The pressure integral (α) and the shear integral (β) balance the momentum within the cylinder at the end of the smoke plus the integral of the momentum flux. The kinematic attributes of these terms are represented by γ. It will be shown how the mass loading (ρw -ρw / o) can be determined. A full length paper (The Mass Loading Monitor Fundamental Principles And Proof Of Concept) will be published in Meas. Sci. and Tech.

  11. Maintenance energy requirements of odor detection, explosive detection and human detection working dogs.

    PubMed

    Mullis, Rebecca A; Witzel, Angela L; Price, Joshua

    2015-01-01

    Despite their important role in security, little is known about the energy requirements of working dogs such as odor, explosive and human detection dogs. Previous researchers have evaluated the energy requirements of individual canine breeds as well as dogs in exercise roles such as sprint racing. This study is the first to evaluate the energy requirements of working dogs trained in odor, explosive and human detection. This retrospective study evaluated twenty adult dogs who maintained consistent body weights over a six month period. During this time, the average energy consumption was [Formula: see text] or two times the calculated resting energy requirement ([Formula: see text]). No statistical differences were found between breeds, age or sex, but a statistically significant association (p = 0.0033, R-square = 0.0854) was seen between the number of searches a dog performs and their energy requirement. Based on this study's population, it appears that working dogs have maintenance energy requirements similar to the 1974 National Research Council's (NRC) maintenance energy requirement of [Formula: see text] (National Research Council (NRC), 1974) and the [Formula: see text] reported for young laboratory beagles (Rainbird & Kienzle, 1990). Additional research is needed to determine if these data can be applied to all odor, explosive and human detection dogs and to determine if other types of working dogs (tracking, search and rescue etc.) have similar energy requirements.

  12. Future Detection of Supernova Neutrino Burst and Explosion Mechanism

    SciTech Connect

    Totani, T.; Sato, K.; Dalhed, H.E.; Wilson, J.R.

    1998-03-01

    Future detection of a supernova neutrino burst by large underground detectors would give important information for the explosion mechanism of collapse-driven supernovae. We studied the statistical analysis for the future detection of a nearby supernova by using a numerical supernova model and realistic Monte Carlo simulations of detection by the Super-Kamiokande detector. We mainly discuss the detectability of the signatures of the delayed explosion mechanism in the time evolution of the {ovr {nu}}{sub e} luminosity and spectrum. For a supernova at 10 kpc away from the Earth, we find not only that the signature is clearly discernible but also that the deviation of the energy spectrum from the Fermi-Dirac (FD) distribution can be observed. The deviation from the FD distribution would, if observed, provide a test for the standard picture of neutrino emission from collapse-driven supernovae. For the {ital D}=50 kpc case, the signature of the delayed explosion is still observable, but statistical fluctuation is too large to detect the deviation from the FD distribution. We also propose a method for statistical reconstruction of the time evolution of {ovr {nu}}{sub e} luminosity and spectrum from data, by which we can get a smoother time evolution and smaller statistical errors than by a simple, time-binning analysis. This method is useful especially when the available number of events is relatively small, e.g., a supernova in the LMC or SMC. A neutronization burst of {nu}{sub {ital e}}`s produces about five scattering events when D=10 kpc, and this signal is difficult to distinguish from {ovr {nu}}{sub e}{ital p} events. {copyright} {ital {copyright} 1998.} {ital The American Astronomical Society}

  13. Trace detection of explosives using an in-line high-volume sampler, preconcentrator, and Fido explosives detector

    NASA Astrophysics Data System (ADS)

    Ingram, Russ; Sikes, John

    2010-04-01

    This paper shall demonstrate the results of a prototype system to detect explosive objects and obscured contaminated targets. By combining a high volume sampling nozzle with an inline 2-stage preconcentrator and a Fido, greater standoff is achieved than with the Fido alone. The direct application of this system is on the Autonomous Mine Detection System (AMDS) but could be deployed on a large variety of robotic platforms. It is being developed under the auspices of the U.S. Army RDECOM CERDEC Night Vision and Electronic Sensors Directorate, Countermine Division. This device is one of several detection tools and technologies to be used on the AMDS. These systems will have multiple, and at times, overlapping objectives. One objective is trace detection on the surface of an unknown potential target. By increasing the standoff capabilities of the detector, the fine manipulation of the robot deploying the detector is less critical. Current detectors used on robotic systems must either be directly in the vapor plume or make direct contact with the target. By increasing the standoff, detection is more easily and quickly achieved. The end result detector must overcome cross-contamination, sample throughput, and environmental issues. The paper will provide preliminary results of the prototype system to include data, and where feasible, video of testing results.

  14. Stand-off detection of traces of explosives and precursors on fabrics by UV Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Chirico, Roberto; Almaviva, Salvatore; Botti, Sabina; Cantarini, Luciano; Colao, Francesco; Fiorani, Luca; Nuvoli, Marcello; Palucci, Antonio

    2012-10-01

    At the Diagnostic and Metrology Laboratory (ENEA) is under development a stand-off apparatus for trace detection of explosive compounds. The system is based on the Raman technique due to the high discrimination capabilities. All the optoelectronics components of the apparatus have been carefully designed as well as their optical matching. The main goal will be to detect low trace components within the respect of the eye safe regulation.

  15. Effectiveness of quality-control aids in verifying K-9-team explosive detection performance

    NASA Astrophysics Data System (ADS)

    Hallowell, Susan F.; Fischer, Douglas S.; Brasher, Jeffrey D.; Malone, Robert L.; Gresham, Garold L.; Rae, Cathy

    1997-02-01

    The Federal Aviation Administration (FAA) and supporting agencies conducted a developmental test and evaluation (DTE) to determine if quality control aids (QCAs) could be developed that would provide effective surrogates to actual explosives used for training and testing K-9 explosives detection teams. Non-detonable surrogates are required to alleviate logistics and contamination issues with explosives used sa training aids. Comparative K-9 team detection performance for explosives used as training aids and QCAs configurations of each explosive type were evaluated to determine the optimal configuration for the QCA configuration of each explosive type were evaluated to determine the optimal configuration for the QCAs. The configurations were a paper patch impregnated with a solution of the explosive, a cloth pouch filed with small amounts of solid explosive, and the non-hazardous explosive for security training and testing material. The DTE was conducted at Lackland Air Force Base in San Antonio, Texas, where the K-9 teams undergo initial training. Six FAA certified operational teams participated. All explosives and QCAs were presented to the K-9 teams using a 10 scent box protocol. The results show that K-9 team as are more sensitive to explosives than the candidate QCAs. More importantly, it was discovered that the explosives at Lackland AFB are cross-contaminated, meaning that explosives possessed volatile artifacts from other explosives. There are two potential hypotheses explaining why the dogs did not detect the QCAs. First, the cross-contamination of Lackland training explosives may mean that K-9 teams are only trained to detect the explosives with the most volatile chemical signatures. Alternatively, the QCA configurations may have been below the trained detection threshold of the K-9s. It is recommended that K-9 teams train on uncontaminated odors from properly designed QCAs to ensure that dogs respond to the appropriate explosive components, and not some

  16. Hand-Held Devices Detect Explosives and Chemical Agents

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Ion Applications Inc., of West Palm Beach, Florida, partnered with Ames Research Center through Small Business Innovation Research (SBIR) agreements to develop a miniature version ion mobility spectrometer (IMS). While NASA was interested in the instrument for detecting chemicals during exploration of distant planets, moons, and comets, the company has incorporated the technology into a commercial hand-held IMS device for use by the military and other public safety organizations. Capable of detecting and identifying molecules with part-per-billion sensitivity, the technology now provides soldiers with portable explosives and chemical warfare agent detection. The device is also being adapted for detecting drugs and is employed in industrial processes such as semiconductor manufacturing.

  17. Ultraviolet Resonant Raman Enhancements in the Detection of Explosives

    SciTech Connect

    Short Jr., Billy Joe

    2009-06-01

    Raman-based spectroscopy is potentially militarily useful for standoff detection of high explosives. Normal (non-resonance) and resonance Raman spectroscopies are both light scattering techniques that use a laser to measure the vibrational spectrum of a sample. In resonance Raman, the laser is tuned to match the wavelength of a strong electronic absorbance in the molecule of interest, whereas, in normal Raman the laser is not tuned to any strong electronic absorbance bands. The selection of appropriate excitation wavelengths in resonance Raman can result in a dramatic increase in the Raman scattering efficiency of select band(s) associated with the electronic transition. Other than the excitation wavelength, however, resonance Raman is performed experimentally the same as normal Raman. In these studies, normal and resonance Raman spectral signatures of select solid high explosive (HE) samples and explosive precursors were collected at 785 nm, 244 nm and 229 nm. Solutions of PETN, TNT, and explosive precursors (DNT & PNT) in acetonitrile solvent as an internal Raman standard were quantitatively evaluated using ultraviolet resonance Raman (UVRR) microscopy and normal Raman spectroscopy as a function of power and select excitation wavelengths. Use of an internal standard allowed resonance enhancements to be estimated at 229 nm and 244 nm. Investigations demonstrated that UVRR provided ~2000-fold enhancement at 244 nm and ~800-fold improvement at 229 nm while PETN showed a maximum of ~25-fold at 244 nm and ~190-fold enhancement at 229 nm solely from resonance effects when compared to normal Raman measurements. In addition to the observed resonance enhancements, additional Raman signal enhancements are obtained with ultraviolet excitation (i.e., Raman scattering scales as !4 for measurements based on scattered photons). A model, based partly on the resonance Raman enhancement results for HE solutions, is presented for estimating Raman enhancements for solid HE samples.

  18. Tracing explosive in solvent using quantum cascade laser with pulsed electric discharge system

    SciTech Connect

    Park, Seong-Wook; Tian, Chao; Martini, Rainer; Chen, Gang; Chen, I-chun Anderson

    2014-11-03

    We demonstrated highly sensitive detection of explosive dissolved in solvent with a portable spectroscopy system (Q-MACS) by tracing the explosive byproduct, N{sub 2}O, in combination with a pulsed electric discharge system for safe explosive decomposition. Using Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), the gas was monitored and analyzed by Q-MACS and the presence of the dissolved explosive clearly detected. While HMX presence could be identified directly in the air above the solutions even without plasma, much better results were achieved under the decomposition. The experiment results give an estimated detection limit of 10 ppb, which corresponds to a 15 pg of HMX.

  19. Ag-ZnO nanostructure for ANTA explosive molecule detection

    SciTech Connect

    Shaik, Ummar Pasha; Sangani, L. D. Varma; Gaur, Anshu; Mohiddon, Md. Ahamad; Krishna, M. Ghanashyam

    2016-05-23

    Ag/ZnO nanostructure for surface enhanced Raman scattering application in the detection of ANTA explosive molecule is demonstrated. A highly rough ZnO microstructure was achieved by rapid thermal annealing of metallic Zn film. Different thickness Ag nanostructures are decorated over these ZnO microstructures by ion beam sputtering technique. Surface enhanced Raman spectroscopic studies carried out over Ag/ZnO substrates have shown three orders higher enhancement compared to bare Ag nanostructure deposited on the same substrate. The reasons behind such huge enhancement are discussed based on the morphology of the sample.

  20. Atmosphere Issues in Detection of Explosives and Organic Residues

    DTIC Science & Technology

    2009-01-01

    Atmosphere Issues in Detection of Explosives and Organic Residues C.G. Brown*1, M. Baudelet1, C. Bridge1, M.K. Fisher1, M. Sigman2, P.J...comparison of LIBS emission from molecular species in plasmas produced from organic residues on a non-metallic substrate by both a 5 ns Nd:YAG laser...1064 nm) and a 40 fs Ti:Sapphire laser (800 nm) in air and argon atmospheres. The organic samples analyzed had varying amounts of carbon, nitrogen

  1. Photonic crystal fiber modal interferometer for explosives detection

    NASA Astrophysics Data System (ADS)

    Tao, Chuanyi; Wei, Heming; Krishnaswamy, Sridhar

    2016-04-01

    The detection of explosives and their residues is of great importance in public health, antiterrorism and homeland security applications. The vapor pressures of most explosive compounds are extremely low and attenuation of the available vapor is often great due to diffusion in the environment, making direct vapor detection difficult. In this paper, a photonic-microfluidic integrated sensor for highly sensitive 2,4,6-trinitrotoluene (TNT) detection is described based on an in-fiber Mach-Zehnder interferometer (MZI) in a photonic crystal fiber (PCF). A segment of PCF is inserted between standard single-mode fibers (SMF) via butt coupling to form a modal interferometer, in which the cladding modes are excited and interfere with the fundamental core mode. Due to butt coupling, the small air gap between SMF and PCF forms a coupling region and also serves as an inlet/outlet for the gas. The sensor is fabricated by immobilizing a chemo-recognition coating on the inner surface of the holey region of the PCF, which selectively and reversibly binds TNT molecules on the sensitized surface. The sensing mechanism is based on the determination of the TNT-induced wavelength shift of interference peaks due to the refractive index change of the holey-layer. The sensor device therefore is capable of field operation.

  2. Direct mass spectrometric detection of trace explosives in soil samples.

    PubMed

    Ma, Lipo; Xin, Bin; Chen, Yi

    2012-04-07

    The detection of explosives in soil is of great significance in public security programmes and environmental science. In the present work, a ppb-level method was established to directly detect the semi-volatile explosives, RDX and TNT, present in complex soil samples. The method used thermal sampling technique and a direct current atmospheric pressure glow discharge source mounted with a brass cylinder electrode (9 mm × 4.6 mm i.d./5.6 mm o.d.) to face the samples, requiring no sample pretreatment steps such as soil extraction (about ten hours). It was characterized by the merits of easy operation, high sensitivity and fast speed, and has been validated by real soil samples from various locations around a factory or firecracker releasing fields. It took only 5 min per sample, with the limit of detection down to 0.5 ppb (S/N = 3) trinitrohexahydro-1,3,5-triazine in soils heated at 170 °C. It is also extendable to the analysis of other volatile analytes.

  3. Plasmonic enhanced terahertz time-domain spectroscopy system for identification of common explosives

    NASA Astrophysics Data System (ADS)

    Demiraǧ, Yiǧit; Bütün, Bayram; Özbay, Ekmel

    2017-05-01

    In this study, we present a classification algorithm for terahertz time-domain spectroscopy systems (THz-TDS) that can be trained to identify most commonly used explosives (C4, HMX, RDX, PETN, TNT, composition-B and blackpowder) and some non-explosive samples (lactose, sucrose, PABA). Our procedure can be used in any THz-TDS system that detects either transmission or reflection spectra at room conditions. After preprocessing the signal in low THz regime (0.1 - 3 THz), our algorithm takes advantages of a latent space transformation based on principle component analysis in order to classify explosives with low false alarm rate.

  4. Review of the Procyon explosive pulsed power system

    NASA Astrophysics Data System (ADS)

    Goforth, J. H.; Oona, H.; Greene, A. E.

    1993-06-01

    #he Procyon explosive pulsed power system is designed for powering plasma z-pinch experiments. It begins with a helical explosive-driven magnetic flux compression generator (MCG) for amplifying seed current from a capacitor bank into a storage inductor. One conductor element of the storage inductor is an explosively formed fuse (EFF) opening switch tailored to divert current to a plasma flow switch (PFS) in less than 3 microseconds. The PFS, in turn, delivers current to a z-pinch load. Experiments to date have concentrated on the explosive pulsed power components and PFS. This paper focuses on the results of a recent full energy MCG/EFF/PFS test.

  5. Trace Explosives Detection by Photoluminescence with Applications to Time-Resolved Imaging

    NASA Astrophysics Data System (ADS)

    Bouldin, Kimberly

    2003-10-01

    Trace explosive detection field methods based on chemical reactions have until recently utilized only colorimetric products. To increase the sensitivity of such detection, a field explosive test kit which produces a product that is both colorimetric and luminescent is studied. Detection sensitivity can be gained by taking advantage of the luminescence of these products, something that has not been done to date. When the appropriate chemistry is chosen for explosive detection, time-resolved imaging techniques may again be applicable. Thus, in this talk, the possibilities of taking trace explosives detection to this next level will be discussed.

  6. Standoff detection of explosives and buried landmines using fluorescent bacterial sensor cells.

    PubMed

    Kabessa, Yossef; Eyal, Ori; Bar-On, Ofer; Korouma, Victor; Yagur-Kroll, Sharon; Belkin, Shimshon; Agranat, Aharon J

    2016-05-15

    A standoff detection scheme for buried landmines and concealed explosive charges is presented. The detection procedure consists of the following: Live bacterial sensor strains, genetically engineered to produce a dose-dependent amount of green fluorescent protein (GFP) in the presence of explosives' vapors, are encapsulated and spread on the suspected area. The fluorescence produced by the bacteria in response to traces of the explosive material in their microenvironment is remotely detected by a phase-locked optoelectronic sampling system. This scheme enables fast direct access to a large minefield area, while obviating the need to endanger personnel and equipment. Moreover, the employment of phase locking detection efficiently isolates the bacterial sensors' fluorescent output from the background optical signals. This facilitates the application of bacterial sensors in an outdoor environment, where control of background illumination is not possible. Using this system, we demonstrate standoff detection of 2,4-DNT both in aqueous solution and when buried in soil, by sensor bacteria either in liquid culture or agar-immobilized, respectively, at a distance of 50 m in a realistic optically noisy environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Apparatus and method for rapid detection of explosives residue from the deflagration signature thereof

    DOEpatents

    Funsten, Herbert O.; McComas, David J.

    1997-01-01

    Apparatus and method for rapid detection of explosives residue from the deflagration signature thereof. A property inherent to most explosives is their stickiness, resulting in a strong tendency of explosive particulate to contaminate the environment of a bulk explosive. An apparatus for collection of residue particulate, burning the collected particulate, and measurement of the optical emission produced thereby is described. The present invention can be utilized for real-time screening of personnel, cars, packages, suspected devices, etc., and provides an inexpensive, portable, and noninvasive means for detecting explosives.

  8. Apparatus and method for rapid detection of explosives residue from the deflagration signature thereof

    DOEpatents

    Funsten, H.O.; McComas, D.J.

    1999-06-15

    Apparatus and method are disclosed for rapid detection of explosives residue from the deflagration signature thereof. A property inherent to most explosives is their stickiness, resulting in a strong tendency of explosive particulate to contaminate the environment of a bulk explosive. An apparatus for collection of residue particulate, burning the collected particulate, and measurement of the ultraviolet emission produced thereby, is described. The present invention can be utilized for real-time screening of personnel, cars, packages, suspected devices, etc., and provides an inexpensive, portable, and noninvasive means for detecting explosives. 4 figs.

  9. Apparatus and method for rapid detection of explosives residue from the deflagration signature thereof

    DOEpatents

    Funsten, Herbert O.; McComas, David J.

    1999-01-01

    Apparatus and method for rapid detection of explosives residue from the deflagration signature thereof. A property inherent to most explosives is their stickiness, resulting in a strong tendency of explosive particulate to contaminate the environment of a bulk explosive. An apparatus for collection of residue particulate, burning the collected particulate, and measurement of the ultraviolet emission produced thereby, is described. The present invention can be utilized for real-time screening of personnel, cars, packages, suspected devices, etc., and provides an inexpensive, portable, and noninvasive means for detecting explosives.

  10. The use of triangle diagram in the detection of explosive and illicit drugs

    NASA Astrophysics Data System (ADS)

    Sudac, Davorin; Baricevic, Martina; Obhodas, Jasmina; Franulovic, Andrej; Valkovic, Vladivoj

    2010-04-01

    A tagged neutron inspection system has been used for the detection of explosive and illicite drugs. Simulant of the RDX explosive was measured in different environments and its gamma ray spectra were compared with the gamma ray spectra of benign materials like paper, sugar and rise. "Fingerprint" of the RDX simulant was found by detecting the nitrogen as well as by making the triangle plot which coordinates show the carbon and oxygen content and density. Density was obtained by measuring the intensity of the transmited tagged neutrons. Hence, the presence of the simulant can be confirmed by using two different methods. The possibility of using the triangle plot for detection of illicit drugs like heroin, cocain and marihuana is also discused.

  11. APSTNG: Neutron interrogation for detection of nuclear and CW weapons, explosives, and drugs

    SciTech Connect

    Rhodes, E.; Dickerman, C.E.; De Volpi, A.; Peters, C.W.

    1992-07-01

    A recently developed neutron diagnostic probe system has the potential to satisfy a significant number of van-mobile and fixed- portal requirements for nondestructive verification of sealed munitions and detection of contraband explosives and drugs. The probe is based on a unique associated-particle sealed-tube neutron generator (APSTNG) that interrogates the object of interest with a low-intensity beam of 14-MeV neutrons generated from the deuterium-tritium reaction and that detects the alpha-particle associated with each neutron. Gamma-ray spectra of resulting neutron inelastic scattering and fission reactions identify nuclides associated with all major chemicals in chemical warfare agents, explosives, and drugs, as well as many pollutants and fissile and fertile special nuclear material. Flight times determined from determined from detection times of the gamma-rays and alpha-particles yield a separate tomographic image of each identified nuclide. The APSTNG also forms the basis for a compact fast-neutron transmission imaging system that can be used along with or instead of the emission imaging system; a collimator is not required since scattered neutrons are removed by ``electronic collimation`` (detected neutrons not having the proper flight time to be uncollided are discarded). The small and relatively inexpensive APSTNG exhibits high reliability and can be quickly replaced. Proof-of-concept experiments have been performed under laboratory conditions for simulated nuclear and chemical warfare munitions and for explosives and drugs.

  12. APSTNG: Neutron interrogation for detection of nuclear and CW weapons, explosives, and drugs

    SciTech Connect

    Rhodes, E.; Dickerman, C.E.; De Volpi, A. ); Peters, C.W. )

    1992-01-01

    A recently developed neutron diagnostic probe system has the potential to satisfy a significant number of van-mobile and fixed- portal requirements for nondestructive verification of sealed munitions and detection of contraband explosives and drugs. The probe is based on a unique associated-particle sealed-tube neutron generator (APSTNG) that interrogates the object of interest with a low-intensity beam of 14-MeV neutrons generated from the deuterium-tritium reaction and that detects the alpha-particle associated with each neutron. Gamma-ray spectra of resulting neutron inelastic scattering and fission reactions identify nuclides associated with all major chemicals in chemical warfare agents, explosives, and drugs, as well as many pollutants and fissile and fertile special nuclear material. Flight times determined from determined from detection times of the gamma-rays and alpha-particles yield a separate tomographic image of each identified nuclide. The APSTNG also forms the basis for a compact fast-neutron transmission imaging system that can be used along with or instead of the emission imaging system; a collimator is not required since scattered neutrons are removed by electronic collimation'' (detected neutrons not having the proper flight time to be uncollided are discarded). The small and relatively inexpensive APSTNG exhibits high reliability and can be quickly replaced. Proof-of-concept experiments have been performed under laboratory conditions for simulated nuclear and chemical warfare munitions and for explosives and drugs.

  13. Experimental investigation of an explosive-driven pulse power system

    SciTech Connect

    Tucker, T.J.; Hanson, D.L.; Cnare, E.C.

    1983-01-01

    The results obtained in the test of a pulse-power system composed of an explosively driven compressed magnetic-field current generator driving an explosive opening switch and a 20 nH inductive load are presented. It is shown that microsecond risetime, multimegampere current pulses can be produced by this technique.

  14. Combined pre-concentration and real-time in-situ chemical detection of explosives in the marine environment

    NASA Astrophysics Data System (ADS)

    Dock, Matthew L.; Harper, Ross J.; Knobbe, Ed

    2010-04-01

    ICx Nomadics has developed the first known real-time sensor system that is capable of detecting chemical signatures emanating from underwater explosives, based upon the same amplifying fluorescent polymer (AFP) fluorescence-quenching transduction mechanism that the Fido® family of explosives detectors utilizes. The SeaPup is capable of real-time detection of the trace chemical signatures emanating from submerged explosive compounds and has been successfully tested on various marine platforms, including a crawler robot, an autonomous underwater vehicle (AUV), and a remotely operated underwater vehicle (ROV). The present work is focused on advances in underwater in-situ chemical sensing; wherein trace amounts of dissolved explosive compounds may be detected and discriminated from other chemical species found in the marine environment. Recent progress with the SeaPup platform have focused on increasing the sensitivity of the AFP matrix through the development of a preconcentration system designed to harvest explosive analytes from a larger sample volume over a predetermined period of time. This permits real time monitoring of chemical plumes during the approach to a potential source, combined with the lowered limit of detection from extended sampling of targeted items. SeaPup has been shown to effectively map "explosive scent plumes" emanating from an underwater source of TNT, and the preconcentration system has previously been demonstrated to enhance sensitivity be over 2 orders of magnitude in a time window of minutes.

  15. An Orientation to Explosive Safety.

    ERIC Educational Resources Information Center

    Harris, Betty W.

    1987-01-01

    Provides an overview of various types of explosives. Classifies and describes explosives as initiating or primary explosives, low explosives, and high (secondary explosives). Discusses detonating devices, domestic explosive systems, the sensitivity of explosives, explosive reactions, and emergency responses. (TW)

  16. An Orientation to Explosive Safety.

    ERIC Educational Resources Information Center

    Harris, Betty W.

    1987-01-01

    Provides an overview of various types of explosives. Classifies and describes explosives as initiating or primary explosives, low explosives, and high (secondary explosives). Discusses detonating devices, domestic explosive systems, the sensitivity of explosives, explosive reactions, and emergency responses. (TW)

  17. APSTNG: neutron interrogation for detection of explosives, drugs, and nuclear and chemical warfare materials

    NASA Astrophysics Data System (ADS)

    Rhodes, Edgar A.; Peters, Charles W.

    1993-02-01

    A recently developed neutron diagnostic probe system has the potential to satisfy a significant number of van-mobile and fixed-portal requirements for nondestructive detection, including monitoring of contraband explosives, drugs, and weapon materials, and treaty verification of sealed munitions. The probe is based on a unique associated-particle sealed-tube neutron generator (APSTNG) that interrogates the object of interest with a low-intensity beam of 14- MeV neutrons generated from the deuterium-tritium reaction and that detects the alpha-particle associated with each neutron. Gamma-ray spectra of resulting neutron reactions identify nuclides associated with all major chemicals in explosives, drugs, and chemical warfare agents, as well as many pollutants and fissile and fertile special nuclear material. Flight times determined from detection times of the gamma-rays and alpha-particles yield a separate coarse tomographic image of each identified nuclide. The APSTNG also forms the basis for a compact fast-neutron transmission imaging system that can be used along with or instead of the emission imaging system. Proof-of-concept experiments have been performed under laboratory conditions for simulated nuclear and chemical warfare munitions and for explosives and drugs. The small and relatively inexpensive APSTNG exhibits high reliability and can be quickly replaced. Surveillance systems based on APSTNG technology can avoid the large physical size, high capital and operating expenses, and reliability problems associated with complex accelerators.

  18. Microcantilever technology for law enforcement and anti-terrorism applications: chemical, biological, and explosive material detection

    NASA Astrophysics Data System (ADS)

    Adams, J. D.; Rogers, B.; Whitten, R.

    2005-05-01

    The remarkable sensitivity, compactness, low cost, low power-consumption, scalability, and versatility of microcantilever sensors make this technology among the most promising solutions for detection of chemical and biological agents, as well as explosives. The University of Nevada, Reno, and Nevada Nanotech Systems, Inc (NNTS) are currently developing a microcantilever-based detection system that will measure trace concentrations of explosives, toxic chemicals, and biological agents in air. A baseline sensor unit design that includes the sensor array, electronics, power supply and air handling has been created and preliminary demonstrations of the microcantilever platform have been conducted. The envisioned device would measure about two cubic inches, run on a small watch battery and cost a few hundred dollars. The device could be operated by untrained law enforcement personnel. Microcantilever-based devices could be used to "sniff out" illegal and/or hazardous chemical and biological agents in high traffic public areas, or be packaged as a compact, low-power system used to monitor cargo in shipping containers. Among the best detectors for such applications at present is the dog, an animal which is expensive, requires significant training and can only be made to work for limited time periods. The public is already accustomed to explosives and metal detection systems in airports and other public venues, making the integration of the proposed device into such security protocols straightforward.

  19. [Research on detecting explosive content of 2, 4-dimitroanisole based on THz spectroscopy].

    PubMed

    Wang, Gao; Xu, De-Gang; Yao, Jian-Quan

    2013-04-01

    In order to detect the content of a new kind of insensitive melting-cast explosive (DNAN), the system detected the THz characteristics wavelength of DNAN, and solved the content of DNAN by the Bill-Lambert law. Time coherent THz spectroscopy detection system was designed, in which the master system controlled stepper motor to get the micro-scanning of the photoelectric detector. The system parameters were calculated and derived for solving the content of DNAN, and THz characteristic spectrum of DNAN was obtained. Experiment used three methods to detect explosives samples with different content of DNAN, and the results show that the accuracy of this system is close to that of MINI-Z terahertz spectrometer currently broadly applied in THz spectroscopy detection equipment at home and abroad. On this basis, the optimization algorithm of characteristic absorption peak was designed, and by the origin software simulation analysis, it shows that the algorithm can further improve accuracy and stability of the detection system.

  20. Multi-modal, ultrasensitive detection of trace explosives using MEMS devices with quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Zandieh, Omid; Kim, Seonghwan

    2016-05-01

    Multi-modal chemical sensors based on microelectromechanical systems (MEMS) have been developed with an electrical readout. Opto-calorimetric infrared (IR) spectroscopy, capable of obtaining molecular signatures of extremely small quantities of adsorbed explosive molecules, has been realized with a microthermometer/microheater device using a widely tunable quantum cascade laser. A microthermometer/microheater device responds to the heat generated by nonradiative decay process when the adsorbed explosive molecules are resonantly excited with IR light. Monitoring the variation in microthermometer signal as a function of illuminating IR wavelength corresponds to the conventional IR absorption spectrum of the adsorbed molecules. Moreover, the mass of the adsorbed molecules is determined by measuring the resonance frequency shift of the cantilever shape microthermometer for the quantitative opto-calorimetric IR spectroscopy. In addition, micro-differential thermal analysis, which can be used to differentiate exothermic or endothermic reaction of heated molecules, has been performed with the same device to provide additional orthogonal signal for trace explosive detection and sensor surface regeneration. In summary, we have designed, fabricated and tested microcantilever shape devices integrated with a microthermometer/microheater which can provide electrical responses used to acquire both opto-calorimetric IR spectra and microcalorimetric thermal responses. We have demonstrated the successful detection, differentiation, and quantification of trace amounts of explosive molecules and their mixtures (cyclotrimethylene trinitramine (RDX) and pentaerythritol tetranitrate (PETN)) using three orthogonal sensing signals which improve chemical selectivity.

  1. HYDROGEN IGNITION MECHANISM FOR EXPLOSIONS IN NUCLEAR FACILITY PIPE SYSTEMS

    SciTech Connect

    Leishear, R

    2010-05-02

    Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions exist. Pipe ruptures at nuclear facilities were attributed to hydrogen explosions inside pipelines, in nuclear facilities, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents an ignition source for hydrogen was questionable, but these accidents, demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein.

  2. Stand-off explosive detection utilizing low power stimulated emission nuclear quadrupole resonance detection and subwavelength focusing wideband super lens

    NASA Astrophysics Data System (ADS)

    Apostolos, John; Mouyos, William; Feng, Judy; Chase, Walter

    2015-05-01

    The need for advanced techniques to detect improvised explosive devices (IED) at stand-off distances greater than ten (10) meters has driven AMI Research and Development (AMI) to develop a solution to detect and identify the threat utilizing a forward looking Synthetic Aperture Radar (SAR) combined with our CW radar technology Nuclear Quadrupole Resonance (NQR) detection system. The novel features include a near-field sub-wavelength focusing antenna, a wide band 300 KHz to 300 MHz rapidly scanning CW radar facilitated by a high Q antenna/tuner, and an advanced processor utilizing Rabi transitions where the nucleus oscillates between states under the time dependent incident electromagnetic field and alternately absorbs energy from the incident field while emitting coherent energy via stimulated emission. AMI's Sub-wavelength Focusing Wide Band Super Lens uses a Near-Field SAR, making detection possible at distances greater than ten (10) meters. This super lens is capable of operating on the near-field and focusing electromagnetic waves to resolutions beyond the diffraction limit. When applied to the case of a vehicle approaching an explosive hazard the methodologies of synthetic aperture radar is fused with the array based super resolution and the NQR data processing detecting the explosive hazard.

  3. Detection and identification of explosive RDX by THz diffuse reflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Hai-Bo; Chen, Yunqing; Bastiaans, Glenn J.; Zhang, X.-C.

    2006-01-01

    The reflection spectrum of the explosive RDX was acquired from a diffuse reflection measurement using a THz time-domain spectroscopy system in combination with a diffuse reflectance accessory. By applying the Kramers-Kronig transform to the reflection spectrum, the absorption spectrum (0.2-1.8 THz) was obtained. It agrees with the result from a transmission measurement and distinguishes RDX from other materials. The effect of the reference spectrum was examined by using both a Teflon pellet and a copper plate as references. The strong absorption of RDX at 0.82 THz allowed it to be identified by the diffuse reflection measurement even when the RDX sample was covered with certain optically opaque materials. Our investigation demonstrates that THz technique is capable of detecting and identifying hidden RDX-related explosives in a diffuse reflection mode, which is crucial for the standoff detection in the real world applications.

  4. Explosive destruction system for disposal of chemical munitions

    DOEpatents

    Tschritter, Kenneth L [Livermore, CA; Haroldsen, Brent L [Manteca, CA; Shepodd, Timothy J [Livermore, CA; Stofleth, Jerome H [Albuquerque, NM; DiBerardo, Raymond A [Baltimore, MD

    2005-04-19

    An explosive destruction system and method for safely destroying explosively configured chemical munitions. The system comprises a sealable, gas-tight explosive containment vessel, a fragment suppression system positioned in said vessel, and shaped charge means for accessing the interior of the munition when the munition is placed within the vessel and fragment suppression system. Also provided is a means for treatment and neutralization of the munition's chemical fills, and means for heating and agitating the contents of the vessel. The system is portable, rapidly deployable and provides the capability of explosively destroying and detoxifying chemical munitions within a gas-tight enclosure so that there is no venting of toxic or hazardous chemicals during detonation.

  5. SERS detection of the nuclear weapons explosive triaminotrinitrobenzene

    NASA Astrophysics Data System (ADS)

    Janni, James A.; Sylvia, James M.; Clauson, Susan L.; Spencer, Kevin M.

    2002-02-01

    The sensitivity demonstrated for other nitro-aromatic explosives through SERS has been applied to triaminotrinitro-benzene (TATB). Gas phase and solution phase in strong acids and bases, as well as organic solvents SERS spectra have been collected. For each method of TATB sample introduction on electrochemically roughened gold substrates or gold colloids, different bands and sensitivities were observed. These bands likely result from the three possible adsorption sites in the molecule and its reaction with the gold surface. In some cases, the SERS spectra closely overlapped the carbonaceous background and indicate TATB degradation. Although the mechanisms of the reaction of TATB with the surface are not understood, important aspects of optimized TATB SERS detection have been observed. Para-nitroaniline (p-NA) was also studied due to its similarity with TATB and its greater solubility in water.

  6. Trace vapor detection of hydrogen peroxide: An effective approach to identification of improvised explosive devices

    NASA Astrophysics Data System (ADS)

    Xu, Miao

    Vapor detection has been proven as one of the practical, noninvasive methods suitable for explosives detection among current explosive detection technologies. Optical methods (especially colorimetric and fluorescence spectral methods) are low in cost, provide simple instrumentation alignment, while still maintaining high sensitivity and selectivity, these factors combined facilitate broad field applications. Trace vapor detection of hydrogen peroxide (H2O2) represents an effective approach to noninvasive detection of peroxide-based explosives, though development of such a sensor system with high reliability and sufficient sensitivity (reactivity) still remains challenging. Three vapor sensor systems for H2O2 were proposed and developed in this study, which exploited specific chemical reaction towards H2O2 to ensure the selectivity, and materials surface engineering to afford efficient air sampling. The combination of these features enables expedient, cost effective, reliable detection of peroxide explosives. First, an expedient colorimetric sensor for H2O2 vapor was developed, which utilized the specific interaction between Ti(oxo) and H2O2 to offer a yellow color development. The Ti(oxo) salt can be blended into a cellulose microfibril network to produce tunable interface that can react with H2O2. The vapor detection limit can reach 400 ppb. To further improve the detection sensitivity, a naphthalimide based fluorescence turn-on sensor was designed and developed. The sensor mechanism was based on H2O2-mediated oxidation of a boronate fluorophore, which is nonfluorescent in ICT band, but becomes strongly fluorescent upon conversion into the phenol state. The detection limit of this sensory material was improved to be below 10 ppb. However, some technical factors such as sensor concentration, local environment, and excitation intensity were found difficult to control to make the sensor system sufficiently reproducible. To solve the problem, we developed a

  7. Detection of explosives and their degradation products in soil environments.

    PubMed

    Halasz, A; Groom, C; Zhou, E; Paquet, L; Beaulieu, C; Deschamps, S; Corriveau, A; Thiboutot, S; Ampleman, G; Dubois, C; Hawari, Jalal

    2002-07-19

    Polynitro organic explosives [hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and 2,4,6-trinitrotoluene (TNT)] are typical labile environmental pollutants that can biotransform with soil indigenous microorganisms, photodegrade by sunlight and migrate through subsurface soil to cause groundwater contamination. To be able to determine the type and concentration of explosives and their (bio)transformation products in different soil environments, a comprehensive analytical methodology of sample preparation, separation and detection is thus required. The present paper describes the use of supercritical carbon dioxide (SC-CO2), acetonitrile (MeCN) (US Environmental Protection Agency Method 8330) and solid-phase microextraction (SPME) for the extraction of explosives and their degradation products from various water, soil and plant tissue samples for subsequent analysis by either HPLC-UV, capillary electrophoresis (CE-UV) or GC-MS. Contaminated surface and subsurface soil and groundwater were collected from either a TNT manufacturing facility or an anti-tank firing range. Plant tissue samples were taken fromplants grown in anti-tank firing range soil in a greenhouse experiment. All tested soil and groundwater samples from the former TNT manufacturing plant were found to contain TNT and some of its amino reduced and partially denitrated products. Their concentrations as determined by SPME-GC-MS and LC-UV depended on the location of sampling at the site. In the case of plant tissues, SC-CO2 extraction followed by CE-UV analysis showed only the presence of HMX. The concentrations of HMX (<200 mg/kg) as determined by supercritical fluid extraction (SC-CO2)-CE-UV were comparable to those obtained by MeCN extraction, although the latter technique was found to be more efficient at higher concentrations (>300 mg/kg). Modifiers such as MeCN and water enhanced the SC-CO2 extractability of HMX from plant tissues.

  8. Transport simulation and image reconstruction for fast-neutron detection of explosives and narcotics

    NASA Astrophysics Data System (ADS)

    Micklich, Bradley J.; Fink, Charles L.; Sagalovsky, Leonid

    1995-09-01

    Fast-neutron inspection techniques show considerable promise for explosive and narcotics detection. A key advantage of using fast neutron is their sensitivity to low-Z elements (carbon, nitrogen, and oxygen), which are the primary constituents of these materials. We are currently investigating two interrogation methods in detail: fast-neutron transmission spectroscopy (FNTS) and pulsed fast-neutron analysis (PFNA). FNTS is being studied for explosives and narcotics detection in luggage and small containers for which the transmission ration is greater than about 0.01. The Monte Carlo radiation transport code MCNP is being used to simulate neutron transmission through a series of phantoms for a few (3-5) projections angles and modest (2 cm) reolution. Areal densities along projection rays are unfolded from the transmission data. Elemental abundances are obtained for individual voxels by tomographic reconstruction, and the reconstructed elemental images are combined to provide indications of the presence or absence of explosives or narcotics. PFNA techniques are being investigated for detection of narcotics in cargo containers because of the good penetration of the fast neutrons and the low attenuation of the resulting high-energy gamma-ray signatures. Analytic models and Monte Carlo simulations are being used to explore the range of capabilities of PFNA techniques and to provide insight into systems engineering issues. Results of studies from both FNTS and PFNA technqiues are presented.

  9. Transport simulation and image reconstruction for fast-neutron detection of explosives and narcotics

    SciTech Connect

    Micklich, B.J.; Fink, C.L.; Sagalovsky, L.

    1995-07-01

    Fast-neutron inspection techniques show considerable promise for explosive and narcotics detection. A key advantage of using fast neutrons is their sensitivity to low-Z elements (carbon, nitrogen, and oxygen), which are the primary constituents of these materials. We are currently investigating two interrogation methods in detail: Fast-Neutron Transmission Spectroscopy (FNTS) and Pulsed Fast-Neutron Analysis (PFNA). FNTS is being studied for explosives and narcotics detection in luggage and small containers for which the transmission ratio is greater than about 0.01. The Monte-Carlo radiation transport code MCNP is being used to simulate neutron transmission through a series of phantoms for a few (3-5) projection angles and modest (2 cm) resolution. Areal densities along projection rays are unfolded from the transmission data. Elemental abundances are obtained for individual voxels by tomographic reconstruction, and these reconstructed elemental images are combined to provide indications of the presence or absence of explosives or narcotics. PFNA techniques are being investigated for detection of narcotics in cargo containers because of the good penetration of the fast neutrons and the low attenuation of the resulting high-energy gamma-ray signatures. Analytic models and Monte-Carlo simulations are being used to explore the range of capabilities of PFNA techniques and to provide insight into systems engineering issues. Results of studies from both FNTS and PFNA techniques are presented.

  10. Explosive detection using high-volume vapor sampling and analysis by trained canines and ultra-trace detection equipment

    NASA Astrophysics Data System (ADS)

    Fisher, Mark; Sikes, John; Prather, Mark

    2004-09-01

    The dog's nose is an effective, highly-mobile sampling system, while the canine olfactory organs are an extremely sensitive detector. Having been trained to detect a wide variety of substances with exceptional results, canines are widely regarded as the 'gold standard' in chemical vapor detection. Historically, attempts to mimic the ability of dogs to detect vapors of explosives using electronic 'dogs noses' has proven difficult. However, recent advances in technology have resulted in development of detection (i.e., sampling and sensor) systems with performance that is rapidly approaching that of trained canines. The Nomadics Fido was the first sensor to demonstrate under field conditions the detection of landmines with performance approaching that of canines. More recently, comparative testing of Fido against canines has revealed that electronic vapor detection, when coupled with effective sampling methods, can produce results comparable to that of highly-trained canines. The results of these comparative tests will be presented, as will recent test results in which explosives hidden in cargo were detected using Fido with a high-volume sampling technique. Finally, the use of canines along with electronic sensors will be discussed as a means of improving the performance and expanding the capabilities of both methods.

  11. The application of single particle aerosol mass spectrometry for the detection and identification of high explosives and chemical warfare agents

    SciTech Connect

    Martin, Audrey Noreen

    2006-01-01

    Single Particle Aerosol Mass Spectrometry (SPAMS) was evaluated as a real-time detection technique for single particles of high explosives. Dual-polarity time-of-flight mass spectra were obtained for samples of 2,4,6-trinitrotoluene (TNT), 1,3,5-trinitro-1,3,5-triazinane (RDX), and pentaerythritol tetranitrate (PETN); peaks indicative of each compound were identified. Composite explosives, Comp B, Semtex 1A, and Semtex 1H were also analyzed, and peaks due to the explosive components of each sample were present in each spectrum. Mass spectral variability with laser fluence is discussed. The ability of the SPAMS system to identify explosive components in a single complex explosive particle (~1 pg) without the need for consumables is demonstrated. SPAMS was also applied to the detection of Chemical Warfare Agent (CWA) simulants in the liquid and vapor phases. Liquid simulants for sarin, cyclosarin, tabun, and VX were analyzed; peaks indicative of each simulant were identified. Vapor phase CWA simulants were adsorbed onto alumina, silica, Zeolite, activated carbon, and metal powders which were directly analyzed using SPAMS. The use of metal powders as adsorbent materials was especially useful in the analysis of triethyl phosphate (TEP), a VX stimulant, which was undetectable using SPAMS in the liquid phase. The capability of SPAMS to detect high explosives and CWA simulants using one set of operational conditions is established.

  12. Position-adaptive explosive detection concepts for swarming micro-UAVs

    NASA Astrophysics Data System (ADS)

    Selmic, Rastko R.; Mitra, Atindra

    2008-04-01

    We have formulated a series of position-adaptive sensor concepts for explosive detection applications using swarms of micro-UAV's. These concepts are a generalization of position-adaptive radar concepts developed for challenging conditions such as urban environments. For radar applications, this concept is developed with platforms within a UAV swarm that spatially-adapt to signal leakage points on the perimeter of complex clutter environments to collect information on embedded objects-of-interest. The concept is generalized for additional sensors applications by, for example, considering a wooden cart that contains explosives. We can formulate system-of-systems concepts for a swarm of micro-UAV's in an effort to detect whether or not a given cart contains explosives. Under this new concept, some of the members of the UAV swarm can serve as position-adaptive "transmitters" by blowing air over the cart and some of the members of the UAV swarm can serve as position-adaptive "receivers" that are equipped with chem./bio sensors that function as "electronic noses". The final objective can be defined as improving the particle count for the explosives in the air that surrounds a cart via development of intelligent position-adaptive control algorithms in order to improve the detection and false-alarm statistics. We report on recent simulation results with regard to designing optimal sensor placement for explosive or other chemical agent detection. This type of information enables the development of intelligent control algorithms for UAV swarm applications and is intended for the design of future system-of-systems with adaptive intelligence for advanced surveillance of unknown regions. Results are reported as part of a parametric investigation where it is found that the probability of contaminant detection depends on the air flow that carries contaminant particles, geometry of the surrounding space, leakage areas, and other factors. We present a concept of position

  13. Multivariate acoustic detection of small explosions using Fisher's combined probability test.

    PubMed

    Arrowsmith, Stephen J; Taylor, Steven R

    2013-03-01

    A methodology for the combined acoustic detection and discrimination of explosions, which uses three discriminants, is developed for the purpose of identifying weak explosion signals embedded in complex background noise. By utilizing physical models for simple explosions that are formulated as statistical hypothesis tests, the detection/discrimination approach does not require a model for the background noise, which can be highly complex and variable in practice. Fisher's Combined Probability Test is used to combine the p-values from all multivariate discriminants. This framework is applied to acoustic data from a 400 g explosion conducted at Los Alamos National Laboratory.

  14. GPS detection and monitoring of underground nuclear explosions

    NASA Astrophysics Data System (ADS)

    Park, Jihye; Grejner-Brzezinska, Dorota; von Frese, Ralph; Morton, Yu; Gaya-Pique, Luis

    2013-04-01

    Previous studies by Park et al. (2011) revealed that an underground nuclear explosion (UNE) induces the acoustic-gravity waves, which disturb the ionosphere and generate the traveling ionospheric disturbance (TID). GPS technique allows for the ionospheric disturbance observation with high accuracy, which, in turn, enables detection of the TID induced by the UNE. This study suggests the detection and verification method of the TID using GPS observations. TID waves can be identified from the continuous data span of the total electron content (TEC) along the ray path between the GPS satellites and the observing stations. Since the TID is a high frequency and low amplitude signal, it should be properly isolated from the raw TEC observation. In this study, we applied the numerical derivative method, referred to as the numerical third order horizontal 3-point derivative method. The detected TID-like signals can be verified by its array signature under the assumption that the TID induced from a point source tends to propagate with the constant speed. Moreover, the location of the point source can be computed using the array pattern of TID observations from multiple GPS stations. In this study, two UNEs conducted by the U.S. in 1992 and two UNEs conducted by North Korea in 2006 and 2009 were investigated. The propagation speed of the U.S. UNEs was about 573 m/s and 740 m/s, respectively, while the recent North Korean UNEs propagation speed was less than 300 m/s. This result can be explained by the explosion yields and the depth of the UNEs: the depth of the US UNEs were about 0.3 km with the explosion yield of up to 20 kiloton, while the North Korean UNEs were at about 1 km depth with the yield of less than a few kilotons. In addition, we observed that the TID waves from these four UNE events were highly correlative, and distinguished from waveforms due to other types of events, such as an earthquake. As a case study, we selected the recent Tohoku earthquake of 2011, and

  15. Detection of explosive events by monitoring acoustically-induced geomagnetic perturbations

    SciTech Connect

    Lewis, J P; Rock, D R; Shaeffer, D L; Warshaw, S I

    1999-10-07

    The Black Thunder Coal Mine (BTCM) near Gillette, Wyoming was used as a test bed to determine the feasibility of detecting explosion-induced geomagnetic disturbances with ground-based induction magnetometers. Two magnetic observatories were fielded at distances of 50 km and 64 km geomagnetically north from the northernmost edge of BTCM. Each observatory consisted of three separate but mutually orthogonal magnetometers, Global Positioning System (GPS) timing, battery and solar power, a data acquisition and storage system, and a three-axis seismometer. Explosions with yields of 1 to 3 kT of TNT equivalent occur approximately every three weeks at BTCM. We hypothesize that explosion-induced acoustic waves propagate upward and interact collisionally with the ionosphere to produce ionospheric electron density (and concomitant current density) perturbations which act as sources for geomagnetic disturbances. These disturbances propagate through an ionospheric Alfven waveguide that we postulate to be leaky (due to the imperfectly conducting lower ionospheric boundary). Consequently, wave energy may be observed on the ground. We observed transient pulses, known as Q-bursts, with pulse widths about 0.5 s and with spectral energy dominated by the Schumann resonances. These resonances appear to be excited in the earth-ionosphere cavity by Alfven solitons that may have been generated by the explosion-induced acoustic waves reaching the ionospheric E and F regions and that subsequently propagate down through the ionosphere to the atmosphere. In addition, we observe late time (> 800 s) ultra low frequency (ULF) geomagnetic perturbations that appear to originate in the upper F region ({approximately}300 km) and appear to be caused by the explosion-induced acoustic wave interacting with that part of the ionosphere. We suggest that explosion-induced Q-bursts may be discriminated from naturally occurring Q-bursts by association of the former with the late time explosion-induced ULF

  16. Explosives tester

    DOEpatents

    Haas, Jeffrey S [San Ramon, CA; Howard, Douglas E [Livermore, CA; Eckels, Joel D [Livermore, CA; Nunes, Peter J [Danville, CA

    2011-01-11

    An explosives tester that can be used anywhere as a screening tool by non-technical personnel to determine whether a surface contains explosives. First and second explosives detecting reagent holders and dispensers are provided. A heater is provided for receiving the first and second explosives detecting reagent holders and dispensers.

  17. Quantum cascade laser-based screening portal for the detection of explosive precursors

    NASA Astrophysics Data System (ADS)

    Lindley, Ruth; Normand, Erwan; Howieson, Iain; McCulloch, Michael; Black, Paul; Lewis, Colin; Foulger, Brian

    2007-10-01

    In recent years, quantum cascade lasers (QCL) have been proven in robust, high-performance gas analyzers designed for continuous emission monitoring (CEM) in harsh environments. In 2006, Cascade Technologies reported progress towards adapting its patented technology for homeland security applications by publishing initial results on explosive compound detection. This paper presents the performance and results from a QCL-based people screening portal developed during the past year and aimed at the detection of precursors used in the make up of improvised explosive devices (IED). System tests have been carried out on a large number of potential interferents, together with target precursor materials, reinforcing original assumptions that compound fingerprinting can be effectively demonstrated using this technique. Results have shown that an extremely high degree of specificity can be achieved with a sub-second response time. Furthermore, it has been shown that unambiguous precursor signature recognition can be extended to compound mixtures associated with the intermediate stages in the make up of IEDs, whilst maintaining interferent immunity. The portal sensitivity was configured for parts per billion (ppb) detection level thresholds, but is currently being reconfigured for sub-ppb detection. In summary, the results obtained from the QCL based portal indicate that development of a low cost detection system, with enhanced features such as low false positive and high throughput screening of individuals or items, is possible. Development and testing was carried out with the support of the UK government.

  18. Receiver Operating Characteristic Analysis for Detecting Explosives-related Threats

    SciTech Connect

    Oxley, Mark E; Venzin, Alexander M

    2012-11-14

    The Department of Homeland Security (DHS) and the Transportation Security Administration (TSA) are interested in developing a standardized testing procedure for determining the performance of candidate detection systems. This document outlines a potential method for judging detection system performance as well as determining if combining the information from a legacy system with a new system can signicantly improve performance. In this document, performance corresponds to the Neyman-Pearson criterion applied to the Receiver Operating Characteristic (ROC) curves of the detection systems in question. A simulation was developed to investigate how the amount of data provided by the vendor in the form of the ROC curve eects the performance of the combined detection system. Furthermore, the simulation also takes into account the potential eects of correlation and how this information can also impact the performance of the combined system.

  19. Detection of drugs and explosives using neutron computerized tomography and artificial intelligence techniques.

    PubMed

    Ferreira, F J O; Crispim, V R; Silva, A X

    2010-06-01

    In this study the development of a methodology to detect illicit drugs and plastic explosives is described with the objective of being applied in the realm of public security. For this end, non-destructive assay with neutrons was used and the technique applied was the real time neutron radiography together with computerized tomography. The system is endowed with automatic responses based upon the application of an artificial intelligence technique. In previous tests using real samples, the system proved capable of identifying 97% of the inspected materials. Copyright 2010 Elsevier Ltd. All rights reserved.

  20. Associated-particle sealed-tube neutron probe: Detection of explosives, contraband, and nuclear materials

    SciTech Connect

    Rhodes, E.; Dickerman, C.E.

    1996-05-01

    Continued research and development of the APSTNG shows the potential for practical field use of this technology for detection of explosives, contraband, and nuclear materials. The APSTNG (associated-particle sealed-tube generator) inspects the item to be examined using penetrating 14-MeV neutrons generated by the deuterium-tritium reaction inside a compact accelerator tube. An alpha detector built into the sealed tube detects the alpha-particle associated with each neutron emitted in a cone encompassing the volume to be inspected. Penetrating high-energy gamma-rays from the resulting neutron reactions identify specific nuclides inside the volume. Flight-times determined from the detection times of gamma-rays and alpha-particles separate the prompt and delayed gamma-ray spectra and allow a coarse 3-D image to be obtained of nuclides identified in the prompt spectrum. The generator and detectors can be on the same side of the inspected object, on opposite sides, or with intermediate orientations. Thus, spaces behind walls and other confined regions can be inspected. Signals from container walls can be discriminated against using the flight-time technique. No collimators or shielding are required, the neutron generator is relatively small, and commercial-grade electronics are employed. The use of 14-MeV neutrons yields a much higher cross-section for detecting nitrogen than that for systems based on thermal-neutron reactions alone, and the broad range of elements with significant 14-MeV neutron cross-sections extends explosives detection to other elements including low-nitrogen compounds, and allows detection of many other substances. Proof-of-concept experiments have been successfully performed for conventional explosives, chemical warfare agents, cocaine, and fissionable materials.

  1. Photoneutron spectroscopy using monoenergetic gamma rays for bulk explosives detection

    NASA Astrophysics Data System (ADS)

    McFee, J. E.; Faust, A. A.; Pastor, K. A.

    2013-03-01

    To date, the most successful nuclear methods to confirm the presence of bulk explosives have been radiative thermal neutron capture (thermal neutron activation) and prompt radiative emission following inelastic fast neutron scattering (fast neutron analysis). This paper proposes an alternative: photoneutron spectroscopy using monoenergetic gamma rays. If monoenergetic gamma rays whose energies exceed the threshold for neutron production are incident on a given isotope, the emitted neutrons have a spectrum consisting of one or more discrete energies and the spectrum can be used as a fingerprint to identify the isotope. A prototype compact gamma-ray generator is proposed as a suitable source and a commercially available 3He ionization chamber is proposed as a suitable spectrometer. Advantages of the method with respect to the previously mentioned ones may include simpler spectra and low inherent natural neutron background. Its drawbacks include a present lack of suitable commercially available photon sources, induced neutron backgrounds and low detection rates. This paper describes the method, including kinematics, sources, detectors and geometries. Simulations using a modified Geant4 Monte Carlo modelling code are described and results are presented to support feasibility. Further experiments are recommended.

  2. Flow immunosensor detection of explosives and drugs of abuse

    NASA Astrophysics Data System (ADS)

    Kusterbeck, Anne W.; Judd, Linda L.; Yu, Hao; Myles, June; Ligler, Frances S.

    1994-03-01

    An antibody-based biosensor has been developed at the Naval Research Laboratory which is capable of detecting both drugs and explosives present at low levels in an aqueous sample. In the flow immunosensor, antibodies are immobilized onto a solid substrate, allowed to bind a fluorescently labeled signal molecule, placed in a small column and attached to a buffer flow. Upon sample introduction, an amount of the fluorescent signal molecule is released that is proportional to the concentration of applied sample. The response time of the sensor is under a minute, and multiple samples can be analyzed without the need for additional reagents. Quantitative assays are being developed for a variety of compounds, including TNT, DNT, PETN, and cocaine. The laboratory prototype has been used to study how choice of fluorophore, antibody density, and flow rate affect the signal intensity and column lifetime. A self-contained commercial instrument which can analyze up to seven different compounds from a single sample is currently being engineered under a Cooperative Research and Development Agreement.

  3. Detection of Explosives Under Covering Soap Using THz Spectral Dynamics Analysis

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Varentsova, Svetlana A.

    The method of THz spectral dynamics analysis (SDA-method) is used for identification of compound media and detection of their components. We considered the examples simulating the real case of NG and TNB explosives mixed with soap in different ratio - as a sum of two signals, passed through explosive and harmless material. Our investigations showed that spectrograms of the sum of THz pulses widely differ from spectrograms and dynamics of spectral lines for pulse passed through soap. So it is possible to detect the presence of explosive in the mixture with soap even if the amplitude of the pulse from explosive is 20 times less than the amplitude of the signal from soap. Therefore, the method allows detecting and identifying explosive in compound media with high probability and can be very effective for defense and security applications.

  4. Trace detection of explosives and their precursors by surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Almaviva, S.; Botti, S.; Cantarini, L.; Palucci, A.; Puiu, A.; Rufoloni, A.; Landstrom, L.; Romolo, F. S.

    2012-10-01

    Surface Enhanced Raman Spectroscopy measurements on some common military explosives were performed with a table-top micro-Raman system integrated with a Serstech R785 minispectrometer. Serstech R785 is a miniaturised spectrometer suitable for Raman and NIR measurements. Integration of R785 in our table-top system aims to the realization of a portable SERS detector, able to perform in-situ measurements. SERS Spectra were obtained exciting the substance of interest with a 785 nm diode-laser, while these substances were deposited starting from commercial solutions on commercial SERS substrates, to improve the detection sensitivity. The amount of the sampled substance was determined through the analysis of images of the substrate covered with the residue of explosive. In fact, once the solvent is completely evaporated, the residue of explosive was observed to be uniformly distributed on the substrate surface. Images acquired with a Scanning Electron Microscope provided further details of the deposition process showing that a fraction of the active SERS sites are completely covered with the analyte while other sites appear to be empty; from the analysis of the images the sampled quantity was estimated to be about 200 pg. The main Raman features of each substance were clearly identified, the spectral resolution was sufficiently high to clearly distinguish spectra belonging to different substances.

  5. Nuclear-Reaction-Based Radiation Source For Explosives-And SNM-Detection In Massive Cargo

    SciTech Connect

    Brandis, Michal; Dangendorf, Volker; Bromberger, Benjamin; Tittelmeier, Kai; Piel, Christian; Vartsky, David; Bar, Doron; Mardor, Israel; Mor, Ilan; Friedman, Eliahu; Goldberg, Mark B.

    2011-06-01

    An automatic, nuclear-reaction-based, few-view transmission radiography method and system concept is presented, that will simultaneously detect small, operationally-relevant quantities of chemical explosives and special nuclear materials (SNM) in objects up to the size of LD-3 aviation containers. Detection of all threat materials is performed via the {sup 11}B(d,n+{gamma}) reaction on thick, isotopically-enriched targets; SNM are primarily detected via Dual Discrete-Energy Radiography (DDER), using 15.11 MeV and 4.43 MeV {sup 12}C{gamma}-rays, whereas explosives are primarily detected via Fast Neutron Resonance Radiography (FNRR), employing the broad-energy neutron spectra produced in a thick {sup 11}B-target. To achieve a reasonable throughput of {approx}20 containers per hour, ns-pulsed deuteron beam of the order of 0.5 mA intensity at energies of 5-7 MeV is required. As a first step towards optimizing parameters and sensitivities of an operational system, the 0 deg. spectra and yields of both {gamma}-rays and neutrons in this reaction have been measured up to E{sub d} = 6.65 MeV.

  6. An explosive acoustic telemetry system for seabed penetrators

    SciTech Connect

    Hauser, G.C.; Hickerson, J.

    1988-04-01

    This report discusses the design and past applications of an explosive acoustic telemetry system (EATS) for gathering and transmitting data from seabed penetrators. The system was first fielded in 1982 and has since been used to measure penetrator performance on three other occasions. Descriptions are given of the mechanical hardware, system electronics, and software.

  7. Behavioural and genetic evidence for C. elegans' ability to detect volatile chemicals associated with explosives.

    PubMed

    Liao, Chunyan; Gock, Andrew; Michie, Michelle; Morton, Bethany; Anderson, Alisha; Trowell, Stephen

    2010-09-07

    Automated standoff detection and classification of explosives based on their characteristic vapours would be highly desirable. Biologically derived odorant receptors have potential as the explosive recognition element in novel biosensors. Caenorhabditis elegans' genome contains over 1,000 uncharacterised candidate chemosensory receptors. It was not known whether any of these respond to volatile chemicals derived from or associated with explosives. We assayed C. elegans for chemotactic responses to chemical vapours of explosives and compounds associated with explosives. C. elegans failed to respond to many of the explosive materials themselves but showed strong chemotaxis with a number of compounds associated with commercial or homemade explosives. Genetic mutant strains were used to identify the likely neuronal location of a putative receptor responding to cyclohexanone, which is a contaminant of some compounded explosives, and to identify the specific transduction pathway involved. Upper limits on the sensitivity of the nematode were calculated. A sensory adaptation protocol was used to estimate the receptive range of the receptor. The results suggest that C. elegans may be a convenient source of highly sensitive, narrowly tuned receptors to detect a range of explosive-associated volatiles.

  8. Behavioural and Genetic Evidence for C. elegans' Ability to Detect Volatile Chemicals Associated with Explosives

    PubMed Central

    Liao, Chunyan; Gock, Andrew; Michie, Michelle; Morton, Bethany; Anderson, Alisha; Trowell, Stephen

    2010-01-01

    Background Automated standoff detection and classification of explosives based on their characteristic vapours would be highly desirable. Biologically derived odorant receptors have potential as the explosive recognition element in novel biosensors. Caenorhabditis elegans' genome contains over 1,000 uncharacterised candidate chemosensory receptors. It was not known whether any of these respond to volatile chemicals derived from or associated with explosives. Methodology/Principal Findings We assayed C. elegans for chemotactic responses to chemical vapours of explosives and compounds associated with explosives. C. elegans failed to respond to many of the explosive materials themselves but showed strong chemotaxis with a number of compounds associated with commercial or homemade explosives. Genetic mutant strains were used to identify the likely neuronal location of a putative receptor responding to cyclohexanone, which is a contaminant of some compounded explosives, and to identify the specific transduction pathway involved. Upper limits on the sensitivity of the nematode were calculated. A sensory adaptation protocol was used to estimate the receptive range of the receptor. Conclusions/Significance: The results suggest that C. elegans may be a convenient source of highly sensitive, narrowly tuned receptors to detect a range of explosive-associated volatiles. PMID:20830309

  9. Feature Extraction and Selection From the Perspective of Explosive Detection

    SciTech Connect

    Sengupta, S K

    2009-09-01

    Features are extractable measurements from a sample image summarizing the information content in an image and in the process providing an essential tool in image understanding. In particular, they are useful for image classification into pre-defined classes or grouping a set of image samples (also called clustering) into clusters with similar within-cluster characteristics as defined by such features. At the lowest level, features may be the intensity levels of a pixel in an image. The intensity levels of the pixels in an image may be derived from a variety of sources. For example, it can be the temperature measurement (using an infra-red camera) of the area representing the pixel or the X-ray attenuation in a given volume element of a 3-d image or it may even represent the dielectric differential in a given volume element obtained from an MIR image. At a higher level, geometric descriptors of objects of interest in a scene may also be considered as features in the image. Examples of such features are: area, perimeter, aspect ratio and other shape features, or topological features like the number of connected components, the Euler number (the number of connected components less the number of 'holes'), etc. Occupying an intermediate level in the feature hierarchy are texture features which are typically derived from a group of pixels often in a suitably defined neighborhood of a pixel. These texture features are useful not only in classification but also in the segmentation of an image into different objects/regions of interest. At the present state of our investigation, we are engaged in the task of finding a set of features associated with an object under inspection ( typically a piece of luggage or a brief case) that will enable us to detect and characterize an explosive inside, when present. Our tool of inspection is an X-Ray device with provisions for computed tomography (CT) that generate one or more (depending on the number of energy levels used) digitized 3

  10. Explosives trace detection in the process of biometrical fingerprint identification for access control

    NASA Astrophysics Data System (ADS)

    Bertseva, Elena V.; Savin, Andrey V.

    2007-02-01

    A method for trace detection of explosives on the surface of biometric fingerprint scanner is proposed and its sensitivity explored. The method is based on attenuated total reflection mid-infrared spectroscopy. The detection limit is about several microgram and the detectivity increases with the wavelength used for scanning. The advantages of the proposed method include high selectivity and thus low false alarm level, applicability to low vapor pressure explosives and low cost.

  11. Explosives tester with heater

    DOEpatents

    Del Eckels, Joel [Livermore, CA; Nunes, Peter J [Danville, CA; Simpson, Randall L [Livermore, CA; Whipple, Richard E [Livermore, CA; Carter, J Chance [Livermore, CA; Reynolds, John G [San Ramon, CA

    2010-08-10

    An inspection tester system for testing for explosives. The tester includes a body and a swab unit adapted to be removeably connected to the body. At least one reagent holder and dispenser is operatively connected to the body. The reagent holder and dispenser contains an explosives detecting reagent and is positioned to deliver the explosives detecting reagent to the swab unit. A heater is operatively connected to the body and the swab unit is adapted to be operatively connected to the heater.

  12. Line-scan Raman spectroscopy for detection and imaging of explosives traces by a compact Raman spectrometer

    NASA Astrophysics Data System (ADS)

    Malka, Itamar; Bar, Ilana

    2016-02-01

    Measurements of Raman scattering spectra and of Raman maps of particles of explosives and related compounds [potassium nitrate, 2,4-dinitrotoluene (DNT), 2,4,6-trinitrotoluene (TNT) and 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX)] were performed by a homebuilt compact Raman system, functioning with a 532-nm laser beam, focused as a point or line, along with full vertical binning or image readout of an intensified charge-coupled device camera. High specificity and sensitivity were obtained by line-excitation, which allowed fast detection and mapping of explosive particles with a relatively simple system.

  13. A colorimetric receptor combined with a microcantilever sensor for explosive vapor detection

    NASA Astrophysics Data System (ADS)

    Zhu, Weibin; Park, Jung Su; Sessler, Jonathan L.; Gaitas, Angelo

    2011-03-01

    Substantial effort has been devoted to the synthesis of molecular receptors that can function as chemosensors for nitroaromatic explosives. In spite of several advantages, these receptors suffer from low sensitivity and difficulties translating the response into the gas phase. We have combined tetrathiafulvalene-functionalized calix[4]pyrrole, a colorimetric receptor, with a polyimide microcantilever, that includes a mechanical stress sensing element. The resulting system is capable of detecting 10 ppb trinitrobenzene vapor. This represents a 30-fold improvement relative to the receptor in halogenated solvents, suggesting that this approach can provide a solution to translating the chemical response of colorimetric chemosensors into practical devices.

  14. Detection and quantification of explosives and CWAs using a handheld widely tunable quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Deutsch, Erik R.; Haibach, Frederick G.; Mazurenko, Alexander

    2012-06-01

    The requirements for standoff detection of Explosives and CWA/TICs on surfaces in the battlefield are challenging because of the low detection limits. The variety of targets, backgrounds and interferences increase the challenges. Infrared absorption spectroscopy with traditional infrared detection technologies, incandescent sources that offer broad wavelength range but poor spectral intensity, are particularly challenged in standoff applications because most photons are lost to the target, background and the environment. Using a brighter source for active infrared detection e.g. a widely-tunable quantum cascade laser (QCL) source, provides sufficient spectral intensity to achieve the needed sensitivity and selectivity for explosives, CWAs, and TICs on surfaces. Specific detection of 1-10 μg/cm2 is achieved within seconds. CWAs, and TICs in vapor and aerosol form present a different challenge. Vapors and aerosols are present at low concentrations, so long pathlengths are required to achieve the desired sensitivity. The collimated output beam from the QCL simplifies multi-reflection cells for vapor detection while also enabling large standoff distances. Results obtained by the QCL system indicate that <1 ppm for vapors can be achieved with specificity in a measurement time of seconds, and the QCL system was successfully able to detect agents in the presence of interferents. QCLs provide additional capabilities for the dismounted warfighter. Given the relatively low power consumption, small package, and instant-on capability of the QCL, a handheld device can provide field teams with early detection of toxic agents and energetic materials in standoff, vapor, or aerosol form using a single technology and device which makes it attractive compared other technologies.

  15. Increasing the selectivity and sensitivity of gas sensors for the detection of explosives

    NASA Astrophysics Data System (ADS)

    Mallin, Daniel

    Over the past decade, the use of improvised explosive devices (IEDs) has increased, domestically and internationally, highlighting a growing need for a method to quickly and reliably detect explosive devices in both military and civilian environments before the explosive can cause damage. Conventional techniques have been successful in explosive detection, however they typically suffer from enormous costs in capital equipment and maintenance, costs in energy consumption, sampling, operational related expenses, and lack of continuous and real-time monitoring. The goal was thus to produce an inexpensive, portable sensor that continuously monitors the environment, quickly detects the presence of explosive compounds and alerts the user. In 2012, here at URI, a sensor design was proposed for the detection of triacetone triperoxide (TATP). The design entailed a thermodynamic gas sensor that measures the heat of decomposition between trace TATP vapor and a metal oxide catalyst film. The sensor was able to detect TATP vapor at the part per million level (ppm) and showed great promise for eventual commercial use, however, the sensor lacked selectivity. Thus, the specific objective of this work was to take the original sensor design proposed in 2012 and to make several key improvements to advance the sensor towards commercialization. It was demonstrated that a sensor can be engineered to detect TATP and ignore the effects of interferent H2O2 molecules by doping SnO2 films with varying amounts of Pd. Compared with a pure SnO2 catalyst, a SnO2, film doped with 8 wt. % Pd had the highest selectivity between TATP and H2O2. Also, at 12 wt. % Pd, the response to TATP and H2O2 was enhanced, indicating that sensitivity, not only selectivity, can be increased by modifying the composition of the catalyst. An orthogonal detection system was demonstrated. The platform consists of two independent sensing mechanisms, one thermodynamic and one conductometric, which take measurements from

  16. Multi-channeled single chain variable fragment (scFv) based microfluidic device for explosives detection.

    PubMed

    Charles, Paul T; Davis, Jasmine; Adams, André A; Anderson, George P; Liu, Jinny L; Deschamps, Jeffrey R; Kusterbeck, Anne W

    2015-11-01

    The development of explosives detection technologies has increased significantly over the years as environmental and national security agencies implement tighter pollution control measures and methods for improving homeland security. 2, 4, 6-Trinitrotoluene (TNT), known primarily as a component in munitions, has been targeted for both its toxicity and carcinogenic properties that if present at high concentrations can be a detriment to both humans, marine and plant ecosystems. Enabling end users with environmental detection and monitoring systems capable of providing real-time, qualitative and quantitative chemical analysis of these toxic compounds would be extremely beneficial. Reported herein is the development of a multi-channeled microfluidic device immobilized with single chain fragment variable (scFv) recombinant proteins specific for the explosive, TNT. Fluorescence displacement immunoassays performed under constant flow demonstrated trace level sensitivity and specificity for TNT. The utility of three multi-channeled devices immobilized with either (1) scFv recombinant protein, (2) biotinylated-scFv (bt-scFv) and (3) monoclonal anti-TNT (whole IgG molecule) were investigated and compared. Fluorescence dose response curves, crossreactivity measurements and limits of detection (LOD) for TNT were determined. Fluorescence displacement immunoassays for TNT in natural seawater demonstrated detection limits at sub-parts-per-billion levels (0.5 ppb) utilizing the microfluidic device with immobilized bt-scFv. Published by Elsevier B.V.

  17. Emergency escape system protects personnel from explosion and fire

    NASA Technical Reports Server (NTRS)

    Offik, W. G.

    1966-01-01

    Elevator-type emergency escape system evacuates personnel from tall structures, especially when the possibility of explosion or fire exists. The system consists of a spike shaped rescue cabin which descends along a vertical guide cable, penetrates the dome shaped roof of an underground blast shelter and stops in a deceleration bed of granular material.

  18. Detecting Weak Explosions at Local Distances by Fusing Multiple Geophysical Phenomenologies

    SciTech Connect

    Carmichael, Joshua D.; Nemzek, Robert J.; Arrowsmith, Stephen J.; Sentz, Kari

    2015-03-23

    Comprehensive explosion monitoring requires the technical capability to identify certain signatures at low signal strengths. For particularly small, evasively conducted explosions, conventional monitoring methods that use single geophysical phenomenologies may produce marginal or absent detections. To address this challenge, we recorded coincident acoustic, seismic and radio-frequency emissions during the above-ground detonation of ~ 2-12 kg solid charges and assessed how waveform data could be fused to increase explosion-screening capability. Our data provided identifiable explosion signatures that we implemented as template-events in multichannel correlation detectors to search for similar, matching waveforms. We thereby observed that these highly sensitive correlation detectors missed explosive events when applied separately to data streams that were heavily contaminated with noise and signal clutter. By then adding the p-values of these statistics through Fisher’s combined probability test, we correctly identified the explosion signals at thresholds consistent with the false alarm rates of the correlation detectors. This resulting Fisher test thereby provided high-probability detections, zero false alarms, and higher theoretical detection capability. We conclude that inclusion of these fusion methods in routine monitoring operations will likely lower both detection thresholds for small explosions, while reducing false attribution rates.

  19. S-shaped SU-8 optical waveguide immobilized with gold nanoparticles for trace detection of explosives

    NASA Astrophysics Data System (ADS)

    Bharadwaj, Reshma; Tripathi, Rakesh; Prabhakar, Amit; Mukherji, Soumyo

    2013-09-01

    In this study, we report a miniaturized optical sensor for direct detection of vapors of nitro-based explosives using gold nanoparticle (AuNP) coated SU-8 polymer optical waveguides. S-shaped waveguide geometry was chosen due its enhanced evanescent field sensitivity. Light was coupled into the waveguide structure to evanescently excite the localized surface plasmon resonance (LSPR) modes of the immobilized AuNP. The AuNP were functionalized with 4- mercaptobenzoic acid (4-MBA) which acts as the receptor for nitro-based explosives. The AuNP coated SU-8 optical waveguide sensor demonstrated an ability to detect 10 parts per billion (ppb) concentration of explosive analytes.

  20. Application of laser photothermal spectroscopy for standoff detection of trace explosive residues on surfaces

    SciTech Connect

    Skvortsov, L A; Maksimov, E M

    2010-09-10

    Laser photothermal methods of standoff detection of trace explosive residues on surfaces are considered. The analysis is restricted to the most promising methods: photoacoustic spectroscopy, deflection spectroscopy, and IR photothermal imaging of objects under resonant irradiation. Particular attention is paid to the choice of radiation sources and detectors. Comparative analysis of the existing standoff detection methods for explosive particles on the object surface is performed. Prospects of laser photothermal spectroscopy in this field are discussed. (review)

  1. Imaging standoff trace detection of explosives using IR-laser based backscattering

    NASA Astrophysics Data System (ADS)

    Fuchs, F.; Hugger, S.; Jarvis, J.; Yang, Q. K.; Ostendorf, R.; Schilling, Ch.; Bronner, W.; Driad, R.; Aidam, R.; Wagner, J.

    2016-05-01

    We perform active hyperspectral imaging using tunable mid-infrared (MIR) quantum cascade lasers for contactless identification of solid and liquid contaminations on surfaces. By collecting the backscattered laser radiation with a camera, a hyperspectral data cube, containing the spatially resolved spectral information of the scene is obtained. Data is analyzed using appropriate algorithms to find the target substances even on substrates with a priori unknown spectra. Eye-save standoff detection of residues of explosives and precursors over extended distances is demonstrated and the main purpose of our system. Using a MIR EC-QCL with a tuning range from 7.5 μm to 10 μm, detection of a large variety of explosives, e.g. TNT, PETN and RDX and precursor materials such as Ammonium Nitrate could be demonstrated. In a real world scenario stand-off detection over distances of up to 20 m could be successfully performed. This includes measurements in a post blast scenario demonstrating the potential of the technique for forensic investigations.

  2. Fluorescent imprinted polymers for detection of explosive nitro-aromatic compounds

    NASA Astrophysics Data System (ADS)

    Stringer, R. Cody; Gangopadhyay, Shubhra; Grant, Sheila A.

    2009-05-01

    Molecular recognition is an important aspect of any biosensor system. Due to increased stability in a variety of environmental conditions, molecular imprinted polymer (MIP) technology is an attractive alternative to biological-based recognition. This is particularly true in the case of improvised explosive device detection, in which the sensor must be capable of detecting trace amounts of airborne nitroaromatic compounds. In an effort to create a sensor for detection of explosive devices via nitroaromatic vapor, MIPs have been deployed as a molecular recognition tool in a fluorescence-based optical biosensor. These devices are easily scalable to a very small size, and are also robust and durable. To achieve such a sensor scheme, polymer microparticles synthesized using methacrylic acid monomer and imprinted with a 2,4-dinitrotoluene (DNT) template were fabricated. These microparticles were then conjugated with green CdSe/ZnS quantum dots, creating fluorescent MIP microparticles. When exposed to the DNT template, rebinding occurred between the DNT and the imprinted sites of the MIP microparticles. This brings the nitroaromatic DNT into close proximity to the quantum dots, allowing the DNT to accept electrons from the fluorescent species, thereby quenching the fluorescence of the quantum dot. Results indicate that this novel method for synthesizing fluorescent MIPs and their integration into an optical biosensor produced observable fluorescence quenching upon exposure to DNT.

  3. Artificial Intelligence for Explosive Ordnance Disposal System (AI-EOD)

    SciTech Connect

    Madrid, R.; Williams, B.; Holland, J.

    1992-03-01

    Based on a dynamically configurable neural net that learns in a single pass of the training data, this paper describes a system used by the military in the identification of explosive ordnance. Allowing the technician to input incomplete, contradictory, and wrong information, this system combines expert systems and neural nets to provide a state-of-the-art search, retrieval, and image and text management system.

  4. Photoacoustic spectroscopy for trace vapor detection and standoff detection of explosives

    NASA Astrophysics Data System (ADS)

    Holthoff, Ellen L.; Marcus, Logan S.; Pellegrino, Paul M.

    2016-05-01

    The Army is investigating several spectroscopic techniques (e.g., infrared spectroscopy) that could allow for an adaptable sensor platform. Current sensor technologies, although reasonably sized, are geared to more classical chemical threats, and the ability to expand their capabilities to a broader range of emerging threats is uncertain. Recently, photoacoustic spectroscopy (PAS), employed in a sensor format, has shown enormous potential to address these ever-changing threats. PAS is one of the more flexible IR spectroscopy variants, and that flexibility allows for the construction of sensors that are designed for specific tasks. PAS is well suited for trace detection of gaseous and condensed media. Recent research has employed quantum cascade lasers (QCLs) in combination with MEMS-scale photoacoustic cell designs. The continuous tuning capability of QCLs over a broad wavelength range in the mid-infrared spectral region greatly expands the number of compounds that can be identified. We will discuss our continuing evaluation of QCL technology as it matures in relation to our ultimate goal of a universal compact chemical sensor platform. Finally, expanding on our previously reported photoacoustic detection of condensed phase samples, we are investigating standoff photoacoustic chemical detection of these materials. We will discuss the evaluation of a PAS sensor that has been designed around increasing operator safety during detection and identification of explosive materials by performing sensing operations at a standoff distance. We investigate a standoff variant of PAS based upon an interferometric sensor by examining the characteristic absorption spectra of explosive hazards collected at 1 m.

  5. Detection of residues from explosive manipulation by near infrared hyperspectral imaging: a promising forensic tool.

    PubMed

    Fernández de la Ossa, Ma Ángeles; Amigo, José Manuel; García-Ruiz, Carmen

    2014-09-01

    In this study near infrared hyperspectral imaging (NIR-HSI) is used to provide a fast, non-contact, non-invasive and non-destructive method for the analysis of explosive residues on human handprints. Volunteers manipulated individually each of these explosives and after deposited their handprints on plastic sheets. For this purpose, classical explosives, potentially used as part of improvised explosive devices (IEDs) as ammonium nitrate, blackpowder, single- and double-base smokeless gunpowders and dynamite were studied. A partial-least squares discriminant analysis (PLS-DA) model was built to detect and classify the presence of explosive residues in handprints. High levels of sensitivity and specificity for the PLS-DA classification model created to identify ammonium nitrate, blackpowder, single- and double-base smokeless gunpowders and dynamite residues were obtained, allowing the development of a preliminary library and facilitating the direct and in situ detection of explosives by NIR-HSI. Consequently, this technique is showed as a promising forensic tool for the detection of explosive residues and other related samples.

  6. The use of neutrons for the detection of explosives in Civil Security Applications

    SciTech Connect

    Pesente, S.; Fabris, D.; Lunardon, M.; Moretto, S.; Nebbia, G.; Viesti, G.

    2007-02-12

    The search for hidden explosives has been simulated in laboratory conditions by using our Tagged Neutron Inspection System (TNIS). Applications of the TNIS concept to Civil Security problems are discussed in the light of our projects for cargo container inspections. Moreover, neutron attenuation and scattering can be used to search in real time for large quantity of explosive hidden in vehicles.

  7. Detection of Explosives Using Differential Laser-Induced Perturbation Spectroscopy with a Raman-based Probe.

    PubMed

    Oztekin, Erman K; Burton, Dallas J; Hahn, David W

    2016-04-01

    Explosives detection is carried out with a novel spectral analysis technique referred to as differential laser-induced perturbation spectroscopy (DLIPS) on thin films of TNT, RDX, HMX, and PETN. The utility of Raman spectroscopy for detection of explosives is enhanced by inducing deep ultraviolet laser perturbation on molecular structures in combination with a differential Raman sensing scheme. Principal components analysis (PCA) is used to quantify the DLIPS method as benchmarked against a traditional Raman scattering probe, and the related photo-induced effects on the molecular structure of the targeted explosives are discussed in detail. Finally, unique detection is observed with TNT samples deposited on commonly available background substrates of nylon and polyester. Overall, the data support DLIPS as a noninvasive method that is promising for screening explosives in real-world environments and backgrounds. © The Author(s) 2016.

  8. Atmospheric Pressure Chemical Ionization Sources Used in The Detection of Explosives by Ion Mobility Spectrometry

    SciTech Connect

    Waltman, Melanie J.

    2010-05-01

    Explosives detection is a necessary and wide spread field of research. From large shipping containers to airline luggage, numerous items are tested for explosives every day. In the area of trace explosives detection, ion mobility spectrometry (IMS) is the technique employed most often because it is a quick, simple, and accurate way to test many items in a short amount of time. Detection by IMS is based on the difference in drift times of product ions through the drift region of an IMS instrument. The product ions are created when the explosive compounds, introduced to the instrument, are chemically ionized through interactions with the reactant ions. The identity of the reactant ions determines the outcomes of the ionization process. This research investigated the reactant ions created by various ionization sources and looked into ways to manipulate the chemistry occurring in the sources.

  9. Raman detection of improvised explosive device (IED) material fabricated using drop-on-demand inkjet technology on several real world surfaces

    NASA Astrophysics Data System (ADS)

    Farrell, Mikella E.; Holthoff, Ellen L.; Pellegrino, Paul M.

    2015-05-01

    The requirement to detect hazardous materials (i.e., chemical, biological, and explosive) on a host of materials has led to the development of hazard detection systems. These new technologies and their capabilities could have immediate uses for the US military, national security agencies, and environmental response teams in efforts to keep people secure and safe. In particular, due to the increasing use by terrorists, the detection of common explosives and improvised explosive device (IED) materials have motivated research efforts toward detecting trace (i.e., particle level) quantities on multiple commonly encountered surfaces (e.g., textiles, metals, plastics, natural products, and even people). Non-destructive detection techniques can detect trace quantities of explosive materials; however, it can be challenging in the presence of a complex chemical background. One spectroscopic technique gaining increased attention for detection is Raman. One popular explosive precursor material is ammonium nitrate (AN). The material AN has many agricultural applications, however it can also be used in the fabrication of IEDs or homemade explosives (HMEs). In this paper, known amounts of AN will be deposited using an inkjet printer into several different common material surfaces (e.g., wood, human hair, textiles, metals, plastics). The materials are characterized with microscope images and by collecting Raman spectral data. In this report the detection and identification of AN will be demonstrated.

  10. Remote explosive and chemical agent detection using broadly tunable mid-infrared external cavity quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Rayner, Timothy; Weida, Miles; Pushkarsky, Michael; Day, Timothy

    2007-04-01

    Terrorists both with IEDs and suicide bombers are targeting civilian infrastructures such as transportation systems. Although explosive detection technologies exist and are used effectively in aviation, these technologies do not lend themselves well to protecting open architecture soft targets, as they are focused on a checkpoint form factor that limits throughput. However, remote detection of explosives and other chemicals would enable these kinds of targets to be protected without interrupting the flow of commerce. Tunable mid-IR laser technology offers the opportunity to detect explosives and other chemicals remotely and quickly. Most chemical compounds, including explosives, have their fundamental vibrational modes in the mid-infrared region (3 to 15μm). There are a variety of techniques that focus on examining interactions that have proven effective in the laboratory but could never work in the field due to complexity, size, reliability and cost. Daylight Solutions has solved these problems by integrating quantum cascade gain media into external tunable cavities. This has resulted in miniaturized, broadly tunable mid-IR laser sources. The laser sources have a capability to tune to +/- 5% of their center wavelength, which means they can sweep through an entire absorption spectrum to ensure very good detection and false alarm performance compared with fixed wavelength devices. These devices are also highly portable, operate at room temperature, and generate 10's to 100's of mW in optical power, in pulsed and continuous wave configurations. Daylight Solutions is in the process of developing a variety of standoff explosive and chemical weapon detection systems using this technology.

  11. Enabling Explosives and Contraband Detection with Neutron Resonant Attenuation. Year 1 of 3 Summary

    SciTech Connect

    Sweany, Melinda

    2015-10-01

    Material Identification by Resonant Attenuation is a technique that measures the energy-dependent attenuation of 1-10 MeV neutrons as they pass through a sample. Elemental information is determined from the neutron absorption resonances unique to each element. With sufficient energy resolution, these resonances can be used to categorize a wide range of materials, serving as a powerful discrimination technique between explosives, contraband, and other materials. Our proposed system is unique in that it simultaneously down-scatters and time tags neutrons in scintillator detectors oriented between a d-T generator and sample. This allows not only for energy measurements without pulsed neutron beams, but for sample interrogation over a large range of relevant energies, vastly improving scan times. Our system’s core advantage is a potential breakthrough ability to provide detection discrimination of threat materials by their elemental composition (e.g. water vs. hydrogen peroxide) without opening the container. However, several technical and computational challenges associated with this technique have yet to be addressed. There are several open questions: what is the sensitivity to different materials, what scan times are necessary, what are the sources of background, how do each of these scale as the detector system is made larger, and how can the system be integrated into existing scanning technology to close current detection gaps? In order to prove the applicability of this technology, we will develop a validated model to optimize the design and characterize the uncertainties in the measurement, and then test the system in a real-world scenario. This project seeks to perform R&D and laboratory tests that demonstrate proof of concept (TRL 3) to establishing an integrated system and evaluating its performance (TRL 4) through both laboratory tests and a validated detector model. The validated model will allow us to explore our technology’s benefits to explosive

  12. Training and deployment of honeybees to detect explosives and other agents of harm

    NASA Astrophysics Data System (ADS)

    Rodacy, Philip J.; Bender, Susan; Bromenshenk, Jerry; Henderson, Colin; Bender, Gary

    2002-08-01

    Sandia National Laboratories (SNL) has been collaborating with the University of Montana's (UM) engineered honeybee colony research under DARPA's Controlled Biological and Biomimetric Systems (CBBS) program. Prior work has shown that the monitoring of contaminants that are returned to a hive by honeybees (Apis mellifera) provides a rapid, inexpensive method to assess chemical distributions and environmental impacts. Members from a single colony make many tens of thousands of foraging trips per day over areas as large as 2 km2. During these foraging trips, the insects are in direct contact with most environmental media (air, water, plants, and soil) and, in the process, encounter contaminants in gaseous, liquid and particulate form. These contaminants are carried back to the hive where analysis can be conveniently conducted. Three decades of work by UM and other investigators has demonstrated that honeybees can effectively and rapidly screen large areas for the presence of a wide array of chemical contaminants and for the effects of exposures to these chemicals. Recently, UM has been exploring how bee-based environmental measurements can be used to quantify risks to humans or ecosystems. The current DARPA program extends this work to the training of honeybees to actively search for contaminants such as the explosive residue being released by buried landmines. UM developed the methods to train bees to detect explosives and chemical agent surrogates. Sandia provided the explosives expertise, test facilities, electronics support, and state-of-the-art analytical instrumentation. We will present an overview of the training procedures, test parameters employed, and a summary of the results of field trials that were performed in Montana and at DARPA field trials in San Antonio, TX. Data showing the detection limits of the insects will be included.

  13. Instant detection and identification of concealed explosive-related compounds: Induced Stokes Raman versus infrared.

    PubMed

    Elbasuney, Sherif; El-Sherif, Ashraf F

    2017-01-01

    The instant detection of explosives and explosive-related compounds has become an urgent priority in recent years for homeland security and counter-terrorism applications. Modern techniques should offer enhancement in selectivity, sensitivity, and standoff distances. Miniaturisation, portability, and field-ruggedisation are crucial requirements. This study reports on instant and standoff identification of concealed explosive-related compounds using customized Raman technique. Stokes Raman spectra of common explosive-related compounds were generated and spectrally resolved to create characteristic finger print spectra. The scattered Raman emissions over the band 400:2000cm(-1) were compared to infrared absorption using FTIR. It has been demonstrated that the two vibrational spectroscopic techniques were opposite and completing each other. Molecular vibrations with strong absorption in infrared (those involve strong change in dipole moments) induced weak signals in Raman and vice versa. The tailored Raman offered instant detection, high sensitivity, and standoff detection capabilities. Raman demonstrated characteristic fingerprint spectra with stable baseline and sharp intense peaks. Complete correlations of absorption/scattered signals to certain molecular vibrations were conducted to generate an entire spectroscopic profile of explosive-related compounds. This manuscript shades the light on Raman as one of the prevailing technologies for instantaneous detection of explosive-related compounds. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Effects of oral administration of metronidazole and doxycycline on olfactory capabilities of explosives detection dogs.

    PubMed

    Jenkins, Eileen K; Lee-Fowler, Tekla M; Angle, T Craig; Behrend, Ellen N; Moore, George E

    2016-08-01

    OBJECTIVE To determine effects of oral administration of metronidazole or doxycycline on olfactory function in explosives detection (ED) dogs. ANIMALS 18 ED dogs. PROCEDURES Metronidazole was administered (25 mg/kg, PO, q 12 h for 10 days); the day prior to drug administration was designated day 0. Odor detection threshold was measured with a standard scent wheel and 3 explosives (ammonium nitrate, trinitrotoluene, and smokeless powder; weight, 1 to 500 mg) on days 0, 5, and 10. Lowest repeatable weight detected was recorded as the detection threshold. There was a 10-day washout period, and doxycycline was administered (5 mg/kg, PO, q 12 h for 10 days) and the testing protocol repeated. Degradation changes in the detection threshold for dogs were assessed. RESULTS Metronidazole administration resulted in degradation of the detection threshold for 2 of 3 explosives (ammonium nitrate and trinitrotoluene). Nine of 18 dogs had a degradation of performance in response to 1 or more explosives (5 dogs had degradation on day 5 or 10 and 4 dogs had degradation on both days 5 and 10). There was no significant degradation during doxycycline administration. CONCLUSIONS AND CLINICAL RELEVANCE Degradation in the ability to detect odors of explosives during metronidazole administration at 25 mg/kg, PO, every 12 hours, indicated a potential risk for use of this drug in ED dogs. Additional studies will be needed to determine whether lower doses would have the same effect. Doxycycline administered at the tested dose appeared to be safe for use in ED dogs.

  15. Remote chemical biological and explosive agent detection using a robot-based Raman detector

    NASA Astrophysics Data System (ADS)

    Gardner, Charles W.; Wentworth, Rachel; Treado, Patrick J.; Batavia, Parag; Gilbert, Gary

    2008-04-01

    Current practice for the detection of chemical, biological and explosive (CBE) agent contamination on environmental surfaces requires a human to don protective gear, manually take a sample and then package it for subsequent laboratory analysis. Ground robotics now provides an operator-safe way to make these critical measurements. We describe the development of a robot-deployed surface detection system for CBE agents that does not require the use of antibodies or DNA primers. The detector is based on Raman spectroscopy, a reagentless technique that has the ability to simultaneously identify multiple chemical and biological hazards. Preliminary testing showed the ability to identify CBE simulants in 10 minutes or less. In an operator-blind study, this detector was able to correctly identify the presence of trace explosive on weathered automobile body panels. This detector was successfully integrated on a highly agile robot platform capable of both high speed and rough terrain operation. The detector is mounted to the end of five-axis arm that allows precise interrogation of the environmental surfaces. The robot, arm and Raman detector are JAUS compliant, and are controlled via a radio link from a single operator control unit. Results from the integration testing and from limited field trials are presented.

  16. Explosive ordnance detection in land and water environments with solid phase extraction/ion mobility spectrometry

    NASA Astrophysics Data System (ADS)

    Chambers, William B.; Phelan, James M.; Rodacy, Philip J.; Reber, Steven; Woodfin, Ronald L.

    1999-08-01

    The qualitative and quantitative determination of nitroaromatic compounds such as trinitrotoluene (TNT) and dinitrotoluene (DNT) in water and soil has applications to environmental remediation and the detection of buried military ordnance. Recent results of laboratory and field test have shown that trace level concentrations of these compounds can be detected in water, soil, and solid gas samples taken from the vicinity of submerged or buried ordnance using specialized sampling and signal enhancement techniques. Solid phase micro-extraction methods have been combined with Ion Mobility Spectroscopy to provide rapid, sub-parts-per-billion analysis of these compounds. In this paper, we will describe the gas. These sampling systems, when combined with field-portable IMS, are being developed as a means of classifying buried or submerged objects as explosive ordnance.

  17. Portable flow immunosensor for detecting drugs and explosives

    NASA Astrophysics Data System (ADS)

    Kusterbeck, Anne W.; Gauger, Paul R.; Charles, Paul T.

    1997-02-01

    To assist in airport surveillance efforts, a biosensor based on antibody recognition of individual explosives and drugs has been developed at the Naval Research Laboratory. Analysis of samples containing ng/mL levels of the material are completed in under one minute. Immunoassays for the explosives and the five major drugs of abuse are currently available. The intrinsic nature of antigen-antibody binding also provides the unit with an inherently high degree of selectivity. A portable version of the biosensor that can be run by non-technical personnel is also being engineered. The device, including pumps and fluorometer, will be housed on a modified PCMCIA cartridge fitted into a laptop computer. To run assays, a disposable coupon containing the antibody/fluorescent-antigen complex is inserted into the unit and samples are introduced via a sampling port. Results can be viewed in real time or stored on the computer for later data retrieval and analysis.

  18. Bomb swab: Can trace explosive particle sampling and detection be improved?

    PubMed

    Fisher, Danny; Zach, Raya; Matana, Yossef; Elia, Paz; Shustack, Shiran; Sharon, Yarden; Zeiri, Yehuda

    2017-11-01

    The marked increase in international terror in recent years requires the development of highly efficient methods to detect trace amounts of explosives at airports, border crossings and check points. The preferred analytical method worldwide is the ion mobility spectrometry (IMS) that is capable of detecting most explosives at the nano-gram level. Sample collection for the IMS analysis is based on swabbing of a passenger's belongings to collect possible explosive residues. The present study examines a wide range of issues related to swab-based particle collection and analysis, in the hope of gaining deeper understanding into this technique that will serve to improve the detection process. The adhesion of explosive particles to three typical materials, plastic, metal and glass, were measured using atomic force microscopy (AFM). We found that a strong contribution of capillary forces to adhesion on glass and metal surfaces renders these substrates more promising materials upon which to find and collect explosive residues. The adhesion of explosives to different swipe materials was also examined. Here we found that Muslin, Nomex(®) and polyamide membrane surfaces are the most promising materials for use as swipes. Subsequently, the efficiency of multiple swipe use - for collecting explosive residues from a glass surface using Muslin, Nomex(®) and Teflon™ swipes - was examined. The study suggests that swipes used in about 5-10 "sampling and analysis cycles" have higher efficiency as compared to new unused swipes. The reason for this behavior was found to be related to the increased roughness of the swipe surface following a few swab measurements. Lastly, GC-MS analysis was employed to examine the nature of contaminants collected by the three types of swipe. The relative amounts of different contaminants are reported. The existence and interference of these contaminants have to be considered in relation to the detection efficiency of the various explosives by the IMS

  19. Functionalized CdSe/ZnS QDs for the detection of nitroaromatic or RDX explosives.

    PubMed

    Freeman, Ronit; Finder, Tali; Bahshi, Lily; Gill, Ron; Willner, Itamar

    2012-12-18

    Chemically modified CdSe/ZnS quantum dots (QDs) are used as fluorescent probes for the analysis of explosives, and specifically, the detection of trinitrotoluene (TNT) or trinitrotriazine (RDX). The QDs are functionalized with electron-donating ligands that bind nitro-containing explosives, exhibiting electron-acceptor properties, to the QD surface, via supramolecular donor-acceptor interactions leading to the quenching of the luminescence of the QDs.

  20. The analysis of high explosives by liquid chromatography/electrospray ionization mass spectrometry: multiplexed detection of negative ion adducts.

    PubMed

    Mathis, John A; McCord, Bruce R

    2005-01-01

    The negative ion electrospray ionization mass spectrometric (ESI-MS) detection of adducts of high explosives with chloride, formate, acetate, and nitrate was used to demonstrate the gas-phase interaction of neutral explosives with these anions. The relative intensities of the adduct species were determined to compare the competitive formation of the selected high explosives and anions. The relative stability of the adduct species varies, yielding preferential formation of certain anionic adducts with different high explosives. To exploit this effect, an isocratic high-performance liquid chromatography (HPLC)/ESI-MS method was developed and used for the simultaneous analysis of high explosives using two different techniques for the addition of the anionic additives; pre- and post-column. The results show that the pre-column approach provides similar results with improved selectivity for specific explosives. By detecting characteristic adduct species for each explosive, this method provides a qualitative and quantitative approach for the analysis and identification of high explosives.

  1. Latent fingerprint and trace explosives detection by photoluminescence and time-resolved imaging

    NASA Astrophysics Data System (ADS)

    Bouldin, Kimberly Kay

    Latent fingerprint detection by photoluminescence is a well-developed field. Many development techniques exist and are currently being employed in forensic laboratories to detect fingerprints by making them luminescent. However, in forensic science, time-resolved imaging techniques, designed to suppress background fluorescence that interferes with fingerprint detectability, are to date not used outside of the research laboratory, and the chemistry necessary to use time-resolved imaging for fingerprint detection is somewhat limited. For this reason, the first section of this dissertation deals with fingerprint detection methods that have direct application to time-resolved imaging techniques. Trace explosive detection field methods based on chemical reactions have until recently utilized only colorimetric products. To increase the sensitivity of such detection, a field explosive test kit which produces a product that is both colorimetric and luminescent is studied. Detection sensitivity can be gained by taking advantage of the luminescence of these products, something that has not been done to date. When the appropriate chemistry is chosen for explosive detection, time-resolved imaging techniques may again be applicable. This dissertation thus looks at possibilities of taking trace explosives detection to this next level.

  2. Trace Detection of RDX, HMX and PETN Explosives Using a Fluorescence Spot Sensor.

    PubMed

    Wang, Chen; Huang, Helin; Bunes, Benjamin R; Wu, Na; Xu, Miao; Yang, Xiaomei; Yu, Li; Zang, Ling

    2016-05-05

    1,3,5-trinitroperhydro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), and pentaerythritol tetranitrate (PETN), the major components in plastic explosives, pose a significant threat to public safety. A quick, sensitive, and low-cost detection method for these non-volatile explosives is eagerly demanded. Here we present a fluo-spot approach, which can be employed for in situ detection of trace amount of explosives. The sensor molecule is a charge-transfer fluorophore, DCM, which is strongly fluorescent in its pristine state, but non-fluorescent after the quick reaction with NO2· (or NO2(+)) generated from the UV photolysis of RDX, HMX (or PETN). When fabricated within silica gel TLC plate, the fluo-spot sensor features high sensitivity owing to the large surface area and porous structure of the substrate. The sensor reaction mechanism was verified by various experimental characterizations, including chromatography, UV-Vis absorption and fluorescence spectroscopy, MS and (1)H NMR spectrometry. The fluo-spot also demonstrated high selectivity towards RDX, HMX and PETN, as no significant fluorescence quenching was observed for other chemical compounds including common nitro-aromatic explosives and inorganic oxidative compounds. The DCM sensor can also be used as an economical spray kit to directly spot the explosives by naked eyes, implying great potential for quick, low-cost trace explosives detection.

  3. Laser-based standoff detection of surface-bound explosive chemicals

    NASA Astrophysics Data System (ADS)

    Huestis, David L.; Smith, Gregory P.; Oser, Harald

    2010-04-01

    Avoiding or minimizing potential damage from improvised explosive devices (IEDs) such as suicide, roadside, or vehicle bombs requires that the explosive device be detected and neutralized outside its effective blast radius. Only a few seconds may be available to both identify the device as hazardous and implement a response. As discussed in a study by the National Research Council, current technology is still far from capable of meeting these objectives. Conventional nitrocarbon explosive chemicals have very low vapor pressures, and any vapors are easily dispersed in air. Many pointdetection approaches rely on collecting trace solid residues from dust particles or surfaces. Practical approaches for standoff detection are yet to be developed. For the past 5 years, SRI International has been working toward development of a novel scheme for standoff detection of explosive chemicals that uses infrared (IR) laser evaporation of surfacebound explosive followed by ultraviolet (UV) laser photofragmentation of the explosive chemical vapor, and then UV laser-induced fluorescence (LIF) of nitric oxide. This method offers the potential of long standoff range (up to 100 m or more), high sensitivity (vaporized solid), simplicity (no spectrometer or library of reference spectra), and selectivity (only nitrocompounds).

  4. Trace Detection of RDX, HMX and PETN Explosives Using a Fluorescence Spot Sensor

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Huang, Helin; Bunes, Benjamin R.; Wu, Na; Xu, Miao; Yang, Xiaomei; Yu, Li; Zang, Ling

    2016-05-01

    1,3,5-trinitroperhydro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), and pentaerythritol tetranitrate (PETN), the major components in plastic explosives, pose a significant threat to public safety. A quick, sensitive, and low-cost detection method for these non-volatile explosives is eagerly demanded. Here we present a fluo-spot approach, which can be employed for in situ detection of trace amount of explosives. The sensor molecule is a charge-transfer fluorophore, DCM, which is strongly fluorescent in its pristine state, but non-fluorescent after the quick reaction with NO2· (or NO2+) generated from the UV photolysis of RDX, HMX (or PETN). When fabricated within silica gel TLC plate, the fluo-spot sensor features high sensitivity owing to the large surface area and porous structure of the substrate. The sensor reaction mechanism was verified by various experimental characterizations, including chromatography, UV-Vis absorption and fluorescence spectroscopy, MS and 1H NMR spectrometry. The fluo-spot also demonstrated high selectivity towards RDX, HMX and PETN, as no significant fluorescence quenching was observed for other chemical compounds including common nitro-aromatic explosives and inorganic oxidative compounds. The DCM sensor can also be used as an economical spray kit to directly spot the explosives by naked eyes, implying great potential for quick, low-cost trace explosives detection.

  5. Trace Detection of RDX, HMX and PETN Explosives Using a Fluorescence Spot Sensor

    PubMed Central

    Wang, Chen; Huang, Helin; Bunes, Benjamin R.; Wu, Na; Xu, Miao; Yang, Xiaomei; Yu, Li; Zang, Ling

    2016-01-01

    1,3,5-trinitroperhydro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), and pentaerythritol tetranitrate (PETN), the major components in plastic explosives, pose a significant threat to public safety. A quick, sensitive, and low-cost detection method for these non-volatile explosives is eagerly demanded. Here we present a fluo-spot approach, which can be employed for in situ detection of trace amount of explosives. The sensor molecule is a charge-transfer fluorophore, DCM, which is strongly fluorescent in its pristine state, but non-fluorescent after the quick reaction with NO2· (or NO2+) generated from the UV photolysis of RDX, HMX (or PETN). When fabricated within silica gel TLC plate, the fluo-spot sensor features high sensitivity owing to the large surface area and porous structure of the substrate. The sensor reaction mechanism was verified by various experimental characterizations, including chromatography, UV-Vis absorption and fluorescence spectroscopy, MS and 1H NMR spectrometry. The fluo-spot also demonstrated high selectivity towards RDX, HMX and PETN, as no significant fluorescence quenching was observed for other chemical compounds including common nitro-aromatic explosives and inorganic oxidative compounds. The DCM sensor can also be used as an economical spray kit to directly spot the explosives by naked eyes, implying great potential for quick, low-cost trace explosives detection. PMID:27146290

  6. Field Gas Chromatography/Thermionic Detector System for On-Site Determination of Explosives in Soils

    DTIC Science & Technology

    2001-05-01

    are the most frequently detected nitroaromatic and nitroamine compounds in soil samples taken for characterization of explosives residues (Walsh et...field trials the explosives analytes of concern included both nitroaromatics and nitramine explosives . The operating parameters for the analysis of both...which had used Method 8330 for sample preparation and analysis . How- ever, other explosives residues were believed to be present as well. At this

  7. Unambiguous detection of nitrated explosive vapours by fluorescence quenching of dendrimer films

    NASA Astrophysics Data System (ADS)

    Geng, Yan; Ali, Mohammad A.; Clulow, Andrew J.; Fan, Shengqiang; Burn, Paul L.; Gentle, Ian R.; Meredith, Paul; Shaw, Paul E.

    2015-09-01

    Unambiguous and selective standoff (non-contact) infield detection of nitro-containing explosives and taggants is an important goal but difficult to achieve with standard analytical techniques. Oxidative fluorescence quenching is emerging as a high sensitivity method for detecting such materials but is prone to false positives--everyday items such as perfumes elicit similar responses. Here we report thin films of light-emitting dendrimers that detect vapours of explosives and taggants selectively--fluorescence quenching is not observed for a range of common interferents. Using a combination of neutron reflectometry, quartz crystal microbalance and photophysical measurements we show that the origin of the selectivity is primarily electronic and not the diffusion kinetics of the analyte or its distribution in the film. The results are a major advance in the development of sensing materials for the standoff detection of nitro-based explosive vapours, and deliver significant insights into the physical processes that govern the sensing efficacy.

  8. Unambiguous detection of nitrated explosive vapours by fluorescence quenching of dendrimer films

    PubMed Central

    Geng, Yan; Ali, Mohammad A.; Clulow, Andrew J.; Fan, Shengqiang; Burn, Paul L.; Gentle, Ian R.; Meredith, Paul; Shaw, Paul E.

    2015-01-01

    Unambiguous and selective standoff (non-contact) infield detection of nitro-containing explosives and taggants is an important goal but difficult to achieve with standard analytical techniques. Oxidative fluorescence quenching is emerging as a high sensitivity method for detecting such materials but is prone to false positives—everyday items such as perfumes elicit similar responses. Here we report thin films of light-emitting dendrimers that detect vapours of explosives and taggants selectively—fluorescence quenching is not observed for a range of common interferents. Using a combination of neutron reflectometry, quartz crystal microbalance and photophysical measurements we show that the origin of the selectivity is primarily electronic and not the diffusion kinetics of the analyte or its distribution in the film. The results are a major advance in the development of sensing materials for the standoff detection of nitro-based explosive vapours, and deliver significant insights into the physical processes that govern the sensing efficacy. PMID:26370931

  9. An Explosion in Micro-Based Systems.

    ERIC Educational Resources Information Center

    Matthews, Joseph R.

    1991-01-01

    Discusses some of the factors that librarians should consider when planning to automate their libraries. These factors include vendor and systems selection; equipment; support; additional costs; and time. Seven tips to avoid common automation pitfalls are also given. (MAB)

  10. Remote detection of buried explosives by fluorescent and bioluminescent microbial sensors (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Belkin, Shimshon; Yagur-Kroll, Sharon; Zohar, Cheinat; Rabinovitz, Zahi; Nussinovitch, Amos; Kabessa, Yossi; Agranat, Aharon J.

    2017-06-01

    Current landmine detection methodologies are not much different in principle from those employed 75 years ago, in that they require actual presence in the minefield, with obvious risks to personnel and equipment. Other limitations include an extremely large ratio of false positives, as well as a very limited ability to detect non-metallic landmines. In this lecture a microbial-based solution for the remote detection of buried landmines described. The small size requirements, rapid responses and sensing versatility of bacterial bioreporters allow their integration into diverse types of devices, for laboratory as well as field applications. The relative ease by which molecular sensing and reporting elements can be fused together to generate dose-dependent quantifiable physical (luminescent, fluorescent, colorimetric, electrochemical) responses to pre-determined conditions allows the construction of diverse classes of sensors. Over the last two decades we and others have employed this principle to design and construct microbial bioreporter strains for the sensitive detection of (a) specific chemicals of environmental concern (heavy metals, halogenated organics etc.) or (b) their deleterious biological effects on living systems (such as toxicity or genotoxicity). In many of these cases, additional molecular manipulations beyond the initial sensor-reporter fusion may be highly beneficial for enhancing the performance of the engineered sensor systems. This presentation highlights several of the approaches we have adopted over the years to achieve this aim, while focusing on the application of live cell microbeads for the remote detection of buried landmines and other explosive devices.

  11. Novel laser induced photoacoustic spectroscopy for instantaneous trace detection of explosive materials.

    PubMed

    El-Sharkawy, Yasser H; Elbasuney, Sherif

    2017-08-01

    Laser photoacoustic spectroscopy (LPAS) is an attractive technology in terms of simplicity, ruggedness, and overall sensitivity; it detects the time dependent heat generated (thermo-elastic effect) in the target via interaction with pulsed optical radiation. This study reports on novel LPAS technique that offers instant and standoff detection capabilities of trace explosives. Over the current study, light is generated using pulsed Q-switched Nd:YAG laser; the generated photoacoustic response in stimulated explosive material offers signature values that depend on the optical, thermal, and acoustical properties. The generated acoustic waves were captured using piezoelectric transducer as well as novel customized optical sensor with remotely laser interferometer probe. A digital signal processing algorithm was employed to identify explosive material signatures via calculation of characteristic optical properties (absorption coefficient), sound velocity, and frequency response of the generated photoacoustic signal. Customized LPAS technique was employed for instantaneous trace detection of three main different high explosive materials including TNT, RDX, and HMX. The main outcome of this study is that the novel customized optical sensor signals were validated with traditional piezoelectric transducer. Furthermore, the customized optical sensor offered standoff detection capabilities (10cm), fast response, high sensitivity, and enhanced signal to noise ratio. This manuscript shaded the light on the instant detection of trace explosive materials from significant standoffs using novel customized LPAS technique. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Trace Level Detection of Explosives in Solution Using Leidenfrost Phenomenon Assisted Thermal Desorption Ambient Mass Spectrometry

    PubMed Central

    Saha, Subhrakanti; Mandal, Mridul Kanti; Chen, Lee Chuin; Ninomiya, Satoshi; Shida, Yasuo; Hiraoka, Kenzo

    2013-01-01

    The present paper demonstrates the detection of explosives in solution using thermal desorption technique at a temperature higher than Leidenfrost temperature of the solvent in combination with low temperature plasma (LTP) ionization. Leidenfrost temperature of a solvent is the temperature above which the solvent droplet starts levitation instead of splashing when placed on a hot metallic surface. During this desorption process, slow and gentle solvent evaporation takes place, which leads to the pre-concentration of less-volatile explosive molecules in the droplet and the explosive molecules are released at the last moment of droplet evaporation. The limits of detection for explosives studied by using this thermal desorption LTP ionization method varied in a range of 1 to 10 parts per billion (ppb) using a droplet volume of 20 μL (absolute sample amount 90–630 fmol). As LTP ionization method was applied and ion–molecule reactions took place in ambient atmosphere, various ion–molecule adduct species like [M+NO2]−, [M+NO3]−, [M+HCO3]−, [M+HCO4]− were generated together with [M−H]− peak. Each peak was unambiguously identified using ‘Exactive Orbitrap’ mass spectrometer in negative ionization mode within 3 ppm deviation compared to its exact mass. This newly developed technique was successfully applied to detect four explosives contained in the pond water and soil sample with minor sample pre-treatment and the explosives were detected with ppb levels. The present method is simple, rapid and can detect trace levels of explosives with high specificity from solutions. PMID:24349927

  13. Trace level detection of explosives in solution using leidenfrost phenomenon assisted thermal desorption ambient mass spectrometry.

    PubMed

    Saha, Subhrakanti; Mandal, Mridul Kanti; Chen, Lee Chuin; Ninomiya, Satoshi; Shida, Yasuo; Hiraoka, Kenzo

    2013-01-01

    The present paper demonstrates the detection of explosives in solution using thermal desorption technique at a temperature higher than Leidenfrost temperature of the solvent in combination with low temperature plasma (LTP) ionization. Leidenfrost temperature of a solvent is the temperature above which the solvent droplet starts levitation instead of splashing when placed on a hot metallic surface. During this desorption process, slow and gentle solvent evaporation takes place, which leads to the pre-concentration of less-volatile explosive molecules in the droplet and the explosive molecules are released at the last moment of droplet evaporation. The limits of detection for explosives studied by using this thermal desorption LTP ionization method varied in a range of 1 to 10 parts per billion (ppb) using a droplet volume of 20 μL (absolute sample amount 90-630 fmol). As LTP ionization method was applied and ion-molecule reactions took place in ambient atmosphere, various ion-molecule adduct species like [M+NO2](-), [M+NO3](-), [M+HCO3](-), [M+HCO4](-) were generated together with [M-H](-) peak. Each peak was unambiguously identified using 'Exactive Orbitrap' mass spectrometer in negative ionization mode within 3 ppm deviation compared to its exact mass. This newly developed technique was successfully applied to detect four explosives contained in the pond water and soil sample with minor sample pre-treatment and the explosives were detected with ppb levels. The present method is simple, rapid and can detect trace levels of explosives with high specificity from solutions.

  14. New/Future Approaches to Explosive/Chemicals Detection

    NASA Astrophysics Data System (ADS)

    Valkovic, Vlado

    2009-03-01

    Although there has been some reported progress in many systems used for threat material detection and identification a promising one seems to be the use of tagged fast neutrons generated in d+t→α+n nuclear reaction. Among others, EU-FP6 project EURITRACK has been a successful demonstration of the use of tagged neutrons for ship container inspections. It has been shown that the deployment of the same technology under-water is a feasibility to be realized in the near future (i.e. EU-FP7 project UNCOSS).

  15. Safe arming system for two-explosive munitions

    DOEpatents

    Jaroska, Miles F.; Niven, William A.; Morrison, Jasper J.

    1978-01-01

    A system for safely and positively detonating high-explosive munitions, including a source of electrical signals, a split-phase square-loop transformer responsive solely to a unique series of signals from the source for charging an energy storage circuit through a voltage doubling circuit, and a spark-gap trigger for initiating discharge of the energy in the storage circuit to actuate a detonator and thereby fire the munitions.

  16. Real-world particulate explosives test coupons for optical detection applications

    NASA Astrophysics Data System (ADS)

    Nguyen, Viet; Papantonakis, Michael; Furstenberg, Robert; Kendziora, Christopher; McGill, R. Andrew

    2013-05-01

    Trace or residue explosives detection typically involves examining explosives found as solid particles on a solid substrate. Different optical spectroscopy techniques are being developed to detect these explosives in situ by probing how light interacts with the surface bound particles of explosives. In order to evaluate these technologies it is important to have available suitable test coupons coated with particles of explosives. When fabricating test coupons to evaluate detection performance or help train a detection algorithm, it is important to use realistic test coupons and consider how the physicochemical properties of the explosives particles, related chemicals, and substrate may affect the spectra produced or signal intensities observed. Specific features of interest include surface fill factor, particle sizes, areal density, degree of particle contact with a substrate and any other chemicals in addition to the explosives and substrate. This level of complexity highlights the need to fabricate test coupons which mimic "real world" particle coated surfaces. With respect to metrics derived from fingerprints, we compare the properties of test coupons fabricated by sieving and inkjetting for ammonium nitrate, TNT, RDX, and sucrose on stainless steel, automotive painted steel, glass and polyethylene substrates. Sieving provides a random distribution of particles, allows fractionation of relevant particle sizes and allows relevant surface fill factors to be achieved. Inkjetting provides precise control of aerial density but because of complications related to solvent-substrate interactions, relevant fill factors and particle sizes are difficult to achieve. In addition, we introduce a custom image analysis technique, NRL ParticleMath, developed to characterize and quantify particle loadings on test coupons.

  17. Laser-induced breakdown spectroscopy for the remote detection of explosives at level of fingerprints

    NASA Astrophysics Data System (ADS)

    Almaviva, S.; Palucci, A.; Lazic, V.; Menicucci, I.; Nuvoli, M.; Pistilli, M.; De Dominicis, L.

    2016-04-01

    We report the results of the application of Laser-Induced Breakdown Spectroscopy (LIBS) for the detection of some common military explosives and theirs precursors deposited on white varnished car's external and black car's internal or external plastic. The residues were deposited by an artificial silicon finger, to simulate material manipulation by terrorists when preparing a car bomb, leaving traces of explosives on the parts of a car. LIBS spectra were acquired by using a first prototype laboratory stand-off device, developed in the framework of the EU FP7 313077 project EDEN (End-user driven DEmo for CBRNe). The system operates at working distances 8-30 m and collects the LIBS in the spectral range 240-840 nm. In this configuration, the target was moved precisely in X-Y direction to simulate the scanning system, to be implemented successively. The system is equipped with two colour cameras, one for wide scene view and another for imaging with a very high magnification, capable to discern fingerprints on a target. The spectral features of each examined substance were identified and compared to those belonging to the substrate and the surrounding air, and those belonging to possible common interferents. These spectral differences are discussed and interpreted. The obtained results show that the detection and discrimination of nitro-based compounds like RDX, PETN, ammonium nitrate (AN), and urea nitrate (UN) from organic interfering substances like diesel, greasy lubricants, greasy adhesives or oils in fingerprint concentration, at stand-off distance of some meters or tenths of meters is feasible.

  18. Detection of explosive mixtures on surfaces using grazing angle probe - FTIR: model for classification

    NASA Astrophysics Data System (ADS)

    Primera-Pedrozo, Oliva M.; Soto-Feliciano, Yadira; Pacheco-Londoño, Leonardo; De La Torre-Quintana, Luis F.; Hernandez-Rivera, Samuel P.

    2006-05-01

    Fourier Transform Infrared Spectroscopy coupled to Grazing Angle Probe and operating in Reflection Absorption Infrared Spectroscopy mode has been demonstrated that can be used as a potential technique to develop new methodologies for detection of explosives on surfaces in Phase I of this research. The methodology is remote sensed, in situ and can detect nanograms of most target compounds. It is solvent free technique and requires no sample preparation. In this work detection of traces of neat explosives and lab made mixtures equivalent to the important explosive formulation Pentolyte has been addressed. The sample set consisted of TNT, PETN and Pentolyte mixture present in various loading concentrations. The spectral data collected was subjected to a number of statistical pre-treatment methods, including first derivative and normalization transformations to make the data more suitable for analysis. Principal Component Analysis combined with Linear Discriminant Analysis was used to classify and discriminate the target analytes.

  19. Morphologically manipulated Ag/ZnO nanostructures as surface enhanced Raman scattering probes for explosives detection

    NASA Astrophysics Data System (ADS)

    Shaik, Ummar Pasha; Hamad, Syed; Ahamad Mohiddon, Md.; Soma, Venugopal Rao; Ghanashyam Krishna, M.

    2016-03-01

    The detection of secondary explosive molecules (e.g., ANTA, FOX-7, and CL-20) using Ag decorated ZnO nanostructures as surface enhanced Raman scattering (SERS) probes is demonstrated. ZnO nanostructures were grown on borosilicate glass substrates by rapid thermal oxidation of metallic Zn films at 500 °C. The oxide nanostructures, including nanosheets and nanowires, emerged over the surface of the Zn film leaving behind the metal residue. We demonstrate that SERS measurements with concentrations as low as 10 μM, of the three explosive molecules ANTA, FOX-7, and CL-20 over ZnO/Ag nanostructures, resulted in enhancement factors of ˜107, ˜107, and ˜104, respectively. These measurements validate the high sensitivity of detection of explosive molecules using Ag decorated ZnO nanostructures as SERS substrates. The Zn metal residue and conditions of annealing play an important role in determining the detection sensitivity.

  20. In-Situ Real Time Detection of Explosive/Chemical Compounds in Mines Using Nuclear Quadrupole Resonance (NQR)

    DTIC Science & Technology

    2012-02-23

    mineflelds in Bosnia, and blind tests on TNT and RDX AP and AT mines were carried out at Ft. Leonard Wood. The system detected 100% of all mines in the...three tests in the fmal year, with a false alarm rate less than 1%. Much of the knowledge gained has been only partly implemented in prototypes to date...16 4.1.2 Test on live Explosives

  1. Multi-Phenomenology Explosion Monitoring (Multi-PEM). Signal Detection. Research to target smaller sources for tomorrow’s missions

    SciTech Connect

    Carmichael, Joshua Daniel

    2015-12-12

    This a guide on how to detect and identify explosions from various sources. For example, nuclear explosions produce acoustic, optical, and EMP outputs. Each signal can be buried in noise, but fusing detection statistics from seismic, acoustic, and electromagnetic signals results in clear detection otherwise unobtainable.

  2. Characterization of Mining Explosions at Regional Distances: Implications WITH the International Monitoring System

    NASA Astrophysics Data System (ADS)

    Stump, Brian W.; Hedlin, Michael A. H.; Pearson, D. Craig; Hsu, Vindell

    2002-12-01

    The International Monitoring System (IMS) being constructed in support of the Comprehensive Nuclear-Test-Ban Treaty introduces new opportunities to nuclear test monitoring by providing open access to global data from seismic, hydroacoustic, infrasonic, and radionuclide sensors. These sensors will detect myriad natural and man-made events and can be used to identify those that have explosive characteristics and therefore might be clandestine nuclear tests. Detection and identification of seismic events must be conducted at a lower magnitude threshold (mb = 3.5 and lower) than has been previously considered. Concomitant with the lower monitoring threshold will be an increased number of events that must be scrutinized. This collection will be largely composed of regional observations in which the seismic waves have traversed complex geological structures. High-fidelity regional, geophysical models will be needed to support accurate location and source identification. Source identification will not be limited to the separation of single-fired nuclear explosions from earthquakes as in previous testing treaties. The lower-magnitude threshold and increased reliance on regional observations assures that mining explosions will be detected by the monitoring system. It is important that the signals from mining explosions are properly identified to avoid false alarms of the monitoring system. Cooperation with the mining industry, including deployment of close-in instrumentation and extensive documentation of the explosions, provides critical information for interpreting the performance of regional discriminants. Linkage of these observations to appropriate physical models of the blasting process is also enhanced through this cooperative research effort. A number of discriminants for characterizing mining explosions have been identified including P to Lg ratios at high and low frequencies, surface wave to high-frequency body wave amplitudes, Rg at short distances, high- and low

  3. A platform for on-site environmental analysis of explosives using high performance liquid chromatography with UV absorbance and photo-assisted electrochemical detection.

    PubMed

    Marple, Ronita L; Lacourse, William R

    2005-04-30

    High-performance liquid chromatography with photo-assisted electrochemical detection (HPLC-PAED) is used in conjunction with ultraviolet absorbance (UV) detection for determining explosives in environmental samples. The system utilizes an on-line solid-phase extraction technique for sample pretreatment (i.e., fractionation and concentration), thus reducing the required ground water sample size from 1L to 2mL and minimizing sample handling. Limits of detection for explosives using solid-phase extraction and PAED range from 0.0007 to 0.4mug/L, well below those achieved with UV detection for several important explosives (e.g., RDX). The method has demonstrated good accuracy, precision, and recovery for all tested explosives, thus proving that the method is suitable for evaluation of explosives in ground water with competitive advantages over the U.S. Environmental Protection Agency (EPA) Method 8330. A system adaptable for the on-site environmental analysis of explosives has been developed and validated.

  4. Laser based in-situ and standoff detection of chemical warfare agents and explosives

    NASA Astrophysics Data System (ADS)

    Patel, C. Kumar N.

    2009-09-01

    Laser based detection of gaseous, liquid and solid residues and trace amounts has been developed ever since lasers were invented. However, the lack of availability of reasonably high power tunable lasers in the spectral regions where the relevant targets can be interrogated as well as appropriate techniques for high sensitivity, high selectivity detection has hampered the practical exploitation of techniques for the detection of targets important for homeland security and defense applications. Furthermore, emphasis has been on selectivity without particular attention being paid to the impact of interfering species on the quality of detection. Having high sensitivity is necessary but not a sufficient condition. High sensitivity assures a high probability of detection of the target species. However, it is only recently that the sensor community has come to recognize that any measure of probability of detection must be associated with a probability of false alarm, if it is to have any value as a measure of performance. This is especially true when one attempts to compare performance characteristics of different sensors based on different physical principles. In this paper, I will provide a methodology for characterizing the performance of sensors utilizing optical absorption measurement techniques. However, the underlying principles are equally application to all other sensors. While most of the current progress in high sensitivity, high selectivity detection of CWAs, TICs and explosives involve identifying and quantifying the target species in-situ, there is an urgent need for standoff detection of explosives from safe distances. I will describe our results on CO2 and quantum cascade laser (QCL) based photoacoustic sensors for the detection of CWAs, TICs and explosives as well the very new results on stand-off detection of explosives at distances up to 150 meters. The latter results are critically important for assuring safety of military personnel in battlefield

  5. Sensitivity Comparison of Vapor Trace Detection of Explosives Based on Chemo-Mechanical Sensing with Optical Detection and Capacitive Sensing with Electronic Detection

    PubMed Central

    Strle, Drago; Štefane, Bogdan; Zupanič, Erik; Trifkovič, Mario; Maček, Marijan; Jakša, Gregor; Kvasič, Ivan; Muševič, Igor

    2014-01-01

    The article offers a comparison of the sensitivities for vapour trace detection of Trinitrotoluene (TNT) explosives of two different sensor systems: a chemo-mechanical sensor based on chemically modified Atomic Force Microscope (AFM) cantilevers based on Micro Electro Mechanical System (MEMS) technology with optical detection (CMO), and a miniature system based on capacitive detection of chemically functionalized planar capacitors with interdigitated electrodes with a comb-like structure with electronic detection (CE). In both cases (either CMO or CE), the sensor surfaces are chemically functionalized with a layer of APhS (trimethoxyphenylsilane) molecules, which give the strongest sensor response for TNT. The construction and calibration of a vapour generator is also presented. The measurements of the sensor response to TNT are performed under equal conditions for both systems, and the results show that CE system with ultrasensitive electronics is far superior to optical detection using MEMS. Using CMO system, we can detect 300 molecules of TNT in 10+12 molecules of N2 carrier gas, whereas the CE system can detect three molecules of TNT in 10+12 molecules of carrier N2. PMID:24977388

  6. Sensitivity comparison of vapor trace detection of explosives based on chemo-mechanical sensing with optical detection and capacitive sensing with electronic detection.

    PubMed

    Strle, Drago; Štefane, Bogdan; Zupanič, Erik; Trifkovič, Mario; Maček, Marijan; Jakša, Gregor; Kvasič, Ivan; Muševič, Igor

    2014-06-27

    The article offers a comparison of the sensitivities for vapour trace detection of Trinitrotoluene (TNT) explosives of two different sensor systems: a chemo-mechanical sensor based on chemically modified Atomic Force Microscope (AFM) cantilevers based on Micro Electro Mechanical System (MEMS) technology with optical detection (CMO), and a miniature system based on capacitive detection of chemically functionalized planar capacitors with interdigitated electrodes with a comb-like structure with electronic detection (CE). In both cases (either CMO or CE), the sensor surfaces are chemically functionalized with a layer of APhS (trimethoxyphenylsilane) molecules, which give the strongest sensor response for TNT. The construction and calibration of a vapour generator is also presented. The measurements of the sensor response to TNT are performed under equal conditions for both systems, and the results show that CE system with ultrasensitive electronics is far superior to optical detection using MEMS. Using CMO system, we can detect 300 molecules of TNT in 10(+12) molecules of N2 carrier gas, whereas the CE system can detect three molecules of TNT in 10(+12) molecules of carrier N2.

  7. Innovative concept for a major breakthrough in atmospheric radioactive xenon detection for nuclear explosion monitoring.

    PubMed

    Le Petit, G; Cagniant, A; Morelle, M; Gross, P; Achim, P; Douysset, G; Taffary, T; Moulin, C

    The verification regime of the comprehensive test ban treaty (CTBT) is based on a network of three different waveform technologies together with global monitoring of aerosols and noble gas in order to detect, locate and identify a nuclear weapon explosion down to 1 kt TNT equivalent. In case of a low intensity underground or underwater nuclear explosion, it appears that only radioactive gases, especially the noble gas which are difficult to contain, will allow identification of weak yield nuclear tests. Four radioactive xenon isotopes, (131m)Xe, (133m)Xe, (133)Xe and (135)Xe, are sufficiently produced in fission reactions and exhibit suitable half-lives and radiation emissions to be detected in atmosphere at low level far away from the release site. Four different monitoring CTBT systems, ARIX, ARSA, SAUNA, and SPALAX™ have been developed in order to sample and to measure them with high sensitivity. The latest developed by the French Atomic Energy Commission (CEA) is likely to be drastically improved in detection sensitivity (especially for the metastable isotopes) through a higher sampling rate, when equipped with a new conversion electron (CE)/X-ray coincidence spectrometer. This new spectrometer is based on two combined detectors, both exhibiting very low radioactive background: a well-type NaI(Tl) detector for photon detection surrounding a gas cell equipped with two large passivated implanted planar silicon chips for electron detection. It is characterized by a low electron energy threshold and a much better energy resolution for the CE than those usually measured with the existing CTBT equipments. Furthermore, the compact geometry of the spectrometer provides high efficiency for X-ray and for CE associated to the decay modes of the four relevant radioxenons. The paper focus on the design of this new spectrometer and presents spectroscopic performances of a prototype based on recent results achieved from both radioactive xenon standards and air sample

  8. Optical ordance system for use in explosive ordnance disposal activities

    SciTech Connect

    Merson, J.A.; Salas, F.J.; Helsel, F.M.

    1994-01-01

    A portable hand-held solid state rod laser system and an optically-ignited detonator have been developed for use in explosive ordnance disposal (EOD) activities. Laser prototypes from Whittaker Ordnance and Universal Propulsion have been tested and evaluated. The optical detonator contains 2-(5 cyanotetrazolato) pentaamine cobalt III perchlorate (CP) as the DDT column and the explosive Octahydro 1, 3, 5, 7 -- tetranitro -- 1, 3, 5, 7 -- tetrazocine (HMX) as the output charge. The laser is designed to have an output of 150 mJ in a 500 microsecond pulse. This output allows firing through 2000 meters of optical fiber. The detonator can also be ignited with a portable laser diode source through a shorter length of fiber.

  9. Optical ordnance system for use in explosive ordnance disposal activities

    NASA Technical Reports Server (NTRS)

    Merson, J. A.; Salas, F. J.; Helsel, F.M.

    1994-01-01

    A portable hand-held solid state rod laser system and an optically-ignited detonator have been developed for use in explosive ordnance disposal (EOD) activities. Laser prototypes from Whittaker Ordnance and Universal Propulsion have been tested and evaluated. The optical detonator contains 2-(5 cyanotetrazolato) pentaamine cobalt(III) perchlorate (CP) as the DDT column and the explosive Octahydro- 1,3,5,7 - tetrazocine (HMX) as the output charge. The laser is designed to have an output of 150 mJ in a 500 microsecond pulse. This output allows firing through 2000 meters of optical fiber. The detonator can also be ignited with a portable laser diode source through a shorter length of fiber.

  10. Optical ordnance system for use in explosive ordnance disposal activities

    NASA Technical Reports Server (NTRS)

    Merson, J. A.; Salas, F. J.; Helsel, F.M.

    1994-01-01

    A portable hand-held solid state rod laser system and an optically-ignited detonator have been developed for use in explosive ordnance disposal (EOD) activities. Laser prototypes from Whittaker Ordnance and Universal Propulsion have been tested and evaluated. The optical detonator contains 2-(5 cyanotetrazolato) pentaamine cobalt(III) perchlorate (CP) as the DDT column and the explosive Octahydro- 1,3,5,7 - tetrazocine (HMX) as the output charge. The laser is designed to have an output of 150 mJ in a 500 microsecond pulse. This output allows firing through 2000 meters of optical fiber. The detonator can also be ignited with a portable laser diode source through a shorter length of fiber.

  11. Standoff photoacoustic detection of explosives using quantum cascade laser and an ultrasensitive microphone.

    PubMed

    Chen, Xing; Guo, Dingkai; Choa, Fow-Sen; Wang, Chen-Chia; Trivedi, Sudhir; Snyder, A Peter; Ru, Guoyun; Fan, Jenyu

    2013-04-20

    Standoff detections of explosives using quantum cascade lasers (QCLs) and the photoacoustic (PA) technique were studied. In our experiment, a mid-infrared QCL with emission wavelength near 7.35 μm was used as a laser source. Direct standoff PA detection of trinitrotoluene (TNT) was achieved using an ultrasensitive microphone. The QCL output light was focused on explosive samples in powder form. PA signals were generated and detected directly by an ultrasensitive low-noise microphone with 1 in. diameter. A detection distance up to 8 in. was obtained using the microphone alone. With increasing detection distance, the measured PA signal not only decayed in amplitude but also presented phase delays, which clearly verified the source location. To further increase the detection distance, a parabolic sound reflector was used for effective sound collection. With the help of the sound reflector, standoff PA detection of TNT with distance of 8 ft was demonstrated.

  12. Explosion testing for the container venting system

    SciTech Connect

    Cashdollar, K.L.; Green, G.M.; Thomas, R.A.; Demiter, J.A.

    1993-09-30

    As part of the study of the hazards of inspecting nuclear waste stored at the Hanford Site, the US Department of Energy and Westinghouse Hanford Company have developed a container venting system to sample the gases that may be present in various metal drums and other containers. In support of this work, the US Bureau of Mines has studied the probability of ignition while drilling into drums and other containers that may contain flammable gas mixtures. The Westinghouse Hanford Company drilling procedure was simulated by tests conducted in the Bureau`s 8-liter chamber, using the same type of pneumatic drill that will be used at the Hanford Site. There were no ignitions of near-stoichiometric hydrogen-air or methane-air mixtures during the drilling tests. The temperatures of the drill bits and lids were measured by an infrared video camera during the drilling tests. These measured temperatures are significantly lower than the {approximately}500{degree}C autoignition temperature of uniformly heated hydrogen-air or the {approximately}600{degree}C autoignition temperature of uniformly heated methane-air. The temperatures are substantially lower than the 750{degree}C ignition temperature of hydrogen-air and 1,220{degree}C temperature of methane-air when heated by a 1-m-diameter wire.

  13. Standoff detection of explosives and chemical agents using broadly tuned external-cavity quantum cascade lasers (EC-QCLs)

    NASA Astrophysics Data System (ADS)

    Takeuchi, Eric B.; Rayner, Timothy; Weida, Miles; Crivello, Salvatore; Day, Timothy

    2007-10-01

    Civilian soft targets such as transportation systems are being targeted by terrorists using IEDs and suicide bombers. Having the capability to remotely detect explosives, precursors and other chemicals would enable these assets to be protected with minimal interruption of the flow of commerce. Mid-IR laser technology offers the potential to detect explosives and other chemicals in real-time and from a safe standoff distance. While many of these agents possess "fingerprint" signatures in the mid-IR (i.e. in the 3-20 micron regime), their effective interrogation by a practical, field-deployable system has been limited by size, complexity, reliability and cost constraints of the base laser technology. Daylight Solutions has addressed these shortcomings by developing compact, portable, broadly tunable mid-IR laser sources based upon external-cavity quantum cascade technology. This technology is now being applied by Daylight in system level architectures for standoff and remote detection of explosives, precursors and chemical agents. Several of these architectures and predicted levels of performance will be presented.

  14. Explosion of integrated optic devices used in new generation systems

    NASA Astrophysics Data System (ADS)

    Roeske, Frank

    1988-11-01

    Integrated optics, indeed shows great promise for improving the quality and quantity of data needed in nuclear test diagnostics systems and other military systems. The systems described will give the testing program better than an order of magnitude increase in temporal response and dynamic range over the presently used counterparts, while also making it possible to increase the number of data channels by greater than an order of magnitude. Should these expectations reach fruition we should see a true explosion in the use of these devices in the near future.

  15. Coupled reversed-phase and ion chromatographic system for the simultaneous identification of inorganic and organic explosives.

    PubMed

    Tyrrell, Eadaoin; Dicinoski, Greg W; Hilder, Emily F; Shellie, Robert A; Breadmore, Michael C; Pohl, Christopher A; Haddad, Paul R

    2011-05-20

    There are many methods available to detect and positively identify either organic or inorganic explosives separately, however no one method has been developed which can detect both types of explosive species simultaneously from a single sample. In this work, a unique coupled-chromatographic system is reported for the simultaneous determination of both organic and inorganic explosive species and is used for pre-blast analysis/identification purposes. This novel approach is based on the combination of reversed-phase high performance liquid chromatography and ion chromatography which allows trace levels of organic and inorganic explosives to be determined simultaneously from a single sample. Using this procedure, a 20 min reversed-phase separation of organic explosives is coupled to a 16 min ion-exchange separation of anions present in inorganic explosives, providing a complete pre-blast analysis/identification system for the separation and detection of a complex mixture containing organic and/or inorganic explosive species. The total analysis time, including sufficient column re-equilibration between runs, was <25 min using the coupled system. By this method, the minimum resolution for the organic separation was 1.16 between nitroglycerin and tetryl and the detection limits ranged from 0.31 mg L(-1) for cyclotetramethylene tetranitramine (HMX) and 1.54 mg L(-1) for pentaerythrite tetranitrate (PETN), while the minimum resolution for the inorganic separation was 0.99 between azide and nitrate, and the detection limits ranged from 7.70 μg L(-1) for fluoride and 159.50 μg L(-1) for benzoate. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  16. Determining the effects of routine fingermark detection techniques on the subsequent recovery and analysis of explosive residues on various substrates.

    PubMed

    King, Sam; Benson, Sarah; Kelly, Tamsin; Lennard, Chris

    2013-12-10

    An offender who has recently handled bulk explosives would be expected to deposit latent fingermarks that are contaminated with explosive residues. However, fingermark detection techniques need to be applied in order for these fingermarks to be detected and recorded. Little information is available in terms of how routine fingermark detection methods impact on the subsequent recovery and analysis of any explosive residues that may be present. If an identifiable fingermark is obtained and that fingermark is found to be contaminated with a particular explosive then that may be crucial evidence in a criminal investigation (including acts of terrorism involving improvised explosive devices). The principal aims of this project were to investigate: (i) the typical quantities of explosive material deposited in fingermarks by someone who has recently handled bulk explosives; and (ii) the effects of routine fingermark detection methods on the subsequent recovery and analysis of explosive residues in such fingermarks. Four common substrates were studied: paper, glass, plastic (polyethylene plastic bags), and metal (aluminium foil). The target explosive compounds were 2,4,6-trinitrotoluene (TNT), pentaerythritol tetranitrate (PETN), and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), as well as chlorate and nitrate ions. Recommendations are provided in terms of the application of fingermark detection methods on surfaces that may contain explosive residues.

  17. Fluorescent proteins as biosensors by quenching resonance energy transfer from endogenous tryptophan: detection of nitroaromatic explosives.

    PubMed

    Gingras, Alexa; Sarette, Joseph; Shawler, Evan; Lee, Taeyoung; Freund, Steve; Holwitt, Eric; Hicks, Barry W

    2013-10-15

    Ensuring domestic safety from terrorist attack is a daunting challenge because of the wide array of chemical agents that must be screened. A panel of purified fluorescent protein isoforms (FPs) was screened for the ability to detect various explosives, explosive simulants, and toxic agents. In addition to their commonly used visible excitation wavelengths, essentially all FPs can be excited by UV light at 280 nm. Ultraviolet illumination excites electrons in endogenous tryptophan (W) residues, which then relax by Förster Resonance Energy Transfer (FRET) to the chromophore of the FP, and thus the FPs emit with their typical visible spectra. Taking advantage of the fact that tryptophan excitation can be quenched by numerous agents, including nitroaromatics like TNT and nitramines like RDX, it is demonstrated that quenching of visible fluorescence from UV illumination of FPs can be used as the basis for detecting these explosives and explosive degradation products. This work provides the foundation for production of an array of genetically-modified FPs for in vitro biosensors capable of rapid, simultaneous, sensitive and selective detection of a wide range of explosive or toxic agents. Published by Elsevier B.V.

  18. Remote detection of nitroaromatic explosives in soil using distributed sensor particles

    NASA Astrophysics Data System (ADS)

    Simonson, Robert J.; Hance, Bradley G.; Schmitt, Randal L.; Johnson, Mark S.; Hargis, Philip J., Jr.

    2001-10-01

    Environmental fate and transport studies of explosives in soil indicate that 2,4,6-trinitrotoluene (TNT) and similar products such as dinitrotoluene (DNT) are major contributors to the trace chemical signature emanating from buried landmines. Chemical analysis methods are under development that have great potential to detect mines, or to rapidly classify electromagnetically detected anomalies as mines vs. 'mine-like objects'. However, these chemical methods are currently confined to point sensors. In contrast, we have developed a method that can remotely determine the presence of nitroaromatic explosives in surface soil. This method utilizes a novel distributed granular sensor approach in combination with uv-visible fluorescence LIDAR (Light Detection and Ranging) technology. We have produced prototype sensor particles that combine sample preconcentration, explosives sensing, signal amplification, and optical signal output functions. These particles can be sprayed onto soil areas that are suspected of explosives contamination. By design, the fluorescence emission spectrum of the distributed particles is strongly affected by absorption of nitroaromatic explosives from the surrounding environment. Using ~1mg/cm2 coverage of the sensor particles on natural soil, we have observed significant spectral changes due to TNT concentrations in the ppm range (mg TNT/kg soil) on 2-inch diameter targets at a standoff distance of 0.5 km.

  19. Detection of buried explosives using portable neutron sources with nanosecond timing.

    PubMed

    Kuznetsov, A V; Evsenin, A V; Gorshkov, I Yu; Osetrov, O I; Vakhtin, D N

    2004-07-01

    Significant reduction of time needed to identify hidden explosives and other hazardous materials by the "neutron in, gamma out" method has been achieved by introducing timed (nanosecond) neutron sources-the so-called nanosecond neutron analysis technique. Prototype mobile device for explosives' detection based on a timed (nanosecond) isotopic (252)Cf neutron source has been created. The prototype is capable of identifying 400 g of hidden explosives in 10 min. Tests have been also made with a prototype device using timed (nanosecond) neutron source based on a portable D-T neutron generator with built-in segmented detector of accompanying alpha-particles. The presently achieved intensity of the neutron generator is 5x10(7)n/s into 4pi, with over 10(6) of these neutrons being correlated with alpha-particles detected by the built-in alpha-particle detector. Results of measurements with an anti-personnel landmine imitator are presented.

  20. Polyfunctional Lewis acids: intriguing solid-state structure and selective detection and discrimination of nitroaromatic explosives.

    PubMed

    Swamy P, Chinna Ayya; Thilagar, Pakkirisamy

    2015-06-08

    Synthesis and crystal structures of three porphyrin-based polyfunctional Lewis acids 1-3 are reported. Intermolecular HgCl⋅⋅⋅HgCl (linear and μ-type) interactions in the solid state of the peripherally ArHgCl-decorated compound 3 lead to a fascinating 3D supramolecular architecture. Compound 3 shows a selective fluorescence quenching response to picric acid and discriminates other nitroaromatic-based explosives. For the first time, an electron-deficient polyfunctional Lewis acid is shown to be useful for the selective detection and discrimination of nitroaromatic explosives. The Stern-Volmer quenching constant and detection limits of compound 3 for picric acid are the best among the reported small-molecular receptors for nitroaromatic explosives. The electronic structure, Lewis acidity, and selective sensing characteristics of 3 are well corroborated by DFT calculations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A portable fluorescence detector for fast ultra trace detection of explosive vapors

    NASA Astrophysics Data System (ADS)

    Xin, Yunhong; He, Gang; Wang, Qi; Fang, Yu

    2011-10-01

    This paper developed a portable detector based on a specific material-based fluorescent sensing film for an ultra trace detection of explosives, such as 2,4,6-trinitrotoluene (TNT) or its derivate 2,4-dinitrotoluene (DNT), in ambient air or on objects tainted by explosives. The fluorescent sensing films are based on single-layer chemistry and the signal amplification effect of conjugated polymers, which exhibited higher sensitivity and shorter response time to TNT or DNT at their vapor pressures. Due to application of the light emitting diode and the solid state photomultiplier and the cross-correlation-based circuit design technology, the device has the advantages of low-power, low-cost, small size, and an improved signal to noise ratio. The results of the experiments showed that the detector can real-time detect and identify of explosive vapors at extremely low levels; it is suitable for the identification of suspect luggage, forensic analyses, or battlefields clearing.

  2. An explosively driven high-power microwave pulsed power system

    NASA Astrophysics Data System (ADS)

    Elsayed, M. A.; Neuber, A. A.; Dickens, J. C.; Walter, J. W.; Kristiansen, M.; Altgilbers, L. L.

    2012-02-01

    The increased popularity of high power microwave systems and the various sources to drive them is the motivation behind the work to be presented. A stand-alone, self-contained explosively driven high power microwave pulsed power system has been designed, built, and tested at Texas Tech University's Center for Pulsed Power and Power Electronics. The system integrates four different sub-units that are composed of a battery driven prime power source utilizing capacitive energy storage, a dual stage helical flux compression generator as the main energy amplification device, an integrated power conditioning system with inductive energy storage including a fast opening electro-explosive switch, and a triode reflex geometry virtual cathode oscillator as the microwave radiating source. This system has displayed a measured electrical source power level of over 5 GW and peak radiated microwaves of about 200 MW. It is contained within a 15 cm diameter housing and measures 2 m in length, giving a housing volume of slightly less than 39 l. The system and its sub-components have been extensively studied, both as integrated and individual units, to further expand on components behavior and operation physics. This report will serve as a detailed design overview of each of the four subcomponents and provide detailed analysis of the overall system performance and benchmarks.

  3. Narcotics and explosives detection by 14N pure nuclear quadrupole resonance

    NASA Astrophysics Data System (ADS)

    Garroway, Allen N.; Buess, Michael L.; Yesinowski, James P.; Miller, Joel B.

    1994-03-01

    Pure nuclear quadrupole resonance (NQR) of 14N nuclei is quite promising as a method for detecting explosives such as RDX and contraband narcotics such as cocaine and heroin in quantities of interest. Pure NQR is conducted without an external applied magnetic field, so potential concerns about damage to magnetically encoded data or exposure of personnel to large magnetic fields are not relevant. Because NQR frequencies of different compounds are quite distinct, we do not encounter false alarms from the NQR signals of other benign materials. We have constructed a proof-of-concept NQR explosives detector which interrogates a volume of 300 liters (10 ft3). With minimal modification to the existing explosives detector, we can detect operationally relevant quantities of (free base) cocaine within the 300-liter inspection volume in 6 seconds. We are presently extending this approach to the detection of heroin base and also examining 14N and 35,37Cl pure NQR for detection of the hydrochloride forms of both materials. An adaptation of this NQR approach may be suitable for scanning personnel for externally carried contraband and explosives. We first outline the basics of the NQR approach, highlighting strengths and weaknesses, and then present representative results for RDX and cocaine detection. We also present a partial compendium of relevant NQR parameters measured for some materials of interest.

  4. Explosion Seismology: Capabilities and limitations of long-range methods for detecting and recognizing explosions are discussed.

    PubMed

    Carpenter, E W

    1965-01-22

    I have tried to describe some current research trends in seismology which are specifically directed toward solving the problem of detecting, locating, and identifying underground nuclear explosions. Attention has been directed specifically toward problems which arise in efforts to obtain information at distances in excess of 2500 kilometers. The main scientific advantage which accrues from working at such distances is that the seismic signals suffer minimal distortion by the geological complexities of the earth. Extrapolation of the data to the question of an international test ban is not within the scope of this article. Suffice it to note that all of the parameters must, in the final resort, be resolved in terms of probabilities. In some cases the seismological probabilities can be estimated with reasonable degrees of accuracy, but the future of the test ban question depends not only on seismology but on such questions as inspection and what probabilities are acceptable.

  5. Study of thermal decomposition mechanisms and low-level detection of explosives using pulsed photoacoustic technique

    NASA Astrophysics Data System (ADS)

    Yehya, F.; Chaudhary, A. K.; Srinivas, D.; Muralidharan, K.

    2015-11-01

    We report a novel time-resolved photoacoustic-based technique for studying the thermal decomposition mechanisms of some secondary explosives such as RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine), picric acid, 4,6-dinitro-5-(4-nitro-1 H-imidazol-1-yl)-1 H-benzo[ d] [1-3] triazole, and 5-chloro-1-(4-nitrophenyl)-1 H-tetrazole. A comparison of the thermal decomposition mechanisms of these secondary explosives was made by detecting NO2 molecules released under controlled pyrolysis between 25 and 350 °C. The results show excellent agreement with the thermogravimetric and differential thermal analysis (TGA-DTA) results. A specially designed PA cell made of stainless steel was filled with explosive vapor and pumped using second harmonic, i.e., λ = 532 nm, pulses of duration 7 ns at a 10 Hz repetition rate, obtained using a Q-switched Nd:YAG laser. The use of a combination of PA and TGA-DTA techniques enables the study of NO2 generation, and this method can be used to scale the performance of these explosives as rocket fuels. The minimum detection limits of the four explosives were 38 ppmv to 69 ppbv, depending on their respective vapor pressures.

  6. Discreet passive explosive detection through 2-sided wave guided fluorescence

    DOEpatents

    Harper, Ross James; la Grone, Marcus; Fisher, Mark

    2012-10-16

    The current invention provides a passive sampling device suitable for collecting and detecting the presence of target analytes. In particular, the passive sampling device is suitable for detecting nitro-aromatic compounds. The current invention further provides a passive sampling device reader suitable for determining the collection of target analytes. Additionally, the current invention provides methods for detecting target analytes using the passive sampling device and the passive sampling device reader.

  7. Discreet passive explosive detection through 2-sided waveguided fluorescence

    DOEpatents

    Harper, Ross James; la Grone, Marcus; Fisher, Mark

    2011-10-18

    The current invention provides a passive sampling device suitable for collecting and detecting the presence of target analytes. In particular, the passive sampling device is suitable for detecting nitro-aromatic compounds. The current invention further provides a passive sampling device reader suitable for determining the collection of target analytes. Additionally, the current invention provides methods for detecting target analytes using the passive sampling device and the passive sampling device reader.

  8. Detecting the DPRK nuclear test explosion on 25 May 2009 using array-based waveform correlation

    NASA Astrophysics Data System (ADS)

    Gibbons, Steven J.; Ringdal, Frode

    2010-05-01

    The Democratic People's Republic of Korea (DPRK) announced on 25 May 2009 that it had conducted its second nuclear test, the first one having taken place on 9 October 2006. As was the case with the first test, the second test was detected and reported by the IDC. We have carried out an experiment taking the 9 October 2006 test as a starting point and running a continuous waveform correlation scheme in order to a) assess the potential for automatically detecting the second nuclear test and b) monitoring the false alarm rate associated with such a detection scheme. Using only data from the Matsushiro array (MJAR), and applying the array-based procedure developed by Gibbons and Ringdal (2006) with a waveform template from the first nuclear test, we found that the second test was readily detected without a single false alarm during the entire three year period. Moreover, by a scaling procedure, we argue that an explosion many times smaller than the second test would have been detected automatically, with no false alarms, had it taken place at the same site as the second test. We note that this remarkable performance is achieved even though the MJAR array is known to be difficult to process using conventional methods, because of signal incoherency. An important element of the detection procedure for the automatic elimination of false alarms is a post-processing system which performs slowness analysis on the single-channel cross-correlation traces. It is well known that successful correlation detection requires the two sources to be closely spaced (i.e. the detector has a narrow "footprint"), but there is evidence that array-based correlation covers a larger footprint than the 1/4 wavelength estimated by Geller and Mueller (1980) for single-station correlation. This could be important for a more general application of the method described here, and needs further study.

  9. Improving the detection of explosive hazards with LIDAR-based ground plane estimation

    NASA Astrophysics Data System (ADS)

    Buck, A.; Keller, J. M.; Popescu, M.

    2016-05-01

    Three-dimensional point clouds generated by LIDAR offer the potential to build a more complete understanding of the environment in front of a moving vehicle. In particular, LIDAR data facilitates the development of a non-parametric ground plane model that can filter target predictions from other sensors into above-ground and below-ground sets. This allows for improved detection performance when, for example, a system designed to locate above-ground targets considers only the set of above-ground predictions. In this paper, we apply LIDAR-based ground plane filtering to a forward looking ground penetrating radar (FLGPR) sensor system and a side looking synthetic aperture acoustic (SAA) sensor system designed to detect explosive hazards along the side of a road. Additionally, we consider the value of the visual magnitude of the LIDAR return as a feature for identifying anomalies. The predictions from these sensors are evaluated independently with and without ground plane filtering and then fused to produce a combined prediction confidence. Sensor fusion is accomplished by interpolating the confidence scores of each sensor along the ground plane model to create a combined confidence vector at specified points in the environment. The methods are tested along an unpaved desert road at an arid U.S. Army test site.

  10. Micro-differential thermal analysis detection of adsorbed explosive molecules using microfabricated bridges.

    PubMed

    Senesac, Larry R; Yi, Dechang; Greve, Anders; Hales, Jan H; Davis, Zachary J; Nicholson, Don M; Boisen, Anja; Thundat, Thomas

    2009-03-01

    Although micromechanical sensors enable chemical vapor sensing with unprecedented sensitivity using variations in mass and stress, obtaining chemical selectivity using the micromechanical response still remains as a crucial challenge. Chemoselectivity in vapor detection using immobilized selective layers that rely on weak chemical interactions provides only partial selectivity. Here we show that the very low thermal mass of micromechanical sensors can be used to produce unique responses that can be used for achieving chemical selectivity without losing sensitivity or reversibility. We demonstrate that this method is capable of differentiating explosive vapors from nonexplosives and is additionally capable of differentiating individual explosive vapors such as trinitrotoluene, pentaerythritol tetranitrate, and cyclotrimethylenetrinitromine. This method, based on a microfabricated bridge with a programmable heating rate, produces unique and reproducible thermal response patterns within 50 ms that are characteristic to classes of adsorbed explosive molecules. We demonstrate that this micro-differential thermal analysis technique can selectively detect explosives, providing a method for fast direct detection with a limit of detection of 600x10(-12) g.

  11. Micro differential thermal analysis detection of adsorbed explosive molecules using microfabricated bridges

    SciTech Connect

    Senesac, Larry R; Yi, Dechang; Greve, Anders; Hales, Jan; Davis, Zachary; Nicholson, Don M; Boisen, Anja; Thundat, Thomas George

    2009-01-01

    Although micromechanical sensors enable chemical vapor sensing with unprecedented sensitivity using variations in mass and stress, obtaining chemical selectivity using the micromechanical response still remains as a crucial challenge. Chemoselectivity in vapor detection using immobilized selective layers that rely on weak chemical interactions provides only partial selectivity. Here we show that the very low thermal mass of micromechanical sensors can be used to produce unique responses that can be used for achieving chemical selectivity without losing sensitivity or reversibility. We demonstrate that this method is capable of differentiating explosive vapors from nonexplosives and is additionally capable of differentiating individual explosive vapors such as trinitrotoluene, pentaerythritol tetranitrate, and cyclotrimethylenetrinitromine. This method, based on a microfabricated bridge with a programmable heating rate, produces unique and reproducible thermal response patterns within 50 ms that are characteristic to classes of adsorbed explosive molecules. We demonstrate that this micro-differential thermal analysis technique can selectively detect explosives, providing a method for fast direct detection with a limit of detection of 600 x 10{sup -12} g.

  12. Noble Gas Migration Experiment to Support the Detection of Underground Nuclear Explosions

    SciTech Connect

    Olsen, Khris B.; Kirkham, Randy R.; Woods, Vincent T.; Haas, Derek A.; Hayes, James C.; Bowyer, Ted W.; Mendoza, Donaldo P.; Lowrey, Justin D.; Lukins, Craig D.; Suarez, Reynold; Humble, Paul H.; Ellefson, Mark D.; Ripplinger, Mike D.; Zhong, Lirong; Mitroshkov, Alexandre V.; Aalseth, Craig E.; Prinke, Amanda M.; Mace, Emily K.; McIntyre, Justin I.; Stewart, Timothy L.; Mackley, Rob D.; Milbrath, Brian D.; Emer, Dudley; Biegalski, S.

    2016-03-01

    A Noble Gas Migration Experiment (NGME) funded by the National Center for Nuclear Security and conducted at the Nevada National Security Site (NNSS) in collaboration with Lawrence Livermore national Laboratory and National Security Technology provided critical on-site inspection (OSI) information related to the detection of an underground nuclear explosion (UNE) event using noble gas signatures.

  13. Immobilized Biocatalyst for Detection and Destruction of the Insensitive Explosive, 2,4-Dinitroanisole (DNAN).

    PubMed

    Karthikeyan, Smruthi; Kurt, Zohre; Pandey, Gunjan; Spain, Jim C

    2016-10-18

    Accurate and convenient detection of explosive components is vital for a wide spectrum of applications ranging from national security and demilitarization to environmental monitoring and restoration. With the increasing use of DNAN as a replacement for 2,4,6-trinitrotoluene (TNT) in insensitive explosive formulations, there has been a growing interest in strategies to minimize its release and to understand and predict its behavior in the environment. Consequently, a convenient tool for its detection and destruction could enable development of more effective decontamination and demilitarization strategies. Biosensors and biocatalysts have limited applicability to the more traditional explosives because of the inherent limitations of the relevant enzymes. Here, we report a highly specific, convenient and robust biocatalyst based on a novel ether hydrolase enzyme, DNAN demethylase (that requires no cofactors), from a Nocardioides strain that can mineralize DNAN. Biogenic silica encapsulation was used to stabilize the enzyme and enable it to be packed into a model microcolumn for application as a biosensor or as a bioreactor for continuous destruction of DNAN. The immobilized enzyme was stable and not inhibited by other insensitive munitions constituents. An alternative method for DNAN detection involved coating the encapsulated enzyme on cellulose filter paper. The hydrolase based biocatalyst could provide the basis for a wide spectrum of applications including detection, identification, destruction or inertion of explosives containing DNAN (demilitarization operations), and for environmental restorations.

  14. A Hydrogen Ignition Mechanism for Explosions in Nuclear Facility Piping Systems

    SciTech Connect

    Leishear, Robert A.

    2013-09-18

    Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein. Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions may occur. Pipe ruptures in nuclear reactor cooling systems were attributed to hydrogen explosions inside pipelines, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents, an ignition source for hydrogen was not clearly demonstrated, but these accidents demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. A new theory to identify an ignition source and explosion cause is presented here, and further research is recommended to fully understand this explosion mechanism.

  15. Advances in Analysis and Detection of Explosives. Proceedings of the International Symposium on Analysis and Detection of Explosives (4th), Held in Jerusalem, Israel on September 7-10, 1992

    DTIC Science & Technology

    1992-09-01

    Zitrin, S.(1986) ’ Capillary column gas chromatography /mass spectrometry of explosives’. J. Energetic Materials , 4, 215-237. [9jYinon, J. and Zitrin, S...data are being used to form a retention-index data base for the identification of explosives compounds by gas chromatography . 1. Introduction The vapor...detection of concealed explosives requires identification of their characteristic vapors. Capillary gas chromatography is often used to separate and

  16. Ultrasensitive detection of explosives and chemical warfare agents by low-pressure photoionization mass spectrometry.

    PubMed

    Sun, Wanqi; Liang, Miao; Li, Zhen; Shu, Jinian; Yang, Bo; Xu, Ce; Zou, Yao

    2016-08-15

    On-spot monitoring of threat agents needs high sensitive instrument. In this study, a low-pressure photoionization mass spectrometer (LPPI-MS) was employed to detect trace amounts of vapor-phase explosives and chemical warfare agent mimetics under ambient conditions. Under 10-s detection time, the limits of detection of 2,4-dinitrotoluene, nitrotoluene, nitrobenzene, and dimethyl methyl phosphonate were 30, 0.5, 4, and 1 parts per trillion by volume, respectively. As compared to those obtained previously with PI mass spectrometric techniques, an improvement of 3-4 orders of magnitude was achieved. This study indicates that LPPI-MS will open new opportunities for the sensitive detection of explosives and chemical warfare agents.

  17. Study of thermal sensitivity and thermal explosion violence of energetic materials in the LLNL ODTX system

    NASA Astrophysics Data System (ADS)

    Hsu, P. C.; Hust, G.; Zhang, M. X.; Lorenz, T. K.; Reynolds, J. G.; Fried, L.; Springer, H. K.; Maienschein, J. L.

    2014-05-01

    Incidents caused by fire and combat operations can heat energetic materials that may lead to thermal explosion and result in structural damage and casualty. Some explosives may thermally explode at fairly low temperatures (< 100 °C) and the violence from thermal explosion may cause significant damage. Thus it is important to understand the response of energetic materials to thermal insults. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory has been used for decades to measure times to explosion, threshold thermal explosion temperature, and determine kinetic parameters of energetic materials. Samples of different configurations (pressed part, powder, paste, and liquid) can be tested in the system. The ODTX testing can also provide useful data for assessing the thermal explosion violence of energetic materials. Recent ODTX experimental data are reported in the paper.

  18. Munitions having an insensitive detonator system for initiating large failure diameter explosives

    SciTech Connect

    Perry, III, William Leroy

    2015-08-04

    A munition according to a preferred embodiment can include a detonator system having a detonator that is selectively coupled to a microwave source that functions to selectively prime, activate, initiate, and/or sensitize an insensitive explosive material for detonation. The preferred detonator can include an explosive cavity having a barrier within which an insensitive explosive material is disposed and a waveguide coupled to the explosive cavity. The preferred system can further include a microwave source coupled to the waveguide such that microwaves enter the explosive cavity and impinge on the insensitive explosive material to sensitize the explosive material for detonation. In use the preferred embodiments permit the deployment and use of munitions that are maintained in an insensitive state until the actual time of use, thereby substantially preventing unauthorized or unintended detonation thereof.

  19. Noninvasive detection of concealed explosives: depth profiling through opaque plastics by time-resolved Raman spectroscopy.

    PubMed

    Petterson, Ingeborg E Iping; López-López, María; García-Ruiz, Carmen; Gooijer, Cees; Buijs, Joost B; Ariese, Freek

    2011-11-15

    The detection of explosives concealed behind opaque, diffusely scattering materials is a challenge that requires noninvasive analytical techniques for identification without having to manipulate the package. In this context, this study focuses on the application of time-resolved Raman spectroscopy (TRRS) with a picosecond pulsed laser and an intensified charge-coupled device (ICCD) detector for the noninvasive identification of explosive materials through several millimeters of opaque polymers or plastic packaging materials. By means of a short (250 ps) gate which can be delayed several hundred picoseconds after the laser pulse, the ICCD detector allows for the temporal discrimination between photons from the surface of a sample and those from deeper layers. TRRS was applied for the detection of the two main isomers of dinitrotoluene, 2,4-dinitrotoluene, and 2,6-dinitrotoluene as well as for various other components of explosive mixtures, including akardite II, diphenylamine, and ethyl centralite. Spectra were obtained through different diffuse scattering white polymer materials: polytetrafluoroethylene (PTFE), polyoxymethylene (POM), and polyethylene (PE). Common packaging materials of various thicknesses were also selected, including polystyrene (PS) and polyvinyl chloride (PVC). With the demonstration of the ability to detect concealed, explosives-related compounds through an opaque first layer, this study may have important applications in the security and forensic fields.

  20. Continued development of a portable widefield hyperspectral imaging (HSI) sensor for standoff detection of explosive, chemical, and narcotic residues

    NASA Astrophysics Data System (ADS)

    Nelson, Matthew P.; Gardner, Charles W.; Klueva, Oksana; Tomas, David

    2014-05-01

    Passive, standoff detection of chemical, explosive and narcotic threats employing widefield, shortwave infrared (SWIR) hyperspectral imaging (HSI) continues to gain acceptance in defense and security fields. A robust and user-friendly portable platform with such capabilities increases the effectiveness of locating and identifying threats while reducing risks to personnel. In 2013 ChemImage Sensor Systems (CISS) introduced Aperio, a handheld sensor, using real-time SWIR HSI for wide area surveillance and standoff detection of explosives, chemical threats, and narcotics. That SWIR HSI system employed a liquid-crystal tunable filter for real-time automated detection and display of threats. In these proceedings, we report on a next generation device called VeroVision™, which incorporates an improved optical design that enhances detection performance at greater standoff distances with increased sensitivity and detection speed. A tripod mounted sensor head unit (SHU) with an optional motorized pan-tilt unit (PTU) is available for precision pointing and sensor stabilization. This option supports longer standoff range applications which are often seen at checkpoint vehicle inspection where speed and precision is necessary. Basic software has been extended to include advanced algorithms providing multi-target display functionality, automatic threshold determination, and an automated detection recipe capability for expanding the library as new threats emerge. In these proceedings, we report on the improvements associated with the next generation portable widefield SWIR HSI sensor, VeroVision™. Test data collected during development are presented in this report which supports the targeted applications for use of VeroVision™ for screening residue and bulk levels of explosive and drugs on vehicles and personnel at checkpoints as well as various applications for other secure areas. Additionally, we highlight a forensic application of the technology for assisting forensic

  1. Chemically-functionalized microcantilevers for detection of chemical, biological and explosive material

    SciTech Connect

    Pinnaduwage, Lal A; Thundat, Thomas G; Brown, Gilbert M; Hawk, John Eric; Boiadjiev, Vassil I

    2007-04-24

    A chemically functionalized cantilever system has a cantilever coated on one side thereof with a reagent or biological species which binds to an analyte. The system is of particular value when the analyte is a toxic chemical biological warfare agent or an explosive.

  2. Investigations of Novel Sensor Technology for Explosive Specific Detection

    DTIC Science & Technology

    2009-12-01

    considered impractical due to oxidation , however, a zinc analogue was synthesized to improve the photostability. [67] They concluded that AcrH2 is...of 2,4-dinitrotoluene in a γ- CD/metal oxide matrix and its sensitive detection via a cyclic surface polarization impedance (cSPI) method”, Chemistry...sensor ........................................................................................... 40 6.3.13 Nanofibrous membranes

  3. Fluorescence detection and identification of tagging agents and impurities found in explosives.

    PubMed

    Sheaff, Chrystal N; Eastwood, Delyle; Wai, Chien M; Addleman, R Shane

    2008-07-01

    The detection and identification of 2,4,6-trinitrotoluene (TNT), 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX), and pentaerythritol tetranitrate (PETN) vapors have proven to be difficult and challenging due to the low vapor pressures of these high explosives. Detecting higher vapor pressure impurity compounds found in TNT and possible tagging agents mandated to be added to plastic explosives (RDX and PETN) would allow for easier vapor detection. The higher vapor pressure nitro compounds of interest are considered to be non-fluorescent; however, once reduced to their amino analogs, they have relatively high quantum yields. The standard reduction products, the reduction products obtained in solution, and the reduction products obtained in vapor phase were analyzed by conventional fluorescence, synchronous luminescence, and derivative spectroscopy. The nitro analogs of the isomers 1,3-diaminobenzene, 1,2-diaminobenzene, and 1,4-diaminobenzene are found as impurities in TNT. We provide for the first time the synchronous luminescence derivative spectra of these isomers; including their individual spectra and a spectrum of an isomeric mixture of the three. Using the standard reduction products associated with these isomers and other aromatic amines, our data suggest that the vapors of two signature impurities, 1,3-dinitrobenzene and 2,4-dinitrotoluene (2,4-DNT), minor impurity compounds, and two possible tagging agents, 2-nitrotoluene (2-NT) and 4-nitrotoluene (4-NT), can be detected and selectively identified using our fluorescence approach. To prove our methodology, we show that we were able to generate, collect, and reduce 2-NT, 4-NT, and 2,4-DNT vapors to their amino analogs. Using our fluorescence approach, these vapors could be detected and selectively identified both individually and in a mixture. Collectively, our data indicate that our method of detecting and identifying higher vapor pressure explosive-like compounds could potentially be used to detect and

  4. Mesoporous aluminium organophosphonates: a reusable chemsensor for the detection of explosives

    NASA Astrophysics Data System (ADS)

    Li, Dongdong; Yu, Xiang

    2016-07-01

    Rapid and sensitive detection of explosives is in high demand for homeland security and public safety. In this work, electron-rich of anthracene functionalized mesoporous aluminium organophosphonates (En-AlPs) were synthesized by a one-pot condensation process. The mesoporous structure and strong blue emission of En-AlPs were confirmed by the N2 adsorption-desorption isotherms, transmission electron microscopy images and fluorescence spectra. The materials En-AlPs can serve as sensitive chemosensors for various electron deficient nitroderivatives, with the quenching constant and the detection limit up to 1.5×106 M-1 and 0.3 ppm in water solution. More importantly, the materials can be recycled for many times by simply washed with ethanol, showing potential applications in explosives detection.

  5. SWAN - Detection of explosives by means of fast neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Gierlik, M.; Borsuk, S.; Guzik, Z.; Iwanowska, J.; Kaźmierczak, Ł.; Korolczuk, S.; Kozłowski, T.; Krakowski, T.; Marcinkowski, R.; Swiderski, L.; Szeptycka, M.; Szewiński, J.; Urban, A.

    2016-10-01

    In this work we report on SWAN, the experimental, portable device for explosives detection. The device was created as part of the EU Structural Funds Project "Accelerators & Detectors" (POIG.01.01.02-14-012/08-00), with the goal to increase beneficiary's expertise and competencies in the field of neutron activation analysis. Previous experiences and budged limitations lead toward a less advanced design based on fast neutron interactions and unsophisticated data analysis with the emphasis on the latest gamma detection and spectrometry solutions. The final device has been designed as a portable, fast neutron activation analyzer, with the software optimized for detection of carbon, nitrogen and oxygen. SWAN's performance in the role of explosives detector is elaborated in this paper. We demonstrate that the unique features offered by neutron activation analysis might not be impressive enough when confronted with practical demands and expectations of a generic homeland security customer.

  6. Chemical Microsensors For Detection Of Explosives And Chemical Warfare Agents

    SciTech Connect

    Yang, Xiaoguang; Swanson, Basil I.

    2001-11-13

    An article of manufacture is provided including a substrate having an oxide surface layer and a layer of a cyclodextrin derivative chemically bonded to said substrate, said layer of a cyclodextrin derivative adapted for the inclusion of selected compounds, e.g., nitro-containing organic compounds, therewith. Such an article can be a chemical microsensor capable of detecting a resultant mass change from inclusion of the nitro-containing organic compound.

  7. Gas chromatography/ion mobility spectrometry as a hyphenated technique for improved explosives detection and analysis

    NASA Technical Reports Server (NTRS)

    Mercado, AL; Marsden, Paul

    1995-01-01

    Ion Mobility Spectrometry (IMS) is currently being successfully applied to the problem of on-line trace detection of plastic and other explosives in airports and other facilities. The methods of sample retrieval primarily consist of batch sampling for particulate residue on a filter card for introduction into the IMS. The sample is desorbed into the IMS using air as the carrier and negative ions of the explosives are detected, some as an adduct with a reagent ion such as Cl(-). Based on studies and tests conducted by different airport authorities, this method seems to work well for low vapor pressure explosives such as RDX and PETN, as well as TNT that are highly adsorptive and can be found in nanogram quantities on contaminated surfaces. Recently, the changing terrorist threat and the adoption of new marking agents for plastic explosives has meant that the sample introduction and analysis capabilities of the IMS must be enhanced in order to keep up with other detector developments. The IMS has sufficient analytical resolution for a few threat compounds but the IMS Plasmogram becomes increasingly more difficult to interpret when the sample mixture gets more complex.

  8. Ag nanocluster/DNA hybrids: functional modules for the detection of nitroaromatic and RDX explosives.

    PubMed

    Enkin, Natalie; Sharon, Etery; Golub, Eyal; Willner, Itamar

    2014-08-13

    Luminescent Ag nanoclusters (NCs) stabilized by nucleic acids are implemented as optical labels for the detection of the explosives picric acid, trinitrotoluene (TNT), and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). The sensing modules consist of two parts, a nucleic acid with the nucleic acid-stabilized Ag NCs and a nucleic acid functionalized with electron-donating units, including L-DOPA, L-tyrosine and 6-hydroxy-L-DOPA, self-assembled on a nucleic acid scaffold. The formation of donor-acceptor complexes between the nitro-substituted explosives, exhibiting electron-acceptor properties, and the electron-donating sites, associated with the sensing modules, concentrates the explosives in close proximity to the Ag NCs. This leads to the electron-transfer quenching of the luminescence of the Ag NCs by the explosive molecule. The quenching of the luminescence of the Ag NCs provides a readout signal for the sensing process. The sensitivities of the analytical platforms are controlled by the electron-donating properties of the donor substituents, and 6-hydroxy-L-DOPA was found to be the most sensitive donor. Picric acid, TNT, and RDX are analyzed with detection limits corresponding to 5.2 × 10(-12) M, 1.0 × 10(-12) M, and 3.0 × 10(-12) M, respectively, using the 6-hydroxy-L-DOPA-modified Ag NCs sensing module.

  9. Application of photoassisted electrochemical detection to explosive-containing environmental samples.

    PubMed

    Marple, Ronita L; LaCourse, William R

    2005-10-15

    High-performance liquid chromatography (HPLC) with ultraviolet (UV) absorbance and photoassisted electrochemical detection (PAED) is applied to the determination of explosives in groundwater and soil samples. On-line, solid-phase extraction minimizes sample pretreatment, enabling direct analysis of groundwater samples and soil extracts. Soils are extracted using pressurized fluid extraction, which is compared to the Environmental Protection Agency (EPA) sonication method. Limits of detection for explosives in the matrixes of interest are equivalent or superior (i.e., <10 parts-per-trillion for HMX) to those achieved using the EPA method 8330. HPLC-UV-PAED is also shown here to be more broadly applicable, as it is capable of determining nitro compounds of interest (e.g., nitroglycerin) that have poor UV chromophores. Additional selectivity of amine-substituted nitroaromatic explosives is achieved by using a photochemical reactor with a 366-nm wavelength lamp. By coupling reversed-phase columns of different selectivities together, baseline resolution of all 14 standard explosives is demonstrated.

  10. Spatially offset hyperspectral stand-off Raman imaging for explosive detection inside containers

    NASA Astrophysics Data System (ADS)

    Zachhuber, Bernhard; Östmark, Henric; Carlsson, Torgny

    2014-05-01

    A stand-off Raman imaging system for the identification of explosive traces was modified for the analysis of substances in containers which are non-transparent to the human eye. This extends its application from trace detection of threat materials to the investigation of suspicious container content. Despite its limitation to containers that are opaque to the facilitated laser, the combination of Spatial Offset Raman Spectroscopy (SORS) with stand-off Raman imaging allows to collect spectral data from a broad range of different spatial offsets simultaneously. This is a significant advantage over SORS with predefined offset, since the ideal offset is unknown prior to the measurement and depends on the container material as well as the sample content. Here the detection of sodium chlorate in a white plastic bottle is shown. A 532nm-laser (pulse length 5ns, repetition 50kHz) was focused to a diameter of 10mm at 10m. A 1500mm Schmidt-Cassegrain telescope with a 152.4mm diameter collected the scattered light. An edge filter removed inelastically scattered laser light and a liquid crystal tunable filter was used to select 0.25nm broad wavelength ranges between 480 and 720nm. The sample area of 50×50mm was imaged on 1024×1024 pixels of an ICCD camera. For the conducted experiments an ICCD gate time of 5ns was selected and 70μJ-laser pulses were accumulated during 1s for each wavelength.

  11. Development of an FPGA-based multipoint laser pyroshock measurement system for explosive bolts.

    PubMed

    Abbas, Syed Haider; Jang, Jae-Kyeong; Lee, Jung-Ryul; Kim, Zaeill

    2016-07-01

    Pyroshock can cause failure to the objective of an aerospace structure by damaging its sensitive electronic equipment, which is responsible for performing decisive operations. A pyroshock is the high intensity shock wave that is generated when a pyrotechnic device is explosively triggered to separate, release, or activate structural subsystems of an aerospace architecture. Pyroshock measurement plays an important role in experimental simulations to understand the characteristics of pyroshock on the host structure. This paper presents a technology to measure a pyroshock wave at multiple points using laser Doppler vibrometers (LDVs). These LDVs detect the pyroshock wave generated due to an explosive-based pyrotechnical event. Field programmable gate array (FPGA) based data acquisition is used in the study to acquire pyroshock signals simultaneously from multiple channels. This paper describes the complete system design for multipoint pyroshock measurement. The firmware architecture for the implementation of multichannel data acquisition on an FPGA-based development board is also discussed. An experiment using explosive bolts was configured to test the reliability of the system. Pyroshock was generated using explosive excitation on a 22-mm-thick steel plate. Three LDVs were deployed to capture the pyroshock wave at different points. The pyroshocks captured were displayed as acceleration plots. The results showed that our system effectively captured the pyroshock wave with a peak-to-peak magnitude of 303 741 g. The contribution of this paper is a specialized architecture of firmware design programmed in FPGA for data acquisition of large amount of multichannel pyroshock data. The advantages of the developed system are the near-field, multipoint, non-contact, and remote measurement of a pyroshock wave, which is dangerous and expensive to produce in aerospace pyrotechnic tests.

  12. Development of an FPGA-based multipoint laser pyroshock measurement system for explosive bolts

    NASA Astrophysics Data System (ADS)

    Abbas, Syed Haider; Jang, Jae-Kyeong; Lee, Jung-Ryul; Kim, Zaeill

    2016-07-01

    Pyroshock can cause failure to the objective of an aerospace structure by damaging its sensitive electronic equipment, which is responsible for performing decisive operations. A pyroshock is the high intensity shock wave that is generated when a pyrotechnic device is explosively triggered to separate, release, or activate structural subsystems of an aerospace architecture. Pyroshock measurement plays an important role in experimental simulations to understand the characteristics of pyroshock on the host structure. This paper presents a technology to measure a pyroshock wave at multiple points using laser Doppler vibrometers (LDVs). These LDVs detect the pyroshock wave generated due to an explosive-based pyrotechnical event. Field programmable gate array (FPGA) based data acquisition is used in the study to acquire pyroshock signals simultaneously from multiple channels. This paper describes the complete system design for multipoint pyroshock measurement. The firmware architecture for the implementation of multichannel data acquisition on an FPGA-based development board is also discussed. An experiment using explosive bolts was configured to test the reliability of the system. Pyroshock was generated using explosive excitation on a 22-mm-thick steel plate. Three LDVs were deployed to capture the pyroshock wave at different points. The pyroshocks captured were displayed as acceleration plots. The results showed that our system effectively captured the pyroshock wave with a peak-to-peak magnitude of 303 741 g. The contribution of this paper is a specialized architecture of firmware design programmed in FPGA for data acquisition of large amount of multichannel pyroshock data. The advantages of the developed system are the near-field, multipoint, non-contact, and remote measurement of a pyroshock wave, which is dangerous and expensive to produce in aerospace pyrotechnic tests.

  13. Development of an FPGA-based multipoint laser pyroshock measurement system for explosive bolts

    SciTech Connect

    Abbas, Syed Haider; Lee, Jung-Ryul; Jang, Jae-Kyeong; Kim, Zaeill

    2016-07-15

    Pyroshock can cause failure to the objective of an aerospace structure by damaging its sensitive electronic equipment, which is responsible for performing decisive operations. A pyroshock is the high intensity shock wave that is generated when a pyrotechnic device is explosively triggered to separate, release, or activate structural subsystems of an aerospace architecture. Pyroshock measurement plays an important role in experimental simulations to understand the characteristics of pyroshock on the host structure. This paper presents a technology to measure a pyroshock wave at multiple points using laser Doppler vibrometers (LDVs). These LDVs detect the pyroshock wave generated due to an explosive-based pyrotechnical event. Field programmable gate array (FPGA) based data acquisition is used in the study to acquire pyroshock signals simultaneously from multiple channels. This paper describes the complete system design for multipoint pyroshock measurement. The firmware architecture for the implementation of multichannel data acquisition on an FPGA-based development board is also discussed. An experiment using explosive bolts was configured to test the reliability of the system. Pyroshock was generated using explosive excitation on a 22-mm-thick steel plate. Three LDVs were deployed to capture the pyroshock wave at different points. The pyroshocks captured were displayed as acceleration plots. The results showed that our system effectively captured the pyroshock wave with a peak-to-peak magnitude of 303 741 g. The contribution of this paper is a specialized architecture of firmware design programmed in FPGA for data acquisition of large amount of multichannel pyroshock data. The advantages of the developed system are the near-field, multipoint, non-contact, and remote measurement of a pyroshock wave, which is dangerous and expensive to produce in aerospace pyrotechnic tests.

  14. Improved performance comparisons of radioxenon systems for low level releases in nuclear explosion monitoring.

    PubMed

    Haas, Derek A; Eslinger, Paul W; Bowyer, Theodore W; Cameron, Ian M; Hayes, James C; Lowrey, Justin D; Miley, Harry S

    2017-08-14

    The Comprehensive Nuclear-Test-Ban Treaty bans all nuclear tests and mandates development of verification measures to detect treaty violations. One verification measure is detection of radioactive xenon isotopes produced in the fission of actinides. The International Monitoring System (IMS) currently deploys automated radioxenon systems that can detect four radioxenon isotopes. Radioxenon systems with lower detection limits are currently in development. Historically, the sensitivity of radioxenon systems was measured by the minimum detectable concentration for each isotope. In this paper we analyze the response of radioxenon systems using rigorous metrics in conjunction with hypothetical representative releases indicative of an underground nuclear explosion instead of using only minimum detectable concentrations. Our analyses incorporate the impact of potential spectral interferences on detection limits and the importance of measuring isotopic ratios of the relevant radioxenon isotopes in order to improve discrimination from background sources particularly for low-level releases. To provide a sufficient data set for analysis, hypothetical representative releases are simulated every day from the same location for an entire year. The performance of three types of samplers are evaluated assuming they are located at 15 IMS radionuclide stations in the region of the release point. The performance of two IMS-deployed samplers and a next-generation system is compared with proposed metrics for detection and discrimination using representative releases from the nuclear test site used by the Democratic People's Republic of Korea. Copyright © 2017. Published by Elsevier Ltd.

  15. Explosive and chemical threat detection by surface-enhanced Raman scattering: a review.

    PubMed

    Hakonen, Aron; Andersson, Per Ola; Stenbæk Schmidt, Michael; Rindzevicius, Tomas; Käll, Mikael

    2015-09-17

    Acts of terror and warfare threats are challenging tasks for defense agencies around the world and of growing importance to security conscious policy makers and the general public. Explosives and chemical warfare agents are two of the major concerns in this context, as illustrated by the recent Boston Marathon bombing and nerve gas attacks on civilians in the Middle East. To prevent such tragic disasters, security personnel must be able to find, identify and deactivate the threats at multiple locations and levels. This involves major technical and practical challenges, such as detection of ultra-low quantities of hazardous compounds at remote locations for anti-terror purposes and monitoring of environmental sanitation of dumped or left behind toxic substances and explosives. Surface-enhanced Raman scattering (SERS) is one of todays most interesting and rapidly developing methods for label-free ultrasensitive vibrational "fingerprinting" of a variety of molecular compounds. Performance highlights include attomolar detection of TNT and DNT explosives, a sensitivity that few, if any, other technique can compete with. Moreover, instrumentation needed for SERS analysis are becoming progressively better, smaller and cheaper, and can today be acquired for a retail price close to 10,000 US$. This contribution aims to give a comprehensive overview of SERS as a technique for detection of explosives and chemical threats. We discuss the prospects of SERS becoming a major tool for convenient in-situ threat identification and we summarize existing SERS detection methods and substrates with particular focus on ultra-sensitive real-time detection. General concepts, detection capabilities and perspectives are discussed in order to guide potential users of the technique for homeland security and anti-warfare purposes. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Detection of explosive materials by differential reflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Hummel, Rolf E.; Fuller, Anna M.; Schöllhorn, Claus; Holloway, Paul H.

    2006-06-01

    It is shown that traces of 2,4,6-trinitrotoluene (TNT) display strong and distinct structures in differential reflectograms, near 420 and 250nm. These characteristic peaks are not observed from moth balls, nail polish, polyvinyl chloride, starch, soap, paper, epoxy, aspirin, polycarbonate, aspartame, polystyrene, polyester, fertilizer, or sugar, to mention a few substances which may be in or on a suitcase. The described technique for detection of TNT is fast, inexpensive, reliable, and portable and does not require contact with the surveyed substance. Moreover, we have developed a curve recognition program for field applications of the technique. The origin of the spectra is discussed.

  17. 30 CFR 36.46 - Explosion tests of intake and exhaust systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.46 Explosion tests of intake and exhaust systems... with the systems connected to the engine or the systems simulated as connected to the engine. The...) Explosion tests shall be made with the engine at rest and with the flammable natural gas-air mixtures in...

  18. 30 CFR 36.46 - Explosion tests of intake and exhaust systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.46 Explosion tests of intake and exhaust systems... with the systems connected to the engine or the systems simulated as connected to the engine. The...) Explosion tests shall be made with the engine at rest and with the flammable natural gas-air mixtures in...

  19. 30 CFR 36.46 - Explosion tests of intake and exhaust systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.46 Explosion tests of intake and exhaust systems... with the systems connected to the engine or the systems simulated as connected to the engine. The...) Explosion tests shall be made with the engine at rest and with the flammable natural gas-air mixtures in...

  20. 30 CFR 36.46 - Explosion tests of intake and exhaust systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.46 Explosion tests of intake and exhaust systems... with the systems connected to the engine or the systems simulated as connected to the engine. The...) Explosion tests shall be made with the engine at rest and with the flammable natural gas-air mixtures in...

  1. Extended adaptive mutation operator for training an explosive hazard detection prescreener in forward looking infrared imagery

    NASA Astrophysics Data System (ADS)

    Singh, Ravinder; Price, Stanton R.; Anderson, Derek T.

    2015-05-01

    A big challenge with forward looking (FL), versus downward looking, sensors mounted on a ground vehicle for explosive hazard detection (EHD) is they "see everything", on and off road. Even if a technology such as road detection is used, we still have to find and subsequently discriminate targets versus clutter on the road and often road side. When designing an automatic detection system for FL-EHD, we typically make use of a prescreener to identify regions of interest (ROI) instead of searching for targets in an inefficient brute force fashion by extracting complicated features and running expensive classifiers at every possible translation, rotation and scale. In this article, we explore the role of genetic algorithms (GAs), specifically with respect to a new adaptive mutation operator, for learning the parameters of a FL-EHD prescreener in FL infrared (FLIR) imagery. The proposed extended adaptive mutation (eAM) algorithm is driven by fitness similarities in the chromosome population. Currently, our prescreener consists of many free parameters that are empirically chosen by a researcher. The parameters are learned herein using the proposed optimization technique and the performance of the system is measured using receiver operating characteristic (ROC) curves on data obtained from a U.S. Army test site that includes a variety of target types buried at varying depths and from different times of day. The proposed technique is also applied to numerous synthetic fitness landscapes to further assess the effectiveness of the eAM algorithm. Results show that the new adaptive mutation technique converges faster to a better solution than a GA with fixed mutation.

  2. A picosecond laser FAIMS analyzer for detecting ultralow quantities of explosives

    NASA Astrophysics Data System (ADS)

    Chistyakov, Alexander A.; Kotkovskii, Gennadii E.; Sychev, Alexey V.; Odulo, Ivan P.; Bogdanov, Artem S.; Perederiy, Anatoly N.; Spitsyn, Evgeny M.; Shestakov, Alexander V.

    2014-10-01

    A method for detecting ultralow quantities of explosives in air and explosive traces using a state-of-the-art picosecond chip Nd3+:YAG laser has been elaborated. The method combines field asymmetric ion mobility spectrometry (FAIMS) with laser ionization of air samples and laser desorption of analyzed molecules from examined surfaces. Radiation of the fourth harmonic (λ = 266 nm, τpulse = 300 ps, Epulse = 20-150 μJ, ν = 20-300 Hz) was used. The ionization efficiencies for trinitrotoluene (TNT), cyclotrimethylenetrinitramine (RDX), and glyceryl trinitrate (NG) were investigated. The dependences on frequency, pulse energy, peak intensity, and average power for TNT and RDX were determined. It was shown that the optimal peak intensity should be no less than 2•106 W/cm2; at lower peak intensities, the increase of the average laser power in the interval 5-15 mW enhanced the ion signal. The results of detection of TNT, RDX, and NG vapors under these conditions were compared with the results obtained using nanosecond laser excitation. The detected ion signals for all explosives were shown to be two- to threefold higher in the case of picosecond excitation. The FAIMS laser desorption regime was developed where a laser beam exiting the detector after removal of a special plug was used. The results of TNT and RDX detection are presented. The chip Nd3+:YAG laser has a small emitter and a consumed electric power of 25 W. The estimated detection threshold of the prototype picosecond laser FAIMS analyzer of explosives is (1-3)•10-15g/cm3 for TNT vapors.

  3. Development of chemiresponsive sensors for detection of common homemade explosives.

    SciTech Connect

    Brotherton, Christopher M.; Wheeler, David Roger

    2012-05-01

    Field-structured chemiresistors (FSCRs) are polymer based sensors that exhibit a resistance change when exposed to an analyte of interest. The amount of resistance change depends on the polymer-analyte affinity. The affinity can be manipulated by modifying the polymer within the FSCRs. In this paper, we investigate the ability of chemically modified FSCRs to sense hydrogen peroxide vapor. Five chemical species were chosen based on their hydrophobicity or reactivity with hydrogen peroxide. Of the five investigated, FSCRs modified with allyl methyl sulfide exhibited a significant response to hydrogen peroxide vapor. Additionally, these same FSCRs were evaluated against a common interferrant in hydrogen peroxide detection, water vapor. For the conditions investigated, the FSCRs modified with allyl methyl sulfide were able to successfully distinguish between water vapor and hydrogen peroxide vapor. A portion of the results presented here will be submitted to the Sensors and Actuators journal.

  4. Rapid and sensitive measurements of nitrate ester explosives using microchip electrophoresis with electrochemical detection.

    PubMed

    Piccin, Evandro; Dossi, Nicolò; Cagan, Avi; Carrilho, Emanuel; Wang, Joseph

    2009-03-01

    This article describes an effective microchip protocol based on electrophoretic-separation and electrochemical detection for highly sensitive and rapid measurements of nitrate ester explosives, including ethylene glycol dinitrate (EGDN), pentaerythritol tetranitrate (PETN), propylene glycol dinitrate (PGDN) and glyceryl trinitrate (nitroglycerin, NG). Factors influencing the separation and detection processes were examined and optimized. Under the optimal separation conditions obtained using a 15 mM borate buffer (pH 9.2) containing 20 mM SDS, and applying a separation voltage of 1500 V, the four nitrate ester explosives were separated within less than 3 min. The glassy-carbon amperometric detector (operated at -0.9 V vs. Ag/AgCl) offers convenient cathodic detection down to the picogram level, with detection limits of 0.5 ppm and 0.3 ppm for PGDN and for NG, respectively, along with good repeatability (RSD of 1.8-2.3%; n = 6) and linearity (over the 10-60 ppm range). Such effective microchip operation offers great promise for field screening of nitrate ester explosives and for supporting various counter-terrorism surveillance activities.

  5. Mesoporous aluminium organophosphonates: a reusable chemsensor for the detection of explosives

    SciTech Connect

    Li, Dongdong Yu, Xiang

    2016-07-15

    Rapid and sensitive detection of explosives is in high demand for homeland security and public safety. In this work, electron-rich of anthracene functionalized mesoporous aluminium organophosphonates (En-AlPs) were synthesized by a one-pot condensation process. The mesoporous structure and strong blue emission of En-AlPs were confirmed by the N{sub 2} adsorption-desorption isotherms, transmission electron microscopy images and fluorescence spectra. The materials En-AlPs can serve as sensitive chemosensors for various electron deficient nitroderivatives, with the quenching constant and the detection limit up to 1.5×10{sup 6} M{sup −1} and 0.3 ppm in water solution. More importantly, the materials can be recycled for many times by simply washed with ethanol, showing potential applications in explosives detection. - Graphical abstract: Electron-rich of anthracene functionalized mesoporous aluminium organophosphonates can serve as sensitive and recycled chemosensors for nitroderivatives with the quenching constant up to 1.5×10{sup 6} M{sup −1} in water solution. Display Omitted - Highlights: • Anthracene functionalized mesoporous aluminium organophosphonates were synthesized. • The materials serve as sensitive chemosensors for nitroderivatives. • The materials can be recycled for many times by simply washed with ethanol. • The materials show potential applications in explosives detection.

  6. Tracker Mindset for Explosive Device Emplacement Indicator Detection

    DTIC Science & Technology

    2014-09-01

    in the Old City. We discussed the tensions, manpower, camera systems, catalysts , and how few really want trouble. Day 7 (S): Walked around the Old...TV, you tend to think it is okay. Then you switch to HD and realize how much detail you were missing. When you first flip back to regular TV you

  7. Classification, Characterization, and Automatic Detection of Volcanic Explosion Complexity using Infrasound

    NASA Astrophysics Data System (ADS)

    Fee, D.; Matoza, R. S.; Lopez, T. M.; Ruiz, M. C.; Gee, K.; Neilsen, T.

    2014-12-01

    Infrasound signals from volcanoes represent the acceleration of the atmosphere during an eruption and have traditionally been classified into two end members: 1) "explosions" consisting primarily of a high amplitude bi-polar pressure pulse that lasts a few to tens of seconds, and 2) "tremor" or "jetting" consisting of sustained, broadband infrasound lasting for minutes to hours. However, as our knowledge and recordings of volcanic eruptions have increased, significant infrasound signal diversity has been found. Here we focus on identifying and characterizing trends in volcano infrasound data to help better understand eruption processes. We explore infrasound signal metrics that may be used to quantitatively compare, classify, and identify explosive eruptive styles by systematic analysis of the data. We analyze infrasound data from short-to-medium duration explosive events recorded during recent infrasound deployments at Sakurajima Volcano, Japan; Karymsky Volcano, Kamchatka; and Tungurahua Volcano, Ecuador. Preliminary results demonstrate that a great variety of explosion styles and flow behaviors from these volcanoes can produce relatively similar bulk acoustic waveform properties, such as peak pressure and event duration, indicating that accurate classification of physical eruptive styles requires more advanced field studies, waveform analyses, and modeling. Next we evaluate the spectral and temporal properties of longer-duration tremor and jetting signals from large eruptions at Tungurahua Volcano; Redoubt Volcano, Alaska; Augustine Volcano, Alaska; and Nabro Volcano, Eritrea, in an effort to identify distinguishing infrasound features relatable to eruption features. We find that unique transient signals (such as repeated shocks) within sustained infrasound signals can provide critical information on the volcanic jet flow and exhibit a distinct acoustic signature to facilitate automatic detection. Automated detection and characterization of infrasound associated

  8. An excimer-based FAIMS detector for detection of ultra-low concentration of explosives

    NASA Astrophysics Data System (ADS)

    Chistyakov, Alexander A.; Kotkovskii, Gennadii E.; Sychev, Alexey V.; Perederiy, Anatoly N.; Budovich, V. L.; Budovich, D. V.

    2014-05-01

    A new method of explosives detection based on the field asymmetric ion mobility spectrometry (FAIMS) and ionization by an excimer emitter has been developed jointly with a portable detector. The excimer emitter differs from usual UVionizing lamps by mechanism of emitting, energy and spectral characteristics. The developed and applied Ar2-excimer emitter has the working volume of 1 cm3, consuming power 0.6 W, the energy of photons of about 10 eV (λ=126 nm), the FWHM radiation spectrum of 10 nm and emits more than 1016 photon per second that is two orders of magnitude higher than UV-lamp of the same working volume emits. This also exceeds by an order of magnitude the quantity of photons per second for 10-Hz solid state YAG:Nd3+ - laser of 1mJ pulse energy at λ=266 nm that is also used to ionize the analyte. The Ar2-excimer ionizes explosives by direct ionization mechanism and through ionization of organic impurities. The developed Ar2-excimer-based ion source does not require cooling due to low level discharge current of emitter and is able to work with no repair more than 10000 hrs. The developed excimer-based explosives detector can analyze both vapors and traces of explosives. The FAIMS spectra of the basic types of explosives like trinitrotoluene (TNT), cyclotrimethylenetrinitramine (RDX), dinitrotoluene (DNT), cyclotetramethylenetetranitramine (HMX), nitroglycerine (NG), pentaerythritol tetranitrate (PETN) under Ar2-excimer ionization are presented. The detection limit determined for TNT vapors equals 1x10-14 g/cm3, for TNT traces- 100 pg.

  9. A new 40 MA ranchero explosive pulsed power system

    SciTech Connect

    Goforth, James; Herrera, Dennis; Oona, Hank; Torres, David; Atchison, W L; Colgate, S A; Griego, J R; Guzik, J; Holtkamp, D B; Idzorek, G; Kaul, A; Kirkpatrick, R C; Menikoff, R; Reardon, P T; Reinovsky, R E; Rousculp, C L; Sgro, A G; Tabaka, L J; Tierney, T E; Watt, R G

    2009-01-01

    We are developing a new high explosive pulsed power (HEPP) system based on the 1.4 m long Ranchero generator which was developed in 1999 for driving solid density z-pinch loads. The new application requires approximately 40 MA to implode similar liners, but the liners cannot tolerate the 65 {micro}s, 3 MA current pulse associated with delivering the initial magnetic flux to the 200 nH generator. To circumvent this problem, we have designed a system with an internal start switch and four explosively formed fuse (EFF) opening switches. The integral start switch is installed between the output glide plane and the armature. It functions in the same manner as a standard input crowbar switch when armature motion begins, but initially isolates the load. The circuit is completed during the flux loading phase using post hole convolutes. Each convolute attaches the inner (coaxial) output transmission line to the outside of the outer coax through a penetration of the outer coaxial line. The attachment is made with the conductor of an EFF at each location. The EFFs conduct 0.75 MA each, and are actuated just after the internal start switch connects to the load. EFFs operating at these parameters have been tested in the past. The post hole convolutes must withstand as much as 80 kV at peak dl/dt during the Ranchero load current pulse. We describe the design of this new HEPP system in detail, and give the experimental results available at conference time. In addition, we discuss the work we are doing to test the upper current limits of a single standard size Ranchero module. Calculations have suggested that the generator could function at up to {approx}120 MA, the rule of thumb we follow (1 MA/cm) suggests 90 MA, and simple flux compression calculations, along with the {approx}4 MA seed current available from our capacitor bank, suggests 118 MA is the currently available upper limit.

  10. Formation of pyrene excimers in mesoporous ormosil thin films for visual detection of nitro-explosives.

    PubMed

    Beyazkilic, Pinar; Yildirim, Adem; Bayindir, Mehmet

    2014-04-09

    We report the preparation of mesoporous thin films with bright pyrene excimer emission and their application in visual and rapid detection of nitroaromatic explosive vapors. The fluorescent films were produced by physically encapsulating pyrene molecules in the organically modified silica (ormosil) networks which were prepared via a facile template-free sol-gel method. Formation and stability of pyrene excimer emission were investigated in both porous and nonporous ormosil thin films. Excimer emission was significantly brighter and excimer formation ability was more stable in porous films compared to nonporous films. Rapid and selective quenching was observed in the excimer emission against vapors of nitroaromatic molecules; trinitrotoluene (TNT), dinitrotoluene (DNT), and nitrobenzene (NB). Fluorescence quenching of the films can be easily observed under UV light, enabling the naked-eye detection of nitro-explosives. Furthermore, excimer emission signal can be recovered after quenching and the films can be reused at least five times.

  11. Development of graphene nanoplatelet embedded polymer microcantilever for vapour phase explosive detection applications

    SciTech Connect

    Ray, Prasenjit; Pandey, Swapnil; Ramgopal Rao, V.

    2014-09-28

    In this work, a graphene based strain sensor has been reported for explosive vapour detection applications by exploiting the piezoresistive property of graphene. Instead of silicon based cantilevers, a low cost polymeric micro-cantilever platform has been used to fabricate this strain sensor by embedding the graphene nanoplatelet layer inside the beam. The fabricated devices were characterized for their mechanical and electromechanical behaviour. This device shows a very high gauge factor which is around ~144. Also the resonant frequency of these cantilevers is high enough such that the measurements are not affected by environmental noise. These devices have been used in this work for reliable detection of explosive vapours such as 2,4,6-Trinitrotoluene down to parts-per-billion concentrations in ambient conditions.

  12. Colorimetric Sensor Arrays for the Detection and Identification of Chemical Weapons and Explosives.

    PubMed

    Kangas, Michael J; Burks, Raychelle M; Atwater, Jordyn; Lukowicz, Rachel M; Williams, Pat; Holmes, Andrea E

    2017-03-04

    There is a significant demand for devices that can rapidly detect chemical-biological-explosive (CBE) threats on-site and allow for immediate responders to mitigate spread, risk, and loss. The key to an effective reconnaissance mission is a unified detection technology that analyzes potential threats in real time. In addition to reviewing the current state of the art in the field, this review illustrates the practicality of colorimetric arrays composed of sensors that change colors in the presence of analytes. This review also describes an outlook toward future technologies, and describes how they could possibly be used in areas such as war zones to detect and identify hazardous substances.

  13. Laser photoacoustic spectroscopy helps fight terrorism: High sensitivity detection of chemical Warfare Agent and explosives

    NASA Astrophysics Data System (ADS)

    Patel, C. K. N.

    2008-01-01

    Tunable laser photoacoustic spectroscopy is maturing rapidly in its applications to real world problems. One of the burning problems of the current turbulent times is the threat of terrorist acts against civilian population. This threat appears in two distinct forms. The first is the potential release of chemical warfare agents (CWA), such as the nerve agents, in a crowded environment. An example of this is the release of Sarin by Aum Shinrikyo sect in a crowded Tokyo subway in 1995. An example of the second terrorist threat is the ever-present possible suicide bomber in crowded environment such as airports, markets and large buildings. Minimizing the impact of both of these threats requires early detection of the presence of the CWAs and explosives. Photoacoustic spectroscopy is an exquisitely sensitive technique for the detection of trace gaseous species, a property that Pranalytica has extensively exploited in its CO2 laser based commercial instrumentation for the sub-ppb level detection of a number of industrially important gases including ammonia, ethylene, acrolein, sulfur hexafluoride, phosphine, arsine, boron trichloride and boron trifluoride. In this presentation, I will focus, however, on our recent use of broadly tunable single frequency high power room temperature quantum cascade lasers (QCL) for the detection of the CWAs and explosives. Using external grating cavity geometry, we have developed room temperature QCLs that produce continuously tunable single frequency CW power output in excess of 300 mW at wavelengths covering 5 μm to 12 μm. I will present data that show a CWA detection capability at ppb levels with false alarm rates below 1:108. I will also show the capability of detecting a variety of explosives at a ppb level, again with very low false alarm rates. Among the explosives, we have demonstrated the capability of detecting homemade explosives such as triacetone triperoxide and its liquid precursor, acetone which is a common household

  14. Laser methods for detecting explosive residues on surfaces of distant objects

    SciTech Connect

    Skvortsov, L A

    2012-01-31

    The basic methods of laser spectroscopy that are used for standoff detection and identification of explosive traces in the form of particles on the surfaces of objects tested under real or close-toreal conditions are briefly considered. The advantages and drawbacks of all methods are discussed and their characteristics are compared. Particular attention has been given to the prospects of development and practical implementation of the technologies discussed and justification of their most preferred applications. (review)

  15. Narrow-Band Processing and Fusion Approach for Explosive Hazard Detection in FLGPR

    DTIC Science & Technology

    2011-01-01

    Gabor filter texture feature The features that we measure for each alarm location in each of the 15 images are Gabor filter -based. The Gabor filter ...with a classifier that uses complex-valued Gabor filter responses as the features. We then fuse 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE...explosive hazards detection, ground-penetrating radar, narrow-band processing, false alarm rejection, fusion, Gabor filters Timothy C. Havens, James M

  16. Security training symposium: Meeting the challenge: Firearms and explosives recognition and detection

    SciTech Connect

    Not Available

    1990-09-01

    These conference proceedings have been prepared in support of the US Nuclear Regulatory Commission's Security Training Symposium on Meeting the Challenge -- Firearms and Explosives Recognition and Detection,'' November 28 through 30, 1989, in Bethesda, Maryland. This document contains the edited transcripts of the guest speakers. It also contains some of the speakers' formal papers that were distributed and some of the slides that were shown at the symposium (Appendix A).

  17. Progressing the analysis of Improvised Explosive Devices: Comparative study for trace detection of explosive residues in handprints by Raman spectroscopy and liquid chromatography.

    PubMed

    Zapata, Félix; de la Ossa, Mª Ángeles Fernández; Gilchrist, Elizabeth; Barron, Leon; García-Ruiz, Carmen

    2016-12-01

    Concerning the dreadful global threat of terrorist attacks, the detection of explosive residues in biological traces and marks is a current need in both forensics and homeland security. This study examines the potential of Raman microscopy in comparison to liquid chromatography (ion chromatography (IC) and reversed-phase high performance liquid chromatography (RP-HPLC)) to detect, identify and quantify residues in human handmarks of explosives and energetic salts commonly used to manufacture Improvised Explosive Devices (IEDs) including dynamite, ammonium nitrate, single- and double-smokeless gunpowders and black powder. Dynamite, ammonium nitrate and black powder were detected through the identification of the energetic salts by Raman spectroscopy, their respective anions by IC, and organic components by RP-HPLC. Smokeless gunpowders were not detected, either by Raman spectroscopy or the two liquid chromatography techniques. Several aspects of handprint collection, sample treatment and a critical comparison of the identification of compounds by both techniques are discussed. Raman microscopy and liquid chromatography were shown to be complementary to one another offering more comprehensive information for trace explosives analysis.

  18. Detecting hidden volcanic explosions from Mt. Cleveland Volcano, Alaska with infrasound and ground-couples airwaves

    USGS Publications Warehouse

    De Angelis, Slivio; Fee, David; Haney, Matthew; Schneider, David

    2012-01-01

    In Alaska, where many active volcanoes exist without ground-based instrumentation, the use of techniques suitable for distant monitoring is pivotal. In this study we report regional-scale seismic and infrasound observations of volcanic activity at Mt. Cleveland between December 2011 and August 2012. During this period, twenty explosions were detected by infrasound sensors as far away as 1827 km from the active vent, and ground-coupled acoustic waves were recorded at seismic stations across the Aleutian Arc. Several events resulting from the explosive disruption of small lava domes within the summit crater were confirmed by analysis of satellite remote sensing data. However, many explosions eluded initial, automated, analyses of satellite data due to poor weather conditions. Infrasound and seismic monitoring provided effective means for detecting these hidden events. We present results from the implementation of automatic infrasound and seismo-acoustic eruption detection algorithms, and review the challenges of real-time volcano monitoring operations in remote regions. We also model acoustic propagation in the Northern Pacific, showing how tropospheric ducting effects allow infrasound to travel long distances across the Aleutian Arc. The successful results of our investigation provide motivation for expanded efforts in infrasound monitoring across the Aleutians and contributes to our knowledge of the number and style of vulcanian eruptions at Mt. Cleveland.

  19. Investigation of common fluorophores for the detection of nitrated explosives by fluorescence quenching.

    PubMed

    Meaney, Melissa S; McGuffin, Victoria L

    2008-03-03

    Previous studies have indicated that nitrated explosives may be detected by fluorescence quenching of pyrene and related compounds. The use of pyrene, however, invokes numerous health and waste disposal hazards. In the present study, ten safer fluorophores are identified for quenching detection of target nitrated compounds. Initially, Stern-Volmer constants are measured for each fluorophore with nitrobenzene and 4-nitrotoluene to determine the sensitivity of the quenching interaction. For quenching constants greater than 50 M(-1), sensitivity and selectivity are investigated further using an extended set of target quenchers. Nitromethane, nitrobenzene, 4-nitrotoluene, and 2,6-dinitrotoluene are chosen to represent nitrated explosives and their degradation products; aniline, benzoic acid, and phenol are chosen to represent potential interfering compounds. Among the fluorophores investigated, purpurin, malachite green, and phenol red demonstrate the greatest sensitivity and selectivity for nitrated compounds. Correlation of the quenching rate constants for these fluorophores to Rehm-Weller theory suggests an electron-transfer quenching mechanism. As a result of the large quenching constants, purpurin, malachite green, and phenol red are the most promising for future detection of nitrated explosives via fluorescence quenching.

  20. 30 CFR 36.46 - Explosion tests of intake and exhaust systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for a cooling box designed to act as a flame arrester, in which case MSHA will prescribe the test... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Explosion tests of intake and exhaust systems...-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.46 Explosion tests of intake and exhaust systems...

  1. Metal-Organic Polyhedra-Coated Si Nanowires for the Sensitive Detection of Trace Explosives.

    PubMed

    Cao, Anping; Zhu, Wei; Shang, Jin; Klootwijk, Johan H; Sudhölter, Ernst J R; Huskens, Jurriaan; de Smet, Louis C P M

    2017-01-11

    Surface-modified silicon nanowire-based field-effect transistors (SiNW-FETs) have proven to be a promising platform for molecular recognition in miniature sensors. In this work, we present a novel nanoFET device for the sensitive and selective detection of explosives based on affinity layers of metal-organic polyhedra (MOPs). The judicious selection of the geometric and electronic characteristics of the assembly units (organic ligands and unsaturated metal site) embedded within the MOP cage allowed for the formation of multiple charge-transfer (CT) interactions to facilitate the selective explosive inclusion. Meanwhile, the host-stabilized CT complex inside the cage acted as an effective molecular gating element to strongly modulate the electrical conductance of the silicon nanowires. By grafting the MOP cages onto a SiNW-FET device, the resulting sensor showed a good electrical sensing capability to various explosives, especially 2,4,6-trinitrotoluene (TNT), with a detection limit below the nanomolar level. Importantly, coupling MOPs-which have tunable structures and properties-to SiNW-based devices may open up new avenues for a wide range of sensing applications, addressing various target analytes.

  2. D-D neutron-scatter measurements for a novel explosives-detection technique

    NASA Astrophysics Data System (ADS)

    Lehnert, A. L.; Flaska, M.; Kearfott, K. J.

    2012-11-01

    A series of measurements has been completed that provides a benchmark for Monte Carlo simulations related to an algorithm for explosives detection using active neutron interrogation. The original simulations used in algorithm development, based on land-sea cargo container screening, have been adapted to model active neutron interrogation of smaller targets. These smaller-scale measurements are easily accomplished in a laboratory environment. Benchmarking measurements were completed using a D-D neutron generator, two neutron detectors, as well as a variety of scatter media including the explosives surrogate melamine (C3H6N6). Measurements included 90°, 120°, or 150° neutron scatter geometries and variations in source-detector shielding, target presence, and target identity. Comparisons of measured and simulated neutron fluxes were similar, with correlation coefficients greater than 0.7. The simulated detector responses also matched very closely with the measured photon and neutron pulse height distributions, with correlation coefficients exceeding 0.9. The experiments and simulations also provided insight into potential application of the new method to the problem of explosives detection in small objects such as luggage and small packages.

  3. Detection of buried mines and explosive objects using dual-band thermal imagery

    NASA Astrophysics Data System (ADS)

    Lepley, Jason J.; Averill, Michael T.

    2011-06-01

    We demonstrate the development and use of novel image processing methods to combine dual-band (MWIR and LWIR) images from SELEX GALILEO's Condor II camera to extract characteristics of observed scenes comprising buried mines and explosive objects. We discuss the development of a statistical processing technique to extract the different characteristics of the two bands. We further present a statistical classifier used to detect targets on independently trained images with a high detection probability and low false negative rates and discuss methods to mitigate the impact of false positives through the selective processing of image regions and the contextual interpretation of the scene content.

  4. Detection of Nitroaromatic Explosives Using an Electrical- Electrochemical and Optical Hybrid Sensor

    NASA Astrophysics Data System (ADS)

    Diaz Aguilar, Alvaro

    In today's world there is a great need for sensing methods as tools to provide critical information to solve today's problems in security applications. Real time detection of trace chemicals, such as explosives, in a complex environment containing various interferents using a portable device that can be reliably deployed in a field has been a difficult challenge. A hybrid nanosensor based on the electrochemical reduction of trinitrotoluene (TNT) and the interaction of the reduction products with conducting polymer nanojunctions in an ionic liquid was fabricated. The sensor simultaneously measures the electrochemical current from the reduction of TNT and the conductance change of the polymer nanojunction caused from the reduction product. The hybrid detection mechanism, together with the unique selective preconcentration capability of the ionic liquid, provides a selective, fast, and sensitive detection of TNT. The sensor, in its current form, is capable of detecting parts per trillion level TNT in the presence of various interferents within a few minutes. A novel hybrid electrochemical-colorimetric (EC-C) sensing platform was also designed and fabricated to meet these challenges. The hybrid sensor is based on electrochemical reactions of trace explosives, colorimetric detection of the reaction products, and unique properties of the explosives in an ionic liquid (IL). This approach affords not only increased sensitivity but also selectivity as evident from the demonstrated null rate of false positives and low detection limits. Using an inexpensive webcam a detection limit of part per billion in volume (ppbV) has been achieved and demonstrated selective detection of explosives in the presence of common interferences (perfumes, mouth wash, cleaners, petroleum products, etc.). The works presented in this dissertation, were published in the Journal of the American Chemical Society (JACS, 2009) and Nano Letters (2010), won first place in the National Defense Research

  5. Quantitative Detection of Trace Explosive Vapors by Programmed Temperature Desorption Gas Chromatography-Electron Capture Detector

    PubMed Central

    Field, Christopher R.; Lubrano, Adam; Woytowitz, Morgan; Giordano, Braden C.; Rose-Pehrsson, Susan L.

    2014-01-01

    The direct liquid deposition of solution standards onto sorbent-filled thermal desorption tubes is used for the quantitative analysis of trace explosive vapor samples. The direct liquid deposition method yields a higher fidelity between the analysis of vapor samples and the analysis of solution standards than using separate injection methods for vapors and solutions, i.e., samples collected on vapor collection tubes and standards prepared in solution vials. Additionally, the method can account for instrumentation losses, which makes it ideal for minimizing variability and quantitative trace chemical detection. Gas chromatography with an electron capture detector is an instrumentation configuration sensitive to nitro-energetics, such as TNT and RDX, due to their relatively high electron affinity. However, vapor quantitation of these compounds is difficult without viable vapor standards. Thus, we eliminate the requirement for vapor standards by combining the sensitivity of the instrumentation with a direct liquid deposition protocol to analyze trace explosive vapor samples. PMID:25145416

  6. Quantitative detection of trace explosive vapors by programmed temperature desorption gas chromatography-electron capture detector.

    PubMed

    Field, Christopher R; Lubrano, Adam; Woytowitz, Morgan; Giordano, Braden C; Rose-Pehrsson, Susan L

    2014-07-25

    The direct liquid deposition of solution standards onto sorbent-filled thermal desorption tubes is used for the quantitative analysis of trace explosive vapor samples. The direct liquid deposition method yields a higher fidelity between the analysis of vapor samples and the analysis of solution standards than using separate injection methods for vapors and solutions, i.e., samples collected on vapor collection tubes and standards prepared in solution vials. Additionally, the method can account for instrumentation losses, which makes it ideal for minimizing variability and quantitative trace chemical detection. Gas chromatography with an electron capture detector is an instrumentation configuration sensitive to nitro-energetics, such as TNT and RDX, due to their relatively high electron affinity. However, vapor quantitation of these compounds is difficult without viable vapor standards. Thus, we eliminate the requirement for vapor standards by combining the sensitivity of the instrumentation with a direct liquid deposition protocol to analyze trace explosive vapor samples.

  7. Comparison of spatial frequency domain features for the detection of side attack explosive ballistics in synthetic aperture acoustics

    NASA Astrophysics Data System (ADS)

    Dowdy, Josh; Anderson, Derek T.; Luke, Robert H.; Ball, John E.; Keller, James M.; Havens, Timothy C.

    2016-05-01

    Explosive hazards in current and former conflict zones are a threat to both military and civilian personnel. As a result, much effort has been dedicated to identifying automated algorithms and systems to detect these threats. However, robust detection is complicated due to factors like the varied composition and anatomy of such hazards. In order to solve this challenge, a number of platforms (vehicle-based, handheld, etc.) and sensors (infrared, ground penetrating radar, acoustics, etc.) are being explored. In this article, we investigate the detection of side attack explosive ballistics via a vehicle-mounted acoustic sensor. In particular, we explore three acoustic features, one in the time domain and two on synthetic aperture acoustic (SAA) beamformed imagery. The idea is to exploit the varying acoustic frequency profile of a target due to its unique geometry and material composition with respect to different viewing angles. The first two features build their angle specific frequency information using a highly constrained subset of the signal data and the last feature builds its frequency profile using all available signal data for a given region of interest (centered on the candidate target location). Performance is assessed in the context of receiver operating characteristic (ROC) curves on cross-validation experiments for data collected at a U.S. Army test site on different days with multiple target types and clutter. Our preliminary results are encouraging and indicate that the top performing feature is the unrolled two dimensional discrete Fourier transform (DFT) of SAA beamformed imagery.

  8. Evaluation and Improvement of Spectral Features for the Detection of Buried Explosive Hazards Using Forward-Looking Ground-Penetrating Radar

    DTIC Science & Technology

    2012-07-01

    ROC) curves, and Section 5 is the conclusion. 1.1 ALARIC FLGPR The FLGPR images we use in this paper were collected using a system called ALARIC ...classifier Figure 1. FLGPR explosive hazard detection block diagram The ALARIC system is equipped with an accurate GPS system. As a result, it...the 32 T/R images which adaptively suppresses artifacts such as sidelobes and aliasing ghosts. Table 1 contains the parameters of the ALARIC FLGPR

  9. Seal Monitoring System for an Explosive Containment Vessel

    SciTech Connect

    Pastrnak, J W; Henning, C D; Switzer, V A; Grundler, W; Holloway, J R; Morrison, J J; Hafner, R S

    2004-06-28

    Researchers at Lawrence Livermore National Laboratory are developing high-performance explosive firing vessels to contain (one time) explosive detonations that contain toxic metals and hazardous gases. The filament-wound polymer composite vessels are designed to contain up to 80 lb (TNT equivalent) explosive in a 2-meter sphere without leakage. So far, two half-scale (1-meter diameter) vessels have been tested; one up to 150% of the design explosive limit. Peak dynamic pressures in excess of 280 MPa (40 Ksi) in the vessel were calculated and measured. Results indicated that there was a small amount of gas and particle leakage past the first two of the seven o-ring seals. However, the remaining five seals prevented any transient leakage of the toxic gases and particulates out of the vessel. These results were later confirmed by visual inspection and particulate analysis of swipes taken from the sealing surfaces.

  10. Fast neutron sensor for detection of explosives and chemical warfare agents.

    PubMed

    Valkovic, Vladivoj; Sudac, Davorin; Matika, Dario

    2010-01-01

    Once the presence of the anomaly on the bottom of the shallow coastal sea water has been confirmed it is necessary to establish if it contains explosive or chemical warfare charge. We propose that this be performed by using neutron sensor installed within an underwater vessel. When positioned above the object, or to its side, the system can inspect the object for the presence of the threat materials by using alpha particle tagged neutrons from the sealed tube d+t neutron generator.

  11. Demonstration of submersible high-throughput microfluidic immunosensors for underwater explosives detection.

    PubMed

    Adams, André A; Charles, Paul T; Deschamps, Jeffrey R; Kusterbeck, Anne W

    2011-11-15

    Significant security threats posed by highly energetic nitroaromatic compounds in aquatic environments and the demilitarization and pending cleanup of areas previously used for munitions manufacture and storage represent a challenge for less expensive, faster, and more sensitive systems capable of analyzing groundwater and seawater samples for trace levels of explosive materials. Presented here is an inexpensive high throughput microfluidic immunosensor (HTMI) platform intended for the rapid, highly selective quantitation of nitroaromatic compounds in the field. Immunoaffinity and fluorescence detection schemes were implemented in tandem on a novel microfluidic device containing 39 parallel microchannels that were 500 μm tall, 250 μm wide, and 2.54 cm long with covalently tethered antibodies that was engineered for high-throughput high-volume sample processing. The devices were produced via a combination of high precision micromilling and hot embossing. Mass transfer limitations were found in conventional microsystems and were minimized due to higher surface area to volume ratios that exceeded those possessed by conventional microdevices and capillaries. Until now, these assays were limited to maximum total volume flow rates of ~1 mL/min due in part to kinetics and high head pressures of single microchannels. In the design demonstrated here, highly parallelized microchannels afforded up to a 100-fold increase in total volume flow rate while maintaining favorable kinetic constraints for efficient antigen-antibody interaction. The assay employed total volume throughput of up to 6 mL/min while yielding signal-to-noise ratios of >15 in all cases. In addition to samples being processed up to 60 times faster than in conventional displacement-based immunoassays, the current system was capable of quantitating 0.01 ng/mL TNT samples without implementing offline preconcentration, thereby, demonstrating the ability to improve sensitivity by as much as 2 orders of magnitude

  12. Detection and identification of explosive particles in fingerprints using attenuated total reflection-Fourier transform infrared spectromicroscopy.

    PubMed

    Mou, Yongyan; Rabalais, J Wayne

    2009-07-01

    The application of attenuated total reflection (ATR)-Fourier transform infrared (FTIR) spectromicroscopy for detection of explosive particles in fingerprints is described. The combined functions of ATR-FTIR spectromicroscopy are visual searching of particles in fingerprints and measuring the FTIR spectra of the particles. These functions make it possible to directly identify whether a suspect has handled explosives from the fingerprints alone. Particles in explosive contaminated fingerprints are either ingredients of the explosives, finger residues, or other foreign materials. These cannot normally be discriminated by their morphology alone. ATR-FTIR spectra can provide both particle morphology and composition. Fingerprints analyzed by ATR-FTIR can be used for further analysis and identification because of its non-destructive character. Fingerprints contaminated with three different types of explosives, or potential explosives, have been analyzed herein. An infrared spectral library was searched in order to identify the explosive residues. The acquired spectra are compared to those of finger residue alone, in order to differentiate such residue from explosive residue.

  13. Chemical and explosive detection with long-wave infrared laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Jin, Feng; Trivedi, Sudhir B.; Yang, Clayton S.; Brown, Ei E.; Kumi-Barimah, Eric; Hommerich, Uwe H.; Samuels, Alan C.

    2016-05-01

    Conventional laser induced breakdown spectroscopy (LIBS) mostly uses silicon-based detectors and measures the atomic emission in the UV-Vis-NIR (UVN) region of the spectrum. It can be used to detect the elements in the sample under test, such as the presence of lead in the solder for electronics during RoHS compliance verification. This wavelength region, however, does not provide sufficient information on the bonding between the elements, because the molecular vibration modes emit at longer wavelength region. Measuring long-wave infrared spectrum (LWIR) in a LIBS setup can instead reveal molecular composition of the sample, which is the information sought in applications including chemical and explosive detection and identification. This paper will present the work and results from the collaboration of several institutions to develop the methods of LWIR LIBS for chemical/explosive/pharmaceutical material detection/identification, such as DMMP and RDX, as fast as using a single excitation laser pulse. In our latest LIBS setup, both UVN and LWIR spectra can be collected at the same time, allowing more accurate detection and identification of materials.

  14. Portable modular detection system

    DOEpatents

    Brennan, James S.; Singh, Anup; Throckmorton, Daniel J.; Stamps, James F.

    2009-10-13

    Disclosed herein are portable and modular detection devices and systems for detecting electromagnetic radiation, such as fluorescence, from an analyte which comprises at least one optical element removably attached to at least one alignment rail. Also disclosed are modular detection devices and systems having an integrated lock-in amplifier and spatial filter and assay methods using the portable and modular detection devices.

  15. STUDY OF THERMAL SENSITIVITY AND THERMAL EXPLOSION VIOLENCE OF ENERGETIC MATERIALS IN THE LLNL ODTX SYSTEM

    SciTech Connect

    HSU, P C; Hust, G; May, C; Howard, M; Chidester, S K; Springer, H K; Maienschein, J L

    2011-08-03

    Some energetic materials may explode at fairly low temperatures and the violence from thermal explosion may cause a significant damage. Thus it is important to understand the response of energetic materials to thermal insults for safe handling and storage of energetic materials. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory can measure times to explosion, lowest explosion temperatures, and determine kinetic parameters of energetic materials. Samples of different configurations can be tested in the system. The ODTX testing can also generate useful data for determining thermal explosion violence of energetic materials. We also performed detonation experiments of LX-10 in aluminum anvils to determine the detonation violence and validated the Zerilli Armstrong aluminum model. Results of the detonation experiments agreed well with the model prediction.

  16. Approach for service life extension of explosive devices for aircraft escape systems

    NASA Technical Reports Server (NTRS)

    Bement, L. J.; Schimmel, M. L.

    1985-01-01

    Service life extension of explosive devices used in aircraft escape systems can achieve considerable savings. An overall approach is needed to challenge the logic of explosive component service extension from design to removal from service for evaluation. The purpose of the effort described in this paper was to develop a service-extension approach on explosive devices used in aircraft systems, supported by actual testing of representative candidate devices, to evaluate quantitatively the effects of service, age, and degradation, and allow responsible, conservative service life determinations. Evaluated were five explosive components: rigid and flexible explosive transfer lines, one-way transfers, flexible linear shaped charges, and initiation handles. The service extension approach generated in this effort is summarized by eight recommendations.

  17. Broadband seismology and the detection and verification of underground nuclear explosions

    NASA Astrophysics Data System (ADS)

    Tinker, Mark Andrew

    1997-10-01

    On September 24, 1996, President Clinton signed the Comprehensive Test Ban Treaty (CTBT), which bans the testing of all nuclear weapons thereby limiting their future development. Seismology is the primary tool used for the detection and identification of underground explosions and thus, will play a key role in monitoring a CTBT. The detection and identification of low yield explosions requires seismic stations at regional distances (<1500 km). However, because the regional wavefield propagates within the extremely heterogeneous crustal waveguide, the seismic waveforms are also very complicated. Therefore, it is necessary to have a solid understanding of how the phases used in regional discriminants develop within different tectonic regimes. Thus, the development of the seismic phases Pn and Lg, which compose the seismic discriminant Pn/Lg, within the western U.S. from the Non-Proliferation Experiment are evaluated. The most fundamental discriminant is event location as 90% of all seismic sources occur too deep within the earth to be unnatural. France resumed its nuclear testing program after a four year moratorium and conducted six tests during a five month period starting in September of 1995. Using teleseismic data, a joint hypocenter determination algorithm was used to determine the hypocenters of these six explosions. One of the most important problems in monitoring a CTBT is the detection and location of small seismic events. Although seismic arrays have become the central tool for event detection, in the context of a global monitoring treaty, there will be some dependence on sparse regional networks of three-component broadband seismic stations to detect low yield explosions. However, the full power of the data has not been utilized, namely using phases other than P and S. Therefore, the information in the surface wavetrain is used to improve the locations of small seismic events recorded on a sparse network in Bolivia. Finally, as a discrimination example in

  18. Phased-Array Monolithic PEM for FT Spectrometry With Applications in Explosive Detection and CB Defense

    DTIC Science & Technology

    2008-12-01

    1 PHASED-ARRAY MONOLITHIC PEM FOR FT SPECTROMETRY WITH APPLICATIONS IN EXPLOSIVE DETECTION AND CB DEFENSE Tudor N. Buican* Semiotic ...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Semiotic Engineering Associates LLC Albuquerque, NM 87108 8. PERFORMING ORGANIZATION REPORT NUMBER 9...x3 = 0.5;  = 0; Aeff = 0.636 (d) x1 = -0.1, x2 = 0, x3 = 0.2;  = 0.5; Aeff = 0.557 Fig. A2. Each row of drawings shows the amplitude (left

  19. Photo-induced enhanced Raman spectroscopy for universal ultra-trace detection of explosives, pollutants and biomolecules

    PubMed Central

    Ben-Jaber, Sultan; Peveler, William J.; Quesada-Cabrera, Raul; Cortés, Emiliano; Sotelo-Vazquez, Carlos; Abdul-Karim, Nadia; Maier, Stefan A.; Parkin, Ivan P.

    2016-01-01

    Surface-enhanced Raman spectroscopy is one of the most sensitive spectroscopic techniques available, with single-molecule detection possible on a range of noble-metal substrates. It is widely used to detect molecules that have a strong Raman response at very low concentrations. Here we present photo-induced-enhanced Raman spectroscopy, where the combination of plasmonic nanoparticles with a photo-activated substrate gives rise to large signal enhancement (an order of magnitude) for a wide range of small molecules, even those with a typically low Raman cross-section. We show that the induced chemical enhancement is due to increased electron density at the noble-metal nanoparticles, and demonstrate the universality of this system with explosives, biomolecules and organic dyes, at trace levels. Our substrates are also easy to fabricate, self-cleaning and reusable. PMID:27412699

  20. Explosives detection in the marine environment using UUV-modified immunosensor

    NASA Astrophysics Data System (ADS)

    Charles, Paul T.; Adams, André A.; Deschamps, Jeffrey R.; Veitch, Scott P.; Hanson, Alfred; Kusterbeck, Anne W.

    2011-05-01

    Port and harbor security has rapidly become a point of interest and concern with the emergence of new improvised explosive devices (IEDs). The ability to provide physical surveillance and identification of IEDs and unexploded ordnances (UXO) at these entry points has led to an increased effort in the development of unmanned underwater vehicles (UUVs) equipped with sensing devices. Traditional sensors used to identify and locate potential threats are side scan sonar/acoustic methods and magnetometers. At the Naval Research Laboratory (NRL), we have developed an immunosensor capable of detecting trace levels of explosives that has been integrated into a REMUS payload for use in the marine environment. Laboratory tests using a modified PMMA microfluidic device with immobilized monoclonal antibodies specific for TNT and RDX have been conducted yielding detection levels in the low parts-per-billion (ppb) range. New designs and engineered improvements in microfluidic devices, fluorescence signal probes, and UUV internal fluidic and optical components have been investigated and integrated into the unmanned underwater prototype. Results from laboratory and recent field demonstrations using the prototype UUV immunosensor will be discussed. The immunosensor in combination with acoustic and other sensors could serve as a complementary characterization tool for the detection of IEDs, UXOs and other potential chemical or biological threats.

  1. Fabrication of SERS swab for direct detection of trace explosives in fingerprints.

    PubMed

    Gong, Zhengjun; Du, Hongjie; Cheng, Fansheng; Wang, Cong; Wang, Canchen; Fan, Meikun

    2014-12-24

    Swab sampling is of great importance in surface contamination analysis. A cotton swab (cotton Q-tip) was successfully transformed into surface-enhanced Raman scattering (SERS) substrate (SERS Q-tip) through a bottom-up strategy, where Ag NPs were first self-assembled onto the Q-tip followed by in situ growing. The capability for direct swab detection of Raman probe Nile Blue A (NBA) and a primary explosive marker 2,4-dinitrotoluene (2,4-DNT) using the SERS Q-tip was explored. It was found that at optimum conditions, a femotogram of NBA on glass surface could be swab-detected. The lowest detectable amount for 2,4-DNT is only ∼1.2 ng/cm(2) (total amount of 5 ng) on glass surface, 2 orders of magnitude more sensitive than similar surface analysis achieved with infrared technique, and comparable even with that obtained by ion mobility spectrometry-mass spectrometry. Finally, 2,4-DNT left on fingerprints was also analyzed. It was found that SERS signal of 2,4-DNT from 27th fingerprint after touching 2,4-DNT powder can still be clearly identified by swabbing with the SERS Q-tip. We believe this is the first direct SERS swabbing test of explosives on fingerprint on glass. Considering its relative long shelf life (>30 d), the SERS Q-tip may find great potential in future homeland security applications when combined with portable Raman spectrometers.

  2. Supersensitive and selective detection of picric acid explosive by fluorescent Ag nanoclusters.

    PubMed

    Zhang, Jian Rong; Yue, Yuan Yuan; Luo, Hong Qun; Li, Nian Bing

    2016-02-07

    Picric acid (PA) explosive is a hazard to public safety and health, so the sensitive and selective detection of PA is very important. In the present work, polyethyleneimine stabilized Ag nanoclusters were successfully used for the sensitive and selective quantification of PA on the basis of fluorescence quenching. The quenching efficiency of Ag nanoclusters is proportional to the concentration of PA and the logarithm of PA concentration over two different concentration ranges (1.0 nM-1 μM for the former and 0.25-20 μM for the latter), thus the proposed quantitative strategy for PA provides a wide linear range of 1.0 nM-20 μM. The detection limit based on 3σ/K is 0.1 nM. The quenching mechanism of Ag nanoclusters by PA is discussed in detail. The results indicate that the selective detection of PA over other nitroaromatics including 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (2,4-DNT), p-nitrotoluene (p-NT), m-dinitrobenzene (m-DNB), and nitrobenzene (NB), is due to the electron transfer and energy transfer between PA and polyethyleneimine-capped Ag nanoclusters. In addition, the experimental data obtained for the analysis of artificial samples show that the proposed PA sensor is potentially applicable in the determination of trace PA explosive in real samples.

  3. Application of the modified transient plane source technique for early detection of liquid explosives

    NASA Astrophysics Data System (ADS)

    Bateman, Robert; Harris, Adam; Lee, Linda; Howle, Christopher R.; Ackermann, Sarah L. G.

    2016-05-01

    The paper will review the feasibility of adapting the Modified Transient Plane Source (MTPS) method as a screening tool for early-detection of explosives and hazardous materials. Materials can be distinguished from others based on their inherent thermal properties (e.g. thermal effusivity) in testing through different types of barrier materials. A complimentary advantage to this technique relative to other traditional detection technologies is that it can penetrate reflective barrier materials, such as aluminum, easily. A strong proof-of-principle is presented on application of the MTPS transient thermal property measuring in the early-screening of liquid explosives. The work demonstrates a significant sensitivity to distinguishing a wide range of fluids based on their thermal properties through a barrier material. The work covers various complicating factors to the longer-term adoption of such a method including the impact of carbonization and viscosity. While some technical challenges remain, the technique offers significant advantages in complimenting existing detection methods in being able to penetrate reflective metal containers (e.g. aluminum soft drinkscans) with ease.

  4. Methods for optimization of the signature-based radiation scanning approach for detection of nitrogen-rich explosives

    NASA Astrophysics Data System (ADS)

    Callender, Kennard

    The signature-based radiation scanning (SBRS) technique can be used to rapidly detect nitrogen-rich explosives at standoff distances. This technique uses a template-matching procedure that produces a figure-of-merit (FOM) whose value is used to distinguish between inert and explosive materials. The present study develops a tiered-filter implementation of the signature-based radiation scanning technique, which reduces the number of templates needed. This approach starts by calculating a normalized FOM between signatures from an unknown target and an explosive template through stages or tiers (nitrogen first, then oxygen, then carbon, and finally hydrogen). If the normalized FOM is greater than a specified cut-off value for any of the tiers, the target signatures are considered not to match that specific template and the process is repeated for the next explosive template until all of the relevant templates have been considered. If a target's signatures match all the tiers of a single template, then the target is assumed to contain an explosive. The tiered filter approach uses eight elements to construct artificial explosive-templates that have the function of representing explosives cluttered with real materials. The feasibility of the artificial template approach to systematically build a library of templates that successfully differentiates explosive targets from inert ones in the presence of clutter and under different geometric configurations was explored. In total, 10 different geometric configurations were simulated and analyzed using the MCNP5 code. For each configuration, 51 different inert materials were used as inert samples and as clutter in front of the explosive cyclonite (RDX). The geometric configurations consisted of different explosive volumes, clutter thicknesses, and distances of the clutter from the neutron source. Additionally, an objective function was developed to optimize the parameters that maximize the sensitivity and specificity of the

  5. Extension of service life of rigid transfer lines /SMDC/. [explosive components for aircraft escape systems

    NASA Technical Reports Server (NTRS)

    Bement, L. J.; Kayser, E. G.; Schimmel, M. L.

    1982-01-01

    The results of a life evaluation program on rigid explosive transfer lines, which are used to initiate aircraft emergency crew escape functions, are presented in order to provide quantitative information on rigid explosive transfer lines which can contribute to responsible, conservative, service life determinations. The program involved the development of a test methodology, testing of the three types of transfer lines in use in the U.S., testing of these lines following a repeat of the thermal test conducted in the original qualification, and conducting a degradation investigation. Results from the testing of more than 800 components showed that rigid explosive transfer lines were not affected by age, service, or a repeat of the thermal qualification tests on full-service lines. The explosive degradation limits were approximated and the mechanisms examined. It is concluded that the service lives of rigid explosive transfer lines should be considered for extension in order to provide cost savings and increased system reliability.

  6. Extension of service life of rigid transfer lines /SMDC/. [explosive components for aircraft escape systems

    NASA Technical Reports Server (NTRS)

    Bement, L. J.; Kayser, E. G.; Schimmel, M. L.

    1982-01-01

    The results of a life evaluation program on rigid explosive transfer lines, which are used to initiate aircraft emergency crew escape functions, are presented in order to provide quantitative information on rigid explosive transfer lines which can contribute to responsible, conservative, service life determinations. The program involved the development of a test methodology, testing of the three types of transfer lines in use in the U.S., testing of these lines following a repeat of the thermal test conducted in the original qualification, and conducting a degradation investigation. Results from the testing of more than 800 components showed that rigid explosive transfer lines were not affected by age, service, or a repeat of the thermal qualification tests on full-service lines. The explosive degradation limits were approximated and the mechanisms examined. It is concluded that the service lives of rigid explosive transfer lines should be considered for extension in order to provide cost savings and increased system reliability.

  7. Graphene oxide-based optical biosensor functionalized with peptides for explosive detection.

    PubMed

    Zhang, Qian; Zhang, Diming; Lu, Yanli; Yao, Yao; Li, Shuang; Liu, Qingjun

    2015-06-15

    A label-free optical biosensor was constructed with biofunctionalized graphene oxide (GO) for specific detection of 2,4,6-trinitrotoluene (TNT). By chemically binding TNT-specific peptides with GO, the biosensor gained unique optoelectronic properties and high biological sensitivity, with transducing bimolecular bonding into optical signals. Through UV absorption detection, increasing absorbance responses could be observed in presence of TNT at different concentrations, as low as 4.40×10(-9) mM, and showed dose-dependence and stable behavior. Specific responses of the biosensor were verified with the corporation of 2,6-dinitrotoluene (DNT), which had similar molecular structure to TNT. Thus, with high sensitivity and selectivity, the biosensor provided a convenient approach for detection of explosives as miniaturizing and integrating devices.

  8. Colorimetric Sensor Arrays for the Detection and Identification of Chemical Weapons and Explosives

    PubMed Central

    Kangas, Michael J.; Burks, Raychelle M.; Atwater, Jordyn; Lukowicz, Rachel M.; Williams, Pat; Holmes, Andrea E.

    2017-01-01

    ABSTRACT There is a significant demand for devices that can rapidly detect chemical–biological–explosive (CBE) threats on-site and allow for immediate responders to mitigate spread, risk, and loss. The key to an effective reconnaissance mission is a unified detection technology that analyzes potential threats in real time. In addition to reviewing the current state of the art in the field, this review illustrates the practicality of colorimetric arrays composed of sensors that change colors in the presence of analytes. This review also describes an outlook toward future technologies, and describes how they could possibly be used in areas such as war zones to detect and identify hazardous substances. PMID:27636675

  9. A range muon tomography performance study for the detection of explosives

    SciTech Connect

    Cuellar, Leticia; Borozdin, Konstantin N; Chung, Andrew; Nicolas, Hengartner W; Morris, Christopher; Schultz, Larry J; Reimus, Nathaniel P; Bacon, Jeffrey D; Vogan - Mc Neil, Wendy

    2010-01-01

    Soft cosmic ray tomography has been shown to successfully discriminate materials with various density levels due to their ability to deeply penetrate matter, allowing sensitivity to atomic number, radiation length and density. Because the multiple muon scattering signal from high Z-materials is very strong, the technology is well suited to the detection of the illicit transportation of special and radiological nuclear materials. In addition, a recent detection technique based on measuring the lower energy particles that do not traverse the material (range radiography), allows to discriminate low and medium Z-materials. This is shown in [4] using Monte Carlo simulations. More recently, using a mini muon tracker developed at Los Alamos National Laboratory, we performed various experiments to try out the radiation length technology. This paper presents the results from real experiments and evaluates the likelihood that soft cosmic ray tomography may be applied to detect high-explosives.

  10. Development of Explosive Systems for Investigating Multiple Impacts of Solid Projectiles with Moderate Velocity

    NASA Astrophysics Data System (ADS)

    Lin, E. E.; Bodrenko, S. I.; Burtsev, V. V.; Bushmelev, P. S.; Vasil'ev, M. L.; Vlasova, M. A.; Domnichev, V. V.; Zhabitskii, S. K.; Lobanov, V. N.; Mel'tsas, V. Yu.; Portnyagina, G. F.; Prokhorov, S. V.; Stadnik, A. L.; Tanakov, Z. V.; Yanilkin, Yu. V.

    2006-08-01

    We present the results of development of explosive systems for investigating multiple action of solid projectiles upon an obstacle at a moderate impact velocity on the order of 1 km/s. Two types of systems are considered, namely: 1) evacuating shock tube with plane high explosive (HE), 2) ballistic gun with distributed shot of plastic HE. In the first system an acceleration of steel spheres are realized in flux of expanding explosive products. The second system provides the acceleration of a "soft" plastic block with steel spheres having certain mutual orientation. The experiments with these explosive systems testify to higher effectiveness of projectiles penetration into obstacles at multiple impact with a moderate velocity.

  11. Real-time, wide-area hyperspectral imaging sensors for standoff detection of explosives and chemical warfare agents

    NASA Astrophysics Data System (ADS)

    Gomer, Nathaniel R.; Tazik, Shawna; Gardner, Charles W.; Nelson, Matthew P.

    2017-05-01

    Hyperspectral imaging (HSI) is a valuable tool for the detection and analysis of targets located within complex backgrounds. HSI can detect threat materials on environmental surfaces, where the concentration of the target of interest is often very low and is typically found within complex scenery. Unfortunately, current generation HSI systems have size, weight, and power limitations that prohibit their use for field-portable and/or real-time applications. Current generation systems commonly provide an inefficient area search rate, require close proximity to the target for screening, and/or are not capable of making real-time measurements. ChemImage Sensor Systems (CISS) is developing a variety of real-time, wide-field hyperspectral imaging systems that utilize shortwave infrared (SWIR) absorption and Raman spectroscopy. SWIR HSI sensors provide wide-area imagery with at or near real time detection speeds. Raman HSI sensors are being developed to overcome two obstacles present in standard Raman detection systems: slow area search rate (due to small laser spot sizes) and lack of eye-safety. SWIR HSI sensors have been integrated into mobile, robot based platforms and handheld variants for the detection of explosives and chemical warfare agents (CWAs). In addition, the fusion of these two technologies into a single system has shown the feasibility of using both techniques concurrently to provide higher probability of detection and lower false alarm rates. This paper will provide background on Raman and SWIR HSI, discuss the applications for these techniques, and provide an overview of novel CISS HSI sensors focusing on sensor design and detection results.

  12. Ultra-Responsive Thermal Sensors for the Detection of Explosives Using Calorimetric Spectroscopy (CalSpec)

    SciTech Connect

    Datskos, P.G.; Datskou, I.; Marlar, T.A.; Rajic, S.

    1999-04-05

    We have developed a novel chemical detection technique based on infrared micro-calorimetric spectroscopy that can be used to identify the presence of trace amounts of very low vapor pressure target compounds. Unlike numerous recently developed low-cost sensor approaches, the selectivity is derived from the unique differential temperature spectrum and does not require the questionable reliability of highly selective coatings to achieve the required specificity. This is accomplished by obtaining the infrared micro-calorimetric absorption spectrum of a small number of molecules absorbed on the surface of a thermal detector after illumination through a scanning monochromator. We have obtained infrared micro-calorimetric spectra for explosives such as TNT over the wavelength region 2.5 to 14.5 Mu-m. Thus both sophisticated and relatively crude explosive compounds and components are detectable with these ultra-sensitive thermal-mechanical micro-structures. In addition to the above mentioned spectroscopy technique and associated data, the development of these advanced thermal detectors is also presented in detail.

  13. Coherent anti-stokes Raman spectroscopy for detecting explosives in real time

    NASA Astrophysics Data System (ADS)

    Dogariu, Arthur; Pidwerbetsky, Alex

    2012-06-01

    We demonstrate real-time stand-off detection and imaging of trace explosives using collinear, backscattered Coherent Anti-Stokes Raman Spectroscopy (CARS). Using a hybrid time-resolved broad-band CARS we identify nanograms of explosives on the millisecond time scale. The broad-band excitation in the near-mid-infrared region excites the vibrational modes in the fingerprint region, and the time-delayed probe beam ensures the reduction of any non-resonant contributions to the CARS signal. The strong coherent enhancement allows for recording Raman spectra in real-time. We demonstrate stand-off detection by acquiring, analyzing, and identifying vibrational fingerprints in real-time with very high sensitivity and selectivity. By extending the focused region from a 100-micron sized spot to a 5mm long line we can obtain the spectral information from an extended region of the remote target with high spatial resolution. We demonstrate fast hyperspectral imaging by one-dimensional scanning of the Line-CARS. The three-dimensional data structure contains the vibrational spectra of the target at each sampled location, which allows for chemical mapping of the remote target.

  14. Progress on detection of liquid explosives using ultra-low field MRI

    SciTech Connect

    Espy, Michelle A; Matlashov, Andrei N; Volegov, Petr L; Schuttz, Larry M; Baguisa, Shermiyah; Dunkerley, David; Magnelind, Per; Owens, Tuba; Sandin, Henrik; Urbaitis, Algis

    2010-01-01

    Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) methods are widely used in medicine, chemistry and industry. Over the past several years there has been increasing interest in performing NMR and MRI in the ultra-low field (ULF) regime, with measurement field strengths of 10-100 microTesla and pre-polarization fields of 30-50 mTesla. The real-time signal-to-noise ratio for such measurements is about 100. Our group at LANL has built and demonstrated the performance of SQUID-based ULF NMR/MRI instrumentation for classification of materials and detection of liquid explosives via their relaxation properties measured at ULF, using T{sub 1}, and T{sub 2}, and T{sub 1} frequency dispersion. We are also beginning to investigate the performance of induction coils as sensors. Here we present recent progress on the applications of ULF MR to the detection of liquid explosives, in imaging and relaxometry.

  15. Detection of concealed explosives at stand-off distances using wide band swept millimetre waves

    NASA Astrophysics Data System (ADS)

    Andrews, David A.; Rezgui, Nacer D.; Smith, Sarah E.; Bowring, Nicholas; Southgate, Matthew; Baker, John G.

    2008-10-01

    Millimetre waves in the range 20 to 110 GHz have been used to detect the presence and thickness of dielectric materials, such as explosives, by measuring the frequency response of the return signal. Interference between the reflected signals from the front and back surfaces of the dielectric provides a characteristic frequency variation in the return signal, which may be processed to yield its optical depth [Bowring et al, Meas. Sci. Technol. 19, 024004 (2008)]. The depth resolution depends on the sweep bandwidth, which is typically 10 to 30 GHz. By using super-heterodyne detection the range of the object can also be determined, which enables a signal from a target, such as a suicide bomber to be extracted from background clutter. Using millimetre wave optics only a small area of the target is illuminated at a time, thus reducing interference from different parts of a human target. Results are presented for simulated explosive materials with water or human backing at stand-off distances. A method of data analysis that involves pattern recognition enables effective differentiation of target types.

  16. Ultraresponsive thermal sensors for the detection of explosives using calorimetric spectroscopy (CalSpec)

    NASA Astrophysics Data System (ADS)

    Rajic, Slobodan; Datskos, Panos G.; Datskou, Irene; Marlar, Troy A.

    1999-08-01

    We have developed a novel chemical detection technique based on IR micro-calorimetric spectroscopy that can be used to identify the presence of trace amounts of very low vapor pressure target compounds. Unlike numerous recently developed low-cost sensor approaches, the selectivity is derived from the unique differential temperature spectrum and does not require the questionable reliability of highly selective coatings to achieve the required specificity. This is accomplished by obtaining the IR micro-calorimetric absorption spectrum of a small number of molecules absorbed on the surface of a thermal detector after illumination through a scanning monochromator. We have obtained IR micro- calorimetric spectra for explosives such as TNT over the wavelength region 2.5 to 14.5 micrometers . Thus both sophisticated and relatively crude explosives compounds and components are detectable with this technique due to the recent development of ultra sensitive thermal-mechanical micro-structures. In addition to the above mentioned spectroscopy technique and associated data, the development of these advanced thermal detectors is also presented in detail.

  17. INITIAL EVALUATION OF A PULSED WHITE SPECTRUM NEUTRON GENERATOR FOR EXPLOSIVE DETECTION

    SciTech Connect

    King, Michael J.; Miller, Gill T.; Reijonen, Jani; Ji, Qing; Andresen, Nord; Gicquel,, Frederic; Kavlas, Taneli; Leung, Ka-Ngo; Kwan, Joe

    2008-06-02

    Successful explosive material detection in luggage and similar sized containers is acritical issue in securing the safety of all airline passengers. Tensor Technology Inc. has recently developed a methodology that will detect explosive compounds with pulsed fast neutron transmission spectroscopy. In this scheme, tritium beams will be used to generate neutrons with a broad energy spectrum as governed by the T(t,2n)4He fission reaction that produces 0-9 MeV neutrons. Lawrence Berkeley National Laboratory (LBNL), in collaboration with Tensor Technology Inc., has designedand fabricated a pulsed white-spectrum neutron source for this application. The specifications of the neutron source are demanding and stringent due to the requirements of high yield and fast pulsing neutron emission, and sealed tube, tritium operation. In a unique co-axial geometry, the ion source uses ten parallel rf induction antennas to externally couple power into a toroidal discharge chamber. There are 20 ion beam extraction slits and 3 concentric electrode rings to shape and accelerate the ion beam into a titanium cone target. Fast neutron pulses are created by using a set ofparallel-plate deflectors switching between +-1500 volts and deflecting the ion beams across a narrow slit. The generator is expected to achieve 5 ns neutron pulses at tritium ion beam energies between 80 - 120 kV. First experiments demonstrated ion source operation and successful beam pulsing.

  18. Deep learning algorithms for detecting explosive hazards in ground penetrating radar data

    NASA Astrophysics Data System (ADS)

    Besaw, Lance E.; Stimac, Philip J.

    2014-05-01

    Buried explosive hazards (BEHs) have been, and continue to be, one of the most deadly threats in modern conflicts. Current handheld sensors rely on a highly trained operator for them to be effective in detecting BEHs. New algorithms are needed to reduce the burden on the operator and improve the performance of handheld BEH detectors. Traditional anomaly detection and discrimination algorithms use "hand-engineered" feature extraction techniques to characterize and classify threats. In this work we use a Deep Belief Network (DBN) to transcend the traditional approaches of BEH detection (e.g., principal component analysis and real-time novelty detection techniques). DBNs are pretrained using an unsupervised learning algorithm to generate compressed representations of unlabeled input data and form feature detectors. They are then fine-tuned using a supervised learning algorithm to form a predictive model. Using ground penetrating radar (GPR) data collected by a robotic cart swinging a handheld detector, our research demonstrates that relatively small DBNs can learn to model GPR background signals and detect BEHs with an acceptable false alarm rate (FAR). In this work, our DBNs achieved 91% probability of detection (Pd) with 1.4 false alarms per square meter when evaluated on anti-tank and anti-personnel targets at temperate and arid test sites. This research demonstrates that DBNs are a viable approach to detect and classify BEHs.

  19. General Risk Analysis Methodological Implications to Explosives Risk Management Systems,

    DTIC Science & Technology

    An investigation sponsored by the National Science Foundation has produced as one of its results a survey and evaluation of risk analysis methodologies...This paper presents some implications of the survey to risk analysis and decision making for explosives hazards such as may ultimately be

  20. Interior intrusion detection systems

    SciTech Connect

    Rodriguez, J.R.; Matter, J.C. ); Dry, B. )

    1991-10-01

    The purpose of this NUREG is to present technical information that should be useful to NRC licensees in designing interior intrusion detection systems. Interior intrusion sensors are discussed according to their primary application: boundary-penetration detection, volumetric detection, and point protection. Information necessary for implementation of an effective interior intrusion detection system is presented, including principles of operation, performance characteristics and guidelines for design, procurement, installation, testing, and maintenance. A glossary of sensor data terms is included. 36 figs., 6 tabs.

  1. The role of context specificity in learning: the effects of training context on explosives detection in dogs.

    PubMed

    Gazit, Irit; Goldblatt, Allen; Terkel, Joseph

    2005-07-01

    Various experiments revealed that if an animal learns a stimulus-response-reinforcer relationship in one context and is then tested in another context there is usually a lessening of stimulus control, and the same discriminative stimuli that reliably controlled the behavior in the first context will have less effect in the new context. This reduction in performance is known as the "context shift effect." The effect of changing context on the probability of detecting explosives was investigated in seven highly trained explosives detection dogs (EDDs). In experiment 1 the dogs were trained alternately on path A, which always had five hidden explosives, and on a very similar path B, which never had any explosives. Within a few sessions the dogs showed a significant decrease in search behavior on path B, but not on path A. In experiment 2 the same dogs were trained only on path B with a target density of one explosive hidden every 4th day. The probability of the dogs now detecting the explosive was found to be significantly lower than in experiment 1. In experiment 3 the effect of the low target density as used in experiment 2 was investigated on a new but very similar path C. Both the detection probability for the one explosive every 4th day on the new path and the motivation to search were significantly higher than found in experiment 2. Finally, in experiment 4, an attempt was made to recondition the dogs to search on path B. Although trained for 12 daily sessions with one explosive hidden every session, the dogs failed to regain the normal levels of motivation they had shown on both new paths and on the paths that they knew usually contained explosives. The findings reveal that even a very intensively trained EDD will rapidly learn that a specific stretch of path does not contain explosives. The dog will then be less motivated to search and will miss newly placed targets. This learning is specific to the formerly always-clean path and is to some extent irreversible

  2. Development of a handheld widefield hyperspectral imaging (HSI) sensor for standoff detection of explosive, chemical, and narcotic residues

    NASA Astrophysics Data System (ADS)

    Nelson, Matthew P.; Basta, Andrew; Patil, Raju; Klueva, Oksana; Treado, Patrick J.

    2013-05-01

    The utility of Hyper Spectral Imaging (HSI) passive chemical detection employing wide field, standoff imaging continues to be advanced in detection applications. With a drive for reduced SWaP (Size, Weight, and Power), increased speed of detection and sensitivity, developing a handheld platform that is robust and user-friendly increases the detection capabilities of the end user. In addition, easy to use handheld detectors could improve the effectiveness of locating and identifying threats while reducing risks to the individual. ChemImage Sensor Systems (CISS) has developed the HSI Aperio™ sensor for real time, wide area surveillance and standoff detection of explosives, chemical threats, and narcotics for use in both government and commercial contexts. Employing liquid crystal tunable filter technology, the HSI system has an intuitive user interface that produces automated detections and real-time display of threats with an end user created library of threat signatures that is easily updated allowing for new hazardous materials. Unlike existing detection technologies that often require close proximity for sensing and so endanger operators and costly equipment, the handheld sensor allows the individual operator to detect threats from a safe distance. Uses of the sensor include locating production facilities of illegal drugs or IEDs by identification of materials on surfaces such as walls, floors, doors, deposits on production tools and residue on individuals. In addition, the sensor can be used for longer-range standoff applications such as hasty checkpoint or vehicle inspection of residue materials on surfaces or bulk material identification. The CISS Aperio™ sensor has faster data collection, faster image processing, and increased detection capability compared to previous sensors.

  3. Passive Infrared Hyperspectral Imaging for Standoff Detection of Tetryl Explosive Residue on a Steel Surface

    SciTech Connect

    Gallagher, Neal B.; Kelly, James F.; Blake, Thomas A.

    2010-06-15

    A commercial imaging FTIR spectrometer that operates between 850 and 1300 cm{sup -1} was used to passively image a galvanized steel plate stained with a residue of the explosive tetryl (2,4,6,N-tetranitro-N-methylaniline). The tetryl was coated onto the plate in a 30 cm diameter spot with an areal dosage of 90 {mu}g tetryl/cm{sup 2}. The stain on the plate was easily detected at standoff distances of 14 and 31 m by examining the hyperspectral data cubes using maximum autocorrelation factors and a slight modification to a generalized least squares target detection algorithm. End-member extraction showed good comparison in a few key bands between the target end-member and laboratory reflectance spectra; however, significant differences were also observed

  4. Radio interferometric detection of a traveling ionospheric disturbance excited by the explosion of Mount St. Helens

    NASA Technical Reports Server (NTRS)

    Roberts, D. H.; Rogers, A. E. E.; Allen, B. R.; Bennett, C. L.; Burke, B. F.; Greenfield, P. E.; Lawrence, C. R.; Clark, T. A.

    1982-01-01

    A large-amplitude traveling ionospheric disturbance (TID) was detected over Owens Valley, California, on May 18, 1980, by a highly sensitive very long baseline interferometry (VLBI) radio astronomy experiment. This TID is interpreted as the response of the ionosphere to a gravity wave excited in the neutral atmosphere by the explosion of Mount St. Helens that took place at 1532 UT on that day. A model, invoking the point-excitation of internal gravity waves in an isothermal atmosphere, which fits observations of the TID at several other stations, leads to identification of the features observed in the VLBI data. Small-amplitude higher-frequency changes in the ionosphere were detected for several hours after the passage of the large-amplitude Mount St. Helens TID, but it is not clear whether these were excited by the passage of the gravity wave or were background fluctuations.

  5. Radio interferometric detection of a traveling ionospheric disturbance excited by the explosion of Mount St. Helens

    NASA Technical Reports Server (NTRS)

    Roberts, D. H.; Rogers, A. E. E.; Allen, B. R.; Bennett, C. L.; Burke, B. F.; Greenfield, P. E.; Lawrence, C. R.; Clark, T. A.

    1982-01-01

    A large-amplitude traveling ionospheric disturbance (TID) was detected over Owens Valley, California, on May 18, 1980, by a highly sensitive very long baseline interferometry (VLBI) radio astronomy experiment. This TID is interpreted as the response of the ionosphere to a gravity wave excited in the neutral atmosphere by the explosion of Mount St. Helens that took place at 1532 UT on that day. A model, invoking the point-excitation of internal gravity waves in an isothermal atmosphere, which fits observations of the TID at several other stations, leads to identification of the features observed in the VLBI data. Small-amplitude higher-frequency changes in the ionosphere were detected for several hours after the passage of the large-amplitude Mount St. Helens TID, but it is not clear whether these were excited by the passage of the gravity wave or were background fluctuations.

  6. Radio interferometric detection of a traveling ionospheric disturbance excited by the explosion of Mount St. Helens

    SciTech Connect

    Roberts, D.H.; Rogers, A.E.E.; Allen, B.R.; Bennett, C.L.; Burke, B.F.; Greenfield, P.; Lawrence, C.R.; Clark, T.A.

    1982-08-01

    A large-amplitude traveling ionospheric disturbance (TID) was detected over Owens Valley, California, on May 18, 1980, by a highly sensitive very long baseline interferometry (VLBI) radio astronomy experiment. This TID is interpreted as the response of the ionosphere to a gravity wave excited in the neutral atmosphere by the explosion of Mount St. Helens that took place at 1532 UT on that day. A model, invoking the point-excitation of internal gravity waves in an isothermal atmosphere, which fits observations of the TID at several other stations, leads to identification of the features observed in the VLBI data. Small-amplitude higher-frequency changes in the ionosphere were detected for several hours after the passage of the large-amplitude Mount St. Helens TID, but it is not clear whether these were excited by the passage of the gravity wave or were background fluctuations.

  7. Slices of theoretical astrophysics: Solar system dynamics and relativistic explosions

    NASA Astrophysics Data System (ADS)

    Pan, Margaret

    This thesis presents studies in two distinct areas of theoretical astrophysics: dynamics of planetary systems and relativistic fluid flows from shocks emerging from stellar envelopes. The first pertains to the early solar system, planet formation, and extrasolar planets; the second is related to extreme explosions like gamma-ray bursts and supernovae. We present two investigations of the dynamics and population evolution of solar system bodies. First, we explore the dynamics of mean-motion resonances for a test particle in a highly eccentric long-period orbit in the restricted circular planar three-body problem---a scenario relevant to the scattered Kuiper belt and the formation of the Oort cloud. We find infinitely many analogues to the Lagrange points; an explanation for the presence of asymmetric librations in particular mean-motion resonances; and a criterion for the onset of chaos at large semimajor axes. Second, we study the size distribution of Kuiper belt objects (KBOs), which is observed to be a broken power law. We apply a simple mass conservation argument to the KBO collisional cascade to get the power-law slope for KBOs below the break in the distribution; our result agrees well with observations if KBOs are held together by self-gravity rather than material strength. We then explain the location and time evolution of the break. We also present investigations of the flow that results when a relativistic shock propagates through and breaks out of a stellar envelope with a polytropic density profile. This work informs predictions of the speed of and energy carried by the relativistic ejecta in supernovae and perhaps in gamma-ray bursts. We find the asymptotic solution for the flow as the shock reaches the star's edge and find a new self-similar solution for the flow of hot fluid after breakout. Since the post-breakout flow acclerates by converting thermal energy into bulk kinetic energy, the fluid eventually cools to nonrelativistic temperatures. We

  8. Hydrothermal processes above the Yellowstone magma chamber: Large hydrothermal systems and large hydrothermal explosions

    USGS Publications Warehouse

    Morgan, L.A.; Shanks, W.C. Pat; Pierce, K.L.

    2009-01-01

    and vein-fi lling; and (5) areal dimensions of many large hydrothermal explosion craters in Yellowstone are similar to those of its active geyser basins and thermal areas. For Yellowstone, our knowledge of hydrothermal craters and ejecta is generally limited to after the Yellowstone Plateau emerged from beneath a late Pleistocene icecap that was roughly a kilometer thick. Large hydrothermal explosions may have occurred earlier as indicated by multiple episodes of cementation and brecciation commonly observed in hydrothermal ejecta clasts. Critical components for large, explosive hydrothermal systems include a watersaturated system at or near boiling temperatures and an interconnected system of well-developed joints and fractures along which hydrothermal fluids flow. Active deformation of the Yellowstone caldera, active faulting and moderate local seismicity, high heat flow, rapid changes in climate, and regional stresses are factors that have strong infl uences on the type of hydrothermal system developed. Ascending hydrothermal fluids flow along fractures that have developed in response to active caldera deformation and along edges of low-permeability rhyolitic lava flows. Alteration of the area affected, self-sealing leading to development of a caprock for the hydrothermal system, and dissolution of silica-rich rocks are additional factors that may constrain the distribution and development of hydrothermal fields. A partial lowpermeability layer that acts as a cap to the hydrothermal system may produce some over-pressurization, thought to be small in most systems. Any abrupt drop in pressure initiates steam fl ashing and is rapidly transmitted through interconnected fractures that result in a series of multiple large-scale explosions contributing to the excavation of a larger explosion crater. Similarities between the size and dimensions of large hydrothermal explosion craters and thermal fields in Yellowstone may indicate that catastrophic events which result in l

  9. Handheld and mobile hyperspectral imaging sensors for wide-area standoff detection of explosives and chemical warfare agents

    NASA Astrophysics Data System (ADS)

    Gomer, Nathaniel R.; Gardner, Charles W.; Nelson, Matthew P.

    2016-05-01

    Hyperspectral imaging (HSI) is a valuable tool for the investigation and analysis of targets in complex background with a high degree of autonomy. HSI is beneficial for the detection of threat materials on environmental surfaces, where the concentration of the target of interest is often very low and is typically found within complex scenery. Two HSI techniques that have proven to be valuable are Raman and shortwave infrared (SWIR) HSI. Unfortunately, current generation HSI systems have numerous size, weight, and power (SWaP) limitations that make their potential integration onto a handheld or field portable platform difficult. The systems that are field-portable do so by sacrificing system performance, typically by providing an inefficient area search rate, requiring close proximity to the target for screening, and/or eliminating the potential to conduct real-time measurements. To address these shortcomings, ChemImage Sensor Systems (CISS) is developing a variety of wide-field hyperspectral imaging systems. Raman HSI sensors are being developed to overcome two obstacles present in standard Raman detection systems: slow area search rate (due to small laser spot sizes) and lack of eye-safety. SWIR HSI sensors have been integrated into mobile, robot based platforms and handheld variants for the detection of explosives and chemical warfare agents (CWAs). In addition, the fusion of these two technologies into a single system has shown the feasibility of using both techniques concurrently to provide higher probability of detection and lower false alarm rates. This paper will provide background on Raman and SWIR HSI, discuss the applications for these techniques, and provide an overview of novel CISS HSI sensors focused on sensor design and detection results.

  10. Joint analysis of infrasound and seismic signals by cross wavelet transform: detection of Mt. Etna explosive activity

    NASA Astrophysics Data System (ADS)

    Cannata, A.; Montalto, P.; Patanè, D.

    2013-06-01

    The prompt detection of explosive volcanic activity is crucial since this kind of activity can release copious amounts of volcanic ash and gases into the atmosphere, causing severe dangers to aviation. In this work, we show how the joint analysis of seismic and infrasonic data by wavelet transform coherence (WTC) can be useful to detect explosive activity, significantly enhancing its recognition that is normally done by video cameras and thermal sensors. Indeed, the efficiency of these sensors can be reduced (or inhibited) in the case of poor visibility due to clouds or gas plumes. In particular, we calculated the root mean square (RMS) of seismic and infrasonic signals recorded at Mt. Etna during 2011. This interval was characterised by several episodes of lava fountains, accompanied by lava effusion, and minor strombolian activities. WTC analysis showed significantly high values of coherence between seismic and infrasonic RMS during explosive activity, with infrasonic and seismic series in phase with each other, hence proving to be sensitive to both weak and strong explosive activity. The WTC capability of automatically detecting explosive activity was compared with the potential of detection methods based on fixed thresholds of seismic and infrasonic RMS. Finally, we also calculated the cross correlation function between seismic and infrasonic signals, which showed that the wave types causing such seismo-acoustic relationship are mainly incident seismic and infrasonic waves, likely with a common source.

  11. Highly selective and sensitive fluorescent paper sensor for nitroaromatic explosive detection.

    PubMed

    Ma, Yingxin; Li, Hao; Peng, Shan; Wang, Leyu

    2012-10-02

    Rapid, sensitive, and selective detection of explosives such as 2,4,6-trinitrotoluene (TNT) and 2,4,6-trinitrophenol (TNP), especially using a facile paper sensor, is in high demand for homeland security and public safety. Although many strategies have been successfully developed for the detection of TNT, it is not easy to differentiate the influence from TNP. Also, few methods were demonstrated for the selective detection of TNP. In this work, via a facile and versatile method, 8-hydroxyquinoline aluminum (Alq(3))-based bluish green fluorescent composite nanospheres were successfully synthesized through self-assembly under vigorous stirring and ultrasonic treatment. These polymer-coated nanocomposites are not only water-stable but also highly luminescent. Based on the dramatic and selective fluorescence quenching of the nanocomposites via adding TNP into the aqueous solution, a sensitive and robust platform was developed for visual detection of TNP in the mixture of nitroaromatics including TNT, 2,4-dinitrotoluene (DNT), and nitrobenzene (NB). Meanwhile, the fluorescence intensity is proportional to the concentration of TNP in the range of 0.05-7.0 μg/mL with the 3σ limit of detection of 32.3 ng/mL. By handwriting or finger printing with TNP solution as ink on the filter paper soaked with the fluorescent nanocomposites, the bluish green fluorescence was instantly and dramatically quenched and the dark patterns were left on the paper. Therefore, a convenient and rapid paper sensor for TNP-selective detection was fabricated.

  12. A nanoengineered sensor to detect vibrational modes of warfare agents/explosives using surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Bertone, Jane F.; Cordeiro, Kellie L.; Sylvia, James M.; Spencer, Kevin M.

    2004-09-01

    Surface-enhanced Raman scattering (SERS) is emerging as a versatile and powerful technique for the detection of various defense related hazardous materials. This work illustrates the level of sensitivity and reproducibility achieved using SERS substrates with structural features engineered at the nanometer scale. Nanostructured substrates show significant sensitivity toward a number of different analytes. Pinacolyl methyl phosphonic acid (PMPA), a nerve-agent degradation product, was detected in less than 30 seconds at 1ppb. Para-nitroaniline, an explosives simulant, was detected in the same amount of time at 10 ppm. Multiple tests showed signal reproduction of PMPA at 100 ppb below a 7% standard deviation. The substrates are small and lightweight. In addition, a portable SERS spectrometer, equipped with a fiber coupling for excitation and detection, can act as the sensor body. On a previous occasion, electrochemically roughened SERS substrates were loaded into this portable spectrometer and deployed in the field for the successful blind detection of buried, defused, landmines. Such a system accommodates multiple substrate technologies, allowing sensing in the vapor and liquid phase as well as via solids extraction, and is compatible with nanoscale substrates.

  13. Selection and explosive growth alter genetic architecture and hamper the detection of causal rare variants

    PubMed Central

    Zaitlen, Noah A.; Ye, Chun Jimmie; Witte, John S.

    2016-01-01

    The role of rare alleles in complex phenotypes has been hotly debated, but most rare variant association tests (RVATs) do not account for the evolutionary forces that affect genetic architecture. Here, we use simulation and numerical algorithms to show that explosive population growth, as experienced by human populations, can dramatically increase the impact of very rare alleles on trait variance. We then assess the ability of RVATs to detect causal loci using simulations and human RNA-seq data. Surprisingly, we find that statistical performance is worst for phenotypes in which genetic variance is due mainly to rare alleles, and explosive population growth decreases power. Although many studies have attempted to identify causal rare variants, few have reported novel associations. This has sometimes been interpreted to mean that rare variants make negligible contributions to complex trait heritability. Our work shows that RVATs are not robust to realistic human evolutionary forces, so general conclusions about the impact of rare variants on complex traits may be premature. PMID:27197206

  14. High explosives vapor detection by atmospheric sampling glow discharge ionization/tandem mass spectrometry

    SciTech Connect

    McLuckey, S.A.; Goeringer, D.E.; Asano, K.G.

    1996-02-01

    The combination of atmospheric sampling glow discharge ionization with tandem mass spectrometry for the detection of traces of high explosives is described. Particular emphasis is placed on use of the quadrupole ion trap as the type of tandem mass spectrometer. Atmospheric sampling glow discharge provides a simple, rugged, and efficient means for anion formation while the quadrupole ion trap provides for efficient tandem mass spectrometry. Mass selective ion accumulation and non-specific ion activation methods can be used to overcome deleterious effects arising from ion/ion interactions. Such interactions constitute the major potential technical barrier to the use of the ion trap for real-time monitoring of targeted compounds in uncontrolled and highly variable matrices. Tailored waveforms can be used to effect both mass selective ion accumulation and ion activation. Concatenated tailored waveforms allow for both functions in a single experiment thereby providing the capability for monitoring several targeted species simultaneously. The combination of atmospheric sampling glow discharge ionization with a state-of-the-art analytical quadrupole ion trap is a highly sensitive and specific detector for traces of high explosives. The combination is also small and inexpensive relative to virtually any other form of tandem mass spectrometry. The science and technology underlying the glow discharge/ion trap combination is sufficiently mature to form the basis for an engineering effort to make the detector portable. 85 refs.

  15. Evaluating Gas-Phase Transport And Detection Of Noble Gas Signals From Underground Nuclear Explosions Using Chemical Tracers

    NASA Astrophysics Data System (ADS)

    Carrigan, C. R.; Hunter, S. L.; Sun, Y.; Wagoner, J. L.; Ruddle, D.; Anderson, G.; Felske, D.; Myers, K.; Zucca, J. J.; Emer, D. F.; Townsend, M.; Drellack, S.; Chipman, V.; Snelson, C. M.

    2013-12-01

    The 1993 Non-Proliferation Experiment (NPE) involved detonating 1 kiloton of chemical explosive in a subsurface cavity which also contained bottles of tracer gases (ref 1). That experiment provided an improved understanding of transport processes relevant to the detection of noble gas signals at the surface emanating from a clandestine underground nuclear explosion (UNE). As an alternative to performing large chemical detonations to simulate gas transport from UNEs, we have developed a test bed for subsurface gas transport, sampling and detection studies using a former UNE cavity. The test bed site allows for the opportunity to evaluate pathways to the surface created by the UNE as well as possible transport mechanisms including barometric pumping and cavity pressurization (ref 2). With the test bed we have monitored long-term chemical tracers as well as newly injected tracers. In order to perform high temporal resolution tracer gas monitoring, we have also developed a Subsurface Gas Smart Sampler (SGSS) which has application during an actual On Site Inspection (OSI) and is available for deployment in OSI field exercises planned for 2014. Deployment of five SGSS at the remote test bed has provided unparalleled detail concerning relationships involving tracer gas transport to the surface, barometric fluctuations and temporal variations in the natural radon concentration. We anticipate that the results of our tracer experiments will continue to support the development of improved noble gas detection technology for both OSI and International Monitoring System applications. 1. C.R. Carrigan et al., 1996, Nature, 382, p. 528. 2. Y. Sun and C.R. Carrigan, 2012, Pure Appl. Geophys., DOI 10.1007/s00024-012-0514-4.

  16. On-site Rapid Detection of Trace Non-volatile Inorganic Explosives by Stand-alone Ion Mobility Spectrometry via Acid-enhanced Evaporization

    PubMed Central

    Peng, Liying; Hua, Lei; Wang, Weiguo; Zhou, Qinghua; Li, Haiyang

    2014-01-01

    New techniques for the field detection of inorganic improvised explosive devices (IEDs) are urgently developed. Although ion mobility spectrometry (IMS) has been proved to be the most effective method for screening organic explosives, it still faces a major challenge to detect inorganic explosives owing to their low volatilities. Herein, we proposed a strategy for detecting trace inorganic explosives by thermal desorption ion mobility spectrometry (TD-IMS) with sample-to-sample analysis time less than 5 s based on in-situ acidification on the sampling swabs. The responses for typical oxidizers in inorganic explosives, such as KNO3, KClO3 and KClO4 were at least enhanced by a factor of 3000 and their limits of detection were found to be subnanogram. The common organic explosives and their mixtures with inorganic oxidizers were detected, indicating that the acidification process did not affect the detection of organic explosives. Moreover, the typical inorganic explosives such as black powders, firecrackers and match head could be sensitively detected as well. These results demonstrated that this method could be easily employed in the current deployed IMS for on-site sensitive detection of either inorganic explosives or organic ones. PMID:25318960

  17. Dopant-assisted negative photoionization ion mobility spectrometry for sensitive detection of explosives.

    PubMed

    Cheng, Shasha; Dou, Jian; Wang, Weiguo; Chen, Chuang; Hua, Lei; Zhou, Qinghua; Hou, Keyong; Li, Jinghua; Li, Haiyang

    2013-01-02

    Ion mobility spectrometry (IMS) is a key trace detection technique for explosives and the development of a simple, stable, and efficient nonradioactive ionization source is highly demanded. A dopant-assisted negative photoionization (DANP) source has been developed for IMS, which uses a commercial VUV krypton lamp to ionize acetone as the source of electrons to produce negative reactant ions in air. With 20 ppm of acetone as the dopant, a stable current of reactant ions of 1.35 nA was achieved. The reactant ions were identified to be CO(3)(-)(H(2)O)(n) (K(0) = 2.44 cm(2) V(-1) s(-1)) by atmospheric pressure time-of-flight mass spectrometry, while the reactant ions in (63)Ni source were O(2)(-)(H(2)O)(n) (K(0) = 2.30 cm(2) V(-1) s(-1)). Finally, its capabilities for detection of common explosives including ammonium nitrate fuel oil (ANFO), 2,4,6-trinitrotoluene (TNT), N-nitrobis(2-hydroxyethyl)amine dinitrate (DINA), and pentaerythritol tetranitrate (PETN) were evaluated, and the limits of detection of 10 pg (ANFO), 80 pg (TNT), and 100 pg (DINA) with a linear range of 2 orders of magnitude were achieved. The time-of-flight mass spectra obtained with use of DANP source clearly indicated that PETN and DINA can be directly ionized by the ion-association reaction of CO(3)(-) to form PETN·CO(3)(-) and DINA·CO(3)(-) adduct ions, which result in good sensitivity for the DANP source. The excellent stability, good sensitivity, and especially the better separation between the reactant and product ion peaks make the DANP a potential nonradioactive ionization source for IMS.

  18. Detection of explosive substances by tomographic inspection using neutron and gamma-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Farahmand, M.; Boston, A. J.; Grint, A. N.; Nolan, P. J.; Joyce, M. J.; Mackin, R. O.; D'Mellow, B.; Aspinall, M.; Peyton, A. J.; van Silfhout, R.

    2007-08-01

    In recent years the detection and identification of hazardous materials has become increasingly important. This work discusses research and development of a technique which is capable of detecting and imaging hidden explosives. It is proposed to utilise neutron interrogation of the substances under investigation facilitating the detection of emitted gamma radiation and scattered neutrons. Pulsed fast neutron techniques are attractive because they can be used to determine the concentrations of the light elements (hydrogen, carbon, nitrogen, and oxygen) which can be the primary components of explosive materials. Using segmented High Purity Ge (HPGe) detectors and digital pulse processing [R.J. Cooper, G. Turk, A.J. Boston, H.C. Boston, J.R. Cresswell, A.R. Mather, P.J. Nolan, C.J. Hall, I. Lazarus, J. Simpson, A. Berry, T. Beveridge, J. Gillam, R.A. Lewis, in: Proceedings of the 7th International Conference on Position Sensitive Detectors, Nuclear Instruments and Methods A, in press; I. Lazarus, D.E. Appelbe, A. J. Boston, P.J. Coleman-Smith, J.R. Cresswell, M. Descovich, S.A.A. Gros, M. Lauer, J. Norman, C.J. Pearson, V.F.E. Pucknell, J.A. Sampson, G. Turk, J.J. Valiente-Dobón, IEEE Trans. Nucl. Sci., 51 (2004) 1353; R.J. Cooper, A.J. Boston, H.C. Boston, J.R. Cresswell, A.N. Grint, A.R. Mather, P.J. Nolan, D.P. Scraggs, G. Turk, C.J. Hall, I. Lazarus, A. Berry, T. Beveridge, J. Gillam, R.A. Lewis, in: Proceedings of the 11th International Symposium on Radiation Measurements and Application, 2006. [1-3

  19. Approach for Service Life Extension of Explosive Devices for Aircraft Escape Systems

    NASA Technical Reports Server (NTRS)

    Bement, L. J.; Schimmel, M. L.

    1985-01-01

    The service life evaluation of explosive devices used in a wide variety of aircraft escape systems is described. The purpose was to develop a service extension approach, supported by tests on candidate devices, to evaluate the effects of service, age, and degradation, and allow responsible, conservative, service life determinations. An overview is given on the recommended approach and experimental procedures for accurate service evaluations with test results on rigid and flexible explosive transfer lines, one-way transfers, and flexible linear shaped charges.

  20. Buried explosive hazard detection using forward-looking long-wave infrared imagery

    NASA Astrophysics Data System (ADS)

    Stone, K.; Keller, J. M.; Popescu, M.; Spain, C. J.

    2011-06-01

    Trainable size-contrast filters, similar to local dual-window RX anomaly detectors, utilizing the Bhattacharyya distance are used to detect buried explosive hazards in forward-looking long-wave infrared imagery. The imagery, captured from a moving vehicle, is geo-referenced, allowing projection of pixel coordinates into (UTM) Universal Transverse Mercator coordinates. Size-contrast filter detections for a particular frame are projected into UTM coordinates, and peaks are detected in the resulting density using the mean-shift algorithm. All peaks without a minimum number of detections in their local neighborhood are discarded. Peaks from individual frames are then combined into a single set of tentative hit locations, and the same mean-shift procedure is run on the resulting density. Peaks without a minimum number of hit locations in their local neighborhood are removed. The remaining peaks are declared as target locations. The mean-shift steps utilize both the spatial and temporal information in the imagery. Scoring is performed using ground truth locations in UTM coordinates. The size-contrast filter and mean-shift parameters are learned using a genetic algorithm which minimizes a multiobjective fitness function involving detection rate and false alarm rate. Performance of the proposed algorithm is evaluated on multiple lanes from a recent collection at a US Army test site.

  1. Velocity map imaging with non-uniform detection: Quantitative molecular axis alignment measurements via Coulomb explosion imaging.

    PubMed

    Underwood, Jonathan G; Procino, I; Christiansen, L; Maurer, J; Stapelfeldt, H

    2015-07-01

    We present a method for inverting charged particle velocity map images which incorporates a non-uniform detection function. This method is applied to the specific case of extracting molecular axis alignment from Coulomb explosion imaging probes in which the probe itself has a dependence on molecular orientation which often removes cylindrical symmetry from the experiment and prevents the use of standard inversion techniques for the recovery of the molecular axis distribution. By incorporating the known detection function, it is possible to remove the angular bias of the Coulomb explosion probe process and invert the image to allow quantitative measurement of the degree of molecular axis alignment.

  2. Portable remote Raman system for monitoring hydrocarbon, gas hydrates and explosives in the environment.

    PubMed

    Sharma, Shiv K; Misra, Anupam K; Sharma, Bhavna

    2005-08-01

    We report our initial efforts to use a small portable Raman system for stand-off detection and identification of various types of organic chemicals including benzene, toluene, ethyl benzene and xylenes (BTEX). Both fiber-optic (FO) coupled and a directly coupled f/2.2 spectrograph with the telescope have been developed and tested. A frequency-doubled Nd:YAG pulsed laser (20 Hz, 532 nm, 35 mJ/pulse) is used as the excitation source. The operational range of the FO coupled Raman system was tested to 66 m, and the directly coupled system was tested to a distance of 120 m. We have also measured remote Raman spectra of compressed methane gas and methane gas hydrate. The usefulness of the remote Raman system for identifying unknown compounds is demonstrated by measuring stand-off spectra of two plastic explosives, e.g. tri-amino tri-nitrobenzene (TATB) and beta-HMX at 10 m stand-off distance. The remote Raman system will be useful for terrestrial applications such as monitoring environmental pollution, in identifying unknown materials in public places in 10s or less, and for detecting hydrocarbon plumes and gas hydrates on planetary surfaces such as Mars.

  3. Reducing cross-sensitivity of TiO2-(B) nanowires to humidity using ultraviolet illumination for trace explosive detection.

    PubMed

    Wang, Danling; Chen, Antao; Jen, Alex K-Y

    2013-04-14

    Environmental humidity is an important factor that can influence the sensing performance of a metal oxide. TiO2-(B) in the form of nanowires has been demonstrated to be a promising material for the detection of explosive gases such as 2,4,6-trinitrotoluene (TNT). However, the elimination of cross-sensitivity of the explosive detectors based on TiO2-(B) toward environmental humidity is still a major challenge. It was found that the cross-sensitivity could be effectively modulated when the thin film of TiO2-(B) nanowires was exposed to ultraviolet (UV) light during the detection of explosives under operating conditions. Such a modulation of sensing responses of TiO2-(B) nanowires to explosives by UV light was attributed to a photocatalytic effect, with which the water adsorbed on the TiO2-(B) nanowire surface was split and therefore the sensor response performance was less affected. It was revealed that the cross-sensitivity could be suppressed up to 51% when exposed to UV light of 365 nm wavelength with an intensity of 40 mW cm(-2). This finding proves that the reduction of cross-sensitivity to humidity through UV irradiation is an effective approach that can improve the performance of a sensor based on TiO2-(B) nanowires for the detection of explosive gas.

  4. Trace explosive detection in aqueous samples by solid-phase extraction ion mobility spectrometry (SPE-IMS).

    PubMed

    Buxton, Tricia L; Harrington, Peter de B

    2003-02-01

    Law enforcement agencies use ion mobility spectrometers for the detection of explosives, drugs of abuse, and chemical warfare agents. Ion mobility spectrometry (IMS) has the advantages of short analysis times, detections in the parts per billion concentrations, and high sensitivity. On-site environmental analysis of explosives or explosive residues in water is possible with ion mobility spectrometers. Unfortunately, the direct analysis of low levels of explosives in water is difficult. Extraction provides a method for pre-concentrating the analytes and removing interferents. Coupling solid-phase extraction (SPE) with IMS is useful for the identification of trace amounts of explosives in water. Commercially available SPE disks were used. After extraction, the sample disk is inserted into the ion mobility spectrometer, where the analytes are thermally desorbed from the disk. Concentrations as low as one part per trillion were detected with a Barringer Ionscan 350. An external computer and acquisition software (LabVIEW, National Instruments) were used to collect data. SIMPLISMA (SIMPLe-to-use-Interactive Self-modeling Mixture Analysis) was applied to the data to resolve features that vary with respect to time.

  5. Discrimination of smokeless powders by headspace SPME-GC-MS and SPME-GC-ECD, and the potential implications upon training canine detection of explosives

    NASA Astrophysics Data System (ADS)

    Harper, Ross J.; Almirall, Jose R.; Furton, Kenneth G.

    2005-05-01

    This presentation will provide an odour analysis of a variety of smokeless powders & communicate the rapid SPME-GC-ECD method utilized. This paper will also discuss the implications of the headspace analysis of Smokeless Powders upon the choice of training aids for Explosives Detection Canines. Canine detection of explosives relies upon the dogs" ability to equate finding a given explosive odour with a reward, usually in the form of praise or play. The selection of explosives upon which the dogs are trained thus determines which explosives the canines can and potentially cannot find. Commonly, the training is focussed towards high explosives such as TNT and Composition 4, and the low explosives such as Black and Smokeless Powders are added often only for completeness. Powder explosives constitute a major component of explosive incidents throughout the US, and canines trained to detect explosives must be trained across the entire range of powder products. Given the variability in the manufacture and product make-up many smokeless powders do not share common odour chemicals, giving rise to concerns over the extensiveness of canine training. Headspace analysis of a selection of Smokeless Powders by Solid Phase Microextraction Gas Chromatography using Mass Spectrometry (SPME-GC-MS) and Electron Capture Detectors (SPME-GC-ECD) has highlighted significant differences in the chemical composition of the odour available from different brands. This suggests that greater attention should be paid towards the choice of Powder Explosives when assigning canine training aids.

  6. Portable chemical detection system with intergrated preconcentrator

    DOEpatents

    Baumann, Mark J.; Brusseau, Charles A.; Hannum, David W.; Linker, Kevin L.

    2005-12-27

    A portable system for the detection of chemical particles such as explosive residue utilizes a metal fiber substrate that may either be swiped over a subject or placed in a holder in a collection module which can shoot a jet of gas at the subject to dislodge residue, and then draw the air containing the residue into the substrate. The holder is then placed in a detection module, which resistively heats the substrate to evolve the particles, and provides a gas flow to move the particles to a miniature detector in the module.

  7. Inspection tester for explosives

    DOEpatents

    Haas, Jeffrey S.; Simpson, Randall L.; Satcher, Joe H.

    2007-11-13

    An inspection tester that can be used anywhere as a primary screening tool by non-technical personnel to determine whether a surface contains explosives. It includes a body with a sample pad. First and second explosives detecting reagent holders and dispensers are operatively connected to the body and the sample pad. The first and second explosives detecting reagent holders and dispensers are positioned to deliver the explosives detecting reagents to the sample pad. A is heater operatively connected to the sample pad.

  8. Inspection tester for explosives

    DOEpatents

    Haas, Jeffrey S.; Simpson, Randall L.; Satcher, Joe H.

    2010-10-05

    An inspection tester that can be used anywhere as a primary screening tool by non-technical personnel to determine whether a surface contains explosives. It includes a body with a sample pad. First and second explosives detecting reagent holders and dispensers are operatively connected to the body and the sample pad. The first and second explosives detecting reagent holders and dispensers are positioned to deliver the explosives detecting reagents to the sample pad. A is heater operatively connected to the sample pad.

  9. Flow injection analysis of organic peroxide explosives using acid degradation and chemiluminescent detection of released hydrogen peroxide.

    PubMed

    Mahbub, Parvez; Zakaria, Philip; Guijt, Rosanne; Macka, Mirek; Dicinoski, Greg; Breadmore, Michael; Nesterenko, Pavel N

    2015-10-01

    The applicability of acid degradation of organic peroxides into hydrogen peroxide in a pneumatically driven flow injection system with chemiluminescence reaction with luminol and Cu(2+) as a catalyst (FIA-CL) was investigated for the fast and sensitive detection of organic peroxide explosives (OPEs). The target OPEs included hexamethylene triperoxide diamine (HMTD), triacetone triperoxide (TATP) and methylethyl ketone peroxide (MEKP). Under optimised conditions maximum degradations of 70% and 54% for TATP and HMTD, respectively were achieved at 162 µL min(-1), and 9% degradation for MEKP at 180 µL min(-1). Flow rates were precisely controlled in this single source pneumatic pressure driven multi-channel FIA system by model experiments on mixing of easily detectable component solutions. The linear range for detection of TATP, HMTD and H2O2 was 1-200 µM (r(2)=0.98-0.99) at both flow rates, while that for MEKP was 20-200 µM (r(2)=0.97) at 180 µL min(-1). The detection limits (LODs) obtained were 0.5 µM for TATP, HMTD and H2O2 and 10 µM for MEKP. The detection times varied from 1.5 to 3 min in this FIA-CL system. Whilst the LOD for H2O2 was comparable with those reported by other investigators, the LODs and analysis times for TATP and HMTD were superior, and significantly, this is the first time the detection of MEKP has been reported by FIA-CL. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Noise and time delay: Suppressed population explosion of the mutualism system

    NASA Astrophysics Data System (ADS)

    Nie, L. R.; Mei, D. C.

    2007-07-01

    We have analyzed effects of noise and time delay in a classical Lotka-Volterra model of mutualism system. We show that the consideration of the noise and the time delay change drastically the behavior of the system in the deterministic case. To a certain degree, the noise or the time delay can suppress the population explosion of the mutualism system, which takes place in the deterministic case, however, the average species population of system with only the noise or the time delay does not converge. Combination of the noise and the time delay completely suppress the population explosion of the mutualism system.

  11. Application of blast wave theory to explosive propulsion. [system performance analysis

    NASA Technical Reports Server (NTRS)

    Back, L. H.

    1975-01-01

    An analysis was carried out by using blast wave theory to delineate the important aspects of detonating explosives in nozzles, such as flow and wave phenomena, characteristic length and time scales, and the parameters on which the specific impulse is dependent. The propulsive system utilizes the momentum of the ambient gas set into motion in the nozzle by the explosion. A somewhat simplified model was considered for the situation where the mass of ambient gas in the nozzle is much greater than the mass of gas produced in the explosion, a condition of interest for dense atmospheres, e.g., near the surface of Venus. Instantaneous detonation and energy release was presumed to occur at the apex of a conical nozzle, and the shock wave generated by the explosion was taken to propagate as a spherical wave, thereby setting the ambient gas in the nozzle into one-dimensional radially outward motion.

  12. Polysiloxane-Modified Tetraphenylethene: Synthesis, AIE Properties, and Sensor for Detecting Explosives.

    PubMed

    Li, Qiaosheng; Yang, Zhaomin; Ren, Zhongjie; Yan, Shouke

    2016-11-01

    Polysiloxane-modified tetraphenylethene (PTPESi) is successfully synthesized by attaching tetraphenylethene (TPE) units onto methylvinyldiethoxylsiloxane and subsequent polycondensation. Introducing polysiloxane into TPE has minimal effect on the photophysical properties and aggregation-induced emission behavior of TPE. The highest occupied and lowest unoccupied molecular orbital (HOMO and LUMO) energy levels of PTPESi are located mainly on the tetraphenylethene moieties. The fluorescence intensity and the half width of the emission peak of PTPESi before and after annealing at 120 °C for 12 h are nearly the same, indicating high thermal stability and morphological stability. In addition, use of PTPESi film as a sensor toward the vapor-phase detection of explosives is also studied and it displays quite high fluorescence quenching efficiency and good reversibility. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Detection of explosives in a dynamic marine environment using a moored TNT immunosensor.

    PubMed

    Charles, Paul T; Adams, André A; Deschamps, Jeffrey R; Veitch, Scott; Hanson, Al; Kusterbeck, Anne W

    2014-02-27

    A field demonstration and longevity assessment for long-term monitoring of the explosive 2,4,6-trinitrotoluene (TNT) in a marine environment using an anti-TNT microfluidic immunosensor is described. The TNT immunosensor is comprised of a microfluidic device with 39 parallel microchannels (2.5 cm × 250 µm × 500 µm, L × W × D) fabricated in poly(methylmethacrylate) (PMMA), then chemically functionalized with antibodies possessing a high affinity for TNT. Synthesized fluorescence reporter complexes used in a displacement-based assay format were used for TNT identification. For field deployment the TNT immunosensor was configured onto a submersible moored steel frame along with frame controller, pumps and TNT plume generator and deployed pier side for intermittent plume sampling of TNT (1h increments). Under varying current and tidal conditions trace levels of TNT in natural seawater were detected over an extended period (>18 h). Overnight operation and data recording was monitored via a web interface.

  14. Methodology for using active infrared spectroscopy in standoff detection of trace explosives

    NASA Astrophysics Data System (ADS)

    Breshike, Christopher J.; Kendziora, Christopher A.; Furstenberg, Robert; Nguyen, Viet; McGill, R. Andrew

    2017-05-01

    This manuscript describes a mobile stand-off detection and identification of trace amounts of hazardous materials, specifically explosives. The technique utilizes an array of tunable infrared quantum cascade lasers as an illumination source which spans wavelengths from 6 to 11 μm, operated at eye-safe power levels. This spectral range enables excitation of a wide variety of absorption bands present in analytes of interest. The laser is modulated to produce a 50% duty cycle, square wave pulses, and control the frequency of irradiation. The backscatter and photo-thermal signals from samples are measured via an IR focal plane array, which allows for the observation of spatial, temporal, and thermal surface processes. A discussion of how these signals are collected and processed for use in identification of hazardous materials is presented.

  15. Detection of nitro-organic and peroxide explosives in latent fingermarks by DART- and SALDI-TOF-mass spectrometry.

    PubMed

    Rowell, Frederick; Seviour, John; Lim, Angelina Yimei; Elumbaring-Salazar, Cheryl Grace; Loke, Jason; Ma, Jan

    2012-09-10

    The ability of two mass spectrometric methods, surface-assisted laser desorption/ionization-time of flight-mass spectrometry (SALDI-TOF-MS) and direct analysis in real time (DART-MS), to detect the presence of seven common explosives (six nitro-organic- and one peroxide-type) in spiked latent fingermarks has been examined. It was found that each explosive could be detected with nanogram sensitivity for marks resulting from direct finger contact with a glass probe by DART-MS or onto stainless steel target plates using SALDI-TOF-MS for marks pre-dusted with one type of commercial black magnetic powder. These explosives also could be detected in latent marks lifted from six common surfaces (paper, plastic bag, metal drinks can, wood laminate, adhesive tape and white ceramic tile) whereas no explosive could be detected in equivalent pre-dusted marks on the surface of a commercial lifting tape by the DART-MS method due to high background interference from the tape material. The presence of TNT and Tetryl could be detected in pre-dusted latent fingermarks on a commercial lifting tape for up to 29 days sealed and stored under ambient conditions.

  16. Eye-safe UV Raman spectroscopy for remote detection of explosives and their precursors in fingerprint concentration

    NASA Astrophysics Data System (ADS)

    Almaviva, S.; Angelini, F.; Chirico, R.; Palucci, A.; Nuvoli, M.; Schnuerer, F.; Schweikert, W.; Romolo, F. S.

    2014-10-01

    We report the results of Raman investigation performed at stand-off distance between 6-10 m with a new apparatus, capable to detect traces of explosives with surface concentrations similar to those of a single fingerprint. The device was developed as part of the RADEX prototype (RAman Detection of EXplosives) and is capable of detecting the Raman signal with a single laser shot of few ns (10-9 s) in the UV range (wavelength 266 nm), in conditions of safety for the human eye. This is because the maximum permissible exposure (MPE) for the human eye is established to be 3 mJ/cm2 in this wavelength region and pulse duration. Samples of explosives (PETN, TNT, Urea Nitrate, Ammonium Nitrate) were prepared starting from solutions deposited on samples of common fabrics or clothing materials such as blue jeans, leather, polyester or polyamide. The deposition process takes place via a piezoelectric-controlled plotter device, capable of producing drops of welldefined volume, down to nanoliters, on a surface of several cm2, in order to carefully control the amount of explosive released to the tissue and thus simulate a slight stain on a garment of a potential terrorist. Depending on the type of explosive sampled, the detected density ranges from 0.1 to 1 mg/cm2 and is comparable to the density measured in a spot on a dress or a bag due to the contact with hands contaminated with explosives, as it could happen in the preparation of an improvised explosive device (IED) by a terrorist. To our knowledge the developed device is at the highest detection limits nowadays achievable in the field of eyesafe, stand-off Raman instruments. The signals obtained show some vibrational bands of the Raman spectra of our samples with high signal-to-noise ratio (SNR), allowing us to identify with high sensitivity (high number of True Positives) and selectivity (low number of False Positives) the explosives, so that the instrument could represent the basis for an automated and remote monitoring

  17. Microwave interrogation of an air plasma plume as a model system for hot spots in explosives

    NASA Astrophysics Data System (ADS)

    Kane, Ronald J.; Tringe, Joseph W.; Klunder, Gregory L.; Baluyot, Emer V.; Densmore, John M.; Converse, Mark C.

    2017-01-01

    The evolution of hot spots within explosives is critical to understand for predicting how detonation waves form and propagate. However, it is challenging to observe hot spots directly because they are small (˜micron diameter), form quickly (much less than a microsecond), and many explosives of interest are optically opaque. Microwaves are well-suited to characterize hot spots because they readily penetrate most explosives. They also have sufficient temporal and spatial resolution to measure the coalescence of an ensemble of hot spots inside explosives. Here we employ 94 GHz microwaves to characterize the evolution of individual plasma plumes formed by laser ionization of air. We use interferometry to obtain plume diameter as a function of time. Although the plasma plumes are larger than individual hot spots in explosives, they expand rapidly and predictably, and their structure can be optically imaged. They are therefore useful model systems to establish the spatial and temporal limits of microwave interferometry (MI) for understanding more complex hot spot behavior in solid explosives.

  18. Microwave interrogation of an air plasma plume as a model system for hot spots in explosives

    NASA Astrophysics Data System (ADS)

    Kane, Ron; Tringe, Joseph; Klunder, Greg; Baluyot, Emer; Densmore, John; Converse, Mark

    2015-06-01

    The evolution of hot spots within explosives is critical to understand for predicting how detonation waves form and propagate. However, it is challenging to observe hot spots directly because they are small (~ micron diameter), form quickly (much less than a microsecond), and many explosives of interest are optically opaque. Microwaves are well-suited to characterize hot spots because they readily penetrate most explosives. They also have sufficient temporal and spatial resolution to measure the coalescence of an ensemble of hot spots inside explosives. Here we employ 94 GHz microwaves to characterize the evolution of individual plasma plumes formed by laser ionization of air. We use interferometry to obtain velocity records as a function of plume position and orientation. Although the plasma plumes are larger than individual hot spots in explosives, they expand rapidly and predictably, and their structure can be optically imaged. They are therefore useful model systems to establish the spatial and temporal limits of microwave interferometry (MI) for understanding more complex hot spot behavior in solid explosives. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  19. Understanding vapour plume structure in indoor environments for the detection of explosives

    NASA Astrophysics Data System (ADS)

    Foat, Tim

    2015-11-01

    Dogs remain the most effective method for the detection of explosives in many situations yet the spatially, temporally and chemically varying signature that they sense cannot easily be quantified. Vapour plumes can be highly unsteady and intermittent and the problem is further complicated in indoor spaces where turbulent, transitional and laminar regions may exist and where there may be no dominant flow direction. Intermittent plumes can have peak concentrations that are considerably higher than the time averaged values. As dogs can sample the air at 5 Hz it is possible that these unsteady fluctuations play a key part in their detection process. A low Reynolds number (Re less than 5000 at the inlet) benchmark test case for indoor airflow has been studied using large-eddy simulation computational fluid dynamics. Fixed concentration vapour sources have been included on the floor of the room and the resulting vapour dispersion has been modelled. Sources with different surface areas have been included and their instantaneous and mean concentration profiles compared. The results from this study will provide insight into canine detection of vapour in indoor environments.

  20. On-site detection of explosives in groundwater with a fiber optic biosensor

    SciTech Connect

    Van Bergen, S.K.; Bakaltcheva, I.B.; Lundgren, J.S.; Shriver-Lake, L.C.

    2000-02-15

    Two primary explosives involved in groundwater contamination, 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), were detected on-site at low ppb levels with a semiautomated fiber optic biosensor. Validation of the Analyte 2000 for TNT and RDX detection was performed at two Superfund sites, Umatilla Army Depot and Naval Surface Weapons Center Crane. Samples from monitoring wells were split for analysis using the fiber optic biosensor on-site and using US EPA SW-846 Method 8330 (reverse-phase high performance liquid chromatography) in an offsite laboratory. The Analyte 2000, a multifiber probe fluorimeter, was coupled to a fluidics unit for semiautomated operation. The fiber optic biosensor assay is based on a competitive fluorescent immunoassay performed on the silica core of a fiber probe. From these studies, the limit of detection was determined to be 5 {mu}g/L for both TNT and RDX. In addition to the field samples, extensive laboratory analyses were performed to determine cross-reactivity, matrix effects, and false positive/negative rates.

  1. Highly efficient SERS substrate for direct detection of explosive TNT using popcorn-shaped gold nanoparticle-functionalized SWCNT hybrid.

    PubMed

    Demeritte, Teresa; Kanchanapally, Rajashekhar; Fan, Zhen; Singh, Anant Kumar; Senapati, Dulal; Dubey, Madan; Zakar, Eugene; Ray, Paresh Chandra

    2012-11-07

    This paper reports for the first time the development of a large-scale SERS substrate from a popcorn-shaped gold nanoparticle-functionalized single walled carbon nanotubes hybrid thin film for the selective and highly sensitive detection of explosive TNT material at a 100 femtomolar (fM) level.

  2. Life detection systems.

    NASA Technical Reports Server (NTRS)

    Mitz, M. A.

    1972-01-01

    Some promising newer approaches for detecting microorganisms are discussed, giving particular attention to the integration of different methods into a single instrument. Life detection methods may be divided into biological, chemical, and cytological methods. Biological methods are based on the biological properties of assimilation, metabolism, and growth. Devices for the detection of organic materials are considered, taking into account an instrument which volatilizes, separates, and analyzes a sample sequentially. Other instrumental systems described make use of a microscope and the cytochemical staining principle.

  3. Navy explosive ordnance disposal project: Optical ordnance system development. Final report

    SciTech Connect

    Merson, J.A.; Salas, F.J.; Helsel, F.M.

    1996-03-01

    An optical ordnance firing system consisting of a portable hand held solid state rod laser and an optically ignited detonator has been developed for use in explosive ordnance disposal (EOD) activities. Solid state rod laser systems designed to have an output of 150 mJ in a 500 microsecond pulse have been produced and evaluated. A laser ignited detonator containing no primary explosives has been designed and fabricated. The detonator has the same functional output as an electrically fired blasting cap. The optical ordnance firing system has demonstrated the ability to reliably detonate Comp C-4 through 1000 meters of optical fiber.

  4. Luminescent metal-organic framework-functionalized graphene oxide nanocomposites and the reversible detection of high explosives

    NASA Astrophysics Data System (ADS)

    Lee, Ji Ha; Jaworski, Justyn; Jung, Jong Hwa

    2013-08-01

    Achieving both high specificity and sensitivity are essential for gas phase chemical detection systems. Recent implementation of Metal-Organic Frameworks (MOFs) have shown great success in separation and storage systems for specific gas molecules. By implementing a MOF structure comprised of Zn2+ coordinated trans-stilbene derivatives, a gas responsive material has been created which exhibits a high photoluminescence quantum yield, offering new opportunities for chemical sensors. Here, we reveal a nanocomposite material, assembled from azobenzene functionalized graphene oxide and stilbene-MOF, that is capable of luminescent quenching by explosive gases. This unique system displays selectivity to dinitrotoluene (71% quenching) over trinitrotoluene (20% quenching) with sub ppm sensitivity and response times of less than a minute. We show that this implementation of a graphene-based MOF composite provides a unique strategy in the development of molecularly well-defined materials having rapid, reversible, and gas selective fluorescent quenching capabilities. This opens the way for new advances in the assembly of low density frameworks using isomerization suppressed materials.Achieving both high specificity and sensitivity are essential for gas phase chemical detection systems. Recent implementation of Metal-Organic Frameworks (MOFs) have shown great success in separation and storage systems for specific gas molecules. By implementing a MOF structure comprised of Zn2+ coordinated trans-stilbene derivatives, a gas responsive material has been created which exhibits a high photoluminescence quantum yield, offering new opportunities for chemical sensors. Here, we reveal a nanocomposite material, assembled from azobenzene functionalized graphene oxide and stilbene-MOF, that is capable of luminescent quenching by explosive gases. This unique system displays selectivity to dinitrotoluene (71% quenching) over trinitrotoluene (20% quenching) with sub ppm sensitivity and

  5. Carbon nanotubes-based chemiresistive immunosensor for small molecules: Detection of nitroaromatic explosives

    PubMed Central

    Park, Miso; Cella, Lakshmi N; Chen, Wilfred; Myung, Nosang V.

    2010-01-01

    In recent years, there has been a growing focus on use of one-dimensional (1-D) nanostructures, such as carbon nanotubes and nanowires, as transducer elements for label-free chemiresistive/field-effect transistor biosensors as they provide label-free and high sensitivity detection. While research to-date has elucidated the power of carbon nanotubes- and other 1-D nanostructure- based field effect transistors immunosensors for large charged macromolecules such as proteins and viruses, their application to small uncharged or charged molecules has not been demonstrated. In this paper we report a single-walled carbon nanotubes (SWNTs)-based chemiresistive immunosensor for label-free, rapid, sensitive and selective detection of 2,4,6-trinitrotoluene (TNT), a small molecule. The newly developed immunosensor employed a displacement mode/format in which SWNTs network forming conduction channel of the sensor was first modified with trinitrophenyl (TNP), an analog of TNT, and then ligated with the anti-TNP single chain antibody. Upon exposure to TNT or its derivatives the bound antibodies were displaced producing a large change, several folds higher than the noise, in the resistance/conductance of SWNTs giving excellent limit of detection, sensitivity and selectivity. The sensor detected between 0.5 ppb and 5000 ppb TNT with good selectivity to other nitroaromatic explosives and demonstrated good accuracy for monitoring TNT in untreated environmental water matrix. We believe this new displacement format can be easily generalized to other one-dimensional nanostructure-based chemiresistive immuno/affinity-sensors for detecting small and/or uncharged molecules of interest in environmental monitoring and health care. PMID:20688506

  6. Automatic infection detection system.

    PubMed

    Granberg, Ove; Bellika, Johan Gustav; Arsand, Eirik; Hartvigsen, Gunnar

    2007-01-01

    An infected person may be contagious already before the first symptoms appear. This person can, in the period of disease evolution, infect several associated citizens before consulting a general practitioner (GP). Early detection of contagion is therefore important to prevent spreading of diseases. The Automatic Infection Detection (AID) System faces this problem through investigating the hypothesis that the blood glucose (BG) level increases when a person is infected. The first objective of the prototyped version of the AID system was to identify possible BG elevations in the incubation time that could be related to the spread of infectious diseases. To do this, we monitored two groups of people, with and without diabetes mellitus. The AID system analyzed the results and we were able to detect two cases of infection during the study period. The time of detection occurred simultaneous or near the time of onset of symptoms. The detection did not occur earlier for a number of reasons. The most likely one is that the evolution process of an infectious disease is both complicated and involves the immune system and several organs in the body. The investigation with regard to isolating the key relations is therefore considered as a very complex study. Nevertheless, the AID system managed to detect the infection much earlier than what is possible with today's early warning systems for infectious diseases.

  7. Detection of explosives and other illicit materials by a single nanosecond neutron pulses — Monte Carlo simulation of the detection process

    NASA Astrophysics Data System (ADS)

    Miklaszewski, R.; Wiącek, U.; Dworak, D.; Drozdowicz, K.; Gribkov, V.

    2012-07-01

    Recent progress in the development of a Nanosecond Impulse Neutron Investigation System (NINIS) intended for interrogation of hidden objects (explosives and other illicit materials) by means of measuring elastically and non-elastically scattered neutrons is presented. The method uses very bright neutron pulses having durations of the order of few nanoseconds, generated by a dense plasma focus (DPF) devices filled with pure deuterium or a deuterium-tritium mixture as a working gas. A very short duration of the neutron pulse, as well as its high brightness and mono-chromaticity allows using time-of-flight methods with bases of about few meters to distinguish signals from neutrons scattered by different elements. Results of the Monte Carlo simulations of the scattered neutron field from several compounds (explosives and everyday use materials) are presented. The MCNP5 code has been used to get information on the angular and energy distributions of neutrons scattered by the above mentioned compounds assuming the initial neutron energies to be equal to 2.45 MeV (DD) and 14 MeV (DT). A new input has been elaborated that allows modeling not only a spectrum of the neutrons scattered at different angles but also their time history from the moment of generation up to the detection. Such an approach allows getting approximate signals registered by hypothetic scintillator + photomultipler probes placed at various distances from the scattering object, demonstrating principal capability of the method to identify an elemental content of the inspected objects. The extensive computations reveled also several limitations of the proposed method, namely: low number of neutrons reaching detector system, distortions and interferences of scattered neutron signals etc. Further more, preliminary results of the MCNP modeling of the hidden fissile materials detection process are presented.

  8. Underwater laser detection system

    NASA Astrophysics Data System (ADS)

    Gomaa, Walid; El-Sherif, Ashraf F.; El-Sharkawy, Yasser H.

    2015-02-01

    The conventional method used to detect an underwater target is by sending and receiving some form of acoustic energy. But the acoustic systems have limitations in the range resolution and accuracy; while, the potential benefits of a laserbased underwater target detection include high directionality, high response, and high range accuracy. Lasers operating in the blue-green region of the light spectrum(420 : 570nm)have a several applications in the area of detection and ranging of submersible targets due to minimum attenuation through water ( less than 0.1 m-1) and maximum laser reflection from estimated target (like mines or submarines) to provide a long range of detection. In this paper laser attenuation in water was measured experimentally by new simple method by using high resolution spectrometer. The laser echoes from different targets (metal, plastic, wood, and rubber) were detected using high resolution CCD camera; the position of detection camera was optimized to provide a high reflection laser from target and low backscattering noise from the water medium, digital image processing techniques were applied to detect and discriminate the echoes from the metal target and subtract the echoes from other objects. Extraction the image of target from the scattering noise is done by background subtraction and edge detection techniques. As a conclusion, we present a high response laser imaging system to detect and discriminate small size, like-mine underwater targets.

  9. Standoff Raman spectrometry for the non-invasive detection of explosives precursors in highly fluorescing packaging.

    PubMed

    Izake, Emad L; Sundarajoo, Shankaran; Olds, William; Cletus, Biju; Jaatinen, Esa; Fredericks, Peter M

    2013-01-15

    Noninvasive standoff deep Raman spectroscopy has been utilised for the detection of explosives precursors in highly fluorescing packaging from 15m. To our knowledge this is the first time standoff deep Raman spectroscopy of concealed substances in highly fluorescing coloured packaging is demonstrated. Time-resolved Raman spectroscopy, spatially offset Raman spectroscopy and time-resolved spatially offset Raman spectroscopy have been compared to identify their selectivity towards the deep layers of a sample. The selectivity of time-resolved Raman spectroscopy towards the concealed chemical substances was found to be comparable to that of spatially offset Raman spectroscopy. However, time-resolved Raman spectroscopy did not require precise translation of the laser excitation beam onto the surface of the interrogated packaging as in the case of spatially offset Raman spectroscopy. Our results confirm that standoff time-resolved spatially offset Raman spectroscopy has significantly higher selectivity towards the deep layers of a sample when compared to the other deep Raman spectroscopy modes. The developed spectrometer was capable of detecting the concealed substances within 5s of data acquisition. By using time-resolved spatially Raman spectroscopy, a Raman spectrum that is representative of the content alone was acquired without the use of sophisticated algorithms to eliminate the spectral contributions of the packaging material within the acquired spectrum as in the case of time-resolved Raman spectroscopy and spatially offset Raman spectroscopy. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Polymer nanocomposite nanomechanical cantilever sensors: material characterization, device development and application in explosive vapour detection

    NASA Astrophysics Data System (ADS)

    Seena, V.; Fernandes, Avil; Pant, Prita; Mukherji, Soumyo; Ramgopal Rao, V.

    2011-07-01

    This paper reports an optimized and highly sensitive piezoresistive SU-8 nanocomposite microcantilever sensor and its application for detection of explosives in vapour phase. The optimization has been in improving its electrical, mechanical and transduction characteristics. We have achieved a better dispersion of carbon black (CB) in the SU-8/CB nanocomposite piezoresistor and arrived at an optimal range of 8-9 vol% CB concentration by performing a systematic mechanical and electrical characterization of polymer nanocomposites. Mechanical characterization of SU-8/CB nanocomposite thin films was performed using the nanoindentation technique with an appropriate substrate effect analysis. Piezoresistive microcantilevers having an optimum carbon black concentration were fabricated using a design aimed at surface stress measurements with reduced fabrication process complexity. The optimal range of 8-9 vol% CB concentration has resulted in an improved sensitivity, low device variability and low noise level. The resonant frequency and spring constant of the microcantilever were found to be 22 kHz and 0.4 N m - 1 respectively. The devices exhibited a surface stress sensitivity of 7.6 ppm (mN m - 1) - 1 and the noise characterization results support their suitability for biochemical sensing applications. This paper also reports the ability of the sensor in detecting TNT vapour concentration down to less than six parts per billion with a sensitivity of 1 mV/ppb.

  11. Polymer nanocomposite nanomechanical cantilever sensors: material characterization, device development and application in explosive vapour detection.

    PubMed

    Seena, V; Fernandes, Avil; Pant, Prita; Mukherji, Soumyo; Rao, V Ramgopal

    2011-07-22

    This paper reports an optimized and highly sensitive piezoresistive SU-8 nanocomposite microcantilever sensor and its application for detection of explosives in vapour phase. The optimization has been in improving its electrical, mechanical and transduction characteristics. We have achieved a better dispersion of carbon black (CB) in the SU-8/CB nanocomposite piezoresistor and arrived at an optimal range of 8-9 vol% CB concentration by performing a systematic mechanical and electrical characterization of polymer nanocomposites. Mechanical characterization of SU-8/CB nanocomposite thin films was performed using the nanoindentation technique with an appropriate substrate effect analysis. Piezoresistive microcantilevers having an optimum carbon black concentration were fabricated using a design aimed at surface stress measurements with reduced fabrication process complexity. The optimal range of 8-9 vol% CB concentration has resulted in an improved sensitivity, low device variability and low noise level. The resonant frequency and spring constant of the microcantilever were found to be 22 kHz and 0.4 N m(-1) respectively. The devices exhibited a surface stress sensitivity of 7.6 ppm (mN m(-1))(-1) and the noise characterization results support their suitability for biochemical sensing applications. This paper also reports the ability of the sensor in detecting TNT vapour concentration down to less than six parts per billion with a sensitivity of 1 mV/ppb.

  12. Development and characterization of an electrostatic particle sampling system for the selective collection of trace explosives.

    PubMed

    Beer, Sebastian; Müller, Gerhard; Wöllenstein, Jürgen

    2012-01-30

    Detection of trace explosives residues at people and cargo control points has become a key security challenge. A severe obstacle is that all commercial and military high explosives have low to extremely low vapor pressures which make them very hard to detect. With detectable vapors not being present, explosives detection needs to proceed through a series of sequential steps including particle collection, thermal vapor conversion and vapor detection. The present paper describes the design and test of an electrostatic particle precipitator which allows particle residue to be collected from the environment, the collected particle residue to be separated into high- and low-electron affinity fractions and the high-electron-affinity one to be concentrated onto a small-area collector surface for later vaporization. The selectivity of this particle collection and separation process is demonstrated and a full-chain demonstration of a DNT detection experiment is presented (DNT: di-nitro-toluene). Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Investigation of Propellant and Explosive Solid Solution Systems II X-Ray Studies

    DTIC Science & Technology

    1978-03-01

    A\\Yj* ^\\C/*^ ^ 1 tatf AD 7t ott w AD-E400 125 TECHNICAL REPORT ARLCD-TR-77066 INVESTIGATION OF PROPELLANT AND EXPLOSIVE SOLID SOLUTION SYSTEMS...Report ARLCD-TR-77066 2. GOVT ACCESSION NO. *. TITLE (and Subtitle) INVESTIGATION OF PROPELLANT AND EXPLOSIVE SOLID SOLUTION SYSTEMS II X-RAY...Interplanar spacings and x-ray diffraction 9 intensities of AP, KP and their physical mixtures and solid solutions 4 X-ray data of 3 AN: KP solid solution and

  14. Novel CE-MS technique for detection of high explosives using perfluorooctanoic acid as a MEKC and mass spectrometric complexation reagent.

    PubMed

    Brensinger, Karen; Rollman, Christopher; Copper, Christine; Genzman, Ashton; Rine, Jacqueline; Lurie, Ira; Moini, Mehdi

    2016-01-01

    To address the need for the forensic analysis of high explosives, a novel capillary electrophoresis mass spectrometry (CE-MS) technique has been developed for high resolution, sensitivity, and mass accuracy detection of these compounds. The technique uses perfluorooctanoic acid (PFOA) as both a micellar electrokinetic chromatography (MEKC) reagent for separation of neutral explosives and as the complexation reagent for mass spectrometric detection of PFOA-explosive complexes in the negative ion mode. High explosives that formed complexes with PFOA included RDX, HMX, tetryl, and PETN. Some nitroaromatics were detected as molecular ions. Detection limits in the high parts per billion range and linear calibration responses over two orders of magnitude were obtained. For proof of concept, the technique was applied to the quantitative analysis of high explosives in sand samples. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Intruder detection system

    NASA Technical Reports Server (NTRS)

    Lee, R. D. (Inventor)

    1973-01-01

    An intruder detection system is described. The system contains a transmitter which sends a frequency modulated and amplitude modulated signal to a remote receiver in response to a geophone detector which responds to seismic impulses created by the intruder. The signal makes it possible for an operator to determine the number of intruders and the manner of movement.

  16. Radiation detection system

    DOEpatents

    Franks, Larry A.; Lutz, Stephen S.; Lyons, Peter B.

    1981-01-01

    A radiation detection system including a radiation-to-light converter and fiber optic wave guides to transmit the light to a remote location for processing. The system utilizes fluors particularly developed for use with optical fibers emitting at wavelengths greater than about 500 nm and having decay times less than about 10 ns.

  17. Portable pathogen detection system

    DOEpatents

    Colston, Billy W.; Everett, Matthew; Milanovich, Fred P.; Brown, Steve B.; Vendateswaran, Kodumudi; Simon, Jonathan N.

    2005-06-14

    A portable pathogen detection system that accomplishes on-site multiplex detection of targets in biological samples. The system includes: microbead specific reagents, incubation/mixing chambers, a disposable microbead capture substrate, and an optical measurement and decoding arrangement. The basis of this system is a highly flexible Liquid Array that utilizes optically encoded microbeads as the templates for biological assays. Target biological samples are optically labeled and captured on the microbeads, which are in turn captured on an ordered array or disordered array disposable capture substrate and then optically read.

  18. Solar system fault detection

    DOEpatents

    Farrington, R.B.; Pruett, J.C. Jr.

    1984-05-14

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  19. Solar system fault detection

    DOEpatents

    Farrington, Robert B.; Pruett, Jr., James C.

    1986-01-01

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  20. Luminescent metal-organic framework-functionalized graphene oxide nanocomposites and the reversible detection of high explosives.

    PubMed

    Lee, Ji Ha; Jaworski, Justyn; Jung, Jong Hwa

    2013-09-21

    Achieving both high specificity and sensitivity are essential for gas phase chemical detection systems. Recent implementation of Metal-Organic Frameworks (MOFs) have shown great success in separation and storage systems for specific gas molecules. By implementing a MOF structure comprised of Zn(2+) coordinated trans-stilbene derivatives, a gas responsive material has been created which exhibits a high photoluminescence quantum yield, offering new opportunities for chemical sensors. Here, we reveal a nanocomposite material, assembled from azobenzene functionalized graphene oxide and stilbene-MOF, that is capable of luminescent quenching by explosive gases. This unique system displays selectivity to dinitrotoluene (71% quenching) over trinitrotoluene (20% quenching) with sub ppm sensitivity and response times of less than a minute. We show that this implementation of a graphene-based MOF composite provides a unique strategy in the development of molecularly well-defined materials having rapid, reversible, and gas selective fluorescent quenching capabilities. This opens the way for new advances in the assembly of low density frameworks using isomerization suppressed materials.

  1. Method for selective detection of explosives in mass spectrometer or ion mobility spectrometer at parts-per-quadrillion level

    SciTech Connect

    Ewing, Robert G.; Atkinson, David A.; Clowers, Brian H.

    2015-09-01

    A method for selective detection of volatile and non-volatile explosives in a mass spectrometer or ion mobility spectrometer at a parts-per-quadrillion level without preconcentration is disclosed. The method comprises the steps of ionizing a carrier gas with an ionization source to form reactant ions or reactant adduct ions comprising nitrate ions (NO.sub.3.sup.-); selectively reacting the reactant ions or reactant adduct ions with at least one volatile or non-volatile explosive analyte at a carrier gas pressure of at least about 100 Ton in a reaction region disposed between the ionization source and an ion detector, the reaction region having a length which provides a residence time (tr) for reactant ions therein of at least about 0.10 seconds, wherein the selective reaction yields product ions comprising reactant ions or reactant adduct ions that are selectively bound to the at least one explosive analyte when present therein; and detecting product ions with the ion detector to determine presence or absence of the at least one explosive analyte.

  2. Facilitation of Third-party Development of Advanced Algorithms for Explosive Detection Using Workshops and Grand Challenges

    SciTech Connect

    Martz, H E; Crawford, C R; Beaty, J S; Castanon, D

    2011-02-15

    The US Department of Homeland Security (DHS) has requirements for future explosive detection scanners that include dealing with a larger number of threats, higher probability of detection, lower false alarm rates and lower operating costs. One tactic that DHS is pursuing to achieve these requirements is to augment the capabilities of the established security vendors with third-party algorithm developers. The purposes of this presentation are to review DHS's objectives for involving third parties in the development of advanced algorithms and then to discuss how these objectives are achieved using workshops and grand challenges. Terrorists are still trying and they are getting more sophisticated. There is a need to increase the number of smart people working on homeland security. Augmenting capabilities and capacities of system vendors with third-parties is one tactic. Third parties can be accessed via workshops and grand challenges. Successes have been achieved to date. There are issues that need to be resolved to further increase third party involvement.

  3. Small molecular probe as selective tritopic sensor of Al(3+), F(-) and TNP: Fabrication of portable prototype for onsite detection of explosive TNP.

    PubMed

    Ghosh, Pritam; Banerjee, Priyabrata

    2017-05-01

    Schiff base organic compound (SOC) has been prepared as a tritopic chemosensor for selective sensing by fluorescence signalling towards ions like Al(3+), F(-) and explosive molecule like TNP. In general, fluorescence like photophysical property has been used for selective detection of analyte where Al(3+) and F(-) show turn-on fluorescence signal at different wavelengths (nm) however, quenching was found with TNP. As a consequence, the chemosensor has become a selective sensor for Al(3+), F(-) and TNP. Reversibility of fluorescence responses for Al(3+) and F(-) are observed in presence of ammonium nitrate and H(+) respectively. Similar to the detection of TNP, the detection of explosive like NO3(-) salts is also essential from homeland security point of view. In the present work, the finding of reversible sequential fluorescence response can be promoted for fabrication of next generation AND-NOT-OR-NAND-XOR-XNOR-NOR based complex logic circuit which is applicable in photonics, security and other fields including inorganic and material science. In the case of TNP recognition, the pathway mainly depends on non-covalent interaction (quenching constant: 4.4 × 10(5) M(-1)) which is even better than the recently reported materials. Detection limit for Al(3+), F(-) and TNP is 1 μM, 3 μM and 500 nM respectively. DFT-D3 has been carried out to explore the host⋯guest interaction along with the structure-property correlation of the present host-guest system. All three guest analytes have been detected inside the living cell at a certain level and in its consequence, the successful in vitro recognition ability of the SOCs inside human cell line HeLa has been explored too. In real time stepping, an easy to operate and an economically affordable pocket prototype has also been fabricated for on spot detection of TNP like explosive.

  4. High Explosives Mixtures Detection Using Fiber Optics Coupled: Grazing Angle Probe/Fourier Transform Reflection Absorption Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Primera-Pedrozo, Oliva M.; Soto-Feliciano, Yadira M.; Pacheco-Londoño, Leonardo C.; Hernández-Rivera, Samuel P.

    2008-12-01

    Fourier Transform Infrared Spectroscopy operating in Reflection-Absorption mode has been demonstrated as a potential spectroscopic technique to develop new methodologies for detection of chemicals deposited on metallic surfaces. Mid-IR transmitting optical fiber bundle coupled to an external Grazing Angle Probe and an MCT detector together with a bench Michelson interferometer have been used to develop a highly sensitive and selective methodology for detecting traces of organic compounds on metal surfaces. The methodology is remote sensed, in situ and can detect surface loading concentrations of nanograms/cm2 of most target compounds. It is an environmentally friendly, solvent free technique that does not require sample preparation. In this work, the ever-important task of high explosives detection, present as traces of neat crystalline forms and in lab-made mixtures, equivalent to the important explosive formulation Pentolite, has been addressed. The sample set consisted of TNT, PETN (both pure samples) and the formulation based on them: Pentolite, present in various loading concentrations. The spectral data collected was subjected to a number of statistical pre-treatments, including first derivative and normalization transformations to make the data more suitable for the analysis. Principal Components Analysis combined with Linear Discriminant Analysis allowed the classification and discrimination of the target analytes contained in the sample set. Loading concentrations as 220 ng/cm2 were detected for each explosive in neat form and the in the simulated mixture of Pentolite.

  5. Geometry-independent neutral desorption device for the sensitive EESI-MS detection of explosives on various surfaces.

    PubMed

    Gu, Haiwei; Yang, Shuiping; Li, Jianqiang; Hu, Bin; Chen, Huanwen; Zhang, Lili; Fei, Qiang

    2010-04-01

    A novel geometry-independent neutral desorption (GIND) device was successfully developed, which made neutral desorption (ND) sampling easier and more robust on virtually all types of surfaces. The GIND device features a small air-tight enclosure with fixed space between the ND gas emitter, the sample surface, and the sample collector. Besides easy fabrication and convenient use, this configuration facilitates efficient neutral sample transfer and results in high sensitivity by preventing material loss during the ND process. The effects of various operating parameters of the GIND device such as desorption gas composition, surface wetness, gas flow rate, distance between the surface and the gas emitter, internal diameter of the sample outlet, and GIND device material were experimentally investigated. By using the GIND device, trace amounts of typical explosives such as TNT, RDX, HMX, TATP, etc., were successfully sampled from many different kinds of surfaces, including human skin, glove, glass, envelope, plastic, leather, glass, and clothes. GIND-sampled explosives were detected by multiple-stage extractive electrospray ionization mass spectrometry (EESI-MS). Ion/molecule reactions of explosives such as RDX and TATP were implemented in the EESI source for the rapid detection with enhanced sensitivity and specificity. The typical time for a single sample analysis was a few seconds. Successful transportation of the neutral analytes over a distance longer than 10 m was demonstrated, without either significant signal loss or serious delay of signal response. The limit of detection for these explosives in the study was in the range of ca. 59-842 fg (S/N = 3, n = 8) on various surfaces. Acceptable relative standard deviation (RSD) values (ca. 4.6-10.2%, n = 8) were obtained for all the surfaces tested, showing the successful sampling of trace non-volatile explosive compounds (sub-picogram) by the GIND device for the EESI mass spectrometric analysis.

  6. Explosion swarms at Stromboli volcano: A proxy for nonequilibrium conditions in the shallow plumbing system

    NASA Astrophysics Data System (ADS)

    de Martino, S.; Errico, A.; Palo, M.; Cimini, G. B.

    2012-03-01

    In this paper we look at changes of the statistics of the stationary explosive process at a basaltic volcano as a proxy for departures from thermodynamic equilibrium conditions in the shallow plumbing system. Specifically, we investigate the explosion process of Stromboli volcano that occurred during 2002-2003, 2006-2007 and 2010-2011. The first two periods were characterized by eruptions with significant lava effusion and strong paroxysmal events, while the last one shows persistent explosive activity accompanied by minor episodes of lava flow. We use three-component seismic data recorded by broadband stations operating on the volcano and, for 2007 and 2010-2011 cases, strainmeter data from a Sacks-Evertson borehole dilatometer. For each time interval we study the explosive process by looking at the inter-occurrence times and at the amplitude distribution. Moreover, we analyze its waveforms, spectral content and polarization properties. In all three cases we find sharp increases of the explosion rate associated with swarms. Swarms are characterized by quasi-monochromatic seismic events with frequency peak close to about 3 Hz, higher amplitude than the usual explosions and variability coefficient of the inter-occurrence times close to 0.5. In correspondence to the swarms, we also observe negative variations in the strain signals, which indicate a depressurization in the shallow plumbing system. This depressurization emerges clearly from the data collected during 2010-2011, whereas it is less sharp for the 2007 episode, and has been estimated in about 105 Pa. From the polarization analysis we infer that this depressurization affects the upper 0.3-0.8 km of the plumbing system.

  7. Sensor Technology Assessment for Ordnance and Explosive Waste Detection and Location. Revision B.

    DTIC Science & Technology

    2007-11-02

    Engineers 17 Section 2.1 - An Overview Of Ordnance Sensor Technologies provides its own source of energy . The system "illuminates" the terrain with...electromagnetic energy , detects the energy returning from the terrain (called radar return), and then records it as an image. (Passive remote sensing systems...such as photography and thermal infrared sensing detect the available energy reflected or radiated from the terrain, whereas radar systems operate

  8. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, EXPLOSIVES DETECTION TECHNOLOGY, SRI INSTRUMENTS, MODEL 8610C, GAS CHROMATOGRAPH/THERMIONIC IONIZATION DETECTION

    EPA Science Inventory

    The SRI Model 86 1 OC gas chromatograph (GC) is a transportable instrument that can provide on-site analysis of soils for explosives. Coupling this transportable gas chromatograph with a thermionic ionization detector (TID) allows for the determination of explosives in soil matri...

  9. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, EXPLOSIVES DETECTION TECHNOLOGY, SRI INSTRUMENTS, MODEL 8610C, GAS CHROMATOGRAPH/THERMIONIC IONIZATION DETECTION

    EPA Science Inventory

    The SRI Model 86 1 OC gas chromatograph (GC) is a transportable instrument that can provide on-site analysis of soils for explosives. Coupling this transportable gas chromatograph with a thermionic ionization detector (TID) allows for the determination of explosives in soil matri...

  10. Fluid dynamics of a pressure measuring system for underground explosive tests

    SciTech Connect

    Dykhuizen, R.C.

    1987-01-01

    Numerical and analytical models are used to optimize a pressure measuring system for underground nuclear tests. This system uses a long pipe filled with gas to communicate the pressure level to a transducer in a pressure chamber remote from the explosion cavity. The pressure chamber and pipe are pressurized above the final pressure expected from the explosion. During the explosion, the high pressure gas blows down, preventing debris from entering and clogging the system. The models were first checked against the Junior Jade test series, which used an undergound non-nuclear explosion to simulate a nuclear test. It was found that the measured pressure oscillated for some time before settling down to a steady value. This is shown to be a result of an organ pipe oscillation that can develop in the short pipes used for this test series. The analytical model provided a simple means to optimize the system design parameters and showed that changing the working fluid from nitrogen to helium would improve the time response of the system significantly. The numerical model is then used to obtain more accurate predictions of the sytem response. 2 refs., 5 figs., 1 tab.

  11. Non-detonable explosive simulators

    SciTech Connect

    Simpson, R.L.; Pruneda, C.O.

    1994-11-01

    A simulator which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules. 5 figs.

  12. Non-detonable explosive simulators

    SciTech Connect

    Simpson, Randall L.; Pruneda, Cesar O.

    1994-01-01

    A simulator which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules.

  13. Non-detonable explosive simulators

    DOEpatents

    Simpson, R.L.; Pruneda, C.O.

    1994-11-01

    A simulator which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules. 5 figs.

  14. Detection of the improvised explosives ammonium nitrate (AN) and urea nitrate (UN) using non-aqueous solvents with electrospray ionization and MS/MS detection.

    PubMed

    Corbin, Inge; McCord, Bruce

    2013-10-15

    In this study methods for the detection of trace levels of the improvised explosives urea nitrate and ammonium nitrate were developed using electrospray ionization with infusion. By using a non-aqueous solvent mixture containing 95% acetone with 5% 2-methoxyethanol we were able to preserve the urea and ammonium nitrate ion pairs and discriminate between these and other similar salts. Negative ion electrospray ionization was used for urea nitrate detection and positive ion electrospray ionization was used for ammonium nitrate. Two specific adduct ions were detected for each explosive with ammonium nitrate producing m/z 178 [2AN+NH4](+) and m/z 258 ions [3AN+NH4](+) while urea nitrate produced m/z 185 [UN+NO3](-) and m/z 248 [UN+HNO3+NO3](-) The specificity of the analysis was examined by mixing the different explosives with various salts and interferents. Adduct ions formed in the gas phase were found to be useful in distinguishing between ion pairs and mixed salts. Overall the method demonstrates the sensitive detection of both explosives, and more specifically the potential to determine intact urea nitrate. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Highly sensitive gas-phase explosive detection by luminescent microporous polymer networks

    PubMed Central

    Räupke, André; Palma-Cando, Alex; Shkura, Eugen; Teckhausen, Peter; Polywka, Andreas; Görrn, Patrick; Scherf, Ullrich; Riedl, Thomas

    2016-01-01

    We propose microporous networks (MPNs) of a light emitting spiro-carbazole based polymer (PSpCz) as luminescent sensor for nitro-aromatic compounds. The MPNs used in this study can be easily synthesized on arbitrarily sized/shaped substrates by simple and low-cost electrochemical deposition. The resulting MPN afford an extremely high specific surface area of 1300 m2/g, more than three orders of magnitude higher than that of the thin films of the respective monomer. We demonstrate, that the luminescence of PSpCz is selectively quenched by nitro-aromatic analytes, e.g. nitrobenzene, 2,4-DNT and TNT. In striking contrast to a control sample based on non-porous spiro-carbazole, which does not show any luminescence quenching upon exposure to TNT at levels of 3 ppm and below, the microporous PSpCz shows a clearly detectable response even at TNT concentrations as low as 5 ppb, clearly demonstrating the advantage of microporous films as luminescent sensors for traces of explosive analytes. This level states the vapor pressure of TNT at room temperature. PMID:27373905

  16. Highly sensitive gas-phase explosive detection by luminescent microporous polymer networks

    NASA Astrophysics Data System (ADS)

    Räupke, André; Palma-Cando, Alex; Shkura, Eugen; Teckhausen, Peter; Polywka, Andreas; Görrn, Patrick; Scherf, Ullrich; Riedl, Thomas

    2016-07-01

    We propose microporous networks (MPNs) of a light emitting spiro-carbazole based polymer (PSpCz) as luminescent sensor for nitro-aromatic compounds. The MPNs used in this study can be easily synthesized on arbitrarily sized/shaped substrates by simple and low-cost electrochemical deposition. The resulting MPN afford an extremely high specific surface area of 1300 m2/g, more than three orders of magnitude higher than that of the thin films of the respective monomer. We demonstrate, that the luminescence of PSpCz is selectively quenched by nitro-aromatic analytes, e.g. nitrobenzene, 2,4-DNT and TNT. In striking contrast to a control sample based on non-porous spiro-carbazole, which does not show any luminescence quenching upon exposure to TNT at levels of 3 ppm and below, the microporous PSpCz shows a clearly detectable response even at TNT concentrations as low as 5 ppb, clearly demonstrating the advantage of microporous films as luminescent sensors for traces of explosive analytes. This level states the vapor pressure of TNT at room temperature.

  17. A micro gas preconcentrator with improved performance for pollution monitoring and explosives detection.

    PubMed

    Camara, E H M; Breuil, P; Briand, D; de Rooij, N F; Pijolat, C

    2011-03-04

    This paper presents the optimization of a micro gas preconcentrator based on a micro-channel in porous and non-porous silicon filled with an adequate adsorbent. This micro gas preconcentrator is both applicable in the fields of atmospheric pollution monitoring (Volatil organic compounds--VOCs) and explosives detection (nitroaromatic compounds). Different designs of micro-devices and adsorbent materials have been investigated since these two parameters are of importance in the performances of the micro-device. The optimization of the device and its operation were driven by its future application in outdoor environments. Parameters such as the preconcentration factor, cycle time and the influence of the humidity were considered along the optimization process. As a result of this study, a preconcentrator with a total cycle time of 10 min and the use of single wall carbon nanotubes (SWCNTs) as adsorbent exhibits a good preconcentration factor for VOCs with a limited influence of the humidity. The benefits of using porous silicon to modify the gas desorption kinetics are also investigated. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. A Novel Immunoreagent for the Specific and Sensitive Detection of the Explosive Triacetone Triperoxide (TATP)

    PubMed Central

    Walter, Maria Astrid; Panne, Ulrich; Weller, Michael G.

    2011-01-01

    Triacetone triperoxide (TATP) is a primary explosive, which was used in various terrorist attacks in the past. For the development of biosensors, immunochemical µ-TAS, electronic noses, immunological test kits, or test strips, the availability of antibodies of high quality is crucial. Recently, we presented the successful immunization of mice, based on the design, synthesis, and conjugation of a novel TATP derivative. Here, the long-term immunization of rabbits is shown, which resulted in antibodies of extreme selectivity and more than 1,000 times better affinity in relation to the antibodies from mice. Detection limits below 10 ng L−1 (water) were achieved. The working range covers more than four decades, calculated from a precision profile. The cross-reactivity tests revealed an extraordinary selectivity of the antibodies—not a single compound could be identified as a relevant cross-reactant. The presented immunoreagent might be a major step for the development of highly sensitive and selective TATP detectors particularly for security applications. PMID:25586922

  19. Detection of Explosives in a Dynamic Marine Environment Using a Moored TNT Immunosensor

    PubMed Central

    Charles, Paul T.; Adams, André A.; Deschamps, Jeffrey R.; Veitch, Scott; Hanson, Al; Kusterbeck, Anne W.

    2014-01-01

    A field demonstration and longevity assessment for long-term monitoring of the explosive 2,4,6-trinitrotoluene (TNT) in a marine environment using an anti-TNT microfluidic immunosensor is described. The TNT immunosensor is comprised of a microfluidic device with 39 parallel microchannels (2.5 cm × 250 μm × 500 μm, L × W × D) fabricated in poly(methylmethacrylate) (PMMA), then chemically functionalized with antibodies possessing a high affinity for TNT. Synthesized fluorescence reporter complexes used in a displacement-based assay format were used for TNT identification. For field deployment the TNT immunosensor was configured onto a submersible moored steel frame along with frame controller, pumps and TNT plume generator and deployed pier side for intermittent plume sampling of TNT (1h increments). Under varying current and tidal conditions trace levels of TNT in natural seawater were detected over an extended period (>18 h). Overnight operation and data recording was monitored via a web interface. PMID:24583970

  20. Seismic detection of increased degassing before Kīlauea's 2008 summit explosion

    USGS Publications Warehouse

    Johnson, Jessica H.; Poland, Michael P.

    2013-01-01

    The 2008 explosion that started a new eruption at the summit of Kīlauea Volcano, Hawai‘i, was not preceded by a dramatic increase in earthquakes nor inflation, but was associated with increases in SO2 emissions and seismic tremor. Here we perform shear wave splitting analysis on local earthquakes spanning the onset of the eruption. Shear wave splitting measures seismic anisotropy and is traditionally used to infer changes in crustal stress over time. We show that shear wave splitting may also vary due to changes in volcanic degassing. The orientation of fast shear waves at Kīlauea is usually controlled by structure, but in 2008 showed changes with increased SO2 emissions preceding the start of the summit eruption. This interpretation for changing anisotropy is supported by corresponding decreases in Vp/Vs ratio. Our result demonstrates a novel method for detecting changes in gas flux using seismic observations and provides a new tool for monitoring under-instrumented volcanoes.