Science.gov

Sample records for exponential growth kinetics

  1. Noise in Exponential Growth

    NASA Astrophysics Data System (ADS)

    Iyer-Biswas, Srividya; Wright, Charles; Henry, Jon; Burov, Stas; Lin, Yihan; Crosson, Sean; Dinner, Aaron; Scherer, Norbert

    2013-03-01

    The interplay between growth and division of cells is has been studied in the context of exponential growth of bacterial cells (in suitable conditions) for decades. However, bulk culture studies obscure phenomena that manifest in single cells over many generations. We introduce a unique technology combining microfluidics, single-cell imaging, and quantitative analysis. This enables us to track the growth of single Caulobacter crescentus stalked cells over hundreds of generations. The statistics that we extract indicate a size thresholding mechanism for cell division and a non-trivial scaling collapse of division time distributions at different temperatures. In this talk I shall discuss these observations and a stochastic model of growth and division that captures all our observations with no free parameters.

  2. Growth kinetics of Listeria monocytogenes in broth and beef frankfurters--determination of lag phase duration and exponential growth rate under isothermal conditions.

    PubMed

    Huang, L

    2008-06-01

    The objective of this study was to develop a new kinetic model to describe the isothermal growth of microorganisms. The new model was tested with Listeria monocytogenes in tryptic soy broth and frankfurters, and compared with 2 commonly used models-Baranyi and modified Gompertz models. Bias factor (BF), accuracy factor (AF), and root mean square errors (RMSE) were used to evaluate the 3 models. Either in broth or in frankfurter samples, there were no significant differences in BF (approximately 1.0) and AF (1.02 to 1.04) among the 3 models. In broth, the mean RMSE of the new model was very close to that of the Baranyi model, but significantly lower than that of the modified Gompertz model. However, in frankfurters, there were no significant differences in the mean RMSE values among the 3 models. These results suggest that these models are equally capable of describing isothermal bacterial growth curves. Almost identical to the Baranyi model in the exponential and stationary phases, the new model has a more identifiable lag phase and also suggests that the bacteria population would increase exponentially until the population approaches to within 1 to 2 logs from the stationary phase. In general, there is no significant difference in the means of the lag phase duration and specific growth rate between the new and Baranyi models, but both are significantly lower than those determined from the modified Gompertz models. The model developed in this study is directly derived from the isothermal growth characteristics and is more accurate in describing the kinetics of bacterial growth in foods.

  3. Modeling Exponential Population Growth

    ERIC Educational Resources Information Center

    McCormick, Bonnie

    2009-01-01

    The concept of population growth patterns is a key component of understanding evolution by natural selection and population dynamics in ecosystems. The National Science Education Standards (NSES) include standards related to population growth in sections on biological evolution, interdependence of organisms, and science in personal and social…

  4. Modeling Exponential Population Growth

    ERIC Educational Resources Information Center

    McCormick, Bonnie

    2009-01-01

    The concept of population growth patterns is a key component of understanding evolution by natural selection and population dynamics in ecosystems. The National Science Education Standards (NSES) include standards related to population growth in sections on biological evolution, interdependence of organisms, and science in personal and social…

  5. Universality in Stochastic Exponential Growth

    NASA Astrophysics Data System (ADS)

    Iyer-Biswas, Srividya; Crooks, Gavin E.; Scherer, Norbert F.; Dinner, Aaron R.

    2014-07-01

    Recent imaging data for single bacterial cells reveal that their mean sizes grow exponentially in time and that their size distributions collapse to a single curve when rescaled by their means. An analogous result holds for the division-time distributions. A model is needed to delineate the minimal requirements for these scaling behaviors. We formulate a microscopic theory of stochastic exponential growth as a Master Equation that accounts for these observations, in contrast to existing quantitative models of stochastic exponential growth (e.g., the Black-Scholes equation or geometric Brownian motion). Our model, the stochastic Hinshelwood cycle (SHC), is an autocatalytic reaction cycle in which each molecular species catalyzes the production of the next. By finding exact analytical solutions to the SHC and the corresponding first passage time problem, we uncover universal signatures of fluctuations in exponential growth and division. The model makes minimal assumptions, and we describe how more complex reaction networks can reduce to such a cycle. We thus expect similar scalings to be discovered in stochastic processes resulting in exponential growth that appear in diverse contexts such as cosmology, finance, technology, and population growth.

  6. Universality in stochastic exponential growth.

    PubMed

    Iyer-Biswas, Srividya; Crooks, Gavin E; Scherer, Norbert F; Dinner, Aaron R

    2014-07-11

    Recent imaging data for single bacterial cells reveal that their mean sizes grow exponentially in time and that their size distributions collapse to a single curve when rescaled by their means. An analogous result holds for the division-time distributions. A model is needed to delineate the minimal requirements for these scaling behaviors. We formulate a microscopic theory of stochastic exponential growth as a Master Equation that accounts for these observations, in contrast to existing quantitative models of stochastic exponential growth (e.g., the Black-Scholes equation or geometric Brownian motion). Our model, the stochastic Hinshelwood cycle (SHC), is an autocatalytic reaction cycle in which each molecular species catalyzes the production of the next. By finding exact analytical solutions to the SHC and the corresponding first passage time problem, we uncover universal signatures of fluctuations in exponential growth and division. The model makes minimal assumptions, and we describe how more complex reaction networks can reduce to such a cycle. We thus expect similar scalings to be discovered in stochastic processes resulting in exponential growth that appear in diverse contexts such as cosmology, finance, technology, and population growth.

  7. Phenomenology of stochastic exponential growth

    NASA Astrophysics Data System (ADS)

    Pirjol, Dan; Jafarpour, Farshid; Iyer-Biswas, Srividya

    2017-06-01

    Stochastic exponential growth is observed in a variety of contexts, including molecular autocatalysis, nuclear fission, population growth, inflation of the universe, viral social media posts, and financial markets. Yet literature on modeling the phenomenology of these stochastic dynamics has predominantly focused on one model, geometric Brownian motion (GBM), which can be described as the solution of a Langevin equation with linear drift and linear multiplicative noise. Using recent experimental results on stochastic exponential growth of individual bacterial cell sizes, we motivate the need for a more general class of phenomenological models of stochastic exponential growth, which are consistent with the observation that the mean-rescaled distributions are approximately stationary at long times. We show that this behavior is not consistent with GBM, instead it is consistent with power-law multiplicative noise with positive fractional powers. Therefore, we consider this general class of phenomenological models for stochastic exponential growth, provide analytical solutions, and identify the important dimensionless combination of model parameters, which determines the shape of the mean-rescaled distribution. We also provide a prescription for robustly inferring model parameters from experimentally observed stochastic growth trajectories.

  8. Forecasting exponential growth and exponential decline: similarities and differences.

    PubMed

    Ebersbach, Mirjam; Lehner, Mirjam; Resing, Wilma C M; Wilkening, Friedrich

    2008-02-01

    Previous research has demonstrated adults' difficulties with explicitly forecasting exponential processes. Exponential growth is usually grossly underestimated, whereas exponential decline is forecast more accurately. By contrast, the present study examined implicit knowledge about exponential processes and how it is affected by function type (growth versus decline) in samples of 7-, 10-, 14-year-olds, and adults (N=80). Different indicators of the quality of forecasts were investigated. As opposed to previous findings, participants of all age groups estimated exponential decline less adequately than exponential growth. This effect could be attributed mainly to the fact that, in relation to fitted exponential functions, the starting value, or intercept, of the function was approximated well for exponential growth but badly with regard to exponential decline. The accuracy of the non-linear component in forecast functions barely differed between function types within the same age group. Furthermore, even 7-year-olds appeared to have a preliminary understanding of exponential processes, while both intercepts and exponents of forecasts became more accurate with age. Theoretical and practical implications are discussed.

  9. Teaching about Exponential Growth in Social Studies.

    ERIC Educational Resources Information Center

    Allen, Rodney F.; LaHart, David E.

    1984-01-01

    Characteristics of exponential growth which should be taught in social studies classes are listed, and learning activities dealing with exponential growth which can be used in secondary social studies classes are provided. (RM)

  10. Prion disease: exponential growth requires membrane binding.

    PubMed

    Cox, Daniel L; Sing, Rajiv R P; Yang, Sichun

    2006-06-01

    A hallmark feature of prions, whether in mammals or yeast and fungi, is exponential growth associated with fission or autocatalysis of protein aggregates. We have employed a rigorous kinetic analysis to recent data from transgenic mice lacking a glycosylphosphatidylinositol membrane anchor to the normal cellular PrP(C) protein, which show that toxicity requires the membrane binding. We find as well that the membrane is necessary for exponential growth of prion aggregates; without it, the kinetics is simply the quadratic-in-time growth characteristic of linear elongation as observed frequently in in vitro amyloid growth experiments with other proteins. This requires both: i), a substantial intercellular concentration of anchorless PrP(C), and ii), a concentration of small scrapies seeding aggregates from the inoculum, which remains relatively constant with time and exceeds the concentration of large polymeric aggregates. We also can explain via this analysis why mice heterozygous for the anchor-full/anchor-free PrP(C) proteins have more rapid incubation than mice heterozygous for anchor-full/null PrP(C), and contrast the mammalian membrane associated fission or autocatalysis with the membrane free fission of yeast and fungal prions.

  11. Growth Kinetics of Listeria monocytogenes in Broth and Beef Frankfurters– Determination of Lag Phase Duration and Exponential Growth Rate under Isothermal Conditions

    USDA-ARS?s Scientific Manuscript database

    The objective of this research was to develop a new kinetic model to describe the isothermal growth of microorganisms. The new model was tested with Listeria monocytogenes in broth and frankfurters, and compared with two commonly used models - Baranyi and modified Gompertz models. Bias factor (BF)...

  12. A Simulation To Model Exponential Growth.

    ERIC Educational Resources Information Center

    Appelbaum, Elizabeth Berman

    2000-01-01

    Describes a simulation using dice-tossing students in a population cluster to model the growth of cancer cells. This growth is recorded in a scatterplot and compared to an exponential function graph. (KHR)

  13. A Simulation To Model Exponential Growth.

    ERIC Educational Resources Information Center

    Appelbaum, Elizabeth Berman

    2000-01-01

    Describes a simulation using dice-tossing students in a population cluster to model the growth of cancer cells. This growth is recorded in a scatterplot and compared to an exponential function graph. (KHR)

  14. Segregated growth kinetics of Escherichia coli DH5α-NH36 in exponential-fed perfusion culture for pDNA vaccine production.

    PubMed

    Munguía-Soto, Rodolfo; García-Rendón, Aurora; Garibay-Escobar, Adriana; Guerrero-Germán, Patricia; Tejeda-Mansir, Armando

    2015-01-01

    The clinical demand of plasmid DNA (pDNA) has been increasing constantly. An exponential-fed perfusion (EFP) culture is a new mode for plasmid production for clinical trials and commercialization. However, the culture conditions may lead to cell filamentation and growth cessation. In this study, the variation of the physiological state and the plasmid contents of Escherichia coli DH5α hosting pVAX1-NH36 in an EFP culture for application as a Leishmaniasis vaccine was investigated. The culture performance was monitored using flow cytometry (FC) and real-time quantitative PCR. The FC studies showed a high viability of cell population and a constant distribution of complexity and size. A high homogeneity of pDNA (>95 % of supercoiled) was obtained, which might be attributed to a better culture environment. The obtained plasmid specific and volumetric yields of 1.8 mg/g dcw and 36.5 mg/L represent typical values for laboratory-scale plasmid production in a defined medium. A segregated kinetic model of the perfusion system was developed and fitted to the experimental data (R(2) > 0.96). A practical conclusion of this work is that a space-time yield analysis of a bioprocess requires a viability evaluation. This new strategy of culture operation might help in the efficient production of pDNA for therapeutic use.

  15. Exponential energy growth in a Fermi accelerator.

    PubMed

    Shah, Kushal; Turaev, Dmitry; Rom-Kedar, Vered

    2010-05-01

    An unbounded energy growth of particles bouncing off two-dimensional (2D) smoothly oscillating polygons is observed. Notably, such billiards have zero Lyapunov exponents in the static case. For a special 2D polygon geometry--a rectangle with a vertically oscillating horizontal bar--we show that this energy growth is not only unbounded but also exponential in time. For the energy averaged over an ensemble of initial conditions, we derive an a priori expression for the rate of the exponential growth as a function of the geometry and the ensemble type. We demonstrate numerically that the ensemble averaged energy indeed grows exponentially, at a close to the analytically predicted rate-namely, the process is controllable.

  16. An Exponential Growth Learning Trajectory: Students' Emerging Understanding of Exponential Growth through Covariation

    ERIC Educational Resources Information Center

    Ellis, Amy B.; Ozgur, Zekiye; Kulow, Torrey; Dogan, Muhammed F.; Amidon, Joel

    2016-01-01

    This article presents an Exponential Growth Learning Trajectory (EGLT), a trajectory identifying and characterizing middle grade students' initial and developing understanding of exponential growth as a result of an instructional emphasis on covariation. The EGLT explicates students' thinking and learning over time in relation to a set of tasks…

  17. An Exponential Growth Learning Trajectory: Students' Emerging Understanding of Exponential Growth through Covariation

    ERIC Educational Resources Information Center

    Ellis, Amy B.; Ozgur, Zekiye; Kulow, Torrey; Dogan, Muhammed F.; Amidon, Joel

    2016-01-01

    This article presents an Exponential Growth Learning Trajectory (EGLT), a trajectory identifying and characterizing middle grade students' initial and developing understanding of exponential growth as a result of an instructional emphasis on covariation. The EGLT explicates students' thinking and learning over time in relation to a set of tasks…

  18. A Simple Mechanical Experiment on Exponential Growth

    ERIC Educational Resources Information Center

    McGrew, Ralph

    2015-01-01

    With a rod, cord, pulleys, and slotted masses, students can observe and graph exponential growth in the cord tension over a factor of increase as large as several hundred. This experiment is adaptable for use either in algebra-based or calculus-based physics courses, fitting naturally with the study of sliding friction. Significant parts of the…

  19. A Simple Mechanical Experiment on Exponential Growth

    ERIC Educational Resources Information Center

    McGrew, Ralph

    2015-01-01

    With a rod, cord, pulleys, and slotted masses, students can observe and graph exponential growth in the cord tension over a factor of increase as large as several hundred. This experiment is adaptable for use either in algebra-based or calculus-based physics courses, fitting naturally with the study of sliding friction. Significant parts of the…

  20. A Simple Mechanical Experiment on Exponential Growth

    NASA Astrophysics Data System (ADS)

    McGrew, Ralph

    2015-04-01

    With a rod, cord, pulleys, and slotted masses, students can observe and graph exponential growth in the cord tension over a factor of increase as large as several hundred. This experiment is adaptable for use either in algebra-based or calculus-based physics courses, fitting naturally with the study of sliding friction. Significant parts of the activity are accessible to students in physical science and environmental science courses.

  1. Is it growing exponentially fast? -- Impact of assuming exponential growth for characterizing and forecasting epidemics with initial near-exponential growth dynamics.

    PubMed

    Chowell, Gerardo; Viboud, Cécile

    2016-10-01

    The increasing use of mathematical models for epidemic forecasting has highlighted the importance of designing models that capture the baseline transmission characteristics in order to generate reliable epidemic forecasts. Improved models for epidemic forecasting could be achieved by identifying signature features of epidemic growth, which could inform the design of models of disease spread and reveal important characteristics of the transmission process. In particular, it is often taken for granted that the early growth phase of different growth processes in nature follow early exponential growth dynamics. In the context of infectious disease spread, this assumption is often convenient to describe a transmission process with mass action kinetics using differential equations and generate analytic expressions and estimates of the reproduction number. In this article, we carry out a simulation study to illustrate the impact of incorrectly assuming an exponential-growth model to characterize the early phase (e.g., 3-5 disease generation intervals) of an infectious disease outbreak that follows near-exponential growth dynamics. Specifically, we assess the impact on: 1) goodness of fit, 2) bias on the growth parameter, and 3) the impact on short-term epidemic forecasts. Designing transmission models and statistical approaches that more flexibly capture the profile of epidemic growth could lead to enhanced model fit, improved estimates of key transmission parameters, and more realistic epidemic forecasts.

  2. Exponentiated exponential model (Gompertz kinetics) of Na+ and K+ conductance changes in squid giant axon.

    PubMed Central

    Easton, D M

    1978-01-01

    The conductance changes, gK(t) and gNa(t), of squid giant axon under voltage clamp (Hodgkin and Huxley, 1952) may be modeled by exponentiated exponential functions (Gompertz kinetics) from any holding potential VO to any membrane clamp potential V. The equation constants are set by the membrane potential V, and include, for any voltage step in the case of gK, the initial conductance, gO, the asymptote conductance g, and rate constant k: gK = g exp(-be-kt) where b = 1n g/gO. Equations of similar form relate g and k to the voltage V, and govern the corresponding parameters of the gNa system. For the gNa, the fast phase y = y exp (-be-kt) is cut down in proportion to a slow process p = (1 - p)e-k't + p, and thus gNa = py. The expo-exponential functions involve fewer constants than the Hodgkin-Huxley model. In particular, the role of the n, m, h parameters appears to be filled largely by 1n (g/gO) in the case of gK and by 1n (y/yO) in the case of gNa. Membrane action potentials during current clamp may be computed from the conductances generated by use of the appropriate differential forms of the equations; diverse other membrane behaviors may be predicted. PMID:638223

  3. A Learning Cycle on Exponential Growth and the Energy Crises.

    ERIC Educational Resources Information Center

    Dykstra, D. I., Jr.

    1982-01-01

    Describes nature and logistics of a learning cycle approach to teaching exponential growth and the energy crisis. Used with both science and nonscience majors, the cycle uses no algebra, never mentions the terms exponential or logarithmic, and requires a calculator. Instructions for obtaining student and instructor materials are provided.…

  4. Generalized exponential function and discrete growth models

    NASA Astrophysics Data System (ADS)

    Souto Martinez, Alexandre; Silva González, Rodrigo; Lauri Espíndola, Aquino

    2009-07-01

    Here we show that a particular one-parameter generalization of the exponential function is suitable to unify most of the popular one-species discrete population dynamic models into a simple formula. A physical interpretation is given to this new introduced parameter in the context of the continuous Richards model, which remains valid for the discrete case. From the discretization of the continuous Richards’ model (generalization of the Gompertz and Verhulst models), one obtains a generalized logistic map and we briefly study its properties. Notice, however that the physical interpretation for the introduced parameter persists valid for the discrete case. Next, we generalize the (scramble competition) θ-Ricker discrete model and analytically calculate the fixed points as well as their stabilities. In contrast to previous generalizations, from the generalized θ-Ricker model one is able to retrieve either scramble or contest models.

  5. Exponential order statistic models of software reliability growth

    NASA Technical Reports Server (NTRS)

    Miller, D. R.

    1985-01-01

    Failure times of a software reliabilty growth process are modeled as order statistics of independent, nonidentically distributed exponential random variables. The Jelinsky-Moranda, Goel-Okumoto, Littlewood, Musa-Okumoto Logarithmic, and Power Law models are all special cases of Exponential Order Statistic Models, but there are many additional examples also. Various characterizations, properties and examples of this class of models are developed and presented.

  6. Exponential order statistic models of software reliability growth

    NASA Technical Reports Server (NTRS)

    Miller, D. R.

    1986-01-01

    Failure times of a software reliability growth process are modeled as order statistics of independent, nonidentically distributed exponential random variables. The Jelinsky-Moranda, Goel-Okumoto, Littlewood, Musa-Okumoto Logarithmic, and Power Law models are all special cases of Exponential Order Statistic Models, but there are many additional examples also. Various characterizations, properties and examples of this class of models are developed and presented.

  7. Exponential growth of bacteria: Constant multiplication through division

    NASA Astrophysics Data System (ADS)

    Hagen, Stephen J.

    2010-12-01

    The growth of a bacterial culture is one of the most familiar examples of exponential growth, with important consequences in biology and medicine. Bacterial growth involves more than just a rate constant. To sustain exponential growth, the cell must carefully coordinate the accumulation of mass, constant replication of the chromosome, and physical division. Hence, the growth rate is centrally important in any physical and chemical description of a bacterial cell. These aspects of bacterial growth can be described by empirical laws that suggest simple and intuitive models. Therefore, a quantitative discussion of bacterial growth could be a part of any undergraduate biophysics course. We present a general overview of some classic experimental studies and mathematical models of bacterial growth from a mostly physical perspective.

  8. Teaching Exponential Growth and Decay: Examples from Medicine

    ERIC Educational Resources Information Center

    Hobbie, Russell K.

    1973-01-01

    A treatment of exponential growth and decay is sketched which does not require knowledge of calculus, and hence, it can be applied to many cases in the biological and medical sciences. Some examples are bacterial growth, sterilization, clearance, and drug absorption. (DF)

  9. Teaching Exponential Growth and Decay: Examples from Medicine

    ERIC Educational Resources Information Center

    Hobbie, Russell K.

    1973-01-01

    A treatment of exponential growth and decay is sketched which does not require knowledge of calculus, and hence, it can be applied to many cases in the biological and medical sciences. Some examples are bacterial growth, sterilization, clearance, and drug absorption. (DF)

  10. Growth Kinetics in Epitaxial Growth

    NASA Astrophysics Data System (ADS)

    Hessinger, Uwe

    Growth kinetics in heteroepitaxial growth are related to the nucleation and growth of atomic-height islands during the deposition of a material on a dissimilar substrate. Experimental measurements of the initial morphology of CaF_2 films deposited on Si(111) substrates were performed. These measurements consisted of photoemission spectroscopy and diffraction, which give sub-nanometer scale information averaged over the entire sample, and plan-view transmission electron microscopy, which gives localized information on a scale of several nanometers. These results, combined with others in the literature, revealed four distinct growth morphologies dependent on the deposition rate, substrate temperature and spacing between atomic-height steps on the surface, two of which had not been previously explained. A model based on two extant theories of homoepitaxial growth kinetics was developed to explain the different observed growth morphologies for the heteroepitaxial system CaF_2/Si(111). The first theory deals with whether the initial nucleation will occur at substrate steps or through adatom collisions on flat terraces, while the second deals with the nucleation of subsequent layers as these initial atomic islands increase in size. In extending these theories to heteroepitaxy, very different rates of upper-layer nucleation for the different size islands that nucleated at steps and on terraces are predicted. By applying this theory to CaF_2/Si(111), the diffusion barriers for CaF_2 molecule migration both on the reacted Si-Ca-F interface layer and on subsequent CaF_2 layers was extracted. The four different growth morphologies are explained within a common framework. The theory is quite general, and should apply to most heteroepitaxial systems. These theories were extended to predict a means by which the upper-layer nucleation may be inhibited while the underlying layer is completed. This method involves initiating the growth at conditions favoring many, small islands on

  11. Solving Point-Reactor Kinetics Equations Using Exponential Moment Methods

    DTIC Science & Technology

    2013-03-21

    equations of the following form: ( ) ( ) ( ) ( ) ( )i i i dn t t n t c t S t dt               (2) ( ) ( ) ( )i ii i dc t c t n...presented in the function. Exponential moment functions are orderless; that is, the value of the function is invariant under permutations of its...turned into an integral equation by   ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) i i i i i i i i i i i i dn

  12. Exponential growth combined with exponential decline explains lifetime performance evolution in individual and human species.

    PubMed

    Berthelot, Geoffroy; Len, Stéphane; Hellard, Philippe; Tafflet, Muriel; Guillaume, Marion; Vollmer, Jean-Claude; Gager, Bruno; Quinquis, Laurent; Marc, Andy; Toussaint, Jean-François

    2012-08-01

    The physiological parameters characterizing human capacities (the ability to move, reproduce or perform tasks) evolve with ageing: performance is limited at birth, increases to a maximum and then decreases back to zero at the day of death. Physical and intellectual skills follow such a pattern. Here, we investigate the development of sport and chess performances during the lifetime at two different scales: the individual athletes' careers and the world record by age class in 25 Olympic sports events and in grandmaster chess players. For all data sets, a biphasic development of growth and decline is described by a simple model that accounts for 91.7% of the variance at the individual level and 98.5% of the variance at the species one. The age of performance peak is computed at 26.1 years old for the events studied (26.0 years old for track and field, 21.0 years old for swimming and 31.4 years old for chess). The two processes (growth and decline) are exponential and start at age zero. Both were previously demonstrated to happen in other human and non-human biological functions that evolve with age. They occur at the individual and species levels with a similar pattern, suggesting a scale invariance property.

  13. Iterative Exponential Growth Synthesis and Assembly of Uniform Diblock Copolymers.

    PubMed

    Jiang, Yivan; Golder, Matthew R; Nguyen, Hung V-T; Wang, Yufeng; Zhong, Mingjiang; Barnes, Jonathan C; Ehrlich, Deborah J C; Johnson, Jeremiah A

    2016-08-03

    Studies on the phase segregation of unimolecular block copolymers (BCPs) are limited by a lack of reliable, versatile methods for the synthesis of such polymers on the preparative scale. Herein, we describe an advancement of Iterative Exponential Growth (IEG) wherein chiral allyl-based IEG oligomers are subjected to thiol-ene reactions and converted into unimolecular BCPs. With this strategy we have synthesized uniform BCPs with molar masses up to 12.1 kDa on ∼1 g scale. BCPs composed of decane-based side chains and either triethyleneglycol- or thioglycerol-based side chains phase-segregate into hexagonal cylinder morphologies. The assembly is not driven by side-chain crystallization, but is instead the result of amorphous BCP assembly.

  14. Iterative exponential growth of stereo- and sequence-controlled polymers.

    PubMed

    Barnes, Jonathan C; Ehrlich, Deborah J C; Gao, Angela X; Leibfarth, Frank A; Jiang, Yivan; Zhou, Erica; Jamison, Timothy F; Johnson, Jeremiah A

    2015-10-01

    Chemists have long sought sequence-controlled synthetic polymers that mimic nature's biopolymers, but a practical synthetic route that enables absolute control over polymer sequence and structure remains a key challenge. Here, we report an iterative exponential growth plus side-chain functionalization (IEG+) strategy that begins with enantiopure epoxides and facilitates the efficient synthesis of a family of uniform >3 kDa macromolecules of varying sequence and stereoconfiguration that are coupled to produce unimolecular polymers (>6 kDa) with sequences and structures that cannot be obtained using traditional polymerization techniques. Selective side-chain deprotection of three hexadecamers is also demonstrated, which imbues each compound with the ability to dissolve in water. We anticipate that these new macromolecules and the general IEG+ strategy will find broad application as a versatile platform for the scalable synthesis of sequence-controlled polymers.

  15. Iterative exponential growth of stereo- and sequence-controlled polymers

    NASA Astrophysics Data System (ADS)

    Barnes, Jonathan C.; Ehrlich, Deborah J. C.; Gao, Angela X.; Leibfarth, Frank A.; Jiang, Yivan; Zhou, Erica; Jamison, Timothy F.; Johnson, Jeremiah A.

    2015-10-01

    Chemists have long sought sequence-controlled synthetic polymers that mimic nature's biopolymers, but a practical synthetic route that enables absolute control over polymer sequence and structure remains a key challenge. Here, we report an iterative exponential growth plus side-chain functionalization (IEG+) strategy that begins with enantiopure epoxides and facilitates the efficient synthesis of a family of uniform >3 kDa macromolecules of varying sequence and stereoconfiguration that are coupled to produce unimolecular polymers (>6 kDa) with sequences and structures that cannot be obtained using traditional polymerization techniques. Selective side-chain deprotection of three hexadecamers is also demonstrated, which imbues each compound with the ability to dissolve in water. We anticipate that these new macromolecules and the general IEG+ strategy will find broad application as a versatile platform for the scalable synthesis of sequence-controlled polymers.

  16. Integration of large chemical kinetic mechanisms via exponential methods with Krylov approximations to Jacobian matrix functions

    NASA Astrophysics Data System (ADS)

    Bisetti, Fabrizio

    2012-06-01

    Recent trends in hydrocarbon fuel research indicate that the number of species and reactions in chemical kinetic mechanisms is rapidly increasing in an effort to provide predictive capabilities for fuels of practical interest. In order to cope with the computational cost associated with the time integration of stiff, large chemical systems, a novel approach is proposed. The approach combines an exponential integrator and Krylov subspace approximations to the exponential function of the Jacobian matrix. The components of the approach are described in detail and applied to the ignition of stoichiometric methane-air and iso-octane-air mixtures, here described by two widely adopted chemical kinetic mechanisms. The approach is found to be robust even at relatively large time steps and the global error displays a nominal third-order convergence. The performance of the approach is improved by utilising an adaptive algorithm for the selection of the Krylov subspace size, which guarantees an approximation to the matrix exponential within user-defined error tolerance. The Krylov projection of the Jacobian matrix onto a low-dimensional space is interpreted as a local model reduction with a well-defined error control strategy. Finally, the performance of the approach is discussed with regard to the optimal selection of the parameters governing the accuracy of its individual components.

  17. Stretched exponential kinetics for photoinduced birefringence in azo dye doped PVA films

    NASA Astrophysics Data System (ADS)

    Yang, Hye Ri; Kim, Eun Ju; Lee, Sang Jo; Kim, Gun Yeup; Kwak, Chong Hoon

    2009-05-01

    We fabricated azo dye (methylorange) doped poly vinyl alcohol (MO/PVA) thin films and measured the photoinduced birefringence (PIB) kinetics for several pump beam intensities and for various MO concentrations by using the pump-probe technique. A novel approach to explain the transient behaviors of the photoinduced anisotropy is presented by employing an empirical stretched exponential time response in the course of the trans-cis-trans photoisomerization of azo molecules and is compared with the experimental data, showing excellent agreement. The stretched exponent is estimated to be β = 0.34 ± 0.04, revealing amorphous nature of the MO/PVA system.

  18. A routine fitting of kinetic data to sums of exponentials with a programmable calculator.

    PubMed

    Ristanović, D; Ristanović, D; Milutinović, B; Maleŝević, J; Milin, J

    1984-01-01

    The effects of prolonged ingestion of ethyl alcohol on the elimination kinetics of bromsulphalein (BSP) from the plasma and the excretion of the dye into bile after a single intravenous injection into the circulation of the rat were examined by means of the colorimetrical technique. Simple numerical methods for fitting the experimental data to polyexponential and convex upward functions were also proposed. Two multioptional programs written for the Texas Instrument 59 programmable calculator and for the Sharp 1500 pocket computer were developed which provide for fully automated exponential stripping of pharmacokinetic data and which will allow workers to calculate the numerical values of all the coefficients and exponents for the tracer function fitting the monotone sequences of data.

  19. A kinetic theory for nonanalog Monte Carlo algorithms: Exponential transform with angular biasing

    SciTech Connect

    Ueki, T.; Larsen, E.W.

    1998-11-01

    A new Boltzmann Monte Carlo (BMC) equation is proposed to describe the transport of Monte Carlo particles governed by a set of nonanalog rules for the transition of space, velocity, and weight. The BMC equation is a kinetic equation that includes weight as an extra independent variable. The solution of the BMC equation is the pointwise distribution of velocity and weight throughout the physical system. The BMC equation is derived for the simulation of a transmitted current, utilizing the exponential transform with angular biasing. The weight moments of the solution of the BMC equation are used to predict the score moments of the transmission current. (Also, it is shown that an adjoint BMC equation can be used for this purpose.) Integrating the solution of the forward BMC equation over space, velocity, and weight, the mean number of flights per history is obtained. This is used to determine theoretically the figure of merit for any choice of biasing parameters. Also, a maximum safe value of the exponential transform parameter is proposed, which ensure the finite variance of variance estimate (sample variance) for any penetration distance. Finally, numerical results that validate the new theory are provided.

  20. Femtosecond laser pulse driven melting in gold nanorod aqueous colloidal suspension: Identification of a transition from stretched to exponential kinetics

    SciTech Connect

    Li, Yuelin; Jiang, Zhang; Lin, Xiao -Min; Wen, Haidan; Walko, Donald A.; Deshmukh, Sanket A.; Subbaraman, Ram; Sankaranarayanan, Subramanian K. R. S.; Gray, Stephen K.; Ho, Phay

    2015-01-30

    Many potential industrial, medical, and environmental applications of metal nanorods rely on the physics and resultant kinetics and dynamics of the interaction of these particles with light. We report a surprising kinetics transition in the global melting of femtosecond laser-driven gold nanorod aqueous colloidal suspension. At low laser intensity, the melting exhibits a stretched exponential kinetics, which abruptly transforms into a compressed exponential kinetics when the laser intensity is raised. It is found the relative formation and reduction rate of intermediate shapes play a key role in the transition. Supported by both molecular dynamics simulations and a kinetic model, the behavior is traced back to the persistent heterogeneous nature of the shape dependence of the energy uptake, dissipation and melting of individual nanoparticles. These results could have significant implications for various applications such as water purification and electrolytes for energy storage that involve heat transport between metal nanorod ensembles and surrounding solvents.

  1. Femtosecond laser pulse driven melting in gold nanorod aqueous colloidal suspension: Identification of a transition from stretched to exponential kinetics

    DOE PAGES

    Li, Yuelin; Jiang, Zhang; Lin, Xiao -Min; ...

    2015-01-30

    Many potential industrial, medical, and environmental applications of metal nanorods rely on the physics and resultant kinetics and dynamics of the interaction of these particles with light. We report a surprising kinetics transition in the global melting of femtosecond laser-driven gold nanorod aqueous colloidal suspension. At low laser intensity, the melting exhibits a stretched exponential kinetics, which abruptly transforms into a compressed exponential kinetics when the laser intensity is raised. It is found the relative formation and reduction rate of intermediate shapes play a key role in the transition. Supported by both molecular dynamics simulations and a kinetic model, themore » behavior is traced back to the persistent heterogeneous nature of the shape dependence of the energy uptake, dissipation and melting of individual nanoparticles. These results could have significant implications for various applications such as water purification and electrolytes for energy storage that involve heat transport between metal nanorod ensembles and surrounding solvents.« less

  2. Growth kinetics of microalgae in microfluidic static droplet arrays.

    PubMed

    Dewan, Alim; Kim, Jihye; McLean, Rebecca H; Vanapalli, Siva A; Karim, Muhammad Nazmul

    2012-12-01

    We investigated growth kinetics of microalgae, Chlorella vulgaris, in immobilized arrays of nanoliter-scale microfluidic drops. These static drop arrays enabled simultaneous monitoring of growth of single as well as multiple cells encapsulated in individual droplets. To monitor the growth, individual drop volumes were kept nearly intact for more than a month by controlling the permeation of water in and out of the microfluidic device. The kinetic growth parameters were quantified by counting the increase in the number of cells in each drop over time. In addition to determining the kinetic parameters, the cell-size distribution of the microalgae was correlated with different stages of the growth. The single-cell growth kinetics of C. vulgaris showed significant heterogeneity. The specific growth rate ranged from 0.55 to 1.52 day(-1) for different single cells grown in the same microfluidic device. In comparison, the specific growth rate in bulk-scale experiment was 1.12 day(-1). It was found that the average cell size changes significantly at different stages of the cell growth. The mean cell-size increased from 5.99 ± 1.08 to 7.33 ± 1.3 µm from exponential to stationary growth phase. In particular, when multiple cells are grown in individual drops, we find that in the stationary growth phase, the cell size increases with the age of cell suggesting enhanced accumulation of fatty acids in older cells.

  3. The role of multiple modeling perspectives in students' learning of exponential growth.

    PubMed

    Castillo-Garsow, Carlos

    2013-01-01

    The exponential is among the most important family functions in mathematics; the foundation for the solution of linear differential equations, linear difference equations, and stochastic processes. However there is little research and superficial agreement on how the concepts of exponential growth are learned and/or should be taught initially. In order to investigate these issues, I preformed a teaching experiment with two high school students, which focused on building understandings of exponential growth leading up to the (nonlinear) logistic differential equation model. In this paper, I highlight some of the ways of thinking used by participants in this teaching experiment. From these results I discuss how mathematicians using exponential growth routinely make use of multiple--sometimes contradictory--ways of thinking, as well as the danger that these multiple ways of thinking are not being made distinct to students.

  4. [Growth and development kinetics of Bacillus thuringiensis in batch culture].

    PubMed

    Sakharova, Z V; Ignatenko, Iu N; Schulz, F; Khovrychev, M P; Rabotnova, I L

    1985-01-01

    The kinetics of Bacillus thuringiensis growth and its assimilation of nutrient substances were studied under the conditions of batch cultivation in a complex medium containing yeast extract and in a chemically defined medium with amino acids. The growth of B. thuringiensis can be divided into five phases: exponential growth; decelerated growth; stationary phase when protein crystals are formed; stationary phase when spores are formed; lysis of sporangia releasing spores. The first phase may in turn be subdivided into three stages according to changes in the specific growth rate and substrate assimilation: a high specific growth rate and no glucose assimilation; an abrupt drop in mu and the beginning of intensive glucose assimilation from the medium; a new rise in the specific growth rate. As follows from the results of studying the kinetics of B. thuringiensis growth in a chemically defined medium, the above changes in the exponential growth phase are due to the fact that the culture assimilates yeast extract components in the complex medium or amino acids in the chemically defined medium during this phase, and then starts to assimilate glucose and ammonium in the following phases of growth.

  5. Slow Crack Growth of Brittle Materials With Exponential Crack-Velocity Formulation. Part 1; Analysis

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Nemeth, Noel N.; Gyekenyesi, John P.

    2002-01-01

    Extensive slow-crack-growth (SCG) analysis was made using a primary exponential crack-velocity formulation under three widely used load configurations: constant stress rate, constant stress, and cyclic stress. Although the use of the exponential formulation in determining SCG parameters of a material requires somewhat inconvenient numerical procedures, the resulting solutions presented gave almost the same degree of simplicity in both data analysis and experiments as did the power-law formulation. However, the fact that the inert strength of a material should be known in advance to determine the corresponding SCG parameters was a major drawback of the exponential formulation as compared with the power-law formulation.

  6. Quantitative requirements for exponential growth of Alcaligenes eutrophus.

    PubMed Central

    Repaske, R; Repaske, A C

    1976-01-01

    Quantitative nutrient requirements for unrestricted autotrophic growth of Alcaligenes eutrophus were determined. Minimum saturating concentrations of Mg2+, SO42-, PO43-, Fe3+, and Na2+ for an optical density increase of 2 were 10(-4) M 8 X10(-5) M, 5 X 10(-4) to 6 X 10(-4) M, 10(-5) M, and 10(-7) to 2 X 10(-7) M, respectively. Trace metal requirements for cobalt, chromium, and copper were also demonstrated, but minimum concentrations could not be determined because other reagents contributed a high background of these metals. Under certain conditions an apparent response to zinc was observed, although other experiments suggest the zinc salt contained another metal that was required for growth. Poly-beta-hydroxybutyrate biosynthesis was shown to be initiated by a magnesium or sulfate deficiency as well as by a nitrogen or phosphate deficiency. PMID:984831

  7. Characterizing the Growth Kinetics in Estrogen Responsive ...

    EPA Pesticide Factsheets

    There is a need to develop high-throughput screening (HTS) tests capable of testing thousands of environmental chemicals for endocrine disrupting potential. The estrogen signaling pathway is a known xenobiotic target that has been implicated in a variety of adverse health effects including reproductive deficits and cancer promotion. Using real-time measurements of growth kinetics by electrode impedance, the estrogen-responsive human ductal carcinoma cell line, T47D, was treated with 2000 chemicals of environmental relevance. Cells were treated in concentration response and measurements of cellular impedance were recorded every hour for six days. Exponential impedance, signifying increased proliferation, was observed by prototypical estrogen receptor agonists (17β-estradiol, genestein, bisphenol-A, nonylphenol, 4-tert-octylphenol). Several compounds, including bisphenol-A and genestein, induced cell proliferation at comparable levels to 17β-estradiol, although at much higher concentrations. Progestins, and mineralocortocoids (progesterone, dihydrotestosterone, aldosterone) invoked a biphasic impedance signature. In conclusion, the real-time nature of this assay allows for rapid detection of differential growth characteristics shows potential, in combination with other ToxCast HTS assays, to detect environmental chemicals with potential endocrine activity. [This abstract does not necessarily reflect Agency policy]. Several compounds, including bisphenol-A and

  8. Reduced heme levels underlie the exponential growth defect of the Shewanella oneidensis hfq mutant.

    PubMed

    Brennan, Christopher M; Mazzucca, Nicholas Q; Mezoian, Taylor; Hunt, Taylor M; Keane, Meaghan L; Leonard, Jessica N; Scola, Shelby E; Beer, Emma N; Perdue, Sarah; Pellock, Brett J

    2014-01-01

    The RNA chaperone Hfq fulfills important roles in small regulatory RNA (sRNA) function in many bacteria. Loss of Hfq in the dissimilatory metal reducing bacterium Shewanella oneidensis strain MR-1 results in slow exponential phase growth and a reduced terminal cell density at stationary phase. We have found that the exponential phase growth defect of the hfq mutant in LB is the result of reduced heme levels. Both heme levels and exponential phase growth of the hfq mutant can be completely restored by supplementing LB medium with 5-aminolevulinic acid (5-ALA), the first committed intermediate synthesized during heme synthesis. Increasing expression of gtrA, which encodes the enzyme that catalyzes the first step in heme biosynthesis, also restores heme levels and exponential phase growth of the hfq mutant. Taken together, our data indicate that reduced heme levels are responsible for the exponential growth defect of the S. oneidensis hfq mutant in LB medium and suggest that the S. oneidensis hfq mutant is deficient in heme production at the 5-ALA synthesis step.

  9. Reduced Heme Levels Underlie the Exponential Growth Defect of the Shewanella oneidensis hfq Mutant

    PubMed Central

    Mezoian, Taylor; Hunt, Taylor M.; Keane, Meaghan L.; Leonard, Jessica N.; Scola, Shelby E.; Beer, Emma N.; Perdue, Sarah; Pellock, Brett J.

    2014-01-01

    The RNA chaperone Hfq fulfills important roles in small regulatory RNA (sRNA) function in many bacteria. Loss of Hfq in the dissimilatory metal reducing bacterium Shewanella oneidensis strain MR-1 results in slow exponential phase growth and a reduced terminal cell density at stationary phase. We have found that the exponential phase growth defect of the hfq mutant in LB is the result of reduced heme levels. Both heme levels and exponential phase growth of the hfq mutant can be completely restored by supplementing LB medium with 5-aminolevulinic acid (5-ALA), the first committed intermediate synthesized during heme synthesis. Increasing expression of gtrA, which encodes the enzyme that catalyzes the first step in heme biosynthesis, also restores heme levels and exponential phase growth of the hfq mutant. Taken together, our data indicate that reduced heme levels are responsible for the exponential growth defect of the S. oneidensis hfq mutant in LB medium and suggest that the S. oneidensis hfq mutant is deficient in heme production at the 5-ALA synthesis step. PMID:25356668

  10. Rapid growth of seed black holes in the early universe by supra-exponential accretion.

    PubMed

    Alexander, Tal; Natarajan, Priyamvada

    2014-09-12

    Mass accretion by black holes (BHs) is typically capped at the Eddington rate, when radiation's push balances gravity's pull. However, even exponential growth at the Eddington-limited e-folding time t(E) ~ few × 0.01 billion years is too slow to grow stellar-mass BH seeds into the supermassive luminous quasars that are observed when the universe is 1 billion years old. We propose a dynamical mechanism that can trigger supra-exponential accretion in the early universe, when a BH seed is bound in a star cluster fed by the ubiquitous dense cold gas flows. The high gas opacity traps the accretion radiation, while the low-mass BH's random motions suppress the formation of a slowly draining accretion disk. Supra-exponential growth can thus explain the puzzling emergence of supermassive BHs that power luminous quasars so soon after the Big Bang. Copyright © 2014, American Association for the Advancement of Science.

  11. Exponential Growth.

    ERIC Educational Resources Information Center

    Tavel, Morton

    Technological advances during the past few decades have revolutionized many complex systems that influence human activity. As the rate of technological progress accelerates, these systems will become more complex, and new ones will evolve. Citizens in a technological society need to be able to make intelligent choices about how technology will…

  12. A Precalculus Project on Exponential Population Growth and Linear Food Production.

    ERIC Educational Resources Information Center

    McDonald, Michael A.; And Others

    1996-01-01

    Discusses a precalculus project in which students create a model United Nations to present and discuss the long-term prognosis for individual countries given data on population growth and food production. Students compare exponential and linear functions to determine whether starvation will occur and prepare oral and written presentations of their…

  13. Exponential Growth and the Shifting Global Center of Gravity of Science Production, 1900-2011

    ERIC Educational Resources Information Center

    Zhang, Liang; Powell, Justin J. W.; Baker, David P.

    2015-01-01

    Long historical trends in scientific discovery led mid-20th century scientometricians to mark the advent of "big science"--extensive science production--and predicted that over the next few decades, the exponential growth would slow, resulting in lower rates of increase in production at the upper limit of a logistic curve. They were…

  14. Implicit and Explicit Knowledge of Linear and Exponential Growth in 5- and 9-Year-Olds

    ERIC Educational Resources Information Center

    Ebersbach, Mirjam; Resing, Wilma C. M.

    2008-01-01

    The present study examined children's implicit and explicit knowledge of linear and non-linear processes. Five- and nine-year-olds (N = 60) were asked to forecast linear and exponential growth by providing the corresponding number of beads. Implicit knowledge was assessed via the magnitudes of the forecasts; explicit knowledge was investigated…

  15. Understanding Exponential Growth: As Simple as a Drop in a Bucket.

    ERIC Educational Resources Information Center

    Goldberg, Fred; Shuman, James

    1984-01-01

    Provides procedures for a simple laboratory activity on exponential growth and its characteristic doubling time. The equipment needed consists of a large plastic bucket, an eyedropper, a stopwatch, an assortment of containers and graduated cylinders, and a supply of water. (JN)

  16. Molecular basis for the explanation of the exponential growth of polyelectrolyte multilayers

    PubMed Central

    Picart, C.; Mutterer, J.; Richert, L.; Luo, Y.; Prestwich, G. D.; Schaaf, P.; Voegel, J.-C.; Lavalle, P.

    2002-01-01

    The structure of poly(l-lysine) (PLL)/hyaluronan (HA) polyelectrolyte multilayers formed by electrostatic self-assembly is studied by using confocal laser scanning microscopy, quartz crystal microbalance, and optical waveguide lightmode spectroscopy. These films exhibit an exponential growth regime where the thickness increases exponentially with the number of deposited layers, leading to micrometer thick films. Previously such a growth regime was suggested to result from an “in” and “out” diffusion of the PLL chains through the film during buildup, but direct evidence was lacking. The use of dye-conjugated polyelectrolytes now allows a direct three-dimensional visualization of the film construction by introducing fluorescent polyelectrolytes at different steps during the film buildup. We find that, as postulated, PLL diffuses throughout the film down into the substrate after each new PLL injection and out of the film after each PLL rinsing and further after each HA injection. As PLL reaches the outer layer of the film it interacts with the incoming HA, forming the new HA/PLL layer. The thickness of this new layer is thus proportional to the amount of PLL that diffuses out of the film during the buildup step, which explains the exponential growth regime. HA layers are also visualized but no diffusion is observed, leading to a stratified film structure. We believe that such a diffusion-based buildup mechanism explains most of the exponential-like growth processes of polyelectrolyte multilayers reported in the literature. PMID:12237412

  17. Exponential Growth and the Shifting Global Center of Gravity of Science Production, 1900-2011

    ERIC Educational Resources Information Center

    Zhang, Liang; Powell, Justin J. W.; Baker, David P.

    2015-01-01

    Long historical trends in scientific discovery led mid-20th century scientometricians to mark the advent of "big science"--extensive science production--and predicted that over the next few decades, the exponential growth would slow, resulting in lower rates of increase in production at the upper limit of a logistic curve. They were…

  18. Transition from exponential to linear photoautotrophic growth changes the physiology of Synechocystis sp. PCC 6803.

    PubMed

    Schuurmans, R M; Matthijs, J C P; Hellingwerf, K J

    2017-04-01

    Phototrophic microorganisms like cyanobacteria show growth curves in batch culture that differ from the corresponding growth curves of chemotrophic bacteria. Instead of the usual three phases, i.e., lag-, log-, and stationary phase, phototrophs display four distinct phases. The extra growth phase is a phase of linear, light-limited growth that follows the exponential phase and is often ignored as being different. Results of this study demonstrate marked growth phase-dependent alterations in the photophysiology of the cyanobacterium Synechocystis sp. PCC 6803 between cells harvested from the exponential and the linear growth phase. Notable differences are a gradual shift in the energy transfer of the light-harvesting phycobilisomes to the photosystems and a distinct change in the redox state of the plastoquinone pool. These differences will likely affect the result of physiological studies and the efficiency of product formation of Synechocystis in biotechnological applications. Our study also demonstrates that the length of the period of exponential growth can be extended by a gradually stronger incident light intensity that matches the increase of the cell density of the culture.

  19. The mechanism of double-exponential growth in hyper-inflation

    NASA Astrophysics Data System (ADS)

    Mizuno, T.; Takayasu, M.; Takayasu, H.

    2002-05-01

    Analyzing historical data of price indices, we find an extraordinary growth phenomenon in several examples of hyper-inflation in which, price changes are approximated nicely by double-exponential functions of time. In order to explain such behavior we introduce the general coarse-graining technique in physics, the Monte Carlo renormalization group method, to the price dynamics. Starting from a microscopic stochastic equation describing dealers’ actions in open markets, we obtain a macroscopic noiseless equation of price consistent with the observation. The effect of auto-catalytic shortening of characteristic time caused by mob psychology is shown to be responsible for the double-exponential behavior.

  20. A magnetosome-associated cytochrome MamP is critical for magnetite crystal growth during the exponential growth phase.

    PubMed

    Taoka, Azuma; Eguchi, Yukako; Mise, Shingo; Oestreicher, Zachery; Uno, Fumio; Fukumori, Yoshihiro

    2014-09-01

    Magnetotactic bacteria use a specific set of conserved proteins to biomineralize crystals of magnetite or greigite within their cells in organelles called magnetosomes. Using Magnetospirillum magneticum AMB-1, we examined one of the magnetotactic bacteria-specific conserved proteins named MamP that was recently reported as a new type of cytochrome c that has iron oxidase activity. We found that MamP is a membrane-bound cytochrome, and the MamP content increases during the exponential growth phase compared to two other magnetosome-associated proteins on the same operon, MamA and MamK. To assess the function of MamP, we overproduced MamP from plasmids in wild-type (WT) AMB-1 and found that during the exponential phase of growth, these cells contained more magnetite crystals that were the same size as crystals in WT cells. Conversely, when the heme c-binding motifs within the mamP on the plasmid was mutated, the cells produced the same number of crystals, but smaller crystals than in WT cells during exponential growth. These results strongly suggest that during the exponential phase of growth, MamP is crucial to the normal growth of magnetite crystals during biomineralization. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  1. Assessment of antitumor activity for tumor xenograft studies using exponential growth models.

    PubMed

    Wu, Jianrong

    2011-05-01

    In preclinical tumor xenograft experiments, the antitumor activity of the tested agents is often assessed by endpoints such as tumor doubling time, tumor growth delay (TGD), and log10 cell kill (LCK). In tumor xenograft literature, the values of these endpoints are presented without any statistical inference, which ignores the noise in the experimental data. However, using exponential growth models, these endpoints can be quantified by their growth curve parameters, thus allowing parametric inference, such as an interval estimate, to be used to assess the antitumor activity of the treatment.

  2. Growth and dissolution kinetics of tetragonal lysozyme

    NASA Technical Reports Server (NTRS)

    Monaco, L. A.; Rosenberger, F.

    1993-01-01

    The growth and dissolution kinetics of lysozyme in a 25 ml solution bridge inside a closed growth cell was investigated. It was found that, under all growth conditions, the growth habit forming (110) and (101) faces grew through layer spreading with different growth rate dependence on supersaturation/temperature. On the other hand, (100) faces which formed only at low temperatures underwent a thermal roughening transition around 12 C.

  3. Growth and dissolution kinetics of tetragonal lysozyme

    NASA Technical Reports Server (NTRS)

    Monaco, L. A.; Rosenberger, F.

    1993-01-01

    The growth and dissolution kinetics of lysozyme in a 25 ml solution bridge inside a closed growth cell was investigated. It was found that, under all growth conditions, the growth habit forming (110) and (101) faces grew through layer spreading with different growth rate dependence on supersaturation/temperature. On the other hand, (100) faces which formed only at low temperatures underwent a thermal roughening transition around 12 C.

  4. Effects of penconazole on two yeast strains: growth kinetics and molecular studies.

    PubMed

    Jawich, Dalal; Lteif, Roger; Pfohl-Leszkowicz, Annie; Strehaiano, Pierre

    2006-05-01

    The aim of this study consisted to evaluate the impact of a pesticide (penconazole) on the growth kinetics and genotoxicity on two yeast strains (Saccharomyces cerevisiae and Metschnikowia pulcherrima). When the penconazole was added at different phases of the growth of M. pulcherrima, no effect was noticed on the kinetics of yeast growth but DNA adducts were observed when penconazole was added in the exponential phase. Increasing doses (1-15 maximum residue limit) of the pesticide added at the beginning of the fermentation did not induce DNA adducts while kinetics were affected.

  5. Exponential-fitted methods for integrating stiff systems of ordinary differential equations: Applications to homogeneous gas-phase chemical kinetics

    NASA Technical Reports Server (NTRS)

    Pratt, D. T.

    1984-01-01

    Conventional algorithms for the numerical integration of ordinary differential equations (ODEs) are based on the use of polynomial functions as interpolants. However, the exact solutions of stiff ODEs behave like decaying exponential functions, which are poorly approximated by polynomials. An obvious choice of interpolant are the exponential functions themselves, or their low-order diagonal Pade (rational function) approximants. A number of explicit, A-stable, integration algorithms were derived from the use of a three-parameter exponential function as interpolant, and their relationship to low-order, polynomial-based and rational-function-based implicit and explicit methods were shown by examining their low-order diagonal Pade approximants. A robust implicit formula was derived by exponential fitting the trapezoidal rule. Application of these algorithms to integration of the ODEs governing homogenous, gas-phase chemical kinetics was demonstrated in a developmental code CREK1D, which compares favorably with the Gear-Hindmarsh code LSODE in spite of the use of a primitive stepsize control strategy.

  6. Exponential-fitted methods for integrating stiff systems of ordinary differential equations: Applications to homogeneous gas-phase chemical kinetics

    NASA Technical Reports Server (NTRS)

    Pratt, D. T.

    1984-01-01

    Conventional algorithms for the numerical integration of ordinary differential equations (ODEs) are based on the use of polynomial functions as interpolants. However, the exact solutions of stiff ODEs behave like decaying exponential functions, which are poorly approximated by polynomials. An obvious choice of interpolant are the exponential functions themselves, or their low-order diagonal Pade (rational function) approximants. A number of explicit, A-stable, integration algorithms were derived from the use of a three-parameter exponential function as interpolant, and their relationship to low-order, polynomial-based and rational-function-based implicit and explicit methods were shown by examining their low-order diagonal Pade approximants. A robust implicit formula was derived by exponential fitting the trapezoidal rule. Application of these algorithms to integration of the ODEs governing homogenous, gas-phase chemical kinetics was demonstrated in a developmental code CREK1D, which compares favorably with the Gear-Hindmarsh code LSODE in spite of the use of a primitive stepsize control strategy.

  7. A new linearly-combined bi-exponential model for kinetic analysis of the isometric relaxation process of Bufo gastrocnemius under electric stimulation in vitro.

    PubMed

    Guo, Rui; Li, Sheng-bing; Zhao, Li-na; Zhao, Yun-sheng; Lu, Wei; Yuan, Pei; Deng, Ping; Liao, Fei

    2007-12-01

    There was a slow-relaxing tail of skeletal muscles in vitro upon the inhibition of Ca(2+)-pump by cyclopiazonic acid (CPA). Herein, a new linearly-combined bi-exponential model to resolve this slow-relaxing tail from the fast-relaxing phase was investigated for kinetic analysis of the isometric relaxation process of Bufo gastrocnemius in vitro, in comparison to the single exponential model and the classical bi-exponential model. During repetitive stimulations at a 2-s interval by square pulses of a 2-ms duration at 12 V direct currency (DC), the isometric tension of Bufo gastrocnemius was recorded at 100 Hz. The relaxation curve with tensions falling from 90% of the peak to the 15th datum before next stimulation was analyzed by three exponential models using a program in MATLAB 6.5. Both the goodness of fit and the distribution of the residuals for the best fitting supported the comparable validity of this new bi-exponential model for kinetic analysis of the relaxation process of the control muscles. After CPA treatment, however, this new bi-exponential model showed an obvious statistical superiority for kinetic analysis of the muscle relaxation process, and it gave the estimated rest tension consistent to that by experimentation, whereas both the classical bi-exponential model and the single exponential model gave biased rest tensions. Moreover, after the treatment of muscles by CPA, both the single exponential model and the classical bi-exponential model yielded lowered relaxation rates, nevertheless, this new bi-exponential model had relaxation rates of negligible changes except much higher rest tensions. These results suggest that this novel linearly-combined bi-exponential model is desirable for kinetic analysis of the relaxation process of muscles with altered Ca(2+)-pumping activity.

  8. Exponential model describing methane production kinetics in batch anaerobic digestion: a tool for evaluation of biochemical methane potential assays.

    PubMed

    Brulé, Mathieu; Oechsner, Hans; Jungbluth, Thomas

    2014-09-01

    Biochemical methane potential assays, usually run in batch mode, are performed by numerous laboratories to characterize the anaerobic degradability of biogas substrates such as energy crops, agricultural residues, and organic wastes. Unfortunately, the data obtained from these assays lacks common, universal bases for comparison, because standard protocols did not diffuse to the entire scientific community. Results are usually provided as final values of the methane yields of substrates. However, methane production curves generated in these assays also provide useful information about substrate degradation kinetics, which is rarely exploited. A basic understanding of the kinetics of the biogas process may be a first step towards a convergence of the assay methodologies on an international level. Following this assumption, a modeling toolbox containing an exponential model adjusted with a simple data-fitting method has been developed. This model should allow (a) quality control of the assays according to the goodness of fit of the model onto data series generated from the digestion of standard substrates, (b) interpretation of substrate degradation kinetics, and (c) estimate of the ultimate methane yield at infinite time. The exponential model is based on two assumptions: (a) the biogas process is a two-step reaction yielding VFA as intermediate products, and methane as the final product, and (b) the digestible substrate can be divided into a rapidly degradable and a slowly degradable fraction.

  9. Cost of unneeded proteins in E. coli is reduced after several generations in exponential growth.

    PubMed

    Shachrai, Irit; Zaslaver, Alon; Alon, Uri; Dekel, Erez

    2010-06-11

    When E. coli cells express unneeded protein, they grow more slowly. Such penalty to fitness associated with making proteins is called protein cost. Protein cost is an important component in the cost-benefit tradeoffs that underlie the evolution of protein circuits, but its origins are still poorly understood. Here, we ask how the protein cost varies during the exponential growth phase of E. coli. We find that cells growing exponentially following an upshift from overnight culture show a large cost when producing unneeded proteins. However, after several generations, while still in exponential growth, the cells enter a phase where cost is much reduced despite vigorous unneeded protein production. We find that this reduced-cost phase depends on the ppGpp system, which adjusts the amount of ribosomes in the cell and does not occur after a downshift from rich to poor medium. These findings suggest that protein cost is a transient phenomenon that happens upon an upshift in conditions and that cost is reduced when ribosomes and other cellular systems have increased to their appropriate steady-state level in the new condition.

  10. Forecasting Financial Extremes: A Network Degree Measure of Super-Exponential Growth.

    PubMed

    Yan, Wanfeng; van Tuyll van Serooskerken, Edgar

    2015-01-01

    Investors in stock market are usually greedy during bull markets and scared during bear markets. The greed or fear spreads across investors quickly. This is known as the herding effect, and often leads to a fast movement of stock prices. During such market regimes, stock prices change at a super-exponential rate and are normally followed by a trend reversal that corrects the previous overreaction. In this paper, we construct an indicator to measure the magnitude of the super-exponential growth of stock prices, by measuring the degree of the price network, generated from the price time series. Twelve major international stock indices have been investigated. Error diagram tests show that this new indicator has strong predictive power for financial extremes, both peaks and troughs. By varying the parameters used to construct the error diagram, we show the predictive power is very robust. The new indicator has a better performance than the LPPL pattern recognition indicator.

  11. Forecasting Financial Extremes: A Network Degree Measure of Super-Exponential Growth

    PubMed Central

    Yan, Wanfeng; van Tuyll van Serooskerken, Edgar

    2015-01-01

    Investors in stock market are usually greedy during bull markets and scared during bear markets. The greed or fear spreads across investors quickly. This is known as the herding effect, and often leads to a fast movement of stock prices. During such market regimes, stock prices change at a super-exponential rate and are normally followed by a trend reversal that corrects the previous overreaction. In this paper, we construct an indicator to measure the magnitude of the super-exponential growth of stock prices, by measuring the degree of the price network, generated from the price time series. Twelve major international stock indices have been investigated. Error diagram tests show that this new indicator has strong predictive power for financial extremes, both peaks and troughs. By varying the parameters used to construct the error diagram, we show the predictive power is very robust. The new indicator has a better performance than the LPPL pattern recognition indicator. PMID:26339793

  12. Power Law Versus Exponential Form of Slow Crack Growth of Advanced Structural Ceramics: Dynamic Fatigue

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.

    2002-01-01

    The life prediction analysis based on an exponential crack velocity formulation was examined using a variety of experimental data on glass and advanced structural ceramics in constant stress-rate ("dynamic fatigue") and preload testing at ambient and elevated temperatures. The data fit to the strength versus In (stress rate) relation was found to be very reasonable for most of the materials. It was also found that preloading technique was equally applicable for the case of slow crack growth (SCG) parameter n > 30. The major limitation in the exponential crack velocity formulation, however, was that an inert strength of a material must be known priori to evaluate the important SCG parameter n, a significant drawback as compared to the conventional power-law crack velocity formulation.

  13. Inference of Super-exponential Human Population Growth via Efficient Computation of the Site Frequency Spectrum for Generalized Models.

    PubMed

    Gao, Feng; Keinan, Alon

    2016-01-01

    The site frequency spectrum (SFS) and other genetic summary statistics are at the heart of many population genetic studies. Previous studies have shown that human populations have undergone a recent epoch of fast growth in effective population size. These studies assumed that growth is exponential, and the ensuing models leave an excess amount of extremely rare variants. This suggests that human populations might have experienced a recent growth with speed faster than exponential. Recent studies have introduced a generalized growth model where the growth speed can be faster or slower than exponential. However, only simulation approaches were available for obtaining summary statistics under such generalized models. In this study, we provide expressions to accurately and efficiently evaluate the SFS and other summary statistics under generalized models, which we further implement in a publicly available software. Investigating the power to infer deviation of growth from being exponential, we observed that adequate sample sizes facilitate accurate inference; e.g., a sample of 3000 individuals with the amount of data expected from exome sequencing allows observing and accurately estimating growth with speed deviating by ≥10% from that of exponential. Applying our inference framework to data from the NHLBI Exome Sequencing Project, we found that a model with a generalized growth epoch fits the observed SFS significantly better than the equivalent model with exponential growth (P-value [Formula: see text]). The estimated growth speed significantly deviates from exponential (P-value [Formula: see text]), with the best-fit estimate being of growth speed 12% faster than exponential.

  14. Delay-dependent exponential stability of stochastic delay differential system whose coefficients obey the polynomial growth condition

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Shen, Yi; Jiang, Feng

    2012-09-01

    This article discusses the exponential stability of nonlinear stochastic delay differential systems (SDDSs) whose coefficients obey the polynomial growth condition. Delay-dependent criteria on almost sure exponential stability and pth moment exponential stability of such SDDSs have been established. By applying some novel techniques, our criteria work for many SDDSs including some cases in which the ℒV operator has a complicated form, which seemingly prevents the existing results from being directly used. The range of order of moment exponential stability and the decay rate can be estimated through the coefficients of the system.

  15. Ammonium Removal from Aqueous Solutions by Clinoptilolite: Determination of Isotherm and Thermodynamic Parameters and Comparison of Kinetics by the Double Exponential Model and Conventional Kinetic Models

    PubMed Central

    Tosun, İsmail

    2012-01-01

    The adsorption isotherm, the adsorption kinetics, and the thermodynamic parameters of ammonium removal from aqueous solution by using clinoptilolite in aqueous solution was investigated in this study. Experimental data obtained from batch equilibrium tests have been analyzed by four two-parameter (Freundlich, Langmuir, Tempkin and Dubinin-Radushkevich (D-R)) and four three-parameter (Redlich-Peterson (R-P), Sips, Toth and Khan) isotherm models. D-R and R-P isotherms were the models that best fitted to experimental data over the other two- and three-parameter models applied. The adsorption energy (E) from the D-R isotherm was found to be approximately 7 kJ/mol for the ammonium-clinoptilolite system, thereby indicating that ammonium is adsorbed on clinoptilolite by physisorption. Kinetic parameters were determined by analyzing the nth-order kinetic model, the modified second-order model and the double exponential model, and each model resulted in a coefficient of determination (R2) of above 0.989 with an average relative error lower than 5%. A Double Exponential Model (DEM) showed that the adsorption process develops in two stages as rapid and slow phase. Changes in standard free energy (∆G°), enthalpy (∆H°) and entropy (∆S°) of ammonium-clinoptilolite system were estimated by using the thermodynamic equilibrium coefficients. PMID:22690177

  16. Ammonium removal from aqueous solutions by clinoptilolite: determination of isotherm and thermodynamic parameters and comparison of kinetics by the double exponential model and conventional kinetic models.

    PubMed

    Tosun, Ismail

    2012-03-01

    The adsorption isotherm, the adsorption kinetics, and the thermodynamic parameters of ammonium removal from aqueous solution by using clinoptilolite in aqueous solution was investigated in this study. Experimental data obtained from batch equilibrium tests have been analyzed by four two-parameter (Freundlich, Langmuir, Tempkin and Dubinin-Radushkevich (D-R)) and four three-parameter (Redlich-Peterson (R-P), Sips, Toth and Khan) isotherm models. D-R and R-P isotherms were the models that best fitted to experimental data over the other two- and three-parameter models applied. The adsorption energy (E) from the D-R isotherm was found to be approximately 7 kJ/mol for the ammonium-clinoptilolite system, thereby indicating that ammonium is adsorbed on clinoptilolite by physisorption. Kinetic parameters were determined by analyzing the nth-order kinetic model, the modified second-order model and the double exponential model, and each model resulted in a coefficient of determination (R(2)) of above 0.989 with an average relative error lower than 5%. A Double Exponential Model (DEM) showed that the adsorption process develops in two stages as rapid and slow phase. Changes in standard free energy (∆G°), enthalpy (∆H°) and entropy (∆S°) of ammonium-clinoptilolite system were estimated by using the thermodynamic equilibrium coefficients.

  17. Functional elucidation of the non-coding RNAs of Kluyveromyces marxianus in the exponential growth phase.

    PubMed

    Cho, Yoo-Bok; Lee, Eun Ju; Cho, Suhyung; Kim, Tae Yong; Park, Jin Hwan; Cho, Byung-Kwan

    2016-02-29

    Non-coding RNAs (ncRNAs), which perform diverse regulatory roles, have been found in organisms from all superkingdoms of life. However, there have been limited numbers of studies on the functions of ncRNAs, especially in nonmodel organisms such as Kluyveromyces marxianus that is widely used in the field of industrial biotechnology. In this study, we measured changes in transcriptome at three time points during the exponential growth phase of K. marxianus by using strand-specific RNA-seq. We found that approximately 60% of the transcriptome consists of ncRNAs transcribed from antisense and intergenic regions of the genome that were transcribed at lower levels than mRNA. In the transcriptome, a substantial number of long antisense ncRNAs (lancRNAs) are differentially expressed and enriched in carbohydrate and energy metabolism pathways. Furthermore, this enrichment is evolutionarily conserved, at least in yeast. Particularly, the mode of regulation of mRNA/lancRNA pairs is associated with mRNA transcription levels; the correlation between the pairs is positive at high mRNA transcriptional levels and negative at low levels. In addition, significant induction of mRNA and coverage of more than half of the mRNA sequence by a lancRNA strengthens the positive correlation between mRNA/lancRNA pairs. Transcriptome sequencing of K. marxianus in the exponential growth phase reveals pervasive transcription of ncRNAs with evolutionarily conserved functions. Studies of the mode of regulation of mRNA/lancRNA pairs suggest that induction of lancRNA may be associated with switch-like behavior of mRNA/lancRNA pairs and efficient regulation of the carbohydrate and energy metabolism pathways in the exponential growth phase of K. marxianus being used in industrial applications.

  18. Physiological adaptation of growth kinetics in activated sludge.

    PubMed

    Friedrich, M; Takács, I; Tränckner, J

    2015-11-15

    Physiological adaptation as it occurs in bacterial cells at variable environmental conditions influences characteristic properties of growth kinetics significantly. However, physiological adaptation to growth related parameters in activated sludge modelling is not yet recognised. Consequently these parameters are regarded to be constant. To investigate physiological adaptation in activated sludge the endogenous respiration in an aerobic degradation batch experiment and simultaneous to that the maximum possible respiration in an aerobic growth batch experiment was measured. The activated sludge samples were taken from full scale wastewater treatment plants with different sludge retention times (SRTs). It could be shown that the low SRT sludge adapts by growth optimisation (high maximum growth rate and high decay rate) to its particular environment where a high SRT sludge adapts by survival optimization (low maximum growth rate and low decay rate). Thereby, both the maximum specific growth rate and the decay rate vary in the same pattern and are strongly correlated to each other. To describe the physiological state of mixed cultures like activated sludge quantitatively a physiological state factor (PSF) is proposed as the ratio of the maximum specific growth rate and the decay rate. The PSF can be expressed as an exponential function with respect to the SRT.

  19. Dynamic proteome changes of Shigella flexneri 2a during transition from exponential growth to stationary phase.

    PubMed

    Zhu, Li; Liu, Xian-Kai; Zhao, Ge; Zhi, Yi-Dan; Bu, Xin; Ying, Tian-Yi; Feng, Er-Ling; Wang, Jie; Zhang, Xue-Min; Huang, Pei-Tang; Wang, Heng-Liang

    2007-05-01

    Shigella flexneri is an infectious pathogen that causes dysentery to human, which remains a serious threat to public health, particularly in developing countries. In this study, the global protein expression patterns of S. flexneri during transition from exponential growth to stationary phase in vitro were analyzed by using 2-D PAGE combined with MALDI-TOF MS. In a time-course experiment with five time points, the relative abundance of 49 protein spots varied significantly. Interestingly, a putative outer membrane protein YciD (OmpW) was almost not detected in the exponential growth phase but became one of the most abundant proteins in the whole stationary-phase proteome. Some proteins regulated by the global regulator FNR were also significantly induced (such as AnsB, AspA, FrdAB, and KatG) or repressed (such as AceEF, OmpX, SodA, and SucAB) during the growth phase transition. These proteins may be the key effectors of the bacterial cell cycle or play important roles in the cellular maintenance and stress responses. Our expression profile data provide valuable information for the study of bacterial physiology and form the basis for future proteomic analyses of this pathogen.

  20. Kinetics of microbial growth on pentachlorophenol.

    PubMed Central

    Klecka, G M; Maier, W J

    1985-01-01

    Batch and fed-batch experiments were conducted to examine the kinetics of pentachlorophenol utilization by an enrichment culture of pentachlorophenol-degrading bacteria. The Haldane modification of the Monod equation was found to describe the relationship between the specific growth rate and substrate concentration. Analysis of the kinetic parameters indicated that the maximum specific growth rate and yield coefficients are low, with values of 0.074 h-1 and 0.136 g/g, respectively. The Monod constant (Ks) was estimated to be 60 micrograms/liter, indicating a high affinity of the microorganisms for the substrate. However, high concentrations (KI = 1,375 micrograms/liter) were shown to be inhibitory for metabolism and growth. These kinetic parameters can be used to define the optimal conditions for the removal of pentachlorophenol in biological treatment systems. PMID:3977315

  1. Observation of self-amplified spontaneous emission and exponential growth at 530 nm

    PubMed

    Milton; Gluskin; Biedron; Dejus; Den Hartog PK; Galayda; Kim; Lewellen; Moog; Sajaev; Sereno; Travish; Vinokurov; Arnold; Benson; Berg; Biggs; Borland; Carwardine; Chae; Decker; Deriy; Erdmann; Friedsam; Gold; Grelick

    2000-07-31

    Experimental evidence for self-amplified spontaneous emission (SASE) at 530 nm is reported. The measurements were made at the low-energy undulator test line facility at the Advanced Photon Source, Argonne National Laboratory. The experimental setup and details of the experimental results are presented, as well as preliminary analysis. This experiment extends to shorter wavelengths the operational knowledge of a linac-based SASE free-electron laser and explicitly shows the predicted exponential growth in intensity of the optical pulse as a function of length along the undulator.

  2. Exponential energy growth due to slow parameter oscillations in quantum mechanical systems.

    PubMed

    Turaev, Dmitry

    2016-05-01

    It is shown that a periodic emergence and destruction of an additional quantum number leads to an exponential growth of energy of a quantum mechanical system subjected to a slow periodic variation of parameters. The main example is given by systems (e.g., quantum billiards and quantum graphs) with periodically divided configuration space. In special cases, the process can also lead to a long period of cooling that precedes the acceleration, and to the desertion of the states with a particular value of the quantum number.

  3. Postdiffusion of oligo-peptide within exponential growth multilayer films for localized peptide delivery.

    PubMed

    Wang, Xuefei; Ji, Jian

    2009-10-06

    The multilayers of poly(L-lysine) (PLL) and hyaluronic acid (HA) were constructed by alternating deposition of PLL at high pH and HA at low pH. The exponential growth of the multilayer was proved to be amplified by increasing the pH difference between the two deposition solutions. The exponential growth multilayers of PLL/HA assembled at different pH were utilized as reservoirs for loading a trans-activating transcriptional factor (TAT) peptide. The confocal laser scanning microscopy (CLSM) results indicated that the FITC-labeled TAT could diffuse throughout the exponentially growing PLL/HA film. The amount of peptide embedded within multilayer could be adjusted by both multilayer assembly pH and the TAT loading pH. Compared with (PLL/HA 6.5/6.5)5 multilayer (PLL/HA a/b means that the multilayer film was constructed by using PLL at pH a and HA at pH b), the (PLL/HA 9.5/2.9)5 film can be loaded with more TAT peptide at the same loading pH 6.5. The excess of positively charged TAT peptide within (PLL/HA 9.5/2.9)5 film could not only be ascribed to its extraordinary thickness but also be attributed to its uncompensated negative charge density enhanced by the pH difference between film buildup and peptide loading process. Increasing of the TAT loading pH from 6.5 to 9.5, which increases the pH difference between multilayer assembly and peptide loading process, enhances the uncompensated charge density within (PLL/HA 9.5/2.9)5 film and elevates the peptide density from 13.8 to 25.0 microg/cm2. Compared with direct layer-by-layer assembly of TAT and HA, the postdiffusion of TAT into (PLL/HA 9.5/2.9)5 film was loaded much more peptide. The postdiffusion of peptide into a rapid growth multilayer can be more favorable to load and sustainedly release functional oligo-peptide. The cell culture results indicated that the TAT embedded within the film maintained the ability to traverse across the Hep G2 cell membrane. The functionalized (PLL/HA 9.5/2.9)5 TAT 9.5 film was more

  4. Bioassays with unicellular algae: deviations from exponential growth and its implications for toxicity test results.

    PubMed

    Altenburger, Rolf; Schmitt-Jansen, Mechthild; Riedl, Janet

    2008-01-01

    Growth assays with unicellular green algae are an established tool in ecotoxicological effect assessment for chemicals and environmental samples. From an ecological perspective it seems appropriate to use the growth rate as a process variable rather than a measure of biomass gain for calculating inhibitory effects of contaminants. The notion of simple exponential growth for the description of the population increase in undisturbed suspension cultures of unicellular green algae, however, seems to be an oversimplification. Experimental findings describe the increase in biomass, cell number, the development of cell volume distributions of populations, and the relationship between cell size and chlorophyll content for individual cells over one generation at a time resolution of 2-h intervals. It was observed that algal populations of Desmodesmus subspicatus show a time pattern of cell size growth; the average cell volume increases about sixfold, without corresponding increase in population size. This is followed by a distinct cell division phase with little gain in biomass. This synchronous growth behavior despite continuous illumination may be explained by the multiple fission characteristic of unicellular green algae which is an adaptation to cyclic light-dark changes in the environment. It might be controlled by an independent cell cycle clock. For routine regulatory testing fluorescence-based measurements rather than cell counting minimizes the confounding effect on toxicity determination. For investigations of time-dependent effects, e.g., by pulsed exposure, an alternative mechanistically based growth function for unicellular algae is proposed that accommodates for the observed growth pattern.

  5. Exponential growth of dental schools in Chile: effects on academic, economic and workforce issues.

    PubMed

    Cartes-Velásquez, Ricardo Andrés

    2013-01-01

    In the last 30 years, Chile has undergone noteworthy economic development and an exponential growth in the access of its population to higher education. The aim of this paper was to review the changes in academic, economic and workforce issues that occurred as a consequence of the growth in supply of undergraduate dental vacancies between 1997 and 2011. Data collected from the Consejo de Educación Superior - CES, Comisión Nacional de Acreditación - CNA, and Instituto Nacional de Estadísticas de Chile - INE included these variables: number of dental schools, school type (private or traditional, see explanation below), city where the school is located, entry vacancies, total student enrollment, admission scores, percentile rank of dentistry as a university career, tuition fees, accreditation status, and number of inhabitants. There was an exponential increase in dental schools in Chile (5 to 34) that occurred in association with the rise in tuition fees (US$ 3900 to US$ 9800), a deterioration in the academic level of dental students (650 to 550 points in admission scores) and a predicted 77.5% oversupply of dentists by 2025, according to WHO criteria. The exponential increase in dental schools in Chile brought about negative consequences, such as increasing career costs, deterioration in the academic level of dental students, and an oversupply of dentists, associated with lower incomes and possibly leading to unemployment. Additional research should be conducted to determine whether an increase in the number of dentists can improve the population's access to dental care and reduce the oral disease burden.

  6. Translational resistivity/conductivity of coding sequences during exponential growth of Escherichia coli.

    PubMed

    Takai, Kazuyuki

    2017-01-21

    Codon adaptation index (CAI) has been widely used for prediction of expression of recombinant genes in Escherichia coli and other organisms. However, CAI has no mechanistic basis that rationalizes its application to estimation of translational efficiency. Here, I propose a model based on which we could consider how codon usage is related to the level of expression during exponential growth of bacteria. In this model, translation of a gene is considered as an analog of electric current, and an analog of electric resistance corresponding to each gene is considered. "Translational resistance" is dependent on the steady-state concentration and the sequence of the mRNA species, and "translational resistivity" is dependent only on the mRNA sequence. The latter is the sum of two parts: one is the resistivity for the elongation reaction (coding sequence resistivity), and the other comes from all of the other steps of the decoding reaction. This electric circuit model clearly shows that some conditions should be met for codon composition of a coding sequence to correlate well with its expression level. On the other hand, I calculated relative frequency of each of the 61 sense codon triplets translated during exponential growth of E. coli from a proteomic dataset covering over 2600 proteins. A tentative method for estimating relative coding sequence resistivity based on the data is presented.

  7. [Chemo- and endocrino-therapy of breast carcinoma xenografts in the dormant or exponential growth phase].

    PubMed

    Takeuchi, T

    1995-06-01

    In case of concerning about recurrence case after operative treatment of breast cancer, we must suppose existence of dormant breast cancer cell. To elucidate a rational treatment of the breast cancer in the dormant stage, we have developed a new treatment model using human breast carcinoma xenografts (MCF-7, R-27 and Br-10) in nude mice. After the sc inoculation of the tumors, the treatment was initiated with or without the previous estradiol (E2) stimulation. While MCF-7 was sensitive to mitomycin C (6 mg/kg i.p.) and and tamoxifen pellet (2.5 mg/mouse s.c.) in the dormant and exponential growth phase, R-27 and Br-10 were sensitive to the drugs only in the exponential growth phase but not in the dormant stage. These results suggested that the sensitivity of human breast carcinoma cells in the dormant stage is rather low, however some strain would be also sensitive to the treatment. This model seems to be useful in evaluating the adjuvant therapy of breast carcinoma after surgery.

  8. Non‐exponential growth of Mycobacterium leprae Thai‐53 strain cultured in vitro

    PubMed Central

    Iida, Ken‐ichiro; Saito, Mitsumasa; Ogura, Yoshitoshi; Hayashi, Tetsuya; Yoshida, Shin‐ichi

    2017-01-01

    ABSTRACT In this study, attempts were made to culture this bacterium in media supplemented with a variety of biological materials to determine why cultivation of Mycobacterium leprae in vitro has not this far been successful. A slight increase in the number of cells in medium supplemented with human blood plasma and an extract of nude mouse tissue as observed after more than 3 months of cultivation at 30 °C. To ascertain whether this increase was real growth, the growth was analyzed by droplet digital PCR, which showed a slow increase in the copy number of cell‐associated DNA and the release of a large amount of DNA into the culture medium from bacterial cells during cultivation. These results were supported by electron microscopic examination of M. leprae in infected mouse tissues, which showed that most of the replicated bacteria had degenerated and only a few cells survived. Based on these results, it was postulated that many of the replicated cells degenerate during M. leprae growth and that only a few cells remain to participate in the next growth stage. This means that, unlike other cultivable bacteria, the growth of M. leprae is not exponential and the number of cells therefore increase extremely slowly. Thus, accurate judging of the success of M. leprae cultivation requires observation of growth over a long period of time and careful measurement of the increase in number of viable cells. PMID:27925336

  9. Non-exponential growth of Mycobacterium leprae Thai-53 strain cultured in vitro.

    PubMed

    Amako, Kazunobu; Iida, Ken-Ichiro; Saito, Mitsumasa; Ogura, Yoshitoshi; Hayashi, Tetsuya; Yoshida, Shin-Ichi

    2016-12-01

    In this study, attempts were made to culture this bacterium in media supplemented with a variety of biological materials to determine why cultivation of Mycobacterium leprae in vitro has not this far been successful. A slight increase in the number of cells in medium supplemented with human blood plasma and an extract of nude mouse tissue as observed after more than 3 months of cultivation at 30 °C. To ascertain whether this increase was real growth, the growth was analyzed by droplet digital PCR, which showed a slow increase in the copy number of cell-associated DNA and the release of a large amount of DNA into the culture medium from bacterial cells during cultivation. These results were supported by electron microscopic examination of M. leprae in infected mouse tissues, which showed that most of the replicated bacteria had degenerated and only a few cells survived. Based on these results, it was postulated that many of the replicated cells degenerate during M. leprae growth and that only a few cells remain to participate in the next growth stage. This means that, unlike other cultivable bacteria, the growth of M. leprae is not exponential and the number of cells therefore increase extremely slowly. Thus, accurate judging of the success of M. leprae cultivation requires observation of growth over a long period of time and careful measurement of the increase in number of viable cells. © 2016 The Authors. Microbiology and Immunology published by The Societies and John Wiley & Sons Australia, Ltd.

  10. Evidence of exponential growth of an anammox population in an anaerobic batch culture.

    PubMed

    Yasuda, Tomoko; Waki, Miyoko; Yoshinaga, Ikuo; Amano, Teruki; Suzuki, Kazuyoshi; Tanaka, Yasuo; Yamagishi, Takao; Suwa, Yuichi

    2011-01-01

    Twenty-five replicates of growth medium for anaerobic ammonium oxidation (anammox) containing (15)N-labeled ammonium and non-labeled nitrite were inoculated into an anammox enrichment culture at low density, and anaerobically incubated batchwise. In the headspace, (29)N(2) partial pressure linearly increased via anammox in 25 vials, confirming that anammox populations were viable in all subcultures. On prolonged incubation, exponential increases in (29)N(2) were not observed in all but 13 subcultures, suggesting that the anammox population may not proliferate unless all conditions for growth are satisfied. The estimated first-order rate coefficients in those 13 subcultures varied from 0.0029 to 0.0048 h(-1).

  11. An integrated model for predictive microbiology and simultaneous determination of lag phase duration and exponential growth rate

    USDA-ARS?s Scientific Manuscript database

    A new mechanistic growth model was developed to describe microbial growth under isothermal conditions. The development of the mathematical model was based on the fundamental phenomenon of microbial growth, which is normally a three-stage process that includes lag, exponential, and stationary phases...

  12. Transport and Growth Kinetics in Microgravity Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    Otalora, F.; Garcia-Ruiz, J. M.; Carotenuto, L.; Castagnolo, D.; Novella, M. L.; Chernov, A. A.

    2002-01-01

    The dynamic coupling between mass transport and incorporation of growth units into the surface of a crystal growing from solution in microgravity is used to derive quantitative information on the crystal growth kinetics. To this end, new procedures for experiment preparation, interferometric data processing and model fitting have been developed. The use of experimental data from the bulk diffusive maw transport together with a model for steady state stagnant crystal growth allows the detailed quantitative understanding of the kinetics of both the concentration depletion zone around the crystal and the growth of the crystal interface. The protein crystal used in the experiment is shown to be growing in the mixed kinetic regime (0.2 x 10(exp -6) centimeters per second less than beta R/D less than 0.9 x 10(exp -6) centimeters per second).

  13. Transport and Growth Kinetics in Microgravity Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    Otalora, F.; Garcia-Ruiz, J. M.; Carotenuto, L.; Castagnolo, D.; Novella, M. L.; Chernov, A. A.

    2002-01-01

    The dynamic coupling between mass transport and incorporation of growth units into the surface of a crystal growing from solution in microgravity is used to derive quantitative information on the crystal growth kinetics. To this end, new procedures for experiment preparation, interferometric data processing and model fitting have been developed. The use of experimental data from the bulk diffusive maw transport together with a model for steady state stagnant crystal growth allows the detailed quantitative understanding of the kinetics of both the concentration depletion zone around the crystal and the growth of the crystal interface. The protein crystal used in the experiment is shown to be growing in the mixed kinetic regime (0.2 x 10(exp -6) centimeters per second less than beta R/D less than 0.9 x 10(exp -6) centimeters per second).

  14. Stretching of single poly-ubiquitin molecules revisited: Dynamic disorder in the non-exponential unfolding kinetics

    NASA Astrophysics Data System (ADS)

    Zheng, Yue; Bian, Yukun; Zhao, Nanrong; Hou, Zhonghuai

    2014-03-01

    A theoretical framework based on a generalized Langevin equation (GLE) with fractional Gaussian noise (fGn) and a power-law memory kernel is presented to describe the non-exponential kinetics of the unfolding of a single poly-ubiquitin molecule under a constant force [T.-L. Kuo, S. Garcia-Manyes, J. Li, I. Barel, H. Lu, B. J. Berne, M. Urbakh, J. Klafter, and J. M. Fernández, Proc. Natl. Acad. Sci. U.S.A. 107, 11336 (2010)]. Such a GLE-fGn strategy is made on the basis that the pulling coordinate variable x undergoes subdiffusion, usually resulting from conformational fluctuations, over a one-dimensional force-modified free-energy surface U(x, F). By using the Kramers' rate theory, we have obtained analytical formulae for the time-dependent rate coefficient k(t, F), the survival probability S(t, F) as well as the waiting time distribution function f(t, F) as functions of time t and force F. We find that our results can fit the experimental data of f(t, F) perfectly in the whole time range with a power-law exponent γ = 1/2, the characteristic of typical anomalous subdiffusion. In addition, the fitting of the survival probabilities for different forces facilitates us to reach rather reasonable estimations for intrinsic properties of the system, such as the free-energy barrier and the distance between the native conformation and the transition state conformation along the reaction coordinate, which are in good agreements with molecular dynamics simulations in the literatures. Although static disorder has been implicated in the original work of Kuo et al., our work suggests a sound and plausible alternative interpretation for the non-exponential kinetics in the stretching of poly-ubiquitin molecules, associated with dynamic disorder.

  15. Modeling the pre-industrial roots of modern super-exponential population growth.

    PubMed

    Stutz, Aaron Jonas

    2014-01-01

    To Malthus, rapid human population growth-so evident in 18th Century Europe-was obviously unsustainable. In his Essay on the Principle of Population, Malthus cogently argued that environmental and socioeconomic constraints on population rise were inevitable. Yet, he penned his essay on the eve of the global census size reaching one billion, as nearly two centuries of super-exponential increase were taking off. Introducing a novel extension of J. E. Cohen's hallmark coupled difference equation model of human population dynamics and carrying capacity, this article examines just how elastic population growth limits may be in response to demographic change. The revised model involves a simple formalization of how consumption costs influence carrying capacity elasticity over time. Recognizing that complex social resource-extraction networks support ongoing consumption-based investment in family formation and intergenerational resource transfers, it is important to consider how consumption has impacted the human environment and demography--especially as global population has become very large. Sensitivity analysis of the consumption-cost model's fit to historical population estimates, modern census data, and 21st Century demographic projections supports a critical conclusion. The recent population explosion was systemically determined by long-term, distinctly pre-industrial cultural evolution. It is suggested that modern globalizing transitions in technology, susceptibility to infectious disease, information flows and accumulation, and economic complexity were endogenous products of much earlier biocultural evolution of family formation's embeddedness in larger, hierarchically self-organizing cultural systems, which could potentially support high population elasticity of carrying capacity. Modern super-exponential population growth cannot be considered separately from long-term change in the multi-scalar political economy that connects family formation and

  16. Analysis of the lag phase to exponential growth transition by incorporating inoculum characteristics.

    PubMed

    Verhulst, A J; Cappuyns, A M; Van Derlinden, E; Bernaerts, K; Van Impe, J F

    2011-06-01

    During the last decade, individual-based modelling (IbM) has proven to be a valuable tool for modelling and studying microbial dynamics. As each individual is considered as an independent entity with its own characteristics, IbM enables the study of microbial dynamics and the inherent variability and heterogeneity. IbM simulations and (single-cell) experimental research form the basis to unravel individual cell characteristics underlying population dynamics. In this study, the IbM framework MICRODIMS, i.e., MICRObial Dynamics Individual-based Model/Simulator, is used to investigate the system dynamics (with respect to the model and the system modelled). First, the impact of the time resolution on the simulation accuracy is discussed. Second, the effect of the inoculum state and size on emerging individual dynamics, such as individual mass, individual age and individual generation time distribution dynamics, is studied. The distributions of individual characteristics are more informative during the lag phase and the transition to the exponential growth phase than during the exponential phase. The first generation time distributions are strongly influenced by the inoculum state. All inocula with a pronounced heterogeneity, except the inocula starting from a uniform distribution, exhibit commonly observed microbial behaviour, like a more spread first generation time distribution compared to following generations and a fast stabilisation of biomass and age distributions.

  17. Intensification of β-poly(L: -malic acid) production by Aureobasidium pullulans ipe-1 in the late exponential growth phase.

    PubMed

    Cao, Weifeng; Luo, Jianquan; Zhao, Juan; Qiao, Changsheng; Ding, Luhui; Qi, Benkun; Su, Yi; Wan, Yinhua

    2012-07-01

    β-Poly(malic acid) (PMLA) has attracted industrial interest because this polyester can be used as a prodrug or for drug delivery systems. In PMLA production by Aureobasidium pullulans ipe-1, it was found that PLMA production was associated with cell growth in the early exponential growth phase and dissociated from cell growth in the late exponential growth phase. To enhance PMLA production in the late phase, different fermentation modes and strategies for controlling culture redox potential (CRP) were studied. The results showed that high concentrations of produced PMLA (above 40 g/l) not only inhibited PMLA production, but also was detrimental to cell growth. Moreover, when CRP increased from 57 to 100 mV in the late exponential growth phase, the lack of reducing power in the broth also decreased PMLA productivity. PMLA productivity could be enhanced by repeated-batch culture to maintain cell growth in the exponential growth phase, or by cell-recycle culture with membrane to remove the produced PMLA, or by maintaining CRP below 70 mV no matter which kind of fermentation mode was adopted. Repeated-batch culture afforded a high PMLA concentration (up to 63.2 g/l) with a productivity of 1.15 g l(-1) h(-1). Cell-recycle culture also confirmed that PMLA production by the strain ipe-1 was associated with cell growth.

  18. [Natural history of non specific neuralgias of the limbs. Exponential kinetics of the root pain recovery in sciatica and femoral neuralgia; uncertain kinetics for brachial neuralgia].

    PubMed

    Paolaggi, Jean-Baptiste

    2003-01-01

    Very few studies are dedicated to the natural history of sciatica, and none to femoral neuralgia or brachial neuralgia natural course. Hence, the results of a collection of five studies on these topics appear worth being published. A rheumatology department. The first study was a retrospective comparison of sciatica (145 patients) and femoral neuralgia (63 patients). The second study was a retrospective study concerning 107 patients with sciatica observed in a second different period. A third and a fourth retrospective studies were carried out on 38 femoral neuralgia and 69 brachial neuralgia patients. The fifth study was a prospective cohort study on patients with sciatica. As there are no diagnosis criteria for non specific neuralgias, the diagnosis was based on seniors' opinion. Neuralgia due to specific causes were carefully excluded. As there are no relevant outcomes measures specially dedicated to idiopathic acute root pain, the full recovery of root pain was used as endpoint. The kinetics of sciatica and of femoral neuralgia recoveries are related Plotted as neuralgia survival sciatica as well as femoral neuralgia exhibited a decreasing, exponential kinetics curve. Half sciatica disappear each 6 to 7 weeks. Half femoral neuralgia disappear each 5 to 6 weeks. The brachial neuralgia survival exhibited a more complex kinetics. These pilot studies, do not allow definitive conclusions. Nevertheless, given the scarcity of available data, they may be used as a factual basis for perfectly designed prospective inception cohort studies.

  19. Development of a chemically defined minimal medium for the exponential growth of Leuconostoc mesenteroides ATCC8293.

    PubMed

    Kim, Yu Jin; Eom, Hyun-Ju; Seo, Eun-Young; Lee, Dong Yup; Kim, Jeong Hwan; Han, Nam Soo

    2012-11-01

    Leuconostoc mesenteroides is a heterofermentative Grampositive bacterium that plays key roles in fermentation of foods such as kimchi, sauerkraut, and milk, leading to the production of various organic acids and aromatic compounds. To study the microbiological and genomic characteristics of L. mesenteroides, we have developed a new chemically defined minimal medium by using the single omission technique. During the exponential cell growth, this species required glutamine, methionine, valine, and nicotinic acid as essential nutrients and 8 amino acids (arginine, cysteine, histidine, leucine, phenylalanine, proline, threonine, and tryptophan), 5 vitamins (ascorbic acid, folic acid, inosine, calcium panthothenate, and thiamine), and others (manganese, magnesium, adenine, uracil, and Tween 80) as supplemental nutrients. This medium is useful to study the metabolic characteristics of L. mesenteroides and to explain its role in food fermentation.

  20. Dependence of morphometric allometries on the growth kinetics of body parts.

    PubMed

    Nijhout, H Frederik

    2011-11-07

    As overall size varies, the sizes of body parts of many animals often appear to be related to each other by a power law, commonly called the allometric equation. Orderly scaling relationships among body parts are widespread in the animal world, but there is no general agreement about how these relationships come about. Presumably they depend on the patterns of growth of body parts, and simple analyses have shown that exponential growth can lead to size relationships that are well-described by the allometric equation. Exponential growth kinetics also allow for a simple biological interpretation of the coefficients of the power relationship. Nevertheless, many tissues do not grow with exponential kinetics, nor do they grow for the same period of time, and the consequences of more realistic growth patterns on the resulting allometric relationships of body parts are not well understood. In this paper I derive a set of allometric equations that assume different kinetics of growth: linear, exponential and sigmoidal. In these derivations I also include differences in development times as a variable, in addition to differences in the growth rates and initial sizes of the two structures whose allometric relationship is compared. I show how these equations can be used to deduce the effect of different causes of variation in absolute size on the resulting allometry. Variation in size can be due to variation in the duration of development, variation in growth rate or variation in initial size. I show that the meaning of the coefficients of the allometric equation depends on exactly how size variation comes about. I show that if two structures are assumed to grow with sigmoidal kinetics (logistic and Gompertz) the resulting allometric equations do not have a simple and intuitive structure and produce graphs that, over a sufficiently large range of sizes, can vary from linear, to sigmoidal to hump-shaped. Over a smaller range of absolute sizes, these sigmoid growth kinetics can

  1. Modeling the Pre-Industrial Roots of Modern Super-Exponential Population Growth

    PubMed Central

    Stutz, Aaron Jonas

    2014-01-01

    To Malthus, rapid human population growth—so evident in 18th Century Europe—was obviously unsustainable. In his Essay on the Principle of Population, Malthus cogently argued that environmental and socioeconomic constraints on population rise were inevitable. Yet, he penned his essay on the eve of the global census size reaching one billion, as nearly two centuries of super-exponential increase were taking off. Introducing a novel extension of J. E. Cohen's hallmark coupled difference equation model of human population dynamics and carrying capacity, this article examines just how elastic population growth limits may be in response to demographic change. The revised model involves a simple formalization of how consumption costs influence carrying capacity elasticity over time. Recognizing that complex social resource-extraction networks support ongoing consumption-based investment in family formation and intergenerational resource transfers, it is important to consider how consumption has impacted the human environment and demography—especially as global population has become very large. Sensitivity analysis of the consumption-cost model's fit to historical population estimates, modern census data, and 21st Century demographic projections supports a critical conclusion. The recent population explosion was systemically determined by long-term, distinctly pre-industrial cultural evolution. It is suggested that modern globalizing transitions in technology, susceptibility to infectious disease, information flows and accumulation, and economic complexity were endogenous products of much earlier biocultural evolution of family formation's embeddedness in larger, hierarchically self-organizing cultural systems, which could potentially support high population elasticity of carrying capacity. Modern super-exponential population growth cannot be considered separately from long-term change in the multi-scalar political economy that connects family formation and

  2. A Minimal Model of the E. Coli Bacterium in Exponential Phase Growth

    NASA Astrophysics Data System (ADS)

    Maitra, Arijit; Dill, Ken

    2013-03-01

    We study the fundamental process of exponential cell growth in the E. Coli bacterium under conditions of extracellular glucose limitations using a minimalistic reaction framework by accounting for energy metabolism and protein synthesis. The cell model has three nodes: ATP, the ribosomal and the non-ribosomal proteins. Their interdependencies and dynamics are wrapped in a system of ordinary differential equations. The formulations of their interactive fluxes capture the essence of cellular physiology under conditions of growth. We solve the model numerically for different glucose concentrations, and, where possible, explore the cell states analytically under steady state conditions. We verify the model predictions with available experimental data. The model lets us quantify the coupling between energy generation and biomass growth. An implication of this model is that it provides a layout to compute the fitness landscape in terms of the parameters of the cells, such as the protein translation rates, to make hypotheses about possible routes for cellular evolution under glucose limitation. Laufer Center for Phys. and Quant. Biology.

  3. Growth and nitrogen acquisition strategies of Acacia senegal seedlings under exponential phosphorus additions.

    PubMed

    Isaac, M E; Harmand, J M; Drevon, J J

    2011-05-15

    There remains conflicting evidence on the relationship between P supply and biological N(2)-fixation rates, particularly N(2)-fixing plant adaptive strategies under P limitation. This is important, as edaphic conditions inherent to many economically and ecologically important semi-arid leguminous tree species, such as Acacia senegal, are P deficient. Our research objective was to verify N acquisition strategies under phosphorus limitations using isotopic techniques. Acacia senegal var. senegal was cultivated in sand culture with three levels of exponentially supplied phosphorus [low (200 μmol of P seedling(-1) over 12 weeks), mid (400 μmol) and high (600 μmol)] to achieve steady-state nutrition over the growth period. Uniform additions of N were also supplied. Plant growth and nutrition were evaluated. Seedlings exhibited significantly greater total biomass under high P supply compared to low P supply. Both P and N content significantly increased with increasing P supply. Similarly, N derived from solution increased with elevated P availability. However, both the number of nodules and the N derived from atmosphere, determined by the (15)N natural abundance method, did not increase along the P gradient. Phosphorus stimulated growth and increased mineral N uptake from solution without affecting the amount of N derived from the atmosphere. We conclude that, under non-limiting N conditions, A. senegal N acquisition strategies change with P supply, with less reliance on N(2)-fixation when the rhizosphere achieves a sufficient N uptake zone. Copyright © 2010 Elsevier GmbH. All rights reserved.

  4. Multiple factors underlying the maximum motility of Escherichia coli as cultures enter post-exponential growth.

    PubMed Central

    Amsler, C D; Cho, M; Matsumura, P

    1993-01-01

    Motility and chemotaxis allow cells to move away from stressful microenvironments. Motility of Escherichia coli in batch cultures, as measured by cell swimming speed, was low in early-exponential-phase cells, peaked as the cells entered post-exponential phase, and declined into early stationary phase. Transcription from the flhB operon and synthesis of flagellin protein similarly peaked in late exponential and early post-exponential phases, respectively. The increase in swimming speed between early-exponential and post-exponential phases was correlated with twofold increases in both flagellar length and flagellar density per cell volume. This increased investment in flagella probably reflects the increased adaptive value of motility in less favorable environments. The decrease in speed between post-exponential and stationary phases was correlated with a threefold decrease in torque produced by the flagellar motors and presumably reflects decreased proton motive force available to stationary-phase cells. Images PMID:8407796

  5. Protein crystal growth - Growth kinetics for tetragonal lysozyme crystals

    NASA Technical Reports Server (NTRS)

    Pusey, M. L.; Snyder, R. S.; Naumann, R.

    1986-01-01

    Results are reported from theoretical and experimental studies of the growth rate of lysozyme as a function of diffusion in earth-gravity conditions. The investigations were carried out to form a comparison database for future studies of protein crystal growth in the microgravity environment of space. A diffusion-convection model is presented for predicting crystal growth rates in the presence of solutal concentration gradients. Techniques used to grow and monitor the growth of hen egg white lysozyme are detailed. The model calculations and experiment data are employed to discuss the effects of transport and interfacial kinetics in the growth of the crystals, which gradually diminished the free energy in the growth solution. Density gradient-driven convection, caused by presence of the gravity field, was a limiting factor in the growth rate.

  6. Growth kinetics of Bacillus stearothermophilus BR219

    SciTech Connect

    Worden, R.M.; Subramanian, R.; Bly, M.J.; Winter, S.; Aronson, C.L.

    1991-12-31

    Bacillus stearothermophilus BR219, a phenol-resistant thermophile, can convert phenol to the specialty chemical catechol. The growth kinetics of this organism were studied in batch, continuous, and immobilized-cell culture. Batch growth was insensitive to pH between 6.0 and 8.0, but little growth occurred at 5.5. In continuous culture on a dilute medium supplemented with 10 mM phenol, several steady states were achieved between dilution rates of 0.25 and 1.3 h{sup -1}. Phenol degradation was found to be uncoupled from growth. Immobilized cells grew rapidly in a rich medium, but cell viability plummeted following a switch to a dilute medium supplemented with 5 mM phenol.

  7. Morphological stability and kinetics in crystal growth from vapors

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz

    1990-01-01

    The following topics are discussed: (1) microscopy image storage and processing system; (2) growth kinetics and morphology study with carbon tetrabromide; (3) photothermal deflection vapor growth setup; (4) bridgman growth of iodine single crystals; (5) vapor concentration distribution measurement during growth; and (6) Monte Carlo modeling of anisotropic growth kinetics and morphology. A collection of presentations and publications of these results are presented.

  8. Entrainability of cell cycle oscillator models with exponential growth of cell mass.

    PubMed

    Nakao, Mitsuyuki; Enkhkhudulmur, Tsog-Erdene; Katayama, Norihiro; Karashima, Akihiro

    2014-01-01

    Among various aspects of cell cycle, understanding synchronization mechanism of cell cycle is important because of the following reasons. (1)Cycles of cell assembly should synchronize to form an organ. (2) Synchronizing cell cycles are required to experimental analysis of regulatory mechanisms of cell cycles. (3) Cell cycle has a distinct phase relationship with the other biological rhythms such as circadian rhythm. However, forced as well as mutual entrainment mechanisms are not clearly known. In this study, we investigated entrainability of cell cycle models of yeast cell under the periodic forcing to both of the cell mass and molecular dynamics. Dynamics of models under study involve the cell mass growing exponentially. In our result, they are shown to allow only a limited frequency range for being entrained by the periodic forcing. In contrast, models with linear growth are shown to be entrained in a wider frequency range. It is concluded that if the cell mass is included in the cell cycle regulation, its entrainability is sensitive to a shape of growth curve assumed in the model.

  9. Growth morphology with anisotropic surface kinetics

    NASA Technical Reports Server (NTRS)

    Xiao, Rong-Fu; Alexander, J. Iwan D.; Rosenberger, Franz

    1990-01-01

    The morphological evolution of crystals growing from an incongruent vapor phase is studied using a Monte Carlo model, and the full range of growth morphologies is recovered. The diffusion in the bulk nutrient and the anisotropy in the interface kinetics are morphologically destabilizing and stabilizing, respectively. For a given set of simulation parameters and lattice symmetries there is a critical size, which scales linearly with the mean free path in the vapor, beyond which a crystal cannot retain its stable, macroscopically faceted growth shape. Surface diffusion stabilizes faceted growth on the shorter scale of the mean surface diffusion length. In simulations with a uniform drift superimposed on the random walk nutrient transport, crystal faces oriented toward the drift show enhanced morphological stability compared to the purely diffusive situation. Rotational drifts with periodic reversal of direction are morphologically stabilizing for all crystal facets.

  10. Polyamine metabolism during exponential growth transition in Scots pine embryogenic cell culture.

    PubMed

    Vuosku, Jaana; Suorsa, Marja; Ruottinen, Maria; Sutela, Suvi; Muilu-Mäkelä, Riina; Julkunen-Tiitto, Riitta; Sarjala, Tytti; Neubauer, Peter; Häggman, Hely

    2012-10-01

    Polyamine (PA) metabolism was studied in liquid cultures of Scots pine (Pinus sylvestris L.) embryogenic cells. The focus of the study was on the metabolic changes at the interphase between the initial lag phase and the exponential growth phase. PA concentrations fluctuated in the liquid cultures as follows. Putrescine (Put) concentrations increased, whereas spermidine (Spd) concentrations decreased in both free and soluble conjugated PA fractions. The concentrations of free and soluble conjugated spermine (Spm) remained low, and small amounts of excreted PAs were also found in the culture medium. The minor production of secondary metabolites reflected the undifferentiated stage of the embryogenic cell culture. Put was produced via the arginine decarboxylase (ADC) pathway. Futhermore, the gene expression data suggested that the accumulation of Put was caused neither by an increase in Put biosynthesis nor by a decrease in Put catabolism, but resulted mainly from the decrease in the biosynthesis of Spd and Spm. Put seemed to play an important role in cell proliferation in Scots pine embryogenic cells, but the low pH of the culture medium could also, at least partially, be the reason for the accumulation of endogenous Put. High Spd concentrations at the initiation of the culture, when cells were exposed to stress and cell death, suggested that Spd may act not only as a protector against stress but also as a growth suppressor, when proliferative growth is not promoted. All in all, Scots pine embryogenic cell culture was proved to be a favourable experimental platform to study PA metabolism and, furthermore, the developed system may also be beneficial in experiments where, e.g., the effect of specific stressors on PA metabolism is addressed.

  11. Teaching the Verhulst Model: A Teaching Experiment in Covariational Reasoning and Exponential Growth

    ERIC Educational Resources Information Center

    Castillo-Garsow, Carlos

    2010-01-01

    Both Thompson and the duo of Confrey and Smith describe how students might be taught to build "ways of thinking" about exponential behavior by coordinating the covariation of two changing quantities, however, these authors build exponential behavior from different meanings of covariation. Confrey and Smith advocate beginning with discrete additive…

  12. Teaching the Verhulst Model: A Teaching Experiment in Covariational Reasoning and Exponential Growth

    ERIC Educational Resources Information Center

    Castillo-Garsow, Carlos

    2010-01-01

    Both Thompson and the duo of Confrey and Smith describe how students might be taught to build "ways of thinking" about exponential behavior by coordinating the covariation of two changing quantities, however, these authors build exponential behavior from different meanings of covariation. Confrey and Smith advocate beginning with discrete additive…

  13. Metabolic Flux Analysis during the Exponential Growth Phase of Saccharomyces cerevisiae in Wine Fermentations

    PubMed Central

    Quirós, Manuel; Martínez-Moreno, Rubén; Albiol, Joan; Morales, Pilar; Vázquez-Lima, Felícitas; Barreiro-Vázquez, Antonio; Ferrer, Pau; Gonzalez, Ramon

    2013-01-01

    As a consequence of the increase in global average temperature, grapes with the adequate phenolic and aromatic maturity tend to be overripe by the time of harvest, resulting in increased sugar concentrations and imbalanced C/N ratios in fermenting musts. This fact sets obvious additional hurdles in the challenge of obtaining wines with reduced alcohols levels, a new trend in consumer demands. It would therefore be interesting to understand Saccharomyces cerevisiae physiology during the fermentation of must with these altered characteristics. The present study aims to determine the distribution of metabolic fluxes during the yeast exponential growth phase, when both carbon and nitrogen sources are in excess, using continuous cultures. Two different sugar concentrations were studied under two different winemaking temperature conditions. Although consumption and production rates for key metabolites were severely affected by the different experimental conditions studied, the general distribution of fluxes in central carbon metabolism was basically conserved in all cases. It was also observed that temperature and sugar concentration exerted a higher effect on the pentose phosphate pathway and glycerol formation than on glycolysis and ethanol production. Additionally, nitrogen uptake, both quantitatively and qualitatively, was strongly influenced by environmental conditions. This work provides the most complete stoichiometric model used for Metabolic Flux Analysis of S. cerevisiae in wine fermentations employed so far, including the synthesis and release of relevant aroma compounds and could be used in the design of optimal nitrogen supplementation of wine fermentations. PMID:23967264

  14. Metabolic flux analysis during the exponential growth phase of Saccharomyces cerevisiae in wine fermentations.

    PubMed

    Quirós, Manuel; Martínez-Moreno, Rubén; Albiol, Joan; Morales, Pilar; Vázquez-Lima, Felícitas; Barreiro-Vázquez, Antonio; Ferrer, Pau; Gonzalez, Ramon

    2013-01-01

    As a consequence of the increase in global average temperature, grapes with the adequate phenolic and aromatic maturity tend to be overripe by the time of harvest, resulting in increased sugar concentrations and imbalanced C/N ratios in fermenting musts. This fact sets obvious additional hurdles in the challenge of obtaining wines with reduced alcohols levels, a new trend in consumer demands. It would therefore be interesting to understand Saccharomyces cerevisiae physiology during the fermentation of must with these altered characteristics. The present study aims to determine the distribution of metabolic fluxes during the yeast exponential growth phase, when both carbon and nitrogen sources are in excess, using continuous cultures. Two different sugar concentrations were studied under two different winemaking temperature conditions. Although consumption and production rates for key metabolites were severely affected by the different experimental conditions studied, the general distribution of fluxes in central carbon metabolism was basically conserved in all cases. It was also observed that temperature and sugar concentration exerted a higher effect on the pentose phosphate pathway and glycerol formation than on glycolysis and ethanol production. Additionally, nitrogen uptake, both quantitatively and qualitatively, was strongly influenced by environmental conditions. This work provides the most complete stoichiometric model used for Metabolic Flux Analysis of S. cerevisiae in wine fermentations employed so far, including the synthesis and release of relevant aroma compounds and could be used in the design of optimal nitrogen supplementation of wine fermentations.

  15. The Cultural Divide: Exponential Growth in Classical 2D and Metabolic Equilibrium in 3D Environments

    PubMed Central

    Kanlaya, Rattiyaporn; Borkowski, Kamil; Schwämmle, Veit; Dai, Jie; Joensen, Kira Eyd; Wojdyla, Katarzyna; Carvalho, Vasco Botelho; Fey, Stephen J.

    2014-01-01

    Introduction Cellular metabolism can be considered to have two extremes: one is characterized by exponential growth (in 2D cultures) and the other by a dynamic equilibrium (in 3D cultures). We have analyzed the proteome and cellular architecture at these two extremes and found that they are dramatically different. Results Structurally, actin organization is changed, microtubules are increased and keratins 8 and 18 decreased. Metabolically, glycolysis, fatty acid metabolism and the pentose phosphate shunt are increased while TCA cycle and oxidative phosphorylation is unchanged. Enzymes involved in cholesterol and urea synthesis are increased consistent with the attainment of cholesterol and urea production rates seen in vivo. DNA repair enzymes are increased even though cells are predominantly in Go. Transport around the cell – along the microtubules, through the nuclear pore and in various types of vesicles has been prioritized. There are numerous coherent changes in transcription, splicing, translation, protein folding and degradation. The amount of individual proteins within complexes is shown to be highly coordinated. Typically subunits which initiate a particular function are present in increased amounts compared to other subunits of the same complex. Summary We have previously demonstrated that cells at dynamic equilibrium can match the physiological performance of cells in tissues in vivo. Here we describe the multitude of protein changes necessary to achieve this performance. PMID:25222612

  16. Shewanella oneidensis Hfq promotes exponential phase growth, stationary phase culture density, and cell survival

    PubMed Central

    2013-01-01

    Background Hfq is an RNA chaperone protein that has been broadly implicated in sRNA function in bacteria. Here we describe the construction and characterization of a null allele of the gene that encodes the RNA chaperone Hfq in Shewanella oneidensis strain MR-1, a dissimilatory metal reducing bacterium. Results Loss of hfq in S. oneidensis results in a variety of mutant phenotypes, all of which are fully complemented by addition of a plasmid-borne copy of the wild type hfq gene. Aerobic cultures of the hfq∆ mutant grow more slowly through exponential phase than wild type cultures, and hfq∆ cultures reach a terminal cell density in stationary phase that is ~2/3 of that observed in wild type cultures. We have observed a similar growth phenotype when the hfq∆ mutant is cultured under anaerobic conditions with fumarate as the terminal electron acceptor, and we have found that the hfq∆ mutant is defective in Cr(VI) reduction. Finally, the hfq∆ mutant exhibits a striking loss of colony forming units in extended stationary phase and is highly sensitive to oxidative stress induced by H2O2 or methyl viologen (paraquat). Conclusions The hfq mutant in S. oneidensis exhibits pleiotropic phenotypes, including a defect in metal reduction. Our results also suggest that hfq mutant phenotypes in S. oneidensis may be at least partially due to increased sensitivity to oxidative stress. PMID:23394078

  17. Volume Diffusion Growth Kinetics and Step Geometry in Crystal Growth

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin; Ramachandran, Narayanan

    1998-01-01

    The role of step geometry in two-dimensional stationary volume diff4sion process used in crystal growth kinetics models is investigated. Three different interface shapes: a) a planar interface, b) an equidistant hemispherical bumps train tAx interface, and c) a train of right angled steps, are used in this comparative study. The ratio of the super-saturation to the diffusive flux at the step position is used as a control parameter. The value of this parameter can vary as much as 50% for different geometries. An approximate analytical formula is derived for the right angled steps geometry. In addition to the kinetic models, this formula can be utilized in macrostep growth models. Finally, numerical modeling of the diffusive and convective transport for equidistant steps is conducted. In particular, the role of fluid flow resulting from the advancement of steps and its contribution to the transport of species to the steps is investigated.

  18. Volume Diffusion Growth Kinetics and Step Geometry in Crystal Growth

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin; Ramachandran, Narayanan

    1998-01-01

    The role of step geometry in two-dimensional stationary volume diff4sion process used in crystal growth kinetics models is investigated. Three different interface shapes: a) a planar interface, b) an equidistant hemispherical bumps train tAx interface, and c) a train of right angled steps, are used in this comparative study. The ratio of the super-saturation to the diffusive flux at the step position is used as a control parameter. The value of this parameter can vary as much as 50% for different geometries. An approximate analytical formula is derived for the right angled steps geometry. In addition to the kinetic models, this formula can be utilized in macrostep growth models. Finally, numerical modeling of the diffusive and convective transport for equidistant steps is conducted. In particular, the role of fluid flow resulting from the advancement of steps and its contribution to the transport of species to the steps is investigated.

  19. Application of Plackett-Burman design and response surface methodology to achieve exponential growth for aggregated shipworm bacterium.

    PubMed

    Ahuja, S K; Ferreira, G M; Moreira, A R

    2004-03-20

    Here we report the successful implementation of the Plackett-Burman multifactorial design to screen the limiting components for growth and subsequent use of the response surface methodology (RSM) to design a medium that supported exponential growth of the aggregated morphology of the shipworm bacterium, Teredinobacter turnirae. The results obtained with the help of Plackett-Burman design indicated limitations of three components in the growth medium, MnCl2.4H2O, Na2CO3, and K2HPO4. The concentrations of these three components were further optimized using RSM. By increasing the concentrations of the above-mentioned components by 4-fold, 12-fold, and 12-fold, respectively, it became possible to achieve exponential growth of the culture.

  20. Particle growth kinetics over the Amazon rainforest

    NASA Astrophysics Data System (ADS)

    Pinterich, T.; Andreae, M. O.; Artaxo, P.; Kuang, C.; Longo, K.; Machado, L.; Manzi, A. O.; Martin, S. T.; Mei, F.; Pöhlker, C.; Pöhlker, M. L.; Poeschl, U.; Shilling, J. E.; Shiraiwa, M.; Tomlinson, J. M.; Zaveri, R. A.; Wang, J.

    2016-12-01

    Aerosol particles larger than 100 nm play a key role in global climate by acting as cloud condensation nuclei (CCN). Most of these particles, originated from new particle formation or directly emitted into the atmospheric, are initially too small to serve as CCN. These small particles grow to CCN size mainly through condensation of secondary species. In one extreme, the growth is dictated by kinetic condensation of very low-volatility compounds, favoring the growth of the smallest particles; in the other extreme, the process is driven by Raoult's law-based equilibrium partitioning of semi-volatile organic compound, favoring the growth of larger particles. These two mechanisms can lead to very different production rates of CCN. The growth of particles depends on a number of parameters, including the volatility of condensing species, particle phase, and diffusivity inside the particles, and this process is not well understood in part due to lack of ambient data. Here we examine atmospheric particle growth using high-resolution size distributions measured onboard the DOE G-1 aircraft during GoAmazon campaign, which took place from January 2014 to December 2015 near Manaus, Brazil, a city surrounded by natural forest for over 1000 km in every direction. City plumes are clearly identified by the strong enhancement of nucleation and Aitken mode particle concentrations over the clean background. As the plume traveled downwind, particle growth was observed, and is attributed to condensation of secondary species and coagulation (Fig.1). Observed aerosol growth is modeled using MOSAIC (Model for Simulating Aerosol Interactions and Chemistry), which dynamically partitions multiple compounds to all particle size bins by taking into account compound volatility, gas-phase diffusion, interfacial mass accommodation, particle-phase diffusion, and particle-phase reaction. The results from both wet and dry seasons will be discussed.

  1. Slow Crack Growth of Brittle Materials With Exponential Crack-Velocity Formulation. Part 2; Constant Stress Rate Experiments

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Nemeth, Noel N.; Gyekenyesi, John P.

    2002-01-01

    The previously determined life prediction analysis based on an exponential crack-velocity formulation was examined using a variety of experimental data on glass and advanced structural ceramics in constant stress rate and preload testing at ambient and elevated temperatures. The data fit to the relation of strength versus the log of the stress rate was very reasonable for most of the materials. Also, the preloading technique was determined equally applicable to the case of slow-crack-growth (SCG) parameter n greater than 30 for both the power-law and exponential formulations. The major limitation in the exponential crack-velocity formulation, however, was that the inert strength of a material must be known a priori to evaluate the important SCG parameter n, a significant drawback as compared with the conventional power-law crack-velocity formulation.

  2. Slow Crack Growth of Brittle Materials With Exponential Crack-Velocity Formulation. Part 3; Constant Stress and Cyclic Stress Experiments

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Nemeth, Noel N.; Gyekenyesi, John P.

    2002-01-01

    The previously determined life prediction analysis based on an exponential crack-velocity formulation was examined using a variety of experimental data on advanced structural ceramics tested under constant stress and cyclic stress loading at ambient and elevated temperatures. The data fit to the relation between the time to failure and applied stress (or maximum applied stress in cyclic loading) was very reasonable for most of the materials studied. It was also found that life prediction for cyclic stress loading from data of constant stress loading in the exponential formulation was in good agreement with the experimental data, resulting in a similar degree of accuracy as compared with the power-law formulation. The major limitation in the exponential crack-velocity formulation, however, was that the inert strength of a material must be known a priori to evaluate the important slow-crack-growth (SCG) parameter n, a significant drawback as compared with the conventional power-law crack-velocity formulation.

  3. Correlation between the change in the kinetics of the ribosomal RNA rrnB P2 promoter and the transition from lag to exponential phase with Pseudomonas fluorescens.

    PubMed

    McKellar, Robin C

    2008-01-15

    Developing accurate mathematical models to describe the pre-exponential lag phase in food-borne pathogens presents a considerable challenge to food microbiologists. While the growth rate is influenced by current environmental conditions, the lag phase is affected in addition by the history of the inoculum. A deeper understanding of physiological changes taking place during the lag phase would improve accuracy of models, and in earlier studies a strain of Pseudomonas fluorescens containing the Tn7-luxCDABE gene cassette regulated by the rRNA promoter rrnB P2 was used to measure the influence of starvation, growth temperature and sub-lethal heating on promoter expression and subsequent growth. The present study expands the models developed earlier to include a model which describes the change from exponential to linear increase in promoter expression with time when the exponential phase of growth commences. A two-phase linear model with Poisson weighting was used to estimate the lag (LPDLin) and the rate (RLin) for this linear increase in bioluminescence. The Spearman rank correlation coefficient (r=0.830) between the LPDLin and the growth lag phase (LPDOD) was extremely significant (Pexponential growth. These results suggest that models based on measurable physiological changes in the cells can be useful in predicting the behaviour of food-borne pathogens.

  4. Domain Growth Kinetics in Stratifying Foam Films

    NASA Astrophysics Data System (ADS)

    Zhang, Yiran; Sharma, Vivek

    2015-03-01

    Baking bread, brewing cappuccino, pouring beer, washing dishes, shaving, shampooing, whipping eggs and blowing bubbles all involve creation of aqueous foam films. Typical foam films consist of two surfactant-laden surfaces that are μ 5 nm - 10 micron apart. Sandwiched between these interfacial layers is a fluid that drains primarily under the influence of viscous and interfacial forces, including disjoining pressure. Interestingly, for certain low molecular weight surfactants, a layered ordering of micelles inside the foam films (thickness <100 nm) leads to a stepwise thinning phenomena called stratification. We experimentally elucidate the influence of these different driving forces, and confinement on drainage kinetics of horizontal stratifying foam films. Thinner, darker domains spontaneously grow within foam films. Quantitative characterization of domain growth visualized in a using Scheludko-type thin film cell and a theoretical model based on lubrication analysis, provide critical insights into hydrodynamics of thin foam films, and the strength and nature of surface forces, including supramolecular oscillatory structural forces.

  5. On new non-modal hydrodynamic stability modes and resulting non-exponential growth rates - a Lie symmetry approach

    NASA Astrophysics Data System (ADS)

    Oberlack, Martin; Nold, Andreas; Sanjon, Cedric Wilfried; Wang, Yongqi; Hau, Jan

    2016-11-01

    Classical hydrodynamic stability theory for laminar shear flows, no matter if considering long-term stability or transient growth, is based on the normal-mode ansatz, or, in other words, on an exponential function in space (stream-wise direction) and time. Recently, it became clear that the normal mode ansatz and the resulting Orr-Sommerfeld equation is based on essentially three fundamental symmetries of the linearized Euler and Navier-Stokes equations: translation in space and time and scaling of the dependent variable. Further, Kelvin-mode of linear shear flows seemed to be an exception in this context as it admits a fourth symmetry resulting in the classical Kelvin mode which is rather different from normal-mode. However, very recently it was discovered that most of the classical canonical shear flows such as linear shear, Couette, plane and round Poiseuille, Taylor-Couette, Lamb-Ossen vortex or asymptotic suction boundary layer admit more symmetries. This, in turn, led to new problem specific non-modal ansatz functions. In contrast to the exponential growth rate in time of the modal-ansatz, the new non-modal ansatz functions usually lead to an algebraic growth or decay rate, while for the asymptotic suction boundary layer a double-exponential growth or decay is observed.

  6. Staphylococcus aureus aconitase inactivation unexpectedly inhibits post-exponential-phase growth and enhances stationary-phase survival.

    PubMed

    Somerville, Greg A; Chaussee, Michael S; Morgan, Carrie I; Fitzgerald, J Ross; Dorward, David W; Reitzer, Lawrence J; Musser, James M

    2002-11-01

    Staphylococcus aureus preferentially catabolizes glucose, generating pyruvate, which is subsequently oxidized to acetate under aerobic growth conditions. Catabolite repression of the tricarboxylic acid (TCA) cycle results in the accumulation of acetate. TCA cycle derepression coincides with exit from the exponential growth phase, the onset of acetate catabolism, and the maximal expression of secreted virulence factors. These data suggest that carbon and energy for post-exponential-phase growth and virulence factor production are derived from the catabolism of acetate mediated by the TCA cycle. To test this hypothesis, the aconitase gene was genetically inactivated in a human isolate of S. aureus, and the effects on physiology, morphology, virulence factor production, virulence for mice, and stationary-phase survival were examined. TCA cycle inactivation prevented the post-exponential growth phase catabolism of acetate, resulting in premature entry into the stationary phase. This phenotype was accompanied by a significant reduction in the production of several virulence factors and alteration in host-pathogen interaction. Unexpectedly, aconitase inactivation enhanced stationary-phase survival relative to the wild-type strain. Aconitase is an iron-sulfur cluster-containing enzyme that is highly susceptible to oxidative inactivation. We speculate that reversible loss of the iron-sulfur cluster in wild-type organisms is a survival strategy used to circumvent oxidative stress induced during host-pathogen interactions. Taken together, these data demonstrate the importance of the TCA cycle in the life cycle of this medically important pathogen.

  7. Modeling the Lag Period and Exponential Growth of Listeria monocytogenes under Conditions of Fluctuating Temperature and Water Activity Values▿

    PubMed Central

    Muñoz-Cuevas, Marina; Fernández, Pablo S.; George, Susan; Pin, Carmen

    2010-01-01

    The dynamic model for the growth of a bacterial population described by Baranyi and Roberts (J. Baranyi and T. A. Roberts, Int. J. Food Microbiol. 23:277-294, 1994) was applied to model the lag period and exponential growth of Listeria monocytogenes under conditions of fluctuating temperature and water activity (aw) values. To model the duration of the lag phase, the dependence of the parameter h0, which quantifies the amount of work done during the lag period, on the previous and current environmental conditions was determined experimentally. This parameter depended not only on the magnitude of the change between the previous and current environmental conditions but also on the current growth conditions. In an exponentially growing population, any change in the environment requiring a certain amount of work to adapt to the new conditions initiated a lag period that lasted until that work was finished. Observations for several scenarios in which exponential growth was halted by a sudden change in the temperature and/or aw were in good agreement with predictions. When a population already in a lag period was subjected to environmental fluctuations, the system was reset with a new lag phase. The work to be done during the new lag phase was estimated to be the workload due to the environmental change plus the unfinished workload from the uncompleted previous lag phase. PMID:20208022

  8. Modeling the lag period and exponential growth of Listeria monocytogenes under conditions of fluctuating temperature and water activity values.

    PubMed

    Muñoz-Cuevas, Marina; Fernández, Pablo S; George, Susan; Pin, Carmen

    2010-05-01

    The dynamic model for the growth of a bacterial population described by Baranyi and Roberts (J. Baranyi and T. A. Roberts, Int. J. Food Microbiol. 23:277-294, 1994) was applied to model the lag period and exponential growth of Listeria monocytogenes under conditions of fluctuating temperature and water activity (a(w)) values. To model the duration of the lag phase, the dependence of the parameter h(0), which quantifies the amount of work done during the lag period, on the previous and current environmental conditions was determined experimentally. This parameter depended not only on the magnitude of the change between the previous and current environmental conditions but also on the current growth conditions. In an exponentially growing population, any change in the environment requiring a certain amount of work to adapt to the new conditions initiated a lag period that lasted until that work was finished. Observations for several scenarios in which exponential growth was halted by a sudden change in the temperature and/or a(w) were in good agreement with predictions. When a population already in a lag period was subjected to environmental fluctuations, the system was reset with a new lag phase. The work to be done during the new lag phase was estimated to be the workload due to the environmental change plus the unfinished workload from the uncompleted previous lag phase.

  9. Determining the Kinetic Parameters Characteristic of Microalgal Growth.

    ERIC Educational Resources Information Center

    Martinez Sancho, Maria Eugenie; And Others

    1991-01-01

    An activity in which students obtain a growth curve for algae, identify the exponential and linear growth phases, and calculate the parameters which characterize both phases is described. The procedure, a list of required materials, experimental conditions, analytical technique, and a discussion of the interpretations of individual results are…

  10. Determining the Kinetic Parameters Characteristic of Microalgal Growth.

    ERIC Educational Resources Information Center

    Martinez Sancho, Maria Eugenie; And Others

    1991-01-01

    An activity in which students obtain a growth curve for algae, identify the exponential and linear growth phases, and calculate the parameters which characterize both phases is described. The procedure, a list of required materials, experimental conditions, analytical technique, and a discussion of the interpretations of individual results are…

  11. Growth of Juniperus and Potentilla using Liquid Exponential and Controlled-release Fertilizers

    Treesearch

    R. Kasten Dumroese

    2003-01-01

    Juniperus scopularum Sarg. (Rocky Mountain juniper) and Potentilla fruticosa L. 'Gold Drop (gold drop potentilla) plants grown in containers had similar or better morphology, higher nitrogen concentrations and contents, and higher N-use efficiency when grown with liquid fertilizer applied at an exponentially increasing rate as...

  12. RpoS regulation of gene expression during exponential growth of Escherichia coli K12.

    PubMed

    Dong, Tao; Kirchhof, Mark G; Schellhorn, Herb E

    2008-03-01

    RpoS is a major regulator of genes required for adaptation to stationary phase in E. coli. However, the exponential phase expression of some genes is affected by rpoS mutation, suggesting RpoS may also have an important physiological role in growing cells. To test this hypothesis, we examined the regulatory role of RpoS in exponential phase using both genomic and biochemical approaches. Microarray expression data revealed that, in the rpoS mutant, the expression of 268 genes was attenuated while the expression of 24 genes was enhanced. Genes responsible for carbon source transport (the mal operon for maltose), protein folding (dnaK and mopAB), and iron acquisition (fepBD, entCBA, fecI, and exbBD) were positively controlled by RpoS. The importance of RpoS-mediated control of iron acquisition was confirmed by cellular metal analysis which revealed that the intracellular iron content of wild type cells was two-fold higher than in rpoS mutant cells. Surprisingly, many previously identified RpoS stationary-phase dependent genes were not controlled by RpoS in exponential phase and several genes were RpoS-regulated only in exponential phase, suggesting the involvement of other regulators. The expression of RpoS-dependent genes osmY, tnaA and malK was controlled by Crl, a transcriptional regulator that modulates RpoS activity. In summary, the identification of a group of exponential phase genes controlled by RpoS reveals a novel aspect of RpoS function.

  13. [Activation of the expression of the microcin C51 operon upon glucose starvation of cells at the exponential growth phase].

    PubMed

    Veselovskiĭ, A M; Metlitskaia, A Z; Lipasova, V A; Bass, I A; Khmel', I A

    2005-01-01

    It was earlier shown that expression of the microcin C51 operon in Escherichia coli cells is activated upon decelerated growth of cells during their transition to the stationary growth phase and depends on the sigmaS subunit of RNA polymerase. Using a single-copy construct containing the cloned promoter region of the microcin C51 operon and a promoterless lac operon (P(mcc)-lac), it was shown that the promoter of the microcin operon was also induced by stress caused by the transition of cells at the exponential growth phase into the medium without glucose as a sole carbon source. Activation of P(mcc)-lac expression upon severe glucose starvation occurred in rpoS+ and rpoS- strains. In cells carrying the rpoD800 mutation that renders the sigma70 subunit of RNA polymerase temperature-sensitive, an activation of P(mcc)-lac expression was observed at nonpermissive temperature, in contrast to its complete inhibition in E. coli cells at the phase of delayed growth. Other stressors-nitrogen starvation, high temperatures, osmotic shock, tetracycline and chloramphenicol-did not activate P(mcc)-lac expression in cells at the exponential growth phase.

  14. Antioxidant defence system during exponential and stationary growth phases of Phycomyces blakesleeanus: response to oxidative stress by hydrogen peroxide.

    PubMed

    de Castro, Cristina; del Valle, Pilar; Rúa, Javier; García-Armesto, María Rosario; Gutiérrez-Larraínzar, Marta; Busto, Félix; de Arriaga, Dolores

    2013-04-01

    An analysis of the components of the antioxidant defence system in exponential and stationary growth phases of filamentous fungus Phycomyces blakesleeanus and the response to the oxidative stress hydrogen peroxide were performed. There is a strong positive correlation between mycelial antioxidant capacity and the contents of gallic acid, d-erythroascorbate (d-EAA) or d-erythroascorbate monoglucoside (d-EAAG). These secondary metabolites are specifically synthesized by this fungus and reach maximal values in the stationary growth phase, suggesting that they can play some role in the antioxidant defence system of this fungus. There is a differential expression of the two more notable antioxidant activities, catalase (CAT) and superoxide dismutase (SOD), depending of the growth stage of P. blakesleeanus, CAT being expressed in the exponential and SOD in the stationary phase. Phycomyces blakesleeanus showed a high resistance to the oxidative stress caused by H2O2 (50 and 200 mM) which was higher in exponential phase. This higher resistance can be explained by the presence of CAT, glutathione peroxidase (GPx), and the probable contribution of glutathione-S-transferase (GST) and high levels of reduced form of glutathione (GSH). The transition to stationary phase was accompanied with a higher physiological oxidative damage illustrated by the higher protein carbonylation. In this growth stage the resistance of the fungus to the oxidative stress caused by H2O2 could be explained by the presence of SOD, GPx, and the probable contribution of GST as well as of secondary metabolites, mainly d-EAA and d-EAAG. These results highlight a specific response to oxidative stress by H2O2 depending on the growth phase of P. blakesleeanus.

  15. Kinetics of epidermal growth factor in saliva.

    PubMed

    Ino, M; Ushiro, K; Ino, C; Yamashita, T; Kumazawa, T

    1993-01-01

    Human epidermal growth factor (hEGF) stimulates the growth and differentiation of various tissues. We measured EGF levels in saliva (n = 128), urine (n = 94), and serum (n = 99) with radioimmunoassay in order to study the kinetics of hEGF in saliva of normal subjects and patients with oral disease. Salivary EGF levels showed an apparent diurnal rhythm related to the taking of meals. Urinary and serum EGF levels showed no obvious diurnal rhythm. There was no significant correlation between salivary and urinary EGF levels, nor between salivary and serum EGF levels. Salivary EGF levels were significantly lower in the younger group (0-9 years old, 3.06 +/- 0.32 ng/ml, p < 0.05) than in the elder group (10-79 years old, 4.78 +/- 3.5 ng/ml), but did not correlate with age in the elder group. There was no significant difference between males and females between EGF levels in saliva, urine or serum. The relative proportion of EGF levels in submandibular gland saliva, parotid saliva, and whole saliva was 1:6:4. The positive rate of immunohistochemical EGF showed no significant differences between submandibular gland, parotid gland, sublingual gland or minor salivary gland. Salivary EGF levels were markedly low in patients with oral inflammations (stomatitis aphthosa, or peritonsillar abscess) or head and neck tumors (squamous cell carcinoma of the tongue, oral cavity, hypopharynx or larynx). These findings may be significant pathophysiologically. Low salivary EGF levels may reduce the capacity of oral mucosal defense mechanisms to fight against injury by physiochemical agents.

  16. Domain growth kinetics in stratifying foam films

    NASA Astrophysics Data System (ADS)

    Zhang, Yiran; Sharma, Vivek

    2015-11-01

    Baking bread, brewing cappuccino, pouring beer, washing dishes, shaving, shampooing, whipping eggs and blowing bubbles all involve creation of aqueous foam films. Typical foam films consist of two surfactant-laden surfaces that are ~ 5 nm - 10 micron apart. Sandwiched between these interfacial layers is a fluid that drains primarily under the influence of viscous and interfacial forces, including disjoining pressure. Interestingly, a layered ordering of micelles inside the foam films (thickness <100 nm) leads to a stepwise thinning phenomena called stratification, which results in a thickness-dependent variation in reflected light intensity, visualized as progressively darker shades of gray. Thinner, darker domains spontaneously grow within foam films. We show that the domain expansion dynamics exhibit two distinct growth regimes with characteristic scaling laws. Though several studies have focused on the expansion dynamics of isolated domains that exhibit a diffusion-like scaling, the change in expansion kinetics observed after domains contact with the Plateau border has not been reported and analyzed before.

  17. On the origin of stretched exponential (Kohlrausch) relaxation kinetics in the room temperature luminescence decay of colloidal quantum dots

    NASA Astrophysics Data System (ADS)

    Bodunov, E. N.; Antonov, Yu. A.; Simões Gamboa, A. L.

    2017-03-01

    The non-exponential room temperature luminescence decay of colloidal quantum dots is often well described by a stretched exponential function. However, the physical meaning of the parameters of the function is not clear in the majority of cases reported in the literature. In this work, the room temperature stretched exponential luminescence decay of colloidal quantum dots is investigated theoretically in an attempt to identify the underlying physical mechanisms associated with the parameters of the function. Three classes of non-radiative transition processes between the excited and ground states of colloidal quantum dots are discussed: long-range resonance energy transfer, multiphonon relaxation, and contact quenching without diffusion. It is shown that multiphonon relaxation cannot explain a stretched exponential functional form of the luminescence decay while such dynamics of relaxation can be understood in terms of long-range resonance energy transfer to acceptors (molecules, quantum dots, or anharmonic molecular vibrations) in the environment of the quantum dots acting as energy-donors or by contact quenching by acceptors (surface traps or molecules) distributed statistically on the surface of the quantum dots. These non-radiative transition processes are assigned to different ranges of the stretching parameter β.

  18. On the origin of stretched exponential (Kohlrausch) relaxation kinetics in the room temperature luminescence decay of colloidal quantum dots.

    PubMed

    Bodunov, E N; Antonov, Yu A; Simões Gamboa, A L

    2017-03-21

    The non-exponential room temperature luminescence decay of colloidal quantum dots is often well described by a stretched exponential function. However, the physical meaning of the parameters of the function is not clear in the majority of cases reported in the literature. In this work, the room temperature stretched exponential luminescence decay of colloidal quantum dots is investigated theoretically in an attempt to identify the underlying physical mechanisms associated with the parameters of the function. Three classes of non-radiative transition processes between the excited and ground states of colloidal quantum dots are discussed: long-range resonance energy transfer, multiphonon relaxation, and contact quenching without diffusion. It is shown that multiphonon relaxation cannot explain a stretched exponential functional form of the luminescence decay while such dynamics of relaxation can be understood in terms of long-range resonance energy transfer to acceptors (molecules, quantum dots, or anharmonic molecular vibrations) in the environment of the quantum dots acting as energy-donors or by contact quenching by acceptors (surface traps or molecules) distributed statistically on the surface of the quantum dots. These non-radiative transition processes are assigned to different ranges of the stretching parameter β.

  19. The exponential growth of autophagy-related research: from the humble yeast to the Nobel Prize.

    PubMed

    Mizushima, Noboru

    2017-03-01

    Autophagy was discovered more than half a century ago. In the early days, autophagy was studied mostly through the use of biochemical methods and electron microscopy. In the 1990s, yeast genetics was introduced to this field and brought about an exponential expansion. The 2016 Nobel Prize in Physiology or Medicine was eventually awarded to the scientist who spearheaded the rapid development of the field: Yoshinori Ohsumi. Here, I describe in a Nutshell how the autophagy machinery was discovered and how the autophagy research field has grown following the breakthroughs from yeast studies.

  20. Multiple semiclassical states for coupled Schrödinger-Poisson equations with critical exponential growth

    NASA Astrophysics Data System (ADS)

    Liu, Zhisu; Guo, Shangjiang; Fang, Yanqin

    2015-04-01

    In this paper, we study the multiplicity of positive solutions for a class of Schrödinger-Poisson systems. Working in a variational setting, we prove the existence and multiplicity of positive solutions for the system when the Plank's constant is small and the potential satisfies some suitable conditions. We show that the number of positive solutions depends on the profile of the potential and that each solution concentrates around its corresponding global minimum point of the potential in the semi-classical limit. We also study the exponential decay.

  1. Large-scale epitaxial growth kinetics of graphene: A kinetic Monte Carlo study

    SciTech Connect

    Jiang, Huijun; Hou, Zhonghuai

    2015-08-28

    Epitaxial growth via chemical vapor deposition is considered to be the most promising way towards synthesizing large area graphene with high quality. However, it remains a big theoretical challenge to reveal growth kinetics with atomically energetic and large-scale spatial information included. Here, we propose a minimal kinetic Monte Carlo model to address such an issue on an active catalyst surface with graphene/substrate lattice mismatch, which facilitates us to perform large scale simulations of the growth kinetics over two dimensional surface with growth fronts of complex shapes. A geometry-determined large-scale growth mechanism is revealed, where the rate-dominating event is found to be C{sub 1}-attachment for concave growth-front segments and C{sub 5}-attachment for others. This growth mechanism leads to an interesting time-resolved growth behavior which is well consistent with that observed in a recent scanning tunneling microscopy experiment.

  2. Thermal transitions in dry and hydrated layer-by-layer assemblies exhibiting linear and exponential growth.

    PubMed

    Vidyasagar, Ajay; Sung, Choonghyun; Gamble, Randall; Lutkenhaus, Jodie L

    2012-07-24

    Layer-by-layer (LbL) assemblies are remarkable materials, known for their tunable mechanical, optical, and surface properties in nanoscale films. However, questions related to their thermal properties still remain unclear. Here, the thermal properties of a model LbL assembly of strong polyelectrolytes, poly(diallyldimethylammonium chloride)/poly(styrene sulfonate) (PDAC/PSS), assembled from solutions of varying ionic strength (0-1.25 M NaCl) are investigated using quartz crystal microbalance with dissipation (QCM-D) and modulated differential scanning calorimetry. Hydrated exponentially growing films (assembled from 0.25 to 1.25 M NaCl) exhibited distinct thermal transitions akin to a glass transition at 49-56 °C; linearly growing films (assembled without added salt) did not exhibit a transition in the temperature range investigated and were glassy. Results support the idea that exponentially growing films have greater segmental mobility than that of linearly growing films. On the other hand, all dry LbL assemblies investigated were glassy at room temperature and did not exhibit a T(g) up to 250 °C, independent of ionic strength. For the first time, thermal transitions such as T(g) values can be measured for LbL assemblies using QCM-D by monitoring fluctuations in changes in dissipation, allowing us to probe the film's internal structure as a function of film depth.

  3. Approximate models for the study of exponential changed quantities: Application on the plasma waves growth rate or damping

    NASA Astrophysics Data System (ADS)

    Xaplanteris, C. L.; Xaplanteris, L. C.; Leousis, D. P.

    2014-03-01

    Many physical phenomena that concern the research these days are basically complicated because of being multi-parametric. Thus, their study and understanding meets with big if not unsolved obstacles. Such complicated and multi-parametric is the plasmatic state as well, where the plasma and the physical quantities that appear along with it have chaotic behavior. Many of those physical quantities change exponentially and at most times they are stabilized by presenting wavy behavior. Mostly in the transitive state rather than the steady state, the exponentially changing quantities (Growth, Damping etc) depend on each other in most cases. Thus, it is difficult to distinguish the cause from the result. The present paper attempts to help this difficult study and understanding by proposing mathematical exponential models that could relate with the study and understanding of the plasmatic wavy instability behavior. Such instabilities are already detected, understood and presented in previous publications of our laboratory. In other words, our new contribution is the study of the already known plasmatic quantities by using mathematical models (modeling and simulation). These methods are both useful and applicable in the chaotic theory. In addition, our ambition is to also conduct a list of models useful for the study of chaotic problems, such as those that appear into the plasma, starting with this paper's examples.

  4. Approximate models for the study of exponential changed quantities: Application on the plasma waves growth rate or damping

    SciTech Connect

    Xaplanteris, C. L.; Xaplanteris, L. C.; Leousis, D. P.

    2014-03-15

    Many physical phenomena that concern the research these days are basically complicated because of being multi-parametric. Thus, their study and understanding meets with big if not unsolved obstacles. Such complicated and multi-parametric is the plasmatic state as well, where the plasma and the physical quantities that appear along with it have chaotic behavior. Many of those physical quantities change exponentially and at most times they are stabilized by presenting wavy behavior. Mostly in the transitive state rather than the steady state, the exponentially changing quantities (Growth, Damping etc) depend on each other in most cases. Thus, it is difficult to distinguish the cause from the result. The present paper attempts to help this difficult study and understanding by proposing mathematical exponential models that could relate with the study and understanding of the plasmatic wavy instability behavior. Such instabilities are already detected, understood and presented in previous publications of our laboratory. In other words, our new contribution is the study of the already known plasmatic quantities by using mathematical models (modeling and simulation). These methods are both useful and applicable in the chaotic theory. In addition, our ambition is to also conduct a list of models useful for the study of chaotic problems, such as those that appear into the plasma, starting with this paper's examples.

  5. Modeling growth kinetics and statistical distribution of oligometastases.

    PubMed

    Withers, H Rodney; Lee, Steve P

    2006-04-01

    The kinetics of development of micrometastases, and especially of small numbers of metastases (oligometastases), was explored by using simple assumptions to develop concepts that may be useful for framing future research. The conclusions depend on the assumptions and hence must be considered speculative. It is assumed that beyond a threshold size for initiation of metastatic spread, which varies widely from tumor to tumor, the rate at which a primary tumor sheds new metastases increases exponentially, in parallel with its exponential growth. This increasing rate of release of new metastatic clonogens from the primary tumor is accompanied by a similar exponential growth of each of the micrometastases newly established at a secondary site. This creates a log-log linear relationship between the volume distribution of metastases and number of metastases, there being one largest metastasis followed by an exponentially expanding number of logarithmically smaller micrometastases. For example, if the micrometastases and the primary tumor grew at the same rate for 6 doublings after initiation of the first metastasis, then the primary tumor would have increased its volume by a factor of 64 (2(6)) and would be shedding metastatic clonogens at 64 times the initial rate. The first metastasis would undergo 6 doublings and contain 64 cells; the succeeding 2 metastases, released as the primary doubled in volume, would undergo 5 doublings and each would contain 32 cells; and so forth down to the 64 most recently developed single-cell metastases. However, the growth rate of metastases is expected to be faster than that of the primary tumor so that the rate of increase in volume of the micrometastases would be faster than the rate of increase in their numbers (through release of new metastases from the primary). Thus, although the log-log linear relationship is maintained, the slope of the volume frequency curve is changed; if the micrometastases grew 5 times faster than the primary

  6. Growth kinetics of Listeria monocytogenes and spoilage microorganisms in fresh-cut cantaloupe.

    PubMed

    Fang, Ting; Liu, Yanhong; Huang, Lihan

    2013-05-01

    The main objective of this study was to investigate the growth kinetics of Listeria monocytogenes and background microorganisms in fresh-cut cantaloupe. Fresh-cut cantaloupe samples, inoculated with three main serotypes (1/2a, 1/2b, and 4b) of L. monocytogenes, were incubated at different temperatures, ranging from 4 to 43 °C, to develop kinetic growth models. During storage studies, the population of both background microorganisms and L. monocytogenes began to increase almost immediately, with little or no lag phase for most growth curves. All growth curves, except for two growth curves of L. monocytogenes 1/2a at 4 °C, developed to full curves (containing exponential and stationary phases), and can be described by a 3-parameter logistic model. There was no significant difference (P = 0.28) in the growth behaviors and the specific growth rates of three different serotypes of L. monocytogenes inoculated to fresh-cut cantaloupe. The effect of temperature on the growth of L. monocytogenes and spoilage microorganisms was evaluated using three secondary models. For L. monocytogenes, the minimum and maximum growth temperatures were estimated by both the Ratkowsky square-root and Cardinal parameter models, and the optimum temperature and the optimum specific growth rate by the Cardinal parameter model. An Arrhenius-type model provided more accurate estimation of the specific growth rate of L. monocytogenes at temperatures <4 °C. The kinetic models developed in this study can be used by regulatory agencies and food processors for conducting risk assessment of L. monocytogenes in fresh-cut cantaloupe, and for estimating the shelf-life of fresh-cut products.

  7. Growth Kinetics of Suspended Microbial Cells: From Single-Substrate-Controlled Growth to Mixed-Substrate Kinetics

    PubMed Central

    Kovárová-Kovar, Karin; Egli, Thomas

    1998-01-01

    Growth kinetics, i.e., the relationship between specific growth rate and the concentration of a substrate, is one of the basic tools in microbiology. However, despite more than half a century of research, many fundamental questions about the validity and application of growth kinetics as observed in the laboratory to environmental growth conditions are still unanswered. For pure cultures growing with single substrates, enormous inconsistencies exist in the growth kinetic data reported. The low quality of experimental data has so far hampered the comparison and validation of the different growth models proposed, and only recently have data collected from nutrient-controlled chemostat cultures allowed us to compare different kinetic models on a statistical basis. The problems are mainly due to (i) the analytical difficulty in measuring substrates at growth-controlling concentrations and (ii) the fact that during a kinetic experiment, particularly in batch systems, microorganisms alter their kinetic properties because of adaptation to the changing environment. For example, for Escherichia coli growing with glucose, a physiological long-term adaptation results in a change in KS for glucose from some 5 mg liter−1 to ca. 30 μg liter−1. The data suggest that a dilemma exists, namely, that either “intrinsic” KS (under substrate-controlled conditions in chemostat culture) or μmax (under substrate-excess conditions in batch culture) can be measured but both cannot be determined at the same time. The above-described conventional growth kinetics derived from single-substrate-controlled laboratory experiments have invariably been used for describing both growth and substrate utilization in ecosystems. However, in nature, microbial cells are exposed to a wide spectrum of potential substrates, many of which they utilize simultaneously (in particular carbon sources). The kinetic data available to date for growth of pure cultures in carbon-controlled continuous culture

  8. How well can the exponential-growth coalescent approximate constant-rate birth-death population dynamics?

    PubMed

    Stadler, Tanja; Vaughan, Timothy G; Gavryushkin, Alex; Guindon, Stephane; Kühnert, Denise; Leventhal, Gabriel E; Drummond, Alexei J

    2015-05-07

    One of the central objectives in the field of phylodynamics is the quantification of population dynamic processes using genetic sequence data or in some cases phenotypic data. Phylodynamics has been successfully applied to many different processes, such as the spread of infectious diseases, within-host evolution of a pathogen, macroevolution and even language evolution. Phylodynamic analysis requires a probability distribution on phylogenetic trees spanned by the genetic data. Because such a probability distribution is not available for many common stochastic population dynamic processes, coalescent-based approximations assuming deterministic population size changes are widely employed. Key to many population dynamic models, in particular epidemiological models, is a period of exponential population growth during the initial phase. Here, we show that the coalescent does not well approximate stochastic exponential population growth, which is typically modelled by a birth-death process. We demonstrate that introducing demographic stochasticity into the population size function of the coalescent improves the approximation for values of R0 close to 1, but substantial differences remain for large R0. In addition, the computational advantage of using an approximation over exact models vanishes when introducing such demographic stochasticity. These results highlight that we need to increase efforts to develop phylodynamic tools that correctly account for the stochasticity of population dynamic models for inference.

  9. Early sub-exponential epidemic growth: Simple models, nonlinear incidence rates, and additional mechanisms. Reply to comments on "Mathematical models to characterize early epidemic growth: A review"

    NASA Astrophysics Data System (ADS)

    Chowell, Gerardo; Sattenspiel, Lisa; Bansal, Shweta; Viboud, Cécile

    2016-09-01

    We would like to thank all of the commentators for their insightful and positive reactions to our review paper [1]. Their comments touch on both theoretical and applied aspects of sub-exponential growth dynamics and the mechanisms that generate them, and have greatly enhanced and broadened the discussion. Here we aim to further discuss key points raised by Brauer [2], Danon and Brooks-Pollock [3], Allen [4], Merler [5], Champredon and Earn [6], and House [7].

  10. Exponentiating Higgs

    NASA Astrophysics Data System (ADS)

    Matone, Marco

    2017-09-01

    We consider two related formulations for mass generation in the U (1) Higgs-Kibble model and in the Standard Model (SM). In the first formulation there are no scalar self-interactions and, in the case of the SM, the formulation is related to the normal subgroup of G = SU (3) × SU (2) × U (1), generated by (e 2 πi / 3 I , - I ,e πi / 3) ∈ G, that acts trivially on all the fields of the SM. The key step of our construction is to relax the non-negative definiteness condition for the Higgs field due to the polar decomposition. This solves several stringent problems, that we will shortly review, both at the non-perturbative and perturbative level. We will show that the usual polar decomposition of the complex scalar doublet Φ should be done with U ∈ SU (2) /Z2 ≃ SO (3), where Z2 is the group generated by -I, and with the Higgs field ϕ ∈ R rather than ϕ ∈R≥0. As a byproduct, the investigation shows how Elitzur theorem may be avoided in the usual formulation of the SM. It follows that the simplest lagrangian density for the Higgs mechanism has the standard kinetic term in addition to the mass term, with the right sign, and to a linear term in ϕ. The other model concerns the scalar theories with normal ordered exponential interactions. The remarkable property of these theories is that for D > 2 the purely scalar sector corresponds to a free theory.

  11. Kinetics of growth and caffeine demethylase production of Pseudomonas sp. in bioreactor.

    PubMed

    Gummadi, Sathyanarayana N; Santhosh, Devarai

    2010-09-01

    The effect of various initial caffeine concentrations on growth and caffeine demethylase production by Pseudomonas sp. was studied in bioreactor. At initial concentration of 6.5 g l(-1) caffeine, Pseudomonas sp. showed a maximum specific growth rate of 0.2 h(-1), maximum degradation rate of 1.1 g h(-1), and caffeine demethylase activity of 18,762 U g CDW(-1) (CDW: cell dry weight). Caffeine degradation rate was 25 times higher in bioreactor than in shake flask. For the first time, we show highest degradation of 75 g caffeine (initial concentration 20 g l(-1)) in 120 h, suggesting that the tested strain has potential for successful bioprocess for caffeine degradation. Growth kinetics showed substrate inhibition phenomenon. Various substrate inhibition models were fitted to the kinetic data, amongst which the double-exponential (R(2) = 0.94), Luong (R(2) = 0.92), and Yano and Koga 2 (R(2) = 0.94) models were found to be the best. The Luedeking-Piret model showed that caffeine demethylase production kinetics was growth related. This is the first report on production of high levels of caffeine demethylase in batch bioreactor with faster degradation rate and high tolerance to caffeine, hence clearly suggesting that Pseudomonas sp. used in this study is a potential biocatalyst for industrial decaffeination.

  12. Exponential growth and selection in self-replicating materials from DNA origami rafts

    NASA Astrophysics Data System (ADS)

    He, Xiaojin; Sha, Ruojie; Zhuo, Rebecca; Mi, Yongli; Chaikin, Paul M.; Seeman, Nadrian C.

    2017-10-01

    Self-replication and evolution under selective pressure are inherent phenomena in life, and but few artificial systems exhibit these phenomena. We have designed a system of DNA origami rafts that exponentially replicates a seed pattern, doubling the copies in each diurnal-like cycle of temperature and ultraviolet illumination, producing more than 7 million copies in 24 cycles. We demonstrate environmental selection in growing populations by incorporating pH-sensitive binding in two subpopulations. In one species, pH-sensitive triplex DNA bonds enable parent-daughter templating, while in the second species, triplex binding inhibits the formation of duplex DNA templating. At pH 5.3, the replication rate of species I is ~1.3-1.4 times faster than that of species II. At pH 7.8, the replication rates are reversed. When mixed together in the same vial, the progeny of species I replicate preferentially at pH 7.8 similarly at pH 5.3, the progeny of species II take over the system. This addressable selectivity should be adaptable to the selection and evolution of multi-component self-replicating materials in the nanoscopic-to-microscopic size range.

  13. Progress of nanocrystalline growth kinetics based on oriented attachment

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Huang, Feng; Lin, Zhang

    2010-01-01

    The crystal growth mechanism, kinetics, and microstructure development play a fundamental role in tailoring the materials with controllable sizes and morphologies. The classical crystal growth kinetics-Ostwald ripening (OR) theory is usually used to explain the diffusion-controlled crystal growth process, in which larger particles grow at the expense of smaller particles. In nanoscale systems, another significant mechanism named ``oriented attachment (OA)'' was found, where nanoparticles with common crystallographic orientations directly combine together to form larger ones. Comparing with the classical atom/molecular-mediated crystallization pathway, the OA mechanism shows its specific characteristics and roles in the process of nanocrystal growth. In recent years, the OA mechanism has been widely reported in preparing low-dimension nanostructural materials and reveals remarkable effects on directing and mediating the self-assembly of nanocrystals. Currently, the interests are more focused on the investigation of its role rather than the comprehensive insight of the mechanism and kinetics. The inner complicacy of crystal growth and the occurrence of coexisting mechanisms lead to the difficulty and lack of understanding this growth process by the OA mechanism. In this context, we review the progress of the OA mechanism and its impact on materials science, and especially highlight the OA-based growth kinetics aiming to achieve a further understanding of this crystal growth route. To explore the OA-limited growth, the influence of the OR mechanism needs to be eliminated. The introduction of strong surface adsorption was reported as the effective solution to hinder OR from occurring and facilitate the exclusive OA growth stage. A detailed survey of the nanocrystal growth kinetics under the effect of surface adsorption was presented and summarized. Moreover, the development of OA kinetic models was systematically generalized, in which the ``molecular-like'' kinetic

  14. A new mechanistic growth model for simultaneous determination of lag phase duration and exponential growth rate and a new Belehdradek-type model for evaluating the effect of temperature on growth rate

    USDA-ARS?s Scientific Manuscript database

    A new mechanistic growth model was developed to describe microbial growth under isothermal conditions. The new mathematical model was derived from the basic observation of bacterial growth that may include lag, exponential, and stationary phases. With this model, the lag phase duration and exponen...

  15. Understanding Linear and Exponential Growth: Searching for the Roots in 6- To 9-Year-Olds

    ERIC Educational Resources Information Center

    Ebersbach, Mirjam; Van Dooren, Wim; Van den Noortgate, Wim; Resing, Wilma C. M.

    2008-01-01

    Previous studies have suggested that children as young as 9 years old have developed an understanding of non-linear growth processes prior to formal education. The present experiment aimed at investigating this competency in even younger samples (i.e., in kindergartners, first, and third graders, ages 6, 7 and 9, respectively). Children (N=90)…

  16. Understanding Linear and Exponential Growth: Searching for the Roots in 6- To 9-Year-Olds

    ERIC Educational Resources Information Center

    Ebersbach, Mirjam; Van Dooren, Wim; Van den Noortgate, Wim; Resing, Wilma C. M.

    2008-01-01

    Previous studies have suggested that children as young as 9 years old have developed an understanding of non-linear growth processes prior to formal education. The present experiment aimed at investigating this competency in even younger samples (i.e., in kindergartners, first, and third graders, ages 6, 7 and 9, respectively). Children (N=90)…

  17. Crystal growth kinetics of the two-step model

    NASA Astrophysics Data System (ADS)

    Tai, Clifford Y.; Lin, Chiu-Hsiung

    1987-03-01

    The single crystal technique was used to measure the growth rate of the potassium alum (111) face and the magnesium sulfate (110) face. The two-step model was found appropriate to describe the growth kinetics with the surface integration order of two for potassium alum crystal and of one for magnesium sulfate crystal. The individual rate constants, Kd and Kr, were determined accordingly.

  18. Growth of Listeria monocytogenes in Salmon Roe - a kinetic analysis

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to investigate the growth kinetics of Listeria monocytogenes in unsalted and salted (3%) salmon roe. Growth curves, developed using inoculated samples incubated at constant temperatures between 5 and 30 degrees C, were analyzed by curve-fitting to the Huang and Baran...

  19. Kinetics of downflow anaerobic attached growth reactors

    SciTech Connect

    Kennedy, K.J.; Hamoda, M.F.; Droste, R.L.

    1987-04-01

    This study examines basic reactor operating parameters to be used in DSF reactor design with an optimum surface area to volume ratio, determines kinetic constants, and predicts reactor performance. It includes a comparison of two different substrates, a carbohydrate and a fatty acid. The model gave a good fit to the experimental data obtained and showed that the DSF reactor can successfully treat different wastewaters of various organic strengths at relatively high organic loading rates and short HRTs. (Refs. 27).

  20. The Growth Kinetics of Salmonella Enteritidis in Raw Ground Beef.

    PubMed

    Sabike, Islam I; Fujikawa, Hiroshi; Edris, Abobakr M

    2015-01-01

    The growth kinetics of Salmonella Enteritidis in raw beef has been little studied so far. Thus, this study aimed to clarify the growth kinetics of the pathogen in ground beef using a growth model. When Salmonella cells inoculated at various initial doses into ground beef were incubated at a given temperature (24℃), the maximum population (Nmax) of the microbe at the stationary phase varied with the doses. This relationship was expressed with a polynomialequation for Nmax using the initial dose. The combination of the growth model and the polynomial equation successfully predicted Salmonella growth at a given initial dose. When Salmonella cells inoculated in ground beef were incubated at various constant temperatures, the growth curves of the pathogen and natural microflora (NM) were well described with the growth model. The rate constant of growth and the Nmax values for Salmonella and NM were then analyzed kinetically. From these results, growth curves of Salmonella and NM in ground beef stored at dynamic temperatures were successfully predicted. Competition between Salmonella and NM in ground beef was also found during the storage. This study could give usable information on the growth of Salmonella and NM in ground beef at various temperatures.

  1. The Oenococcus oeni clpX Homologue Is a Heat Shock Gene Preferentially Expressed in Exponential Growth Phase

    PubMed Central

    Jobin, Michel-Philippe; Garmyn, Dominique; Diviès, Charles; Guzzo, Jean

    1999-01-01

    Using degenerated primers from conserved regions of previously studied clpX gene products, we cloned the clpX gene of the malolactic bacterium Oenococcus oeni. The clpX gene was sequenced, and the deduced protein of 413 amino acids (predicted molecular mass of 45,650 Da) was highly similar to previously analyzed clpX gene products from other organisms. An open reading frame located upstream of the clpX gene was identified as the tig gene by similarity of its predicted product to other bacterial trigger factors. ClpX was purified by using a maltose binding protein fusion system and was shown to possess an ATPase activity. Northern analyses indicated the presence of two independent 1.6-kb monocistronic clpX and tig mRNAs and also showed an increase in clpX mRNA amount after a temperature shift from 30 to 42°C. The clpX transcript is abundant in the early exponential growth phase and progressively declines to undetectable levels in the stationary phase. Thus, unlike hsp18, the gene encoding one of the major small heat shock proteins of Oenococcus oeni, clpX expression is related to the exponential growth phase and requires de novo protein synthesis. Primer extension analysis identified the 5′ end of clpX mRNA which is located 408 nucleotides upstream of a putative AUA start codon. The putative transcription start site allowed identification of a predicted promoter sequence with a high similarity to the consensus sequence found in the housekeeping gene promoter of gram-positive bacteria as well as Escherichia coli. PMID:10542163

  2. Kinetic Anisotropy and Dendritic Growth in Electrochemical Deposition

    NASA Astrophysics Data System (ADS)

    Barkey, D.; Oberholtzer, F.; Wu, Q.

    1995-10-01

    It is shown that kinetic anisotropy stabilizes dendritic growth in electrochemical deposition of copper, and that in its absence the growth tips are unstable to splitting. The degree of anisotropy in the interfacial dynamics, which may be controlled through the chemistry of the electrolyte solution, was determined by the measurement of open-circuit potentials of single-crystal electrodes under nonequilibrium conditions. The experiments provide direct evidence that microscopic interfacial anisotropy in depositional growth stabilizes the dendritic morphology.

  3. Expression of Escherichia coli cspA during early exponential growth at 37 °C.

    PubMed

    Brandi, Anna; Pon, Cynthia L

    2012-01-25

    CspA is a small (7.4 kDa) nucleic acid binding protein of Escherichia coli whose expression is stimulated after cold-stress but whose level is also extraordinarily high during the early phase of growth of non-stressed cells. In this study the relationship existing between cspA transcription/translation on the one hand and the acquisition of critical mass for cell division and chromosome replication, on the other, in stationary phase cells subjected to a nutritional up-shift at 37 °C has been analyzed. Measurements of optical density and viable counts, pulse-chase, real-time PCR and immunodetection experiments, as well as cytofluorimetric and DNA duplication analyses show that synthesis of new CspA molecules at 37 °C is not only restricted to the lag phase ensuing the nutritional up-shift, but continues also during the first stages of logarithmic growth, when cells have already started dividing; although the early synthesized molecules are diluted by the following cell divisions and new synthesis occurs at an extremely low level, cspA mRNA and CspA continue to be present. A possible explanation for the apparent paradox that cspA is activated not only following cold stress, but also under non-stress and other stress conditions which entail a down-regulation of bulk gene expression and protein synthesis is presented.

  4. On the Nonequilibrium Interface Kinetics of Rapid Coupled Eutectic Growth

    NASA Astrophysics Data System (ADS)

    Dong, H.; Chen, Y. Z.; Shan, G. B.; Zhang, Z. R.; Liu, F.

    2017-08-01

    Nonequilibrium interface kinetics (NEIK) is expected to play an important role in coupled growth of eutectic alloys, when solidification velocity is high and intermetallic compound or topologically complex phases form in the crystallized product. In order to quantitatively evaluate the effect of NEIK on the rapid coupled eutectic growth, in this work, two nonequilibrium interface kinetic effects, i.e., atom attachment and solute trapping at the solid-liquid interface, were incorporated into the analyses of the coupled eutectic growth under the rapid solidification condition. First, a coupled growth model incorporating the preceding two nonequilibrium kinetic effects was derived. On this basis, an expression of kinetic undercooling (∆ T k), which is used to characterize the NEIK, was defined. The calculations based on the as-derived couple growth model show good agreement with the reported experimental results achieved in rapidly solidified eutectic Al-Sm alloys consisting of a solid solution phase ( α-Al) and an intermetallic compound phase (Al11Sm3). In terms of the definition of ∆ T k defined in this work, the role of NEIK in the coupled growth of the Al-Sm eutectic system was analyzed. The results show that with increasing the coupled growth velocity, ∆ T k increases continuously, and its ratio to the total undercooling reaches 0.32 at the maximum growth velocity for coupled eutectic growth. Parametric analyses on two key alloy parameters that influence ∆ T k, i.e., interface kinetic parameter ( μ i ) and solute distribution coefficient ( k e ), indicate that both μ i and k e influence the NEIK significantly and the decrease of either these two parameters enhances the NEIK effect.

  5. Division Cycle of Myxococcus xanthus III. Kinetics of Cell Growth and Protein Synthesis

    PubMed Central

    Zusman, David; Gottlieb, Peter; Rosenberg, Eugene

    1971-01-01

    The kinetics of cell growth and protein synthesis during the division cycle of Myxococcus xanthus was determined. The distribution of cell size for both septated and nonseptated bacteria was obtained by direct measurement of the lengths of 8,000 cells. The Collins-Richmond equation was modified to consider bacterial growth in two phases: growth and division. From the derived equation, the growth rate of individual cells was computed as a function of size. Nondividing cells (growth phase) comprised 91% of the population and took up 87% of the time of the division cycle. The absolute and specific growth rates of nondividing cells were observed to increase continually throughout the growth phase; the growth rate of dividing cells could not be determined accurately by this technique because of changes in the geometry of cells between the time of septation and physical separation. The rate of protein synthesis during the division cycle was measured by pulselabeling an exponential-phase culture with radio-active valine or arginine and then preparing the cells for quantitative autoradiography. By measuring the size of individual cells as well as the number of grains, the rate of protein synthesis as a function of cell size was obtained. Nondividing cells showed an increase in both the absolute and specific rates of protein synthesis throughout the growth phase; the specific rate of protein synthesis for dividing cells was low when compared to growthphase cells. Cell growth and protein synthesis are compared to the previously reported kinetics of deoxyribonucleic acid and ribonucleic acid synthesis during the division cycle. PMID:4926683

  6. Kinetics-driven anisotropic growth of pentacene thin films

    NASA Astrophysics Data System (ADS)

    Al-Mahboob, Abdullah; Sadowski, Jerzy T.; Fujikawa, Yasunori; Nakajima, Kazuo; Sakurai, Toshio

    2008-01-01

    The growth of nonepitaxial as well as epitaxial structures of (001)-oriented pentacene ( C22H14 , Pn) thin films on silicon surfaces has been extensively studied in order to elucidate the intrinsic thin-film growth mechanism. The kinetically driven growth processes in pentacene films were found to be modified significantly by the anisotropy of the crystal structure. In situ real-time low-energy electron microscopy studies of diffusion-limited growth of Pn islands on Si(111)-7×7 and α√3 -Bi-Si(111) surfaces reveal a definite anisotropy in their shapes. Although this anisotropy is associated with organic film crystal structure, it cannot be predicted directly from the equilibrium crystal shape. It has been found that under kinetic growth conditions the Pn islands are always elongated along the b axis of the in-plane unit cell, even though the step along the a axis has the lowest energy, regardless of crystalline polymorph or epitaxial relation, indicating that Pn thin-film growth has an intrinsic kinetic preference along the b -axis direction. Utilizing this kinetic preference and constraining the direction of available flux on inert surfaces during Pn deposition enabled us to control the crystal orientation of Pn domains.

  7. Multiple substrate growth kinetics of Leptothrix discophora SP-6.

    PubMed

    Yurt, Nurdan; Sears, John; Lewandowski, Zbigniew

    2002-01-01

    The growth parameters of Leptothrix discophora SP-6 were quantified on the basis of the steady-state concentrations and utilization rates of pyruvate, dissolved oxygen, and concentration of microorganisms in a chemostat operated at 25 degrees C, pH 7.2, and an agitation rate of 350 rpm. The results showed that the microbial growth was limited by both pyruvate and dissolved oxygen. A combined growth kinetics model using Monod growth kinetics for pyruvate and Tessier growth kinetics for oxygen showed the best correlation with the experimental data when analyzed using an interactive multiple substrate model. The growth kinetics parameters and the respective confidence limits, estimated using the Monte Carlo simulation, were mu(max) = 0.576 +/- 0.021 h(-1), K(sMp) = 38.81 +/- 4.24 mg L(-1), K(sTo) = 0.39 +/- 0.04 mg L(-1), Y(X/p) = 0.150 (mg microorganism mg(-1) pyruvate), Y(X/o) = 1.24 (mg microorganism mg(-1) oxygen), the maintenance factors for pyruvate and oxygen were m(p) = 0.129 (mg pyruvate consumed mg(-1) microorganism h(-1)) and m(o) = 0.076 (mg oxygen consumed mg(-1) microorganism h(-1)), respectively.

  8. Janus particle rotator-to-lamellar nucleation and growth kinetics

    NASA Astrophysics Data System (ADS)

    Beltran-Villegas, Daniel J.; Zhang, Yulei; Larson, Ronald G.

    2017-03-01

    We determine the free energy barrier, critical nucleus size, and kinetics of a Janus particle solid-solid transition by nucleation and growth of lamellar clusters within a metastable rotator phase. The transition involves negligible change in particle position and phase volume and entails only particle orientational ordering. Fast kinetics enable the analysis of unbiased crystal growth and shrinkage trajectories from Brownian dynamic simulations. By fitting simulation trajectories to a diffusion-migration equation, the nucleus free energy and growth coefficient as a function of nucleus size are extracted. Observed transition times are on the order of hundreds of characteristic particle rotation times. Lamellar crystal nuclei are oblate rather than spherical, but otherwise classical nucleation theory applies, with the bulk free energy contribution following closely the Maier-Saupe theory for purely orientational transitions and the interfacial energy contribution following trends from 3-dimensional Ising spin kinetics.

  9. Growth kinetic models of five species of Lactobacilli and lactose consumption in batch submerged culture.

    PubMed

    Rezvani, Fazlollah; Ardestani, Fatemeh; Najafpour, Ghasem

    Kinetic behaviors of five Lactobacillus strains were investigated with Contois and Exponential models. Awareness of kinetic behavior of microorganisms is essential for their industrial process design and scale up. The consistency of experimental data was evaluated using Excel software. L. bulgaricus was introduced as the most efficient strain with the highest biomass and lactic acid yield of 0.119 and 0.602gg(-1) consumed lactose, respectively. The biomass and carbohydrate yield of L. fermentum and L. lactis were slightly less and close to L. bulgaricus. Biomass and lactic acid production yield of 0.117 and 0.358 for L. fermentum and 0.114 and 0.437gg(-1) for L.actobacillus lactis were obtained. L. casei and L. delbrueckii had the less biomass yield, nearly 11.8 and 22.7% less than L. bulgaricus, respectively. L. bulgaricus (R(2)=0.9500 and 0.9156) and L. casei (R(2)=0.9552 and 0.8401) showed acceptable consistency with both models. The investigation revealed that the above mentioned models are not suitable to describe the kinetic behavior of L. fermentum (R(2)=0.9367 and 0.6991), L. delbrueckii (R(2)=0.9493 and 0.7724) and L. lactis (R(2)=0.8730 and 0.6451). Contois rate equation is a suitable model to describe the kinetic of Lactobacilli. Specific cell growth rate for L. bulgaricus, L. casei, L. fermentum, L. delbrueckii and L. lactis with Contois model in order 3.2, 3.9, 67.6, 10.4 and 9.8-fold of Exponential model.

  10. The lack of synchronization between iron uptake and cell growth leads to iron overload in Saccharomyces cerevisiae during post-exponential growth modes.

    PubMed

    Park, Jinkyu; McCormick, Sean P; Chakrabarti, Mrinmoy; Lindahl, Paul A

    2013-12-31

    Fermenting cells growing exponentially on rich (YPAD) medium underwent a transition to a slow-growing state as glucose levels declined and their metabolism shifted to respiration. During exponential growth, Fe import and cell-growth rates were matched, affording an approximately invariant cellular Fe concentration. During the transition period, the high-affinity Fe import rate declined slower than the cell-growth rate declined, causing Fe to accumulate, initially as Fe(III) oxyhydroxide nanoparticles but eventually as mitochondrial and vacuolar Fe. Once the cells had reached slow-growth mode, Fe import and cell-growth rates were again matched, and the cellular Fe concentration was again approximately invariant. Fermenting cells grown on minimal medium (MM) grew more slowly during the exponential phase and underwent a transition to a true stationary state as glucose levels declined. The Fe concentration of MM cells that just entered the stationary state was similar to that of YPAD cells, but MM cells continued to accumulate Fe in the stationary state. Fe initially accumulated as nanoparticles and high-spin Fe(II) species, but vacuolar Fe(III) also eventually accumulated. Surprisingly, Fe-packed 5-day-old MM cells suffered no more reactive oxygen species (ROS) damage than younger cells, suggesting that the Fe concentration alone does not accurately predict the extent of ROS damage. The mode and rate of growth at the time of harvesting dramatically affected cellular Fe content. A mathematical model of Fe metabolism in a growing cell was developed. The model included the import of Fe via a regulated high-affinity pathway and an unregulated low-affinity pathway. The import of Fe from the cytosol to vacuoles and mitochondria and nanoparticle formation were also included. The model captured essential trafficking behavior, demonstrating that cells regulate Fe import in accordance with their overall growth rate and that they misregulate Fe import when nanoparticles

  11. Growth and Nitrogen Uptake Kinetics in Cultured Prorocentrum donghaiense

    PubMed Central

    Hu, Zhangxi; Duan, Shunshan; Xu, Ning; Mulholland, Margaret R.

    2014-01-01

    We compared growth kinetics of Prorocentrum donghaiense cultures on different nitrogen (N) compounds including nitrate (NO3−), ammonium (NH4+), urea, glutamic acid (glu), dialanine (diala) and cyanate. P. donghaiense exhibited standard Monod-type growth kinetics over a range of N concentraions (0.5–500 μmol N L−1 for NO3− and NH4+, 0.5–50 μmol N L−1 for urea, 0.5–100 μmol N L−1 for glu and cyanate, and 0.5–200 μmol N L−1 for diala) for all of the N compounds tested. Cultures grown on glu and urea had the highest maximum growth rates (μm, 1.51±0.06 d−1 and 1.50±0.05 d−1, respectively). However, cultures grown on cyanate, NO3−, and NH4+ had lower half saturation constants (Kμ, 0.28–0.51 μmol N L−1). N uptake kinetics were measured in NO3−-deplete and -replete batch cultures of P. donghaiense. In NO3−-deplete batch cultures, P. donghaiense exhibited Michaelis-Menten type uptake kinetics for NO3−, NH4+, urea and algal amino acids; uptake was saturated at or below 50 μmol N L−1. In NO3−-replete batch cultures, NH4+, urea, and algal amino acid uptake kinetics were similar to those measured in NO3−-deplete batch cultures. Together, our results demonstrate that P. donghaiense can grow well on a variety of N sources, and exhibits similar uptake kinetics under both nutrient replete and deplete conditions. This may be an important factor facilitating their growth during bloom initiation and development in N-enriched estuaries where many algae compete for bioavailable N and the nutrient environment changes as a result of algal growth. PMID:24710151

  12. An autocatalytic kinetic model for describing microbial growth during fermentation.

    PubMed

    Ibarz, Albert; Augusto, Pedro E D

    2015-01-01

    The mathematical modelling of the behaviour of microbial growth is widely desired in order to control, predict and design food and bioproduct processing, stability and safety. This work develops and proposes a new semi-empirical mathematical model, based on an autocatalytic kinetic, to describe the microbial growth through its biomass concentration. The proposed model was successfully validated using 15 microbial growth patterns, covering the three most important types of microorganisms in food and biotechnological processing (bacteria, yeasts and moulds). Its main advantages and limitations are discussed, as well as the interpretation of its parameters. It is shown that the new model can be used to describe the behaviour of microbial growth.

  13. Thermodynamic and kinetic control of the lateral Si wire growth

    SciTech Connect

    Dedyulin, Sergey N. Goncharova, Lyudmila V.

    2014-03-24

    Reproducible lateral Si wire growth has been realized on the Si (100) surface. In this paper, we present experimental evidence showing the unique role that carbon plays in initiating lateral growth of Si wires on a Si (100) substrate. Once initiated in the presence of ≈5 ML of C, lateral growth can be achieved in the range of temperatures, T = 450–650 °C, and further controlled by the interplay of the flux of incoming Si atoms with the size and areal density of Au droplets. Critical thermodynamic and kinetic aspects of the growth are discussed in detail.

  14. Signature of microscale kinetics in mesoscale description of epitaxial growth

    NASA Astrophysics Data System (ADS)

    Schneider, Joshua P.; Margetis, Dionisios

    2017-08-01

    We describe the effect of kinetic interactions of adsorbed atoms in a mesoscale model of epitaxial growth without elasticity. Our goal is to understand how atomic correlations due to kinetics leave their signature in mechanisms governing the motion of crystal line defects (steps) at the nanoscale. We focus on the key atomistic processes related to external material deposition, desorption, and asymmetric energy barriers on a stepped surface. By starting with a kinetic, restricted solid-on-solid model in 1+1 dimensions, we derive laws that govern the motion of a single step when deposition is nearly balanced out by desorption. These mesoscale laws reveal how kinetic processes, e.g., bond breaking at the step edge, influence step motion via the correlated motion of atoms.

  15. Metastable Solution Thermodynamic Properties and Crystal Growth Kinetics

    NASA Technical Reports Server (NTRS)

    Kim, Soojin; Myerson, Allan S.

    1996-01-01

    The crystal growth rates of NH4H2PO4, KH2PO4, (NH4)2SO4, KAl(SO4)2 central dot 12H2O, NaCl, and glycine and the nucleation rates of KBr, KCl, NaBr central dot 2H2O, (NH4)2Cl, and (NH4)2SO4 were expressed in terms of the fundamental driving force of crystallization calculated from the activity of supersaturated solutions. The kinetic parameters were compared with those from the commonly used kinetic expression based on the concentration difference. From the viewpoint of thermodynamics, rate expressions based on the chemical potential difference provide accurate kinetic representation over a broad range of supersaturation. The rates estimated using the expression based on the concentration difference coincide with the true rates of crystallization only in the concentration range of low supersaturation and deviate from the true kinetics as the supersaturation increases.

  16. Kinetic model of particle-inhibited grain growth

    NASA Astrophysics Data System (ADS)

    Thompson, Gary Scott

    The effects of second phase particles on matrix grain growth kinetics were investigated using Al2O3-SiC as a model system. In particular, the validity of the conclusion drawn from a previous kinetic analysis that the kinetics of particle-inhibited grain growth in Al2 O3-SiC samples with an intermediate volume fraction of second phase could be well quantified by a modified-Zener model was investigated. A critical analysis of assumptions made during the previous kinetic analysis revealed oversimplifications which affect the validity of the conclusion. Specifically, the degree of interaction between particles and grain boundaries was assumed to be independent of the mean second phase particle size and size distribution. In contrast, current measurements indicate that the degree of interaction in Al2O3-SiC is dependent on these parameters. An improved kinetic model for particle-inhibited grain growth in Al 2O3-SiC was developed using a modified-Zener approach. The comparison of model predictions with experimental grain growth data indicated that significant discrepancies (as much as 4--5 orders of magnitude) existed. Based on this, it was concluded that particles had a much more significant effect on grain growth kinetics than that caused by a simple reduction of the boundary driving force due to the removal of boundary area. Consequently, it was also concluded that the conclusion drawn from the earlier kinetic analysis regarding the validity of a modified-Zener model was incorrect. Discrepancies between model and experiment were found to be the result of a significant decrease in experimental growth rate constant not predicted by the model. Possible physical mechanisms for such a decrease were investigated. The investigation of a small amount of SiO2 on grain growth in Al2O3 indicated that the decrease was not the result of a decrease in grain boundary mobility due to impurity contamination by particles. By process of elimination and based on previous observations

  17. Growth Kinetics and Modeling of ZnO Nanoparticles

    ERIC Educational Resources Information Center

    Hale, Penny S.; Maddox, Leone M.; Shapter, Joe G.; Voelcker, Nico H.; Ford, Michael J.; Waclawik, Eric R.

    2005-01-01

    The technique for producing quantum-sized zinc oxide (ZnO) particles is much safer than a technique that used hydrogen sulfide gas to produce cadmium sulfide and zinc sulfide nanoparticles. A further advantage of this method is the ability to sample the solution over time and hence determine the growth kinetics.

  18. Growth Kinetics and Modeling of ZnO Nanoparticles

    ERIC Educational Resources Information Center

    Hale, Penny S.; Maddox, Leone M.; Shapter, Joe G.; Voelcker, Nico H.; Ford, Michael J.; Waclawik, Eric R.

    2005-01-01

    The technique for producing quantum-sized zinc oxide (ZnO) particles is much safer than a technique that used hydrogen sulfide gas to produce cadmium sulfide and zinc sulfide nanoparticles. A further advantage of this method is the ability to sample the solution over time and hence determine the growth kinetics.

  19. Nucleation and growth kinetics of biochemicals measured at high supersaturations

    NASA Astrophysics Data System (ADS)

    Mahajan, Amarjit J.; Kirwan, Donald J.

    1994-12-01

    A grid mixer device (characteristic micromixing time < 3 ms) was successfully used to measure both nucleation and growth kinetics of lovastatin in 60 vol% methanol and asparagine monohydrate in 50 vol% 2-propanol at 23°C at high supersaturations but in the absence of mixing limitations. The supersaturation ratios investigated were in the range 1.25-8.8 for the lovastatin system and 1.17-4.1 for the asparagine system. When plotted according to primary nucleation theory, the induction time and nucleation rate measurements for both systems exhibited a homogeneous nucleation region at high supersaturations and a heterogeneous nucleation region at low supersaturations. The values of interfacial free energy extracted from these measurements for lovastatin (1.4-1.6 mJ/m 2) and asparagine (4.5-6.1 mJ/m 2) were an order-of-magnitude lower than those for inorganic salts reflecting the weaker intermolecular bonding in such biochemical solutes. The measured crystal growth rates for both solutes over the entire range of supersaturation could be represented with a power law dependence on chemical potential driving force. The kinetic orders of crystal growth were found to be 6.7 and 2.9 for lovastatin and asparagine, respectively. These unusually high kinetic orders could be represented by a polynuclear surface nucleation growth mechanism. The activation energy for the growth of lovastatin was measured as 280 kJ/mol.

  20. Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation.

    PubMed

    Rolfe, Matthew D; Rice, Christopher J; Lucchini, Sacha; Pin, Carmen; Thompson, Arthur; Cameron, Andrew D S; Alston, Mark; Stringer, Michael F; Betts, Roy P; Baranyi, József; Peck, Michael W; Hinton, Jay C D

    2012-02-01

    Lag phase represents the earliest and most poorly understood stage of the bacterial growth cycle. We developed a reproducible experimental system and conducted functional genomic and physiological analyses of a 2-h lag phase in Salmonella enterica serovar Typhimurium. Adaptation began within 4 min of inoculation into fresh LB medium with the transient expression of genes involved in phosphate uptake. The main lag-phase transcriptional program initiated at 20 min with the upregulation of 945 genes encoding processes such as transcription, translation, iron-sulfur protein assembly, nucleotide metabolism, LPS biosynthesis, and aerobic respiration. ChIP-chip revealed that RNA polymerase was not "poised" upstream of the bacterial genes that are rapidly induced at the beginning of lag phase, suggesting a mechanism that involves de novo partitioning of RNA polymerase to transcribe 522 bacterial genes within 4 min of leaving stationary phase. We used inductively coupled plasma mass spectrometry (ICP-MS) to discover that iron, calcium, and manganese are accumulated by S. Typhimurium during lag phase, while levels of cobalt, nickel, and sodium showed distinct growth-phase-specific patterns. The high concentration of iron during lag phase was associated with transient sensitivity to oxidative stress. The study of lag phase promises to identify the physiological and regulatory processes responsible for adaptation to new environments.

  1. Growth kinetics of Staphylococcus aureus on Brie and Camembert cheeses.

    PubMed

    Lee, Heeyoung; Kim, Kyungmi; Lee, Soomin; Han, Minkyung; Yoon, Yohan

    2014-05-01

    In this study, we developed mathematical models to describe the growth kinetics of Staphylococcus aureus on natural cheeses. A five-strain mixture of Staph. aureus was inoculated onto 15 g of Brie and Camembert cheeses at 4 log CFU/g. The samples were then stored at 4, 10, 15, 25, and 30 °C for 2-60 d, with a different storage time being used for each temperature. Total bacterial and Staph. aureus cells were enumerated on tryptic soy agar and mannitol salt agar, respectively. The Baranyi model was fitted to the growth data of Staph. aureus to calculate kinetic parameters such as the maximum growth rate in log CFU units (r max; log CFU/g/h) and the lag phase duration (λ; h). The effects of temperature on the square root of r max and on the natural logarithm of λ were modelled in the second stage (secondary model). Independent experimental data (observed data) were compared with prediction and the respective root mean square error compared with the RMSE of the fit on the original data, as a measure of model performance. The total growth of bacteria was observed at 10, 15, 25, and 30 °C on both cheeses. The r max values increased with storage temperature (P<0·05), but a significant effect of storage temperature on λ values was only observed between 4 and 15 °C (P<0·05). The square root model and linear equation were found to be appropriate for description of the effect of storage temperature on growth kinetics (R 2=0·894-0·983). Our results indicate that the models developed in this study should be useful for describing the growth kinetics of Staph. aureus on Brie and Camembert cheeses.

  2. Differential expression profiles of Streptococcus mutans ftf, gtf and vicR genes in the presence of dietary carbohydrates at early and late exponential growth phases.

    PubMed

    Shemesh, Moshe; Tam, Avshalom; Feldman, Mark; Steinberg, Doron

    2006-09-04

    Dental caries is one of the most common infectious diseases that affects humans. Streptococcus mutans, the main pathogenic bacterium associated with dental caries, produces a number of extracellular sucrose-metabolizing enzymes, such as glucosyltransferases (GTFB, GTFC and GTFD) and fructosyltransferase (FTF). The cooperative action of these enzymes is essential for sucrose-dependent cellular adhesion and biofilm formation. A global response regulator (vicR) plays important roles in S. mutans ftf and gtf expression in response to a variety of stimuli. A real-time reverse-transcription polymerase chain-reaction was used to quantify the relative levels of ftf, gtfB, gtfC, gtfD and vicR transcription of S. mutans in the presence of various dietary carbohydrates: sucrose, D-glucose, D-fructose, D-glucitol (D-sorbitol), D-mannitol and xylitol. Ftf was highly expressed at late exponential phase in the presence of sorbitol and mannitol. GtfB was highly expressed in the presence of all the above carbohydrates except for xylitol at early exponential growth phase and glucose and fructose at late exponential growth phase. Similar to gtfB, the expression of gtfC was also induced with the presence of all the tested carbohydrates except for xylitol at early growth and glucose and fructose at late exponential phase. In addition, no effect of mannitol on gtfC expression at early exponential phase was observed. GtfD was less influenced compared to the gtfB and gtfC, demonstrating enhanced expression especially in the presence of sorbitol, glucose, mannitol and xylitol at early exponential phase and mannitol at late exponential phase. VicR expression was induced only at the presence of xylitol at late exponential phase, and a decrease in expression was recorded at early exponential phase. Our findings show that dietary carbohydrates have a major influence on the transcription of ftf, gtfB, gtfC and gtfD, but less on vicR. Sorbitol and mannitol, which are considered as noncariogenic

  3. Dendritic growth shapes in kinetic Monte Carlo models

    NASA Astrophysics Data System (ADS)

    Krumwiede, Tim R.; Schulze, Tim P.

    2017-02-01

    For the most part, the study of dendritic crystal growth has focused on continuum models featuring surface energies that yield six pointed dendrites. In such models, the growth shape is a function of the surface energy anisotropy, and recent work has shown that considering a broader class of anisotropies yields a correspondingly richer set of growth morphologies. Motivated by this work, we generalize nanoscale models of dendritic growth based on kinetic Monte Carlo simulation. In particular, we examine the effects of extending the truncation radius for atomic interactions in a bond-counting model. This is done by calculating the model’s corresponding surface energy and equilibrium shape, as well as by running KMC simulations to obtain nanodendritic growth shapes. Additionally, we compare the effects of extending the interaction radius in bond-counting models to that of extending the number of terms retained in the cubic harmonic expansion of surface energy anisotropy in the context of continuum models.

  4. Kinetic Roughening Transition and Energetics of Tetragonal Lysozyme Crystal Growth

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar; Forsythe, Elizabeth L.; Pusey, Marc L.

    2004-01-01

    Interpretation of lysozyme crystal growth rates using well-established physical theories enabled the discovery of a phenomenon possibly indicative of kinetic roughening. For example, lysozyme crystals grown above a critical supersaturation sigma, (where supersaturation sigma = ln c/c(sub eq), c = the protein concentration and c(sub eq) = the solubility concentration) exhibit microscopically rough surfaces due to the continuous addition of growth units anywhere on the surface of a crystal. The rate of crystal growth, V(sub c), for the continuous growth process is determined by the continuous flux of macromolecules onto a unit area of the crystal surface, a, from a distance, xi, per unit time due to diffusion, and a probability of attachment onto the crystal surface, expressed. Based upon models applied, the energetics of lysozyme crystal growth was determined. The magnitudes of the energy barriers of crystal growth for both the (110) and (101) faces of tetragonal lysozyme crystals are compared. Finally, evidence supportive of the kinetic roughening hypothesis is presented.

  5. Kinetic Roughening Transition and Energetics of Tetragonal Lysozyme Crystal Growth

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar; Forsythe, Elizabeth L.; Pusey, Marc L.

    2004-01-01

    Interpretation of lysozyme crystal growth rates using well-established physical theories enabled the discovery of a phenomenon possibly indicative of kinetic roughening. For example, lysozyme crystals grown above a critical supersaturation sigma, (where supersaturation sigma = ln c/c(sub eq), c = the protein concentration and c(sub eq) = the solubility concentration) exhibit microscopically rough surfaces due to the continuous addition of growth units anywhere on the surface of a crystal. The rate of crystal growth, V(sub c), for the continuous growth process is determined by the continuous flux of macromolecules onto a unit area of the crystal surface, a, from a distance, xi, per unit time due to diffusion, and a probability of attachment onto the crystal surface, expressed. Based upon models applied, the energetics of lysozyme crystal growth was determined. The magnitudes of the energy barriers of crystal growth for both the (110) and (101) faces of tetragonal lysozyme crystals are compared. Finally, evidence supportive of the kinetic roughening hypothesis is presented.

  6. Kinetics of Denitrifying Growth by Fast-Growing Cowpea Rhizobia

    PubMed Central

    El Hassan, G. A.; Zablotowicz, R. M.; Focht, D. D.

    1985-01-01

    Two fast-growing strains of cowpea rhizobia (A26 and A28) were found to grow anaerobically at the expense of NO3−, NO2−, and N2O as terminal electron acceptors. The two major differences between aerobic and denitrifying growth were lower yield coefficients (Y) and higher saturation constants (Ks) with nitrogenous oxides as electron acceptors. When grown aerobically, A26 and A28 adhered to Monod kinetics, respectively, as follows: Ks, 3.4 and 3.8 μM; Y, 16.0 and 14.0 g · cells eq−1; μmax, 0.41 and 0.33 h−1. Yield coefficients for denitrifying growth ranged from 40 to 70% of those for aerobic growth. Only A26 adhered to Monod kinetics with respect to growth on all three nitrogenous oxides. The apparent Ks values were 41, 270, and 460 μM for nitrous oxide, nitrate, and nitrite, respectively; the Ks for A28 grown on nitrate was 250 μM. The results are kinetically and thermodynamically consistent in explaining why O2 is the preferred electron acceptor. Although no definitive conclusions could be drawn regarding preferential utilization of nitrogenous oxides, nitrite was inhibitory to both strains and effected slower growth. However, growth rates were identical (μmax, 0.41 h−1) when A26 was grown with either O2 or NO3− as an electron acceptor and were only slightly reduced when A28 was grown with NO3− (0.25 h−1) as opposed to O2 (0.33 h−1). PMID:16346745

  7. Kinetic model for microbial growth and desulphurisation with Enterobacter sp.

    PubMed

    Liu, Long; Guo, Zhiguo; Lu, Jianjiang; Xu, Xiaolin

    2015-02-01

    Biodesulphurisation was investigated by using Enterobacter sp. D4, which can selectively desulphurise and convert dibenzothiophene into 2-hydroxybiphenyl (2-HBP). The experimental values of growth, substrate consumption and product generation were obtained at 95 % confidence level of the fitted values using three models: Hinshelwood equation, Luedeking-Piret and Luedeking-Piret-like equations. The average error values between experimental values and fitted values were less than 10 %. These kinetic models describe all the experimental data with good statistical parameters. The production of 2-HBP in Enterobacter sp. was by "coupled growth".

  8. Growth and bacteriocin production kinetics of Leuconostoc mesenteroides E131.

    PubMed

    Drosinos, E H; Mataragas, M; Nasis, P; Galiotou, M; Metaxopoulos, J

    2005-01-01

    The aim of this study was to investigate the effect of pH, temperature, sodium chloride, type and level of sugar used in fermented sausages, on the occurrence and the concentration of the maximum bacteriocin activity, in order to optimize the bacteriocin synthesis during the growth cycle of Leuconostoc mesenteroides E131. In order to study the effect of the environmental factors on growth and bacteriocin production of Leuc. mesenteroides E131 fermentations were carried out in fermentor as well as in flasks. Mathematical equations were used to describe the kinetic parameters of the strain. When the micro-organism was grown in lower pH value (5.5) than optimum for growth (pH 6.5) the bacteriocin production was enhanced. On the contrary, bacteriocin production was favoured when the micro-organism was grown at temperatures close to the optimum for growth (25 degrees C). Finally, the level and the type of the sugar used as carbon source affected both growth and bacteriocin production with glucose being better source for biomass production and fructose more suitable for bacteriocin production. Leuconostoc mesenteroides E131 has a potential use as protective culture or its bacteriocin as protective agent in combination with another starter culture in fermented meats. Better understanding of the influence of environmental factors, such as pH, temperature and carbon source on the kinetic behaviour of Leuc. mesenteroides E131.

  9. Growth morphologies of wax in the presence of kinetic inhibitors

    NASA Astrophysics Data System (ADS)

    Tetervak, Alexander A.

    Driven by the need to prevent crystallization of normal alkanes from diesel fuels in cold climates, the petroleum industry has developed additives to slow the growth of these crystals and alter their morphologies. Although the utility of these kinetic inhibitors has been well demonstrated in the field, few studies have directly monitored their effect at microscopic morphology, and the mechanisms by which they act remain poorly understood. Here we present a study of the effects of such additives on the crystallization of long-chain n-alkanes from solution. The additives change the growth morphology from plate-like crystals to a microcrystalline mesh. When we impose a front velocity by moving the sample through a temperature gradient, the mesh growth may form a macroscopic banded pattern and also exhibit a burst-crystallization behavior. In this study, we characterize these crystallization phenomena and also two growth models: a continuum model that demonstrates the essential behavior of the banded crystallization, and a simple qualitative cellular automata model that captures basics of the burst-crystallization process. Keywords: solidification; mesh crystallization; kinetic inhibitor; burst growth.

  10. Role of Transport and Kinetics in Growth of Renal Stones

    NASA Technical Reports Server (NTRS)

    Kassemi, Mohammad; Iskovitz, Ilana

    2012-01-01

    Renal stone disease is not only a concern on earth but could conceivably pose as a serious risk to the astronauts health and safety in Space. In this paper, a combined transport-kinetics model for growth of calcium oxalate crystals is presented. The model is used to parametrically investigate the growth of renal calculi in urine with a focus on the coupled effects of transport and surface reaction on the ionic concentrations at the surface of the crystal and their impact on the resulting growth rates. It is shown that under nominal conditions of low solution supersaturation and low Damkohler number that typically exist on Earth, the surface concentrations of calcium and oxalate approach their bulk solution values in the urine and the growth rate is most likely limited by the surface reaction kinetics. But for higher solution supersaturations and larger Damkohler numbers that may be prevalent in the microgravity environment of Space, the calcium and oxalate surface concentrations tend to shift more towards their equilibrium or saturation values and thus the growth process may be limited by the transport through the medium. Furthermore, parametric numerical studies suggest that changes to the renal biochemistry of astronauts due in space may promote development of renal calculi during long duration space expeditions.

  11. Solution Chemistry Effect on the Kinetics of Calcite Growth

    NASA Astrophysics Data System (ADS)

    Hong, M.; Teng, H.

    2013-12-01

    Calcite is one of the commonly chosen model systems to study crystallization due to the easiness to acquire data in simple experimental settings and the high relevance to mineralization in inorganic and biological environments. While the thermodynamic driving force for calcite growth is well-understood and can be precisely controlled via changing saturation levels of solutions, the parameters that govern the growth kinetics have often been the subject of significant controversy. Different studies reported different degree of step speed dependence on supersaturation and different views on the effects of ionic strength, solution pH, as well as solution stoichiometry (i.e. activity ratio of Ca2+/CO32-). A literature search finds that most of the previous studies did not fully control solution chemistry during growth experiments, suggesting that the observed effect of individual solution chemistry parameters was more likely not properly isolated. To get a clear view of the kinetic controls for calcite growth, we conducted a series of growth experiments to interrogate the step kinetics by systematically varying solution chemistry parameters including ionic strength, pH, and solution stoichiometry. Experiments were conducted at constant supersaturation conditions and with only one of the three solution chemistry parameter allowed to change. Step speed measurements were collected for both the acute and the obtuse steps on calcite cleavage surfaces and the results showed the two directions respond differently to changes in solution chemistry. The pH effect, instead of showing a monotonic trend as reported before, changes directions around pHpzc (9.5). For example, obtuse steps maintain a rather constant growth rate when pH increased from 7.5 to 9.5, but propagate much faster afterwards; meanwhile, acute steps is retarded with the same pH change but the growth also speeds up once pH>9.5. Ionic strength was reported to have negligible or positive effect on calcite growth

  12. A DNA-binding peroxiredoxin of Coxiella burnetii is involved in countering oxidative stress during exponential-phase growth.

    PubMed

    Hicks, Linda D; Raghavan, Rahul; Battisti, James M; Minnick, Michael F

    2010-04-01

    Coxiella burnetii is a Gram-negative, obligate intracellular bacterial pathogen that resides within the harsh, acidic confines of a lysosome-like compartment of the host cell that is termed a parasitophorous vacuole. In this study, we characterized a thiol-specific peroxidase of C. burnetii that belongs to the atypical 2-cysteine subfamily of peroxiredoxins, commonly referred to as bacterioferritin comigratory proteins (BCPs). Coxiella BCP was initially identified as a potential DNA-binding protein by two-dimensional Southwestern (SW) blots of the pathogen's proteome, probed with biotinylated C. burnetii genomic DNA. Confirmation of the identity of the DNA-binding protein as BCP (CBU_0963) was established by matrix-assisted laser desorption ionization-tandem time of flight mass spectrometry (MALDI-TOF/TOF MS). Recombinant Coxiella BCP (rBCP) was generated, and its DNA binding was demonstrated by two independent methods, including SW blotting and electrophoretic mobility shift assays (EMSAs). rBCP also demonstrated peroxidase activity in vitro that required thioredoxin-thioredoxin reductase (Trx-TrxR). Both the DNA-binding and peroxidase activities of rBCP were lost upon heat denaturation (100 degrees C, 10 min). Functional expression of Coxiella bcp was demonstrated by trans-complementation of an Escherichia coli bcp mutant, as evidenced by the strain's ability to grow in an oxidative-stress growth medium containing tert-butyl hydroperoxide to levels that were indistinguishable from, or significantly greater than, those observed with its wild-type parental strain and significantly greater than bcp mutant levels (P < 0.05). rBCP was also found to protect supercoiled plasmid DNA from oxidative damage (i.e., nicking) in vitro. Maximal expression of the bcp gene coincided with the pathogen's early (day 2 to 3) exponential-growth phase in an experiment involving synchronized infection of an epithelial (Vero) host cell line. Taken as a whole, the results show that

  13. Analysis of Network Topologies Underlying Ethylene Growth Response Kinetics

    PubMed Central

    Prescott, Aaron M.; McCollough, Forest W.; Eldreth, Bryan L.; Binder, Brad M.; Abel, Steven M.

    2016-01-01

    Most models for ethylene signaling involve a linear pathway. However, measurements of seedling growth kinetics when ethylene is applied and removed have resulted in more complex network models that include coherent feedforward, negative feedback, and positive feedback motifs. The dynamical responses of the proposed networks have not been explored in a quantitative manner. Here, we explore (i) whether any of the proposed models are capable of producing growth-response behaviors consistent with experimental observations and (ii) what mechanistic roles various parts of the network topologies play in ethylene signaling. To address this, we used computational methods to explore two general network topologies: The first contains a coherent feedforward loop that inhibits growth and a negative feedback from growth onto itself (CFF/NFB). In the second, ethylene promotes the cleavage of EIN2, with the product of the cleavage inhibiting growth and promoting the production of EIN2 through a positive feedback loop (PFB). Since few network parameters for ethylene signaling are known in detail, we used an evolutionary algorithm to explore sets of parameters that produce behaviors similar to experimental growth response kinetics of both wildtype and mutant seedlings. We generated a library of parameter sets by independently running the evolutionary algorithm many times. Both network topologies produce behavior consistent with experimental observations, and analysis of the parameter sets allows us to identify important network interactions and parameter constraints. We additionally screened these parameter sets for growth recovery in the presence of sub-saturating ethylene doses, which is an experimentally-observed property that emerges in some of the evolved parameter sets. Finally, we probed simplified networks maintaining key features of the CFF/NFB and PFB topologies. From this, we verified observations drawn from the larger networks about mechanisms underlying ethylene

  14. Light exercise heart rate on-kinetics: a comparison of data fitted with sigmoidal and exponential functions and the impact of fitness and exercise intensity.

    PubMed

    Trounson, Karl M; Roberts, Spencer; Balloch, Aaron; Warmington, Stuart A

    2017-06-01

    This study examined the suitability of sigmoidal (SIG) and exponential (EXP) functions for modeling HR kinetics at the onset of a 5-min low-intensity cycling ergometer exercise test (5MT). The effects of training status, absolute and relative workloads, and high versus low workloads on the accuracy and reliability of these functions were also examined. Untrained participants (UTabs; n = 13) performed 5MTs at 100W. One group of trained participants (n = 10) also performed 5MTs at 100W (ETabs). Another group of trained participants (n = 9) performed 5MTs at 45% and 60% V˙O2 max (ET45 and ET60, respectively). SIG and EXP functions were fitted to HR data from 5MTs. A 30-s lead-in time was included when fitting SIG functions. Functions were compared using the standard error of the regression (SER), and test-retest reliability of curve parameters. SER for EXP functions was significantly lower than for SIG functions across all groups. When residuals from the 30-s lead-in time were omitted, EXP functions only outperformed SIG functions in ET60 (EXP, 2.7 ± 1.2 beats·min(-1); SIG, 3.1 ± 1.1 beats·min(-1): P < 0.05). Goodness of fit and test-retest reliability of curve parameters were best in ET60 and comparatively poor in UTabs Overall, goodness of fit and test-retest reliability of curve parameters favored functions fitted to 5MTs performed by trained participants at a high and relative workload, while functions fitted to data from untrained participants exercising at a low and absolute workload were less accurate and reliable. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  15. Wetting and domain-growth kinetics in confined geometries

    NASA Astrophysics Data System (ADS)

    Monette, Liza; Liu, Andrea J.; Grest, Gary S.

    1992-12-01

    In this paper, we review the theoretical and experimental progress in understanding the controversial phase behavior of binary liquids in dense porous media. Experimental observation of metastability and hysteresis in the phase-separation behavior has led to two widely different theoretical interpretations: the random-field Ising picture and the single-pore picture. We argue that the random-field model is inapplicable to binary liquids in low-porosity media such as Vycor, and discuss the available experimental evidence on such systems. Next, we present Monte Carlo studies of phase-separation kinetics of an Ising model in a pore. We find that the domain-growth kinetics slow down dramatically once the domain size becomes comparable to the pore size, as predicted by the single-pore model. In addition, we examine the influence of temperature and interfacial phase transitions on the kinetics, and show that the domain-growth rate slows down as the temperature moves further into the two-phase region. Finally, our results for small pores, only 20 spins across, suggest that macroscopic descriptions are surprisingly successful, even at short length scales.

  16. Solution growth kinetics and mechanism: Prismatic face of ADP

    NASA Astrophysics Data System (ADS)

    Chernov, A. A.; Rashkovich, L. N.; Mkrtchan, A. A.

    1986-01-01

    Laser Michelson interferometry has been applied to in situ study the (001) ADP growth kinetics in aqueous solution in the kinetic regime. The technique allows one to simultaneously measure the slope p of a growth hillock and normal growth rate R provided by this hillock. From these data, the average step growth rate v=R/p has been determined as a function of relative supersaturation σ. The dependencev(σ) is found to be linear, demonstrating the unimportance of surface and bulk diffusion. The direct incorporation at steps is characterized by the step kinetic coefficient βl=(5.1-6.4)X10-3 cm/s. The specific step free energy αl=(1.2-1.9) X10-6 erg/cm was determined from the measured linear dependence of the hillock slope on supersaturation for the hillock around presumably single elementary dislocation. For complex dislocation sources with large total Burgers vectors, the tendency to saturationin the hillock slope-supersaturation curves has been found. The curve perfectly fits the BCF expression which takes into account the perimeter 2L of the region occupied by the points in which the dislocation of the complex step source cross the growing face. For two dislocation sources,L=0.92 μm andL=0.31 μm and total Burgers vectors ⋍12h and 6h (h=7.53Å) have been found. The supersaturation dependence of activities for various complex dislocation sources have been directly demonstrated.

  17. Kinetics of growth and aniline degradation by Stenotrophomonas maltophilia

    SciTech Connect

    Zissi, U.S.; Lyberatos, G.C.

    1999-01-01

    A pure bacterial culture of Stenotrophomonas maltophilia, capable of using aniline as a sole carbon source, was isolated. Kinetic experiments were conducted to develop a mathematical model that describes accurately the growth and utilization rates of the microorganism on the aniline and an alternate carbon source (glucose) individually and on their mixture. The growth of microorganisms and substrate utilization could be well described by using Monod expressions for limiting substrates. The presence of glucose in the culture medium did not repress aniline catabolism but simultaneous utilization was observed. When both substrates were present, the utilization of one substrate had a considerable effect on the utilization of the other. These effects were shown to be predicted by a mathematical model based on a modified Monod expression. The proposed model was found capable of describing accurately cellular growth as well as aniline and glucose biodegradation.

  18. In Situ μGISAXS: II. Thaumatin Crystal Growth Kinetic

    PubMed Central

    Gebhardt, Ronald; Pechkova, Eugenia; Riekel, Christian; Nicolini, Claudio

    2010-01-01

    The formation of thaumatin crystals by Langmuir-Blodgett (LB) film nanotemplates was studied by the hanging-drop technique in a flow-through cell by synchrotron radiation micrograzing-incidence small-angle x-ray scattering. The kinetics of crystallization was measured directly on the interface of the LB film crystallization nanotemplate. The evolution of the micrograzing-incidence small-angle x-ray scattering patterns suggests that the increase in intensity in the Yoneda region is due to protein incorporation into the LB film. The intensity variation suggests several steps, which were modeled by system dynamics based on first-order differential equations. The kinetic data can be described by two processes that take place on the LB film, a first, fast, process, attributed to the crystal growth and its detachment from the LB film, and a second, slower process, attributed to an unordered association and conversion of protein on the LB film. PMID:20713011

  19. Comparison of methods for measuring viable E. coli cells during cultivation: great differences in the early and late exponential growth phases.

    PubMed

    Wang, Hengwei; Cheng, Hairong; Wei, Dongzhi; Wang, Fengqing

    2011-01-01

    Four methods, namely enumeration of colony-forming units (CFU), aerobic respiration, MTT reduction capacity and succinate dehydrogenase activity were compared to determine the viability of E. coli cells at the early and late exponential growth phases. Our results revealed that great differences in cell viability existed between these methods and that the choice of method to determine cell viability must be made with caution.

  20. Hydromagnesite solubility product and growth kinetics in aqueous solution from 25 to 75 °C

    NASA Astrophysics Data System (ADS)

    Gautier, Quentin; Bénézeth, Pascale; Mavromatis, Vasileios; Schott, Jacques

    2014-08-01

    Hydromagnesite Mg5(CO3)4(OH)2·4H2O is the most widespread form of hydrated Mg-carbonate minerals. To better understand the factors controlling the precipitation of hydrated Mg-carbonates, we measured hydromagnesite solubility product at 25 and 50 °C and its growth rate between 25 and 75 °C, using natural hydromagnesite from a cave as seed material. The solubility products values derived in this study, Ksp-Hmgs = -37.08 ± 0.50 and -38.90 ± 0.54 at 25 and 50 °C, respectively, are in the upper range of published values. Hydromagnesite growth rate normalized to the BET surface area at 8 ⩽ pH ⩽ 10 is consistent with the direct and reversible attachment of the reactants at the solid surface being rate-limiting. It may be described by: RHmgs=A0·e(ΩHmgs1/5-1) where A0, the pre-exponential factor, and Ea, the activation energy, are equal to 5.12 × 10-7 mol/cm2/s and 45.5 ± 9 kJ/mol, respectively, and ΩHmgs stands for the saturation state of the solution with respect to hydromagnesite. Comparison of hydromagnesite growth rates with recently published magnesite growth rates (Saldi et al., 2009, 2012) show that: (1) hydromagnesite apparent growth activation energy is lower by more than 100 kJ/mol compared to the activation energy for magnesite obtuse step advancement, and (2) hydromagnesite growth rate constant extrapolated to 90 °C is 2.5 orders of magnitude higher than corresponding magnesite growth rate constant. Thus, our results confirm the long-standing hypothesis that the slow dehydration kinetics of the Mg2+ cation is responsible for the sluggish magnesite formation at low temperature, and that the kinetic barrier for hydromagnesite growth is much lower. Nevertheless, simulation of hydromagnesite and magnesite growth rates as a function of solution composition at 50 and 90 °C, and pH 7 and 9 reveal that, because of its much higher solubility, hydromagnesite would grow more quickly than magnesite in natural or industrial environments only at 50 °C and

  1. Effect of Na+ Concentration and Nutritional Factors on the Lag Phase and Exponential Growth Rates of the Marine Bacterium Deleya aesta and of Other Marine Species

    PubMed Central

    Berthelet, Marc; MacLeod, Robert A.

    1989-01-01

    Growth of the marine bacterium Deleya aesta in a succinate minimal medium showed increasingly long lag phases as Na+ was decreased below the optimum (200 to 500 mM). The minimum Na+ concentration permitting growth consistently was 15 mM. Supplementation of the medium with KHCO3 (as a source of CO2) or yeast extract, especially in combination, reduced the lag phase, increased the rate of exponential growth, and allowed growth at 8 mM Na+. KHCO3 did not reduce the lag period but did increase the rate of exponential growth of Deleya venusta, Deleya pacifica, and Alteromonas haloplanktis 214. Yeast extract was active for all three. The effect of yeast extract on D. aesta could be reproduced by a mixture of amino acids approximating its amino acid composition. l-Alanine, l-aspartate, and l-methionine, in combination, were the most effective in reducing the lag phase, although not as effective as the complete mixture. Succinate, l-aspartate, and l-alanine were transported into the cells by largely independent pathways and oxidized at rates which were much lower at 10 than at 200 mM Na+. l-Methionine was transported at a low rate in the absence of Na+ and at a higher rate at 10 mM but was not oxidized. Above 25 mM Na+, the rate of transport of the carbon source was not the rate-limiting step for growth. It is concluded that a combination of transportable carbon sources reduced the lag period and increased the rate of exponential growth because they can be taken up independently and at low Na+ utilized simultaneously. PMID:16347969

  2. A new mechanistic growth model for simultaneous determination of lag phase duration and exponential growth rate and a new Bĕlehdrádek-type model for evaluating the effect of temperature on growth rate.

    PubMed

    Huang, Lihan

    2011-06-01

    A new mechanistic growth model was developed to describe microbial growth under isothermal conditions. The new mathematical model was derived from the basic observation of bacterial growth that may include lag, exponential, and stationary phases. With this model, the lag phase duration and exponential growth rate of a growth curve were simultaneously determined by nonlinear regression. The new model was validated using Listeria monocytogenes and Escherichia coli O157:H7 in broth or meat. Statistical results suggested that both bias factor (B(f)) and accuracy factor (A(f)) of the new model were very close to 1.0. A new Bĕlehdrádek-type rate model and the Ratkowsky square-root model were used to describe the temperature dependence of bacterial growth rate. It was observed that the maximum and minimum temperatures were more accurately estimated by a new Bĕlehdrádek-type rate model. Further, the inverse of square-roots of lag phases was found proportional to temperature, making it possible to estimate the lag phase duration from the growth temperature.

  3. Correlation between PLD repair capacity and the survival curve of human fibroblasts in exponential growth phase: analysis in terms of several parameters

    SciTech Connect

    Fertil, B.; Deschavanne, P.J.; Debieu, D.; Malaise, E.P.

    1988-10-01

    Published data on the in vitro radiosensitivity of 46 nontransformed fibroblasts of different genetic origins studied in plateau phase with immediate or delayed plating were used to investigate to what extent potentially lethal damage repair capacity is related to intrinsic radiosensitivity (i.e., irradiated in exponential growth phase). While most of the survival curve analysis is conducted in terms of D0, Dq, and the mean inactivation dose D, some of the data are also discussed in terms of the linear-quadratic model parameter alpha. Using D it is shown that: (i) the radiosensitivity of human fibroblasts in exponential growth phase does not significantly differ from that of plateau-phase fibroblasts with immediate plating; (ii) the radiosensitivity of plateau-phase cells with delayed plating is correlated to the radiosensitivity of cells with immediate plating: the more radioresistant the cell strain in exponential growth phase, the higher its repair capacity; (iii) the repair capacity of the cell strains is related to their genetic origin. In conclusion, we suggest that the survival curve of growing cells depends on the repair capacity of the cells.

  4. A kinetic chain growth algorithm in coarse-grained simulations.

    PubMed

    Liu, Hong; Zhu, You-Liang; Lu, Zhong-Yuan; Müller-Plathe, Florian

    2016-11-15

    We propose a kinetic chain growth algorithm for coarse-grained (CG) simulations in this work. By defining the reaction probability, it delivers a description of consecutive polymerization process. This algorithm is validated by modeling the process of individual styrene monomers polymerizing into polystyrene chains, which is proved to correctly reproduce the properties of polymers in experiments. By bridging the relationship between the generic chain growth process in CG simulations and the chemical details, the impediment to reaction can be reflected. Regarding to the kinetics, it models a polymerization process with an Arrhenius-type reaction rate coefficient. Moreover, this algorithm can model both the gradual and jump processes of the bond formation, thus it readily encompasses several kinds of previous CG models of chain growth. With conducting smooth simulations, this algorithm can be potentially applied to describe the variable macroscopic features of polymers with the process of polymerization. The algorithm details and techniques are introduced in this article. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Growth Kinetics of Listeria monocytogenes in Cut Produce.

    PubMed

    Salazar, Joelle K; Sahu, Surasri N; Hildebrandt, Ian M; Zhang, Lijie; Qi, Yan; Liggans, Girvin; Datta, Atin R; Tortorello, Mary Lou

    2017-08-01

    Cut produce continues to constitute a significant portion of the fresh fruit and vegetables sold directly to consumers. As such, the safety of these items during storage, handling, and display remains a concern. Cut tomatoes, cut leafy greens, and cut melons, which have been studied in relation to their ability to support pathogen growth, have been specifically identified as needing temperature control for safety. Data are needed on the growth behavior of foodborne pathogens in other types of cut produce items that are commonly offered for retail purchase and are potentially held without temperature control. This study assessed the survival and growth of Listeria monocytogenes in cut produce items that are commonly offered for retail purchase, specifically broccoli, green and red bell peppers, yellow onions, canned green and black olives, fresh green olives, cantaloupe flesh and rind, avocado pulp, cucumbers, and button mushrooms. The survival of L. monocytogenes strains representing serotypes 1/2a, 1/2b, and 4b was determined on the cut produce items for each strain individually at 5, 10, and 25°C for up to 720 h. The modified Baranyi model was used to determine the growth kinetics (the maximum growth rates and maximum population increases) in the L. monocytogenes populations. The products that supported the most rapid growth of L. monocytogenes, considering the fastest growth and resulting population levels, were cantaloupe flesh and avocado pulp. When stored at 25°C, the maximum growth rates for these products were 0.093 to 0.138 log CFU/g/h and 0.130 to 0.193 log CFU/g/h, respectively, depending on the strain. Green olives and broccoli did not support growth at any temperature. These results can be used to inform discussions surrounding whether specific time and temperature storage conditions should be recommended for additional cut produce items.

  6. Kinetic model of impurity poisoning during growth of calcite

    SciTech Connect

    DeYoreo, J; Wasylenki, L; Dove, P; Wilson, D; Han, N

    2004-05-18

    The central role of the organic component in biologically controlled mineralization is widely recognized. These proteins are characterized by a high proportion of acidic amino acid residues, especially aspartate, Asp. At the same time, biomineralization takes place in the presence of a number of naturally-occurring, inorganic impurities, particularly Mg and Sr. In an attempt to decipher the controls on calcite growth imposed by both classes of modifiers, we have used in situ AFM to investigate the dependence of growth morphology and step kinetics on calcite in the presence of Sr{sup 2+}, as well as a wide suite of Aspartic acid-bearing polypeptides. In each case, we observe a distinct and step-specific modification. Most importantly, we find that the step speed exhibits a characteristic dependence on impurity concentration not predicted by existing crystal growth models. While all of the impurities clearly induce appearance of a 'dead zone,' neither the width of that dead zone nor the dependence of step speed on activity or impurity content can be explained by invoking the Gibbs-Thomson effect, which is the basis for the Cabrera-Vermilyea model of impurity poisoning. Common kink-blocking models also fail to explain the observed dependencies. Here we propose a kinetic model of inhibition based on a 'cooperative' effect of impurity adsorption at adjacent kink sites. The model is in qualitative agreement with the experimental results in that it predicts a non-linear dependence of dead zone width on impurity concentration, as well as a sharp drop in step speed above a certain impurity content. However, a detailed model of impurity adsorption kinetics that give quantitative agreement with the data has yet to be developed.

  7. Glass susceptibility: Growth kinetics and saturation under shear

    NASA Astrophysics Data System (ADS)

    Nandi, Saroj Kumar; Ramaswamy, Sriram

    2016-07-01

    We study the growth kinetics of glassy correlations in a structural glass by monitoring the evolution, within mode-coupling theory, of a suitably defined three-point function χC(t ,tw) with time t and waiting time tw. From the complete wave-vector-dependent equations of motion for domain growth, we pass to a schematic limit to obtain a numerically tractable form. We find that the peak value χCP of χC(t ,tw) , which can be viewed as a correlation volume, grows as tw0.5, and the relaxation time as tw0.8, following a quench to a point deep in the glassy state. These results constitute a theoretical explanation of the simulation findings of Parisi [J. Phys. Chem. B 103, 4128 (1999), 10.1021/jp983967m] and Kob and Barrat [Phys. Rev. Lett. 78, 4581 (1997), 10.1103/PhysRevLett.78.4581], and they are also in qualitative agreement with Parsaeian and Castillo [Phys. Rev. E 78, 060105(R) (2008), 10.1103/PhysRevE.78.060105]. On the other hand, if the quench is to a point on the liquid side, the correlation volume grows to saturation. We present a similar calculation for the growth kinetics in a p -spin spin glass mean-field model where we find a slower growth, χCP˜tw0.13 . Further, we show that a shear rate γ ˙ cuts off the growth of glassy correlations when tw˜1 /γ ˙ for quench in the glassy regime and tw=min(tr,1 /γ ˙) in the liquid, where tr is the relaxation time of the unsheared liquid. The relaxation time of the steady-state fluid in this case is ∝γ˙-0.8 .

  8. Kinetic growth walk on critical percolation clusters and lattice animals

    NASA Astrophysics Data System (ADS)

    Lam, P. M.; Zhang, Z. Q.

    1984-03-01

    The statistics of recently proposed kinetic growth walk (KGW) model for linear polymers (or growing self avoiding walk (GSAW)) on two dimensional critical percolation clusters and lattice animals are studied using real-space renormalization group method. The correlation length exponents ν's are found to be ν{KGW/ Pc } = 0.68 and ν{KGW/LA} respectively for the critical percolation clusters and lattice animals. Close agreements are found between these results and a generalized Flory formula for linear polymers at theta point ν{KGW/F} = 2/bar d+1),, wherebar d is the fractal dimension of the fractal object F.

  9. Kinetic 15N-isotope effects on algal growth

    NASA Astrophysics Data System (ADS)

    Andriukonis, Eivydas; Gorokhova, Elena

    2017-03-01

    Stable isotope labeling is a standard technique for tracing material transfer in molecular, ecological and biogeochemical studies. The main assumption in this approach is that the enrichment with a heavy isotope has no effect on the organism metabolism and growth, which is not consistent with current theoretical and empirical knowledge on kinetic isotope effects. Here, we demonstrate profound changes in growth dynamics of the green alga Raphidocelis subcapitata grown in 15N-enriched media. With increasing 15N concentration (0.37 to 50 at%), the lag phase increased, whereas maximal growth rate and total yield decreased; moreover, there was a negative relationship between the growth and the lag phase across the treatments. The latter suggests that a trade-off between growth rate and the ability to adapt to the high 15N environment may exist. Remarkably, the lag-phase response at 3.5 at% 15N was the shortest and deviated from the overall trend, thus providing partial support to the recently proposed Isotopic Resonance hypothesis, which predicts that certain isotopic composition is particularly favorable for living organisms. These findings confirm the occurrence of KIE in isotopically enriched algae and underline the importance of considering these effects when using stable isotope labeling in field and experimental studies.

  10. Kinetic 15N-isotope effects on algal growth

    PubMed Central

    Andriukonis, Eivydas; Gorokhova, Elena

    2017-01-01

    Stable isotope labeling is a standard technique for tracing material transfer in molecular, ecological and biogeochemical studies. The main assumption in this approach is that the enrichment with a heavy isotope has no effect on the organism metabolism and growth, which is not consistent with current theoretical and empirical knowledge on kinetic isotope effects. Here, we demonstrate profound changes in growth dynamics of the green alga Raphidocelis subcapitata grown in 15N-enriched media. With increasing 15N concentration (0.37 to 50 at%), the lag phase increased, whereas maximal growth rate and total yield decreased; moreover, there was a negative relationship between the growth and the lag phase across the treatments. The latter suggests that a trade-off between growth rate and the ability to adapt to the high 15N environment may exist. Remarkably, the lag-phase response at 3.5 at% 15N was the shortest and deviated from the overall trend, thus providing partial support to the recently proposed Isotopic Resonance hypothesis, which predicts that certain isotopic composition is particularly favorable for living organisms. These findings confirm the occurrence of KIE in isotopically enriched algae and underline the importance of considering these effects when using stable isotope labeling in field and experimental studies. PMID:28281640

  11. Relationship between grain boundary complexion and grain growth kinetics in alumina

    NASA Astrophysics Data System (ADS)

    Dillon, Shen J.

    2007-12-01

    This work investigated the effect of different grain boundary phases (complexions) on the grain growth kinetics of doped and undoped aluminas. This was achieved by relating quantitative grain growth kinetics to high-resolution electron microscopy of the grain boundaries. It was found that there are 6 different regimes into which the grain growth kinetics may be categorized. These regimes corresponded to the existence of six different grain boundary complexions. Grain boundaries in alumina were observed to show sub-monolayer adsorption, 'clean' intrinsic behavior, bilayer adsorption, multilayer adsorption, equilibrium thickness intergranular films, and wetting intergranular films. These different grain boundary types are listed in order of increasing grain boundary mobility. In general there is an increase in grain boundary mobility with an increase in the disorder within the core of the grain boundary. This broad range of grain boundaries produces a multiplicity of different microstructural effects that until now have been difficult to understand experimentally or theoretically. For example, abnormal grain growth in alumina simply results from the coexistence of two or more different complexions within the same microstructure. Therefore, there may be multiple distinct types of normal and abnormal grain growth behavior. Transitions from one type of boundary to another are chemically and thermally activated, and depend on the crystallography of the adjacent grains. It is found that the number of transitions that occur increases linearly with increasing grain size, and exponentially with temperature. In this regard, different dopants produce very different effects, which appear to be the major role of most dopants in affecting the grain boundary transport kinetics. Low energy planes and grain boundaries are the least likely to undergo such transitions. This experimental data compliments some theoretical derivations within the literature and has provided new insight

  12. Kinetically controlled growth of gallium on stepped Si (553) surface

    NASA Astrophysics Data System (ADS)

    Kumar, Mukesh; Pasha, Syed Khalid; Govind

    2013-10-01

    Kinetically controlled growth of gallium (Ga) metal has been reported on high index stepped Si (553) surface and its thermal stability with various novel superstructural phases has been analyzed. Auger electron spectroscopy studies revealed that the adsorption of Ga at room temperature (RT) follows Frank-van der Merwe (FM) growth mode while for higher substrate temperature, Ga adsorption remains within the submonolayer range. Thermal desorption and low energy electron diffraction studies investigated the formation of thermally stable Ga-islands and the various Ga induced superstructural phase on Si (553). During room temperature adsorption, (1 1 1)7 × 7 facet of Si (553) reconstructed into (1 1 1)6 × 6 facet while during desorption process, stable (1 1 1)6 × 6 and (1 1 1)√3 × √3-R30° surface reconstructions has been observed.

  13. Continuous growth kinetics of Candida utilis in pineapple cannery effluent

    SciTech Connect

    Prior, B.A.

    1984-01-01

    Candida utilis was grown on a pineapple cannery effluent as the sole carbon and energy source in a chemostat at dilution rates between 0.10 and 0.62 h/sup -1/ to determine the growth kinetics. The principal sugars in the effluent were sucrose, glucose, and fructose. The cell yield coefficient on carbohydrate varied with dilution rate and a maximum value of 0.63 was observed at a dilution rate of 0.33 h/sup -1/. The steady-state concentrations of carbohydrate, reducing sugar, and chemical oxygen demand (COD) appeared to follow Monod saturation kinetics with increasing dilution rate, although none of the measured parameters represented a pure substrate. The maximum specific growth rate and reducing sugar saturation constant were 0.64 h/sup -1/ and 0.060 g/L, respectively. A maximum cell mass productivity of 2.3 g/L h was observed at a dilution rate of 0.51 h/sup -1/. At this dilution rate, only 68% of the COD was removed. A 95% COD removal was attained at a dilution rate of 0.10 h/sup -1/. Optimal yeast productivity and COD reduction occurred at a dilution rate of 0.33 h/sup -1/.

  14. Kinetics of growth and sugar consumption in yeasts.

    PubMed

    van Dijken, J P; Weusthuis, R A; Pronk, J T

    1993-01-01

    An overview is presented of the steady- and transient state kinetics of growth and formation of metabolic byproducts in yeasts. Saccharomyces cerevisiae is strongly inclined to perform alcoholic fermentation. Even under fully aerobic conditions, ethanol is produced by this yeast when sugars are present in excess. This so-called 'Crabtree effect' probably results from a multiplicity of factors, including the mode of sugar transport and the regulation of enzyme activities involved in respiration and alcoholic fermentation. The Crabtree effect in S. cerevisiae is not caused by an intrinsic inability to adjust its respiratory activity to high glycolytic fluxes. Under certain cultivation conditions, for example during growth in the presence of weak organic acids, very high respiration rates can be achieved by this yeast. S. cerevisiae is an exceptional yeast since, in contrast to most other species that are able to perform alcoholic fermentation, it can grow under strictly anaerobic conditions. 'Non-Saccharomyces' yeasts require a growth-limiting supply of oxygen (i.e. oxygen-limited growth conditions) to trigger alcoholic fermentation. However, complete absence of oxygen results in cessation of growth and therefore, ultimately, of alcoholic fermentation. Since it is very difficult to reproducibly achieve the right oxygen dosage in large-scale fermentations, non-Saccharomyces yeasts are therefore not suitable for large-scale alcoholic fermentation of sugar-containing waste streams. In these yeasts, alcoholic fermentation is also dependent on the type of sugar. For example, the facultatively fermentative yeast Candida utilis does not ferment maltose, not even under oxygen-limited growth conditions, although this disaccharide supports rapid oxidative growth.

  15. Growth kinetics of Salmonella spp. pre- and post-thermal treatment.

    PubMed

    Juneja, Vijay K; Marks, Harry M

    2006-05-25

    This paper reports estimated growth kinetic parameters for a cocktail of stationary phase Salmonella serotypes, pre- and post-thermal inactivation treatment. Cells were grown in brain-heart infusion broth at 25 or 37 degrees Celsius and then destruction of the cells was quantified at 55 degrees Celsius using a submerged coil heating apparatus. The surviving cells (about 1-2 log(10) cfu/ml) were subsequently grown at 25 or 37 degrees Celsius. The results indicated that lag phase duration times for the post- heat treated cells increased at 25 and 37 degrees Celsius by about 6.2 h and at least 3 to 4 h, respectively, and thus the increases appear to be truly different. However, when considering the ratios of the lag phase duration times for post-treated to pre-treated cells, a significant difference was not found, where estimated ratios could exceed 4. Estimated exponential growth rates, EGR, were not affected by the treatment, where for 37 degrees Celsius, EGR was estimated to be 0.9 log(10) (cfu/ml)/h, and at 25 degrees Celsius, the EGR was estimated at 0.45 log(10) (cfu/ml)/h.

  16. The mathematical properties of the quasi-chemical model for microorganism growth-death kinetics in foods.

    PubMed

    Ross, E W; Taub, I A; Doona, C J; Feeherry, F E; Kustin, K

    2005-03-15

    Knowledge of the mathematical properties of the quasi-chemical model [Taub, Feeherry, Ross, Kustin, Doona, 2003. A quasi-chemical kinetics model for the growth and death of Staphylococcus aureus in intermediate moisture bread. J. Food Sci. 68 (8), 2530-2537], which is used to characterize and predict microbial growth-death kinetics in foods, is important for its applications in predictive microbiology. The model consists of a system of four ordinary differential equations (ODEs), which govern the temporal dependence of the bacterial life cycle (the lag, exponential growth, stationary, and death phases, respectively). The ODE system derives from a hypothetical four-step reaction scheme that postulates the activity of a critical intermediate as an antagonist to growth (perhaps through a quorum sensing biomechanism). The general behavior of the solutions to the ODEs is illustrated by several examples. In instances when explicit mathematical solutions to these ODEs are not obtainable, mathematical approximations are used to find solutions that are helpful in evaluating growth in the early stages and again near the end of the process. Useful solutions for the ODE system are also obtained in the case where the rate of antagonist formation is small. The examples and the approximate solutions provide guidance in the parameter estimation that must be done when fitting the model to data. The general behavior of the solutions is illustrated by examples, and the MATLAB programs with worked examples are included in the appendices for use by predictive microbiologists for data collected independently.

  17. Thermodynamic-kinetic simulation of constrained dendrite growth in steels

    SciTech Connect

    Miettinen, J.

    2000-04-01

    A model of constrained dendritic growth for steels, based on thermodynamic and kinetic theory, is presented. The model links thermodynamic chemical potential-equality equations to an existing, approximate treatment of constrained dendritic growth in multicomponent steels, taking into account the deviation from the local thermodynamic equilibrium of the phase interface caused by interface friction, capillarity, and solute trapping. Due to the thermodynamic approach, with a thermodynamic model and recently assessed data, the present treatment yields a more accurate determination of phase stabilities than the earlier methods. Depending on the steel composition and the growth conditions (growth rate and temperature gradient), the model determines the dendrite tip undercooling, the primary solid phase (ferrite or austenite), the stability of that phase, certain dimensions of the microstructure, and the solute accumulation ahead of the dendrite tip. A special optional calculations is that of the equally probable formation of ferrite and austenite in stainless steels. Calculations for testing the model and for validation it with experimental data are presented.

  18. Kinetics of ice particles growth in the polar summer mesosphere

    NASA Astrophysics Data System (ADS)

    Zasetsky, A. Y.; Petelina, S. V.

    2009-05-01

    The growth kinetics of ice particles in the polar summer mesosphere is discussed. The particle growth time is calculated using the temperature, water vapor density, and ice number density simultaneously measured by the infrared Fourier Transform Spectrometer on the Atmospheric Chemistry Experiment (ACE-FTS) satellite. The formation rate for ice particles is a very strong function of temperature and water vapor concentration. We found the equilibrium radius of ice particles to be in the range from 20 to 70 nm, and the formation time - from about 2 hours at 150 K to about 18 hours at 125 K. Our results imply that in addition to the commonly accepted particle growth during their sedimentation from higher altitudes, in-situ growth to radii of 50-70 nm at mesospheric temperatures near 150 K in two hours or less may also be possible. Our analysis of possible shapes for mesospheric ice particles using the band shape of ice absorption feature measured by ACE-FTS suggests that cubes or compact hexagonal prisms (with an aspect ratio of 1.1) are the best candidates to represent the crystalline ice particles in the polar summer mesosphere.

  19. Effect of molecular weight on the exponential growth and morphology of hyaluronan/chitosan multilayers: a surface plasmon resonance spectroscopy and atomic force microscopy investigation.

    PubMed

    Kujawa, Piotr; Moraille, Patricia; Sanchez, Jacqueline; Badia, Antonella; Winnik, Françoise M

    2005-06-29

    The layer-by-layer growth of multilayer assemblies of two polysaccharides, the polyanion hyaluronan (HA) and the polycation chitosan (CH), was investigated using atomic force microscopy (AFM) and surface plasmon resonance (SPR) spectroscopy, with primary emphasis on the effect of the polysaccharide molecular weights on the film thickness and surface morphology. The HA/CH multilayers exhibit an exponential increase of the optical film thickness with the number of deposited bilayers. We show that the multilayer thickness at a given stage depends on the size of both CH, the diffusing polyelectrolyte, and HA, the non-diffusing species. Assemblies (12 bilayers) of high molecular weight polysaccharides (HA, 360,000; CH, 160,000) were twice as thick (approximately 900 nm vs approximately 450 nm) as those obtained with low molecular weight polymers (HA, 30,000; CH, 31,000), as assessed by AFM scratch tests. The exponential growth rate is the same for the high and low molecular weight pairs; the larger film thicknesses observed by SPR and by AFM arising from an earlier onset of the steep exponential growth phase in the case of the high molecular weight pair. In all cases, isolated islets form during the deposition of the first CH layer onto the underlying HA. Upon further film growth, individual islets coalesce into larger vermiculate features. The transition from distinct islands to vermiculate structures depends on the molecular weights of the polysaccharides and the lower molecular weight construct presents larger worm-like surface domains than the high molecular weight pair.

  20. Elevated acetyl-CoA by amino acid recycling fuels microalgal neutral lipid accumulation in exponential growth phase for biofuel production.

    PubMed

    Yao, Lina; Shen, Hui; Wang, Nan; Tatlay, Jaspaul; Li, Liang; Tan, Tin Wee; Lee, Yuan Kun

    2017-04-01

    Microalgal neutral lipids [mainly in the form of triacylglycerols (TAGs)], feasible substrates for biofuel, are typically accumulated during the stationary growth phase. To make microalgal biofuels economically competitive with fossil fuels, generating strains that trigger TAG accumulation from the exponential growth phase is a promising biological approach. The regulatory mechanisms to trigger TAG accumulation from the exponential growth phase (TAEP) are important to be uncovered for advancing economic feasibility. Through the inhibition of pyruvate dehydrogenase kinase by sodium dichloroacetate, acetyl-CoA level increased, resulting in TAEP in microalga Dunaliella tertiolecta. We further reported refilling of acetyl-CoA pool through branched-chain amino acid catabolism contributed to an overall sixfold TAEP with marginal compromise (4%) on growth in a TAG-rich D. tertiolecta mutant from targeted screening. Herein, a three-step α loop-integrated metabolic model is introduced to shed lights on the neutral lipid regulatory mechanism. This article provides novel approaches to compress lipid production phase and heightens lipid productivity and photosynthetic carbon capture via enhancing acetyl-CoA level, which would optimize renewable microalgal biofuel to fulfil the demanding fuel market.

  1. Rethinking growth and decay kinetics in activated sludge - towards a new adaptive kinetics approach.

    PubMed

    Friedrich, Michael; Jimenez, Jose; Pruden, Amy; Miller, Jennifer H; Metch, Jacob; Takács, Imre

    2017-02-01

    Growth kinetics in activated sludge modelling (ASM) are typically assumed to be the result of intrinsic growth and decay properties and thus process parameters are deemed to be constant. The activity change in a microbial population is expressed in terms of variance of the active biomass fraction and not actual shifts in bacterial cellular activities. This approach is limited, in that it does not recognise the reality that active biomass is highly physiologically adaptive. Here, a strong correlation between maximum specific growth rate (μmax) and decay rate (be) of ordinary heterotrophic organisms was revealed in both low solids retention times (SRT) and high SRT activated sludge systems. This relationship is indicative of physiological adaptation either for growth (high μmax and be) or survival optimization (low μmax and be). Further, the nitrifier decay process was investigated using molecular techniques to measure decay rates of ammonia oxidizing bacteria and nitrite oxidizing bacteria over a range of temperatures. This approach revealed decay rates 10-12% lower than values previously accepted and used in ASM. These findings highlight potential benefits of incorporating physiological adaptation of heterotrophic and nitrifying populations in future ASM.

  2. Kinetics of droplet growth observed in recent field campaigns

    NASA Astrophysics Data System (ADS)

    Mei, F.; Wang, J.

    2012-12-01

    Atmospheric aerosols can indirectly influence global climate budget by changing the microphysical structure, lifetime, and coverage of clouds. While it is generally agreed that aerosol indirect effects act to cool the Earth-atmosphere system by increasing cloud reflectivity and coverage, the magnitudes of the indirect effects are poorly understood. The formation of cloud droplets from aerosol particles is kinetically controlled by the availability of water vapor, equilibrium water vapor pressure above the growing droplet surface, and both the gas phase and aerosol phase mass transfer resistances. It has been hypothesized that the formation of surface organic films or the delay in dissolution of solute could significantly delay the growth of cloud droplets. Such delay could lead to a higher maximum supersaturation within a rising cloud parcel, therefore higher droplet number concentration and smaller droplet size at constant liquid water content. When only a subset of the droplets experiences significant growth delay, the overall droplet size spectrum will be broadened, which facilitates the formation of precipitation. During three recent field campaigns (CalNex-LA, CARES, and Aerosol Intensive Observation Period at Brookhaven National Laboratory), the CCN activity and droplet growth of size selected particles ranging from 25 to 320 nm were characterized by a CCN counter under supersaturations from 0.1% to 0.8%. The three campaigns allow us to examine the droplet growth for many representative organic aerosol types, including biogenic SOA, anthropogenic SOA, and organic aerosols from biomass burning. The droplet growth of size-selected ambient particles inside the CCN counter was found to be influenced by a number of parameters, including particle critical supersaturation, heterogeneity in particle composition, and particle concentration. For example, reduced droplet growth due to water vapor depletion was observed when particle concentration was higher than 200 cm

  3. Growth Kinetics and Morphology of Barite Crystals Derived from Face-Specific Growth Rates

    DOE PAGES

    Godinho, Jose R. A.; Stack, Andrew G.

    2015-03-30

    Here we investigate the growth kinetics and morphology of barite (BaSO4) crystals by measuring the growth rates of the (001), (210), (010), and (100) surfaces using vertical scanning interferometry. Solutions with saturation indices 1.1, 2.1, and 3.0 without additional electrolyte, in 0.7 M NaCl, or in 1.3 mM SrCl2 are investigated. Face-specific growth rates are inhibited in the SrCl2 solution relative to a solution without electrolyte, except for (100). Contrarily, growth of all faces is promoted in the NaCl solution. The variation of face-specific rates is solution-specific, which leads to a. change of the crystal morphology and overall growth ratemore » of crystals. The measured face-specific growth rates are used to model the growth of single crystals. Modeled crystals have a morphology and size similar to those grown from solution. Based on the model the time dependence of surface area and growth rates is analyzed. Growth rates change with time due to surface area normalization for small crystals and large growth intervals. By extrapolating rates to crystals with large surfaces areas, time-independent growth rates are 0.783, 2.96, and 0.513 mmol∙m-2∙h-1, for saturation index 2.1 solutions without additional electrolyte, NaCl, and SrCl2, respectively.« less

  4. Growth Kinetics and Morphology of Barite Crystals Derived from Face-Specific Growth Rates

    SciTech Connect

    Godinho, Jose R. A.; Stack, Andrew G.

    2015-03-30

    Here we investigate the growth kinetics and morphology of barite (BaSO4) crystals by measuring the growth rates of the (001), (210), (010), and (100) surfaces using vertical scanning interferometry. Solutions with saturation indices 1.1, 2.1, and 3.0 without additional electrolyte, in 0.7 M NaCl, or in 1.3 mM SrCl2 are investigated. Face-specific growth rates are inhibited in the SrCl2 solution relative to a solution without electrolyte, except for (100). Contrarily, growth of all faces is promoted in the NaCl solution. The variation of face-specific rates is solution-specific, which leads to a. change of the crystal morphology and overall growth rate of crystals. The measured face-specific growth rates are used to model the growth of single crystals. Modeled crystals have a morphology and size similar to those grown from solution. Based on the model the time dependence of surface area and growth rates is analyzed. Growth rates change with time due to surface area normalization for small crystals and large growth intervals. By extrapolating rates to crystals with large surfaces areas, time-independent growth rates are 0.783, 2.96, and 0.513 mmol∙m-2∙h-1, for saturation index 2.1 solutions without additional electrolyte, NaCl, and SrCl2, respectively.

  5. Screening and kinetic studies of catharanthine and ajmalicine accumulation and their correlation with growth biomass in Catharanthus roseus hairy roots.

    PubMed

    Benyammi, Roukia; Paris, Cédric; Khelifi-Slaoui, Majda; Zaoui, Djamila; Belabbassi, Ouarda; Bakiri, Nouara; Meriem Aci, Myassa; Harfi, Boualem; Malik, Sonia; Makhzoum, Abdullah; Desobry, Stéphane; Khelifi, Lakhdar

    2016-10-01

    Context Catharanthus roseus (L.) G. Don (Apocynaceae) is still one of the most important sources of terpene indole alkaloids including anticancer and hypertensive drugs as vincristine and vinblastine. These final compounds have complex pathway and many enzymes are involved in their biosynthesis. Indeed, ajmalicine and catharanthine are important precursors their increase can lead to enhance levels of molecules of interest. Objective This study aims at selecting the highest yield of hairy root line(s) and at identifying best times for further treatments. We study kinetics growth and alkaloids (ajmalicine and catharanthine) accumulation of three selected hairy root lines during the culture cycle in order to determine the relationship between biomass production and alkaloids accumulation. Materials and methods Comparative analysis has been carried out on three selected lines of Catharanthus roseus hairy roots (LP10, LP21 and L54) for their kinetics of growth and the accumulation of ajamalicine and catharanthine, throughout a 35-day culture cycle. The methanolic extract for each line in different times during culture cycle is analyzed using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Results Maximum accumulation of the alkaloids is recorded for LP10 line in which the peak of ajmalicine and catharanthine accumulation reached to 3.8 and 4.3 mg/g dry weight (DW), respectively. This increase coincides with an exponential growth phase. Discussion and conclusion Our results suggest that the evolution of accumulation of ajmalicine and catharanthine are positively correlated with the development of the biomass growth. Significantly, for LP10 line the most promising line to continue optimizing the production of TIAs. Additionally, the end of exponential phase remains the best period for elicitor stimuli.

  6. Arabidopsis thaliana root growth kinetics and lunisolar tidal acceleration.

    PubMed

    Fisahn, Joachim; Yazdanbakhsh, Nima; Klingele, Emile; Barlow, Peter

    2012-07-01

    • All living organisms on Earth are continually exposed to diurnal variations in the gravitational tidal force due to the Sun and Moon. • Elongation of primary roots of Arabidopsis thaliana seedlings maintained at a constant temperature was monitored for periods of up to 14 d using high temporal- and spatial-resolution video imaging. The time-course of the half-hourly elongation rates exhibited an oscillation which was maintained when the roots were placed in the free-running condition of continuous illumination. • Correlation between the root growth kinetics collected from seedlings initially raised under several light protocols but whose roots were subsequently in the free-running condition and the lunisolar tidal profiles enabled us to identify that the latter is the probable exogenous determinant of the rhythmic variation in root elongation rate. Similar observations and correlations using roots of Arabidopsis starch mutants suggest a central function of starch metabolism in the response to the lunisolar tide. The periodicity of the lunisolar tidal signal and the concomitant adjustments in root growth rate indicate that an exogenous timer exists for the modulation of root growth and development. • We propose that, in addition to the sensitivity to Earthly 1G gravity, which is inherent to all animals and plants, there is another type of responsiveness which is attuned to the natural diurnal variations of the lunisolar tidal force.

  7. Kinetics of faceting of crystals in growth, etching, and equilibrium

    NASA Astrophysics Data System (ADS)

    Vlachos, D. G.; Schmidt, L. D.; Aris, R.

    1993-03-01

    The faceting of crystals in equilibrium with the gas phase and also during crystal growth and etching conditions is studied using the Monte Carlo method. The dynamics of the transformation of unstable crystallographic orientations into hill and valley structures and the spatial patterns that develop are examined as functions of surface temperature, crystallographic orientation, and strength of interatomic potential for two transport processes: adsorption-desorption and surface diffusion. The results are compared with the continuum theory for facet formation. Thermodynamically unstable orientations break into hill and valley structures, and faceting exhibits three time regimes: disordering, facet nucleation, and coarsening of small facets to large facets. Faceting is accelerated as temperature increases, but thermal roughening can occur at high temperatures. Surface diffusion is the dominant mechanism at short times and small facets but adsorption-desorption becomes important at long times and large facets. Growth and etching promote faceting for conditions close to equilibrium but induce kinetic roughening for conditions far from equilibrium. Simultaneous irreversible growth and etching conditions with fast surface diffusion result in enhanced faceting.

  8. Stochastic Kinetic Modeling of Vesicular Stomatitis Virus Intracellular Growth

    PubMed Central

    Hensel, Sebastian C.; Rawlings, James B.; Yin, John

    2011-01-01

    By building kinetic models of biological networks one may advance the development of new modeling approaches while gaining insights into the biology. We focus here on building a stochastic kinetic model for the intracellular growth of vesicular stomatitis virus (VSV), a well-studied virus that encodes five genes. The essential network of VSV reactions creates challenges to stochastic simulation owing to (i) delayed reactions associated with transcription and genome replication, (ii) production of large numbers of intermediate proteins by translation, and (iii) the presence of highly reactive intermediates that rapidly fluctuate in their intracellular levels. We address these issues by developing a hybrid implementation of the model that combines a delayed stochastic simulation algorithm (DSSA) with Langevin equations to simulate the reactions that produce species in high numbers. Further, we employ a quasi-steady state approximation (QSSA) to overcome the computational burden of small time steps caused by highly reactive species. The simulation is able to capture experimentally observed patterns of viral gene expression. Moreover, the simulation suggests that early levels of a low-abundance species, VSV L mRNA, play a key role in determining the production level of VSV genomes, transcripts, and proteins within an infected cell. Ultimately, these results suggest that stochastic gene expression contribute to the distribution of virus progeny yields from infected cells. PMID:19459014

  9. In situ muGISAXS: II. Thaumatin crystal growth kinetic.

    PubMed

    Gebhardt, Ronald; Pechkova, Eugenia; Riekel, Christian; Nicolini, Claudio

    2010-08-09

    The formation of thaumatin crystals by Langmuir-Blodgett (LB) film nanotemplates was studied by the hanging-drop technique in a flow-through cell by synchrotron radiation micrograzing-incidence small-angle x-ray scattering. The kinetics of crystallization was measured directly on the interface of the LB film crystallization nanotemplate. The evolution of the micrograzing-incidence small-angle x-ray scattering patterns suggests that the increase in intensity in the Yoneda region is due to protein incorporation into the LB film. The intensity variation suggests several steps, which were modeled by system dynamics based on first-order differential equations. The kinetic data can be described by two processes that take place on the LB film, a first, fast, process, attributed to the crystal growth and its detachment from the LB film, and a second, slower process, attributed to an unordered association and conversion of protein on the LB film. 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Kinetic transition during the growth of proeutectoid ferrite in Fe-C-Mn-Si quaternary steel

    NASA Astrophysics Data System (ADS)

    Zhang, Guo-Hong; Heo, Yoon-Uk; Song, Eun-Ju; Suh, Dong-Woo

    2013-03-01

    The kinetics of ferrite growth in Fe-0.1C-1.5Mn-0.94Si (mass pct) quaternary steel is investigated through the characterization of isothermal growth behavior, the thermodynamic prediction of kinetic boundary and the diffusional growth simulations using DICTRA. The change in microstructural evolution from slow growth to fast one is consistent with the calculated change of interface condition from the partitioning local equilibrium (PLE) to the negligible partitioning local equilibrium (NPLE). Compared with the DICTRA simulation, the observed growth kinetics of ferrite are between the calculated ones assuming local equilibrium (LE) and paraequilibrium (PE) criterions. At temperatures below the PLE/NPLE kinetic boundary, the observed growth behavior can be reasonably described by kinetic transition from PE to NPLE condition as isothermal time elapses, taking into account the critical velocity of interface at which trans-interface diffusion of subsitutional element permits the transition from PE to NPLE growth.

  11. Enhancerless cytomegalovirus is capable of establishing a low-level maintenance infection in severely immunodeficient host tissues but fails in exponential growth.

    PubMed

    Podlech, Jürgen; Pintea, Rares; Kropp, Kai A; Fink, Annette; Lemmermann, Niels A W; Erlach, Katja C; Isern, Elena; Angulo, Ana; Ghazal, Peter; Reddehase, Matthias J

    2010-06-01

    Major immediate-early transcriptional enhancers are genetic control elements that act, through docking with host transcription factors, as a decisive regulatory unit for efficient initiation of the productive virus cycle. Animal models are required for studying the function of enhancers paradigmatically in host organs. Here, we have sought to quantitatively assess the establishment, maintenance, and level of in vivo growth of enhancerless mutants of murine cytomegalovirus in comparison with those of an enhancer-bearing counterpart in models of the immunocompromised or immunologically immature host. Evidence is presented showing that enhancerless viruses are capable of forming restricted foci of infection but fail to grow exponentially.

  12. [Role of catalase and superoxide dismutase in the yeast Saccharomyces cerevisiae response to hydrogen peroxide in exponential phase of growth].

    PubMed

    Baĭliak, M M; Semchyshyn, H M; Lushchak, V I

    2006-01-01

    The role of catalase and superoxide dismutase (SOD) in response of the yeast Saccharomyces cerevisiae to oxidative stress induced by hydrogen peroxide in the middle-exponential phase has been investigated. It was shown that cell survival is significantly decreased after yeast exposure to hydrogen peroxide in the strains defective in cytosolic or peroxisomal catalases. Treatment of the wild-type cells with 0.5 mM H2O2 for 30 min causes an increase in the activity of catalase and superoxide dismutase, but the effect was not observed in all strains investigated. It was also shown that hydrogen peroxide leads to an increase in the activities of both catalases and Cu,Zn-containing SOD. The effect was cancelled by cycloheximide, an inhibitor of protein synthesis.

  13. Exact solutions of kinetic equations in an autocatalytic growth model.

    PubMed

    Jędrak, Jakub

    2013-02-01

    Kinetic equations are introduced for the transition-metal nanocluster nucleation and growth mechanism, as proposed by Watzky and Finke [J. Am. Chem. Soc. 119, 10382 (1997)]. Equations of this type take the form of Smoluchowski coagulation equations supplemented with the terms responsible for the chemical reactions. In the absence of coagulation, we find complete analytical solutions of the model equations for the autocatalytic rate constant both proportional to the cluster mass, and the mass-independent one. In the former case, ξ(k)=s(k)(ξ(1))[proportionality]ξ(1)(k)/k was obtained, while in the latter, the functional form of s(k)(ξ(1)) is more complicated. In both cases, ξ(1)(t)=h(μ)(M(μ)(t)) is a function of the moments of the mass distribution. Both functions, s(k)(ξ(1)) and h(μ)(M(μ)), depend on the assumed mechanism of autocatalytic growth and monomer production, and not on other chemical reactions present in a system.

  14. Pattern formation and growth kinetics in eutectic systems

    NASA Astrophysics Data System (ADS)

    Teng, Jing

    Growth patterns during liquid/solid phase transformation are governed by simultaneous effects of heat and mass transfer mechanisms, creation of new interfaces, jump of the crystallization units from liquid to solid and their rearrangement in the solid matrix. To examine how the above processes influence the scale of microstructure, two eutectic systems are chosen for the study: a polymeric system polyethylene glycol-p-dibromobenzene (PEG-DBBZ) and a simple molecular system succinonitrile (SCN)-camphor. The scaling law for SCN-camphor system is found to follow the classical Jackson-Hunt model of circular rod eutectic, where the diffusion in the liquid and the interface energy are the main physics governing the two-phase pattern. In contrast, a significantly different scaling law is observed for the polymer system. The interface kinetics of PEG phase and its solute concentration dependence thus have been critically investigated for the first time by directional solidification technique. A model is then proposed that shows that the two-phase pattern in polymers is governed by the interface diffusion and the interface kinetics. In SCN-camphor system, a new branch of eutectic, elliptical shape rod, is found in thin samples where only one layer of camphor rods is present. It is found that the orientation of the ellipse can change from the major axis in the direction of the thickness to the direction of the width as the velocity and/or the sample thickness is decreased. A theoretical model is developed that predicts the spacing and orientation of the elliptical rods in a thin sample. The single phase growth patterns of SCN-camphor system were also examined with emphasis on the three-dimensional single cell and cell/dendrite transition. For the 3D single cell in a capillary tube, the entire cell shape ahead of the eutectic front can be described by the Saffmann-Taylor finger only at extremely low growth rate. A 3D directional solidification model is developed to

  15. Pattern Formation and Growth Kinetics in Eutectic Systems

    SciTech Connect

    Teng, Jing

    2007-01-01

    Growth patterns during liquid/solid phase transformation are governed by simultaneous effects of heat and mass transfer mechanisms, creation of new interfaces, jump of the crystallization units from liquid to solid and their rearrangement in the solid matrix. To examine how the above processes influence the scale of microstructure, two eutectic systems are chosen for the study: a polymeric system polyethylene glycol-p-dibromobenzene (PEG-DBBZ) and a simple molecular system succinonitrile (SCN)-camphor. The scaling law for SCN-camphor system is found to follow the classical Jackson-Hunt model of circular rod eutectic, where the diffusion in the liquid and the interface energy are the main physics governing the two-phase pattern. In contrast, a significantly different scaling law is observed for the polymer system. The interface kinetics of PEG phase and its solute concentration dependence thus have been critically investigated for the first time by directional solidification technique. A model is then proposed that shows that the two-phase pattern in polymers is governed by the interface diffusion and the interface kinetics. In SCN-camphor system, a new branch of eutectic, elliptical shape rodl, is found in thin samples where only one layer of camphor rods is present. It is found that the orientation of the ellipse can change from the major axis in the direction of the thickness to the direction of the width as the velocity and/or the sample thickness is decreased. A theoretical model is developed that predicts the spacing and orientation of the elliptical rods in a thin sample. The single phase growth patterns of SCN-camphor system were also examined with emphasis on the three-dimensional single cell and cell/dendrite transition. For the 3D single cell in a capillary tube, the entire cell shape ahead of the eutectic front can be described by the Saffmann-Taylor finger only at extremely low growth rate. A 3D directional solidification model is developed to

  16. Gas-phase kinetics during diamond growth: CH4 as-growth species

    NASA Astrophysics Data System (ADS)

    Harris, Stephen J.

    1989-04-01

    We have used a one-dimensional kinetic analysis to model the gas-phase chemistry that occurred during the diamond growth experiments of Chauhan, Angus, and Gardner [J. Appl. Phys. 47, 4746 (1976)]. In those experiments the weight of diamond seed crystals heated by lamps in a CH4/H2 environment was monitored by a microbalance. No filament or electric discharge was present. Our analysis shows that diamond growth occurred in this system by direct reaction of CH4 on the diamond surface. C2H2 and CH3, which have been proposed as diamond growth species, played no significant role there, although our results do not address their possible contributions in other systems such as filament- or plasma-assisted diamond growth.

  17. Re-interpretation of the logistic equation for batch microbial growth in relation to Monod kinetics.

    PubMed

    Kargi, F

    2009-04-01

    To determine the underlying substrate utilization mechanism in the logistic equation for batch microbial growth by revealing the relationship between the logistic and Monod kinetics. Also, to determine the logistic rate constant in terms of Monod kinetic constants. The logistic equation used to describe batch microbial growth was related to the Monod kinetics and found to be first-order in terms of the substrate and biomass concentrations. The logistic equation constant was also related to the Monod kinetic constants. Similarly, the substrate utilization kinetic equations were derived by using the logistic growth equation and related to the Monod kinetics. It is revaled that the logistic growth equation is a special form of the Monod growth kinetics when substrate limitation is first-order with respect to the substrate concentration. The logistic rate constant (k) is directly proportional to the maximum specific growth rate constant (mu(m)) and initial substrate concentration (S(0)) and also inversely related to the saturation constant (K(s)). The semi-empirical logistic equation can be used instead of Monod kinetics at low substrate concentrations to describe batch microbial growth using the relationship between the logistic rate constant and the Monod kinetic constants.

  18. Direct Observation of Aggregative Nanoparticle Growth: Kinetic Modeling of the Size Distribution and Growth Rate

    SciTech Connect

    Woehl, Taylor J.; Park, Chiwoo; Evans, James E.; Arslan, Ilke; Ristenpart, William D.; Browning, Nigel D.

    2014-01-08

    Direct observations of solution-phase nanoparticle growth using in situ liquid transmission electron microscopy (TEM) have demonstrated the importance of “non-classical” growth mechanisms, such as aggregation and coalescence, on the growth and final morphology of nanocrystals at the atomic and single nanoparticle scales. To date, groups have quantitatively interpreted the mean growth rate of nanoparticles in terms of the Lifshitz-Slyozov-Wagner (LSW) model for Ostwald ripening, but less attention has been paid to modeling the corresponding particle size distribution. Here we use in situ fluid stage scanning TEM to demonstrate that silver nanoparticles grow by a length-scale dependent mechanism, where individual nanoparticles grow by monomer attachment but ensemble-scale growth is dominated by aggregation. Although our observed mean nanoparticle growth rate is consistent with the LSW model, we show that the corresponding particle size distribution is broader and more symmetric than predicted by LSW. Following direct observations of aggregation, we interpret the ensemble-scale growth using Smoluchowski kinetics and demonstrate that the Smoluchowski model quantitatively captures the mean growth rate and particle size distribution.

  19. Callus Growth Kinetics of Physic Nut (Jatropha curcas L.) and Content of Fatty Acids from Crude Oil Obtained In Vitro.

    PubMed

    da Luz Costa, Jefferson; da Silva, André Luís Lopes; Bier, Mário César Jucoski; Brondani, Gilvano Ebling; Gollo, André Luiz; Letti, Luiz Alberto Junior; Erasmo, Eduardo Andrea Lemus; Soccol, Carlos Ricardo

    2015-06-01

    The callus growth kinetics allows identifying the appropriate moment for callus pealing and monitoring the accumulation of primary and secondary metabolites. The physic nut (Jatropha curcas L.) is a plant species used for biofuel production due to its high oil content; however, this plant presents a great amount of bioactive compounds which can be useful for industry. The aim of this research was to establish a calli growth curve and to evaluate the fatty acid profile of crude oil extracted from callus. The callus growth kinetics presented a sigmoid standard curve with six distinct phases: lag, exponential, linear, deceleration, stationary, and decline. Total soluble sugars were higher at the inoculation day. Reducing sugars were higher at the inoculation day and at the 80th day. The highest percentage of ethereal extract (oil content) was obtained at the 120th day of culture, reaching 18 % of crude oil from the callus. The calli produced medium-chain and long-chain fatty acids (from 10 to 18 carbon atoms). The palmitic acid was the fatty acid with the highest proportion in oil (55.4 %). The lipid profile obtained in callus oil was different from the seed oil profile.

  20. Kinetics of Ni2Si growth from pure Ni and Ni(V) films on (111) and (100) Si

    NASA Astrophysics Data System (ADS)

    Harith, M. A.; Zhang, J. P.; Campisano, S. U.; Klaar, H.-J.

    1987-01-01

    The kinetics of Ni2Si growth from pure Ni and from Ni0.93V0.07 films on (111) and (100) silicon has been studied by the combination of He+ backscattering, x-ray diffraction, Auger electron spectroscopy (AES) and transmission electron microscopy (TEM) techniques. The activation energies are 1.5 and 1.0 eV for pure Ni and Ni(V) films, respectively while the pre-exponential factors in Ni(V) are 4 5 orders of magnitude smaller than in the pure Ni case. The variations in the measured rates are related to the different grain size of the growing suicide layers. The vanadium is rejected from the silicide layer and piles up at the metalsilicide interface.

  1. Influence of deformation on dolomite rim growth kinetics

    NASA Astrophysics Data System (ADS)

    Helpa, Vanessa; Rybacki, Erik; Grafulha Morales, Luiz Fernando; Dresen, Georg

    2015-04-01

    Using a gas-deformation apparatus stacks of oriented calcite (CaCO3) and magnesite (MgCO3) single crystals were deformed at T = 750° C and P = 400 MPa to examine the influence of stress and strain on magnesio-calcite and dolomite (CaMg[CO3]2) growth kinetics. Triaxial compression and torsion tests performed at constant stresses between 7 and 38 MPa and test durations between 4 and 171 hours resulted in bulk strains of 0.03-0.2 and maximum shear strains of 0.8-5.6, respectively. The reaction rims consist of fine-grained (2-7 μm) dolomite with palisade-shaped grains growing into magnesite reactants and equiaxed granular dolomite grains next to calcite. In between dolomite and pure calcite, magnesio-calcite grains evolved with an average grain size of 20-40 μm. Grain boundaries tend to be straighter at high bulk strains and equilibrium angles at grain triple junctions are common within the magnesio-calcite layer. Transmission electron microscopy shows almost dislocation free palisades and increasing dislocation density within granular dolomite towards the magnesio-calcite boundary. Within magnesio-calcite grains, dislocations are concentrated at grain boundaries. Variation of time at fixed stress (˜17 MPa) yields a parabolic time dependence of dolomite rim width, indicating diffusion-controlled growth, similar to isostatic rim growth behavior. In contrast, the magnesio-calcite layer growth is enhanced compared to isostatic conditions. Triaxial compression at given time shows no significant change of dolomite rim thickness (11±2 μm) and width of magnesio-calcite layers (33±5 μm) with increasing stress. In torsion experiments, reaction layer thickness and grain size decrease from the center (low stress/strain) to the edge (high strain/stress) of samples. Chemical analysis shows nearly stoichiometric composition of dolomite palisades, but enhanced Ca content within granular grains, indicating local disequilibrium with magnesio-calcite, in particular for twisted

  2. Growth kinetics and inhibition of growth of chemical vapor deposited thin tungsten films on silicon from tungsten hexafluoride

    NASA Astrophysics Data System (ADS)

    Leusink, G. J.; Kleijn, C. R.; Oosterlaken, T. G. M.; Janssen, G. C. A. M.; Radelaar, S.

    1992-07-01

    The growth kinetics and inhibition of growth of chemical vapor deposited thin W films on Si(100) from WF6 was studied with in situ growth stress and reflectivity measurements and ex situ weight gain measurements. A systematic series of experiments at varying WF6 flow, total pressure, and temperature show that the thickening kinetics and inhibition of the growth are controlled by two processes: WF6 diffusion through the gas phase and Si diffusion through the thickening columnar film. The steady state growth kinetics are controlled by WF6 diffusion in the gas phase whereas inhibition of the growth occurs at the transition from WF6 gas diffusion limited to Si solid state diffusion limited growth. A simple model based on WF6 gas phase diffusion and Si solid state diffusion is presented which gives a quantitative description of the experimental results.

  3. The H-NS-like protein StpA represses the RpoS (sigma 38) regulon during exponential growth of Salmonella Typhimurium.

    PubMed

    Lucchini, Sacha; McDermott, Paul; Thompson, Arthur; Hinton, Jay C D

    2009-12-01

    StpA is a paralogue of the nucleoid-associated protein H-NS that is conserved in a range of enteric bacteria and had no known function in Salmonella Typhimurium. We show that 5% of the Salmonella genome is regulated by StpA, which contrasts with the situation in Escherichia coli where deletion of stpA only had minor effects on gene expression. The StpA-dependent genes of S. Typhimurium are a specific subset of the H-NS regulon that are predominantly under the positive control of sigma(38) (RpoS), CRP-cAMP and PhoP. Regulation by StpA varied with growth phase; StpA controlled sigma(38) levels at mid-exponential phase by preventing inappropriate activation of sigma(38) during rapid bacterial growth. In contrast, StpA only activated the CRP-cAMP regulon during late exponential phase. ChIP-chip analysis revealed that StpA binds to PhoP-dependent genes but not to most genes of the CRP-cAMP and sigma(38) regulons. In fact, StpA indirectly regulates sigma(38)-dependent genes by enhancing sigma(38) turnover by repressing the anti-adaptor protein rssC. We discovered that StpA is essential for the dynamic regulation of sigma(38) in response to increased glucose levels. Our findings identify StpA as a novel growth phase-specific regulator that plays an important physiological role by linking sigma(38) levels to nutrient availability.

  4. Heat and pulsed electric field resistance of pigmented and non-pigmented enterotoxigenic strains of Staphylococcus aureus in exponential and stationary phase of growth.

    PubMed

    Cebrián, G; Sagarzazu, N; Pagán, R; Condón, S; Mañas, P

    2007-09-30

    The survival of four enterotoxigenic strains of Staphylococcus aureus (with different pigment content) to heat and to pulsed electric fields (PEF) treatments, and the increase in resistance to both processing stresses associated with entrance into stationary phase was examined. Survival curves to heat (58 degrees C) and to PEF (26 kV/cm) of cells in the stationary and in the exponential phase of growth were obtained. Whereas a wide variation in resistance to heat treatments was detected amongst the four strains, with decimal reduction time values at 58 degrees C (D(58 degrees C)) ranging from 0.93 to 0.20 min, the resistance to PEF was very similar. The occurrence of a higher tolerance to heat in stationary phase was coincident with a higher content in carotenoid pigmentation in S. aureus colonies. However, cells of the most heat resistant (pigmented) and the most heat sensitive (non-pigmented) strains in the mid-exponential phase of growth showed similar resistance to heat and to PEF. Therefore the increase in thermotolerance upon entrance into stationary phase of growth was more marked for the pigmented strains. Recovery in anaerobic conditions particularly enhanced survival to heat treatments in a non-pigmented strain. Strain CECT 4630, which possess a deficient sigma B activity, showed low heat resistance, low pigmentation, and reduced increase in thermotolerance in stationary phase. These results indicate that the magnitude of the development of a higher heat resistance in S. aureus in stationary phase is positively related to the carotenoid content of the strain. The development of tolerance to pulsed electric field was less relevant and not linked to the carotenoid content.

  5. Reactions of allylic radicals that impact molecular weight growth kinetics.

    PubMed

    Wang, Kun; Villano, Stephanie M; Dean, Anthony M

    2015-03-07

    The reactions of allylic radicals have the potential to play a critical role in molecular weight growth (MWG) kinetics during hydrocarbon oxidation and/or pyrolysis. Due to their stability (when compared to alkyl radicals), they can accumulate to relatively high concentrations. Thus, even though the rate coefficients for their various reactions are small, the rates of these reactions may be significant. In this work, we use electronic structure calculations to examine the recombination, addition, and abstraction reactions of allylic radicals. For the recombination reaction of allyl radicals, we assign a high pressure rate rule that is based on experimental data. Once formed, the recombination product can potentially undergo an H-atom abstraction reaction followed by unimolecular cyclization and β-scission reactions. Depending upon the conditions (e.g., higher pressures) these pathways can lead to the formation of stable MWG species. The addition of allylic radicals to olefins can also lead to MWG species formation. Once again, cyclization of the adduct followed by β-scission is an important energy accessible route. Since the recombination and addition reactions produce chemically-activated adducts, we have explored the pressure- and temperature-dependence of the overall rate constants as well as that for the multiple product channels. We describe a strategy for estimating these pressure-dependencies for systems where detailed electronic structure information is not available. We also derive generic rate rules for hydrogen abstraction reactions from olefins and diolefins by methyl and allyl radicals.

  6. Coupled simulation of kinetic pedestal growth and MHD ELM crash

    SciTech Connect

    Park, G.; Cummings, J.; Chang, C. S.; Klasky, Scott A; Ku, S.; Podhorszki, Norbert; Pankin, A.; Samtaney, Ravi; Shoshani, A.; Snyder, P.; Strauss, H.; Sugiyama, L.; CPES Team, the

    2007-01-01

    Edge pedestal height and the accompanying ELM crash are critical elements of ITER physics yet to be understood and predicted through high performance computing. An entirely self-consistent first principles simulation is being pursued as a long term research goal, and the plan is planned for completion in time for ITER operation. However, a proof-of-principle work has already been established using a computational tool that employs the best first principles physics available at the present time. A kinetic edge equilibrium code XGC0, which can simulate the neoclassically dominant pedestal growth from neutral ionization (using a phenomenological residual turbulence diffusion motion superposed upon the neoclassical particle motion) is coupled to an extended MHD code M3D, which can perform the nonlinear ELM crash. The stability boundary of the pedestal is checked by an ideal MHD linear peeling-ballooning code, which has been validated against many experimental data sets for the large scale (type I) ELMs onset boundary. The coupling workflow and scientific results to be enabled by it are described.

  7. Coupled simulation of kinetic pedestal growth and MHD ELM crash

    SciTech Connect

    Park, G-Y; Cummings, J.; Chang, C S; Podhorszki, Norbert; Klasky, Scott A; Ku, S.; Pankin, A.; Samtaney, Ravi; Shoshani, A.; Snyder, P.; Sugiyama, L.

    2009-01-01

    Edge pedestal height and the accompanying ELM crash are critical elements of ITER physics yet to be understood and predicted through high performance computing. An entirely self-consistent first principles simulation is being pursued as a long term research goal, and the plan is planned for completion in time for ITER operation. However, a proof-of-principle work has already been established using a computational tool that employs the best first principles physics available at the present time. A kinetic edge equilibrium code XGC0, which can simulate the neoclassically dominant pedestal growth from neutral ionization (using a phenomenological residual turbulence diffusion motion superposed upon the neoclassical particle motion) is coupled to an extended MHD code M3D, which can perform the nonlinear ELM crash. The stability boundary of the pedestal is checked by an ideal MHD linear peeling-ballooning code, which has been validated against many experimental data sets for the large scale (type I) ELMs onset boundary. The coupling workflow and scientific results to be enabled by it are described.

  8. Nucleation kinetics and crystal growth with fluctuating rates at the intermediate stage of phase transitions

    NASA Astrophysics Data System (ADS)

    Alexandrov, D. V.; Malygin, A. P.

    2014-01-01

    Crystal growth kinetics accompanied by particle growth with fluctuating rates at the intermediate stage of phase transitions is analyzed theoretically. The integro-differential model of governing equations is solved analytically for size-independent growth rates and arbitrary dependences of the nucleation frequency on supercooling/supersaturation. Two important cases of Weber-Volmer-Frenkel-Zel'dovich and Mier nucleation kinetics are detailed. A Fokker-Plank type equation for the crystal-size density distribution function is solved explicitly.

  9. Menaquinone synthesis is critical for maintaining mycobacterial viability during exponential growth and recovery from non-replicating persistence.

    PubMed

    Dhiman, Rakesh K; Mahapatra, Sebabrata; Slayden, Richard A; Boyne, Melissa E; Lenaerts, Anne; Hinshaw, Jerald C; Angala, Shiva K; Chatterjee, Delphi; Biswas, Kallolmay; Narayanasamy, Prabagaran; Kurosu, Michio; Crick, Dean C

    2009-04-01

    Understanding the basis of bacterial persistence in latent infections is critical for eradication of tuberculosis. Analysis of Mycobacterium tuberculosis mRNA expression in an in vitro model of non-replicating persistence indicated that the bacilli require electron transport chain components and ATP synthesis for survival. Additionally, low microM concentrations of aminoalkoxydiphenylmethane derivatives inhibited both the aerobic growth and survival of non-replicating, persistent M. tuberculosis. Metabolic labelling studies and quantification of cellular menaquinone levels suggested that menaquinone synthesis, and consequently electron transport, is the target of the aminoalkoxydiphenylmethane derivatives. This hypothesis is strongly supported by the observations that treatment with these compounds inhibits oxygen consumption and that supplementation of growth medium with exogenous menaquinone rescued both growth and oxygen consumption of treated bacilli. In vitro assays indicate that the aminoalkoxydiphenylmethane derivatives specifically inhibit MenA, an enzyme involved in the synthesis of menaquinone. Thus, the results provide insight into the physiology of mycobacterial persistence and a basis for the development of novel drugs that enhance eradication of persistent bacilli and latent tuberculosis.

  10. Exploring growth kinetics of carbon nanotube arrays by in situ optical diagnostics and modeling

    SciTech Connect

    Puretzky, Alexander A; Geohegan, David B; Pannala, Sreekanth; Rouleau, Christopher

    2014-01-01

    Simple kinetic models of carbon nanotube growth have been able to successfully link together many experimental parameters involved in the growth of carbon nanotubes for practical applications including the prediction of growth rates, terminal lengths, number of walls, activation energies, and their dependences on the growth environment. The implications of recent experiments utilizing in situ monitoring of carbon nanotube growth on our past kinetic model are first reviewed. Then, sub-second pulsed feedstock gas introduction is discussed to explore the nucleation and initial growth of carbon nanotubes in the context of the kinetic model. Moreover, kinetic effects in "pulsed CVD" - using repeated pulsed gas introduction to stop and restart nanotube growth - are explored to understand renucleation, the origin of alignment in nanotube arrays, and incremental growth. Time-resolved reflectivity of the surface is used to remotely understand the kinetics of nucleation and the coordinated growth of arrays. This approach demonstrates that continuous vertically aligned single wall carbon nanotubes can be grown incrementally by pulsed CVD, and that the first exposure of fresh catalyst to feedstock gas is critical to nanotubes site density required for coordinated growth. Aligned nanotube arrays (as short as 60 nm) are shown to nucleate and grow within single, sub-second gas pulses. The multiple-pulse growth experiments (> 100 pulses) show that a high fraction of nanotubes renucleate on subsequent gas pulses.

  11. 2-DE based proteomic analysis of Saccharomyces cerevisiae wild and K+ transport-affected mutant (trk1,2) strains at the growth exponential and stationary phases.

    PubMed

    Curto, Miguel; Valledor, Luis; Navarrete, Clara; Gutiérrez, Dolores; Sychrova, Hana; Ramos, José; Jorrin, Jesús

    2010-11-10

    By using a 2-DE based workflow, the proteome of wild and potassium transport mutant trk1,2 under optimal growth potassium concentration (50mM) has been analyzed. At the exponential and stationary phases, both strains showed similar growth, morphology potassium content, and Vmax of rubidium transport, the only difference found being the Km values for this potassium analogue transport, higher for the mutant (20mM) than for the wild (3-6mM) cells. Proteins were buffer-extracted, precipitated, solubilized, quantified, and subjected to 2-DE analysis in the 5-8 pH range. More differences in protein content (37-64mgg(-1) cell dry weight) and number of resolved spots (178-307) were found between growth phases than between strains. In all, 164 spots showed no differences between samples and a total of 105 were considered to be differential after ANOVA test. 171 proteins, corresponding to 71 unique gene products have been identified, this set being dominated by cytosolic species and glycolitic enzymes. The ranking of the more abundant spots revealed no differences between samples and indicated fermentative metabolism, and active cell wall biosynthesis, redox homeostasis, biosynthesis of amino acids, coenzymes, nucleotides, and RNA, and protein turnover, apart from cell division and growth. PCA analysis allowed the separation of growth phases (PC1 and 2) and strains at the stationary phase (PC3 and 4), but not at the exponential one. These results are also supported by clustering analysis. As a general tendency, a number of spots newly appeared at the stationary phase in wild type, and to a lesser extent, in the mutant. These up-accumulated spots corresponded to glycolitic enzymes, indicating a more active glucose catabolism, accompanied by an accumulation of methylglyoxal detoxification, and redox-homeostasis enzymes. Also, more extensive proteolysis was observed at the stationary phase with this resulting in an accumulation of low Mr protein species. Copyright © 2010

  12. Maintaining exponential growth, solution conductivity, and solution pH in low-ionic-strength solution culture using a computer-controlled nutrient delivery system.

    PubMed

    Blair, Laura M; Taylor, Gregory J

    2004-07-01

    Studies of plant nutrient requirements in solution culture have often used nutrient concentrations many-fold higher than levels found in fertile soils, creating an artificial rooting environment that can alter patterns of nutrient acquisition. The relative addition rate (RAR) technique addresses this problem by providing nutrients in exponentially increasing quantities to plant roots in solution culture. A computer-controlled RAR nutrient delivery system has been developed to reduce workload and to facilitate more frequent nutrient additions (4x daily) than is possible with manual additions. In initial experiments, a minimum background solution containing 500 microM nitrogen and all other essential nutrients in optimal proportions was required for the healthy growth of Triticum aestivum. This requirement was reduced to 50 microM nitrogen when calcium in the background solutions was increased to 400 microM. Varying the abundance of ammonium and nitrate in both background and delivery solutions provided a means of controlling plant-induced pH changes in growth solutions. In optimized solutions, plant relative growth rates (RGR) in the order of 0.2 g g(-1) plant d(-1) were maintained over a 22 d experimental period. Variation in RARs provided a means of growing plants with varying RGRs under relatively constant conditions of solution electrical conductivity and pH.

  13. Phase-field Model for Interstitial Loop Growth Kinetics and Thermodynamic and Kinetic Models of Irradiated Fe-Cr Alloys

    SciTech Connect

    Li, Yulan; Hu, Shenyang Y.; Sun, Xin; Khaleel, Mohammad A.

    2011-06-15

    Microstructure evolution kinetics in irradiated materials has strongly spatial correlation. For example, void and second phases prefer to nucleate and grow at pre-existing defects such as dislocations, grain boundaries, and cracks. Inhomogeneous microstructure evolution results in inhomogeneity of microstructure and thermo-mechanical properties. Therefore, the simulation capability for predicting three dimensional (3-D) microstructure evolution kinetics and its subsequent impact on material properties and performance is crucial for scientific design of advanced nuclear materials and optimal operation conditions in order to reduce uncertainty in operational and safety margins. Very recently the meso-scale phase-field (PF) method has been used to predict gas bubble evolution, void swelling, void lattice formation and void migration in irradiated materials,. Although most results of phase-field simulations are qualitative due to the lake of accurate thermodynamic and kinetic properties of defects, possible missing of important kinetic properties and processes, and the capability of current codes and computers for large time and length scale modeling, the simulations demonstrate that PF method is a promising simulation tool for predicting 3-D heterogeneous microstructure and property evolution, and providing microstructure evolution kinetics for higher scale level simulations of microstructure and property evolution such as mean field methods. This report consists of two parts. In part I, we will present a new phase-field model for predicting interstitial loop growth kinetics in irradiated materials. The effect of defect (vacancy/interstitial) generation, diffusion and recombination, sink strength, long-range elastic interaction, inhomogeneous and anisotropic mobility on microstructure evolution kinetics is taken into account in the model. The model is used to study the effect of elastic interaction on interstitial loop growth kinetics, the interstitial flux, and sink

  14. Kinetics of Austenite Grain Growth During Heating and Its Influence on Hot Deformation of LZ50 Steel

    NASA Astrophysics Data System (ADS)

    Du, Shiwen; Li, Yongtang; Zheng, Yi

    2016-07-01

    Grain growth behaviors of LZ50 have been systematically investigated for various temperatures and holding times. Quantitative evaluations of the grain growth kinetics over a wide range of temperature (950-1200 °C) and holding time (10-180 min) have been performed. With the holding time kept constant, the average austenite grain size has an exponential relationship with the heating temperature, while with the heating temperature kept constant, the relationship between the austenite average grain size and holding time is a parabolic curve approximately. The holding time dependence of average austenite grain size obeys the Beck's equation. As the heating temperature increases, the time exponent for grain growth n increases from 0.21 to 0.39. On the basis of previous models and experimental results, taking the initial grain size into account, the mathematical model for austenite grain growth of LZ50 during isothermal heating and non-isothermal heating is proposed. The effects of initial austenite grain size on hot deformation behavior of LZ50 are analyzed through true stress-strain curves under different deformation conditions. Initial grain size has a slight effect on peak stress.

  15. Non-exponential relaxation, fictive temperatures, and dispersive kinetics in the liquid-glass-liquid transition range of acetaminophen, sulfathiazole, and their mixtures

    NASA Astrophysics Data System (ADS)

    Aji, D. P. B.; Khouri, J.; Johari, G. P.

    2014-11-01

    To investigate the effects of added molecular heterogeneity on the hysteretic features of liquid-glass-liquid transition, we studied acetaminophen, sulfathiazole, and three of their mixtures by calorimetry, and determined the Tg and the fictive temperature, Tf, from changes in the enthalpy and entropy on the cooling and heating paths, as well as the non-exponential parameter, βcal. We find that, (i) Tf for cooling is within 1-3 K of Tf for heating and both are close to Tg, (ii) the closed loop entropy change in the liquid-glass-liquid range is negligibly small, (iii) Tg and Tf increase on increasing sulfathiazole in the mixture, (iv) βcal first slightly increases when the second component is added and then decreases, and (v) ageing causes deviations from a non-exponential, nonlinear behavior of the glass. In terms of fluctuations in a potential energy landscape, adding a solute heterogeneity would shift the state point to another part of the landscape with a different distribution of barrier heights and a different number of minima accessible to the state point. Part of the change in βcal is attributed to hydrogen-bond formation between the two components. Ageing changes the relaxation times distribution, more at short relaxation times than at long relaxation times, and multiplicity of relaxation modes implied by βcal < 1 indicates that each mode contributing to the enthalpy has its own Tg or Tf. βcal differs from βage determined from isothermal ageing, and the distribution parameter of α-relaxation times would differ from both βcal and βage.

  16. The influence of crystal morphology on the kinetics of growth of calcium oxalate monohydrate

    NASA Astrophysics Data System (ADS)

    Millan, A.; Sohnel, O.; Grases, F.

    1997-08-01

    The growth of several calcium oxalate monohydrate seeds in the presence and absence of additives (phytate, EDTA and citrate) has been followed by potentiometry measurements. Growth rates have been calculated from precipitate curves by a cubic spline method and represented in logarithmic plots versus supersaturation. Crystal growth kinetics were found to be dependent on crystal morphology, crystal perfection and degree of aggregation. Some seeds were dissolving in supersaturated solutions. Other seeds showed an initial growth phase of high-order kinetics. The effect of the additives was also different on each seed. Three alternative mechanisms for calcium oxalate crystal growth are proposed.

  17. Interactive effects of temperature, pH, and water activity on the growth kinetics of Shiga toxin-producing Escherichia coli O104:H4 3.

    PubMed

    Juneja, Vijay K; Mukhopadhyay, Sudarsan; Ukuku, Dike; Hwang, Cheng-An; Wu, Vivian C H; Thippareddi, Harshavardhan

    2014-05-01

    The risk of non-O157 Shiga toxin-producing Escherichia coli strains has become a growing public health concern. Several studies characterized the behavior of E. coli O157:H7; however, no reports on the influence of multiple factors on E. coli O104:H4 are available. This study examined the effects and interactions of temperature (7 to 46°C), pH (4.5 to 8.5), and water activity (aw ; 0.95 to 0.99) on the growth kinetics of E. coli O104:H4 and developed predictive models to estimate its growth potential in foods. Growth kinetics studies for each of the 23 variable combinations from a central composite design were performed. Growth data were used to obtain the lag phase duration (LPD), exponential growth rate, generation time, and maximum population density (MPD). These growth parameters as a function of temperature, pH, and aw as controlling factors were analyzed to generate second-order response surface models. The results indicate that the observed MPD was dependent on the pH, aw, and temperature of the growth medium. Increasing temperature resulted in a concomitant decrease in LPD. Regression analysis suggests that temperature, pH, and aw significantly affect the LPD, exponential growth rate, generation time, and MPD of E. coli O104:H4. A comparison between the observed values and those of E. coli O157:H7 predictions obtained by using the U. S. Department of Agriculture Pathogen Modeling Program indicated that E. coli O104:H4 grows faster than E. coli O157:H7. The developed models were validated with alfalfa and broccoli sprouts. These models will provide risk assessors and food safety managers a rapid means of estimating the likelihood that the pathogen, if present, would grow in response to the interaction of the three variables assessed.

  18. Notes on Interface Growth Kinetics 50 Years After Burton, Cabrera and Frank

    NASA Technical Reports Server (NTRS)

    Chernov, A. A.

    2003-01-01

    This is an overview of basic problems of crystal growth kinetics controlled by processes on the crystal interface with solution and melt. Included, also, are results on fundamental issues concerning morphological stability of crystal-solution interface that engage both interface kinetics and mass transport by diffusion and convection.

  19. Development of tolerogenic dendritic cells and regulatory T cells favors exponential bacterial growth and survival during early respiratory tularemia

    PubMed Central

    Periasamy, Sivakumar; Singh, Anju; Sahay, Bikash; Rahman, Tabassum; Feustel, Paul J.; Pham, Giang H.; Gosselin, Edmund J.; Sellati, Timothy J.

    2011-01-01

    Tularemia is a vector-borne zoonosis caused by Ft, a Gram-negative, facultative intracellular bacterium. Ft exists in two clinically relevant forms, the European biovar B (holarctica), which produces acute, although mild, self-limiting infections, and the more virulent United States biovar A (tularensis), which is often associated with pneumonic tularemia and more severe disease. In a mouse model of tularemia, respiratory infection with the virulence-attenuated Type B (LVS) or highly virulent Type A (SchuS4) strain engenders peribronchiolar and perivascular inflammation. Paradoxically, despite an intense neutrophilic infiltrate and high bacterial burden, Th1-type proinflammatory cytokines (e.g., TNF, IL-1β, IL-6, and IL-12) are absent within the first ∼72 h of pulmonary infection. It has been suggested that the bacterium has the capacity to actively suppress or block NF-κB signaling, thus causing an initial delay in up-regulation of inflammatory mediators. However, our previously published findings and those presented herein contradict this paradigm and instead, strongly support an alternative hypothesis. Rather than blocking NF-κB, Ft actually triggers TLR2-dependent NF-κB signaling, resulting in the development and activation of tDCs and the release of anti-inflammatory cytokines (e.g., IL-10 and TGF-β). In turn, these cytokines stimulate development and proliferation of Tregs that may restrain Th1-type proinflammatory cytokine release early during tularemic infection. The highly regulated and overall anti-inflammatory milieu established in the lung is permissive for unfettered growth and survival of Ft. The capacity of Ft to evoke such a response represents an important immune-evasive strategy. PMID:21724804

  20. Development of tolerogenic dendritic cells and regulatory T cells favors exponential bacterial growth and survival during early respiratory tularemia.

    PubMed

    Periasamy, Sivakumar; Singh, Anju; Sahay, Bikash; Rahman, Tabassum; Feustel, Paul J; Pham, Giang H; Gosselin, Edmund J; Sellati, Timothy J

    2011-09-01

    Tularemia is a vector-borne zoonosis caused by Ft, a Gram-negative, facultative intracellular bacterium. Ft exists in two clinically relevant forms, the European biovar B (holarctica), which produces acute, although mild, self-limiting infections, and the more virulent United States biovar A (tularensis), which is often associated with pneumonic tularemia and more severe disease. In a mouse model of tularemia, respiratory infection with the virulence-attenuated Type B (LVS) or highly virulent Type A (SchuS4) strain engenders peribronchiolar and perivascular inflammation. Paradoxically, despite an intense neutrophilic infiltrate and high bacterial burden, T(h)1-type proinflammatory cytokines (e.g., TNF, IL-1β, IL-6, and IL-12) are absent within the first ∼72 h of pulmonary infection. It has been suggested that the bacterium has the capacity to actively suppress or block NF-κB signaling, thus causing an initial delay in up-regulation of inflammatory mediators. However, our previously published findings and those presented herein contradict this paradigm and instead, strongly support an alternative hypothesis. Rather than blocking NF-κB, Ft actually triggers TLR2-dependent NF-κB signaling, resulting in the development and activation of tDCs and the release of anti-inflammatory cytokines (e.g., IL-10 and TGF-β). In turn, these cytokines stimulate development and proliferation of T(regs) that may restrain T(h)1-type proinflammatory cytokine release early during tularemic infection. The highly regulated and overall anti-inflammatory milieu established in the lung is permissive for unfettered growth and survival of Ft. The capacity of Ft to evoke such a response represents an important immune-evasive strategy.

  1. Kinetic versus thermodynamic control over growth process of electrodeposited Bi/BiSb superlattice nanowires.

    PubMed

    Dou, Xincun; Li, Guanghai; Lei, Hechang

    2008-05-01

    The growth mechanism of the electrodeposited single crystalline nanowires is generally considered to follow a three-dimensional to two-dimensional (2D) transition mode, and as for the 2D growth, it is ordinarily considered as a plane growth mode (layer-by-layer growth mechanism). We report in this Letter the growth of Bi/BiSb superlattice nanowires by adopting a charge-controlled pulse electrodeposition technique, and to our best knowledge, different growth modes of the nanowires, the 2D plane growth mode, the tilted plane growth mode, and the curved plane growth mode, were first observed. These growth modes were gathered and analyzed from the perspectives of crystal growth as well as kinetics and thermodynamics. It is shown that the superlattice nanowires are good structures for studying the growth mechanism of electrodeposited nanowires. This work will deeply benefit the understanding of the growth process of the electrodeposited nanowires and provide important experiment data to crystal growth theory.

  2. Metabolic Profiling and Flux Analysis of MEL-2 Human Embryonic Stem Cells during Exponential Growth at Physiological and Atmospheric Oxygen Concentrations

    PubMed Central

    Titmarsh, Drew; Krömer, Jens O.; Kao, Li-Pin; Nielsen, Lars; Wolvetang, Ernst; Cooper-White, Justin

    2014-01-01

    As human embryonic stem cells (hESCs) steadily progress towards regenerative medicine applications there is an increasing emphasis on the development of bioreactor platforms that enable expansion of these cells to clinically relevant numbers. Surprisingly little is known about the metabolic requirements of hESCs, precluding the rational design and optimisation of such platforms. In this study, we undertook an in-depth characterisation of MEL-2 hESC metabolic behaviour during the exponential growth phase, combining metabolic profiling and flux analysis tools at physiological (hypoxic) and atmospheric (normoxic) oxygen concentrations. To overcome variability in growth profiles and the problem of closing mass balances in a complex environment, we developed protocols to accurately measure uptake and production rates of metabolites, cell density, growth rate and biomass composition, and designed a metabolic flux analysis model for estimating internal rates. hESCs are commonly considered to be highly glycolytic with inactive or immature mitochondria, however, whilst the results of this study confirmed that glycolysis is indeed highly active, we show that at least in MEL-2 hESC, it is supported by the use of oxidative phosphorylation within the mitochondria utilising carbon sources, such as glutamine to maximise ATP production. Under both conditions, glycolysis was disconnected from the mitochondria with all of the glucose being converted to lactate. No difference in the growth rates of cells cultured under physiological or atmospheric oxygen concentrations was observed nor did this cause differences in fluxes through the majority of the internal metabolic pathways associated with biogenesis. These results suggest that hESCs display the conventional Warburg effect, with high aerobic activity despite high lactate production, challenging the idea of an anaerobic metabolism with low mitochondrial activity. The results of this study provide new insight that can be used in

  3. Metabolic profiling and flux analysis of MEL-2 human embryonic stem cells during exponential growth at physiological and atmospheric oxygen concentrations.

    PubMed

    Turner, Jennifer; Quek, Lake-Ee; Titmarsh, Drew; Krömer, Jens O; Kao, Li-Pin; Nielsen, Lars; Wolvetang, Ernst; Cooper-White, Justin

    2014-01-01

    As human embryonic stem cells (hESCs) steadily progress towards regenerative medicine applications there is an increasing emphasis on the development of bioreactor platforms that enable expansion of these cells to clinically relevant numbers. Surprisingly little is known about the metabolic requirements of hESCs, precluding the rational design and optimisation of such platforms. In this study, we undertook an in-depth characterisation of MEL-2 hESC metabolic behaviour during the exponential growth phase, combining metabolic profiling and flux analysis tools at physiological (hypoxic) and atmospheric (normoxic) oxygen concentrations. To overcome variability in growth profiles and the problem of closing mass balances in a complex environment, we developed protocols to accurately measure uptake and production rates of metabolites, cell density, growth rate and biomass composition, and designed a metabolic flux analysis model for estimating internal rates. hESCs are commonly considered to be highly glycolytic with inactive or immature mitochondria, however, whilst the results of this study confirmed that glycolysis is indeed highly active, we show that at least in MEL-2 hESC, it is supported by the use of oxidative phosphorylation within the mitochondria utilising carbon sources, such as glutamine to maximise ATP production. Under both conditions, glycolysis was disconnected from the mitochondria with all of the glucose being converted to lactate. No difference in the growth rates of cells cultured under physiological or atmospheric oxygen concentrations was observed nor did this cause differences in fluxes through the majority of the internal metabolic pathways associated with biogenesis. These results suggest that hESCs display the conventional Warburg effect, with high aerobic activity despite high lactate production, challenging the idea of an anaerobic metabolism with low mitochondrial activity. The results of this study provide new insight that can be used in

  4. Temperature dependence of protein solubility-determination, application to crystallization, and growth kinetics studies

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz

    1993-01-01

    A scintillation method was developed for determinations of the temperature dependence of the solubility, and of nucleation induction times of proteins, in 50-100 mu(l) volumes of solution. Solubility data for lysozyme and horse serum albumin were obtained for various combinations of pH and precipitant concentrations. These data and the nucleation induction information were used for dynamic crystallization control, that is, for the controlled separation of nucleation and growth stages. Individual lysozyme and horse serum albumin crystals were grown in 15-20 mu(l) solution volumes contained in x-ray capillaries. The morphology and kinetics of the growth and dissolution of lysozyme in aqueous solutions with 2.5 percent NaCl and at pH = 4.5 was studied in situ with a depth resolution of 300 A (4 unit cells) by high resolution optical microscopy and digital image processing. The bulk super- or under saturation, sigma, of the solution inside a closed growth cell was controlled by temperature. The growth habit was bound by (110) and (101) faces that grew through layer spreading, although with different growth rate dependencies on supersaturation/temperature. At sigma less than 10 (obtained at higher temperatures) growth was purely kinetic ally controlled, with impurity effects (macrostep formation and kinetic hindrance) becoming significant for sigma less than 2. At sigma greater than 10 (lower temperatures), anisotropies in the interfacial kinetics were more pronounced, with interfacial kinetics and bulk transport becoming equally important to the growth morphology. Growth rates were growth history dependent. The formation of striations (layers of irregularly incorporated solution) was unambiguously correlated with growth temperature variations. Etching exposed dislocations and various high-index faces whose growth morphologies were studied during return to the steady state growth form. Growth steps were observed to originate from two-dimensional nuclei or from outcrops

  5. Temperature dependence of protein solubility-determination, application to crystallization, and growth kinetics studies

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz

    1993-01-01

    A scintillation method was developed for determinations of the temperature dependence of the solubility, and of nucleation induction times of proteins, in 50-100 mu(l) volumes of solution. Solubility data for lysozyme and horse serum albumin were obtained for various combinations of pH and precipitant concentrations. These data and the nucleation induction information were used for dynamic crystallization control, that is, for the controlled separation of nucleation and growth stages. Individual lysozyme and horse serum albumin crystals were grown in 15-20 mu(l) solution volumes contained in x-ray capillaries. The morphology and kinetics of the growth and dissolution of lysozyme in aqueous solutions with 2.5 percent NaCl and at pH = 4.5 was studied in situ with a depth resolution of 300 A (4 unit cells) by high resolution optical microscopy and digital image processing. The bulk super- or under saturation, sigma, of the solution inside a closed growth cell was controlled by temperature. The growth habit was bound by (110) and (101) faces that grew through layer spreading, although with different growth rate dependencies on supersaturation/temperature. At sigma less than 10 (obtained at higher temperatures) growth was purely kinetic ally controlled, with impurity effects (macrostep formation and kinetic hindrance) becoming significant for sigma less than 2. At sigma greater than 10 (lower temperatures), anisotropies in the interfacial kinetics were more pronounced, with interfacial kinetics and bulk transport becoming equally important to the growth morphology. Growth rates were growth history dependent. The formation of striations (layers of irregularly incorporated solution) was unambiguously correlated with growth temperature variations. Etching exposed dislocations and various high-index faces whose growth morphologies were studied during return to the steady state growth form. Growth steps were observed to originate from two-dimensional nuclei or from outcrops

  6. Is cancer a pure growth curve or does it follow a kinetics of dynamical structural transformation?

    PubMed

    González, Maraelys Morales; Joa, Javier Antonio González; Cabrales, Luis Enrique Bergues; Pupo, Ana Elisa Bergues; Schneider, Baruch; Kondakci, Suleyman; Ciria, Héctor Manuel Camué; Reyes, Juan Bory; Jarque, Manuel Verdecia; Mateus, Miguel Angel O'Farril; González, Tamara Rubio; Brooks, Soraida Candida Acosta; Cáceres, José Luis Hernández; González, Gustavo Victoriano Sierra

    2017-03-07

    Unperturbed tumor growth kinetics is one of the more studied cancer topics; however, it is poorly understood. Mathematical modeling is a useful tool to elucidate new mechanisms involved in tumor growth kinetics, which can be relevant to understand cancer genesis and select the most suitable treatment. The classical Kolmogorov-Johnson-Mehl-Avrami as well as the modified Kolmogorov-Johnson-Mehl-Avrami models to describe unperturbed fibrosarcoma Sa-37 tumor growth are used and compared with the Gompertz modified and Logistic models. Viable tumor cells (1×10(5)) are inoculated to 28 BALB/c male mice. Modified Gompertz, Logistic, Kolmogorov-Johnson-Mehl-Avrami classical and modified Kolmogorov-Johnson-Mehl-Avrami models fit well to the experimental data and agree with one another. A jump in the time behaviors of the instantaneous slopes of classical and modified Kolmogorov-Johnson-Mehl-Avrami models and high values of these instantaneous slopes at very early stages of tumor growth kinetics are observed. The modified Kolmogorov-Johnson-Mehl-Avrami equation can be used to describe unperturbed fibrosarcoma Sa-37 tumor growth. It reveals that diffusion-controlled nucleation/growth and impingement mechanisms are involved in tumor growth kinetics. On the other hand, tumor development kinetics reveals dynamical structural transformations rather than a pure growth curve. Tumor fractal property prevails during entire TGK.

  7. Growth kinetics and bulk growth of inversely soluble lithium sulfate monohydrate single crystals and their characterization

    NASA Astrophysics Data System (ADS)

    Silambarasan, A.; Rajesh, P.; Ramasamy, P.

    2017-06-01

    To facilitate controlled nucleation rate to grow good quality inversely soluble LSMH single crystals, the nucleation kinetics was studied. The number of molecules in a critical nucleus and nucleation rate in LSMH crystallization process have been determined from experimentally measured induction period using classical nucleation theory. A good quality bulk size single crystal of Lithium sulfate monohydrate (LSMH) has been grown with higher growth rate by modified Sankaranarayanan - Ramasamy (SR) method. A systematic investigation on UV-Vis-NIR transmittance, second harmonic generation and thermoluminescence (TL) properties of LSMH single crystals has been carried out to evaluate the optical behavior of the LSMH single crystal. This work also investigates the third order nonlinear optical properties of the LSMH single crystals. Finally thermal behavior of the grown crystal was studied to know the first order phase transition in the grown LSMH single crystals.

  8. Correlated responses in body composition to divergent selection for exponential growth rate to 14 or 42 days of age in chickens.

    PubMed

    Sizemore, F G; Barbato, G F

    2002-07-01

    Chicks divergently selected for 14-d (14H and 14L) or 42-d (42H and 42L) exponential growth rate (EGR) over five generations were used to determine correlated responses between growth at different ages and body composition. Regression coefficient estimates across five generations of selection were not significant for any line at either age for percentage total body water or protein. Genetic correlations between EGR from hatching to 14 d of age (EGR14) and 42-d percentage carcass fat were -0.18, -0.57, 0.63, and -0.79 among the 14H, 14L, 42H, and 42L lines, respectively. Genetic correlations between EGR from hatching to 42 d of age (EGR42) and 42-d percentage carcass fat were 0.09, -0.67,0.50, and -0.75 among the 14H, 14L, 42H, and 42L lines, respectively. During the short-term selection experiment, selection for fast EGR14 or EGR42 increased fat at the age of selection. However, selection for fast EGR42 increased body weight and percentage fat at 42 d of age (DOA), whereas selection for fast EGR14 increased body weight but not fat at 42 DOA. Therefore, it is possible to simultaneously select for high body weight at, or near, the inflection point of the growth curve without increasing fat deposition or obesity by taking advantage of the lack of a genetic correlation between EGR14 and body fat percentage at later ages.

  9. Measurement of the Dewetting, Nucleation, and Deactivation Kinetics of Carbon Nanotube Population Growth by Environmental Transmission Electron Microscopy

    SciTech Connect

    Bedewy, Mostafa; Viswanath, B.; Meshot, Eric R.; Zakharov, Dmitri N.; Stach, Eric A.; Hart, A. John

    2016-05-23

    In order to understand the collective growth of carbon nanotube (CNT) populations tailoring their properties for many applications is key. During the initial stages of CNT growth by chemical vapor deposition, catalyst nanoparticle formation by thin-film dewetting and the subsequent CNT nucleation processes dictate the CNT diameter distribution, areal density, and alignment. We use in situ environmental transmission electron microscopy (E-TEM) to observe the catalyst annealing, growth, and deactivation stages for a population of CNTs grown from a thin-film catalyst. Complementary in situ electron diffraction and TEM imaging show that, during the annealing step in hydrogen, reduction of the iron oxide catalyst is concomitant with changes in the thin-film morphology; complete dewetting and the formation of a population of nanoparticles is only achieved upon the introduction of the carbon source, acetylene. The dewetting kinetics, i.e., the appearance of distinct nanoparticles, exhibits a sigmoidal (autocatalytic) curve with 95% of all nanoparticles appearing within 6 s. After nanoparticles form, they either nucleate CNTs or remain inactive, with incubation times measured to be as small as 3.5 s. Via E-TEM we also directly observe the crowding and self-alignment of CNTs after dewetting and nucleation. Additionally, in situ electron energy loss spectroscopy reveals that the collective rate of carbon accumulation decays exponentially. We conclude that the kinetics of catalyst formation and CNT nucleation must both be addressed in order to achieve uniform and high CNT density, and their transient behavior may be a primary cause of the well-known nonuniform density of CNT forests.

  10. Measurement of the Dewetting, Nucleation, and Deactivation Kinetics of Carbon Nanotube Population Growth by Environmental Transmission Electron Microscopy

    DOE PAGES

    Bedewy, Mostafa; Viswanath, B.; Meshot, Eric R.; ...

    2016-05-23

    In order to understand the collective growth of carbon nanotube (CNT) populations tailoring their properties for many applications is key. During the initial stages of CNT growth by chemical vapor deposition, catalyst nanoparticle formation by thin-film dewetting and the subsequent CNT nucleation processes dictate the CNT diameter distribution, areal density, and alignment. We use in situ environmental transmission electron microscopy (E-TEM) to observe the catalyst annealing, growth, and deactivation stages for a population of CNTs grown from a thin-film catalyst. Complementary in situ electron diffraction and TEM imaging show that, during the annealing step in hydrogen, reduction of the ironmore » oxide catalyst is concomitant with changes in the thin-film morphology; complete dewetting and the formation of a population of nanoparticles is only achieved upon the introduction of the carbon source, acetylene. The dewetting kinetics, i.e., the appearance of distinct nanoparticles, exhibits a sigmoidal (autocatalytic) curve with 95% of all nanoparticles appearing within 6 s. After nanoparticles form, they either nucleate CNTs or remain inactive, with incubation times measured to be as small as 3.5 s. Via E-TEM we also directly observe the crowding and self-alignment of CNTs after dewetting and nucleation. Additionally, in situ electron energy loss spectroscopy reveals that the collective rate of carbon accumulation decays exponentially. We conclude that the kinetics of catalyst formation and CNT nucleation must both be addressed in order to achieve uniform and high CNT density, and their transient behavior may be a primary cause of the well-known nonuniform density of CNT forests.« less

  11. Measurement of the Dewetting, Nucleation, and Deactivation Kinetics of Carbon Nanotube Population Growth by Environmental Transmission Electron Microscopy

    SciTech Connect

    Bedewy, Mostafa; Viswanath, B.; Meshot, Eric R.; Zakharov, Dmitri N.; Stach, Eric A.; Hart, A. John

    2016-05-23

    In order to understand the collective growth of carbon nanotube (CNT) populations tailoring their properties for many applications is key. During the initial stages of CNT growth by chemical vapor deposition, catalyst nanoparticle formation by thin-film dewetting and the subsequent CNT nucleation processes dictate the CNT diameter distribution, areal density, and alignment. We use in situ environmental transmission electron microscopy (E-TEM) to observe the catalyst annealing, growth, and deactivation stages for a population of CNTs grown from a thin-film catalyst. Complementary in situ electron diffraction and TEM imaging show that, during the annealing step in hydrogen, reduction of the iron oxide catalyst is concomitant with changes in the thin-film morphology; complete dewetting and the formation of a population of nanoparticles is only achieved upon the introduction of the carbon source, acetylene. The dewetting kinetics, i.e., the appearance of distinct nanoparticles, exhibits a sigmoidal (autocatalytic) curve with 95% of all nanoparticles appearing within 6 s. After nanoparticles form, they either nucleate CNTs or remain inactive, with incubation times measured to be as small as 3.5 s. Via E-TEM we also directly observe the crowding and self-alignment of CNTs after dewetting and nucleation. Additionally, in situ electron energy loss spectroscopy reveals that the collective rate of carbon accumulation decays exponentially. We conclude that the kinetics of catalyst formation and CNT nucleation must both be addressed in order to achieve uniform and high CNT density, and their transient behavior may be a primary cause of the well-known nonuniform density of CNT forests.

  12. Recognizing Exponential Growth. Classroom Notes

    ERIC Educational Resources Information Center

    Dobbs, David E.

    2004-01-01

    Two heuristic and three rigorous arguments are given for the fact that functions of the form Ce[kx], with C an arbitrary constant, are the only solutions of the equation dy/dx=ky where k is constant. Various of the proofs in this self-contained note could find classroom use in a first-year calculus course, an introductory course on differential…

  13. Exponential Growth through Pattern Exploration

    ERIC Educational Resources Information Center

    Brown, Betty

    2005-01-01

    Participants at the Summer Institute Pattern Exploration: Integration Math and Science in the Middle Grades used and developed a method treat arithmetic, algebra and geometry as one entity. The use of iterative geometric constructions is seen to reinforce the concepts of exponents, ratios and algebraic expressions for the nth stage of the…

  14. Recognizing Exponential Growth. Classroom Notes

    ERIC Educational Resources Information Center

    Dobbs, David E.

    2004-01-01

    Two heuristic and three rigorous arguments are given for the fact that functions of the form Ce[kx], with C an arbitrary constant, are the only solutions of the equation dy/dx=ky where k is constant. Various of the proofs in this self-contained note could find classroom use in a first-year calculus course, an introductory course on differential…

  15. Kinetics of nickel silicide growth in silicon nanowires: From linear to square root growth

    SciTech Connect

    Yaish, Y. E.; Beregovsky, M.; Katsman, A.; Cohen, G. M.

    2011-05-01

    The common practice for nickel silicide formation in silicon nanowires (SiNWs) relies on axial growth of silicide along the wire that is initiated from nickel reservoirs at the source and drain contacts. In the present work the silicide intrusions were studied for various parameters including wire diameter (25-50 nm), annealing time (15-120 s), annealing temperature (300-440 deg. C), and the quality of the initial Ni/Si interface. The silicide formation was investigated by high-resolution scanning electron microscopy, high-resolution transmission electron microscopy (TEM), and atomic force microscopy. The main part of the intrusion formed at 420 deg. C consists of monosilicide NiSi, as was confirmed by energy dispersive spectroscopy STEM, selected area diffraction TEM, and electrical resistance measurements of fully silicided SiNWs. The kinetics of nickel silicide axial growth in the SiNWs was analyzed in the framework of a diffusion model through constrictions. The model calculates the time dependence of the intrusion length, L, and predicts crossover from linear to square root time dependency for different wire parameters, as confirmed by the experimental data.

  16. Equilibrium, chemical kinetic, and transport limitations to diamond growth

    NASA Astrophysics Data System (ADS)

    Evans, Edward Anthony

    Because of their extreme properties, diamond films have found some industrial applications, i.e., heat sinks and tool coatings. However, to increase their economic attractiveness, the growth rate must be increased, the deposition temperature must be lowered, and single crystal films must be achieved. We have studied two types of chemical vapor deposition systems, hot-filament and microwave assisted, in order to understand the factors limiting diamond growth rate. From simultaneous microbalance growth rate measurements and mass spectrometer measurements, changes in growth rate are correlated with changes in gas phase composition. Measured reaction orders support the proposal that diamond growth occurs through a single-carbon-atom species, e.g., CHsb3. When a two-carbon atom source gas is used, it is likely that the dissociation to two, single-carbon atom species occurs on the substrate surface (dissociative adsorption). Furthermore, a shift to zero-order suggests that the diamond growth is a surface-site limited process at higher hydrocarbon concentrations. The diamond growth rate maximum with pressure is explained by transport limitations of species within the reaction zone. The reported diamond growth rates in the hot-filament reactor are several times higher than those reported by other research groups. These higher growth rates result from surrounding the substrate with the filament. We have used the measured growth rates, filament temperatures, and thermocouple measurements to calculate activation energies for diamond growth. When the filament temperature is used for the calculation, an activation energy of 73 kcal per mole is obtained; however, based on estimated substrate temperatures, an activation energy of 18 kcal per mole is determined. A dimensional analysis approach was developed to select the most important gas phase reactions occurring during diamond CVD. Steady-state analysis of these reactions and the application of mass transport equations lead to

  17. Growth kinetics of K-alum crystals in relation to the surface supersaturations

    NASA Astrophysics Data System (ADS)

    Onuma, K.; Tsukamoto, K.; Sunagawa, I.

    1990-02-01

    The growth rates, the slopes and the step velocities of individual growth hillocks were measured by Michelson interferometer and were related to the surface supersaturations. The anomalies seen in the slope of the hillock and the step velocity versus surface supersaturation relations are due to impurity effects which modify the surface kinetics resistance.

  18. New Observations and Insights into the Morphology and Growth Kinetics of Hydrate Films

    PubMed Central

    Li, Sheng-Li; Sun, Chang-Yu; Liu, Bei; Li, Zhi-Yun; Chen, Guang-Jin; Sum, Amadeu K.

    2014-01-01

    The kinetics of film growth of hydrates of methane, ethane, and methane-ethane mixtures were studied by exposing a single gas bubble to water. The morphologies, lateral growth rates, and thicknesses of the hydrate films were measured for various gas compositions and degrees of subcooling. A variety of hydrate film textures was revealed. The kinetics of two-dimensional film growth was inferred from the lateral growth rate and initial thickness of the hydrate film. A clear relationship between the morphology and film growth kinetics was observed. The shape of the hydrate crystals was found to favour heat or mass transfer and favour further growth of the hydrate film. The quantitative results on the kinetics of film growth showed that for a given degree of subcooling, the initial film thicknesses of the double hydrates were larger than that of pure methane or ethane hydrate, whereas the thickest hydrate film and the lowest lateral growth rate occurred when the methane mole fraction was approximately 0.6. PMID:24549241

  19. New observations and insights into the morphology and growth kinetics of hydrate films.

    PubMed

    Li, Sheng-Li; Sun, Chang-Yu; Liu, Bei; Li, Zhi-Yun; Chen, Guang-Jin; Sum, Amadeu K

    2014-02-19

    The kinetics of film growth of hydrates of methane, ethane, and methane-ethane mixtures were studied by exposing a single gas bubble to water. The morphologies, lateral growth rates, and thicknesses of the hydrate films were measured for various gas compositions and degrees of subcooling. A variety of hydrate film textures was revealed. The kinetics of two-dimensional film growth was inferred from the lateral growth rate and initial thickness of the hydrate film. A clear relationship between the morphology and film growth kinetics was observed. The shape of the hydrate crystals was found to favour heat or mass transfer and favour further growth of the hydrate film. The quantitative results on the kinetics of film growth showed that for a given degree of subcooling, the initial film thicknesses of the double hydrates were larger than that of pure methane or ethane hydrate, whereas the thickest hydrate film and the lowest lateral growth rate occurred when the methane mole fraction was approximately 0.6.

  20. Time-Lapse Imaging to Examine the Growth Kinetics of Arabidopsis Seedlings in Response to Ethylene.

    PubMed

    Binder, Brad M

    2017-01-01

    Ethylene is well known to inhibit the growth of dark-grown eudicot seedlings. Most studies examine this inhibition after several days of exposure to ethylene. However, such end-point analysis misses transient responses and the dynamic nature of growth regulation. Here, high-resolution, time-lapse imaging is described as a method to gather data about ethylene growth kinetics and movement responses of the hypocotyls of dark-grown seedlings of Arabidopsis thaliana. These methods allow for the characterization of short-term kinetic responses and can be modified for the analysis of roots and seedlings from other species.

  1. Hypothesized kinetic models for describing the growth of globular and encrusting demosponges.

    PubMed

    Sipkema, Detmer; Yosef, Nejla A M; Adamczewski, Marcin; Osinga, Ronald; Mendola, Dominick; Tramper, Johannes; Wijffels, René H

    2006-01-01

    The marine sponges Dysidea avara and Chondrosia reniformis (globular forms) were cultured in the laboratory on a diet of viable Phaeodactylum tricornutum cells and dissolved nutrients (algae and fish powders). Our growth data were combined with literature data for Pseudosuberites andrewsi (a globular sponge) and for the encrusting sponges Oscarella lobularis, Hemimycale columella, and Crambe crambe. The suitability of three growth models-linear, exponential, and radial accretive-for describing the growth of globular and encrusting sponges was assessed. Radial accretive growth was determined to be the best model to describe growth of both encrusting and globular sponges. Average growth rates of 0.051+/-0.016 and 0.019+/-0.003 mm/day (calculated as the increase of the radius of the sponge per day) were obtained experimentally for D. avara and C. reniformis, respectively.

  2. Giving Exponential Functions a Fair Shake

    ERIC Educational Resources Information Center

    Wanko, Jeffrey J.

    2005-01-01

    This article details an exploration of exponential decay and growth relationships using M&M's and dice. Students collect data for mathematical models and use graphing calculators to make sense of the general form of the exponential functions. (Contains 10 figures and 2 tables.)

  3. Modeling of scale-dependent bacterial growth by chemical kinetics approach.

    PubMed

    Martínez, Haydee; Sánchez, Joaquín; Cruz, José-Manuel; Ayala, Guadalupe; Rivera, Marco; Buhse, Thomas

    2014-01-01

    We applied the so-called chemical kinetics approach to complex bacterial growth patterns that were dependent on the liquid-surface-area-to-volume ratio (SA/V) of the bacterial cultures. The kinetic modeling was based on current experimental knowledge in terms of autocatalytic bacterial growth, its inhibition by the metabolite CO2, and the relief of inhibition through the physical escape of the inhibitor. The model quantitatively reproduces kinetic data of SA/V-dependent bacterial growth and can discriminate between differences in the growth dynamics of enteropathogenic E. coli, E. coli JM83, and Salmonella typhimurium on one hand and Vibrio cholerae on the other hand. Furthermore, the data fitting procedures allowed predictions about the velocities of the involved key processes and the potential behavior in an open-flow bacterial chemostat, revealing an oscillatory approach to the stationary states.

  4. Diffusion-controlled kinetics of carbon nanotube forest growth by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Louchev, Oleg A.; Laude, Thomas; Sato, Yoichiro; Kanda, Hisao

    2003-04-01

    A detailed theoretical study of carbon nanotube (NT) forest growth by chemical vapor deposition is given, including (i) ballistic mode of carbon species impingement into the NT surface, (ii) the carbon diffusion over NT surface and through the metal nanoparticle, and (iii) the temperature drop at the NT tip occurring with increase in NT length. For typical NT forest growth parameters the ballistic flux of carbon species impinging into the NT surface decays quasiexponentially within several microns from the top. A variety of feasible growth modes, ranging from linear to exponential versus time, is predicted agreeing well with reported experiments. The presence of a metal nanoparticle is shown to shift NT growth from being surface diffusion controlled to being controlled by bulk diffusion through the nanoparticle. For typical growth conditions the growth rate is shown to be controlled simultaneously by surface diffusion over NT surface and bulk diffusion of carbon through metal nanoparticle. However, even in specific cases where NT growth rate is controlled by bulk diffusion through the nanoparticle the initial stage may be controlled by surface diffusion, as revealed by the exponential change in NT length with time. A parametric study of the growth rate of NT forest with metal nanoparticles held at the NT tips as a function of temperature reveals the existence of a maximum near 1050-1100 K, agreeing with reported experimental data. A thermal analysis based upon the heat conductance equation shows that with NT forest growth the temperature of the NT tips decreases, leading to growth deceleration and termination. Our study shows that the larger the pressure the smaller the NT forest height that may be grown. In particular, for pressures ≈105 Pa the NT tips should be "frozen" even at a length of a few microns, disabling further NT growth. In contrast, under low pressures of ≈103 Pa NT forest of several dozens of microns may be successfully grown without significant

  5. Influence of Glucose Supplementation and Inoculum Size on Growth Kinetics and Antifungal Susceptibility Testing of Candida spp.

    PubMed Central

    Cuenca-Estrella, Manuel; Díaz-Guerra, Teresa M.; Mellado, Emilia; Rodríguez-Tudela, Juan L.

    2001-01-01

    The influences of inoculum size and glucose supplementation on the growth kinetics of 60 Candida spp. clinical isolates (Candida albicans, Candida tropicalis, Candida parapsilosis, Candida glabrata, Candida krusei, and Candida lusitaniae [10 isolates each]) are assessed. The combined influence of growth and reading method (visual or spectrophotometric) on the determination of the MICs of amphotericin B, flucytosine, fluconazole, itraconazole, ketoconazole, and voriconazole is also analyzed, and the MICs are compared with those determined by the National Committee for Clinical Laboratory Standards standard microdilution method (NCCLS document M27-A). Glucose supplementation and inoculum size had a significant influence on the growth cycles of these yeasts, and a statistically significant denser growth (optical density at 540 nm) was seen for both incubation periods, 24 and 48 h (P < 0.01). A longer exponential phase and shorter lag phase were also observed. The A540 values at 24 h of incubation with medium containing glucose and an inoculum of 105 CFU/ml were >0.4 U for all species, with the exception of that for C. parapsilosis (A540 = 0.26 ± 0.025). The MICs at 24 h determined by testing with 2% glucose and an inoculum of 105 CFU/ml showed the strongest agreement (96.83%) with MICs determined by the reference method. MICs were not falsely elevated, and good correlation indexes were obtained. The reproducibility of results with this medium-inoculum combination was high (intraclass correlation coefficient, 0.955). The best agreement and reproducibility of results for spectrophotometric readings were achieved with endpoints of 50% growth inhibition for flucytosine and azoles and 95% for amphotericin B. Supplementation of test media with glucose and an inoculum size of 105 CFU/ml yielded a reproducible technique that shows elevated agreement with the reference procedures and a shorter incubation period for obtaining reliable MIC determinations. The spectrophotometric

  6. Nanowire growth kinetics in aberration corrected environmental transmission electron microscopy

    SciTech Connect

    Chou, Yi -Chia; Panciera, Federico; Reuter, Mark C.; Stach, Eric A.; Ross, Frances M.

    2016-03-15

    Here, we visualize atomic level dynamics during Si nanowire growth using aberration corrected environmental transmission electron microscopy, and compare with lower pressure results from ultra-high vacuum microscopy. We discuss the importance of higher pressure observations for understanding growth mechanisms and describe protocols to minimize effects of the higher pressure background gas.

  7. Nanowire growth kinetics in aberration corrected environmental transmission electron microscopy

    DOE PAGES

    Chou, Yi -Chia; Panciera, Federico; Reuter, Mark C.; ...

    2016-03-15

    Here, we visualize atomic level dynamics during Si nanowire growth using aberration corrected environmental transmission electron microscopy, and compare with lower pressure results from ultra-high vacuum microscopy. We discuss the importance of higher pressure observations for understanding growth mechanisms and describe protocols to minimize effects of the higher pressure background gas.

  8. Monoculture parameters successfully predict coculture growth kinetics of Bacteroides thetaiotaomicron and two Bifidobacterium strains.

    PubMed

    Van Wey, A S; Cookson, A L; Roy, N C; McNabb, W C; Soboleva, T K; Shorten, P R

    2014-11-17

    Microorganisms rarely live in isolation but are most often found in a consortium. This provides the potential for cross-feeding and nutrient competition among the microbial species, which make it challenging to predict the growth kinetics in coculture. In this paper we developed a mathematical model to describe substrate consumption and subsequent microbial growth and metabolite production for bacteria grown in monoculture. The model characterized substrate utilization kinetics of 18 Bifidobacterium strains. Some bifidobacterial strains demonstrated preferential degradation of oligofructose in that sugars with low degree of polymerization (DP) (DP≤3 or 4) were metabolized before sugars of higher DP, or vice versa. Thus, we expanded the model to describe the preferential degradation of oligofructose. In addition, we adapted the model to describe the competition between human colonic bacteria Bacteroides thetaiotaomicron LMG 11262 and Bifidobacterium longum LMG 11047 or Bifidobacterium breve Yakult for inulin as well as cross-feeding of breakdown products from the extracellular hydrolysis of inulin by B. thetaiotaomicron LMG 11262. We found that the coculture growth kinetics could be predicted based on the respective monoculture growth kinetics. Using growth kinetics from monoculture experiments to predict coculture dynamics will reduce the number of in vitro experiments required to parameterize multi-culture models.

  9. Atomic kinetic research of ordered quantum dot growth induced by dislocation on the substrate

    NASA Astrophysics Data System (ADS)

    Zhao, Chang; Zhao, M.; Wang, Y.; Lv, A. J.; Xing, G. J.; Ma, Y. C.

    2014-01-01

    In this study, the modified effects of stress originating from the dislocation on the substrate to the semiconductor quantum dot growth are investigated by performing an event-based continuous kinetic Monte Carlo simulation, in which the contribution of the dangling bond of the atom is considered. The research results indicate that the change of binding energy initiated by the stress between the deposit atom and the substrate's atoms may significantly influence the atoms' kinetic behaviors, and on the pattern surface the atoms' kinetic effects are very sensitive to the initial condition of the substrate. In addition, the dependence of the atomic kinetics on the growth flux and temperature are also studied. The simulation results are in good qualitative agreement with those of our experiment.

  10. Kinetics of monolayer graphene growth by segregation on Pd(111)

    SciTech Connect

    Mok, H. S.; Murata, Y.; Kodambaka, S.; Ebnonnasir, A.; Ciobanu, C. V.; Nie, S.; McCarty, K. F.

    2014-03-10

    Using in situ low-energy electron microscopy and density functional theory calculations, we follow the growth of monolayer graphene on Pd(111) via surface segregation of bulk-dissolved carbon. Upon lowering the substrate temperature, nucleation of graphene begins on graphene-free Pd surface and continues to occur during graphene growth. Measurements of graphene growth rates and Pd surface work functions establish that this continued nucleation is due to increasing C adatom concentration on the Pd surface with time. We attribute this anomalous phenomenon to a large barrier for attachment of C adatoms to graphene coupled with a strong binding of the non-graphitic C to the Pd surface.

  11. Growth kinetics of sodium perborate from batch crystallization

    NASA Astrophysics Data System (ADS)

    Söhnel, O.; Bravi, M.; Chianese, A.; Mazzarotta, B.

    1996-03-01

    The size distribution of sodium perborate crystals was continually monitored using a Malvern sizer during batch crystallization from aqueous solutions carried out under falling supersaturation established at the experiment onset. The growth rate was determined from the time shift of the crystal size distribution expressed in cumulative oversize numbers. The size independent overall growth rate was first order with respect to supersaturation for crystals larger than 150 μm. Crystals between 20 and 150 μm exhibited a significant size-dependent growth rate. Furthermore, the fraction of crystals smaller than 20 μm, formed by primary nucleation, grew extremely slowly or did not grow at all.

  12. Flowtube experiments on diamond formation: separating the growth and nucleation kinetics

    NASA Astrophysics Data System (ADS)

    Martin, L. R.; Hill, Michael W.

    1990-12-01

    We have done a series of experiments on diamond microcrystal formation in flowtubes. The system is designed to separate the discharge used to create atomic hydrogen from the organic molecules used as a carbon source. This creates a simplified chemical environment in which the species concentrations are kinetically rather than thermodynamically controlled. The flowtube enables us to examine kinetics of diamond formation under a variety of conditions and gives us some information about the rate of nucleation independently of the growth rate. 1.

  13. Manipulating the growth of aqueous semiconductor nanocrystals through amine-promoted kinetic process.

    PubMed

    Han, Jishu; Zhang, Hao; Sun, Haizhu; Zhou, Ding; Yang, Bai

    2010-01-14

    In the conventional procedure of the preparation of aqueous semiconductor nanocrystals (NCs), the growth of NCs was mainly through the thermodynamics-favored Ostwald ripening process. It required additional energy to promote NC growth, such as reflux, hydrothermal method, microwave irradiation, and sonochemical synthesis. Energy-promoted growth usually led to the decomposition of mercapto-ligands and therewith decreased the quality of NCs. Consequently, in this study, the growth of aqueous semiconductor NCs was designed through an amine-promoted kinetic process, which efficiently shortened the growth duration and avoided the decomposition of ligands, thus providing a universal method for preparing various aqueous binary and ternary NCs.

  14. An Exceptional Exponential Function

    ERIC Educational Resources Information Center

    Curgus, Branko

    2006-01-01

    We show that there is a link between a standard calculus problem of finding the best view of a painting and special tangent lines to the graphs of exponential functions. Surprisingly, the exponential function with the "best view" is not the one with the base "e." A similar link is established for families of functions obtained by composing…

  15. An exponential growth of computational phantom research in radiation protection, imaging, and radiotherapy: A review of the fifty-year history

    PubMed Central

    Xu, X. George

    2014-01-01

    Radiation dose calculation using models of the human anatomy has been a subject of great interest to radiation protection, medical imaging, and radiotherapy. However, early pioneers of this field did not foresee the exponential growth of research activity as observed today. This review article walks the reader through the history of the research and development in this field of study which started some 50 years ago. This review identifies a clear progression of computational phantom complexity which can be denoted by three distinct generations. The first generation of stylized phantoms, representing a grouping of less than dozen models, was initially developed in the 1960s at Oak Ridge National Laboratory to calculate internal doses from nuclear medicine procedures. Despite their anatomical simplicity, these computational phantoms were the best tools available at the time for internal/external dosimetry, image evaluation, and treatment dose evaluations. A second generation of a large number of voxelized phantoms arose rapidly in the late 1980s as a result of the increased availability of tomographic medical imaging and computers. Surprisingly, the last decade saw the emergence of the third generation of phantoms which are based on advanced geometries called boundary representation (BREP) in the form of Non-Uniform Rational B-Splines (NURBS) or polygonal meshes. This new class of phantoms now consists of over 287 models including those used for non-ionizing radiation applications. This review article aims to provide the reader with a general understanding of how the field of computational phantoms came about and the technical challenges it faced at different times. This goal is achieved by defining basic geometry modeling techniques and by analyzing selected phantoms in terms of geometrical features and dosimetric problems to be solved. The rich historical information is summarized in four tables that are aided by highlights in the text on how some of the most well

  16. An exponential growth of computational phantom research in radiation protection, imaging, and radiotherapy: a review of the fifty-year history.

    PubMed

    Xu, X George

    2014-09-21

    Radiation dose calculation using models of the human anatomy has been a subject of great interest to radiation protection, medical imaging, and radiotherapy. However, early pioneers of this field did not foresee the exponential growth of research activity as observed today. This review article walks the reader through the history of the research and development in this field of study which started some 50 years ago. This review identifies a clear progression of computational phantom complexity which can be denoted by three distinct generations. The first generation of stylized phantoms, representing a grouping of less than dozen models, was initially developed in the 1960s at Oak Ridge National Laboratory to calculate internal doses from nuclear medicine procedures. Despite their anatomical simplicity, these computational phantoms were the best tools available at the time for internal/external dosimetry, image evaluation, and treatment dose evaluations. A second generation of a large number of voxelized phantoms arose rapidly in the late 1980s as a result of the increased availability of tomographic medical imaging and computers. Surprisingly, the last decade saw the emergence of the third generation of phantoms which are based on advanced geometries called boundary representation (BREP) in the form of Non-Uniform Rational B-Splines (NURBS) or polygonal meshes. This new class of phantoms now consists of over 287 models including those used for non-ionizing radiation applications. This review article aims to provide the reader with a general understanding of how the field of computational phantoms came about and the technical challenges it faced at different times. This goal is achieved by defining basic geometry modeling techniques and by analyzing selected phantoms in terms of geometrical features and dosimetric problems to be solved. The rich historical information is summarized in four tables that are aided by highlights in the text on how some of the most

  17. Crystallization of lysozyme from lysozyme - ovalbumin mixtures: Separation potential and crystal growth kinetics

    NASA Astrophysics Data System (ADS)

    Maosoongnern, Somchai; Flood, Chalongsri; Flood, Adrian E.; Ulrich, Joachim

    2017-07-01

    Lysozyme was successfully separated from mixtures of lysozyme and ovalbumin by crystallization. The purity of the lysozyme product is more than 98%, the remaining activity is greater than 97%, and the yields of the crystal products were greater than 80%. The experimental conditions used were varied to study the effect of the operating parameters on the growth kinetics of lysozyme crystal and the separation ability of the process. The growth rates of lysozyme are second order with respect to the relative supersaturation. Therefore the growth kinetics of the crystallization process is controlled by the surface integration mechanism. The calculated growth rate constants were 5.4×10-6 cm/h and 2.5×10-6 cm/h for the crystallization process at 20 °C and 10 °C, respectively. There is no significant effect of the ovalbumin impurity up to the concentration of 67.5% ovalbumin (based on total protein) on the growth kinetics of lysozyme. Changing the NaCl concentration from 4% to 3% had no effect on the growth kinetics of lysozyme, although this does change the solubility and therefore the yield. The calculated activation energy was 53.08 kJ/mol which supports the hypothesis that the crystallization process is controlled by the surface integration mechanism.

  18. In Bacillus subtilis LutR is part of the global complex regulatory network governing the adaptation to the transition from exponential growth to stationary phase.

    PubMed

    Irigül-Sönmez, Öykü; Köroğlu, Türkan E; Öztürk, Büşra; Kovács, Ákos T; Kuipers, Oscar P; Yazgan-Karataş, Ayten

    2014-02-01

    The lutR gene, encoding a product resembling a GntR-family transcriptional regulator, has previously been identified as a gene required for the production of the dipeptide antibiotic bacilysin in Bacillus subtilis. To understand the broader regulatory roles of LutR in B. subtilis, we studied the genome-wide effects of a lutR null mutation by combining transcriptional profiling studies using DNA microarrays, reverse transcription quantitative PCR, lacZ fusion analyses and gel mobility shift assays. We report that 65 transcriptional units corresponding to 23 mono-cistronic units and 42 operons show altered expression levels in lutR mutant cells, as compared with lutR(+) wild-type cells in early stationary phase. Among these, 11 single genes and 25 operons are likely to be under direct control of LutR. The products of these genes are involved in a variety of physiological processes associated with the onset of stationary phase in B. subtilis, including degradative enzyme production, antibiotic production and resistance, carbohydrate utilization and transport, nitrogen metabolism, phosphate uptake, fatty acid and phospholipid biosynthesis, protein synthesis and translocation, cell-wall metabolism, energy production, transfer of mobile genetic elements, induction of phage-related genes, sporulation, delay of sporulation and cannibalism, and biofilm formation. Furthermore, an electrophoretic mobility shift assay performed in the presence of both SinR and LutR revealed a close overlap between the LutR and SinR targets. Our data also revealed a significant overlap with the AbrB regulon. Together, these findings reveal that LutR is part of the global complex, interconnected regulatory systems governing adaptation of bacteria to the transition from exponential growth to stationary phase.

  19. Quantitative Polymerase Chain Reaction for Microbial Growth Kinetics of Mixed Culture System.

    PubMed

    Cotto, Ada; Looper, Jessica K; Mota, Linda C; Son, Ahjeong

    2015-11-01

    Microbial growth kinetics is often used to optimize environmental processes owing to its relation to the breakdown of substrate (contaminants). However, the quantification of bacterial populations in the environment is difficult owing to the challenges of monitoring a specific bacterial population within a diverse microbial community. Conventional methods are unable to detect and quantify the growth of individual strains separately in the mixed culture reactor. This work describes a novel quantitative PCR (qPCR)-based genomic approach to quantify each species in mixed culture and interpret its growth kinetics in the mixed system. Batch experiments were performed for both single and dual cultures of Pseudomonas putida and Escherichia coli K12 to obtain Monod kinetic parameters (μmax and Ks). The growth curves and kinetics obtained by conventional methods (i.e., dry weight measurement and absorbance reading) were compared with that obtained by qPCR assay. We anticipate that the adoption of this qPCR-based genomic assay can contribute significantly to traditional microbial kinetics, modeling practice, and the operation of bioreactors, where handling of complex mixed cultures is required.

  20. Growth kinetics of hydrogen sulfide oxidizing bacteria in corroded concrete from sewers.

    PubMed

    Jensen, Henriette Stokbro; Lens, Piet N L; Nielsen, Jeppe L; Bester, Kai; Nielsen, Asbjørn Haaning; Hvitved-Jacobsen, Thorkild; Vollertsen, Jes

    2011-05-30

    Hydrogen sulfide oxidation by microbes present on concrete surfaces of sewer pipes is a key process in sewer corrosion. The growth of aerobic sulfur oxidizing bacteria from corroded concrete surfaces was studied in a batch reactor. Samples of corrosion products, containing sulfur oxidizing bacteria, were suspended in aqueous solution at pH similar to that of corroded concrete. Hydrogen sulfide was supplied to the reactor to provide the source of reduced sulfur. The removal of hydrogen sulfide and oxygen was monitored. The utilization rates of both hydrogen sulfide and oxygen suggested exponential bacterial growth with median growth rates of 1.25 d(-1) and 1.33 d(-1) as determined from the utilization rates of hydrogen sulfide and oxygen, respectively. Elemental sulfur was found to be the immediate product of the hydrogen sulfide oxidation. When exponential growth had been achieved, the addition of hydrogen sulfide was terminated leading to elemental sulfur oxidation. The ratio of consumed sulfur to consumed oxygen suggested that sulfuric acid was the ultimate oxidation product. To the knowledge of the authors, this is the first study to determine the growth rate of bacteria involved in concrete corrosion with hydrogen sulfide as source of reduced sulfur.

  1. Crystal nucleation and cluster-growth kinetics in a model glass under shear.

    PubMed

    Mokshin, Anatolii V; Barrat, Jean-Louis

    2010-08-01

    Crystal nucleation and growth processes induced by an externally applied shear strain in a model metallic glass are studied by means of nonequilibrium molecular dynamics simulations, in a range of temperatures. We observe that the nucleation-growth process takes place after a transient, induction regime. The critical cluster size and the lag-time associated with this induction period are determined from a mean first-passage time analysis. The laws that describe the cluster-growth process are studied as a function of temperature and strain rate. A theoretical model for crystallization kinetics that includes the time dependence for nucleation and cluster growth is developed within the framework of the Kolmogorov-Johnson-Mehl-Avrami scenario and is compared with the molecular dynamics data. Scalings for the cluster-growth laws and for the crystallization kinetics are also proposed and tested. The observed nucleation rates are found to display a nonmonotonic strain rate dependency.

  2. Growth mode transition of Ni thin films on nanopatterned substrate: Kinetic Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Chen, Shuhan; Liang, Jingshu; Zhu, Yuan; Jiang, Shaoji

    2012-03-01

    A three-dimension (3D) kinetic Monte Carlo (KMC) model with Ehrlich-Schwoebel barrier is presented. A uniform arranged triangular prism structure is introduced to mimic the nanopatterned substrate. The transition from continuous growth to anisotropic columnar growth has been demonstrated. The kinetic process and the growth exponent are discussed by our KMC model. Results show that the growth exponent is smaller than 0.5 when the film thickness surpasses 70 ML under normal deposition but larger than 0.5 under high oblique angle deposition, such as 77°. We assume that the modulation of nanopatterned substrate reduces more quickly when the film thickness is larger than 70 ML in our model. The growth mode transition can be mainly attributed to difference in the relative importance of diffusion and shadowing with normal and high oblique angle deposition conditions. Besides, the competition and vanishing process during oblique angle deposition are also demonstrated.

  3. Kinetic Monte Carlo Simulation of Epitaxial Thin Film Growth: Formation of Submonolayer Islands and Multilayer Mounds

    SciTech Connect

    Evans, J. W.; Thiel, P. A.; Li, Maozhi

    2007-06-14

    We consider homoepitaxy (or low-misfit heteroepitaxy) via vapor deposition or MBE under UHV conditions. Thin film growth is initiated by nucleation and growth of 2D islands in the submonolayer regime. For atoms subsequently deposited on top of islands, a step edge barrier often inhibits downward transport and produces kinetic roughening during multilayer growth. Such unstable growth is characterized by the formation of 3D mounds (multilayer stacks of 2D islands). Kinetic Monte Carlo (KMC) simulation of suitable atomistic lattice-gas models can address fundamental or general issues related to both submonolayer and multilayer film evolution, and can also provide a predictive tool for morphological evolution in specific systems. Examples of the successes of KMC modeling are provided for metal homoepitaxial film growth, specifically for contrasting behavior in the classic Ag/Ag(100) and Ag/Ag(111) systems.

  4. Crystal nucleation and cluster-growth kinetics in a model glass under shear

    NASA Astrophysics Data System (ADS)

    Mokshin, Anatolii V.; Barrat, Jean-Louis

    2010-08-01

    Crystal nucleation and growth processes induced by an externally applied shear strain in a model metallic glass are studied by means of nonequilibrium molecular dynamics simulations, in a range of temperatures. We observe that the nucleation-growth process takes place after a transient, induction regime. The critical cluster size and the lag-time associated with this induction period are determined from a mean first-passage time analysis. The laws that describe the cluster-growth process are studied as a function of temperature and strain rate. A theoretical model for crystallization kinetics that includes the time dependence for nucleation and cluster growth is developed within the framework of the Kolmogorov-Johnson-Mehl-Avrami scenario and is compared with the molecular dynamics data. Scalings for the cluster-growth laws and for the crystallization kinetics are also proposed and tested. The observed nucleation rates are found to display a nonmonotonic strain rate dependency.

  5. Reactive Dependent Growth Kinetics and Morphology of A-B Ternary Mixtures

    NASA Astrophysics Data System (ADS)

    Feng, Wen-Qiang; Wang, Kai-Ming; Zhu, Yue-Jin

    2013-08-01

    In this paper, we present Monte Carlo simulations of A-B-diblock-copolymer ternary mixtures simultaneously undergoing phase separation and reversible chemical reaction A + B ⇌ C. The results demonstrate that the competition of chemical reaction and thermal diffusion dynamics co-determine the self-assembling morphology and growth kinetics of the reactive ternary mixtures. The role of the chemical reaction on the growth kinetics count mainly on the copolymer-polymer interaction strength Jp. If Jp < 1.0, the introduction of chemical reaction speeds up the domain growth; while for Jp > 1.0, the chemical reaction slows down the domain growth. The domain growth exponent decreases linearly with increasing of the copolymer-polymer interaction strength. At a later stage, <1, 0> and <0, 1> oriented strip pattern formations are observed when Jp is strong.

  6. Growth kinetics evaluation of hydrothermally synthesized β-FeOOH nanorods

    NASA Astrophysics Data System (ADS)

    Chowdhury, Mahabubur; Fester, Veruscha; Kale, Girish

    2014-02-01

    Based on the proposition that a quantitative and qualitative relationship between alcohol surface tension and particle growth exists, the effect of four different organic solvents on the growth kinetics of β-FeOOH (akaganeite) nanorods have been evaluated in this study. Two-stage growth of akaganeite nanorods have been observed in the presence of butanol and propanol as solvents. The first growth stage follows a typical power law representing Ostwald Ripening (OR) kinetic. The second stage of growth was found to be asymptotic and was fitted by the Oriented Attachment (OA) kinetics. HRTEM images of the synthesized nanoparticles also showed crystallographically specific oriented attachment based growth of the nanocrystals. Signs of OA mechanism was not observed from the TEM images of the particles synthesized using ethanol and methanol as solvents. The rate constants for each kinetic was evaluated and the rate constant for OR kinetics, k, was found to be significantly higher than the rate constant for OA kinetics, k, under the reported conditions for the four different solvents used. The rate constants were related to the surface tension of alcohol. A factorial trial was used to evaluate the significance of interaction effects of process parameters. By correlating the surface tension of solvents with different process parameters a generalized correlation has been developed to predict β-FeOOH aspect ratios for the first time. This correlation was validated by an independent study. This correlation takes three different process parameters into consideration in conjunction with the solvent surface tension to predict particle aspect ratios with acceptable confidence.

  7. Relationship between kinetics of growth and production of exo-electrons: Case study with Geobacter toluenoxydans.

    PubMed

    Szöllősi, Attila; Narr, László; Kovács, Attila G; Styevkó, Gabriella

    2015-09-01

    Kinetics of growth and product formation of G. toluenoxydans DSMZ 19350 strain were investigated using sodium-acetate as substrate and Fe(3+)-ions and fumarate as electron acceptor. Response surface method was adapted for evaluation of growth of bacteria. Results showed that maximum growth was detected in the case of 2.2 g/L substrate concentration. Application of higher substrate concentration (>2.5 g/L sodium acetate) significantly inhibits the bacterial growth. Luong's model was found to be the most suitable to determine kinetic parameters (μ(max) = 0.033 1/h, KS = 0.205 g/L) of growth of G.toluenoxydans strain, and the growth was completely inhibited at substrate concentration higher than 3.1 g/L. In the case of product formation the Haldane model was used and kinetic parameters are μ(Pmax) = 0.123 mg/h, K(PS)= 0.184 g/L. Correlation between microbial growth and product formation was observed using the Luedeking-Piret empirical method. Both factors (growth and number of cells) affected significantly iron(III)-reduction, thus the product formation. These results are important and open the possibility to design a continuous MFC setting operating with G. toluenoxydans as biocatalyst.

  8. Crystallization of pumpkin seed globulin: growth and dissolution kinetics

    NASA Astrophysics Data System (ADS)

    Malkin, Alexander J.; McPherson, Alexander

    1993-10-01

    Quasi-elastic light scattering was used to investigate the nucleation and crystallization of pumpkin ( Cucurbita) seed globulin. The diameter of the pumpkin globulin monomer was measured to be ≈ 5-6 nm. The supersaturation dependence of critical nucleus size was obtained, and this allowed an estimate of the interfacial free energy to be α ≈ 6.1 x 10 -2 erg/cm 2. The crystallization and dissolution kinetics were investigated for 4.9-16 mg/ml protein solutions containing 1-7% NaCl. The solubility data as a function of precipitant concentration and temperature were obtained and these will be utilized for optimization of the crystallization conditions for the pumpkin globulin.

  9. Growth kinetics of indium metal atoms on Si(1 1 2) surface

    SciTech Connect

    Raj, Vidur; Chauhan, Amit Kumar Singh; Gupta, Govind

    2015-12-15

    Graphical abstract: Controlled growth of indium atoms on Si(1 1 2) surface has been carried out systematically and the influence of substrate temperature on the kinetics is analysed under various growth conditions. Temperature induced anomalous layer-to-clusters transformation during thermal desorption has also been reported. - Highlights: • Controlled growth of indium atoms on Si(1 1 2) surface & their thermal stability. • Influence of substrate temperature on the kinetics under various growth conditions. • Temperature induced layer-to-clusters transformation during thermal desorption. - Abstract: The growth kinetics and desorption behavior of indium (In) atoms grown on high index Si(1 1 2) surface at different substrate temperatures has been studied. Auger electron spectroscopy analysis revealed that In growth at room temperature (RT) and high substrate temperature (HT) ∼250 °C follows Frank–van der Merve growth mode whereas at temperatures ≥450 °C, In growth evolves through Volmer–Weber growth mode. Thermal desorption studies of RT and 250 °C grown In/Si(1 1 2) systems show temperature induced rearrangement of In atoms over Si(1 1 2) surface leading to clusters to layer transformation. The monolayer and bilayer desorption energies for RT grown In/Si(1 1 2) system are calculated to be 2.5 eV and 1.52 eV, while for HT-250 °C the values are found to be 1.6 eV and 1.3 eV, respectively. This study demonstrates the effect of temperature on growth kinetics as well as on the multilayer/monolayer desorption pathway of In on Si(1 1 2) surface.

  10. How exponential are FREDs?

    NASA Astrophysics Data System (ADS)

    Schaefer, Bradley E.; Dyson, Samuel E.

    1996-08-01

    A common Gamma-Ray Burst-light curve shape is the ``FRED'' or ``fast-rise exponential-decay.'' But how exponential is the tail? Are they merely decaying with some smoothly decreasing decline rate, or is the functional form an exponential to within the uncertainties? If the shape really is an exponential, then it would be reasonable to assign some physically significant time scale to the burst. That is, there would have to be some specific mechanism that produces the characteristic decay profile. So if an exponential is found, then we will know that the decay light curve profile is governed by one mechanism (at least for simple FREDs) instead of by complex/multiple mechanisms. As such, a specific number amenable to theory can be derived for each FRED. We report on the fitting of exponentials (and two other shapes) to the tails of ten bright BATSE bursts. The BATSE trigger numbers are 105, 257, 451, 907, 1406, 1578, 1883, 1885, 1989, and 2193. Our technique was to perform a least square fit to the tail from some time after peak until the light curve approaches background. We find that most FREDs are not exponentials, although a few come close. But since the other candidate shapes come close just as often, we conclude that the FREDs are misnamed.

  11. Exponential splines: A survey

    SciTech Connect

    McCartin, B.J.

    1996-12-31

    Herein, we discuss a generalization of the semiclassical cubic spline known in the literature as the exponential spline. In actuality, the exponential spline represents a continuum of interpolants ranging from the cubic spline to the linear spline. A particular member of this family is uniquely specified by the choice of certain {open_quotes}tension{close_quotes} parameters. We first outline the theoretical underpinnings of the exponential spline. This development roughly parallels the existing theory for cubic splines. The primary extension lies in the ability of the exponential spline to preserve convexity and monotonicity present in the data. We next discuss the numerical computation of the exponential spline. A variety of numerical devices are employed to produce a stable and robust algorithm. An algorithm for the selection of tension parameters that will produce a shape preserving approximant is developed. A sequence of selected curve-fitting examples are presented which clearly demonstrate the advantages of exponential splines over cubic splines. We conclude with a consideration of the broad spectrum of possible uses of exponential splines in the applications. Our primary emphasis is on computational fluid dynamics although the imaginative reader will recognize the wider generality of the techniques developed.

  12. Modified Gompertz equation for electrotherapy murine tumor growth kinetics: predictions and new hypotheses.

    PubMed

    Cabrales, Luis E Bergues; Nava, Juan J Godina; Aguilera, Andrés Ramírez; Joa, Javier A González; Ciria, Héctor M Camué; González, Maraelys Morales; Salas, Miriam Fariñas; Jarque, Manuel Verdecia; González, Tamara Rubio; Mateus, Miguel A O'Farril; Brooks, Soraida C Acosta; Palencia, Fabiola Suárez; Zamora, Lisset Ortiz; Quevedo, María C Céspedes; Seringe, Sarah Edward; Cuitié, Vladimir Crombet; Cabrales, Idelisa Bergues; González, Gustavo Sierra

    2010-10-28

    Electrotherapy effectiveness at different doses has been demonstrated in preclinical and clinical studies; however, several aspects that occur in the tumor growth kinetics before and after treatment have not yet been revealed. Mathematical modeling is a useful instrument that can reveal some of these aspects. The aim of this paper is to describe the complete growth kinetics of unperturbed and perturbed tumors through use of the modified Gompertz equation in order to generate useful insight into the mechanisms that underpin this devastating disease. The complete tumor growth kinetics for control and treated groups are obtained by interpolation and extrapolation methods with different time steps, using experimental data of fibrosarcoma Sa-37. In the modified Gompertz equation, a delay time is introduced to describe the tumor's natural history before treatment. Different graphical strategies are used in order to reveal new information in the complete kinetics of this tumor type. The first stage of complete tumor growth kinetics is highly non linear. The model, at this stage, shows different aspects that agree with those reported theoretically and experimentally. Tumor reversibility and the proportionality between regions before and after electrotherapy are demonstrated. In tumors that reach partial remission, two antagonistic post-treatment processes are induced, whereas in complete remission, two unknown antitumor mechanisms are induced. The modified Gompertz equation is likely to lead to insights within cancer research. Such insights hold promise for increasing our understanding of tumors as self-organizing systems and, the possible existence of phase transitions in tumor growth kinetics, which, in turn, may have significant impacts both on cancer research and on clinical practice.

  13. Modified Gompertz equation for electrotherapy murine tumor growth kinetics: predictions and new hypotheses

    PubMed Central

    2010-01-01

    Background Electrotherapy effectiveness at different doses has been demonstrated in preclinical and clinical studies; however, several aspects that occur in the tumor growth kinetics before and after treatment have not yet been revealed. Mathematical modeling is a useful instrument that can reveal some of these aspects. The aim of this paper is to describe the complete growth kinetics of unperturbed and perturbed tumors through use of the modified Gompertz equation in order to generate useful insight into the mechanisms that underpin this devastating disease. Methods The complete tumor growth kinetics for control and treated groups are obtained by interpolation and extrapolation methods with different time steps, using experimental data of fibrosarcoma Sa-37. In the modified Gompertz equation, a delay time is introduced to describe the tumor's natural history before treatment. Different graphical strategies are used in order to reveal new information in the complete kinetics of this tumor type. Results The first stage of complete tumor growth kinetics is highly non linear. The model, at this stage, shows different aspects that agree with those reported theoretically and experimentally. Tumor reversibility and the proportionality between regions before and after electrotherapy are demonstrated. In tumors that reach partial remission, two antagonistic post-treatment processes are induced, whereas in complete remission, two unknown antitumor mechanisms are induced. Conclusion The modified Gompertz equation is likely to lead to insights within cancer research. Such insights hold promise for increasing our understanding of tumors as self-organizing systems and, the possible existence of phase transitions in tumor growth kinetics, which, in turn, may have significant impacts both on cancer research and on clinical practice. PMID:21029411

  14. Domain and rim growth kinetics in stratifying foam films

    NASA Astrophysics Data System (ADS)

    Zhang, Yiran; Yilixiati, Subinuer; Sharma, Vivek

    Foam films are freely standing thin liquid films that typically consist of two surfactant-laden surfaces that are ~5 nm - 10 micron apart. Sandwiched between these interfacial layers is a fluid that drains primarily under the influence of viscous and interfacial forces, including disjoining pressure. Interestingly, a layered ordering of micelles inside the foam films (thickness <100 nm) leads to a stepwise thinning phenomena called stratification, which results in a thickness-dependent variation in reflected light intensity, visualized as progressively darker shades of gray. Thinner, darker domains spontaneously grow within foam films. During the initial expansion, a rim forms near the contact line between the growing thinner domain and the surrounding region, which influences the dynamics of domain growth as well as stratification Using newly developed interferometry digitial imaging optical microscopy (IDIOM) technique, we capture the rim evolution dynamics. Finally, we also develop a theoretical model to describe both rim evolution and domain growth dynamics.

  15. Phosphate-limited continuous culture of Rhodotorula rubra: kinetics of transport, leakage, and growth.

    PubMed Central

    Robertson, B R; Button, D K

    1979-01-01

    The phosphate-limited growth kinetics of Rhodotorula rubra, a small yeast of marine origin, were examined by analysis of 32P distributions in continuous cultures. Isotope relaxation procedures were used to identify unidirectional flows of Pi and organic phosphate among compartments modeled during growth. The concentrations of phosphates in these compartments at various growth rates were used, together with attendant flows, to produce a mathematical model of growth. Both Pi and phosphate-containing metabolic intermediates leaked from cells during growth. Total leakage ranged from 4 to 10% of influx and was comprised mostly of Pi. Transport capacity was at least 10 times that required for growth at saturating Pi concentrations, so that influx was linear with concentration during growth. This led to the realization that the curvature of Monod plots (Kmu = 12 nM mumax = 0.18/h, and the threshold At = 2.5 nM) is due to change in yield with growth rate. Growth rate related to Pi by the affinity, aA (= 0.43 liter/mg of cells.h) of cells for Pi and the growth rate-dependent yield. It was also specified by a series of kinetic constants that specified flow among the various compartments and equilibrium compartment concentrations as they were set by extracellular Pi. The importance of leakage by healthy cells to the organic chemistry of aquatic systems is noted. PMID:37231

  16. Model for computing kinetics of the graphene edge epitaxial growth on copper.

    PubMed

    Khenner, Mikhail

    2016-06-01

    A basic kinetic model that incorporates a coupled dynamics of the carbon atoms and dimers on a copper surface is used to compute growth of a single-layer graphene island. The speed of the island's edge advancement on Cu[111] and Cu[100] surfaces is computed as a function of the growth temperature and pressure. Spatially resolved concentration profiles of the atoms and dimers are determined, and the contributions provided by these species to the growth speed are discussed. Island growth under the conditions of a thermal cycling is studied.

  17. Austenite grain growth kinetics in Al-killed plain carbon steels

    NASA Astrophysics Data System (ADS)

    Militzer, Matthias; Hawbolt, E. Bruce; Ray Meadowcroft, T.; Giumelli, Alan

    1996-11-01

    Austenite grain growth kinetics have been investigated in three Al-killed plain carbon steels. Experimental results have been validated using the statistical grain growth model by Abbruzzese and Lücke, which takes pinning by second-phase particles into account. It is shown that the pinning force is a function of the pre-heat-treatment schedule. Extrapolation to the conditions of a hot-strip mill indicates that grain growth occurs without pinning during conventional processing. Analytical relations are proposed to simulate austenite grain growth for Al-killed plain carbon steels for any thermal path in a hot-strip mill.

  18. Pyridine nucleotide cycling and control of intracellular redox state in relation to poly (ADP-ribose) polymerase activity and nuclear localization of glutathione during exponential growth of Arabidopsis cells in culture.

    PubMed

    Pellny, Till K; Locato, Vittoria; Vivancos, Pedro Diaz; Markovic, Jelena; De Gara, Laura; Pallardó, Federico V; Foyer, Christine H

    2009-05-01

    Pyridine nucleotides, ascorbate and glutathione are major redox metabolites in plant cells, with specific roles in cellular redox homeostasis and the regulation of the cell cycle. However, the regulation of these metabolite pools during exponential growth and their precise functions in the cell cycle remain to be characterized. The present analysis of the abundance of ascorbate, glutathione, and pyridine nucleotides during exponential growth of Arabidopsis cells in culture provides evidence for the differential regulation of each of these redox pools. Ascorbate was most abundant early in the growth cycle, but glutathione was low at this point. The cellular ascorbate to dehydroascorbate and reduced glutathione (GSH) to glutathione disulphide ratios were high and constant but the pyridine nucleotide pools were largely oxidized over the period of exponential growth and only became more reduced once growth had ceased. The glutathione pool increased in parallel with poly (ADP-ribose) polymerase (PARP) activities and with increases in the abundance of PARP1 and PARP2 mRNAs at a time of high cell cycle activity as indicated by transcriptome information. Marked changes in the intracellular partitioning of GSH between the cytoplasm and nucleus were observed. Extension of the exponential growth phase by dilution or changing the media led to increases in the glutathione and nicotinamide adenine dinucleotide, oxidized form (NAD)-plus-nicotinamide adenine dinucleotide, reduced form (NADH) pools and to higher NAD/NADH ratios but the nicotinamide adenine dinucleotide phosphate, oxidized form (NADP)-plus-nicotinamide adenine dinucleotide phosphate, reduced form (NADPH) pool sizes, and NAPD/NADPH ratios were much less affected. The ascorbate, glutathione, and pyridine nucleotide pools and PARP activity decreased before the exponential growth phase ended. We conclude that there are marked changes in intracellular redox state during the growth cycle but that redox homeostasis is

  19. Integrated kinetic and probabilistic modeling of the growth potential of bacterial populations.

    PubMed

    George, S M; Métris, A; Baranyi, J

    2015-05-01

    When bacteria are exposed to osmotic stress, some cells recover and grow, while others die or are unculturable. This leads to a viable count growth curve where the cell number decreases before the onset of the exponential growth phase. From such curves, it is impossible to estimate what proportion of the initial cells generates the growth because it leads to an ill-conditioned numerical problem. Here, we applied a combination of experimental and statistical methods, based on optical density measurements, to infer both the probability of growth and the maximum specific growth rate of the culture. We quantified the growth potential of a bacterial population as a quantity composed from the probability of growth and the "suitability" of the growing subpopulation to the new environment. We found that, for all three laboratory media studied, the probability of growth decreased while the "work to be done" by the growing subpopulation (defined as the negative logarithm of their suitability parameter) increased with NaCl concentration. The results suggest that the effect of medium on the probability of growth could be described by a simple shift parameter, a differential NaCl concentration that can be accounted for by the change in the medium composition. Finally, we highlighted the need for further understanding of the effect of the osmoprotectant glycine betaine on metabolism. Copyright © 2015, George et al.

  20. The logistic growth of duckweed (Lemna minor) and kinetics of ammonium uptake.

    PubMed

    Zhang, Kun; Chen, You-Peng; Zhang, Ting-Ting; Zhao, Yun; Shen, Yu; Huang, Lei; Gao, Xu; Guo, Jin-Song

    2014-01-01

    Mathematical models have been developed to describe nitrogen uptake and duckweed growth experimentally to study the kinetics of ammonium uptake under various concentrations. The kinetics of duckweed ammonium uptake was investigated using the modified depletion method after plants were grown for two weeks at different ammonium concentrations (0.5-14 mg/L) in the culture medium. The maximum uptake rate and Michaelis-Menten constant for ammonium were estimated as 0.082 mg/(g fresh weight x h) and 1.877 mg/L, respectively. Duckweed growth was assessed when supplied at different total nitrogen (TN) concentrations (1-5 mg/L) in the culture medium. The results showed that the intrinsic growth rate was from 0.22 to 0.26 d(-1), and TN concentrations had no significant influence on the duckweed growth rate.

  1. Kinetic growth mode of epitaxial GaAs on Si(001) micro-pillars

    NASA Astrophysics Data System (ADS)

    Bergamaschini, Roberto; Bietti, Sergio; Castellano, Andrea; Frigeri, Cesare; Falub, Claudiu V.; Scaccabarozzi, Andrea; Bollani, Monica; von Känel, Hans; Miglio, Leo; Sanguinetti, Stefano

    2016-12-01

    Three-dimensional, epitaxial GaAs crystals are fabricated on micro-pillars patterned into Si(001) substrates by exploiting kinetically controlled growth conditions in Molecular Beam Epitaxy. The evolution of crystal morphology during growth is assessed by considering samples with increasing GaAs deposit thickness. Experimental results are interpreted by a kinetic growth model, which takes into account the fundamental aspects of the growth and mutual deposition flux shielding between neighboring crystals. Different substrate pattern geometries with dissimilar lateral sizes and periodicities of the Si micro-pillars are considered and self-similar crystal structures are recognized. It is demonstrated that the top faceting of the GaAs crystals is tunable, which can pave the way to locally engineer compound semiconductor quantum structures on Si(001) substrates.

  2. A growth kinetic model of Kluyveromyces marxianus cultures on cheese whey as substrate.

    PubMed

    Longhi, Luís G S; Luvizetto, Débora J; Ferreira, Luciane S; Rech, Rosane; Ayub, Marco A Z; Secchi, Argimiro R

    2004-01-01

    This work presents a multi-route, non-structured kinetic model for determination of microbial growth and substrate consumption in an experimental batch bioreactor in which beta-galactosidase is produced by Kluyveromyces marxianus growing on cheese whey. The main metabolic routes for lactose, and oxygen consumption, cell growth, and ethanol production are derived based on experimental data. When these individual rates are combined into a single growth rate, by rewriting the model equations, the model re-interpretation has a complexity similar to that of the usual variations of the Monod kinetic model, available in the literature. Furthermore, the proposed model is in good agreement with the experimental data for different growth temperatures, being acceptable for dynamic simulations, processes optimization, and implementations of model-based control technologies.

  3. Kinetics and thermodynamics of sucrose crystal growth in the presence of a non-ionic surfactant

    NASA Astrophysics Data System (ADS)

    Kumar, K. Vasanth; Rocha, F.

    2010-06-01

    Batch experiments were carried out to study the effect of Hodag CB6, a non-ionic surfactant, on the growth kinetics of sucrose crystals as a function of supersaturation, impurity concentration and temperature. The growth promoting effect of the added impurity, studied using a recently introduced spiral nucleation model (SNM), was due to the decrease in the surface free energy induced by the added surfactant. The growth process was influenced by both kinetic and thermodynamic effect, the latter being predominant. The coverage of impurity molecules on the sucrose surface followed a Henry type expression according to Langmuir isotherm at studied temperatures. In the case of a pure system, the total active kink density was found to be around 10 16 kinks/m 2. The active growth sites on the crystal surface were found to be two orders of magnitude lower than the total number of sucrose molecules.

  4. A Quantitative Mouse Model of Implant-Associated Osteomyelitis and the Kinetics of Microbial Growth, Osteolysis and Humoral Immunity

    PubMed Central

    Li, Dan; Gromov, Kirill; Søballe, Kjeld; Puzas, J. Edward; O’Keefe, Regis J.; Awad, Hani; Drissi, Hicham; Schwarz, Edward M.

    2009-01-01

    Summary Although osteomyelitis (OM) remains a serious problem in orthopaedics, progress has been limited by the absence of an in vivo model that can quantify the bacterial load, metabolic activity of the bacteria over time, immunity and osteolysis. To overcome these obstacles, we developed a murine model of implant-associated OM in which a stainless steel pin is coated with Staphylococcus aureus and implanted transcortically through the tibial metaphysis. X-ray and micro-CT demonstrated concomitant osteolysis and reactive bone formation, which was evident by day 7. Histology confirmed all the hallmarks of implant-associated OM, namely: osteolysis, sequestrum formation and involucrum of Gram-positive bacteria inside a biofilm within necrotic bone. Serology revealed that mice mount a protective humoral response that commences with an IgM response after one weak, and converts to a specific IgG2b response against specific S. aureus proteins by day 11 post-infection. Real-time quantitative PCR (RTQ-PCR) for the S. aureus specific nuc gene determined that the peak bacterial load occurs 11 days post-infection. This coincidence of decreasing bacterial load with the generation of specific antibodies is suggestive of protective humoral immunity. Longitudinal in vivo bioluminescent imaging (BLI) of luxA-E transformed S. aureus (Xen29) combined with nuc RTQ-PCR demonstrated the exponential growth phase of the bacteria immediately following infection that peaks on day 4, and is followed by the biofilm growth phase at a significantly lower metabolic rate (p<0.05). Collectively, these studies demonstrate the first quantitative model of implant-associated OM that defines the kinetics of microbial growth, osteolysis and humoral immunity following infection. PMID:17676625

  5. Effect of wall growth on the kinetic modeling of nitrite oxidation in a CSTR.

    PubMed

    Dokianakis, Spiros N; Kornaros, Michael; Lyberatos, Gerasimos

    2006-03-05

    A simple kinetic model was developed for describing nitrite oxidation by autotrophic aerobic nitrifiers in a continuous stirred tank reactor (CSTR), in which mixed (suspended and attached) growth conditions prevail. The CSTR system was operated under conditions of constant nitrite feed concentration and varying volumetric flow rates. Experimental data from steady-state conditions in the CSTR system and from batch experiments were used for the determination of the model's kinetic parameters. Model predictions were verified against experimental data obtained under transient operating conditions, when volumetric flow rate and nitrite feed concentration disturbances were imposed on the CSTR. The presented kinetic modeling procedure is quite simple and general and therefore can also be applied to other mixed growth biological systems.

  6. An Unusual Exponential Graph

    ERIC Educational Resources Information Center

    Syed, M. Qasim; Lovatt, Ian

    2014-01-01

    This paper is an addition to the series of papers on the exponential function begun by Albert Bartlett. In particular, we ask how the graph of the exponential function y = e[superscript -t/t] would appear if y were plotted versus ln t rather than the normal practice of plotting ln y versus t. In answering this question, we find a new way to…

  7. An Unusual Exponential Graph

    ERIC Educational Resources Information Center

    Syed, M. Qasim; Lovatt, Ian

    2014-01-01

    This paper is an addition to the series of papers on the exponential function begun by Albert Bartlett. In particular, we ask how the graph of the exponential function y = e[superscript -t/t] would appear if y were plotted versus ln t rather than the normal practice of plotting ln y versus t. In answering this question, we find a new way to…

  8. Growth kinetics of Al–Fe intermetallic compounds during annealing treatment of friction stir lap welds

    SciTech Connect

    Movahedi, M.; Kokabi, A.H.; Seyed Reihani, S.M.; Najafi, H.; Farzadfar, S.A.; Cheng, W.J.; Wang, C.J.

    2014-04-01

    In this study, we explored the growth kinetics of the Al–Fe intermetallic (IM) layer at the joint interface of the St-12/Al-5083 friction stir lap welds during post-weld annealing treatment at 350, 400 and 450 °C for 30 to 180 min. Optical microscope (OM), field emission gun scanning electron microscope (FEG-SEM) and transmission electron microscope (TEM) were employed to investigate the structure of the weld zone. The thickness and composition of the IM layers were evaluated using image analysis system and electron back-scatter diffraction (EBSD), respectively. Moreover, kernel average misorientation (KAM) analysis was performed to evaluate the level of stored energy in the as-welded state. The results showed that the growth kinetics of the IM layer was not governed by a parabolic diffusion law. Presence of the IM compounds as well as high stored energy near the joint interface of the as-welded sample was recognized to be the origin of the observed deviation from the parabolic diffusion law. - Highlights: • This work provided a new insight into growth kinetics of Al–Fe IM thickness. • The growth kinetics of IM layer was not governed by a parabolic diffusion law. • IM near the joint interface was the origin of deviation from the parabolic law. • High stored energy at joint interface was origin of deviation from parabolic law.

  9. Dynamic identification of growth and survival kinetic parameters of microorganisms in foods

    USDA-ARS?s Scientific Manuscript database

    Inverse analysis is a mathematical method used in predictive microbiology to determine the kinetic parameters of microbial growth and survival in foods. The traditional approach in inverse analysis relies on isothermal experiments that are time-consuming and labor-intensive, and errors are accumula...

  10. Mathematical modeling and growth kinetics of Clostridium sporogenes in cooked beef

    USDA-ARS?s Scientific Manuscript database

    Clostridium sporogenes PA 3679 is a common surrogate for proteolytic Clostridium botulinum for thermal process development and validation. However, little information is available concerning the growth kinetics of C. sporogenes in food. Therefore, the objective of this study was to investigate the...

  11. Kinetic Roughening and Energetics of Tetragonal Lysozyme Crystal Growth: A Preliminary Atomic Force Microscopy Investigation

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar; Forsythe, Elizabeth L.; Pusey, Marc L.

    2004-01-01

    We examined particulars of crystal growth from measurements obtained at both microscopic and molecular levels. The crystal growth measurements performed at the microscopic level are well characterized by a model that balances the flux of macromolecules towards the crystal surface with the flux of the crystal surface. Numerical evaluation of model with measurements of crystal growth, in time, provided accurate estimates for the average growth velocities. Growth velocities thus obtained were also interpreted using well-established phenomenological theories. Moreover, we find that microscopic measurements of growth velocity measurements obtained as a function of temperature best characterizes changes in crystal growth modes, when present. We also examined the possibility of detecting a change in crystal growth modes at the molecular level using atomic force microscopy, AFM. From preliminary AFM measurements performed at various supersaturations, we find that magnitude of surface height fluctuations, h(x), increases with supersaturation. Further examination of surface height fluctuations using methods established for fluctuation spectroscopy also enabled the discovery of the existence of a characteristic length, c, which may possibly determine the mode of crystal growth. Although the results are preliminary, we establish the non- critical divergence of 5 and the root-mean-square (rms) magnitude of height-height fluctuations as the kinetic roughening transition temperatures are approached. Moreover, we also examine approximate models for interpreting the non-critical behavior of both 6 and rms magnitude of height-height fluctuations, as the solution supersaturation is increased towards the kinetic roughening supersaturation.

  12. Kinetic Roughening and Energetics of Tetragonal Lysozyme Crystal Growth: A Preliminary Atomic Force Microscopy Investigation

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar; Forsythe, Elizabeth L.; Pusey, Marc L.

    2004-01-01

    We examined particulars of crystal growth from measurements obtained at both microscopic and molecular levels. The crystal growth measurements performed at the microscopic level are well characterized by a model that balances the flux of macromolecules towards the crystal surface with the flux of the crystal surface. Numerical evaluation of model with measurements of crystal growth, in time, provided accurate estimates for the average growth velocities. Growth velocities thus obtained were also interpreted using well-established phenomenological theories. Moreover, we find that microscopic measurements of growth velocity measurements obtained as a function of temperature best characterizes changes in crystal growth modes, when present. We also examined the possibility of detecting a change in crystal growth modes at the molecular level using atomic force microscopy, AFM. From preliminary AFM measurements performed at various supersaturations, we find that magnitude of surface height fluctuations, h(x), increases with supersaturation. Further examination of surface height fluctuations using methods established for fluctuation spectroscopy also enabled the discovery of the existence of a characteristic length, c, which may possibly determine the mode of crystal growth. Although the results are preliminary, we establish the non- critical divergence of 5 and the root-mean-square (rms) magnitude of height-height fluctuations as the kinetic roughening transition temperatures are approached. Moreover, we also examine approximate models for interpreting the non-critical behavior of both 6 and rms magnitude of height-height fluctuations, as the solution supersaturation is increased towards the kinetic roughening supersaturation.

  13. Understanding the isothermal growth kinetics of cdse quantum dots through microfluidic reactor assisted combinatorial synthesis

    NASA Astrophysics Data System (ADS)

    Swain, Basudev; Hong, Myung Hwan; Kang, Lee-Seung; Lee, Chan Gi

    2016-11-01

    With the use of a microfluidic-assisted combinatorial reactor, the synthesis of CdSe quantum dots was optimized by varying one parameter at a time, and the isothermal growth kinetics of CdSe quantum dots using various models was analyzed. To understand precisely the nucleation and growth characteristics of CdSe quantum dots (QDs), we synthesized the CdSe QDs using various experimental conditions. Different model equations, like acceleratory growth-time curves, sigmoidal growth-time curves or Johnson-Mehl-Avrami-Kolmogorov (JMAK), acceleratory growthtime curves based on diffusion, geometric model growth-time curves, and nth order growth-time curves were fitted. Among all growth models, the JMAK model with α = 1 - {e^{ - {{(kt)}^n}}}, and n = 1 was the best fitting model with the MATLAB interactive curve-fitting procedure were used. Errors associated with the best-fitting model and statistics for the goodness of fit were analyzed. Most of the models were not as good as the other than the proposed model. The errors associated with the proposed model were minimal, and the growth kinetics and other associated statistical factors are very similar, for all the variables investigated. The minimal error associated with the reproducibility and the similar data for growth kinetics for all studied parameters indicated that microfluidic-assisted combinatorial synthesis can be used in the industrial production of QDs. By using the proposed model to obtain an understanding of growth of QDs, their size and properties can be managed and simulated.

  14. Growth kinetics of three species of Tetrahymena on solid agar

    SciTech Connect

    Dobra, K.W.; McArdle, E.W.; Ehret, C.F.

    1980-01-01

    A nutrient-agar method without liquid overlay has been developed for cultivation of ciliates. Three species of Tetrahymena-T. pyriformis strain W, T. rostrata strain UNI, and T. vorax strain V/sub 2/S, representing the 3 main groups of Tetrahymena species, were used; however the method should apply to other ciliates. Growth on the surface of the agar was facilitated by an optimal surface-to-volume ratio yielding a high density of ciliates and short generation times. At the highest density achieved, the cells became irregularly hexagonal and formed a monolayer tissue on the agar. Ciliates grown on agar were like those in liquid culture, typical oral ciliature, food-vacuole formation, and typical cortical patterns being retained. Advantages of this method include high cell density, easy recovery, and optimal O/sub 2/ supply. The organisms can also be cultivated on the surface of sterile cellulose-nitrate filters, facilitating in situ fixation and staining as well as transfer into different media by transfer of filters with cells, without prior centrifugation and resuspension.

  15. The kinetic boundary layer around an absorbing sphere and the growth of small droplets

    SciTech Connect

    Widder, M.E.; Titulaer, U.M. )

    1989-06-01

    Deviations from the classical Smoluchowski expression for the growth rate of a droplet in a supersaturated vapor can be expected when the droplet radius is not large compared to the mean free path of a vapor molecule. The growth rate then depends significantly on the structure of the kinetic boundary layer around a sphere. The authors consider this kinetic boundary layer for a dilute system of Brownian particles. For this system a large class of boundary layer problems for a planar wall have been solved. They show how the spherical boundary layer can be treated by a perturbation expansion in the reciprocal droplet radius. In each order one has to solve a finite number of planar boundary layer problems. The first two corrections to the planar problem are calculated explicitly. For radii down to about two velocity persistence lengths (the analog of the mean free path for a Brownian particle) the successive approximations for the growth rate agree to within a few percent. A reasonable estimate of the growth rate for all radii can be obtained by extrapolating toward the exactly known value at zero radius. Kinetic boundary layer effects increase the time needed for growth from 0 to 10 (or 2{1/2}) velocity persistence lengths by roughly 35% (or 175%).

  16. Analytical solution of Luedeking-Piret equation for a batch fermentation obeying Monod growth kinetics.

    PubMed

    Garnier, Alain; Gaillet, Bruno

    2015-12-01

    Not so many fermentation mathematical models allow analytical solutions of batch process dynamics. The most widely used is the combination of the logistic microbial growth kinetics with Luedeking-Piret bioproduct synthesis relation. However, the logistic equation is principally based on formalistic similarities and only fits a limited range of fermentation types. In this article, we have developed an analytical solution for the combination of Monod growth kinetics with Luedeking-Piret relation, which can be identified by linear regression and used to simulate batch fermentation evolution. Two classical examples are used to show the quality of fit and the simplicity of the method proposed. A solution for the combination of Haldane substrate-limited growth model combined with Luedeking-Piret relation is also provided. These models could prove useful for the analysis of fermentation data in industry as well as academia.

  17. Kinetic characteristics and modelling of growth and substrate removal by Alcaligenes faecalis strain NR.

    PubMed

    Chen, Jie; Zhao, Bin; An, Qiang; Wang, Xia; Zhang, Yi Xin

    2016-04-01

    Alcaligenes faecalis strain NR has the capability of simultaneous ammonium and organic carbon removal under sole aerobic conditions. The growth and substrate removal characteristics of A. faecalis strain NR were studied and appropriate kinetic models were developed. The maximum substrate removal rate of NH4 (+)-N and TOC were determined as 2.27 mg NH4 (+)-N/L/h and 30.00 mg TOC/L/h, respectively with initial NH4 (+)-N = 80 mg/L and TOC = 800 mg/L. Single-substrate models and double-substrate models based on Monod, Contois, Moser and Teissier were employed to describe the bioprocess kinetic coefficients. As a result, two double-substrate models, Teissier-Contois and Contois-Contois, were considered to be appropriate to model growth kinetics with both NH4 (+)-N and TOC as limiting substrates. The kinetic constants of maximum growth rate (μ max) and half-saturation constant (K S and B S) were obtained by solving multiple equations with regression. This work can be used to further understand and predict the performance of heterotrophic nitrifiers, and thus provides specific guidance of these functional strains in practical wastewater treatment process.

  18. In vivo imaging reveals sigmoidal growth kinetic of β-amyloid plaques

    PubMed Central

    2014-01-01

    A major neuropathological hallmark of Alzheimer’s disease is the deposition of amyloid plaques in the brains of affected individuals. Amyloid plaques mainly consist of fibrillar β-amyloid, which is a cleavage product of the amyloid precursor protein. The amyloid-cascade-hypothesis postulates Aβ accumulation as the central event in initiating a toxic cascade leading to Alzheimer’s disease pathology and, ultimately, loss of cognitive function. We studied the kinetics of β-amyloid deposition in Tg2576 mice, which overexpress human amyloid precursor protein with the Swedish mutation. Utilizing long-term two-photon imaging we were able to observe the entire kinetics of plaque growth in vivo. Essentially, we observed that plaque growth follows a sigmoid-shaped curve comprising a cubic growth phase, followed by saturation. In contrast, plaque density kinetics exhibited an asymptotic progression. Taking into account the fact that a critical concentration of Aβ is required to seed new plaques, we can propose the following kinetic model of β-amyloid deposition in vivo. In the early cubic phase, plaque growth is not limited by Aβ concentration and plaque density increases very fast. During the transition phase, plaque density stabilizes whereas plaque volume increases strongly reflecting a robust growth of the plaques. In the late asymptotic phase, Aβ peptide production becomes rate-limiting for plaque growth. In conclusion, the present study offers a direct link between in vitro and in vivo studies facilitating the translation of Aβ-lowering strategies from laboratory models to patients. PMID:24678659

  19. Kinetics of cesium lead halide perovskite nanoparticle growth; focusing and de-focusing of size distribution

    NASA Astrophysics Data System (ADS)

    Koolyk, Miriam; Amgar, Daniel; Aharon, Sigalit; Etgar, Lioz

    2016-03-01

    In this work we study the kinetics of cesium lead halide perovskite nanoparticle (NP) growth; the focusing and de-focusing of the NP size distribution. Cesium lead halide perovskite NPs are considered to be attractive materials for optoelectronic applications. Understanding the kinetics of the formation of these all-inorganic perovskite NPs is critical for reproducibly and reliably generating large amounts of uniformly sized NPs. Here we investigate different growth durations for CsPbI3 and CsPbBr3 NPs, tracking their growth by high-resolution transmission electron microscopy and size distribution analysis. As a result, we are able to provide a detailed model for the kinetics of their growth. It was observed that the CsPbI3 NPs exhibit focusing of the size distribution in the first 20 seconds of growth, followed by de-focusing over longer growth durations, while the CsPbBr3 NPs show de-focusing of the size distribution starting from the beginning of the growth. The monomer concentration is depleted faster in the case of CsPbBr3 than in the case of CsPbI3, due to faster diffusion of the monomers, which increases the critical radius and results in de-focusing of the population. Accordingly, focusing is not observed within 40 seconds of growth in the case of CsPbBr3. This study provides important knowledge on how to achieve a narrow size distribution of cesium lead halide perovskite NPs when generating large amounts of these promising, highly luminescent NPs.In this work we study the kinetics of cesium lead halide perovskite nanoparticle (NP) growth; the focusing and de-focusing of the NP size distribution. Cesium lead halide perovskite NPs are considered to be attractive materials for optoelectronic applications. Understanding the kinetics of the formation of these all-inorganic perovskite NPs is critical for reproducibly and reliably generating large amounts of uniformly sized NPs. Here we investigate different growth durations for CsPbI3 and CsPbBr3 NPs, tracking

  20. Exponentially fitted symplectic integrator

    NASA Astrophysics Data System (ADS)

    Simos, T. E.; Vigo-Aguiar, Jesus

    2003-01-01

    In this paper a procedure for constructing efficient symplectic integrators for Hamiltonian problems is introduced. This procedure is based on the combination of the exponential fitting technique and symplecticness conditions. Based on this procedure, a simple modified Runge-Kutta-Nyström second-order algebraic exponentially fitted method is developed. We give explicitly the symplecticness conditions for the modified Runge-Kutta-Nyström method. We also give the exponential fitting and trigonometric fitting conditions. Numerical results indicate that the present method is much more efficient than the “classical” symplectic Runge-Kutta-Nyström second-order algebraic method introduced by M.P. Calvo and J.M. Sanz-Serna [J. Sci. Comput. (USA) 14, 1237 (1993)]. We note that the present procedure is appropriate for all near-unimodal systems.

  1. Kinetics of cesium lead halide perovskite nanoparticle growth; focusing and de-focusing of size distribution.

    PubMed

    Koolyk, Miriam; Amgar, Daniel; Aharon, Sigalit; Etgar, Lioz

    2016-03-28

    In this work we study the kinetics of cesium lead halide perovskite nanoparticle (NP) growth; the focusing and de-focusing of the NP size distribution. Cesium lead halide perovskite NPs are considered to be attractive materials for optoelectronic applications. Understanding the kinetics of the formation of these all-inorganic perovskite NPs is critical for reproducibly and reliably generating large amounts of uniformly sized NPs. Here we investigate different growth durations for CsPbI3 and CsPbBr3 NPs, tracking their growth by high-resolution transmission electron microscopy and size distribution analysis. As a result, we are able to provide a detailed model for the kinetics of their growth. It was observed that the CsPbI3 NPs exhibit focusing of the size distribution in the first 20 seconds of growth, followed by de-focusing over longer growth durations, while the CsPbBr3 NPs show de-focusing of the size distribution starting from the beginning of the growth. The monomer concentration is depleted faster in the case of CsPbBr3 than in the case of CsPbI3, due to faster diffusion of the monomers, which increases the critical radius and results in de-focusing of the population. Accordingly, focusing is not observed within 40 seconds of growth in the case of CsPbBr3. This study provides important knowledge on how to achieve a narrow size distribution of cesium lead halide perovskite NPs when generating large amounts of these promising, highly luminescent NPs.

  2. Edge-controlled growth and kinetics of single-crystal graphene domains by chemical vapor deposition.

    PubMed

    Ma, Teng; Ren, Wencai; Zhang, Xiuyun; Liu, Zhibo; Gao, Yang; Yin, Li-Chang; Ma, Xiu-Liang; Ding, Feng; Cheng, Hui-Ming

    2013-12-17

    The controlled growth of large-area, high-quality, single-crystal graphene is highly desired for applications in electronics and optoelectronics; however, the production of this material remains challenging because the atomistic mechanism that governs graphene growth is not well understood. The edges of graphene, which are the sites at which carbon accumulates in the two-dimensional honeycomb lattice, influence many properties, including the electronic properties and chemical reactivity of graphene, and they are expected to significantly influence its growth. We demonstrate the growth of single-crystal graphene domains with controlled edges that range from zigzag to armchair orientations via growth-etching-regrowth in a chemical vapor deposition process. We have observed that both the growth and the etching rates of a single-crystal graphene domain increase linearly with the slanted angle of its edges from 0° to ∼19° and that the rates for an armchair edge are faster than those for a zigzag edge. Such edge-structure-dependent growth/etching kinetics of graphene can be well explained at the atomic level based on the concentrations of the kinks on various edges and allow the evolution and control of the edge and morphology in single-crystal graphene following the classical kinetic Wulff construction theory. Using these findings, we propose several strategies for the fabrication of wafer-sized, high-quality, single-crystal graphene.

  3. Monte Carlo simulation of the kinetic effects on GaAs/GaAs(001) MBE growth

    NASA Astrophysics Data System (ADS)

    Ageev, Oleg A.; Solodovnik, Maxim S.; Balakirev, Sergey V.; Mikhaylin, Ilya A.; Eremenko, Mikhail M.

    2017-01-01

    The molecular beam epitaxial growth of GaAs on the GaAs(001)-(2×4) surface is investigated using a kinetic Monte Carlo-based method. The developed algorithm permits to focus on the kinetic effects in a wide range of growth conditions and enables considerable computational speedup. The simulation results show that the growth rate has a dramatic influence upon both the island morphology and Ga surface diffusion length. The average island size reduces with increasing growth rate while the island density increases with increasing growth rate as well as As4/Ga beam equivalent pressure ratio. As the growth rate increases, the island density becomes weaker dependent upon the As4/Ga pressure ratio and approaches to a saturation value. We also discuss three characteristics of Ga surface diffusion, namely a diffusion length of a Ga adatom deposited first, an average diffusion length, and an island spacing as an average distance between islands. The calculations show that the As4/Ga pressure ratio dependences of these characteristics obey the same law, but with different coefficients. An increase of the As4/Ga pressure ratio leads to a decrease in both the diffusion length and island spacing. However, its influence becomes stronger with increasing growth rate for the first Ga adatom diffusion length and weaker for the average diffusion length and for the island spacing.

  4. A Kinetic Model for GaAs Growth by Hydride Vapor Phase Epitaxy

    SciTech Connect

    Schulte, Kevin L.; Simon, John; Jain, Nikhil; Young, David L.; Ptak, Aaron J.

    2016-11-21

    Precise control of the growth of III-V materials by hydride vapor phase epitaxy (HVPE) is complicated by the fact that the growth rate depends on the concentrations of nearly all inputs to the reactor and also the reaction temperature. This behavior is in contrast to metalorganic vapor phase epitaxy (MOVPE), which in common practice operates in a mass transport limited regime where growth rate and alloy composition are controlled almost exclusively by flow of the Group III precursor. In HVPE, the growth rate and alloy compositions are very sensitive to temperature and reactant concentrations, which are strong functions of the reactor geometry. HVPE growth, particularly the growth of large area materials and devices, will benefit from the development of a growth model that can eventually be coupled with a computational fluid dynamics (CFD) model of a specific reactor geometry. In this work, we develop a growth rate law using a Langmuir-Hinshelwood (L-H) analysis, fitting unknown parameters to growth rate data from the literature that captures the relevant kinetic and thermodynamic phenomena of the HVPE process. We compare the L-H rate law to growth rate data from our custom HVPE reactor, and develop quantitative insight into reactor performance, demonstrating the utility of the growth model.

  5. Review of "Going Exponential: Growing the Charter School Sector's Best"

    ERIC Educational Resources Information Center

    Garcia, David

    2011-01-01

    This Progressive Policy Institute report argues that charter schools should be expanded rapidly and exponentially. Citing exponential growth organizations, such as Starbucks and Apple, as well as the rapid growth of molds, viruses and cancers, the report advocates for similar growth models for charter schools. However, there is no explanation of…

  6. Growth Kinetics of Hyphomicrobium and Thiobacillus spp. in Mixed Cultures Degrading Dimethyl Sulfide and Methanol▿

    PubMed Central

    Hayes, Alexander C.; Liss, Steven N.; Allen, D. Grant

    2010-01-01

    The growth kinetics of Hyphomicrobium spp. and Thiobacillus spp. on dimethyl sulfide (DMS) and methanol (in the case of Hyphomicrobium spp.) in an enrichment culture created from a biofilter cotreating DMS and methanol were studied. Specific growth rates of 0.099 h−1 and 0.11 h−1 were determined for Hyphomicrobium spp. and Thiobacillus spp., respectively, growing on DMS at pH 7. These specific growth rates are double the highest maximum specific growth rate for bacterial growth on DMS reported to date in the literature. When the pH of the medium was decreased from pH 7 to pH 5, the specific growth rate of Hyphomicrobium spp. decreased by 85%, with a near 100-fold decline in the yield of Hyphomicrobium 16S rRNA gene copies in the mixed culture. Through the same pH shift, the specific growth rate and 16S rRNA gene yield of Thiobacillus spp. remained similar. When methanol was used as a substrate, the specific growth rate of Hyphomicrobium spp. declined much less over the same pH range (up to 30%) while the yield of 16S rRNA gene copies declined by only 50%. Switching from an NH4+-N-based source to a NO3−-N-based source resulted in the same trends for the specific growth rate of these microorganisms with respect to pH. This suggests that pH has far more impact on the growth kinetics of these microorganisms than the nitrogen source. The results of these mixed-culture batch experiments indicate that the increased DMS removal rates observed in previous studies of biofilters cotreating DMS and methanol are due to the proliferation of DMS-degrading Hyphomicrobium spp. on methanol at pH levels not conducive to high growth rates on DMS alone. PMID:20562269

  7. Growth kinetics of Hyphomicrobium and Thiobacillus spp. in mixed cultures degrading dimethyl sulfide and methanol.

    PubMed

    Hayes, Alexander C; Liss, Steven N; Allen, D Grant

    2010-08-01

    The growth kinetics of Hyphomicrobium spp. and Thiobacillus spp. on dimethyl sulfide (DMS) and methanol (in the case of Hyphomicrobium spp.) in an enrichment culture created from a biofilter cotreating DMS and methanol were studied. Specific growth rates of 0.099 h(-1) and 0.11 h(-1) were determined for Hyphomicrobium spp. and Thiobacillus spp., respectively, growing on DMS at pH 7. These specific growth rates are double the highest maximum specific growth rate for bacterial growth on DMS reported to date in the literature. When the pH of the medium was decreased from pH 7 to pH 5, the specific growth rate of Hyphomicrobium spp. decreased by 85%, with a near 100-fold decline in the yield of Hyphomicrobium 16S rRNA gene copies in the mixed culture. Through the same pH shift, the specific growth rate and 16S rRNA gene yield of Thiobacillus spp. remained similar. When methanol was used as a substrate, the specific growth rate of Hyphomicrobium spp. declined much less over the same pH range (up to 30%) while the yield of 16S rRNA gene copies declined by only 50%. Switching from an NH(4)(+)-N-based source to a NO(3)(-)-N-based source resulted in the same trends for the specific growth rate of these microorganisms with respect to pH. This suggests that pH has far more impact on the growth kinetics of these microorganisms than the nitrogen source. The results of these mixed-culture batch experiments indicate that the increased DMS removal rates observed in previous studies of biofilters cotreating DMS and methanol are due to the proliferation of DMS-degrading Hyphomicrobium spp. on methanol at pH levels not conducive to high growth rates on DMS alone.

  8. Kinetics of grain-growth in wadsleyite: implications for point defect chemistry

    NASA Astrophysics Data System (ADS)

    Nishihara, Y.; Shinmei, T.; Karato, S.

    2003-12-01

    We investigate the kinetics of grain-growth in wadsleyite for two reasons. First, grain-growth kinetics controls the grain-size of wadsleyite in the mantle transition zone which in turn controls the rheology in that region. Second, the detailed knowledge of grain-growth kinetics will provide us with important constraints on the defect-related properties of this mineral which may control other properties such as diffusion, electrical conductivity and creep. We carried out the grain-growth experiments by using KIWI 1000-ton Kawai-type multi-anvil apparatus installed at Yale University. Starting material was synthesized from powdered San Carlos olivine. The grain-growth experiments were conducted at 15 GPa and 1100-1500° C for 1-24 hours. We used Mo, Ni and Re foil capsules, in order to control the oxygen fugacity by metal-oxide buffer. For ''wet'' experiments (water-saturated), a mixture of talc and brucite was packed into a capsule together with a wadsleyite sample separated by metal foils. We used a Au-Pd outer capsule which is known to be a good barrier for hydrogen diffusion. Water content in each sample was determined after an experiment by FTIR analysis of a doubly polished thin section. Grain-size was measured on a polished section using an intercept method. One of the difficulties in these experiments is to reduce the amount of water in wadsleyite. Even in nominally ''dry'' experiments in which no water is added, a significant amount of water (upto ˜25,000 H/106 Si) was detected, which comes presumably from some components in the sample assembly such as the cement. This water-uptake by wadsleyite can be minimized by surrounding it with a Au-Pd capsule. In this truly ''dry'' sample assembly, the water content of wadsleyite (after an experiment) is reduced to less than ˜100 H/106 Si, a water content similar to typical ''dry'' experiments on olivine. Compared at similar water content, the kinetics of grain-growth in wadsleyite is significantly slower than

  9. A kinetic model to simulate protein crystal growth in an evaporation-based crystallization platform

    SciTech Connect

    Talreja, S.; Kenis, P; Zukoski, C

    2007-01-01

    The quality, size, and number of protein crystals grown under conditions of continuous solvent extraction are dependent on the rate of solvent extraction and the initial protein and salt concentration. An increase in the rate of solvent extraction leads to a larger number of crystals. The number of crystals decreases, however, when the experiment is started with an initial protein concentration that is closer to the solubility boundary. Here we develop a kinetic model capable of predicting changes in the number and size of protein crystals as a function of time under continuous evaporation. Moreover, this model successfully predicts the initial condition of drops that will result in gel formation. We test this model with experimental crystal growth data of hen egg white lysozyme for which crystal nucleation and growth rate parameters are known from other studies. The predicted and observed rates of crystal growth are in excellent agreement, which suggests that kinetic constants for nucleation and crystal growth for different proteins can be extracted by applying a kinetic model in combination with observations from a few evaporation-based crystallization experiments.

  10. Kinetics of Vapor-Solid Phase Transitions: Structure, Growth, and Mechanism

    NASA Astrophysics Data System (ADS)

    Midya, Jiarul; Das, Subir K.

    2017-04-01

    The kinetics of the separation between low and high density phases in a single component Lennard-Jones model is studied via molecular dynamics simulations, at very low temperatures, in the space dimension d =2 . For densities close to the vapor branch of the coexistence curve, disconnected nanoscale clusters of the high density phase exhibit essentially ballistic motion. Starting from nearly circular shapes, at the time of nucleation, these clusters grow via sticky collisions, gaining filamentlike nonequilibrium structure at a later time, with a very low fractal dimensionality. The origin of the latter is shown to lie in the low mobility of the constituent particles, in the corresponding cluster reference frame, due to the (quasi-long-range) crystalline order. Standard self-similarity in the domain pattern, typically observed in the kinetics of phase transitions, is found to be absent. This invalidates the common method, that provides a growth law comparable to that in solid mixtures, of quantifying growth. An appropriate alternative approach, involving the fractality, quantifies the growth of the characteristic "length" to be a power law with time, the exponent being strongly temperature dependent. The observed growth law is in agreement with the outcome of a nonequilibrium kinetic theory.

  11. Growth kinetics of cubic carbide free layers in graded cemented carbides

    NASA Astrophysics Data System (ADS)

    Shi, Liu-Yong; Liu, Yi-Min; Huang, Ji-Hua; Zhang, Shou-Quan; Zhao, Xing-Ke

    2012-01-01

    In order to reveal the formation mechanism of cubic carbide free layers (CCFL), graded cemented carbides with CCFL in the surface zone were fabricated by a one-step sintering procedure in vacuum, and the analysis on microstructure and element distribution were performed by scanning electron microscopy (SEM) and electron probe micro-analyzer (EPMA), respectively. A new physical model and kinetic equation were established based on experimental results. Being different from previous models, this model suggests that nitrogen diffusion outward is only considered as an induction factor, and the diffusion of titanium through liquid phase plays a dominative role. The driving force of diffusion is expressed as the differential value between nitrogen partial pressure and nitrogen equilibrium pressure essentially. Simulation results by the kinetic equation are in good agreement with experimental values, and the effect of process parameters on the growth kinetics of CCFL can also be explained reasonably by the current model.

  12. Dissecting seed dormancy and germination in Aquilegia barbaricina, through thermal kinetics of embryo growth.

    PubMed

    Porceddu, M; Mattana, E; Pritchard, H W; Bacchetta, G

    2017-08-01

    Threshold-based thermal time models provide insight into the physiological switch from the dormant to the non-dormant germinating seed. This approach was used to quantify the different growth responses of the embryo of seeds purported to have morphophysiological dormancy (MPD) through the complex phases of dormancy release and germination. Aquilegia barbaricina seeds were incubated at constant temperatures (10-25 °C) and 25/10 °C, without pre-treatment, after warm+cold stratification (W+C) and GA3 treatment. Embryo growth was assessed and the time of testa and endosperm rupture scored. Base temperatures (Tb ) and thermal times for 50% (θ50 ) of embryo growth and seed germination were calculated. W+C enabled slow embryo growth. W+C and GA3 promoted rapid embryo growth and subsequent radicle emergence. The embryo internal growth base temperature (Tbe ) was ca. 5 °C for W+C and GA3 -treated seeds. GA3 treatment also resulted in similar Tb estimates for radicle emergence. The thermal times for embryo growth (θe50 ) and germination (θg50 ) were four- to six-fold longer in the presence of GA3 compared to W+C. A. barbaricina is characterised by a multi-step seed germination. The slow embryo growth during W+C reflects continuation of the maternal programme of development, whilst the thermal kinetics of both embryo and radicle growth after the removal of physiological dormancy are distinctly different. The effects of W+C on the multiphasic germination response in MPD seeds are only partially mimicked by 250 mg·l(-1) GA3 . The thermal time approach could be a valid tool to model thermal kinetics of embryo growth and radicle protrusion. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  13. Analysis of Arabidopsis thaliana root growth kinetics with high temporal and spatial resolution

    PubMed Central

    Yazdanbakhsh, Nima; Fisahn, Joachim

    2010-01-01

    Background Methods exist to quantify the distribution of growth rate over the root axis. However, non-destructive, high-throughput evaluations of total root elongation in controlled environments and the field are lacking in growth studies. A new imaging approach to analyse total root elongation is described. Scope High pixel resolution of the images enables the study of growth in short time intervals and provides high temporal resolution. Using the method described, total root elongation rates are calculated from the displacement of the root tip. Although the absolute root elongation rate changes in response to growth conditions, this set-up enables root growth of Arabidopsis wild-type seedlings to be followed for more than 1 month after germination. The method provides an easy approach to decipher root extension rate and much simpler calculations compared with other methods that use segmental growth to address this question. Conclusions The high temporal resolution allows small modifications of total root elongation growth to be revealed. Furthermore, with the options to investigate growth of various mutants in diverse growth conditions the present tool allows modulations in root growth kinetics due to different biotic and abiotic stimuli to be unravelled. Measurements performed on Arabidopsis thaliana wild-type (Col0) plants revealed rhythms superimposed on root elongation. Results obtained from the starchless mutant pgm, however, present a clearly modified pattern. As expected, deviation is strongest during the dark period. PMID:20421235

  14. Growth kinetics and island evolution during double-pulsed molecular beam epitaxy of InN

    SciTech Connect

    Kraus, A.; Hein, C.; Bremers, H.; Rossow, U.; Hangleiter, A.

    2016-06-21

    The kinetic processes of InN growth using alternating source fluxes with sub-monolayer In pulses in plasma-assisted molecular beam epitaxy have been investigated. Growth at various temperatures reveals the existence of two growth regimes. While growth at low temperatures is solely governed by surface diffusion, a combination of decomposition, desorption, and diffusion becomes decisive at growth temperatures of 470 °C and above. At this critical temperature, the surface morphology changes from a grainy structure to a structure made of huge islands. The formation of those islands is attributed to the development of an indium adlayer, which can be observed via reflection high energy electron diffraction monitoring. Based on the growth experiments conducted at temperatures below T{sub Growth} = 470 °C, an activation energy for diffusion of 0.54 ± 0.02 eV has been determined from the decreasing InN island density. A comparison between growth on metalorganic vapor phase epitaxy GaN templates and pseudo bulk GaN indicates that step edges and dislocations are favorable nucleation sites. Based on the results, we developed a growth model, which describes the main mechanisms of the growth.

  15. Kinetics and Mechanisms of Cadmium Carbonate Heteroepitaxial Growth at the Calcite (101¯4) Surface

    SciTech Connect

    Xu, Man; Kovarik, Libor; Arey, Bruce W.; Felmy, Andrew R.; Rosso, Kevin M.; Kerisit, Sebastien N.

    2014-06-01

    Elucidating the kinetics and mechanisms of heteroepitaxial nucleation and growth at mineral-water interfaces is essential to understanding surface reactivity in geochemical systems. In the present work, the formation of heteroepitaxial cadmium carbonate coatings at calcite-water interfaces was investigated by exposing calcite (10-14) surfaces to Cd-bearing aqueous solutions. In situ atomic force microscopy (AFM) was employed as the primary technique. The AFM results indicate that the heteroepitaxial growth of cadmium carbonate proceeds via three different mechanisms depending on the initial supersaturation of the aqueous solution: advancement of existing steps, nucleation and growth of three-dimensional (3D) islands, and nucleation and spread of two-dimensional (2D) nuclei. The 3D islands and 2D nuclei exhibit different morphologies and growth kinetics. The effects of supersaturation on heteroepitaxial growth mechanisms can be interpreted in terms of the free energy barrier for nucleation. At low initial supersaturation, where 3D nucleation dominates, it is hypothesized, from the growth rate and morphology of the 3D islands observed with AFM, that the crystallization of the overgrowth follows a non-classical pathway involving the formation of a surface precursor that is not fully crystalline, whereas high supersaturation favors the formation of crystalline 2D nuclei whose morphology is based on the atomic structure of the calcite substrate. Cross-sectional transmission electron microscopy (TEM) images reveal that the atomic structure of the interface between the cadmium carbonate coating and calcite shows perfect, dislocation-free epitaxy.

  16. Estimation of the growth kinetics for the cooling crystallisation of paracetamol and ethanol solutions

    NASA Astrophysics Data System (ADS)

    Mitchell, Niall A.; Ó'Ciardhá, Clifford T.; Frawley, Patrick J.

    2011-08-01

    This work details the estimation of the growth kinetics of paracetamol in ethanol solutions for cooling crystallisation processes, by means of isothermal seeded batch experiments. The growth kinetics of paracetamol crystals were evaluated in isolation, with the growth rate assumed to be size independent. Prior knowledge of the Metastable Zone Width (MSZW) was required, so that supersaturation ratios of 1.7-1.1 could be induced in solution without the occurrence of nucleation. The technique involved the utilisation of two in-situ Process Analytical Techniques (PATs), with a Focused Beam Reflectance Measurement (FBRM ®) utilised to ensure that negligible nucleation occurred and an Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) probe employed for online monitoring of solute concentration. Initial Particle Size Distributions (PSDs) were used in conjunction with desupersaturation profiles to determine the growth rate as a function of temperature and supersaturation. Furthermore, the effects of seed loading and size on the crystal growth rate were investigated. A numerical model, incorporating the population balance equation and the method of moments, was utilised to describe the crystal growth process. Experimental parameters were compared to the model simulation, with the accuracy of the model validated by means of the final product PSDs and solute concentration.

  17. Kinetics and mechanisms of cadmium carbonate heteroepitaxial growth at the calcite (10 1bar 4) surface

    NASA Astrophysics Data System (ADS)

    Xu, Man; Kovarik, Libor; Arey, Bruce W.; Felmy, Andrew R.; Rosso, Kevin M.; Kerisit, Sebastien

    2014-06-01

    Elucidating the kinetics and mechanisms of heteroepitaxial nucleation and growth at mineral-water interfaces is essential to understanding surface reactivity in geochemical systems. In the present work, the formation of heteroepitaxial cadmium carbonate coatings at calcite-water interfaces was investigated by exposing calcite (10 1bar 4) surfaces to Cd-bearing aqueous solutions. In situ atomic force microscopy (AFM) was employed as the primary technique. The AFM results indicate that the heteroepitaxial growth of cadmium carbonate proceeds via three different mechanisms depending on the initial supersaturation of the aqueous solution: advancement of existing steps, nucleation and growth of three-dimensional (3D) islands, and nucleation and spread of two-dimensional (2D) nuclei. The 3D islands and 2D nuclei exhibit different morphologies and growth kinetics. The effects of supersaturation on heteroepitaxial growth mechanisms can be interpreted in terms of the free energy barrier for nucleation. At low initial supersaturation, where 3D nucleation dominates, it is hypothesized, from the growth rate and morphology of the 3D islands observed with AFM, that the crystallization of the overgrowth follows a non-classical pathway involving the formation of a surface precursor that is not fully crystalline, whereas high supersaturation favors the formation of crystalline 2D nuclei whose morphology is based on the atomic structure of the calcite substrate. Cross-sectional transmission electron microscopy (TEM) images reveal that the atomic structure of the interface between the cadmium carbonate coating and calcite shows perfect, dislocation-free epitaxy.

  18. Catastrophic growth of gas hydrates in the presence of kinetic hydrate inhibitors.

    PubMed

    Cha, Minjun; Shin, Kyuchul; Seo, Yutaek; Shin, Ju-Young; Kang, Seong-Pil

    2013-12-27

    The effect of the concentration of kinetic hydrate inhibitors, polyvinylpyrrolidone (PVP), and polyvinylcaprolactam (PVCap) on the onset and growth of synthetic natural gas hydrates is investigated by measuring the hydrate onset time and gas consumption rate. Although the hydrate onset time is extended by increasing the concentration from 0.5 to 3.0 wt % for both PVP and PVCap, the growth rate of hydrates shows that the different tendency depends on the type of kinetic hydrate inhibitor and its concentration. For PVCap solution, the hydrate growth was slow for more than 1000 min after the onset at the concentration of 0.5 and 1.5 wt %. However, the growth rate becames almost 8 times faster at the concentration of 3.0 wt %, representing the catastrophic growth of hydrate just after the hydrate onset. (13)C NMR spectra of hydrates formed at 3.0 wt % of PVP and PVCap indicate the existence of both structures I and II. Cage occupancy of methane in large cages of structure II decreases significantly when compared to that for pure water. These results suggest that increasing the concentration of KHI up to 3.0 wt % may induce the earlier appearance of catastrophic hydrate growth and the existence of metastable structure I; thus, there needs to be an upper limit for using KHI to manage the formation of gas hydrates.

  19. Exponential Localization of Photons

    NASA Astrophysics Data System (ADS)

    Bialynicki-Birula, Iwo

    1998-06-01

    It is shown that photons can be localized in space with an exponential falloff of the energy density and photodetection rates. The limits of localization are determined by the fundamental Paley-Wiener theorem. A direct mathematical connection between the spatial localization of photons and the decay in time of quantum mechanical systems is established.

  20. Quantitative nucleation and growth kinetics of gold nanoparticles via model-assisted dynamic spectroscopic approach.

    PubMed

    Zhou, Yao; Wang, Huixuan; Lin, Wenshuang; Lin, Liqin; Gao, Yixian; Yang, Feng; Du, Mingming; Fang, Weiping; Huang, Jiale; Sun, Daohua; Li, Qingbiao

    2013-10-01

    Lacking of quantitative experimental data and/or kinetic models that could mathematically depict the redox chemistry and the crystallization issue, bottom-to-up formation kinetics of gold nanoparticles (GNPs) remains a challenge. We measured the dynamic regime of GNPs synthesized by l-ascorbic acid (representing a chemical approach) and/or foliar aqueous extract (a biogenic approach) via in situ spectroscopic characterization and established a redox-crystallization model which allows quantitative and separate parameterization of the nucleation and growth processes. The main results were simplified as the following aspects: (I) an efficient approach, i.e., the dynamic in situ spectroscopic characterization assisted with the redox-crystallization model, was established for quantitative analysis of the overall formation kinetics of GNPs in solution; (II) formation of GNPs by the chemical and the biogenic approaches experienced a slow nucleation stage followed by a growth stage which behaved as a mixed-order reaction, and different from the chemical approach, the biogenic method involved heterogeneous nucleation; (III) also, biosynthesis of flaky GNPs was a kinetic-controlled process favored by relatively slow redox chemistry; and (IV) though GNPs formation consists of two aspects, namely the redox chemistry and the crystallization issue, the latter was the rate-determining event that controls the dynamic regime of the whole physicochemical process.

  1. Semirigorous synchronous sublattice algorithm for parallel kinetic Monte Carlo simulations of thin film growth

    NASA Astrophysics Data System (ADS)

    Shim, Yunsic; Amar, Jacques G.

    2005-03-01

    The standard kinetic Monte Carlo algorithm is an extremely efficient method to carry out serial simulations of dynamical processes such as thin film growth. However, in some cases it is necessary to study systems over extended time and length scales, and therefore a parallel algorithm is desired. Here we describe an efficient, semirigorous synchronous sublattice algorithm for parallel kinetic Monte Carlo simulations. The accuracy and parallel efficiency are studied as a function of diffusion rate, processor size, and number of processors for a variety of simple models of epitaxial growth. The effects of fluctuations on the parallel efficiency are also studied. Since only local communications are required, linear scaling behavior is observed, e.g., the parallel efficiency is independent of the number of processors for fixed processor size.

  2. Nonlinear Growth Kinetics of Breast Cancer Stem Cells: Implications for Cancer Stem Cell Targeted Therapy

    NASA Astrophysics Data System (ADS)

    Liu, Xinfeng; Johnson, Sara; Liu, Shou; Kanojia, Deepak; Yue, Wei; Singn, Udai; Wang, Qian; Wang, Qi; Nie, Qing; Chen, Hexin

    2013-08-01

    Cancer stem cells (CSCs) have been identified in primary breast cancer tissues and cell lines. The CSC population varies widely among cancerous tissues and cell lines, and is often associated with aggressive breast cancers. Despite of intensive research, how the CSC population is regulated within a tumor is still not well understood so far. In this paper, we present a mathematical model to explore the growth kinetics of CSC population both in vitro and in vivo. Our mathematical models and supporting experiments suggest that there exist non-linear growth kinetics of CSCs and negative feedback mechanisms to control the balance between the population of CSCs and that of non-stem cancer cells. The model predictions can help us explain a few long-standing questions in the field of cancer stem cell research, and can be potentially used to predict the efficicacy of anti-cancer therapy.

  3. Intrinsic Kinetics Fluctuations as Cause of Growth Inhomogeneity in Protein Crystals

    NASA Technical Reports Server (NTRS)

    Vekilov, Peter G.; Rosenberger, Franz

    1998-01-01

    Intrinsic kinetics instabilities in the form of growth step bunching during the crystallization of the protein lysozyme from solution were characterized by in situ high-resolution optical interferometry. Compositional variations (striations) in the crystal, which potentially decrease its utility, e.g., for molecular structure studies by diffraction methods, were visualized by polarized light reflection microscopy. A spatiotemporal correlation was established between the sequence of moving step bunches and the striations.

  4. Nonlinear Response of Layer Growth Dynamics in the Mixed Kinetics-Bulk-Transport Regime

    NASA Technical Reports Server (NTRS)

    Vekilov, Peter G.; Alexander, J. Iwan D.; Rosenberger, Franz

    1996-01-01

    In situ high-resolution interferometry on horizontal facets of the protein lysozyme reveal that the local growth rate R, vicinal slope p, and tangential (step) velocity v fluctuate by up to 80% of their average values. The time scale of these fluctuations, which occur under steady bulk transport conditions through the formation and decay of step bunches (macrosteps), is of the order of 10 min. The fluctuation amplitude of R increases with growth rate (supersaturation) and crystal size, while the amplitude of the v and p fluctuations changes relatively little. Based on a stability analysis for equidistant step trains in the mixed transport-interface-kinetics regime, we argue that the fluctuations originate from the coupling of bulk transport with nonlinear interface kinetics. Furthermore, step bunches moving across the interface in the direction of or opposite to the buoyancy-driven convective flow increase or decrease in height, respectively. This is in agreement with analytical treatments of the interaction of moving steps with solution flow. Major excursions in growth rate are associated with the formation of lattice defects (striations). We show that, in general, the system-dependent kinetic Peclet number, Pe(sub k) , i.e., the relative weight of bulk transport and interface kinetics in the control of the growth process, governs the step bunching dynamics. Since Pe(sub k) can be modified by either forced solution flow or suppression of buoyancy-driven convection under reduced gravity, this model provides a rationale for the choice of specific transport conditions to minimize the formation of compositional inhomogeneities under steady bulk nutrient crystallization conditions.

  5. Intrinsic Kinetics Fluctuations as Cause of Growth Inhomogeneity in Protein Crystals

    NASA Technical Reports Server (NTRS)

    Vekilov, Peter G.; Rosenberger, Franz

    1998-01-01

    Intrinsic kinetics instabilities in the form of growth step bunching during the crystallization of the protein lysozyme from solution were characterized by in situ high-resolution optical interferometry. Compositional variations (striations) in the crystal, which potentially decrease its utility, e.g., for molecular structure studies by diffraction methods, were visualized by polarized light reflection microscopy. A spatiotemporal correlation was established between the sequence of moving step bunches and the striations.

  6. Linking genes to microbial growth kinetics: an integrated biochemical systems engineering approach.

    PubMed

    Koutinas, Michalis; Kiparissides, Alexandros; Silva-Rocha, Rafael; Lam, Ming-Chi; Martins Dos Santos, Vitor A P; de Lorenzo, Victor; Pistikopoulos, Efstratios N; Mantalaris, Athanasios

    2011-07-01

    The majority of models describing the kinetic properties of a microorganism for a given substrate are unstructured and empirical. They are formulated in this manner so that the complex mechanism of cell growth is simplified. Herein, a novel approach for modelling microbial growth kinetics is proposed, linking biomass growth and substrate consumption rates to the gene regulatory programmes that control these processes. A dynamic model of the TOL (pWW0) plasmid of Pseudomonas putida mt-2 has been developed, describing the molecular interactions that lead to the transcription of the upper and meta operons, known to produce the enzymes for the oxidative catabolism of m-xylene. The genetic circuit model was combined with a growth kinetic model decoupling biomass growth and substrate consumption rates, which are expressed as independent functions of the rate-limiting enzymes produced by the operons. Estimation of model parameters and validation of the model's predictive capability were successfully performed in batch cultures of mt-2 fed with different concentrations of m-xylene, as confirmed by relative mRNA concentration measurements of the promoters encoded in TOL. The growth formation and substrate utilisation patterns could not be accurately described by traditional Monod-type models for a wide range of conditions, demonstrating the critical importance of gene regulation for the development of advanced models closely predicting complex bioprocesses. In contrast, the proposed strategy, which utilises quantitative information pertaining to upstream molecular events that control the production of rate-limiting enzymes, predicts the catabolism of a substrate and biomass formation and could be of central importance for the design of optimal bioprocesses.

  7. Prediction of microbial growth rate versus biomass yield by a metabolic network with kinetic parameters.

    PubMed

    Adadi, Roi; Volkmer, Benjamin; Milo, Ron; Heinemann, Matthias; Shlomi, Tomer

    2012-01-01

    Identifying the factors that determine microbial growth rate under various environmental and genetic conditions is a major challenge of systems biology. While current genome-scale metabolic modeling approaches enable us to successfully predict a variety of metabolic phenotypes, including maximal biomass yield, the prediction of actual growth rate is a long standing goal. This gap stems from strictly relying on data regarding reaction stoichiometry and directionality, without accounting for enzyme kinetic considerations. Here we present a novel metabolic network-based approach, MetabOlic Modeling with ENzyme kineTics (MOMENT), which predicts metabolic flux rate and growth rate by utilizing prior data on enzyme turnover rates and enzyme molecular weights, without requiring measurements of nutrient uptake rates. The method is based on an identified design principle of metabolism in which enzymes catalyzing high flux reactions across different media tend to be more efficient in terms of having higher turnover numbers. Extending upon previous attempts to utilize kinetic data in genome-scale metabolic modeling, our approach takes into account the requirement for specific enzyme concentrations for catalyzing predicted metabolic flux rates, considering isozymes, protein complexes, and multi-functional enzymes. MOMENT is shown to significantly improve the prediction accuracy of various metabolic phenotypes in E. coli, including intracellular flux rates and changes in gene expression levels under different growth rates. Most importantly, MOMENT is shown to predict growth rates of E. coli under a diverse set of media that are correlated with experimental measurements, markedly improving upon existing state-of-the art stoichiometric modeling approaches. These results support the view that a physiological bound on cellular enzyme concentrations is a key factor that determines microbial growth rate.

  8. Growth kinetics of biopigment production by Thai isolated Monascus purpureus in a stirred tank bioreactor.

    PubMed

    Kongruang, Sasithorn

    2011-01-01

    Monascus purpureus is a biopigment-producing fungi whose pigments can be used in many biotechnological and food industries. The growth kinetics of biopigment production were investigated in a liquid fermentation medium in a 5-l stirred tank bioreactor at 30°C, pH 7, for 8 days with 100 rpm agitation and 1.38 × 10(5) N/m(2) aeration. Thai Monascus purpureus strains TISTR 3002, 3180, 3090 and 3385 were studied for color production, growth kinetics and productivity. Citrinin as a toxic metabolite was measured from the Monascus fermentation broth. The biopigment productions were detected from fermentation broth by scanning spectra of each strain produced. Results showed a mixture of yellow, orange and red pigments with absorption peaks of pigments occurring at different wavelengths for the four strains. It was found that for each pigment color, the color production from the strains increased in the order TISTR 3002, 3180, 3090, 3385 with 3385 production being approximately 10 times that of 3002. Similar results were found for growth kinetics and productivity. HPLC results showed that citrinin was not produced under the culture conditions of this study. The L*, a* and b* values of the CIELAB color system were also obtained for the yellow, orange and red pigments produced from the TISTR 3002, 3180, 3090 and 3385 strains. The colors of the pigments ranged from burnt umber to deep red.

  9. Retrospective growth kinetics and radiosensitivity analysis of various human xenograft models

    PubMed Central

    Lee, Ji Young; Kim, Eun Ho; Chung, Namhyun

    2016-01-01

    The purpose of this study was to delineate the various factors that affect the growth characteristics of human cancer xenografts in nude mice and to reveal the relationship between the growth characteristics and radiosensitivity. We retrospectively analyzed 390 xenografts comprising nine different human cancer lines grown in nude mice used in our institute between 2009 and 2015. Tumor growth rate (TGR) was calculated using exponential growth equations. The relationship between the TGR of xenografts and the proliferation of the cells in vitro was examined. Additionally, we examined the correlations between the surviving fractions of cells after 2 Gy irradiation in vitro and the response of the xenograft to radiation. The TGR of xenografts was positively related to the proliferation of the cells in vitro (rP=0.9714, p<0.0001), whereas it was independent of the histological type of the xenografts. Radiation-induced suppression of the growth rate (T/C%) of xenografts was positively related to the radiosensitivity of the cells in vitro (SF2; rP=0.8684, p=0.0284) and TGR (rP=0.7623, p=0.0780). The proliferation of human cancer cells in vitro and the growth rate of xenografts were positively related. The radiosensitivity of cancer cells, as judged from the SF2 values in vitro, and the radiation-induced suppression of xenograft growth were positively related. In conclusion, the growth rate of human xenografts was independent of histological type and origin of the cancer cells, and was positively related to the proliferation of the cancer cells in vitro. PMID:28053611

  10. Mg doping and its effect on the semipolar GaN(1122) growth kinetics

    SciTech Connect

    Lahourcade, L.; Wirthmueller, A.; Monroy, E.; Chauvat, M. P.; Ruterana, P.; Laufer, A.; Eickhoff, M.

    2009-10-26

    We report the effect of Mg doping on the growth kinetics of semipolar GaN(1122) synthesized by plasma-assisted molecular-beam epitaxy. Mg tends to segregate on the surface, inhibiting the formation of the self-regulated Ga film which is used as a surfactant for the growth of undoped and Si-doped GaN(1122). We observe an enhancement of Mg incorporation in GaN(1122) compared to GaN(0001). Typical structural defects or polarity inversion domains found in Mg-doped GaN(0001) were not observed for the semipolar films investigated in the present study.

  11. Effect of clofibrate on the growth-kinetics of the murine P 1798(sc) lymphoma.

    PubMed Central

    Ubeira, F. M.; Seoane, R.; Puentes, E.; Faro, J.; Regueiro, B. J.

    1983-01-01

    Clofibrate (CPIB) is a drug applied as an antilipidaemic agent in mammals. In this work we have tested its efficacy in vivo on the growth kinetics of P 1798(sc) lymphoma transplanted to recipient (BALB/c x AKR)F1 mice. Our results show a facilitation of the tumour growth rate in treated recipients. This fact may be related to an effect of the agent on the recipient which produces a decrease in the immune response as was confirmed on testing CPIB on thymus-dependent antigens in haemolytic plaque assays. Images Figure 3 PMID:6351886

  12. Colloidal nanoparticle size control: experimental and kinetic modeling investigation of the ligand-metal binding role in controlling the nucleation and growth kinetics.

    PubMed

    Mozaffari, Saeed; Li, Wenhui; Thompson, Coogan; Ivanov, Sergei; Seifert, Soenke; Lee, Byeongdu; Kovarik, Libor; Karim, Ayman M

    2017-09-21

    Despite the major advancements in colloidal metal nanoparticles synthesis, a quantitative mechanistic treatment of the ligand's role in controlling their size remains elusive. We report a methodology that combines in situ small angle X-ray scattering (SAXS) and kinetic modeling to quantitatively capture the role of ligand-metal binding (with the metal precursor and the nanoparticle surface) in controlling the synthesis kinetics. We demonstrate that accurate extraction of the kinetic rate constants requires using both, the size and number of particles obtained from in situ SAXS to decouple the contributions of particle nucleation and growth to the total metal reduction. Using Pd acetate and trioctylphosphine in different solvents, our results reveal that the binding of ligands with both the metal precursor and nanoparticle surface play a key role in controlling the rates of nucleation and growth and consequently the final size. We show that the solvent can affect the metal-ligand binding and consequently ligand coverage on the nanoparticles surface which has a strong effect on the growth rate and final size (1.4 nm in toluene and 4.3 nm in pyridine). The proposed kinetic model quantitatively predicts the effects of varying the metal concentration and ligand/metal ratio on nanoparticle size for our work and literature reports. More importantly, we demonstrate that the final size is exclusively determined by the nucleation and growth kinetics at early times and not how they change with time. Specifically, the nanoparticle size in this work and many literature reports can be predicted using a single, model independent kinetic descriptor, (growth-to-nucleation rate ratio)(1/3), despite the different metals and synthetic conditions. The proposed model and kinetic descriptor could serve as powerful tools for the design of colloidal nanoparticles with specific sizes.

  13. Colloidal nanoparticle size control: Experimental and kinetic modeling investigation of the ligand-metal binding role in controlling the nucleation and growth kinetics

    DOE PAGES

    Mozaffari, Saeed; Li, Wenhui; Thompson, Coogan; ...

    2017-09-01

    Despite the major advancements in colloidal metal nanoparticles synthesis, a quantitative mechanistic treatment of the ligand’s role in controlling their size remains elusive. We report a methodology that combines in-situ small angle x-ray scattering (SAXS) and kinetic modeling to quantitatively capture the role of ligand-metal binding (with the metal precursor and the nanoparticle surface) in controlling the synthesis kinetics. We demonstrate that accurate extraction of the kinetic rate constants requires using both, the size and number of particles obtained from in-situ SAXS to decouple the contributions of particle nucleation and growth to the total metal reduction. Using Pd acetate andmore » trioctylphosphine in different solvents, our results reveal that the binding of ligands with both the metal precursor and nanoparticle surface play a key role in controlling the rates of nucleation and growth and consequently the final size. We show that the solvent can affect the metal-ligand binding and consequently ligand coverage on the nanoparticles surface which has a strong effect on the growth rate and final size (1.4 nm in toluene and 4.3 nm in pyridine). The proposed kinetic model quantitatively predicts the effects of varying the metal concentration and ligand/metal ratio on nanoparticle size for our work and literature reports. More importantly, we demonstrate that the final size is exclusively determined by the nucleation and growth kinetics at early times and not how they change with time. Specifically, the nanoparticle size in this work and many literature reports can be predicted using a single, model independent kinetic descriptor, (Growth-to-Nucleation rate ratio)1/3, despite the different metals and synthetic conditions. The proposed model and kinetic descriptor could serve as powerful tools for the design of colloidal nanoparticles with specific sizes.« less

  14. In situ X-ray diffraction study on the growth kinetics of NiO nanoparticles.

    PubMed

    Meneses, C T; Almeida, J M A; Sasaki, J M

    2010-05-01

    The growth kinetics of NiO nanoparticles have been studied by in situ X-ray diffraction using two detection systems (conventional and imaging plate). NiO nanoparticles were formed by thermal decomposition after heating of an amorphous compound formed by the coprecipitation method. It was found that the detection method using an imaging plate is more efficient than the conventional detection mode for observing changes in the crystallite growth of nanocrystalline materials. Studies have been carried out to investigate the effects of the heating rates on the particles growth. The results suggest that the growth process of the particles is accelerated when the samples are treated at low heating rates. The evolution of particles size and the diffusion coefficient obtained from X-ray powder diffraction patterns are discussed in terms of the thermal conditions for the two types of detection.

  15. Kinetic simulation of filament growth dynamics in memristive electrochemical metallization devices

    NASA Astrophysics Data System (ADS)

    Dirkmann, Sven; Ziegler, Martin; Hansen, Mirko; Kohlstedt, Hermann; Trieschmann, Jan; Mussenbrock, Thomas

    2015-12-01

    In this work, we report on kinetic Monte-Carlo calculations of resistive switching and the underlying growth dynamics of filaments in an electrochemical metallization device consisting of an Ag/TiO2/Pt sandwich-like thin film system. The developed model is not limited to (i) fast time scale dynamics and (ii) only one growth and dissolution cycle of metallic filaments. In particular, we present results from the simulation of consecutive cycles. We find that the numerical results are in excellent agreement with experimentally obtained data. Additionally we observe an unexpected filament growth mode that is in contradiction to the widely acknowledged picture of filament growth but consistent with recent experimental findings.

  16. Quantifying the Nucleation and Growth Kinetics of Microwave Nanochemistry Enabled by in Situ High-Energy X-ray Scattering.

    PubMed

    Liu, Qi; Gao, Min-Rui; Liu, Yuzi; Okasinski, John S; Ren, Yang; Sun, Yugang

    2016-01-13

    The fast reaction kinetics presented in the microwave synthesis of colloidal silver nanoparticles was quantitatively studied, for the first time, by integrating a microwave reactor with in situ X-ray diffraction at a high-energy synchrotron beamline. Comprehensive data analysis reveals two different types of reaction kinetics corresponding to the nucleation and growth of the Ag nanoparticles. The formation of seeds (nucleation) follows typical first-order reaction kinetics with activation energy of 20.34 kJ/mol, while the growth of seeds (growth) follows typical self-catalytic reaction kinetics. Varying the synthesis conditions indicates that the microwave colloidal chemistry is independent of concentration of surfactant. These discoveries reveal that the microwave synthesis of Ag nanoparticles proceeds with reaction kinetics significantly different from the synthesis present in conventional oil bath heating. The in situ X-ray diffraction technique reported in this work is promising to enable further understanding of crystalline nanomaterials formed through microwave synthesis.

  17. Effects of Alloying on Nanoscale Grain Growth in Substitutional Binary Alloy System: Thermodynamics and Kinetics

    NASA Astrophysics Data System (ADS)

    Peng, Haoran; Chen, Yuzeng; Liu, Feng

    2015-11-01

    Applying the regular solution model, the Gibbs free energy of mixing for substitutional binary alloy system was constructed. Then, thermodynamic and kinetic parameters, e.g., driving force and solute drag force, controlling nanoscale grain growth of substitutional binary alloy systems were derived and compared to their generally accepted definitions and interpretations. It is suggested that for an actual grain growth process, the classical driving force P = γ/D ( γ the grain boundary (GB) energy, D the grain size) should be replaced by a new expression, i.e., P^' = γ /D - Δ P . Δ P represents the energy required to adjust nonequilibrium solute distribution to equilibrium solute distribution, which is equivalent to the generally accepted solute drag force impeding GB migration. By incorporating the derived new driving force for grain growth into the classical grain growth model, the reported grain growth behaviors of nanocrystalline Fe-4at. pct Zr and Pd-19at. pct Zr alloys were analyzed. On this basis, the effect of thermodynamic and kinetic parameters ( i.e., P, Δ P and the GB mobility ( M GB)) on nanoscale grain growth, were investigated. Upon grain growth, the decrease of P is caused by the reduction of γ as a result of solute segregation in GBs; the decrease of Δ P is, however, due to the decrease of grain growth velocity; whereas the decrease of M GB is attributed to the enhanced difference of solute molar fractions between the bulk and the GBs as well as the increased activation energy for GB diffusion.

  18. Altered Cellular Kinetics in Growth Plate according to Alterations in Weight Bearing

    PubMed Central

    Park, Hoon; Kong, Sun Young; Kim, Hyun Woo

    2012-01-01

    Purpose To examine the effects of change in weight bearing on the growth plate metabolism, a simulated animal model of weightlessness was introduced and the chondrocytes' cellular kinetics was evaluated. Materials and Methods Unloading condition on the hind-limb of Sprague-Dawley rats was created by fixing a tail and lifting the hind-limb. Six rats aged 6 weeks old were assigned to each group of unloading, reloading, and control groups of unloading or reloading. Unloading was maintained for three weeks, and then reloading was applied for another one week thereafter. Histomorphometry for the assessment of vertical length of the growth plate, 5-bromo-2'-deoxyuridin immunohistochemistry for cellular kinetics, and biotin nick end labeling transferase-mediated deoxyuridine triphosphate-biotin nick end labeling (TUNEL) assay for chondrocytes apoptosis in the growth plate were performed. Results The vertical length of the growth plate and the proliferative potential of chondrocytes were decreased in the unloading group compared to those of control groups. Inter-group differences were more significant in the proliferative and hypertrophic zones. Reloading increased the length of growth plate and proliferative potential of chondrocytes. However, apoptotic changes in the growth plate were not affected by the alterations of weight bearing. Conclusion Alterations in the weight bearing induced changes in the chondrocytic proliferative potential of the growth plate, however, had no effects on the apoptosis. This may explain why non-weight bearing in various clinical situations hampers normal longitudinal bone growth. Further studies on the factors for reversibility of chondrocytic proliferation upon variable mechanical stresses are needed. PMID:22477008

  19. Growth and overall transformation kinetics above the bay temperature in Fe-C-Mo alloys

    NASA Astrophysics Data System (ADS)

    Shiflet, G. J.; Aaronson, H. I.

    1990-06-01

    The kinetics and morphology of isothermal transformation in the vicinity of the time-temperaturetransformation (TTT) diagram bay have been investigated with optical and transmission electron microscopy (TEM) in 19 Fe-C-Mo alloys at three levels of carbon concentration (approximately 0.15, 0.20, and 0.25 wt pct) and at Mo concentrations from 2.3 to 4.3 wt pct, essentially always at temperatures above or at that of the bay, T b . Quantitative metallography yielded no evidence for incomplete transformation (stasis) in any of these alloys at T > T b . Measurements of the thickening kinetics of grain boundary ferrite allotriomorphs (invariably containing either interphase boundary or fibrous Mo2C) demonstrated four different patterns of behavior. The customary parabolic time law for allotriomorph thickening in Fe-C and in many Fe-C-X systems was obtained only at higher temperatures and in the more dilute Fe-C-Mo alloys studied. With decreasing temperature and increasing solute concentrations, a two-stage and then two successive variants of a three-stage thickening process are found. In the most concentrated alloys and at temperatures nearest the bay, the second stage of the three-stage thickening process corresponds to “growth stasis”—the cessation of allotriomorph thickening. Sufficient prolongation of growth stasis presumably leads to “transformation stasis.” A number of models for growth of the carbide-containing allotriomorphs were investigated during attempts to explain the observed kinetics. It was concluded that their growth is controlled by carbon diffusion in austenite but with a driving force drastically reduced by a very strong solute drag-like effect (SDLE) induced by Mo segregation at disordered-type austenite: ferrite boundaries. Carbide growth in the fibrous structure appears to be fed by diffusion of Mo along austenite: ferrite boundaries, whereas carbides in the interphase boundary structure grow primarily by volume diffusion of Mo through

  20. Release kinetics of platelet-derived and plasma-derived growth factors from autologous plasma rich in growth factors.

    PubMed

    Anitua, Eduardo; Zalduendo, Mari Mar; Alkhraisat, Mohammad Hamdan; Orive, Gorka

    2013-10-01

    Many studies have evaluated the biological effects of platelet rich plasma reporting the final outcomes on cell and tissues. However, few studies have dealt with the kinetics of growth factor delivery by plasma rich in growth factors. Venous blood was obtained from three healthy volunteers and processed with PRGF-Endoret technology to prepare autologous plasma rich in growth factors. The gel-like fibrin scaffolds were then incubated in triplicate, in a cell culture medium to monitor the release of PDGF-AB, VEGF, HGF and IGF-I during 8 days of incubation. A leukocyte-platelet rich plasma was prepared employing the same technology and the concentrations of growth factors and interleukin-1β were determined after 24h of incubation. After each period, the medium was collected, fibrin clot was destroyed and the supernatants were stored at -80°C until analysis. The growth factor delivery is diffusion controlled with a rapid initial release by 30% of the bioactive content after 1h of incubation and a steady state release when almost 70% of the growth factor content has been delivered. Autologous fibrin matrix retained almost 30% of the amount of the growth factors after 8 days of incubation. The addition of leukocytes to the formula of platelet rich plasma did not increase the concentration of the growth factors, while it drastically increased the presence of pro-inflammatory IL-1β. Further studies employing an in vitro inflammatory model would be interesting to study the difference in growth factors and pro-inflammatory cytokines between leukocyte-free and leukocyte-rich platelet rich plasma.

  1. Integrating carbon nanotube forests into polysilicon MEMS: Growth kinetics, mechanisms, and adhesion

    SciTech Connect

    Ubnoske, Stephen M.; Radauscher, Erich J.; Meshot, Eric R.; Stoner, Brian R.; Parker, Charles B.; Glass, Jeffrey T.

    2016-11-19

    The growth of carbon nanotubes (CNTs) on polycrystalline silicon substrates was studied to improve the design of CNT field emission sources for microelectromechanical systems (MEMS) applications and vacuum microelectronic devices (VMDs). Microwave plasma-enhanced chemical vapor deposition (PECVD) was used for CNT growth, resulting in CNTs that incorporate the catalyst particle at their base. The kinetics of CNT growth on polysilicon were compared to growth on Si (100) using the model of Deal and Grove, finding activation energies of 1.61 and 1.54 eV for the nucleation phase of growth and 1.90 and 3.69 eV for the diffusion-limited phase on Si (100) and polysilicon, respectively. Diffusivity values for growth on polysilicon were notably lower than the corresponding values on Si (100) and the growth process became diffusion-limited earlier. Evidence favors a surface diffusion growth mechanism involving diffusion of carbon precursor species along the length of the CNT forest to the catalyst at the base. Explanations for the differences in activation energies and diffusivities were elucidated by SEM analysis of the catalyst nanoparticle arrays and through wide-angle X-ray scattering (WAXS) of CNT forests. As a result, methods are presented to improve adhesion of CNT films during operation as field emitters, resulting in a 2.5× improvement.

  2. Integrating carbon nanotube forests into polysilicon MEMS: Growth kinetics, mechanisms, and adhesion

    DOE PAGES

    Ubnoske, Stephen M.; Radauscher, Erich J.; Meshot, Eric R.; ...

    2016-11-19

    The growth of carbon nanotubes (CNTs) on polycrystalline silicon substrates was studied to improve the design of CNT field emission sources for microelectromechanical systems (MEMS) applications and vacuum microelectronic devices (VMDs). Microwave plasma-enhanced chemical vapor deposition (PECVD) was used for CNT growth, resulting in CNTs that incorporate the catalyst particle at their base. The kinetics of CNT growth on polysilicon were compared to growth on Si (100) using the model of Deal and Grove, finding activation energies of 1.61 and 1.54 eV for the nucleation phase of growth and 1.90 and 3.69 eV for the diffusion-limited phase on Si (100)more » and polysilicon, respectively. Diffusivity values for growth on polysilicon were notably lower than the corresponding values on Si (100) and the growth process became diffusion-limited earlier. Evidence favors a surface diffusion growth mechanism involving diffusion of carbon precursor species along the length of the CNT forest to the catalyst at the base. Explanations for the differences in activation energies and diffusivities were elucidated by SEM analysis of the catalyst nanoparticle arrays and through wide-angle X-ray scattering (WAXS) of CNT forests. As a result, methods are presented to improve adhesion of CNT films during operation as field emitters, resulting in a 2.5× improvement.« less

  3. Kinetics of Si and Ge nanowires growth through electron beam evaporation

    PubMed Central

    2011-01-01

    Si and Ge have the same crystalline structure, and although Si-Au and Ge-Au binary alloys are thermodynamically similar (same phase diagram, with the eutectic temperature of about 360°C), in this study, it is proved that Si and Ge nanowires (NWs) growth by electron beam evaporation occurs in very different temperature ranges and fluence regimes. In particular, it is demonstrated that Ge growth occurs just above the eutectic temperature, while Si NWs growth occurs at temperature higher than the eutectic temperature, at about 450°C. Moreover, Si NWs growth requires a higher evaporated fluence before the NWs become to be visible. These differences arise in the different kinetics behaviors of these systems. The authors investigate the microscopic growth mechanisms elucidating the contribution of the adatoms diffusion as a function of the evaporated atoms direct impingement, demonstrating that adatoms play a key role in physical vapor deposition (PVD) NWs growth. The concept of incubation fluence, which is necessary for an interpretation of NWs growth in PVD growth conditions, is highlighted. PMID:21711696

  4. Altered hypertrophic chondrocyte kinetics in GDF-5 deficient murine tibial growth plates.

    PubMed

    Mikic, B; Clark, R T; Battaglia, T C; Gaschen, V; Hunziker, E B

    2004-05-01

    The growth/differentiation factors (GDFs) are a subgroup of the bone morphogenetic proteins best known for their role in joint formation and chondrogenesis. Mice deficient in one of these signaling proteins, GDF-5, exhibit numerous skeletal abnormalities, including shortened limb bones. The primary aim of this study was determine whether GDF-5 deficiency would alter the growth rate in growth plates from the long bones in mice and, if so, how this is achieved. Stereologic and cell kinetic parameters in proximal tibial growth plates from 5-week-old female GDF-5 -/- mice and control littermates were examined. GDF-5 deficiency resulted in a statistically significant reduction in growth rate (-14%, p=0.03). The effect of genotype on growth rate was associated with an altered hypertrophic phase duration, with hypertrophic cells from GDF-5 deficient mice exhibiting a significantly longer phase duration compared to control littermates (+25%, p=0.006). These data suggest that one way in which GDF-5 might modulate the rate of endochondral bone growth could be by affecting the duration of the hypertrophic phase in growth plate chondrocytes.

  5. A phase-field model coupled with lattice kinetics solver for modeling crystal growth in furnaces

    SciTech Connect

    Lin, Guang; Bao, Jie; Xu, Zhijie; Tartakovsky, Alexandre M.; Henager, Charles H.

    2014-02-02

    In this study, we present a new numerical model for crystal growth in a vertical solidification system. This model takes into account the buoyancy induced convective flow and its effect on the crystal growth process. The evolution of the crystal growth interface is simulated using the phase-field method. Two novel phase-field models are developed to model the crystal growth interface in vertical gradient furnaces with two temperature profile setups: 1) fixed wall temperature profile setup and 2) time-dependent temperature profile setup. A semi-implicit lattice kinetics solver based on the Boltzmann equation is employed to model the unsteady incompressible flow. This model is used to investigate the effect of furnace operational conditions on crystal growth interface profiles and growth velocities. For a simple case of macroscopic radial growth, the phase-field model is validated against an analytical solution. Crystal growth in vertical gradient furnaces with two temperature profile setups have been also investigated using the developed model. The numerical simulations reveal that for a certain set of temperature boundary conditions, the heat transport in the melt near the phase interface is diffusion dominant and advection is suppressed.

  6. Dynamic kinetic analysis of growth of Listeria monocytogenes in a simulated comminuted, non-cured cooked pork product

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to directly construct a tertiary growth model for Listeria monocytogenes in cooked pork and simultaneously determine the kinetic parameters using a combination of dynamic and isothermal growth curves. Growth studies were conducted using a cocktail of 5 strains of L. ...

  7. Synthesis, growth kinetics and optical properties of zinc oxide nanoparticle suspensions and thin films

    NASA Astrophysics Data System (ADS)

    Wong, Eva May

    2000-10-01

    Colloidal chemistry techniques were used to synthesize ZnO particles in the nanometer size regime. The particle aging kinetics were determined by monitoring the optical band edge absorption and using the effective mass model to approximate the particle size as a function of time. The growth kinetics of the ZnO particles were found to follow the Lifshitz, Slyozov, Wagner theory for Ostwald ripening. In this model, the higher curvature and hence chemical potential of smaller particles provides a driving force for dissolution. The larger particles continue to grow by diffusion limited transport of species dissolved in solution. Thin films of ZnO quantum particles were fabricated by electrophoretic deposition from suspensions prepared via a colloidal chemistry synthesis route. Films were prepared at constant current thus eliminating the limited deposition rate associated with constant voltage deposition. The kinetics for the deposition of thin films were determined using optical absorbance techniques in conjunction with atomic absorption spectrometry. The particle velocity during deposition and the charge on the particles were determined from the deposition kinetics. The thin films prepared by electrophoretic deposition exhibited optical properties characteristic of the quantum size particles. The average particle size, and hence the optical properties, were tailored by controlling the aging time and temperature of the suspensions. Both the band-to-band and visible photoluminescence were progressively blue shifted, relative to the bulk value, with decreasing particle size in the film. A linear dependence was found between the band-to-band and visible emission. Finally, particle growth was manipulated by the specific adsorption of a series of capping ligands at the particle surface. The adsorption of the capping ligands was found to produce a diffusion barrier such that particle growth was stunted following incorporation with the extent of this effect being dependent

  8. Role of Step and Terrace Nucleation in Heteroepitaxial Growth Morphology: Growth Kinetics of CaF2/Si(111)

    NASA Astrophysics Data System (ADS)

    Hessinger, Uwe; Leskovar, M.; Olmstead, Marjorie A.

    1995-09-01

    The thickness uniformity and the spatial distribution of lattice relaxation in thin ( <8 nm) CaF2/Si(111) films, observed with photoelectron spectroscopy and transmission electron microscopy, are seen to depend strongly on the initial nucleation kinetics. We develop a general model for heteroepitaxial growth that explains both these and literature results. Terrace or step nucleation leads to laminar films, although with different relaxation patterns; combined step and terrace nucleation leads to rough films due to different upper-layer nucleation rates on the differently sized islands.

  9. Growth Kinetics of Magnesio-Aluminate Spinel in Al/Mg Lamellar Composite Interface

    NASA Astrophysics Data System (ADS)

    Fouad, Yasser; Rabeeh, Bakr Mohamed

    The synthesis of Mg-Al2O3 double layered interface is introduced via the application of hot isostatic pressing, HIPing, in Al-Mg foils. Polycrystalline spinel layers are grown experimentally at the interfacial contacts between Al-Mg foils. The growth behavior of the spinel layers along with the kinetic parameters characterizing interface motion and long-range diffusion is established. Low melting depressant (LMD), Zn, and alloying element segregation tends to form micro laminated and/or Nano structure interphase in a lamellar composite solid state processing. Nano composite ceramic interphase materials offer interesting mechanical properties not achievable in other materials, such as superplastic flow and metal-like machinability. Microstructural characterization, mechanical characterization is also established via optical microscopy scanning electron microscopy, energy dispersive X-ray spectroscopy and tensile testing. Chemical and mechanical bonding via inter diffusion processing with alloy segregation are dominant for interphase kinetics. Mechanical characterization with interfacial shear strength is also introduced. HIPing processing is successfully applied on 6082 Al-alloy and AZ31 magnesium alloy for either particulate or micro-laminated interfacial composite processing. The interphase kinetic established through localized micro plasticity, metal flow, alloy segregation and delocalized Al oxide and Mg oxide. The kinetic of interface/interphase induce new nontraditional crack mitigation a long with new bridging and toughening mechanisms.

  10. Evaluation of a kinetic model for computer simulation of growth and fermentation by Scheffersomyces (Pichia) stipitis fed D-xylose

    USDA-ARS?s Scientific Manuscript database

    Scheffersomyces (formly Pichia) stipitis is a potential biocatalyst for converting lignocelluloses to ethanol because the yeast natively ferments xylose. An unstructured kinetic model based upon a system of linear differential equations has been formulated that describes growth and ethanol productio...

  11. Kinetics of intramolecular chemical exchange by initial growth rates of spin saturation transfer difference experiments (SSTD NMR).

    PubMed

    Quirós, M Teresa; Angulo, Jesús; Muñoz, María Paz

    2015-06-25

    We report here the Initial Growth Rates SSTD NMR method, as a new powerful tool to obtain the kinetic parameters of intramolecular chemical exchange in challenging small organic and organometallic molecules.

  12. Crystal growth kinetics in Lennard-Jones and Weeks-Chandler-Andersen systems along the solid-liquid coexistence line.

    PubMed

    Benjamin, Ronald; Horbach, Jürgen

    2015-07-07

    Kinetics of crystal-growth is investigated along the solid-liquid coexistence line for the (100), (110), and (111) orientations of the Lennard-Jones (LJ) and Weeks-Chandler-Andersen (WCA) fcc crystal-liquid interface, using non-equilibrium molecular dynamics simulations. A slowing down of the growth kinetics along the coexistence line is observed, which is due to the decrease of the melting enthalpy with increasing coexistence temperature and pressure. Other quantities such as the melting pressure and liquid self-diffusion coefficient have a comparatively lesser impact on the kinetic growth coefficient. Growth kinetics of the LJ and WCA potentials become similar at large values of the melting temperature and pressure, when both resemble a purely repulsive soft-sphere potential. Classical models of crystallization from the melt are in reasonable qualitative agreement with our simulation data. Finally, several one-phase empirical melting/freezing rules are studied with respect to their validity along the coexistence line.

  13. H2-dependent attachment kinetics and shape evolution in chemical vapor deposition graphene growth

    NASA Astrophysics Data System (ADS)

    Meca, Esteban; Shenoy, Vivek B.; Lowengrub, John

    2017-09-01

    Experiments on graphene growth through chemical vapor deposition (CVD) involving methane (CH4) and hydrogen (H2) gases reveal a complex shape evolution and a non-monotonic dependence on the partial pressure of H2 ({{p}{{\\text{H}2}}} ). To explain these intriguing observations, we develop a microkinetic model for the stepwise decomposition of CH4 into mobile radicals and consider two possible mechanisms of attachment to graphene crystals: CH radicals to hydrogen-decorated edges of the crystals and C radicals to bare crystal edges. We derive an effective mass flux and an effective kinetic coefficient, both of which depend on {{p}{{\\text{H}2}}} , and incorporate these into a phase field model. The model reproduces both the non-monotonic dependence on {{p}{{\\text{H}2}}} and the characteristic shapes of graphene crystals observed in experiments. At small {{p}{{\\text{H}2}}} , growth is limited by the kinetics of attachment while at large {{p}{{\\text{H}2}}} growth is limited because the effective mass flux is small. We also derive a simple analytical model that captures the non-monotone behavior, enables the two mechanisms of attachment to be distinguished and provides guidelines for CVD growth of defect-free 2D crystals.

  14. Growth Kinetics of Extremely Halophilic Archaea (Family Halobacteriaceae) as Revealed by Arrhenius Plots

    PubMed Central

    Robinson, Jessie L.; Pyzyna, Brandy; Atrasz, Rachelle G.; Henderson, Christine A.; Morrill, Kira L.; Burd, Anna Mae; DeSoucy, Erik; Fogleman, Rex E.; Naylor, John B.; Steele, Sarah M.; Elliott, Dawn R.; Leyva, Kathryn J.; Shand, Richard F.

    2005-01-01

    Members of the family Halobacteriaceae in the domain Archaea are obligate extreme halophiles. They occupy a variety of hypersaline environments, and their cellular biochemistry functions in a nearly saturated salty milieu. Despite extensive study, a detailed analysis of their growth kinetics is missing. To remedy this, Arrhenius plots for 14 type species of the family were generated. These organisms had maximum growth temperatures ranging from 49 to 58°C. Nine of the organisms exhibited a single temperature optimum, while five grew optimally at more than one temperature. Generation times at these optimal temperatures ranged from 1.5 h (Haloterrigena turkmenica) to 3.0 h (Haloarcula vallismortis and Halorubrum saccharovorum). All shared an inflection point at 31 ± 4°C, and the temperature characteristics for 12 of the 14 type species were nearly parallel. The other two species (Natronomonas pharaonis and Natronorubrum bangense) had significantly different temperature characteristics, suggesting that the physiology of these strains is different. In addition, these data show that the type species for the family Halobacteriaceae share similar growth kinetics and are capable of much faster growth at higher temperatures than those previously reported. PMID:15659670

  15. Quantum kinetic theory. VI. The growth of a Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Lee, M. D.; Gardiner, C. W.

    2000-09-01

    A detailed analysis of the growth of a Bose-Einstein condensate is given, based on quantum kinetic theory, in which we take account of the evolution of the occupations of lower trap levels, and of the full Bose-Einstein formula for the occupations of higher trap levels, as well as the Bose-stimulated direct transfer of atoms to the condensate level introduced by Gardiner et al. [Phys. Rev. Lett. 79, 1793 (1997); 81, 5266 (1998)]. We find good agreement with experiment at higher temperatures, but at lower temperatures the experimentally observed growth rate is somewhat more rapid. We also confirm the picture of the ``kinetic'' region of evolution, introduced by Kagan, Svistunov, and Shlyapnikov (Zh. Eksp. Teor. Fiz. 101, 528 (1992) [Sov. Phys. JETP 75, 387 (1992)]), for the time up to the initiation of the condensate. The behavior after initiation essentially follows our original growth equation, but with a substantially increased rate coefficient. Our modeling of growth implicitly gives a model of the spatial shape of the density profile of the condensate-vapor system as the condensate grows, and thus provides an alternative to the present phenomenological fitting procedure, based on the sum of a zero-chemical potential vapor and a Thomas-Fermi-shaped condensate. Our method gives substantially different results for condensate numbers and temperatures obtained from phenomenological fits, but fits the published column density data very well.

  16. Temperature-dependent growth kinetics of Escherichia coli ML 30 in glucose-limited continuous culture.

    PubMed Central

    Kovárová, K; Zehnder, A J; Egli, T

    1996-01-01

    Detailed comparison of growth kinetics at temperatures below and above the optimal temperature was carried out with Escherichia coli ML 30 (DSM 1329) in continuous culture. The culture was grown with glucose as the sole limiting source of carbon and energy (100 mg liter(-1) in feed medium), and the resulting steady-state concentrations of glucose were measured as a function of the dilution rate at 17.4, 28.4, 37, and 40 degrees C. The experimental data could not be described by the conventional Monod equation over the entire temperature range, but an extended form of the Monod model [mu = mu(max) x (s - s(min))/(Ks + s - s(min))], which predicts a finite substrate concentration at 0 growth rate (s(min)), provided a good fit. The two parameters mu(max) and s(min) were temperature dependent, whereas, surprisingly, fitting the model to the experimental data yielded virtually identical Ks values (approximately 33 microg liter(-1)) at all temperatures. A model that describes steady-state glucose concentrations as a function of temperature at constant growth rates is presented. In similar experiments with mixtures of glucose and galactose (1:1 mixture), the two sugars were utilized simultaneously at all temperatures examined, and their steady-state concentrations were reduced compared with to growth with either glucose or galactose alone. The results of laboratory-scale kinetic experiments are discussed with respect to the concentrations observed in natural environments. PMID:8755881

  17. Maintenance of supersaturation II: indomethacin crystal growth kinetics versus degree of supersaturation.

    PubMed

    Patel, Dhaval D; Anderson, Bradley D

    2013-05-01

    This study compares the kinetics of crystal growth of indomethacin from supersaturated suspensions at varying degrees of supersaturation (2 ≤ S ≥ 9) in the presence of seed crystals of the γ-form of indomethacin, the lowest energy polymorph. At high S (6 ≤ S ≥ 9), the crystal growth was first order with rate coefficients (kG ) that were nearly constant and consistent with the value predicted for bulk-diffusion control. At lower S (<6), kG values were significantly smaller, decreasing approximately linearly with a decrease in S. The decline in kG at low S was attributed to a prolonged period during the initial stages of crystal growth in which surface integration was rate limiting. The apparent solubility of indomethacin after crystal growth for 3 days increased by ∼1.6-fold at both low (S = 2) and high (S = 6) degrees of supersaturation suggesting that a higher energy surface layer was deposited on the γ-form seed crystals during crystal growth. When growth experiments were repeated at low S in the presence of indomethacin seed crystals isolated from a previous crystal growth experiment (i.e., seed crystals having higher energy surface), kG matched the higher values observed for bulk diffusion-controlled crystal growth. Crystal growth experiments were also conducted at S < 1.6 using a constant infusion of an indomethacin solution in the presence of γ-form seed crystals to obtain kG under conditions where deposition of a higher energy surface could not occur. At these conditions, the smaller value of kG indicative of surface integration control was again observed and the apparent solubility of indomethacin after crystal growth matched that of the γ-form. A quantitative mechanistic understanding of the crystal growth kinetics of indomethacin derived from experiments at high and low S may be useful in future studies aimed at understanding the inhibitory effects of pharmaceutical excipients on the crystal growth of poorly soluble compounds and their

  18. From atoms to layers: in situ gold cluster growth kinetics during sputter deposition

    NASA Astrophysics Data System (ADS)

    Schwartzkopf, Matthias; Buffet, Adeline; Körstgens, Volker; Metwalli, Ezzeldin; Schlage, Kai; Benecke, Gunthard; Perlich, Jan; Rawolle, Monika; Rothkirch, André; Heidmann, Berit; Herzog, Gerd; Müller-Buschbaum, Peter; Röhlsberger, Ralf; Gehrke, Rainer; Stribeck, Norbert; Roth, Stephan V.

    2013-05-01

    The adjustment of size-dependent catalytic, electrical and optical properties of gold cluster assemblies is a very significant issue in modern applied nanotechnology. We present a real-time investigation of the growth kinetics of gold nanostructures from small nuclei to a complete gold layer during magnetron sputter deposition with high time resolution by means of in situ microbeam grazing incidence small-angle X-ray scattering (μGISAXS). We specify the four-stage growth including their thresholds with sub-monolayer resolution and identify phase transitions monitored in Yoneda intensity as a material-specific characteristic. An innovative and flexible geometrical model enables the extraction of morphological real space parameters, such as cluster size and shape, correlation distance, layer porosity and surface coverage, directly from reciprocal space scattering data. This approach enables a large variety of future investigations of the influence of different process parameters on the thin metal film morphology. Furthermore, our study allows for deducing the wetting behavior of gold cluster films on solid substrates and provides a better understanding of the growth kinetics in general, which is essential for optimization of manufacturing parameters, saving energy and resources.The adjustment of size-dependent catalytic, electrical and optical properties of gold cluster assemblies is a very significant issue in modern applied nanotechnology. We present a real-time investigation of the growth kinetics of gold nanostructures from small nuclei to a complete gold layer during magnetron sputter deposition with high time resolution by means of in situ microbeam grazing incidence small-angle X-ray scattering (μGISAXS). We specify the four-stage growth including their thresholds with sub-monolayer resolution and identify phase transitions monitored in Yoneda intensity as a material-specific characteristic. An innovative and flexible geometrical model enables the extraction

  19. A mathematical model of the kinetics of beta-amyloid fibril growth from the denatured state.

    PubMed Central

    Pallitto, M M; Murphy, R M

    2001-01-01

    Spontaneous conversion of beta-amyloid peptide (Abeta) from soluble monomer to insoluble fibril may underlie the neurodegeneration associated with Alzheimer's disease. A complete description of Abeta self-association kinetics requires identification of the oligomeric species present and the pathway of association, as well as quantitation of rate constants and reaction order. Abeta was rendered monomeric and denatured by dissolution in 8 M urea, pH 10. "Refolding" and fibrillization were initiated by rapid dilution into phosphate-buffered saline, pH 7.4. The kinetics of growth were followed at three different concentrations, using size exclusion chromatography, dynamic light scattering, and static light scattering. A multi-step pathway for fibril formation and growth was postulated. This pathway included 1) rapid commitment to either stable monomer/dimer or unstable intermediate, 2) cooperative association of intermediate into a multimeric "nucleus," 3) elongation of the "nucleus" into filaments via addition of intermediate, 4) lateral aggregation of filaments into fibrils, and 5) fibril elongation via end-to-end association. Differential and algebraic equations describing this kinetic pathway were derived, and model parameters were determined by fitting the data. The utility of the model for identifying toxic Abeta oligomeric specie(s) is demonstrated. The model should prove useful for designing compounds that inhibit Abeta aggregation and/or toxicity. PMID:11509390

  20. Ascorbic-acid-assisted growth of high quality M@ZnO: a growth mechanism and kinetics study

    NASA Astrophysics Data System (ADS)

    Yang, Yun; Han, Shuhua; Zhou, Guangju; Zhang, Lijie; Li, Xingliang; Zou, Chao; Huang, Shaoming

    2013-11-01

    We present a general route for synthesizing M@ZnO nanoparticles (NPs) by using ascorbic acid (AA) to induce deposition of ZnO on various shaped and structured cationic-surfactant-capped NP surfaces (noble, magnetic, semiconductor, rod-like, spherical, cubic, dendrite, alloy, core@shell). The results show that the complexing (AA and Zn2+) and cooperative effects (AA and CTAB) play important roles in the formation of polycrystalline ZnO shells. Besides, the growth kinetics of M@ZnO was systematically studied. It was found that the slow growth rate favors the successful formation of uniform core@ZnO NPs with relatively loose shells. An appropriate growth rate allows achieving high quality M@ZnO NPs with dense shells. However, very fast growth causes significant additional nucleation and the formation of pure ZnO NPs. This general method is suitable for preparing M@ZnO using seed NPs prepared in both water and organic phases. It might be an alternative route for functionalizing NPs for bioapplications (ZnO is biocompatible), modulating material properties as designed, or synthesizing template materials for building other nanostructures.We present a general route for synthesizing M@ZnO nanoparticles (NPs) by using ascorbic acid (AA) to induce deposition of ZnO on various shaped and structured cationic-surfactant-capped NP surfaces (noble, magnetic, semiconductor, rod-like, spherical, cubic, dendrite, alloy, core@shell). The results show that the complexing (AA and Zn2+) and cooperative effects (AA and CTAB) play important roles in the formation of polycrystalline ZnO shells. Besides, the growth kinetics of M@ZnO was systematically studied. It was found that the slow growth rate favors the successful formation of uniform core@ZnO NPs with relatively loose shells. An appropriate growth rate allows achieving high quality M@ZnO NPs with dense shells. However, very fast growth causes significant additional nucleation and the formation of pure ZnO NPs. This general method is

  1. Antifreeze effect of carboxylated ε-poly-L-lysine on the growth kinetics of ice crystals.

    PubMed

    Vorontsov, Dmitry A; Sazaki, Gen; Hyon, Suong-Hyu; Matsumura, Kazuaki; Furukawa, Yoshinori

    2014-08-28

    Some biological substances control the nucleation and growth of inorganic crystals. Antifreeze proteins, which prohibit ice crystal growth in living organisms, promise are also important as biological antifreezes for medical applications and in the frozen food industries. In this work, we investigated the crystallization of ice in the presence of a new cryoprotector, carboxylated ε-poly-L-lysine (COOH-PLL). In order to reveal the characteristics and the mechanism of its antifreeze effect, free-growth experiments of ice crystals were carried out in solutions with various COOH-PLL concentrations and degrees of supercooling, and the depression of the freezing point and growth rates of the tips of ice dendrites were obtained using optical microscopy. Hysteresis of growth rates and depression of the freezing point was revealed in the presence of COOH-PLL. The growth-inhibition effect of COOH-PLL molecules could be explained on the basis of the Gibbs-Thomson law and the use of Langmuir's adsorption isotherm. Theoretical kinetic curves for hysteresis calculated on the basis of Punin-Artamonova's model were in good agreement with experimental data. We conclude that adsorption of large biological molecules in the case of ice crystallization has a non-steady-state character and occurs more slowly than the process of embedding of crystal growth units.

  2. Theoretical consideration of the growth kinetics for GaAs and GaSb

    NASA Astrophysics Data System (ADS)

    Kaneko, T.; Asahi, H.; Gonda, S.

    1992-05-01

    An extended MOMBE growth kinetics model is proposed, based on the Robertson model, to explain both the GaAs growth rate variation and modulated beam mass spectroscopy data reported by Martin and Whitehouse. In this model, we assume that (1) MEGa molecules react with ethyl-radicals to form DEGa, (2) excessive group-V molecules on the surface suppress the decomposition of DEGa and enhance the desorption of DEGa, (3) reaction of DEGa with ethyl-radicals to form TEGa is negligible, and (4) effective surface coverage of excessive group-V atoms during growth is determined by the double layer adsorption model including desorption parameters for group-V molecules. The first assumption (1) is found to be a dominant process to explain the behaviour of DEGa desorption at high temperatures. This model can reproduce the dependences of both growth rate and desorbing rate of Ga alkyls on substrate temperature during GaAs MOMBE growth. The use of Sb instead of As produces a significant change in the growth rate variation with substrate temperature and group-V flux for the growth of GaSb, in spite of the use of the same TEGa flow rate. This can be rationalized by the difference in the desorption parameters for Sb and As.

  3. Modelling the growth kinetics of Phanerochaete chrysosporium in submerged static culture.

    PubMed Central

    Barclay, C D; Legge, R L; Farquhar, G F

    1993-01-01

    The potential commercial application of Phanerochaete chrysosporium requires methods for quantitatively predicting growth and substrate utilization. The growth kinetics of P. chrysosporium INA-12 (CNCM I-398) were investigated and modelled under nonlimiting nitrogen and carbon conditions in submerged static culture. This strain, unlike other strains, does not require nutrient limitation for induction of lignin peroxidase. Maximum levels of lignin peroxidase activity were reached 7 days after culture initiation, when almost 80% of the initial glycerol and 70% of the initial nitrogen were still present. Lignin peroxidase levels then decreased, while biomass levels increased until about day 14. The ratio of cell dry weight to wet weight was constant until the maximum biomass concentration was achieved, after which there was a decrease in the water content. The change in this ratio reflects cell lysis as it correlated with increased concentrations of nitrogen in the media, arising from cell leakage. The suitability of four growth models to predict growth, and in some cases glycerol consumption, was evaluated. A simple linear model and the Emerson model performed poorly for the early stages of growth, while a modified Williams model and the Monod model predicted substrate and biomass concentrations equally well. All models will predict biomass concentrations during the active growth phase, but they should not be used to predict biomass concentrations after the stationary growth phase, when cell lysis becomes significant. PMID:8328805

  4. A Kinetic and Factorial Approach to Study the Effects of Temperature and Salinity on Growth and Toxin Production by the Dinoflagellate Alexandrium ostenfeldii from the Baltic Sea

    PubMed Central

    Salgado, Pablo; Vázquez, José A.; Riobó, Pilar; Franco, José M.; Figueroa, Rosa I.; Kremp, Anke; Bravo, Isabel

    2015-01-01

    Alexandrium ostenfeldii is present in a wide variety of environments in coastal areas worldwide and is the only dinoflagellate known species that produces paralytic shellfish poisoning (PSP) toxins and two types of cyclic imines, spirolides (SPXs) and gymnodimines (GYMs). The increasing frequency of A. ostenfeldii blooms in the Baltic Sea has been attributed to the warming water in this region. To learn more about the optimal environmental conditions favoring the proliferation of A. ostenfeldii and its complex toxicity, the effects of temperature and salinity on the kinetics of both the growth and the net toxin production of this species were examined using a factorial design and a response-surface analysis (RSA). The results showed that the growth of Baltic A. ostenfeldii occurs over a wide range of temperatures and salinities (12.5–25.5°C and 5–21, respectively), with optimal growth conditions achieved at a temperature of 25.5°C and a salinity of 11.2. Together with the finding that a salinity > 21 was the only growth-limiting factor detected for this strain, this study provides important insights into the autecology and population distribution of this species in the Baltic Sea. The presence of PSP toxins, including gonyautoxin (GTX)-3, GTX-2, and saxitoxin (STX), and GYMs (GYM-A and GYM-B/-C analogues) was detected under all temperature and salinity conditions tested and in the majority of the cases was concomitant with both the exponential growth and stationary phases of the dinoflagellate’s growth cycle. Toxin concentrations were maximal at temperatures and salinities of 20.9°C and 17 for the GYM-A analogue and > 19°C and 15 for PSP toxins, respectively. The ecological implications of the optimal conditions for growth and toxin production of A. ostenfeldii in the Baltic Sea are discussed. PMID:26636674

  5. A Kinetic and Factorial Approach to Study the Effects of Temperature and Salinity on Growth and Toxin Production by the Dinoflagellate Alexandrium ostenfeldii from the Baltic Sea.

    PubMed

    Salgado, Pablo; Vázquez, José A; Riobó, Pilar; Franco, José M; Figueroa, Rosa I; Kremp, Anke; Bravo, Isabel

    2015-01-01

    Alexandrium ostenfeldii is present in a wide variety of environments in coastal areas worldwide and is the only dinoflagellate known species that produces paralytic shellfish poisoning (PSP) toxins and two types of cyclic imines, spirolides (SPXs) and gymnodimines (GYMs). The increasing frequency of A. ostenfeldii blooms in the Baltic Sea has been attributed to the warming water in this region. To learn more about the optimal environmental conditions favoring the proliferation of A. ostenfeldii and its complex toxicity, the effects of temperature and salinity on the kinetics of both the growth and the net toxin production of this species were examined using a factorial design and a response-surface analysis (RSA). The results showed that the growth of Baltic A. ostenfeldii occurs over a wide range of temperatures and salinities (12.5-25.5°C and 5-21, respectively), with optimal growth conditions achieved at a temperature of 25.5°C and a salinity of 11.2. Together with the finding that a salinity > 21 was the only growth-limiting factor detected for this strain, this study provides important insights into the autecology and population distribution of this species in the Baltic Sea. The presence of PSP toxins, including gonyautoxin (GTX)-3, GTX-2, and saxitoxin (STX), and GYMs (GYM-A and GYM-B/-C analogues) was detected under all temperature and salinity conditions tested and in the majority of the cases was concomitant with both the exponential growth and stationary phases of the dinoflagellate's growth cycle. Toxin concentrations were maximal at temperatures and salinities of 20.9°C and 17 for the GYM-A analogue and > 19°C and 15 for PSP toxins, respectively. The ecological implications of the optimal conditions for growth and toxin production of A. ostenfeldii in the Baltic Sea are discussed.

  6. Impact of sustaining a controlled residual growth on polyhydroxybutyrate yield and production kinetics in Cupriavidus necator.

    PubMed

    Grousseau, Estelle; Blanchet, Elise; Déléris, Stéphane; Albuquerque, Maria G E; Paul, Etienne; Uribelarrea, Jean-Louis

    2013-11-01

    In this study a complementary modeling and experimental approach was used to explore how growth controls the NADPH generation and availability, and the resulting impact on PHB (polyhydroxybutyrate) yields and kinetics. The results show that the anabolic demand allowed the NADPH production through the Entner-Doudoroff (ED) pathway, leading to a high maximal theoretical PHB production yield of 0.89 C mole C mole(-1); whereas without biomass production, NADPH regeneration is only possible via the isocitrate dehydrogenase leading to a theoretical yield of 0.67 C mole C mole(-1). Furthermore, the maximum specific rate of NADPH produced at maximal growth rate (to fulfil biomass requirement) was found to be the maximum set in every conditions, which by consequence determines the maximal PHB production rate. These results imply that sustaining a controlled residual growth improves the PHB specific production rate without altering production yield. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Nucleation and growth kinetics of struvite in a fluidized bed reactor

    NASA Astrophysics Data System (ADS)

    Bhuiyan, M. Iqbal H.; Mavinic, D. S.; Beckie, R. D.

    2008-03-01

    Kinetics of struvite crystallization were studied to gain a better understanding of intentional struvite formation in fluidized bed reactors. Mechanisms controlling nucleation were studied in the laboratory by induction time experiments. pH monitoring proved to be an effective method of induction time determination, during the induction period. The induction period, when nucleation was the controlling process for struvite crystal formation, was found to be primarily reaction controlled, with minor transport influence. The metastable region for struvite was explored in this study. The solubility and supersolubility curves, which are the boundaries of the metastable region, were observed to be almost parallel straight lines in the concentration range studied. The growth rate of struvite determined in a fluidized bed reactor was mainly transport controlled. With the determination of the mass-transfer coefficient and surface-reaction coefficient for a specified condition, a two-step linear growth rate model for struvite growth determination in a fluidized bed reactor has been proposed.

  8. Investigation on nucleation kinetics, growth and characterization of urea oxalic acid-ferroelectric single crystal

    NASA Astrophysics Data System (ADS)

    Dhivya, R.; Ezhil Vizhi, R.; Rajan Babu, D.

    2017-06-01

    Nucleation and growth kinetics renders the information about the crystal growth process, which can be adopted to grow large size crystals. Urea oxalic acid was synthesized by slow evaporation method. Solubility was analyzed gravimetrically and it was observed that it exhibits positive temperature coefficient of solubility which is suitable for bulk growth. Metastable zonewidth was observed by adopting polythermal method. Induction period was measured by isothermal method for the saturation temperature by varying the degrees of supersaturation. Based on the classical theory of nucleation, the other nucleation parameters such as interfacial energy, Gibbs critical free energy and radius of critical nuclei were calculated. Urea oxalic acid (UOA) was synthesized and subsequently grown by a slow cooling technique. Single crystal X-ray diffraction study confirms that the crystal belongs to a monoclinic system. Dielectric analysis affirms the ferroelectric property of the material and the results were further discussed in detail.

  9. Kinetics of crystal nucleation and growth in Pd(40)Ni(40)P(20) glass

    NASA Technical Reports Server (NTRS)

    Drehman, A. J.; Greer, A. L.

    1984-01-01

    Samples of Pd(40)Ni(40)P(20) glass, produced by cooling the melt at 1 or 800 K/s, are heated in a differential scanning calorimeter to determine the crystallization kinetics. Optical microscopy shows that eutectic crystallization proceeds both by growth from the surface of the samples and by the growth of spherical regions around preexisting nuclei in the interior. A modified Kissinger (1957) analysis is used to obtain the activation energy for crystal growth (3.49 eV). The steady state homogeneous nucleation frequency at 590 K is about 10 million/cu m per sec. This is estimated to be the maximum nucleation frequency: it is too low to account for the observed population of quenched-in nuclei, which are therefore presumed to be heterogeneous. The major practical obstacle to glass formation in this system is heterogeneous nucleation.

  10. Growth kinetics of CVD TiO sub 2; Influence of carrier gas

    SciTech Connect

    Siefering, K.L.; Griffin, G.L. )

    1990-04-01

    This paper reports on the growth rate of TiO{sub 2} thin films deposited by the decomposition of titanium tetraisopropoxide (TTIP) in the presence of N{sub 2} carrier gas. Experiments are performed at TTIP partial pressures between 0.005 and 0.7 torr and a substrate temperature of 573 K, conditions where second-order kinetics have previously been observed in the presence of TTIP alone. When 5 torr of N{sub 2} is present as a carrier gas, the kinetics become first order in TTIP concentration. By fitting the observed rates to the rate expression for the bimolecular reaction mechanism proposed in the earlier study, the authors obtain a value of {phi} = 0.43 for the relative efficiency of N{sub 2} for collisional energy transfer, compared to TTIP.

  11. The growth kinetics and metabolic and antioxidant activities of the functional synbiotic combination of Lactobacillus gasseri 505 and Cudrania tricuspidata leaf extract.

    PubMed

    Oh, Nam Su; Lee, Ji Young; Kim, Younghoon

    2016-12-01

    In a previous study, the synbiotic combination of selected Lactobacillus gasseri strains and Cudrania tricuspidata leaf extract (CT) was shown to significantly improve the functionality of fermented milk, and the greatest synbiotic effect was exhibited with L. gasseri 505. The aim of the present study was to investigate the growth kinetics and fermentation metabolism of this specific synbiotic combination. Fermentation was carried out in synthetic media and milk with or without CT supplementation using L. gasseri 505. Whole genome sequencing and comparative genomics analyses were conducted to verify the novelty of strain. Titratable acidity, pH, microbial population, and organic acid production were measured during the fermentation period. The addition of CT accelerated the acidification rate, supporting the growth of L. gasseri 505, and the production of fermentation metabolites such as lactic acid and pyruvic acid also significantly increased during fermentation of both of CT-supplemented synthetic media and milk. In particular, the formic acid and propionic acid in CT were significantly utilized during fermentation of milk by L. gasseri 505. Moreover, the antioxidant capacity of CT-supplemented fermented milk increased due to the release of bioactive compounds until the exponential growth phase, after which the antioxidant activity declined due to degradation and loss of potency. Therefore, this study established that L. gasseri 505 efficiently utilized the CT-related nutrients during fermentation producing resulting metabolites with health-promoting effects, although it is necessary to control the fermentation time to obtain dairy products with optimum functionality.

  12. The importance of growth kinetic analysis in determining bacterial susceptibility against antibiotics and silver nanoparticles.

    PubMed

    Theophel, Karsten; Schacht, Veronika J; Schlüter, Michael; Schnell, Sylvia; Stingu, Catalina-Suzana; Schaumann, Reiner; Bunge, Michael

    2014-01-01

    Routine antibiotics susceptibility testing still relies on standardized cultivation-based analyses, including measurement of inhibition zones in conventional agar diffusion tests and endpoint turbidity-based measurements. Here, we demonstrate that common off-line monitoring and endpoint determination after 18-24 h could be insufficient for reliable growth-dependent evaluation of antibiotic susceptibility. Different minimal inhibitory concentrations were obtained in 20- and 48 h microdilution plate tests using an Enterococcus faecium clinical isolate (strain UKI-MB07) as a model organism. Hence, we used an on-line kinetic assay for simultaneous cultivation and time-resolved growth analysis in a 96-well format instead of off-line susceptibility testing. Growth of the Enterococcus test organism was delayed up to 30 h in the presence of 0.25 μg mL(-1) of vancomycin and 8 μg mL(-1) of fosfomycin, after which pronounced growth was observed. Despite the delayed onset of growth, treatment with fosfomycin, daptomycin, fusidic acid, cefoxitin, or gentamicin resulted in higher maximum growth rates and/or higher final optical density values compared with antibiotic-free controls, indicating that growth stimulation and hormetic effects may occur with extended exposure to sublethal antibiotic concentrations. Whereas neither maximum growth rate nor final cell density correlated with antibiotic concentration, the lag phase duration for some antibiotics was a more meaningful indicator of dose-dependent growth inhibition. Our results also reveal that non-temporal growth profiles are only of limited value for cultivation-based antimicrobial silver nanoparticle susceptibility testing. The exposure to Ag(0) nanoparticles led to plasma membrane damage in a concentration-dependent manner and induced oxidative stress in Enterococcus faecium UKI-MB07, as shown by intracellular ROS accumulation.

  13. Altered Cellular Kinetics in the Growth Plate of the Femoral Head of Spontaneously Hypertensive Rats

    PubMed Central

    Park, Hoon; Kong, Sun Young

    2012-01-01

    Purpose Pathologic changes in the growth plate remain unknown in Legg-Calvé-Perthes (LCP) disease. Spontaneously hypertensive rats have proven to be a good model for studying LCP disease. This study investigated the histopathologic changes and the expression of vascular endothelial growth factor in the growth plate of spontaneously hypertensive rats (SHR). Materials and Methods Sixty SHR rats were divided into two groups: those showing osteonecrosis (SHR+n group: 32), and those showing normal ossification (SHR-n group: 28). Thirty Wister Kyoto rats served as a control. For histomorphological measurement, the length of each zone of the growth plate was measured. Cell kinetics was measured by 5-bromo-2'-deoxyuridin (BrdU) immunohistochemistry and transferase-mediated deoxyuridine triphosphate-biotin nick end labeling (TUNEL) assays. Vascular endothelial growth factor (VEGF) immunohistochemistry was used to identify of expression of VEGF. Results The lengths of growth plates of the SHR+n group were significantly shorter in the initial growth period than those of the other groups. The lowest proliferative rate and the highest apoptosis rate were observed in the SHR+n group at the initial growth period. The expression of VEGF in the growth plate of the SHR group was lower than the control group, and it was lower in the SHR+n group than in the SHR-n group. Conclusion The growth plate of the SHR+n group was found to be affected by disease process of ischemic necrosis of the femoral head, and this might explain the relative overgrowth of the greater trochanter in the later stages of LCP disease. PMID:22477009

  14. Anisotropy in growth kinetics of tetrahydrofuran clathrate hydrate: a molecular dynamics study.

    PubMed

    Nada, Hiroki

    2009-04-09

    The growth kinetics of a tetrahydrofuran (THF) clathrate hydrate at the interface between the clathrate and an aqueous THF solution were investigated by means of a molecular dynamic simulation. The simulation was carried out for the interface of both the {100} and {111} planes of the THF clathrate. The simulation indicated the same anisotropic growth as that observed in real systems: the growth of the THF clathrate was much slower at the {111} interface than at the {100} interface. When the THF clathrate grew, THF molecules that were dissolved in the solution first were arranged at both large and small cage sites on the interface. Subsequently, the formation of cages by H(2)O molecules occurred in regions surrounded or sandwiched by those arranged THF molecules. As the formation of cages progressed, the THF molecules that had once been arranged at small cage sites gradually moved away from the sites, and finally the structure of the clathrate was completely formed. Simulation results strongly suggested that the rate-determining process for clathrate growth was the rearrangement of THF molecules at the interface from a disordered state to a state in which THF molecules were ideally arranged at large cage sites only. This rearrangement occurred much more slowly at the {111} interface than at the {100} interface, owing to the formation of a modified structure in which large and small cages were formed at opposite positions of the {111} interface. The anisotropic growth kinetics of the THF clathrate, which were obtained in this study, are consistent with the fact that growth shapes of THF clathrates in real systems are octahedral with flat {111} planes.

  15. Modification of bone-like apatite nanoparticle size and growth kinetics by alizarin red S

    NASA Astrophysics Data System (ADS)

    Ibsen, Casper Jon Steenberg; Birkedal, Henrik

    2010-11-01

    The formation of nanocrystals in biomineralization such as in bone occurs under the influence of organic molecules. Prompted by this fact, the effect of alizarin red S, a dye used in in vivo bone labeling methods, on bone-like carbonated apatite nanocrystal formation was investigated as a function of alizarin red S additive concentration. The obtained nanoparticles were investigated by powder X-ray diffraction (XRD), FTIR as well thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) while the kinetics of nanoparticle formation was investigated by in situ pH and synchrotron XRD measurements. Increasing alizarin red S concentration lead to amorphous particles over a threshold concentration and to smaller crystallites in a dose-dependent fashion. Alizarin red S induced a macroscopic lattice strain that scaled linearly with the alizarin red S concentration; this effect is reminiscent of that seen in biogenic calcium carbonates. TGA showed that the amorphous particles contained significantly more water than the crystalline samples and the DSC data showed that crystallization occurs after loss of most of the included organic material. The in situ studies showed that the formation of apatite goes via the very rapid formation of an amorphous precursor that after a certain nucleation time crystallizes into apatite. This nucleation time increased exponentially with alizarin red S concentration showing that this additive strongly stabilizes the amorphous precursor phase.

  16. Kinetics of gypsum nucleation and crystal growth from Dead Sea brine

    NASA Astrophysics Data System (ADS)

    Reznik, Itay J.; Gavrieli, Ittai; Ganor, Jiwchar

    2009-10-01

    The Dead Sea brine is supersaturated with respect to gypsum ( Ω = 1.42). Laboratory experiments and evaluation of historical data show that gypsum nucleation and crystal growth kinetics from Dead Sea brine are both slower in comparison with solutions at a similar degree of supersaturation. The slow kinetics of gypsum precipitation in the Dead Sea brine is mainly attributed to the low solubility of gypsum which is due to the high Ca 2+/SO 42- molar ratio (115), high salinity (˜280 g/kg) and to Na + inhibition. Experiments with various clay minerals (montmorillonite, kaolinite) indicate that these minerals do not serve as crystallization seeds. In contrast, calcite and aragonite which contain traces of gypsum impurities do prompt precipitation of gypsum but at a considerable slower rate than with pure gypsum. This implies that transportation inflow of clay minerals, calcite and local crystallization of minerals in the Dead Sea does not prompt significant heterogeneous precipitation of gypsum. Based on historical analyses of the Dead Sea, it is shown that over the last decades, as inflows to the lake decreased and its salinity increased, gypsum continuously precipitated from the brine. The increasing salinity and Ca 2+/SO 42- ratio, which results from the precipitation of gypsum, lead to even slower kinetics of nucleation and crystal growth, which resulted in an increasing degree of supersaturation with respect to gypsum. Therefore, we predict that as the salinity of the Dead Sea brine continues to increase (accompanied by Dead Sea water level decline), although gypsum will continuously precipitate, the degree of supersaturation will increase furthermore due to progressively slower kinetics.

  17. Distinct Cloud Droplet Growth Kinetics Observed Above the Marine Boundary Layer

    NASA Astrophysics Data System (ADS)

    Ruehl, C. R.; Chuang, P. Y.; Nenes, A.

    2007-12-01

    The influence of aerosols on cloud properties is an important modulator of the climate system, and remains one of the most uncertain components of the anthropogenic influence on the radiative budget of the atmosphere. Traditional Kohler theory predicts the ability of an atmospheric particle of known size and composition to act as a cloud condensation nucleus (CCN) at equilibrium. However, it is not known to what extent particles exist in the atmosphere that may be prevented from acting as CCN by kinetic limitations. We measured the rate of cloud droplet formation at various sites across the United States during the summer of 2006. Our results suggested that kinetically-limited drops, with apparent mass accommodation coefficients (α) up to 10× lower than those observed for lab-generated ammonium sulfate particles, may be prevalent in the free troposphere. Here we report the results of similar measurements made in 2007 at a high-elevation site near the California coast that is typically above the marine boundary layer. We found that the ambient aerosol at this site was an external mixture of particles with distinct growth kinetics: approximately 50% of the time, we observed two or more modes in the α spectrum. The slower mode typically contained 25% to 50% of the total CCN at ~0.4% supersaturation. These results cannot be explained without incorporating kinetic effects into Kohler theory. By varying the chamber parameters (supersaturation ratio, residence time), we determine whether these kinetic limitations are more consistent with a model of lower α or a delay to activation.

  18. Does viscosity describe the kinetic barrier for crystal growth from the liquidus to the glass transition?

    PubMed

    Nascimento, Marcio Luis Ferreira; Zanotto, Edgar Dutra

    2010-11-07

    An analysis of the kinetic coefficient of crystal growth U(kin), recently proposed by Ediger et al. [J. Chem. Phys. 128, 034709 (2008)], indicates that the Stokes-Einstein/Eyring (SE/E) equation does not describe the diffusion process controlling crystal growth rates in fragile glass-forming liquids. U(kin) was defined using the normal growth model and tested for crystal data for inorganic and organic liquids covering a viscosity range of about 10(4)-10(12) Pa  s. Here, we revisit their interesting finding considering two other models: the screw dislocation (SD) and the two-dimensional surface nucleated (2D) growth models for nine undercooled oxide liquids, in a wider temperature range, from slightly below the melting point down to the glass transition region T(g), thus covering a wider viscosity range: 10(1)-10(13) Pa  s. We then propose and use normalized kinetic coefficients (M(kin)) for the SD and 2D growth models. These new kinetic coefficients restore the ability of viscosity to describe the transport part of crystal growth rates (M(kin)∼1/η and ξ∼1) from low to moderate viscosities (η<10(6) Pa  s), and thus the SE/E equation works well in this viscosity range for all systems tested. For strong glasses, the SE/E equation works well from low to high viscosities, from the melting point down to T(g)! However, for at least three fragile liquids, diopside (kink at 1.08T(g), η=1.6×10(8) Pa  s), lead metasilicate (kink at 1.14T(g), η=4.3×10(6) Pa  s), and lithium disilicate (kink at 1.11T(g), η=1.6×10(8) Pa  s), there are clear signs of a breakdown of the SE/E equation at these higher viscosities. Our results corroborate the findings of Ediger et al. and demonstrate that viscosity data cannot be used to describe the transport part of the crystal growth (via the SE/E equation) in fragile glasses in the neighborhood of T(g).

  19. Recrystallization and Grain Growth Kinetics in Binary Alpha Titanium-Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Trump, Anna Marie

    Titanium alloys are used in a variety of important naval and aerospace applications and often undergo thermomechanical processing which leads to recrystallization and grain growth. Both of these processes have a significant impact on the mechanical properties of the material. Therefore, understanding the kinetics of these processes is crucial to being able to predict the final properties. Three alloys are studied with varying concentrations of aluminum which allows for the direct quantification of the effect of aluminum content on the kinetics of recrystallization and grain growth. Aluminum is the most common alpha stabilizing alloying element used in titanium alloys, however the effect of aluminum on these processes has not been previously studied. This work is also part of a larger Integrated Computational Materials Engineering (ICME) effort whose goal is to combine both computational and experimental efforts to develop computationally efficient models that predict materials microstructure and properties based on processing history. The static recrystallization kinetics are measured using an electron backscatter diffraction (EBSD) technique and a significant retardation in the kinetics is observed with increasing aluminum concentration. An analytical model is then used to capture these results and is able to successfully predict the effect of solute concentration on the time to 50% recrystallization. The model reveals that this solute effect is due to a combination of a decrease in grain boundary mobility and a decrease in driving force with increasing aluminum concentration. The effect of microstructural inhomogeneities is also experimentally quantified and the results are validated with a phase field model for recrystallization. These microstructural inhomogeneities explain the experimentally measured Avrami exponent, which is lower than the theoretical value calculated by the JMAK model. Similar to the effect seen in recrystallization, the addition of aluminum

  20. Growth kinetics of a diesel-degrading bacterial strain from petroleum-contaminated soil.

    PubMed

    Dahalan, S F A; Yunus, I; Johari, W L W; Shukor, M Y; Halmi, M I E; Shamaan, N A; Syed, M A

    2014-03-01

    A diesel-degrading bacterium was isolated from a diesel-contaminated site in Selangor, Malaysia. The isolate was tentatively identified as Acinetobacter sp. strain DRY12 based on partial 16S rDNA molecular phylogeny and Biolog GN microplate panels and Microlog database. Optimum growth occurred from 3 to 5% diesel and the strain was able to tolerate as high as 8% diesel. The optimal pH that supported growth of the bacterium was between pH 7.5 to 8.0. The isolate exhibited optimal growth in between 30 and 35 degrees C. The best nitrogen source was potassium nitrate (between 0.6 and 0.9% (w/v)) followed by ammonium chloride, sodium nitrite and ammonium sulphate in descending order. An almost complete removal of diesel components was seen from the reduction in hydrocarbon peaks observed using Solid Phase Microextraction Gas Chromatography analysis after 10 days of incubation. The best growth kinetic model to fit experimental data was the Haldane model of substrate inhibiting growth with a correlation coefficient value of 0.97. The maximum growth rate- micromax was 0.039 hr(-1) while the saturation constant or half velocity constant Ks and inhibition constant Ki, were 0.387% and 4.46%, respectively. MATH assays showed that 75% of the bacterium was found in the hexadecane phase indicating that the bacterium was hydrophobic. The characteristics of this bacterium make it useful for bioremediation works in the Tropics.

  1. Effects of spill-treating agents on growth kinetics of marine microalgae.

    PubMed

    Rial, Diego; Murado, Miguel A; Menduiña, Araceli; Fuciños, Pablo; González, Pilar; Mirón, Jesús; Vázquez, José A

    2013-12-15

    The effects of four spill-treating agents (STAs) (CytoSol, Finasol(®) OSR 51, Agma OSD 569 and OD4000) on the growth kinetics of three marine microalgae (Isochrysis galbana, Chaetoceros gracilis, Phaeodactylum tricornutum) were studied. Chlorophyll a concentration and optical density at 700 nm were assessed to describe the logistic growth of algae in batch cultures. The optical density data were initially analyzed as described for standard algal growth inhibition tests and subsequently modelled by a bivariate model, as a function of time and dose, to assess the toxic effects on growth parameters. Increasing trends in EC50 and EC10 values with time were found with the standard approach. In 8 of the 11 tests, the lag phase (λ) or the time required to achieve half the maximum biomass (τ) was significantly dependent on the STA concentration. A global parameter (EC50,τ) was calculated to summarize the effects of STAs on growth parameters in the bivariate model. The ranking of sensitivity as EC50,τ values was I. galbana>C. gracilis>P. tricornutum. For all species tested, the least toxic agent was Agma OSD 569, followed by CytoSol. The mathematical model allowed successful ecotoxicological evaluation of chemicals on microalgal growth. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Surface Stability and Growth Kinetics of Compound Semiconductors: An Ab Initio-Based Approach

    PubMed Central

    Kangawa, Yoshihiro; Akiyama, Toru; Ito, Tomonori; Shiraishi, Kenji; Nakayama, Takashi

    2013-01-01

    We review the surface stability and growth kinetics of III-V and III-nitride semiconductors. The theoretical approach used in these studies is based on ab initio calculations and includes gas-phase free energy. With this method, we can investigate the influence of growth conditions, such as partial pressure and temperature, on the surface stability and growth kinetics. First, we examine the feasibility of this approach by comparing calculated surface phase diagrams of GaAs(001) with experimental results. In addition, the Ga diffusion length on GaAs(001) during molecular beam epitaxy is discussed. Next, this approach is systematically applied to the reconstruction, adsorption and incorporation on various nitride semiconductor surfaces. The calculated results for nitride semiconductor surface reconstructions with polar, nonpolar, and semipolar orientations suggest that adlayer reconstructions generally appear on the polar and the semipolar surfaces. However, the stable ideal surface without adsorption is found on the nonpolar surfaces because the ideal surface satisfies the electron counting rule. Finally, the stability of hydrogen and the incorporation mechanisms of Mg and C during metalorganic vapor phase epitaxy are discussed. PMID:28811438

  3. Correlation between former alpha boundary growth kinetics and superplastic flow in Zn-22 pct Al

    SciTech Connect

    Yousefiani, A.; Mohamed, F.A.

    2000-01-01

    Former {alpha} boundaries (F{alpha}Bs) are residual grain boundaries that develop in Zn-22 pct Al during a heat treatment, which is normally applied to produce the fine structure necessary for micrograin superplasticity. They represent domains consisting of fine elongated {alpha} grains, which encompass groups of fine {alpha} (Al-rich) and {beta} (Zn-rich) phases (the superplastic microstructure). The results of a detailed investigation conducted on F{alpha}B growth kinetics in five grades of Zn-22 pct Al with various impurity contents reveal a direct correspondence between the level of impurities in the alloy and the characteristics associated with F{alpha}Bs (average size of F{alpha}Bs and the value of the F{alpha} B growth exponent). This correspondence, which, according to available evidence, is the result of impurity segregation at F{alpha}Bs, lends strong support to the interpretation of superplastic behavior at low stresses in terms of phenomena arising from boundary segregation. It is suggested that information on F{alpha}B growth kinetics in Zn-22 pct Al can be utilized to predict the low-stress superplastic characteristics of the alloy, such as the existence of region 1 or the occurrence of extensive cavitation.

  4. Controlling the Growth of Au on Icosahedral Seeds of Pd by Manipulating the Reduction Kinetics

    SciTech Connect

    Lv, Tian; Yang, Xuan; Zheng, Yiqun; Huang, Hongwen; Zhang, Lei; Tao, Jing; Pan, Likun; Xia, Younan

    2016-03-29

    This article reports a systematic study of how Au atoms nucleate and grow on Pd icosahedral seeds with a multiply twinned structure. By manipulating the reduction kinetics, we obtained Pd–Au bimetallic nanocrystals with two distinct shapes and structures. Specifically, Pd@Au core–shell icosahedra were formed when a relatively fast reduction rate was used for the HAuCl4 precursor. At a slow reduction rate, in contrast, the nucleation and growth of Au atoms were mainly confined to one of the vertices of a Pd icosahedral seed, resulting in the formation of a Au icosahedron by sharing five adjacent faces with the Pd seed. The same growth pattern was observed for Pd icosahedral seeds with both sizes of 32 and 20 nm. Also, we have also investigated the effects of other kinetic parameters, including the concentration of reducing agent and reaction temperature, on the growth pathway undertaken by the Au atoms. In conclusion, we believe that the mechanistic insights obtained from this study can be extended to other systems, including the involvement of different metals and/or seeds with different morphologies.

  5. Model-driven experimental evaluation of struvite nucleation, growth and aggregation kinetics.

    PubMed

    Galbraith, S C; Schneider, P A; Flood, A E

    2014-06-01

    Nutrient stewardship is emerging as an issue of global importance, which will drive the development of nutrient recovery in the near to medium future. This will impact wastewater treatment practices, environmental protection, sustainable agriculture and global food security. A modelling framework for precipitation-based nutrient recovery systems has been developed, incorporating non-ideal solution thermodynamics, a dynamic mass balance and a dynamic population balance to track the development of the precipitating particles. The mechanisms of crystal nucleation and growth and, importantly, aggregation are considered. A novel approach to the population balance embeds the nucleation rate into the model, enabling direct regression of its kinetic parameters. The case study chosen for the modelling framework is that of struvite precipitation, given its wide interest and commercial promise as one possible nutrient recovery pathway. Power law kinetic parameters for nucleation, crystal growth and particle aggregation rates were regressed from an ensemble data set generated from 14 laboratory seeded batch experiments using synthetic solutions. These experiments were highly repeatable, giving confidence to the regressed parameter values. The model successfully describes the dynamic responses of solution pH, the evolving particle size distribution subject to nucleation, growth and aggregation effects and the aqueous magnesium concentration in the liquid phase. The proposed modelling framework could well be extended to other, more complex systems, leading to an improved understanding and commensurately greater confidence in the design, operation and optimisation of large-scale nutrient recovery processes from complex effluents.

  6. From atoms to layers: in situ gold cluster growth kinetics during sputter deposition.

    PubMed

    Schwartzkopf, Matthias; Buffet, Adeline; Körstgens, Volker; Metwalli, Ezzeldin; Schlage, Kai; Benecke, Gunthard; Perlich, Jan; Rawolle, Monika; Rothkirch, André; Heidmann, Berit; Herzog, Gerd; Müller-Buschbaum, Peter; Röhlsberger, Ralf; Gehrke, Rainer; Stribeck, Norbert; Roth, Stephan V

    2013-06-07

    The adjustment of size-dependent catalytic, electrical and optical properties of gold cluster assemblies is a very significant issue in modern applied nanotechnology. We present a real-time investigation of the growth kinetics of gold nanostructures from small nuclei to a complete gold layer during magnetron sputter deposition with high time resolution by means of in situ microbeam grazing incidence small-angle X-ray scattering (μGISAXS). We specify the four-stage growth including their thresholds with sub-monolayer resolution and identify phase transitions monitored in Yoneda intensity as a material-specific characteristic. An innovative and flexible geometrical model enables the extraction of morphological real space parameters, such as cluster size and shape, correlation distance, layer porosity and surface coverage, directly from reciprocal space scattering data. This approach enables a large variety of future investigations of the influence of different process parameters on the thin metal film morphology. Furthermore, our study allows for deducing the wetting behavior of gold cluster films on solid substrates and provides a better understanding of the growth kinetics in general, which is essential for optimization of manufacturing parameters, saving energy and resources.

  7. The Powder-Pack Nitriding Process: Growth Kinetics of Nitride Layers on Pure Iron

    NASA Astrophysics Data System (ADS)

    Campos-Silva, I.; Ortiz-Dominguez, M.; Elias-Espinosa, M.; Vega-Morón, R. C.; Bravo-Bárcenas, D.; Figueroa-López, U.

    2015-09-01

    In this study, the growth kinetics of nitride layers that develop during the powder-pack nitriding process on the surface of ARMCO pure iron was estimated. The powder-pack nitriding of pure iron was performed according to the Pulnieren© (H.E.F. Durferrit) method using a "Pulnier" powder and an activator, at 798-848 K with different exposure times (2-12 h) for each temperature. In addition, for the entire set of nitriding conditions, three different activator/"Pulnier" powder ratios (0.20, 0.25, and 0.35) were used to evaluate the activation level during the growth of nitride layers. The kinetics of the nitride layers over the surface of ARMCO pure iron were estimated by two mathematical approaches, that consider the mass balance equations at the growth interphases. The resulting expressions for the effective diffusion coefficients in the nitride layers were evaluated as a function of nitriding temperatures and activator/"Pulnier" powder ratio. Finally, based on the experimental parameters ascribed to the powder-pack nitriding process, two expressions were proposed to estimate the nitride layer thicknesses at 798 and 823 K after 9 h of exposure for each temperature, to validate the diffusion models used in this work.

  8. Controlling the Growth of Au on Icosahedral Seeds of Pd by Manipulating the Reduction Kinetics

    DOE PAGES

    Lv, Tian; Yang, Xuan; Zheng, Yiqun; ...

    2016-03-29

    This article reports a systematic study of how Au atoms nucleate and grow on Pd icosahedral seeds with a multiply twinned structure. By manipulating the reduction kinetics, we obtained Pd–Au bimetallic nanocrystals with two distinct shapes and structures. Specifically, Pd@Au core–shell icosahedra were formed when a relatively fast reduction rate was used for the HAuCl4 precursor. At a slow reduction rate, in contrast, the nucleation and growth of Au atoms were mainly confined to one of the vertices of a Pd icosahedral seed, resulting in the formation of a Au icosahedron by sharing five adjacent faces with the Pd seed.more » The same growth pattern was observed for Pd icosahedral seeds with both sizes of 32 and 20 nm. Also, we have also investigated the effects of other kinetic parameters, including the concentration of reducing agent and reaction temperature, on the growth pathway undertaken by the Au atoms. In conclusion, we believe that the mechanistic insights obtained from this study can be extended to other systems, including the involvement of different metals and/or seeds with different morphologies.« less

  9. The effect of Co alloying content on the kinetics of reaction zone growth in tungsten fiber reinforced superalloy composites

    NASA Technical Reports Server (NTRS)

    Rodriguez, A.; Tien, J. K.; Caulfield, T.; Petrasek, D. W.

    1988-01-01

    A Co-free modified superalloy similar in composition to Waspaloy is investigated in an effort to understand the effect of Co on reaction zone growth kinetics and verify the chemistry dependence of reaction zone growth in the matrix of tungsten fiber reinforced superalloy composites. The values of the parabolic rate constant, characterizing the kinetics of reaction zone growth, for the Waspaloy matrix and the C-free alloy as well as five other alloys from a previous study confirm the dependence of reaction zone growth kinetics on cobalt content of the matrix. The Co-free alloy composite exhibits the slowest reaction zone growth among all tungsten fiber reinforced composites studied to date.

  10. Nutritional versatility and growth kinetics of an Aeromonas hydrophila strain isolated from drinking water.

    PubMed Central

    van der Kooij, D; Hijnen, W A

    1988-01-01

    The nutritional versatility and growth kinetics of Aeromonas hydrophila were studied to determine the nature and the growth-promoting properties of organic compounds which may serve as substrates for the growth of this organism in drinking water during treatment and distribution. As an initial screening, a total of 69 different organic compounds were tested at a concentration of 2.5 g/liter as growth substrates for 10 A. hydrophila strains. Of these strains, strain M800 attained the highest maximum colony counts in various types of drinking water and river water and was therefore used in further measurements of growth at low substrate concentrations. A mixture of 21 amino acids and a mixture of 10 long-chain fatty acids, when added to drinking water, promoted growth of strain M800 at individual compound concentrations as low as 0.1 microgram of C per liter. Mixtures of 18 carbohydrates and 18 carboxylic acids clearly enhanced growth of the organism at individual compound concentrations above 1 microgram of C per liter. Growth measurements with 63 individual substrates at a concentration of 10 micrograms of C per liter gave growth rates of greater than or equal to 0.1/h with two amino acids, nine carbohydrates, and six long-chain fatty acids. Ks values were determined for arginine (less than or equal to 0.3 micrograms of C per liter), glucose (15.9 micrograms of C per liter), acetate (11.1 micrograms of C per liter), and oleate (2.1 micrograms of C per liter). The data obtained indicate that biomass components, such as amino acids and long-chain fatty acids, can promote multiplication of aeromonads in drinking water distribution systems at concentrations as low as a few micrograms per liter. PMID:3214162

  11. Exponentiated power Lindley distribution

    PubMed Central

    Ashour, Samir K.; Eltehiwy, Mahmoud A.

    2014-01-01

    A new generalization of the Lindley distribution is recently proposed by Ghitany et al. [1], called as the power Lindley distribution. Another generalization of the Lindley distribution was introduced by Nadarajah et al. [2], named as the generalized Lindley distribution. This paper proposes a more generalization of the Lindley distribution which generalizes the two. We refer to this new generalization as the exponentiated power Lindley distribution. The new distribution is important since it contains as special sub-models some widely well-known distributions in addition to the above two models, such as the Lindley distribution among many others. It also provides more flexibility to analyze complex real data sets. We study some statistical properties for the new distribution. We discuss maximum likelihood estimation of the distribution parameters. Least square estimation is used to evaluate the parameters. Three algorithms are proposed for generating random data from the proposed distribution. An application of the model to a real data set is analyzed using the new distribution, which shows that the exponentiated power Lindley distribution can be used quite effectively in analyzing real lifetime data. PMID:26644927

  12. Exponentiated power Lindley distribution.

    PubMed

    Ashour, Samir K; Eltehiwy, Mahmoud A

    2015-11-01

    A new generalization of the Lindley distribution is recently proposed by Ghitany et al. [1], called as the power Lindley distribution. Another generalization of the Lindley distribution was introduced by Nadarajah et al. [2], named as the generalized Lindley distribution. This paper proposes a more generalization of the Lindley distribution which generalizes the two. We refer to this new generalization as the exponentiated power Lindley distribution. The new distribution is important since it contains as special sub-models some widely well-known distributions in addition to the above two models, such as the Lindley distribution among many others. It also provides more flexibility to analyze complex real data sets. We study some statistical properties for the new distribution. We discuss maximum likelihood estimation of the distribution parameters. Least square estimation is used to evaluate the parameters. Three algorithms are proposed for generating random data from the proposed distribution. An application of the model to a real data set is analyzed using the new distribution, which shows that the exponentiated power Lindley distribution can be used quite effectively in analyzing real lifetime data.

  13. Effects of film growth kinetics on grain coarsening and grain shape

    NASA Astrophysics Data System (ADS)

    Reis, F. D. A. Aarão

    2017-04-01

    We study models of grain nucleation and coarsening during the deposition of a thin film using numerical simulations and scaling approaches. The incorporation of new particles in the film is determined by lattice growth models in three different universality classes, with no effect of the grain structure. The first model of grain coarsening is similar to that proposed by Saito and Omura [Phys. Rev. E 84, 021601 (2011), 10.1103/PhysRevE.84.021601], in which nucleation occurs only at the substrate, and the grain boundary evolution at the film surface is determined by a probabilistic competition of neighboring grains. The surface grain density has a power-law decay, with an exponent related to the dynamical exponent of the underlying growth kinetics, and the average radius of gyration scales with the film thickness with the same exponent. This model is extended by allowing nucleation of new grains during the deposition, with constant but small rates. The surface grain density crosses over from the initial power law decay to a saturation; at the crossover, the time, grain mass, and surface grain density are estimated as a function of the nucleation rate. The distributions of grain mass, height, and radius of gyration show remarkable power law decays, similar to other systems with coarsening and particle injection, with exponents also related to the dynamical exponent. The scaling of the radius of gyration with the height h relative to the base of the grain show clearly different exponents in growth dominated by surface tension and growth dominated by surface diffusion; thus it may be interesting for investigating the effects of kinetic roughening on grain morphology. In growth dominated by surface diffusion, the increase of grain size with temperature is observed.

  14. Growth kinetics and processings of copper indium diselenide-based thin films

    NASA Astrophysics Data System (ADS)

    Kim, Suku

    CuInSe2 (CIS)-based compound semiconductors are increasingly important absorber layer materials for thin film solar cells. A better understanding of the growth kinetics of CuInSe2 thin films as a function of the process parameters would benefit the development of this technology. The reaction kinetics for formation of CuInSe2 from the bilayer structure InSe/CuSe was studied in-situ by high-temperature X-ray diffraction. The reaction pathway produces a diffusion barrier layer that can be schematically represented as InSe|CuSe → InSe|CuInSe 2|CuSe. Two different analyses based on the Avrami and the parabolic rate laws suggest that the reaction is one-dimensional diffusion controlled. The estimated apparent activation energy from each model is 66.0 and 65.2 kJ/mol, respectively. The result demonstrates that the time-resolved high temperature X-ray diffraction provides a powerful method for studying the reaction kinetics of CuInSe2 growth. The thermodynamic driving force for formation of copper selenide phase and the grain size distribution in CuInSe2 films was investigated. Large grains (˜a few mum) were observed in the CuInSe2 films annealed with a CuSe layer while films annealed without this layer exhibited very small grain size (<0.2 mum). This result suggests a secondary grain growth mechanism driven by the surface-energy anisotropy is responsible for the increased grain size. Epitaxial growth of CuInSe2 and CuGaSe2 on (001) GaAs substrates was attempted. The result shows that the crystalline structure and its quality strongly depends on the film stoichiometry, especially the [Cu]/[III] atomic ratio, with Cu-rich compositions showing higher crystalline quality. A two-dimensional model of heat transfer in the growth reactor was developed for a rotating platen/substrate in the molecular beam epitaxial reactor that was used for film growth. Time-varying view factors were included in the model to solve the problem dynamically and to account for the fact that the

  15. Growth kinetics of physical vapor transport processes: Crystal growth of the optoelectronic material mercurous chloride

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Duval, W. M.

    1991-01-01

    Physical vapor transport processes were studied for the purpose of identifying the magnitude of convective effects on the crystal growth process. The effects of convection on crystal quality were were studied by varying the aspect ratio and those thermal conditions which ultimately affect thermal convection during physical vapor transport. An important outcome of the present study was the observation that the convection growth rate increased up to a certain value and then dropped to a constant value for high aspect ratios. This indicated that a very complex transport had occurred which could not be explained by linear stability theory. Better quality crystals grown at a low Rayleigh number confirmed that improved properties are possible in convectionless environments.

  16. Dynamic Scaling and Island Growth Kinetics in Pulsed Laser Deposition of SrTiO3

    DOE PAGES

    Eres, Gyula; Tischler, J. Z.; Rouleau, C. M.; ...

    2016-11-11

    We use real-time diffuse surface x-ray diffraction to probe the evolution of island size distributions and its effects on surface smoothing in pulsed laser deposition (PLD) of SrTiO3. In this study, we show that the island size evolution obeys dynamic scaling and two distinct regimes of island growth kinetics. Our data show that PLD film growth can persist without roughening despite thermally driven Ostwald ripening, the main mechanism for surface smoothing, being shut down. The absence of roughening is concomitant with decreasing island density, contradicting the prevailing view that increasing island density is the key to surface smoothing in PLD.more » We also report a previously unobserved crossover from diffusion-limited to attachment-limited island growth that reveals the influence of nonequilibrium atomic level surface transport processes on the growth modes in PLD. We show by direct measurements that attachment-limited island growth is the dominant process in PLD that creates step flowlike behavior or quasistep flow as PLD “self-organizes” local step flow on a length scale consistent with the substrate temperature and PLD parameters.« less

  17. Dynamic Scaling and Island Growth Kinetics in Pulsed Laser Deposition of SrTiO3

    NASA Astrophysics Data System (ADS)

    Eres, Gyula; Tischler, J. Z.; Rouleau, C. M.; Lee, Ho Nyung; Christen, H. M.; Zschack, P.; Larson, B. C.

    2016-11-01

    We use real-time diffuse surface x-ray diffraction to probe the evolution of island size distributions and its effects on surface smoothing in pulsed laser deposition (PLD) of SrTiO3 . We show that the island size evolution obeys dynamic scaling and two distinct regimes of island growth kinetics. Our data show that PLD film growth can persist without roughening despite thermally driven Ostwald ripening, the main mechanism for surface smoothing, being shut down. The absence of roughening is concomitant with decreasing island density, contradicting the prevailing view that increasing island density is the key to surface smoothing in PLD. We also report a previously unobserved crossover from diffusion-limited to attachment-limited island growth that reveals the influence of nonequilibrium atomic level surface transport processes on the growth modes in PLD. We show by direct measurements that attachment-limited island growth is the dominant process in PLD that creates step flowlike behavior or quasistep flow as PLD "self-organizes" local step flow on a length scale consistent with the substrate temperature and PLD parameters.

  18. Predicting crystal growth via a unified kinetic three-dimensional partition model.

    PubMed

    Anderson, Michael W; Gebbie-Rayet, James T; Hill, Adam R; Farida, Nani; Attfield, Martin P; Cubillas, Pablo; Blatov, Vladislav A; Proserpio, Davide M; Akporiaye, Duncan; Arstad, Bjørnar; Gale, Julian D

    2017-04-03

    Understanding and predicting crystal growth is fundamental to the control of functionality in modern materials. Despite investigations for more than one hundred years, it is only recently that the molecular intricacies of these processes have been revealed by scanning probe microscopy. To organize and understand this large amount of new information, new rules for crystal growth need to be developed and tested. However, because of the complexity and variety of different crystal systems, attempts to understand crystal growth in detail have so far relied on developing models that are usually applicable to only one system. Such models cannot be used to achieve the wide scope of understanding that is required to create a unified model across crystal types and crystal structures. Here we describe a general approach to understanding and, in theory, predicting the growth of a wide range of crystal types, including the incorporation of defect structures, by simultaneous molecular-scale simulation of crystal habit and surface topology using a unified kinetic three-dimensional partition model. This entails dividing the structure into 'natural tiles' or Voronoi polyhedra that are metastable and, consequently, temporally persistent. As such, these units are then suitable for re-construction of the crystal via a Monte Carlo algorithm. We demonstrate our approach by predicting the crystal growth of a diverse set of crystal types, including zeolites, metal-organic frameworks, calcite, urea and l-cystine.

  19. Influence of heavy metals on microbial growth kinetics including lag time: mathematical modeling and experimental verification.

    PubMed

    Sengör, S Sevinç; Barua, Sutapa; Gikas, Petros; Ginn, Timothy R; Peyton, Brent; Sani, Rajesh K; Spycher, Nicolas F

    2009-10-01

    Heavy metals can significantly affect the kinetics of substrate biodegradation and microbial growth, including lag times and specific growth rates. A model to describe microbial metabolic lag as a function of the history of substrate concentration has been previously described by Wood et al. (Water Resour Res 31:553-563) and Ginn (Water Resour Res 35:1395-1408). In the present study, this model is extended by including the effect of heavy metals on metabolic lag by developing an inhibitor-dependent functional to account for the metabolic state of the microorganisms. The concentration of the inhibiting metal is explicitly incorporated into the functional. The validity of the model is tested against experimental data on the effects of zinc on Pseudomonas species isolated from Lake Coeur d'Alene sediments, Idaho, U.S.A., as well as the effects of nickel or cobalt on a mixed microbial culture collected from the aeration tank of a wastewater treatment plant in Athens, Greece. The simulations demonstrate the ability to incorporate the effect of metals on metabolism through lag, yield coefficient, and specific growth rates. The model includes growth limitation due to insufficient transfer of oxygen into the growth medium.

  20. Predicting crystal growth via a unified kinetic three-dimensional partition model

    NASA Astrophysics Data System (ADS)

    Anderson, Michael W.; Gebbie-Rayet, James T.; Hill, Adam R.; Farida, Nani; Attfield, Martin P.; Cubillas, Pablo; Blatov, Vladislav A.; Proserpio, Davide M.; Akporiaye, Duncan; Arstad, Bjørnar; Gale, Julian D.

    2017-04-01

    Understanding and predicting crystal growth is fundamental to the control of functionality in modern materials. Despite investigations for more than one hundred years, it is only recently that the molecular intricacies of these processes have been revealed by scanning probe microscopy. To organize and understand this large amount of new information, new rules for crystal growth need to be developed and tested. However, because of the complexity and variety of different crystal systems, attempts to understand crystal growth in detail have so far relied on developing models that are usually applicable to only one system. Such models cannot be used to achieve the wide scope of understanding that is required to create a unified model across crystal types and crystal structures. Here we describe a general approach to understanding and, in theory, predicting the growth of a wide range of crystal types, including the incorporation of defect structures, by simultaneous molecular-scale simulation of crystal habit and surface topology using a unified kinetic three-dimensional partition model. This entails dividing the structure into ‘natural tiles’ or Voronoi polyhedra that are metastable and, consequently, temporally persistent. As such, these units are then suitable for re-construction of the crystal via a Monte Carlo algorithm. We demonstrate our approach by predicting the crystal growth of a diverse set of crystal types, including zeolites, metal-organic frameworks, calcite, urea and L-cystine.

  1. Changes in cell-cycle kinetics responsible for limiting somatic growth in mice

    PubMed Central

    Chang, Maria; Parker, Elizabeth A.; Muller, Tessa J. M.; Haenen, Caroline; Mistry, Maanasi; Finkielstain, Gabriela P.; Murphy-Ryan, Maureen; Barnes, Kevin M.; Sundaram, Rajeshwari; Baron, Jeffrey

    2009-01-01

    In mammals, the rate of somatic growth is rapid in early postnatal life but then slows with age, approaching zero as the animal approaches adult body size. To investigate the underlying changes in cell-cycle kinetics, [methyl-3H]thymidine and 5’-bromo-2’deoxyuridine were used to double-label proliferating cells in 1-, 2-, and 3-week-old mice for four weeks. Proliferation of renal tubular epithelial cells and hepatocytes decreased with age. The average cell-cycle time did not increase in liver and increased only 1.7 fold in kidney. The fraction of cells in S-phase that will divide again declined approximately 10 fold with age. Concurrently, average cell area increased approximately 2 fold. The findings suggest that somatic growth deceleration primarily results not from an increase in cell-cycle time but from a decrease in growth fraction (fraction of cells that continue to proliferate). During the deceleration phase, cells appear to reach a proliferative limit and undergo their final cell divisions, staggered over time. Concomitantly, cells enlarge to a greater volume, perhaps because they are relieved of the size constraint imposed by cell division. In conclusion, a decline in growth fraction with age causes somatic growth deceleration and thus sets a fundamental limit on adult body size. PMID:18535488

  2. Growth behavior and kinetics of self-assembled silica-carbonate biomorphs.

    PubMed

    Kellermeier, Matthias; Melero-García, Emilio; Glaab, Fabian; Eiblmeier, Josef; Kienle, Lorenz; Rachel, Reinhard; Kunz, Werner; García-Ruiz, Juan Manuel

    2012-02-20

    Upon slow crystallization from silica-containing solutions or gels at elevated pH, alkaline-earth carbonates spontaneously self-assemble into remarkable nanocrystalline ultrastructures. These so-called silica biomorphs exhibit curved morphologies beyond crystallographic symmetry and ordered textures reminiscent of the hierarchical design found in many biominerals. The formation of these fascinating materials is thought to be driven by a dynamic coupling of the components' speciations in solution, which causes concerted autocatalytic mineralization of silica-stabilized nanocrystals over hours. In the present work, we have studied the precipitation kinetics of this unique system by determining growth rates of individual aggregates using video microscopy, and correlated the results with time-dependent data on the concentration of metal ions and pH acquired online during crystallization. In this manner, insight to the evolution of chemical conditions during growth was gained. It is shown that crystallization proceeds linearly with time and is essentially reaction controlled, which fits well in the proposed morphogenetic scenario, and thus, indirectly supports it. Measurements of the silica concentration in solution, combined with analyses of crystal aggregates isolated at distinct stages of morphogenesis, further demonstrate that the fraction of silica coprecipitated with carbonate during active growth is rather small. We discuss our findings with respect to the role of silica in the formation of biomorphs, and moreover, prove that the external silica skins that occasionally sheath the aggregates--previously supposed to be involved in the growth mechanism--originate from secondary precipitation after growth is already terminated.

  3. Kinetics of Bacillus thuringiensis var. israelensis growth on high glucose concentrations.

    PubMed

    Berbert-Molina, M A; Prata, A M R; Pessanha, L G; Silveira, M M

    2008-11-01

    The kinetic and general growth features of Bacillus thuringiensis var. israelensis were evaluated. Initial glucose concentration (S0) in fermentation media varied from 10 to 152 g/l. The results afforded to characterize four morphologically and physiologically well-defined culture phases, independent of S0 values: Phase I, vegetative growth; Phase II, transition to sporulation; Phase III, sporulation; and Phase IV, spores maturation and cell lysis. Important process parameters were also determined. The maximum specific growth rates (microX,m) were not affected with S0 up to 75 g/l (1.0-1.1 per hour), but higher glucose concentrations resulted in growth inhibition by substrate, revealed by a reduction in microX,m values. These higher S0 values led to longer Phases III and IV and delayed sporulation. Similar biomass concentrations (Xm=15.2-15.9 g/l) were achieved with S0 over 30.8 g/l, with increasing residual substrate, suggesting a limitation in some other nutrients and the use of glucose to form other metabolites. In this case, with S0 from 30.8 to 152 g/l, cell yield (YX/S) decreased from 0.58 to 0.41 g/g. On the other hand, with S0=10 g/l growth was limited by substrate, and YX/S has shown its maximum value (0.83 g/g).

  4. Kinetics and mechanisms of crystal growth inhibition of indomethacin by model precipitation inhibitors

    NASA Astrophysics Data System (ADS)

    Patel, Dhaval

    Supersaturating Drug Delivery Systems (SDDS) could enhance oral bioavailability of poorly water soluble drugs (PWSD). Precipitation inhibitors (PIs) in SDDS could maintain supersaturation by inhibiting nucleation, crystal growth, or both. The mechanisms by which these effects are realized are generally unknown. The goal of this dissertation was to explore the mechanisms underpinning the effects of model PIs including hydroxypropyl beta-cyclodextrins (HP-beta-CD), hydroxypropyl methylcellulose (HPMC), and polyvinylpyrrolidone (PVP) on the crystal growth of indomethacin, a model PWSD. At high degrees of supersaturation (S), the crystal growth kinetics of indomethacin was bulk diffusion-controlled, which was attributed to a high energy form deposited on the seed crystals. At lower S, indomethacin growth kinetics was surface integration-controlled. The effect of HP-beta-CD at high S was successfully modeled using the reactive diffusion layer theory. The superior effects of PVP and HPMC as compared to HP-beta-CD at high S were attributed to a change in the rate limiting step from bulk diffusion to surface integration largely due to prevention of the high energy form formation. The effects of PIs at low S were attributed to significant retardation of the surface integration rate, a phenomenon that may reflect the adsorption of PIs onto the growing surface. PVP was selected to further understand the relationship between adsorption and crystal growth inhibition. The Langmuir adsorption isotherm model fit the adsorption isotherms of PVP and N-vinylpyrrolidone well. The affinity and extent of adsorption of PVP were significantly higher than those of N-vinylpyrrolidone, which was attributed to cooperative interactions between PVP and indomethacin. The extent of PVP adsorption on a weight-basis was greater for higher molecular weight PVP but less on a molar-basis indicating an increased percentage of loops and tails for higher molecular weight PVPs. PVP significantly inhibited

  5. Growth and Magnetic Properties of Mn-doped Germanium near the Kinetic Solubility Limit

    SciTech Connect

    Ozer, Mustafa M; Thompson, James R; Weitering, Harm H

    2012-01-01

    Growth of high-quality dilute magnetic semiconductor (DMS) material is often compromised by the low solubility of magnetic dopants, leading to formation of precipitates. Here, we explore the feasibility of growing precipitate-free Mn-doped Ge at doping levels near the kinetic solubility limit. Ge:Mn DMS films were grown at low temperature so as to minimize precipitate formation. Meanwhile, epitaxial quality was maintained by employing a very low growth rate. The magnetic properties of these lightly doped films exhibit both interesting contrasts and similarities with those of heavily-doped DMS reported in the literature, indicating that the substitutional Mn contents are very similar. Films grown at 95 degree C are free of intermetallic precipitates, offering useful opportunities for studying the fundamentals of carrier mediated exchange and metal insulator transitions without complications arising from precipitate formation.

  6. Growth kinetics of racemic heptahelicene-2-carboxylic acid nanowires on calcite (104)

    NASA Astrophysics Data System (ADS)

    Einax, Mario; Richter, Tobias; Nimmrich, Markus; Rahe, Philipp; Stará, Irena G.; Starý, Ivo; Kühnle, Angelika; Maass, Philipp

    2016-10-01

    Molecular self-assembly of racemic heptahelicene-2-carboxylic acid on a dielectric substrate at room temperature can be used to generate wire-like organic nanostructures consisting of single and double molecular rows. By means of non-contact atomic force microscopy, we investigate the growth of the wire-like pattern after deposition by experimental and theoretical means. From analyzing the time dependence of the mean row length, two distinct regimes were found. At the early post-deposition stage, the mean length grows in time. Subsequently, a crossover to a second regime is observed, where the mean row length remains nearly constant. We explain these findings by a mean-field rate equation approach providing a comprehensive picture of the growth kinetics. As a result, we demonstrate that the crossover between the two distinct regimes is accomplished by vanishing of the homochiral single rows. At later stages only heterochiral double row structures remain.

  7. [Kinetic patterns in the growth of transplantable mouse tumor RShM-1].

    PubMed

    Svinogeeva, T P; Konopliannikov, A G; Shtein, L V

    1976-01-01

    Under study was the kinetics of growth of cervical cancer (CCM-1) transplanted on mice CBA, also the mitotic cycle and diurnal activity of tumor cells division. The tumor growth can well be described with the Hompertz equation, the constants of acceleration and retardation being equal to 0.34 day-1 and 0.004 day-1 accordingly. A linear dependence between the size, weight and number of CCM-1 celos is shown. In the tumor under study a persistant diurnal rhythm of the cell division was found with the maximum at 7 and 19 hours and the minimum at 13. The basis parameters of the mitotic cycle of tumor cells were determined: Tc=17.8 hr., G2 approximately 40 min.; S=9 hr., M approximately 24 min., G1 approximately 18.4 hr. The time of tumor doubling was 48.7 hr. The cell loss factor is as much as 42.1 per cent.

  8. Experimental Studies of the Growth Kinetics of Methane Clathrate Hydrates & Superfluid Hydrodynamics on the Nanoscale

    NASA Astrophysics Data System (ADS)

    Botimer, Jeffrey David

    This thesis details the experimental findings of three distinct research projects. The first studies the growth kinetics of methane clathrate hydrates grown under the influence of multiple factors including surfactants, porous media, substrate wetting properties, and salt content. The second investigates the flow behaviors of superfluid helium through single, high aspect ratio nanopipes. The third models the frequency response of a quartz tuning fork in high pressure normal and superfluid helium and demonstrates how quartz tuning forks can be used as cheap, small, in situ, cryogenic pressure gauges. The first project reports studies of the kinetics of growth of methane hydrates from liquid water containing small amounts of surfactant (<500 ppm of sodium dodecyl sulfate, SDS). The kinetics are monitored using simultaneous measurements of the uptake of methane detected by a pressure drop in the gas phase, and either visual observations of the amount of liquid water and solid phase in the reaction vessel, or in situ micro-Raman measurements or in situ NMR measurements. These diagnostics show that the uptake of methane and the conversion of liquid water to a solid phase do not occur simultaneously; the uptake of gas always lags the visual and spectroscopic signatures of the disappearance of liquid water and the formation of solid. The evidence suggests that the SDS causes water to form an intermediate immobile solid-like state before combining with the methane to form hydrate. The growth mechanism is related to the surfactant and disappears for low SDS concentrations (<25 ppm). Also reported are studies of the growth rates of methane hydrates as a function of substrate wetting properties, driving force, and growth media. The second project studies pressure driven flow of superfluid helium through single high aspect ratio glass nanopipes into a vacuum has been studied for a wide range of pressure drop (0--30 atm), reservoir temperature (0.8--2.5K), pipe lengths (1-30mm

  9. Direct dynamic kinetic analysis and computer simulation of growth of Clostridium perfringens in cooked turkey during cooling

    USDA-ARS?s Scientific Manuscript database

    This research applied a new one-step methodology to directly construct a tertiary model for describing the growth of C. perfringens in cooked turkey meat under dynamically cooling conditions. The kinetic parameters of the growth models were determined by numerical analysis and optimization using mu...

  10. Prediction of fatigue crack growth kinetics in the plane structural elements of aircraft in the biaxial stress state

    NASA Astrophysics Data System (ADS)

    Shanyavskij, A. A.; Karaev, K. Z.; Grigor'ev, V. M.; Koronov, M. Z.; Orlov, E. F.

    1991-07-01

    The kinetics of fatigue crack growth in the case of a complex stress state is investigated with particular reference to D16T aluminum alloy. By using simulation models in the form of plane cruciform specimens, the characteristics of fatigue crack growth are investigated under conditions of uniaxial and biaxial tension-compression, with the ratio of the main stresses varying from -1 to 1.5. An algorithm is developed which makes it possible to predict the kinetics of fatigue crack growth and the equivalent stress level under conditions of multiparametric loading.

  11. Theory of Crystal Growth, Kinetics of Dissolution and Transformation of Calcium Phosphates.

    NASA Astrophysics Data System (ADS)

    Zhang, Jingwu

    The kink density along a (01) step on the (001) face of a Kossel crystal is derived from a kinetic steady state approach by considering the elementary events at the step. When the kink formation energy, epsilon , is very high compared with the thermal energy kT, the kink density, rho, is found to be a function of the saturation ratio, S. For S > 1, rho = 2a-1S^ {1over 2}exp(-epsilon /kT) while for S < 1, rho = 2a^{-1}exp( -epsilon/kT)/(2-S)^ {1over 2}. This finding may provide a theoretical background for interpreting the observed growth kinetics of many sparingly soluble salts in aqueous solutions. The above approach is extended to analyze the configuration of a surface step of an AB crystal with NaCl type of lattice. It is found that the growth rate of an electrolyte crystal cannot be defined solely by the thermodynamic driving forces even when integration is the rate determining step. The rate also depends on the lattice ion activity ratio and relative frequencies of integration of A and B ions into kink sites on a step. At a given driving force, a maximum growth rate can be attained at a certain ratio of lattice ion activities. The dual constant composition (DCC) method is developed which enables the kinetics of phase transformation to be studied at constant driving forces. The applicability of this novel approach is verified in the investigation of dicalcium phosphate dihydrate (DCPD) to octacalcium phosphate (OCP) transformation. In these studies, the concentrations of total calcium and phosphate are maintained constant to within 2% with the pH held to within +/-0.003 during the reaction. The dissolution kinetics of DCPD and OCP has been investigated using CC method at 37^circ C over a wide range of experimental conditions. Both processes can be generally described by a combined volume and surface diffusion mechanism with varying degrees of volume resistance at different pH's and solution hydrodynamics. The decrease in the dissolution rate with the extent of

  12. Shape transition of endotaxial islands growth from kinetically constrained to equilibrium regimes

    SciTech Connect

    Li, Zhi-Peng; Tok, Engsoon; Foo, Yonglim

    2013-09-01

    Graphical abstract: - Highlights: • All Fe{sub 13}Ge{sub 8} islands will grow into Ge(0 0 1) substrate at temperatures from 350 to 675 °C. • Shape transition occurred from kinetically constrained to equilibrium regime. • All endotaxial islands can be clarified into two types. • The mechanisms of endotaxial growth and shape transition have been rationalized. - Abstract: A comprehensive study of Fe grown on Ge(0 0 1) substrates has been conducted at elevated temperatures, ranging from 350 to 675 °C. All iron germinide islands, with the same Fe{sub 13}Ge{sub 8} phase, grow into the Ge substrate with the same epitaxial relationship. Shape transition occurs from small square islands (low temperatures), to elongated orthogonal islands or orthogonal nanowires (intermediate temperatures), and then finally to large square orthogonal islands (high temperatures). According to both transmission electron microscopy (TEM) and atomic force microscopy (AFM) investigations, all islands can be defined as either type-I or type-II. Type-I islands usually form at kinetically constrained growth regimes, like truncated pyramids. Type-II islands usually appear at equilibrium growth regimes forming a dome-like shape. Based on a simple semi-quantitative model, type-II islands have a lower total energy per volume than type-I, which is considered as the dominant mechanism for this type of shape transition. Moreover, this study not only elucidates details of endotaxial growth in the Fe–Ge system, but also suggests the possibility of controlled fabrication of temperature-dependent nanostructures, especially in materials with dissimilar crystal structures.

  13. Biofilm growth kinetics of a monomethylamine producing Alphaproteobacteria strain isolated from an anaerobic reactor.

    PubMed

    Jopia, Paz; Ruiz-Tagle, Nathaly; Villagrán, Marcelo; Sossa, Katherine; Pantoja, Silvio; Rueda, Luis; Urrutia-Briones, Homero

    2010-02-01

    Industrial fishing effluents are characterized by high loads of protein and sulfate that stimulate the activity of proteolytic and sulfate reducing bacteria during anaerobic digestion. Their metabolic products (NH3 and H2S respectively) have a well-known detrimental effect on the activity of methanogens. Since methylamine is a carbon source used by methylaminotrophic methane producing archaea (mMPA) but not by sulfate reducing bacteria (SRB), enriched mMPA anaerobic biofilms have been developed on ceramics. We propose that methylated amines could be produced in the biofilm by using betaine, a known precursor of methylamine, as a carbon and energy source. We isolated an anaerobic betainotrophic methylaminogenic bacterial strain (bMB) from an anaerobic bioreactor, using betaine as the only carbon and energy source. This strain was identified by a standard biochemical test (API 20NE), cloning, and 16S rDNA sequencing. bMB biofilm structure and biofilm growth kinetic parameters were determined by means of scanning electron microscopy (SEM), and the Gompertz growth model, respectively. Monomethylamine production was determined by infrared spectroscopy and by high pressure liquid chromatography. The isolated bMB strain was determined as Stappia stellulata (Proteobacteria phylum). It was able to form biofilm on ceramics and its kinetic growth parameters resulted in: maximum biofilm bacterial count (A) of 6.25 x 10(8) UFC/cm(2) and maximum specific growth rate (mu(m)) of 0.0221/h. Production of monomethylamine was about 4.027 atogram/cell/day (at/cell/day) after 15 days of incubation in biofilms. This study confirms the adhesion capacity of this bMB strain on ceramic supports, assuring that monomethylamine production in biofilms could be enriched with mMPA that use monomethylamine. 2009 Elsevier Ltd. All rights reserved.

  14. Kinetic modeling of the SWNT growth by CO disproportionation on CoMo catalysts.

    PubMed

    Monzon, A; Lolli, G; Cosma, S; Mohamed, S B; Resasco, D E

    2008-11-01

    A kinetic model has been developed to describe the growth of single-walled carbon nanotubes (SWNT) in the CoMoCAT method, which is based on the disproportionation of CO on supported CoMo catalysts. The model attempts to capture mathematically the different stages involved in this method: (i) catalyst activation or in-situ creation of active sites, i.e., reduced Co clusters by transformation of CoMoOx precursor species, or oxidized sites; (ii) CO decomposition over active sites, which increases the surface fugacity of carbon until reaching a certain threshold; (iii) nucleation of ordered forms of carbon; (iv) C diffusion (both across the surface and into the metal particle); (v) SWNT growth; (vi) termination, by either deactivation of the catalyst active sites or by increase in the carbon concentration at the metal/SWNT interface, approaching that of the metal/gas interface and eliminating the driving force for diffusion. Previous investigations have only explained the growth termination by the former. Here, we emphasize the possible contribution of the later and propose a novel "hindrance factor" to quantify the effect of nanotube interaction with its surroundings on the growth termination. To test the kinetic model and obtain typical values of the physical parameters, experiments have been conducted on a CoMo/SiO2 catalyst in a laboratory flow reactor, in which the rate of carbon deposition was continuously evaluated by the direct measurement of the CO2 evolution as a function of time. The experimental data are fitted very well with model.

  15. Investigation of equilibration and growth of stepped surfaces by Kinetic Monte Carlo in one dimension

    NASA Astrophysics Data System (ADS)

    Türkan, A.; Esen, M.; Tüzemen, A. Türker; Özdemir, M.

    2017-02-01

    In this study, the equilibration and in the case of a particle flux to the surface, the growth of a one dimensional semi-conductor surface of "V" initial shape is investigated by kinetic Monte Carlo method. The initial surface is assumed to consist of atomic height steps separated by terraces. In Monte Carlo simulations, the following processes are considered: the diffusion of free particles on the surface, the attachment/detachment of particles to/from step edges from/to a terrace in front of a step or to a terrace above the step. In the simulations the Ehrlich-Schwoebel barrier is also taken into account. The equilibration of "V" initial shape at various temperatures is investigated. Moreover, the effect of particle bonding energy on the surface profile and on the evolution of the surface is also investigated. In the case of a particle flux to the surface, the surface profile and its growth kinetics are investigated at various temperatures and flux values.

  16. Macrotransport-solidification kinetics modeling of equiaxed dendritic growth. Part 1: Model development and discussion

    SciTech Connect

    Nastac, L.; Stefanescu, D.M.

    1996-12-01

    An analytical model that describes solidification of equiaxed dendrites has been developed for use in solidification kinetics-macrotransport modeling. It relaxes some of the assumptions made in previous models, such as the Dustin-Kurz, Rappaz-Thevoz, and Kanetkar-Stefanescu models. It is assumed that nuclei grow as unperturbed spheres until the radius of the sphere becomes larger than the minimum radius of instability. Then, growth of the dendrites is related to morphological instability and is calculated as a function of melt undercooling around the dendrite tips, which is controlled by the bulk temperature and the intrinsic volume average concentration of the liquid phase. When the general morphology of equiaxed dendrites is considered, the evolution of the fraction of solid is related to the interdendritic branching and dynamic coarsening (through the evolution of the specific interfacial areas) and to the topology and movement of the dendrite envelope (through the tip growth velocity and dendrite shape factor). The particular case of this model is the model for globulitic an overall solute and thermal balance around a growing equiaxed dendrite grain within a spherical closed system. Overall solute balance in the integral form is obtained by a complete analytical solution of the diffusion field in both liquid and solid phases. The bulk temperature is obtained from the solution of the macrotransport-solidification kinetics problem.

  17. Kinetic Model of Photoautotrophic Growth of Chlorella sp. Microalga, Isolated from the Setúbal Lagoon.

    PubMed

    Heinrich, Josué Miguel; Irazoqui, Horacio Antonio

    2015-01-01

    In this work, a kinetic expression relating light availability in the culture medium with the rate of microalgal growth is obtained. This expression, which is valid for low illumination conditions, was derived from the reactions that take part in the light-dependent stage of photosynthesis. The kinetic expression obtained is a function of the biomass concentration in the culture, as well as of the local volumetric rate of absorption of photons, and only includes two adjustable parameters. To determine the value of these parameters and to test the validity of the hypotheses made, autotrophic cultures of the Chlorella sp. strain were carried out in a modified BBM medium at three CO2 concentrations in the gas stream, namely 0.034%, 0.34% and 3.4%. Moreover, the local volumetric rate of photon absorption was predicted based on a physical model of the interaction of the radiant energy with the suspended biomass, together with a Monte Carlo simulation algorithm. The proposed intrinsic expression of the biomass growth rate, together with the Monte Carlo radiation field simulator, are key to scale up photobioreactors when operating under low irradiation conditions, independently of the configuration of the reactor and of its light source. © 2015 The American Society of Photobiology.

  18. Controlled growth and kinetics of porous hydroxyapatite spheres by a template-directed method

    NASA Astrophysics Data System (ADS)

    He, Qian Jun; Huang, Zhi Liang

    2007-03-01

    Porous hydroxyapatite (HA) spheres with high purity of phase and well-controlled pore size were grown by a template-directed method. We studied for the initial concentration of Ca-P how to control the chemical component of the products, and for the concentration of template how to control the aperture and the morphology of porous HA spheres. The experimental results indicated that the lower concentration of Ca-P was prone to pure HA phase and the aperture decreased gradually with the increase of the concentration of template. Correspondingly, the crystallization thermodynamics and template-directed growth kinetics were discussed in details. The solubility isotherms of HA and dicalcium phosphate (DCPD) were calculated based on classical crystallization theories of thermodynamics. The results suggested that there was a critical concentration of P=0.048 M in the case of Ca:P=5:3 and thus DCPD could be avoided only when P⩽0.048 M in this given reaction system. Kinetic analysis of HA crystal growth revealed that the template depressed the interfacial potential energy E, then enhanced the roughness on the surface of crystal nucleus and directed HA crystal to selectively grow along the [0 0 0 1] direction, and consequently governed the aperture of porous HA spheres. The experimental results were in agreement with the theoretical analysis.

  19. Growth kinetics of candida biofilm on medical polymers: a long-term in vitro study.

    PubMed

    Leonhard, Matthias; Tobudic, Selma; Moser, Doris; Zatorska, Beata; Bigenzahn, Wolfgang; Schneider-Stickler, Berit

    2013-03-01

    Recent in vitro models simulating biofilm formation on medical polymers are restricted to only short-term observation periods of 2 hours to 12 days. The goal of this study was to develop an in vitro model to generate a long-term polymicrobial biofilm with Candida albicans (C albicans) and Streptococcus salivarius (S salivarius) on thermoplastic medical grade silicone (TPS) and polyurethane (TPU) and continuous documentation of growth kinetics. Test platelets of TPS and TPU were incubated in well plates in RPMI agar at 37°C. Both microbial specimen were isolated from explanted voice prostheses and added every second day for 28 days. Afterward, only the nutrition solution has been changed regularly. Biofilm kinetics were monitored using a specially designed image analysis software to calculate the percentual surface covering of each platelet. Biofilm architecture was investigated by scanning electron microscopy (SEM). Microbial infiltration was examined by crystal violet staining and thin section microscopy. On both materials tested, a cover of living candida biofilm could be generated over 140 days. Colonization was permanent with at least 10% surface coverage. Initially, both materials showed coverage of up to 80% followed by biofilm detachment, which could be reduced by adding planktonic microbes. SEM confirmed three-dimensional biofilm architecture with dimorphic candida growth. Microbial material infiltration of nonhypheal types was proved in 2 TPU platelets, but not in TPS. The in vitro model presented in this study mimics in vivo events of biofilm formation on medical polymers with continuous monitoring of living biofilm kinetics. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.

  20. Global Genome Response of Escherichia coli O157∶H7 Sakai during Dynamic Changes in Growth Kinetics Induced by an Abrupt Downshift in Water Activity

    PubMed Central

    Kocharunchitt, Chawalit; King, Thea; Gobius, Kari; Bowman, John P.; Ross, Tom

    2014-01-01

    The present study was undertaken to investigate growth kinetics and time-dependent change in global expression of Escherichia coli O157∶H7 Sakai upon an abrupt downshift in water activity (aw). Based on viable count data, shifting E. coli from aw 0.993 to aw 0.985 or less caused an apparent loss, then recovery, of culturability. Exponential growth then resumed at a rate characteristic for the aw imposed. To understand the responses of this pathogen to abrupt osmotic stress, we employed an integrated genomic and proteomic approach to characterize its cellular response during exposure to a rapid downshift but still within the growth range from aw 0.993 to aw 0.967. Of particular interest, genes and proteins with cell envelope-related functions were induced during the initial loss and subsequent recovery of culturability. This implies that cells undergo remodeling of their envelope composition, enabling them to adapt to osmotic stress. Growth at low aw, however, involved up-regulating additional genes and proteins, which are involved in the biosynthesis of specific amino acids, and carbohydrate catabolism and energy generation. This suggests their important role in facilitating growth under such stress. Finally, we highlighted the ability of E. coli to activate multiple stress responses by transiently inducing the RpoE and RpoH regulons to control protein misfolding, while simultaneously activating the master stress regulator RpoS to mediate long-term adaptation to hyperosmolality. This investigation extends our understanding of the potential mechanisms used by pathogenic E. coli to adapt, survive and grow under osmotic stress, which could potentially be exploited to aid the selection and/or development of novel strategies to inactivate this pathogen. PMID:24594867

  1. Effects of Kinetic Roughening and Liquid-Liquid Phase Transition on Lysozyme Crystal Growth Velocities

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar; Konnert, John; Forsythe, Elizabeth L.; Pusey, Marc L.

    2004-01-01

    We measured the growth velocities of the (110) face of tetragonal lysozyme, V (centimeters per second), at four different concentrations, c (milligrams per milliliter), as the solution temperature, T (Centigrade), was reduced. For a broad range of T dependent on c, we find that the growth velocities increased as the solution temperature was reduced. The initial increase in V is well characterized by the 2D nucleation model for crystal growth, yielding the magnitude of an effective barrier for growth, gamma(sub s) = 1.2 plus or minus 0.1 x 10(exp -13) erg/molecule. Below certain temperatures, T(sub cr), dependent on c, however, a kinetic roughening hypothesis that considers the continuous addition of molecules anywhere on the crystal surface better describes the observed growth velocities. The application of the continuous growth model, up to the solution cloud-point temperatures, T(sub cl), enabled the determinations of the crossover concentration, c(sub r), from estimated values of T(sub cr). For all conditions presented, we find that the crossover from growth by 2D nucleation to continuous addition occurs at a supersaturation, sigma (sub c), = 2.0 plus or minus 0.1. Moreover, we find the energy barrier for the continuous addition, E(sub c), within the temperature range T(sub cl) less than T less than T less than T (sub cr), to be 6 plus or minus 1 x 10(exp -13) erg/molecule. Further reduction of T below approximately 2-3 C of T(sub cl), also revealed a rapid slowing of crystal growth velocities. From quasi-elastic light scattering investigations, we find that the rapid diminishment of crystal growth velocities can be accounted for by the phase behavior of lysozyme solutions. Namely, we find the reversible formation of dense fluid proto-droplets comprised of lysozyme molecules to occur below approximately 0.3 C of T(sub cl). Hence, the rapid slowing of growth velocities may occur as a result of the sudden depletion of "mobile" molecules within crystal growth

  2. Effects of Kinetic Roughening and Liquid-Liquid Phase Transition on Lysozyme Crystal Growth Velocities

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar; Konnert, John; Forsythe, Elizabeth L.; Pusey, Marc L.

    2004-01-01

    We measured the growth velocities of the (110) face of tetragonal lysozyme, V (centimeters per second), at four different concentrations, c (milligrams per milliliter), as the solution temperature, T (Centigrade), was reduced. For a broad range of T dependent on c, we find that the growth velocities increased as the solution temperature was reduced. The initial increase in V is well characterized by the 2D nucleation model for crystal growth, yielding the magnitude of an effective barrier for growth, gamma(sub s) = 1.2 plus or minus 0.1 x 10(exp -13) erg/molecule. Below certain temperatures, T(sub cr), dependent on c, however, a kinetic roughening hypothesis that considers the continuous addition of molecules anywhere on the crystal surface better describes the observed growth velocities. The application of the continuous growth model, up to the solution cloud-point temperatures, T(sub cl), enabled the determinations of the crossover concentration, c(sub r), from estimated values of T(sub cr). For all conditions presented, we find that the crossover from growth by 2D nucleation to continuous addition occurs at a supersaturation, sigma (sub c), = 2.0 plus or minus 0.1. Moreover, we find the energy barrier for the continuous addition, E(sub c), within the temperature range T(sub cl) less than T less than T less than T (sub cr), to be 6 plus or minus 1 x 10(exp -13) erg/molecule. Further reduction of T below approximately 2-3 C of T(sub cl), also revealed a rapid slowing of crystal growth velocities. From quasi-elastic light scattering investigations, we find that the rapid diminishment of crystal growth velocities can be accounted for by the phase behavior of lysozyme solutions. Namely, we find the reversible formation of dense fluid proto-droplets comprised of lysozyme molecules to occur below approximately 0.3 C of T(sub cl). Hence, the rapid slowing of growth velocities may occur as a result of the sudden depletion of "mobile" molecules within crystal growth

  3. Three-dimensional kinetic Monte Carlo simulations of cubic transition metal nitride thin film growth

    NASA Astrophysics Data System (ADS)

    Nita, F.; Mastail, C.; Abadias, G.

    2016-02-01

    A three-dimensional kinetic Monte Carlo (KMC) model has been developed and used to simulate the microstructure and growth morphology of cubic transition metal nitride (TMN) thin films deposited by reactive magnetron sputtering. Results are presented for the case of stoichiometric TiN, chosen as a representative TMN prototype. The model is based on a NaCl-type rigid lattice and includes deposition and diffusion events for both N and Ti species. It is capable of reproducing voids and overhangs, as well as surface faceting. Simulations were carried out assuming a uniform flux of incoming particles approaching the surface at normal incidence. The ballistic deposition model is parametrized with an interaction parameter r0 that mimics the capture distance at which incoming particles may stick on the surface, equivalently to a surface trapping mechanism. Two diffusion models are implemented, based on the different ways to compute the site-dependent activation energy for hopping atoms. The influence of temperature (300-500 K), deposition flux (0.1-100 monolayers/s), and interaction parameter r0 (1.5-6.0 Å) on the obtained growth morphology are presented. Microstructures ranging from highly porous, [001]-oriented straight columns with smooth top surface to rough columns emerging with different crystallographic facets are reproduced, depending on kinetic restrictions, deposited energy (seemingly captured by r0), and shadowing effect. The development of facets is a direct consequence of the diffusion model which includes an intrinsic (minimum energy-based) diffusion anisotropy, although no crystallographic diffusion anisotropy was explicitly taken into account at this stage. The time-dependent morphological evolution is analyzed quantitatively to extract the growth exponent β and roughness exponent α , as indicators of kinetic roughening behavior. For dense TiN films, values of α ≈0.7 and β =0.24 are obtained in good agreement with existing experimental data. At this

  4. Revealing the surface and bulk regimes of isothermal graphene growth on Ni with in situ kinetic measurements and modeling

    SciTech Connect

    Puretzky, Alexander A; Merkulov, Igor A; Rouleau, Christopher M; Eres, Gyula; Geohegan, David B

    2014-01-01

    In situ optical diagnostics are used to reveal the isothermal nucleation and growth mechanisms of graphene on Ni across a wide temperature range (560 C < T < 840 C) by chemical vapor deposition from single, sub-second pulses of acetylene. An abrupt, two-orders of magnitude change in growth times (~ 100s to 1s) is revealed at T = 680 C. Below and above this temperature, similar sigmoidal kinetics are measured and attributed to autocatalytic growth reactions but by two different mechanisms, surface assembly and dissolution/precipitation, respectively. These data are used to develop a simple and general kinetic model for graphene growth that includes the nucleation phase and includes the effects of carbon solubility in metals, describes delayed nucleation, and allows the interpretation of the competition between surface and bulk growth modes. The sharp transition in growth kinetics at T = 680 C is explained by a change in defect site density required for nucleation due to a transition in the carbon-induced mobility of the Ni surface. The easily-implemented optical reflectivity diagnostics and the simple kinetic model described here allow a pathway to optimize the growth of graphene on metals with arbitrary carbon solubility.

  5. Combined Experimental and Theoretical Approach to the Kinetics of Magnetite Crystal Growth from Primary Particles

    PubMed Central

    2017-01-01

    It is now recognized that nucleation and growth of crystals can occur not only by the addition of solvated ions but also by accretion of nanoparticles, in a process called nonclassical crystallization. The theoretical framework of such processes has only started to be described, partly due to the lack of kinetic or thermodynamic data. Here, we study the growth of magnetite nanoparticles from primary particles—nanometer-sized amorphous iron-rich precursors—in aqueous solution at different temperatures. We propose a theoretical framework to describe the growth of the nanoparticles and model both a diffusion-limited and a reaction-limited pathway to determine which of these best describes the rate-limiting step of the process. We show that, based on the measured iron concentration and the related calculated concentration of primary particles at the steady state, magnetite growth is likely a reaction-limited process, and within the framework of our model, we propose a phase diagram to summarize the observations. PMID:28225626

  6. Kinetic modelling of epitaxial film growth with up- and downward step barriers

    NASA Astrophysics Data System (ADS)

    Leal, F. F.; Oliveira, T. J.; Ferreira, S. C.

    2011-09-01

    The formation of three-dimensional structures during the epitaxial growth of films is associated with the reflection of diffusing particles in descending terraces due to the presence of the so-called Ehrlich-Schwoebel (ES) barrier. We generalize this concept in a solid-on-solid growth model, in which a barrier dependent on the particle coordination (number of lateral bonds) exists whenever the particle performs an interlayer diffusion. The rules do not distinguish explicitly if the particle is executing a descending or an ascending interlayer diffusion. We show that the usual model, with a step barrier in descending steps, produces spurious, columnar and highly unstable morphologies if the growth temperature is varied in a usual range of mound formation experiments. Our model generates well-behaved mounded morphologies for the same ES barriers that produce anomalous morphologies in the standard model. Moreover, mounds are also obtained when the step barrier has an equal value for all particles independently of whether they are free or bonded. Kinetic roughening is observed at long times, when the surface roughness w and the characteristic length ξ scale as w ~ tβ and ξ ~ tζ, where β≈0.31 and ζ≈0.22, independently of the growth temperature.

  7. Process development for hydrogen production with Chlamydomonas reinhardtii based on growth and product formation kinetics.

    PubMed

    Lehr, Florian; Morweiser, Michael; Rosello Sastre, Rosa; Kruse, Olaf; Posten, Clemens

    2012-11-30

    Certain strains of microalgae are long known to produce hydrogen under anaerobic conditions. In Chlamydomonas reinhardtii the oxygen-sensitive hydrogenase enzyme recombines electrons from the chloroplast electron transport chain with protons to form molecular hydrogen directly inside the chloroplast. A sustained hydrogen production can be obtained under low sulfur conditions in C. reinhardtii, reducing the net oxygen evolution by reducing the photosystem II activity and thereby overcoming the inhibition of the hydrogenases. The development of specially adapted hydrogen production strains led to higher yields and optimized biological process preconditions. So far sustainable hydrogen production required a complete exchange of the growth medium to establish sulfur-deprived conditions after biomass growth. In this work we demonstrate the transition from the biomass growth phase to the hydrogen production phase in a single batch culture only by exact dosage of sulfur. This eliminates the elaborate and energy intensive solid-liquid separation step and establishes a process strategy to proceed further versus large scale production. This strategy has been applied to determine light dependent biomass growth and hydrogen production kinetics to assess the potential of H₂ production with C. reinhardtii as a basis for scale up and further process optimization.

  8. Cell growth kinetics of Chlorella sorokiniana and nutritional values of its biomass.

    PubMed

    Kumar, Kanhaiya; Dasgupta, Chitralekha Nag; Das, Debabrata

    2014-09-01

    The present study investigates the effects of different physico-chemical parameters for the growth of Chlorella sorokiniana and subsequently determination of nutritional values of its biomass. Most suitable temperature, light intensity, pH, and acetic acid concentration were 30°C, 100 μmol m(-2)s(-1), pH 7.5, and 34.8mM, respectively for the growth of this microorganism. Arrhenius growth activation energy, Ea was calculated as 7.08 kJ mol(-1). Monod kinetics constants: maximum specific growth rate (μ max) and substrate (acetic acid) affinity coefficient (Ks) were determined as 0.1 ± 0.01 h(-1) and 76 ± 8 mg L(-1), respectively. Stoichiometric analysis revealed the capture of 1.83 g CO2 and release of 1.9 g O2 for 1g algal biomass synthesis. Algal biomass of C. sorokiniana was found rich in protein and several important minerals such as Mg, Ca, and Fe. Astaxanthin and β-carotene were extracted and quantified using high performance liquid chromatography.

  9. Test Exponential Pile

    NASA Astrophysics Data System (ADS)

    Fermi, Enrico

    The Patent contains an extremely detailed description of an atomic pile employing natural uranium as fissile material and graphite as moderator. It starts with the discussion of the theory of the intervening phenomena, in particular the evaluation of the reproduction or multiplication factor, K, that is the ratio of the number of fast neutrons produced in one generation by the fissions to the original number of fast neutrons, in a system of infinite size. The possibility of having a self-maintaining chain reaction in a system of finite size depends both on the facts that K is greater than unity and the overall size of the system is sufficiently large to minimize the percentage of neutrons escaping from the system. After the description of a possible realization of such a pile (with many detailed drawings), the various kinds of neutron losses in a pile are depicted. Particularly relevant is the reported "invention" of the exponential experiment: since theoretical calculations can determine whether or not a chain reaction will occur in a give system, but can be invalidated by uncertainties in the parameters of the problem, an experimental test of the pile is proposed, aimed at ascertaining if the pile under construction would be divergent (i.e. with a neutron multiplication factor K greater than 1) by making measurements on a smaller pile. The idea is to measure, by a detector containing an indium foil, the exponential decrease of the neutron density along the length of a column of uranium-graphite lattice, where a neutron source is placed near its base. Such an exponential decrease is greater or less than that expected due to leakage, according to whether the K factor is less or greater than 1, so that this experiment is able to test the criticality of the pile, its accuracy increasing with the size of the column. In order to perform this measure a mathematical description of the effect of neutron production, diffusion, and absorption on the neutron density in the

  10. Quantifying Variability in Growth and Thermal Inactivation Kinetics of Lactobacillus plantarum

    PubMed Central

    Aryani, D. C.; den Besten, H. M. W.

    2016-01-01

    experimental variability with respect to the growth and thermal inactivation kinetics of Lactobacillus plantarum and to quantify the variability in thermal resistance attributed to growth history. The quantitative knowledge obtained on experimental, reproduction, and strain variabilities can be used to improve experimental designs and to adequately select strains for challenge growth and inactivation tests. Moreover, the integration of strain variability in prediction of microbial growth and inactivation kinetics will result in more realistic predictions of L. plantarum dynamics along the food production chain. PMID:27260362

  11. Kinetics of octacalcium phosphate crystal growth in the presence of organic acids

    NASA Astrophysics Data System (ADS)

    Grossl, Paul R.; Inskeep, William P.

    1992-05-01

    Octacalcium phosphate (OCP) is an important P solid phase in geochemical and biological systems and has been recognized as a precursor phase to the formation of thermodynamically more stable hydroxyapatite (HAP). Metastability of OCP with respect to HAP may be explained by precipitation kinetics and the influence of dissolved organic C (DOC) on crystal growth. Octacalcium phosphate precipitation was measured at pH 6.0 and 25°C in the absence and presence of organic acids commonly found in natural waters and soil solutions using a seeded crystal growth constant composition method. Rate constants for OCP precipitation were calculated from the following expression: Rate = kS(IAP 1/8 - K sp1/8) n, where k is the rate constant (L 7 mol -6 m -2 s -1), S is OCP seed crystal surface area (m 2 L -1), IAP = ion activity product, Ksp = OCP solubility constant (mol 8 L -8), and n is the rate reaction order. The rate constant for OCP precipitation in the absence of organic acids was 10 34.93·L 7 mol -6 m -2 s -1. Humic, fulvic, tannic, and citric acids were added to OCP crystal growth experiments at total soluble (C TS) C levels ranging from 20 μM to 2 mM. Inhibition of OCP precipitation was nearly complete (99% ) in the presence of 1.0 mM C TS as humic acid. At the same level of C TS, OCP precipitation was inhibited by 97,88, and 68% in the presence of fulvic, citric, and tannic acids, respectively. Inhibition of precipitation is caused by adsorption of organic acids onto OCP surfaces blocking active crystal growth sites. The ability of organic acids to inhibit OCP crystal growth is related to their hydrophobicity, functional group content, size, geometry, and orientation on the crystal surface. Precipitation kinetics and crystal growth inhibition by organic acids may explain the metastability of dicalcium phosphate dihydrate (DCPD) and OCP with respect to thermodynamically more stable HAP often observed in geochemical environments.

  12. Suppression in droplet growth kinetics by the addition of organics to sulfate particles

    NASA Astrophysics Data System (ADS)

    Wong, Jenny P. S.; Liggio, John; Li, Shao-Meng; Nenes, Athanasios; Abbatt, Jonathan P. D.

    2014-11-01

    Aerosol-cloud interactions are affected by the rate at which water vapor condenses onto particles during cloud droplet growth. Changes in droplet growth rates can impact cloud droplet number and size distribution. The current study investigated droplet growth kinetics of acidic and neutral sulfate particles which contained various amounts and types of organic compounds, from model compounds (carbonyls) to complex mixtures (α-pinene secondary organic aerosol and diesel engine exhaust). In most cases, the formed droplet size distributions were shifted to smaller sizes relative to control experiments (pure sulfate particles), due to suppression in droplet growth rates in the cloud condensation nuclei counter. The shift to smaller droplets correlated with increasing amounts of organic material, with the largest effect observed for acidic seed particles at low relative humidity. For all organics incorporated onto acidic particles, formation of high molecular weight compounds was observed, probably by acid-catalyzed Aldol condensation reactions in the case of carbonyls. To test the reversibility of this process, carbonyl experiments were conducted with acidic particles exposed to higher relative humidity. High molecular weight compounds were not measured in this case and no shift in droplet sizes was observed, suggesting that high molecular weight compounds are the species affecting the rate of water uptake. While these results provide laboratory evidence that organic compounds can slow droplet growth rates, the modeled mass accommodation coefficient of water on these particles (α > 0.1) indicates that this effect is unlikely to significantly affect cloud properties, consistent with infrequent field observations of slower droplet growth rates.

  13. Inhibition of the sodium-translocating NADH-ubiquinone oxidoreductase [Na+-NQR] decreases cholera toxin production in Vibrio cholerae O1 at the late exponential growth phase

    PubMed Central

    Minato, Yusuke; Fassio, Sara R.; Reddekopp, Rylan L.; Häse, Claudia C.

    2014-01-01

    Two virulence factors produced by Vibrio cholerae, cholera toxin (CT) and toxin-corregulated pilus (TCP), are indispensable for cholera infection. ToxT is the central regulatory protein involved in activation of CT and TCP expression. We previously reported that lack of a respiration-linked sodium-translocating NADH–ubiquinone oxidoreductase (Na+-NQR) significantly increases toxT transcription. In this study, we further characterized this link and found that Na+-NQR affects toxT expression only at the early-log growth phase, whereas lack of Na+-NQR decreases CT production after the mid-log growth phase. Such decreased CT production was independent of toxT and ctxB transcription. Supplementing a respiratory substrate, L-lactate, into the growth media restored CT production in the nqrA-F mutant, suggesting that decreased CT production in the Na+-NQR mutant is dependent on electron transport chain (ETC) activity. This notion was supported by the observations that two chemical inhibitors, a Na+-NQR specific inhibitor 2-n-Heptyl-4-hydroxyquinoline N-oxide (HQNO) and a succinate dehydrogenase (SDH) inhibitor, thenoyltrifluoroacetone (TTFA), strongly inhibited CT production in both classical and El Tor biotype strains of V. cholerae. Accordingly, we propose the main respiratory enzyme of V. cholerae, as a potential drug target to treat cholera because human mitochondria do not contain Na+-NQR orthologs. PMID:24361395

  14. Inhibition of the sodium-translocating NADH-ubiquinone oxidoreductase [Na+-NQR] decreases cholera toxin production in Vibrio cholerae O1 at the late exponential growth phase.

    PubMed

    Minato, Yusuke; Fassio, Sara R; Reddekopp, Rylan L; Häse, Claudia C

    2014-01-01

    Two virulence factors produced by Vibrio cholerae, cholera toxin (CT) and toxin-corregulated pilus (TCP), are indispensable for cholera infection. ToxT is the central regulatory protein involved in activation of CT and TCP expression. We previously reported that lack of a respiration-linked sodium-translocating NADH-ubiquinone oxidoreductase (Na(+)-NQR) significantly increases toxT transcription. In this study, we further characterized this link and found that Na(+)-NQR affects toxT expression only at the early-log growth phase, whereas lack of Na(+)-NQR decreases CT production after the mid-log growth phase. Such decreased CT production was independent of toxT and ctxB transcription. Supplementing a respiratory substrate, l-lactate, into the growth media restored CT production in the nqrA-F mutant, suggesting that decreased CT production in the Na(+)-NQR mutant is dependent on electron transport chain (ETC) activity. This notion was supported by the observations that two chemical inhibitors, a Na(+)-NQR specific inhibitor 2-n-Heptyl-4-hydroxyquinoline N-oxide (HQNO) and a succinate dehydrogenase (SDH) inhibitor, thenoyltrifluoroacetone (TTFA), strongly inhibited CT production in both classical and El Tor biotype strains of V. cholerae. Accordingly, we propose the main respiratory enzyme of V. cholerae, as a potential drug target to treat cholera because human mitochondria do not contain Na(+)-NQR orthologs.

  15. Troilite formation kinetics and growth mechanism in the solar nebula. [Abstract only

    NASA Technical Reports Server (NTRS)

    Lauretta, D. S.; Fegley, B., Jr.

    1994-01-01

    Troilite formation via the reaction Fe(s) + H2S(g) + H2(g) is the major mechanism for S retention in grains in the solar nebula. Thermodynamic calculations predict that troilite condenses from a solar composition gas. We present experimental results on the kinetics and growth of troilite crystals on Fe metal at temperature (450-650 C) and composition (50-1000 ppm H2S in H2) conditions similar to those in the solar nebula. The fraction of Fe reacted (based on gravimetric data) is plotted at 450, 505, 575, and 650 C. The thickness change of unreacted iron (measured by optical microscopy) is plotted at 575 and 650 C vs. time. the weight change per unit area varies as the square root of time at the lower temperatures and varies linearly with time at the highest temperature. The growth behavior along the lower isotherms is due to diffusion. This behavior suggests sulfide diffusion to the metal-sulfide interface and suggests Fe(2+) diffusion to the sulfide-gas interface. The reaction along the highest isotherm appears to be interface controlled. The formation of troilite crystals is a rapid process forming measurable layers in a few hours. The crystalgrowth is complicated. Initially there are intergrowths of troilite into the pure Fe metal. As the reaction progresses two distinct layers of troilite crystals form. One is in contact with the Fe metal and consists of small randomly oriented crystals with pore space between them. The outermost layer contains large crystals that are all oriented in the same direction. The intergrowth layer is much smaller at 650 C than at 575 C. This suggest that FeS nucleation is inhibited at the higher temperature, accounting for the initially slower reaction rate. Once nucleated, the reaction kinetics are apparently controlled by the growth of the crystals at the interface.

  16. Prognostic markers and tumour growth kinetics in melanoma patients progressing on vemurafenib.

    PubMed

    Seifert, Heike; Fisher, Rosalie; Martin-Liberal, Juan; Edmonds, Kim; Hughes, Peta; Khabra, Komel; Gore, Martin; Larkin, James

    2016-04-01

    The BRAF inhibitor vemurafenib is an effective drug in patients with BRAF mutant metastatic melanoma, but resistance occurs after a median of 6 months. The anti-CTLA4-antibody, ipilimumab, is a standard first-line and second-line treatment option in Europe, with a median time to response of 2-3 months, but some patients show rapid clinical deterioration before that. The aim of this analysis was to identify prognostic markers for survival after failure of vemurafenib treatment to identify patients who have a sufficient life expectancy to respond to new immunotherapy treatments. We retrospectively analysed 101 consecutive unselected patients treated with vemurafenib for metastatic melanoma at a single institution. The association between clinical parameters and death within 3 months after cessation of vemurafenib (n=69) was assessed by binary logistic and Cox regression. Of the patients, 45% died within 3 months of progression on vemurafenib. Elevated baseline serum lactate dehydrogenase, absence of normalization of serum lactate dehydrogenase on vemurafenib therapy, performance status of at least 2 at progression and time from primary tumour to metastatic disease less than 5 years were identified as poor prognostic markers. In an exploratory tumour growth kinetics analysis (n=16), we found that following cessation of vemurafenib, approximately a third each showed a stable, decelerated or accelerated rate of tumour growth. Patients with these poor prognostic markers are unlikely to have sufficient life expectancy to complete ipilimumab treatment after failure with vemurafenib. Consideration needs to be given to the elective use of immunotherapy before patients become resistant to vemurafenib. This requires prospective randomized evaluation. Our tumour growth kinetics analysis requires confirmation; however, it may suggest that intermittent vemurafenib treatment should be investigated in clinical trials.

  17. OPINION: Safe exponential manufacturing

    NASA Astrophysics Data System (ADS)

    Phoenix, Chris; Drexler, Eric

    2004-08-01

    In 1959, Richard Feynman pointed out that nanometre-scale machines could be built and operated, and that the precision inherent in molecular construction would make it easy to build multiple identical copies. This raised the possibility of exponential manufacturing, in which production systems could rapidly and cheaply increase their productive capacity, which in turn suggested the possibility of destructive runaway self-replication. Early proposals for artificial nanomachinery focused on small self-replicating machines, discussing their potential productivity and their potential destructiveness if abused. In the light of controversy regarding scenarios based on runaway replication (so-called 'grey goo'), a review of current thinking regarding nanotechnology-based manufacturing is in order. Nanotechnology-based fabrication can be thoroughly non-biological and inherently safe: such systems need have no ability to move about, use natural resources, or undergo incremental mutation. Moreover, self-replication is unnecessary: the development and use of highly productive systems of nanomachinery (nanofactories) need not involve the construction of autonomous self-replicating nanomachines. Accordingly, the construction of anything resembling a dangerous self-replicating nanomachine can and should be prohibited. Although advanced nanotechnologies could (with great difficulty and little incentive) be used to build such devices, other concerns present greater problems. Since weapon systems will be both easier to build and more likely to draw investment, the potential for dangerous systems is best considered in the context of military competition and arms control.

  18. The Influence of Kinetic Growth Factors on the Clumped Isotope Composition of Calcite

    NASA Astrophysics Data System (ADS)

    Hunt, J. D.; Watkins, J. M.; Tripati, A.; Ryerson, F. J.; DePaolo, D. J.

    2014-12-01

    Clumped isotope paleothermometry is based on the association of 13C and 18O within carbonate minerals. Although the influence of temperature on equilibrium 13C-18O bond ordering has been studied, recent oxygen isotope studies of inorganic calcite demonstrate that calcite grown in laboratory experiments and in many natural settings does not form in equilibrium with water. It is therefore likely that the carbon and clumped isotope composition of these calcite crystals are not representative of true thermodynamic equilibrium. To isolate kinetic clumped isotope effects that arise at the mineral-solution interface, clumped isotopic equilibrium of DIC species must be maintained. This can be accomplished by dissolving the enzyme carbonic anhydrase (CA) into the solution, thereby reducing the time required for isotopic equilibration of DIC species by approximately two orders of magnitude between pH 7.7 and 9.3. We conduct calcite growth experiments aimed specifically at measuring the pH-dependence of kinetic clumped isotope effects during non-equilibrium precipitation of calcite. We precipitated calcite from aqueous solution at a constant pH and controlled supersaturation over the pH range 7.7-9.3 in the presence of CA. For each experiment, a gas mixture of N2 and CO2 is bubbled through a beaker of solution without seed crystals. As CO2 from the gas dissolves into solution, calcite crystals grow on the beaker walls. The pH of the solution is maintained by use of an autotitrator with NaOH as the titrant. We control the temperature, pH, the pCO2 of the gas inflow, and the gas inflow rate, and monitor the total alkalinity, the pCO2 of the gas outflow, and the amount of NaOH added. A constant crystal growth rate of ~1.6 mmol/m2/hr is maintained over all experiments. Results from these experiments are compared to predictions from a recently-developed isotopic ion-by-ion growth model of calcite. The model describes the rate, temperature and pH dependence of oxygen isotope uptake

  19. Growth rate for blackhole instabilities

    NASA Astrophysics Data System (ADS)

    Prabhu, Kartik; Wald, Robert

    2015-04-01

    Hollands and Wald showed that dynamic stability of stationary axisymmetric black holes is equivalent to positivity of canonical energy on a space of linearised axisymmetric perturbations satisfying certain boundary and gauge conditions. Using a reflection isometry of the background, we split the energy into kinetic and potential parts. We show that the kinetic energy is positive. In the case that potential energy is negative, we show existence of exponentially growing perturbations and further obtain a variational formula for the growth rate.

  20. Notes on Interface Growth Kinetics 50 Years after Burton, Cabrera and Frank

    NASA Technical Reports Server (NTRS)

    Chernov, A. A.

    2004-01-01

    This overview is devoted to some unresolved basic problems in crystal growth kinetics. The density wave approach to propagation of a spatially diffuse interface between a growing crystal and its simple (e.g., metallic) melt is discussed is Section 2. This approach allows for the calculation of kinetic coefficients and is an alternative to the localized interface concept in which each atom belongs to either a solid or a liquid. Sections 3 and 4 deals mainly with layer growth from solution. Mutual retardation of the growth steps via their bulk and d a c e diffusion fields is the major subject. The influence of solution flow on step bunching (Section 4) suggests the essential influence of bulk diffusion on the surface morphology. The flow within the solution boundary layer enhances step-step interaction, influences the step bunching process and the resulting step pattern morphology on the growing surface. Recent experiments on the rates at which strongly polygonized steps on protein and small molecule crystals propagate during growth from solution are analyzed in Section 5 . We have shown that the step segments may be "singular" and that "one-dimensional nucleation" may be the rate limiting stage for the segments that are shorter or comparable in length to the thermodynamically equilibrium interlink distance. In this case, the reciprocal dependence of the segment propagation rate on the segment length that follow from the Gibbs-Thompson law, should be replaced by an abrupt switch from zero to a finite constant velocity. Until recently, the Kossel crystal remained the only model used in crystal growth theory. In such Kossel Gibbs-Thomson law, should be replaced by an abrupt switch &om zero to a finite constant velocity. crystals, all kinks at the steps are identical and the kink rate is a linear function of the supersaturation. In the non-Kossel crystals, there may be several kink configurations characterized by different geometries and energies. These configurations