Sample records for exponential population growth

  1. A Stochastic Super-Exponential Growth Model for Population Dynamics

    NASA Astrophysics Data System (ADS)

    Avila, P.; Rekker, A.

    2010-11-01

    A super-exponential growth model with environmental noise has been studied analytically. Super-exponential growth rate is a property of dynamical systems exhibiting endogenous nonlinear positive feedback, i.e., of self-reinforcing systems. Environmental noise acts on the growth rate multiplicatively and is assumed to be Gaussian white noise in the Stratonovich interpretation. An analysis of the stochastic super-exponential growth model with derivations of exact analytical formulae for the conditional probability density and the mean value of the population abundance are presented. Interpretations and various applications of the results are discussed.

  2. The Impact of Accelerating Faster than Exponential Population Growth on Genetic Variation

    PubMed Central

    Reppell, Mark; Boehnke, Michael; Zöllner, Sebastian

    2014-01-01

    Current human sequencing projects observe an abundance of extremely rare genetic variation, suggesting recent acceleration of population growth. To better understand the impact of such accelerating growth on the quantity and nature of genetic variation, we present a new class of models capable of incorporating faster than exponential growth in a coalescent framework. Our work shows that such accelerated growth affects only the population size in the recent past and thus large samples are required to detect the models’ effects on patterns of variation. When we compare models with fixed initial growth rate, models with accelerating growth achieve very large current population sizes and large samples from these populations contain more variation than samples from populations with constant growth. This increase is driven almost entirely by an increase in singleton variation. Moreover, linkage disequilibrium decays faster in populations with accelerating growth. When we instead condition on current population size, models with accelerating growth result in less overall variation and slower linkage disequilibrium decay compared to models with exponential growth. We also find that pairwise linkage disequilibrium of very rare variants contains information about growth rates in the recent past. Finally, we demonstrate that models of accelerating growth may substantially change estimates of present-day effective population sizes and growth times. PMID:24381333

  3. The impact of accelerating faster than exponential population growth on genetic variation.

    PubMed

    Reppell, Mark; Boehnke, Michael; Zöllner, Sebastian

    2014-03-01

    Current human sequencing projects observe an abundance of extremely rare genetic variation, suggesting recent acceleration of population growth. To better understand the impact of such accelerating growth on the quantity and nature of genetic variation, we present a new class of models capable of incorporating faster than exponential growth in a coalescent framework. Our work shows that such accelerated growth affects only the population size in the recent past and thus large samples are required to detect the models' effects on patterns of variation. When we compare models with fixed initial growth rate, models with accelerating growth achieve very large current population sizes and large samples from these populations contain more variation than samples from populations with constant growth. This increase is driven almost entirely by an increase in singleton variation. Moreover, linkage disequilibrium decays faster in populations with accelerating growth. When we instead condition on current population size, models with accelerating growth result in less overall variation and slower linkage disequilibrium decay compared to models with exponential growth. We also find that pairwise linkage disequilibrium of very rare variants contains information about growth rates in the recent past. Finally, we demonstrate that models of accelerating growth may substantially change estimates of present-day effective population sizes and growth times.

  4. Modeling Exponential Population Growth

    ERIC Educational Resources Information Center

    McCormick, Bonnie

    2009-01-01

    The concept of population growth patterns is a key component of understanding evolution by natural selection and population dynamics in ecosystems. The National Science Education Standards (NSES) include standards related to population growth in sections on biological evolution, interdependence of organisms, and science in personal and social…

  5. Universality in stochastic exponential growth.

    PubMed

    Iyer-Biswas, Srividya; Crooks, Gavin E; Scherer, Norbert F; Dinner, Aaron R

    2014-07-11

    Recent imaging data for single bacterial cells reveal that their mean sizes grow exponentially in time and that their size distributions collapse to a single curve when rescaled by their means. An analogous result holds for the division-time distributions. A model is needed to delineate the minimal requirements for these scaling behaviors. We formulate a microscopic theory of stochastic exponential growth as a Master Equation that accounts for these observations, in contrast to existing quantitative models of stochastic exponential growth (e.g., the Black-Scholes equation or geometric Brownian motion). Our model, the stochastic Hinshelwood cycle (SHC), is an autocatalytic reaction cycle in which each molecular species catalyzes the production of the next. By finding exact analytical solutions to the SHC and the corresponding first passage time problem, we uncover universal signatures of fluctuations in exponential growth and division. The model makes minimal assumptions, and we describe how more complex reaction networks can reduce to such a cycle. We thus expect similar scalings to be discovered in stochastic processes resulting in exponential growth that appear in diverse contexts such as cosmology, finance, technology, and population growth.

  6. Universality in Stochastic Exponential Growth

    NASA Astrophysics Data System (ADS)

    Iyer-Biswas, Srividya; Crooks, Gavin E.; Scherer, Norbert F.; Dinner, Aaron R.

    2014-07-01

    Recent imaging data for single bacterial cells reveal that their mean sizes grow exponentially in time and that their size distributions collapse to a single curve when rescaled by their means. An analogous result holds for the division-time distributions. A model is needed to delineate the minimal requirements for these scaling behaviors. We formulate a microscopic theory of stochastic exponential growth as a Master Equation that accounts for these observations, in contrast to existing quantitative models of stochastic exponential growth (e.g., the Black-Scholes equation or geometric Brownian motion). Our model, the stochastic Hinshelwood cycle (SHC), is an autocatalytic reaction cycle in which each molecular species catalyzes the production of the next. By finding exact analytical solutions to the SHC and the corresponding first passage time problem, we uncover universal signatures of fluctuations in exponential growth and division. The model makes minimal assumptions, and we describe how more complex reaction networks can reduce to such a cycle. We thus expect similar scalings to be discovered in stochastic processes resulting in exponential growth that appear in diverse contexts such as cosmology, finance, technology, and population growth.

  7. Phenomenology of stochastic exponential growth

    NASA Astrophysics Data System (ADS)

    Pirjol, Dan; Jafarpour, Farshid; Iyer-Biswas, Srividya

    2017-06-01

    Stochastic exponential growth is observed in a variety of contexts, including molecular autocatalysis, nuclear fission, population growth, inflation of the universe, viral social media posts, and financial markets. Yet literature on modeling the phenomenology of these stochastic dynamics has predominantly focused on one model, geometric Brownian motion (GBM), which can be described as the solution of a Langevin equation with linear drift and linear multiplicative noise. Using recent experimental results on stochastic exponential growth of individual bacterial cell sizes, we motivate the need for a more general class of phenomenological models of stochastic exponential growth, which are consistent with the observation that the mean-rescaled distributions are approximately stationary at long times. We show that this behavior is not consistent with GBM, instead it is consistent with power-law multiplicative noise with positive fractional powers. Therefore, we consider this general class of phenomenological models for stochastic exponential growth, provide analytical solutions, and identify the important dimensionless combination of model parameters, which determines the shape of the mean-rescaled distribution. We also provide a prescription for robustly inferring model parameters from experimentally observed stochastic growth trajectories.

  8. A Simulation To Model Exponential Growth.

    ERIC Educational Resources Information Center

    Appelbaum, Elizabeth Berman

    2000-01-01

    Describes a simulation using dice-tossing students in a population cluster to model the growth of cancer cells. This growth is recorded in a scatterplot and compared to an exponential function graph. (KHR)

  9. Modeling the Pre-Industrial Roots of Modern Super-Exponential Population Growth

    PubMed Central

    Stutz, Aaron Jonas

    2014-01-01

    To Malthus, rapid human population growth—so evident in 18th Century Europe—was obviously unsustainable. In his Essay on the Principle of Population, Malthus cogently argued that environmental and socioeconomic constraints on population rise were inevitable. Yet, he penned his essay on the eve of the global census size reaching one billion, as nearly two centuries of super-exponential increase were taking off. Introducing a novel extension of J. E. Cohen's hallmark coupled difference equation model of human population dynamics and carrying capacity, this article examines just how elastic population growth limits may be in response to demographic change. The revised model involves a simple formalization of how consumption costs influence carrying capacity elasticity over time. Recognizing that complex social resource-extraction networks support ongoing consumption-based investment in family formation and intergenerational resource transfers, it is important to consider how consumption has impacted the human environment and demography—especially as global population has become very large. Sensitivity analysis of the consumption-cost model's fit to historical population estimates, modern census data, and 21st Century demographic projections supports a critical conclusion. The recent population explosion was systemically determined by long-term, distinctly pre-industrial cultural evolution. It is suggested that modern globalizing transitions in technology, susceptibility to infectious disease, information flows and accumulation, and economic complexity were endogenous products of much earlier biocultural evolution of family formation's embeddedness in larger, hierarchically self-organizing cultural systems, which could potentially support high population elasticity of carrying capacity. Modern super-exponential population growth cannot be considered separately from long-term change in the multi-scalar political economy that connects family formation and

  10. Can the Site-Frequency Spectrum Distinguish Exponential Population Growth from Multiple-Merger Coalescents?

    PubMed Central

    Eldon, Bjarki; Birkner, Matthias; Blath, Jochen; Freund, Fabian

    2015-01-01

    The ability of the site-frequency spectrum (SFS) to reflect the particularities of gene genealogies exhibiting multiple mergers of ancestral lines as opposed to those obtained in the presence of population growth is our focus. An excess of singletons is a well-known characteristic of both population growth and multiple mergers. Other aspects of the SFS, in particular, the weight of the right tail, are, however, affected in specific ways by the two model classes. Using an approximate likelihood method and minimum-distance statistics, our estimates of statistical power indicate that exponential and algebraic growth can indeed be distinguished from multiple-merger coalescents, even for moderate sample sizes, if the number of segregating sites is high enough. A normalized version of the SFS (nSFS) is also used as a summary statistic in an approximate Bayesian computation (ABC) approach. The results give further positive evidence as to the general eligibility of the SFS to distinguish between the different histories. PMID:25575536

  11. An Exponential Growth Learning Trajectory: Students' Emerging Understanding of Exponential Growth through Covariation

    ERIC Educational Resources Information Center

    Ellis, Amy B.; Ozgur, Zekiye; Kulow, Torrey; Dogan, Muhammed F.; Amidon, Joel

    2016-01-01

    This article presents an Exponential Growth Learning Trajectory (EGLT), a trajectory identifying and characterizing middle grade students' initial and developing understanding of exponential growth as a result of an instructional emphasis on covariation. The EGLT explicates students' thinking and learning over time in relation to a set of tasks…

  12. Simulating Population Growth.

    ERIC Educational Resources Information Center

    Byington, Scott

    1997-01-01

    Presents a strategy to help students grasp the important implications of population growth. Involves an interactive demonstration that allows students to experience exponential and logistic population growth followed by a discussion of the implications of population-growth principles. (JRH)

  13. Is it growing exponentially fast? -- Impact of assuming exponential growth for characterizing and forecasting epidemics with initial near-exponential growth dynamics.

    PubMed

    Chowell, Gerardo; Viboud, Cécile

    2016-10-01

    The increasing use of mathematical models for epidemic forecasting has highlighted the importance of designing models that capture the baseline transmission characteristics in order to generate reliable epidemic forecasts. Improved models for epidemic forecasting could be achieved by identifying signature features of epidemic growth, which could inform the design of models of disease spread and reveal important characteristics of the transmission process. In particular, it is often taken for granted that the early growth phase of different growth processes in nature follow early exponential growth dynamics. In the context of infectious disease spread, this assumption is often convenient to describe a transmission process with mass action kinetics using differential equations and generate analytic expressions and estimates of the reproduction number. In this article, we carry out a simulation study to illustrate the impact of incorrectly assuming an exponential-growth model to characterize the early phase (e.g., 3-5 disease generation intervals) of an infectious disease outbreak that follows near-exponential growth dynamics. Specifically, we assess the impact on: 1) goodness of fit, 2) bias on the growth parameter, and 3) the impact on short-term epidemic forecasts. Designing transmission models and statistical approaches that more flexibly capture the profile of epidemic growth could lead to enhanced model fit, improved estimates of key transmission parameters, and more realistic epidemic forecasts.

  14. Population growth and economic growth.

    PubMed

    Narayana, D L

    1984-01-01

    This discussion of the issues relating to the problem posed by population explosion in the developing countries and economic growth in the contemporary world covers the following: predictions of economic and social trends; the Malthusian theory of population; the classical or stationary theory of population; the medical triage model; ecological disaster; the Global 2000 study; the limits to growth; critiques of the Limits to Growth model; nonrenewable resources; food and agriculture; population explosion and stabilization; space and ocean colonization; and the limits perspective. The Limits to Growth model, a general equilibrium anti-growth model, is the gloomiest economic model ever constructed. None of the doomsday models, the Malthusian theory, the classical stationary state, the neo-Malthusian medical triage model, the Global 2000 study, are so far reaching in their consequences. The course of events that followed the publication of the "Limits to Growth" in 1972 in the form of 2 oil shocks, food shock, pollution shock, and price shock seemed to bear out formally the gloomy predictions of the thesis with a remarkable speed. The 12 years of economic experience and the knowledge of resource trends postulate that even if the economic pressures visualized by the model are at work they are neither far reaching nor so drastic. Appropriate action can solve them. There are several limitations to the Limits to Growth model. The central theme of the model, which is overshoot and collapse, is unlikely to be the course of events. The model is too aggregative to be realistic. It exaggerates the ecological disaster arising out of the exponential growth of population and industry. The gross underestimation of renewable resources is a basic flaw of the model. The most critical weakness of the model is its gross underestimation of the historical trend of technological progress and the technological possiblities within industry and agriculture. The model does correctly emphasize

  15. Mutant number distribution in an exponentially growing population

    NASA Astrophysics Data System (ADS)

    Keller, Peter; Antal, Tibor

    2015-01-01

    We present an explicit solution to a classic model of cell-population growth introduced by Luria and Delbrück (1943 Genetics 28 491-511) 70 years ago to study the emergence of mutations in bacterial populations. In this model a wild-type population is assumed to grow exponentially in a deterministic fashion. Proportional to the wild-type population size, mutants arrive randomly and initiate new sub-populations of mutants that grow stochastically according to a supercritical birth and death process. We give an exact expression for the generating function of the total number of mutants at a given wild-type population size. We present a simple expression for the probability of finding no mutants, and a recursion formula for the probability of finding a given number of mutants. In the ‘large population-small mutation’ limit we recover recent results of Kessler and Levine (2014 J. Stat. Phys. doi:10.1007/s10955-014-1143-3) for a fully stochastic version of the process.

  16. Progress, Exponential Growth and Post-Growth Education

    ERIC Educational Resources Information Center

    Irwin, Ruth

    2017-01-01

    Teleological progress is the underlying motif of modern culture, and informs education, innovation, and economic development. Progress includes a gradual increase in consumerism. Since the 1940s, the Keynesian Settlement and its embedded belief in progress is legislated in exponential 2-3% economic growth. Unfortunately, climate change is a direct…

  17. Rethinking Economics and Education: Exponential Growth and Post-Growth Strategies

    ERIC Educational Resources Information Center

    Irwin, Ruth

    2017-01-01

    Education is increasingly vocational and structured to serve the ongoing exponential increase in economic growth. Climate change is an outcome of these same economic values and praxes. Attempts to shift these values and our approach to technology are continually absorbed and overcome by the pressing motif of economic growth. In this article, Ruth…

  18. Human population and atmospheric carbon dioxide growth dynamics: Diagnostics for the future

    NASA Astrophysics Data System (ADS)

    Hüsler, A. D.; Sornette, D.

    2014-10-01

    We analyze the growth rates of human population and of atmospheric carbon dioxide by comparing the relative merits of two benchmark models, the exponential law and the finite-time-singular (FTS) power law. The later results from positive feedbacks, either direct or mediated by other dynamical variables, as shown in our presentation of a simple endogenous macroeconomic dynamical growth model describing the growth dynamics of coupled processes involving human population (labor in economic terms), capital and technology (proxies by CO2 emissions). Human population in the context of our energy intensive economies constitutes arguably the most important underlying driving variable of the content of carbon dioxide in the atmosphere. Using some of the best databases available, we perform empirical analyses confirming that the human population on Earth has been growing super-exponentially until the mid-1960s, followed by a decelerated sub-exponential growth, with a tendency to plateau at just an exponential growth in the last decade with an average growth rate of 1.0% per year. In contrast, we find that the content of carbon dioxide in the atmosphere has continued to accelerate super-exponentially until 1990, with a transition to a progressive deceleration since then, with an average growth rate of approximately 2% per year in the last decade. To go back to CO2 atmosphere contents equal to or smaller than the level of 1990 as has been the broadly advertised goals of international treaties since 1990 requires herculean changes: from a dynamical point of view, the approximately exponential growth must not only turn to negative acceleration but also negative velocity to reverse the trend.

  19. Exponential order statistic models of software reliability growth

    NASA Technical Reports Server (NTRS)

    Miller, D. R.

    1985-01-01

    Failure times of a software reliabilty growth process are modeled as order statistics of independent, nonidentically distributed exponential random variables. The Jelinsky-Moranda, Goel-Okumoto, Littlewood, Musa-Okumoto Logarithmic, and Power Law models are all special cases of Exponential Order Statistic Models, but there are many additional examples also. Various characterizations, properties and examples of this class of models are developed and presented.

  20. Teaching Exponential Growth and Decay: Examples from Medicine

    ERIC Educational Resources Information Center

    Hobbie, Russell K.

    1973-01-01

    A treatment of exponential growth and decay is sketched which does not require knowledge of calculus, and hence, it can be applied to many cases in the biological and medical sciences. Some examples are bacterial growth, sterilization, clearance, and drug absorption. (DF)

  1. Modeling the lag period and exponential growth of Listeria monocytogenes under conditions of fluctuating temperature and water activity values.

    PubMed

    Muñoz-Cuevas, Marina; Fernández, Pablo S; George, Susan; Pin, Carmen

    2010-05-01

    The dynamic model for the growth of a bacterial population described by Baranyi and Roberts (J. Baranyi and T. A. Roberts, Int. J. Food Microbiol. 23:277-294, 1994) was applied to model the lag period and exponential growth of Listeria monocytogenes under conditions of fluctuating temperature and water activity (a(w)) values. To model the duration of the lag phase, the dependence of the parameter h(0), which quantifies the amount of work done during the lag period, on the previous and current environmental conditions was determined experimentally. This parameter depended not only on the magnitude of the change between the previous and current environmental conditions but also on the current growth conditions. In an exponentially growing population, any change in the environment requiring a certain amount of work to adapt to the new conditions initiated a lag period that lasted until that work was finished. Observations for several scenarios in which exponential growth was halted by a sudden change in the temperature and/or a(w) were in good agreement with predictions. When a population already in a lag period was subjected to environmental fluctuations, the system was reset with a new lag phase. The work to be done during the new lag phase was estimated to be the workload due to the environmental change plus the unfinished workload from the uncompleted previous lag phase.

  2. The Exponential Function--Part VIII

    ERIC Educational Resources Information Center

    Bartlett, Albert A.

    1978-01-01

    Presents part eight of a continuing series on the exponential function in which, given the current population of the Earth and assuming a constant growth rate of 1.9 percent backward looks at world population are made. (SL)

  3. Modeling Population Growth and Extinction

    ERIC Educational Resources Information Center

    Gordon, Sheldon P.

    2009-01-01

    The exponential growth model and the logistic model typically introduced in the mathematics curriculum presume that a population grows exclusively. In reality, species can also die out and more sophisticated models that take the possibility of extinction into account are needed. In this article, two extensions of the logistic model are considered,…

  4. Reduced Heme Levels Underlie the Exponential Growth Defect of the Shewanella oneidensis hfq Mutant

    PubMed Central

    Mezoian, Taylor; Hunt, Taylor M.; Keane, Meaghan L.; Leonard, Jessica N.; Scola, Shelby E.; Beer, Emma N.; Perdue, Sarah; Pellock, Brett J.

    2014-01-01

    The RNA chaperone Hfq fulfills important roles in small regulatory RNA (sRNA) function in many bacteria. Loss of Hfq in the dissimilatory metal reducing bacterium Shewanella oneidensis strain MR-1 results in slow exponential phase growth and a reduced terminal cell density at stationary phase. We have found that the exponential phase growth defect of the hfq mutant in LB is the result of reduced heme levels. Both heme levels and exponential phase growth of the hfq mutant can be completely restored by supplementing LB medium with 5-aminolevulinic acid (5-ALA), the first committed intermediate synthesized during heme synthesis. Increasing expression of gtrA, which encodes the enzyme that catalyzes the first step in heme biosynthesis, also restores heme levels and exponential phase growth of the hfq mutant. Taken together, our data indicate that reduced heme levels are responsible for the exponential growth defect of the S. oneidensis hfq mutant in LB medium and suggest that the S. oneidensis hfq mutant is deficient in heme production at the 5-ALA synthesis step. PMID:25356668

  5. Critical Mutation Rate Has an Exponential Dependence on Population Size in Haploid and Diploid Populations

    PubMed Central

    Aston, Elizabeth; Channon, Alastair; Day, Charles; Knight, Christopher G.

    2013-01-01

    Understanding the effect of population size on the key parameters of evolution is particularly important for populations nearing extinction. There are evolutionary pressures to evolve sequences that are both fit and robust. At high mutation rates, individuals with greater mutational robustness can outcompete those with higher fitness. This is survival-of-the-flattest, and has been observed in digital organisms, theoretically, in simulated RNA evolution, and in RNA viruses. We introduce an algorithmic method capable of determining the relationship between population size, the critical mutation rate at which individuals with greater robustness to mutation are favoured over individuals with greater fitness, and the error threshold. Verification for this method is provided against analytical models for the error threshold. We show that the critical mutation rate for increasing haploid population sizes can be approximated by an exponential function, with much lower mutation rates tolerated by small populations. This is in contrast to previous studies which identified that critical mutation rate was independent of population size. The algorithm is extended to diploid populations in a system modelled on the biological process of meiosis. The results confirm that the relationship remains exponential, but show that both the critical mutation rate and error threshold are lower for diploids, rather than higher as might have been expected. Analyzing the transition from critical mutation rate to error threshold provides an improved definition of critical mutation rate. Natural populations with their numbers in decline can be expected to lose genetic material in line with the exponential model, accelerating and potentially irreversibly advancing their decline, and this could potentially affect extinction, recovery and population management strategy. The effect of population size is particularly strong in small populations with 100 individuals or less; the exponential model has

  6. A Simple Mechanical Experiment on Exponential Growth

    ERIC Educational Resources Information Center

    McGrew, Ralph

    2015-01-01

    With a rod, cord, pulleys, and slotted masses, students can observe and graph exponential growth in the cord tension over a factor of increase as large as several hundred. This experiment is adaptable for use either in algebra-based or calculus-based physics courses, fitting naturally with the study of sliding friction. Significant parts of the…

  7. The mechanism of double-exponential growth in hyper-inflation

    NASA Astrophysics Data System (ADS)

    Mizuno, T.; Takayasu, M.; Takayasu, H.

    2002-05-01

    Analyzing historical data of price indices, we find an extraordinary growth phenomenon in several examples of hyper-inflation in which, price changes are approximated nicely by double-exponential functions of time. In order to explain such behavior we introduce the general coarse-graining technique in physics, the Monte Carlo renormalization group method, to the price dynamics. Starting from a microscopic stochastic equation describing dealers’ actions in open markets, we obtain a macroscopic noiseless equation of price consistent with the observation. The effect of auto-catalytic shortening of characteristic time caused by mob psychology is shown to be responsible for the double-exponential behavior.

  8. Exponential growth for self-reproduction in a catalytic reaction network: relevance of a minority molecular species and crowdedness

    NASA Astrophysics Data System (ADS)

    Kamimura, Atsushi; Kaneko, Kunihiko

    2018-03-01

    Explanation of exponential growth in self-reproduction is an important step toward elucidation of the origins of life because optimization of the growth potential across rounds of selection is necessary for Darwinian evolution. To produce another copy with approximately the same composition, the exponential growth rates for all components have to be equal. How such balanced growth is achieved, however, is not a trivial question, because this kind of growth requires orchestrated replication of the components in stochastic and nonlinear catalytic reactions. By considering a mutually catalyzing reaction in two- and three-dimensional lattices, as represented by a cellular automaton model, we show that self-reproduction with exponential growth is possible only when the replication and degradation of one molecular species is much slower than those of the others, i.e., when there is a minority molecule. Here, the synergetic effect of molecular discreteness and crowding is necessary to produce the exponential growth. Otherwise, the growth curves show superexponential growth because of nonlinearity of the catalytic reactions or subexponential growth due to replication inhibition by overcrowding of molecules. Our study emphasizes that the minority molecular species in a catalytic reaction network is necessary for exponential growth at the primitive stage of life.

  9. Making a stand: five centuries of population growth in colonizing populations of Pinus ponderosa.

    PubMed

    Lesser, Mark R; Jackson, Stephen T

    2012-05-01

    The processes underlying the development of new populations are important for understanding how species colonize new territory and form viable long-term populations. Life-history-mediated processes such as Allee effects and dispersal capability may interact with climate variability and site-specific factors to govern population success and failure over extended time frames. We studied four disjunct populations of ponderosa pine in the Bighorn Basin of north-central Wyoming to examine population growth spanning more than five centuries. The study populations are separated from continuous ponderosa pine forest by distances ranging from 15 to >100 km. Strong evidence indicates that the initial colonizing individuals are still present, yielding a nearly complete record of population history. All trees in each population were aged using dendroecological techniques. The populations were all founded between 1530 and 1655 cal yr CE. All show logistic growth patterns, with initial exponential growth followed by a slowing during the mid to late 20th century. Initial population growth was slower than expectations from a logistic regression model at all four populations, but increased during the mid-18th century. Initial lags in population growth may have been due to strong Allee effects. A combination of overcoming Allee effects and a transition to favorable climate conditions may have facilitated a mid-18th century pulse in population growth rate.

  10. Understanding Exponential Growth: As Simple as a Drop in a Bucket.

    ERIC Educational Resources Information Center

    Goldberg, Fred; Shuman, James

    1984-01-01

    Provides procedures for a simple laboratory activity on exponential growth and its characteristic doubling time. The equipment needed consists of a large plastic bucket, an eyedropper, a stopwatch, an assortment of containers and graduated cylinders, and a supply of water. (JN)

  11. Measurement of cellular copper levels in Bacillus megaterium during exponential growth and sporulation.

    PubMed

    Krueger, W B; Kolodziej, B J

    1976-01-01

    Both atomic absorption spectrophotometry (AAS) and neutron activation analysis have been utilized to determine cellular Cu levels in Bacillus megaterium ATCC 19213. Both methods were selected for their sensitivity to detection of nanogram quantities of Cu. Data from both methods demonstrated identical patterms of Cu uptake during exponenetial growth and sporulation. Late exponential phase cells contained less Cu than postexponential t2 cells while t5 cells contained amounts equivalent to exponential cells. The t11 phase-bright forespore containing cells had a higher Cu content than those of earlier time periods, and the free spores had the highest Cu content. Analysis of the culture medium by AAS corroborated these data by showing concomitant Cu uptake during exponential growth and into t2 postexponential phase of sporulation. From t2 to t4, Cu egressed from the cells followed by a secondary uptake during the maturation of phase-dark forespores into phase-bright forespores (t6--t9).

  12. Divalent cation mobility throughout exponential growth and sporulation of Bacillus megaterium.

    PubMed

    Krueger, W B; Kolodziej, B J

    1978-01-01

    Each of the five elements considered was taken up by Bacillus megaterium during exponential growth. Initial Mg and Mn uptake was rapid and ended by mid-log. For Ca, Fe, and Zn, uptake continued throughout exponential growth. Elements were released from the cells immediately following initial uptake. For Mn, egression continued to t2, with release of 36% of total accumulated. Secondary uptake followed immediately and continued through stage V. Magnesium egression continued to t1 with release of 33% accumulated. Secondary uptake began by t5 (stage IV) and continued slowly through sporulation. Calcium egression ceased by t4 with release of 25% total accumulated. Secondary uptake began by t6 (stage V) and continued until depleted. Zinc egression stopped by t5 with release of 34% accumulated with some secondary uptake by stage V. Iron egression terminated at t4 with release of 59% of total accumulated. This was followed by secondary uptake after t12 (stage VI).

  13. Theory for Transitions Between Exponential and Stationary Phases: Universal Laws for Lag Time

    NASA Astrophysics Data System (ADS)

    Himeoka, Yusuke; Kaneko, Kunihiko

    2017-04-01

    The quantitative characterization of bacterial growth has attracted substantial attention since Monod's pioneering study. Theoretical and experimental works have uncovered several laws for describing the exponential growth phase, in which the number of cells grows exponentially. However, microorganism growth also exhibits lag, stationary, and death phases under starvation conditions, in which cell growth is highly suppressed, for which quantitative laws or theories are markedly underdeveloped. In fact, the models commonly adopted for the exponential phase that consist of autocatalytic chemical components, including ribosomes, can only show exponential growth or decay in a population; thus, phases that halt growth are not realized. Here, we propose a simple, coarse-grained cell model that includes an extra class of macromolecular components in addition to the autocatalytic active components that facilitate cellular growth. These extra components form a complex with the active components to inhibit the catalytic process. Depending on the nutrient condition, the model exhibits typical transitions among the lag, exponential, stationary, and death phases. Furthermore, the lag time needed for growth recovery after starvation follows the square root of the starvation time and is inversely related to the maximal growth rate. This is in agreement with experimental observations, in which the length of time of cell starvation is memorized in the slow accumulation of molecules. Moreover, the lag time distributed among cells is skewed with a long time tail. If the starvation time is longer, an exponential tail appears, which is also consistent with experimental data. Our theory further predicts a strong dependence of lag time on the speed of substrate depletion, which can be tested experimentally. The present model and theoretical analysis provide universal growth laws beyond the exponential phase, offering insight into how cells halt growth without entering the death phase.

  14. Rapid growth of seed black holes in the early universe by supra-exponential accretion.

    PubMed

    Alexander, Tal; Natarajan, Priyamvada

    2014-09-12

    Mass accretion by black holes (BHs) is typically capped at the Eddington rate, when radiation's push balances gravity's pull. However, even exponential growth at the Eddington-limited e-folding time t(E) ~ few × 0.01 billion years is too slow to grow stellar-mass BH seeds into the supermassive luminous quasars that are observed when the universe is 1 billion years old. We propose a dynamical mechanism that can trigger supra-exponential accretion in the early universe, when a BH seed is bound in a star cluster fed by the ubiquitous dense cold gas flows. The high gas opacity traps the accretion radiation, while the low-mass BH's random motions suppress the formation of a slowly draining accretion disk. Supra-exponential growth can thus explain the puzzling emergence of supermassive BHs that power luminous quasars so soon after the Big Bang. Copyright © 2014, American Association for the Advancement of Science.

  15. Line transect estimation of population size: the exponential case with grouped data

    USGS Publications Warehouse

    Anderson, D.R.; Burnham, K.P.; Crain, B.R.

    1979-01-01

    Gates, Marshall, and Olson (1968) investigated the line transect method of estimating grouse population densities in the case where sighting probabilities are exponential. This work is followed by a simulation study in Gates (1969). A general overview of line transect analysis is presented by Burnham and Anderson (1976). These articles all deal with the ungrouped data case. In the present article, an analysis of line transect data is formulated under the Gates framework of exponential sighting probabilities and in the context of grouped data.

  16. Slow Crack Growth of Brittle Materials With Exponential Crack-Velocity Formulation. Part 1; Analysis

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Nemeth, Noel N.; Gyekenyesi, John P.

    2002-01-01

    Extensive slow-crack-growth (SCG) analysis was made using a primary exponential crack-velocity formulation under three widely used load configurations: constant stress rate, constant stress, and cyclic stress. Although the use of the exponential formulation in determining SCG parameters of a material requires somewhat inconvenient numerical procedures, the resulting solutions presented gave almost the same degree of simplicity in both data analysis and experiments as did the power-law formulation. However, the fact that the inert strength of a material should be known in advance to determine the corresponding SCG parameters was a major drawback of the exponential formulation as compared with the power-law formulation.

  17. The Western Africa ebola virus disease epidemic exhibits both global exponential and local polynomial growth rates.

    PubMed

    Chowell, Gerardo; Viboud, Cécile; Hyman, James M; Simonsen, Lone

    2015-01-21

    While many infectious disease epidemics are initially characterized by an exponential growth in time, we show that district-level Ebola virus disease (EVD) outbreaks in West Africa follow slower polynomial-based growth kinetics over several generations of the disease. We analyzed epidemic growth patterns at three different spatial scales (regional, national, and subnational) of the Ebola virus disease epidemic in Guinea, Sierra Leone and Liberia by compiling publicly available weekly time series of reported EVD case numbers from the patient database available from the World Health Organization website for the period 05-Jan to 17-Dec 2014. We found significant differences in the growth patterns of EVD cases at the scale of the country, district, and other subnational administrative divisions. The national cumulative curves of EVD cases in Guinea, Sierra Leone, and Liberia show periods of approximate exponential growth. In contrast, local epidemics are asynchronous and exhibit slow growth patterns during 3 or more EVD generations, which can be better approximated by a polynomial than an exponential function. The slower than expected growth pattern of local EVD outbreaks could result from a variety of factors, including behavior changes, success of control interventions, or intrinsic features of the disease such as a high level of clustering. Quantifying the contribution of each of these factors could help refine estimates of final epidemic size and the relative impact of different mitigation efforts in current and future EVD outbreaks.

  18. The Western Africa Ebola Virus Disease Epidemic Exhibits Both Global Exponential and Local Polynomial Growth Rates

    PubMed Central

    Chowell, Gerardo; Viboud, Cécile; Hyman, James M; Simonsen, Lone

    2015-01-01

    Background: While many infectious disease epidemics are initially characterized by an exponential growth in time, we show that district-level Ebola virus disease (EVD) outbreaks in West Africa follow slower polynomial-based growth kinetics over several generations of the disease. Methods: We analyzed epidemic growth patterns at three different spatial scales (regional, national, and subnational) of the Ebola virus disease epidemic in Guinea, Sierra Leone and Liberia by compiling publicly available weekly time series of reported EVD case numbers from the patient database available from the World Health Organization website for the period 05-Jan to 17-Dec 2014. Results: We found significant differences in the growth patterns of EVD cases at the scale of the country, district, and other subnational administrative divisions. The national cumulative curves of EVD cases in Guinea, Sierra Leone, and Liberia show periods of approximate exponential growth. In contrast, local epidemics are asynchronous and exhibit slow growth patterns during 3 or more EVD generations, which can be better approximated by a polynomial than an exponential function. Conclusions: The slower than expected growth pattern of local EVD outbreaks could result from a variety of factors, including behavior changes, success of control interventions, or intrinsic features of the disease such as a high level of clustering. Quantifying the contribution of each of these factors could help refine estimates of final epidemic size and the relative impact of different mitigation efforts in current and future EVD outbreaks. PMID:25685633

  19. [Effect of the development phase and growth rate of a Shigella sonnei population on the reproduction of homologous bacteriophage].

    PubMed

    Voroshilova, N N; Kazakova, T B

    1983-04-01

    This study showed that the minimum latent period (20 minutes) of the intracellular multiplication of dysentery bacteriophage S-9 in the population of S. sonnei substrate strain under the conditions of static heterogeneous surface batch cultivation was observed at the end of the lag phase and at the growth acceleration phase, in the first and second thirds of the exponential curve, while the maximum latent period (35-40 minutes) was observed at the stationary phase. The maximum yield of phage S-9 from one infected bacterial cell (628.3 +/- 116.8) was registered during the first third of the phase of the exponential growth of the bacterial population and the minimum yield (18.66 +/- 6.6), at the beginning of the lag phase. The significant direct correlation between the specific growth rate of the bacterial population and the yield of the phage from one infected bacterial cell at the end of the lag phase, at the growth acceleration and deceleration phases, as well as the significant inverse correlation between the yield of the phage and the time of the generation of the bacterial population at the growth acceleration phase were established.

  20. A demographic study of the exponential distribution applied to uneven-aged forests

    Treesearch

    Jeffrey H. Gove

    2016-01-01

    A demographic approach based on a size-structured version of the McKendrick-Von Foerster equation is used to demonstrate a theoretical link between the population size distribution and the underlying vital rates (recruitment, mortality and diameter growth) for the population of individuals whose diameter distribution is negative exponential. This model supports the...

  1. Research on the exponential growth effect on network topology: Theoretical and empirical analysis

    NASA Astrophysics Data System (ADS)

    Li, Shouwei; You, Zongjun

    Integrated circuit (IC) industry network has been built in Yangtze River Delta with the constant expansion of IC industry. The IC industry network grows exponentially with the establishment of new companies and the establishment of contacts with old firms. Based on preferential attachment and exponential growth, the paper presents the analytical results in which the vertices degree of scale-free network follows power-law distribution p(k)˜k‑γ (γ=2β+1) and parameter β satisfies 0.5≤β≤1. At the same time, we find that the preferential attachment takes place in a dynamic local world and the size of the dynamic local world is in direct proportion to the size of whole networks. The paper also gives the analytical results of no-preferential attachment and exponential growth on random networks. The computer simulated results of the model illustrate these analytical results. Through some investigations on the enterprises, this paper at first presents the distribution of IC industry, composition of industrial chain and service chain firstly. Then, the correlative network and its analysis of industrial chain and service chain are presented. The correlative analysis of the whole IC industry is also presented at the same time. Based on the theory of complex network, the analysis and comparison of industrial chain network and service chain network in Yangtze River Delta are provided in the paper.

  2. On new non-modal hydrodynamic stability modes and resulting non-exponential growth rates - a Lie symmetry approach

    NASA Astrophysics Data System (ADS)

    Oberlack, Martin; Nold, Andreas; Sanjon, Cedric Wilfried; Wang, Yongqi; Hau, Jan

    2016-11-01

    Classical hydrodynamic stability theory for laminar shear flows, no matter if considering long-term stability or transient growth, is based on the normal-mode ansatz, or, in other words, on an exponential function in space (stream-wise direction) and time. Recently, it became clear that the normal mode ansatz and the resulting Orr-Sommerfeld equation is based on essentially three fundamental symmetries of the linearized Euler and Navier-Stokes equations: translation in space and time and scaling of the dependent variable. Further, Kelvin-mode of linear shear flows seemed to be an exception in this context as it admits a fourth symmetry resulting in the classical Kelvin mode which is rather different from normal-mode. However, very recently it was discovered that most of the classical canonical shear flows such as linear shear, Couette, plane and round Poiseuille, Taylor-Couette, Lamb-Ossen vortex or asymptotic suction boundary layer admit more symmetries. This, in turn, led to new problem specific non-modal ansatz functions. In contrast to the exponential growth rate in time of the modal-ansatz, the new non-modal ansatz functions usually lead to an algebraic growth or decay rate, while for the asymptotic suction boundary layer a double-exponential growth or decay is observed.

  3. Exponential growth and Gaussian—like fluctuations of solutions of stochastic differential equations with maximum functionals

    NASA Astrophysics Data System (ADS)

    Appleby, J. A. D.; Wu, H.

    2008-11-01

    In this paper we consider functional differential equations subjected to either instantaneous state-dependent noise, or to a white noise perturbation. The drift of the equations depend linearly on the current value and on the maximum of the solution. The functional term always provides positive feedback, while the instantaneous term can be mean-reverting or can exhibit positive feedback. We show in the white noise case that if the instantaneous term is mean reverting and dominates the history term, then solutions are recurrent, and upper bounds on the a.s. growth rate of the partial maxima of the solution can be found. When the instantaneous term is weaker, or is of positive feedback type, we determine necessary and sufficient conditions on the diffusion coefficient which ensure the exact exponential growth of solutions. An application of these results to an inefficient financial market populated by reference traders and speculators is given, in which the difference between the current instantaneous returns and maximum of the returns over the last few time units is used to determine trading strategies.

  4. Forecasting Financial Extremes: A Network Degree Measure of Super-Exponential Growth.

    PubMed

    Yan, Wanfeng; van Tuyll van Serooskerken, Edgar

    2015-01-01

    Investors in stock market are usually greedy during bull markets and scared during bear markets. The greed or fear spreads across investors quickly. This is known as the herding effect, and often leads to a fast movement of stock prices. During such market regimes, stock prices change at a super-exponential rate and are normally followed by a trend reversal that corrects the previous overreaction. In this paper, we construct an indicator to measure the magnitude of the super-exponential growth of stock prices, by measuring the degree of the price network, generated from the price time series. Twelve major international stock indices have been investigated. Error diagram tests show that this new indicator has strong predictive power for financial extremes, both peaks and troughs. By varying the parameters used to construct the error diagram, we show the predictive power is very robust. The new indicator has a better performance than the LPPL pattern recognition indicator.

  5. Lack of synchronization between iron uptake and cell growth leads to iron overload in Saccharomyces cerevisiae during post-exponential growth modes

    PubMed Central

    Park, Jinkyu; McCormick, Sean P.; Chakrabarti, Mrinmoy; Lindahl, Paul A.

    2014-01-01

    Fermenting cells growing exponentially on rich (YPAD) medium transitioned to a slow-growing state as glucose levels declined and their metabolism shifted to respiration. During exponential growth, Fe import and cell growth rates were matched, affording an approximately invariant cellular Fe concentration. During the transitionary period, the high-affinity Fe import rate declined slower than the cell growth rate declined, causing Fe to accumulate, initially as FeIII oxyhydroxide nanoparticles but eventually as mitochondrial and vacuolar Fe. Once in slow-growth mode, Fe import and cell growth rates were again matched, and the cellular Fe concentration was again approximately invariant. Fermenting cells grown on minimal medium (MM) grew more slowly during exponential phase and transitioned to a true stationary state as glucose levels declined. The Fe concentration of MM cells that just entered stationary state was similar to that of YPAD cells, but MM cells continued to accumulate Fe in stationary state. Fe initially accumulated as nanoparticles and high-spin FeII species, but vacuolar FeIII also eventually accumulated. Surprisingly, Fe-packed 5-day-old MM cells suffered no more ROS damage than younger cells, suggesting that Fe concentration alone does not accurately predict the extent of ROS damage. The mode and rate of growth at the time of harvesting dramatically affected cellular Fe content. A mathematical model of Fe metabolism in a growing cell was developed. The model included Fe import via a regulated high-affinity pathway and an unregulated low-affinity pathway. Fe import from the cytosol into vacuoles and mitochondria, and nanoparticle formation were also included. The model captured essential trafficking behavior, demonstrating that cells regulate Fe import in accordance with their overall growth rate and that they misregulate Fe import when nanoparticles accumulate. The lack of regulation of Fe in yeast is perhaps unique compared to the tight regulation of

  6. A new mechanistic growth model for simultaneous determination of lag phase duration and exponential growth rate and a new Belehdradek-type model for evaluating the effect of temperature on growth rate

    USDA-ARS?s Scientific Manuscript database

    A new mechanistic growth model was developed to describe microbial growth under isothermal conditions. The new mathematical model was derived from the basic observation of bacterial growth that may include lag, exponential, and stationary phases. With this model, the lag phase duration and exponen...

  7. Exponential Growth and the Shifting Global Center of Gravity of Science Production, 1900-2011

    ERIC Educational Resources Information Center

    Zhang, Liang; Powell, Justin J. W.; Baker, David P.

    2015-01-01

    Long historical trends in scientific discovery led mid-20th century scientometricians to mark the advent of "big science"--extensive science production--and predicted that over the next few decades, the exponential growth would slow, resulting in lower rates of increase in production at the upper limit of a logistic curve. They were…

  8. Socio-Economic Instability and the Scaling of Energy Use with Population Size

    PubMed Central

    DeLong, John P.; Burger, Oskar

    2015-01-01

    The size of the human population is relevant to the development of a sustainable world, yet the forces setting growth or declines in the human population are poorly understood. Generally, population growth rates depend on whether new individuals compete for the same energy (leading to Malthusian or density-dependent growth) or help to generate new energy (leading to exponential and super-exponential growth). It has been hypothesized that exponential and super-exponential growth in humans has resulted from carrying capacity, which is in part determined by energy availability, keeping pace with or exceeding the rate of population growth. We evaluated the relationship between energy use and population size for countries with long records of both and the world as a whole to assess whether energy yields are consistent with the idea of an increasing carrying capacity. We find that on average energy use has indeed kept pace with population size over long time periods. We also show, however, that the energy-population scaling exponent plummets during, and its temporal variability increases preceding, periods of social, political, technological, and environmental change. We suggest that efforts to increase the reliability of future energy yields may be essential for stabilizing both population growth and the global socio-economic system. PMID:26091499

  9. Socio-Economic Instability and the Scaling of Energy Use with Population Size.

    PubMed

    DeLong, John P; Burger, Oskar

    2015-01-01

    The size of the human population is relevant to the development of a sustainable world, yet the forces setting growth or declines in the human population are poorly understood. Generally, population growth rates depend on whether new individuals compete for the same energy (leading to Malthusian or density-dependent growth) or help to generate new energy (leading to exponential and super-exponential growth). It has been hypothesized that exponential and super-exponential growth in humans has resulted from carrying capacity, which is in part determined by energy availability, keeping pace with or exceeding the rate of population growth. We evaluated the relationship between energy use and population size for countries with long records of both and the world as a whole to assess whether energy yields are consistent with the idea of an increasing carrying capacity. We find that on average energy use has indeed kept pace with population size over long time periods. We also show, however, that the energy-population scaling exponent plummets during, and its temporal variability increases preceding, periods of social, political, technological, and environmental change. We suggest that efforts to increase the reliability of future energy yields may be essential for stabilizing both population growth and the global socio-economic system.

  10. Translational resistivity/conductivity of coding sequences during exponential growth of Escherichia coli.

    PubMed

    Takai, Kazuyuki

    2017-01-21

    Codon adaptation index (CAI) has been widely used for prediction of expression of recombinant genes in Escherichia coli and other organisms. However, CAI has no mechanistic basis that rationalizes its application to estimation of translational efficiency. Here, I propose a model based on which we could consider how codon usage is related to the level of expression during exponential growth of bacteria. In this model, translation of a gene is considered as an analog of electric current, and an analog of electric resistance corresponding to each gene is considered. "Translational resistance" is dependent on the steady-state concentration and the sequence of the mRNA species, and "translational resistivity" is dependent only on the mRNA sequence. The latter is the sum of two parts: one is the resistivity for the elongation reaction (coding sequence resistivity), and the other comes from all of the other steps of the decoding reaction. This electric circuit model clearly shows that some conditions should be met for codon composition of a coding sequence to correlate well with its expression level. On the other hand, I calculated relative frequency of each of the 61 sense codon triplets translated during exponential growth of E. coli from a proteomic dataset covering over 2600 proteins. A tentative method for estimating relative coding sequence resistivity based on the data is presented. Copyright © 2016. Published by Elsevier Ltd.

  11. Differential Expression of Virulence Genes and Motility in Ralstonia (Pseudomonas) solanacearum during Exponential Growth.

    PubMed

    Clough, S J; Flavier, A B; Schell, M A; Denny, T P

    1997-03-01

    A complex network regulates virulence in Ralstonia solanacearum (formerly Pseudomonas solanacearum); central to this system is PhcA, a LysR-type transcriptional regulator. We report here that two PhcA-regulated virulence factors, endoglucanase (Egl) and acidic exopolysaccharide I (EPS I), and motility are expressed differentially during exponential growth in batch cultures. Tests with strains carrying lacZ fusions in a wild-type genetic background revealed that expression (on a per-cell basis) of phcA was constant but expression of egl and epsB increased 20- to 50-fold during multiplication from 1 x 10(sup7) to 5 x 10(sup8) CFU/ml. Expression of xpsR, an intermediate regulator downstream of PhcA in the regulatory cascade for eps expression, was similar to that of epsB and egl. Motility track photography revealed that all strains were essentially nonmotile at 10(sup6) CFU/ml. As cell density increased, 30 to 50% of wild-type cells were motile between 10(sup7) and 10(sup8) CFU/ml, but this population was again nonmotile at 10(sup9) CFU/ml. In contrast, about 60% of the cells of phcB and phcA mutants remained motile at 10(sup9) CFU/ml. Expression of phcB, which is not positively regulated by PhcA, was the inverse of epsB, egl, and xpsR (i.e., it decreased 20-fold at high cell density). PhcB is essential for production of an extracellular factor, tentatively identified as 3-hydroxypalmitic acid methyl ester (3-OH PAME), that might act as an exponential-phase signal to activate motility or expression of virulence genes. However, growth of the lacZ fusion strains in medium containing excess 3-OH PAME did not result in motility or expression of virulence genes at dramatically lower cell densities, suggesting that 3-OH PAME is not the only factor controlling these traits.

  12. Exponential energy growth due to slow parameter oscillations in quantum mechanical systems.

    PubMed

    Turaev, Dmitry

    2016-05-01

    It is shown that a periodic emergence and destruction of an additional quantum number leads to an exponential growth of energy of a quantum mechanical system subjected to a slow periodic variation of parameters. The main example is given by systems (e.g., quantum billiards and quantum graphs) with periodically divided configuration space. In special cases, the process can also lead to a long period of cooling that precedes the acceleration, and to the desertion of the states with a particular value of the quantum number.

  13. [Economic growth with zero population growth and with declining population].

    PubMed

    Kurz, R

    1982-05-01

    The effects of both zero population growth and a declining population on economic growth are considered. Although the neoclassical theory of economic growth leads to optimistic results in such cases, the author suggests that this theory cannot be used as a basis for political action. The need for further research into the economic effects of a stationary or declining population is stressed. (summary in ENG)

  14. An allometric scaling relation based on logistic growth of cities

    NASA Astrophysics Data System (ADS)

    Chen, Yanguang

    2014-08-01

    The relationships between urban area and population size have been empirically demonstrated to follow the scaling law of allometric growth. This allometric scaling is based on exponential growth of city size and can be termed "exponential allometry", which is associated with the concepts of fractals. However, both city population and urban area comply with the course of logistic growth rather than exponential growth. In this paper, I will present a new allometric scaling based on logistic growth to solve the abovementioned problem. The logistic growth is a process of replacement dynamics. Defining a pair of replacement quotients as new measurements, which are functions of urban area and population, we can derive an allometric scaling relation from the logistic processes of urban growth, which can be termed "logistic allometry". The exponential allometric relation between urban area and population is the approximate expression of the logistic allometric equation when the city size is not large enough. The proper range of the allometric scaling exponent value is reconsidered through the logistic process. Then, a medium-sized city of Henan Province, China, is employed as an example to validate the new allometric relation. The logistic allometry is helpful for further understanding the fractal property and self-organized process of urban evolution in the right perspective.

  15. Slow Crack Growth of Brittle Materials With Exponential Crack-Velocity Formulation. Part 2; Constant Stress Rate Experiments

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Nemeth, Noel N.; Gyekenyesi, John P.

    2002-01-01

    The previously determined life prediction analysis based on an exponential crack-velocity formulation was examined using a variety of experimental data on glass and advanced structural ceramics in constant stress rate and preload testing at ambient and elevated temperatures. The data fit to the relation of strength versus the log of the stress rate was very reasonable for most of the materials. Also, the preloading technique was determined equally applicable to the case of slow-crack-growth (SCG) parameter n greater than 30 for both the power-law and exponential formulations. The major limitation in the exponential crack-velocity formulation, however, was that the inert strength of a material must be known a priori to evaluate the important SCG parameter n, a significant drawback as compared with the conventional power-law crack-velocity formulation.

  16. Review of "Going Exponential: Growing the Charter School Sector's Best"

    ERIC Educational Resources Information Center

    Garcia, David

    2011-01-01

    This Progressive Policy Institute report argues that charter schools should be expanded rapidly and exponentially. Citing exponential growth organizations, such as Starbucks and Apple, as well as the rapid growth of molds, viruses and cancers, the report advocates for similar growth models for charter schools. However, there is no explanation of…

  17. Power Law Versus Exponential Form of Slow Crack Growth of Advanced Structural Ceramics: Dynamic Fatigue

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.

    2002-01-01

    The life prediction analysis based on an exponential crack velocity formulation was examined using a variety of experimental data on glass and advanced structural ceramics in constant stress-rate ("dynamic fatigue") and preload testing at ambient and elevated temperatures. The data fit to the strength versus In (stress rate) relation was found to be very reasonable for most of the materials. It was also found that preloading technique was equally applicable for the case of slow crack growth (SCG) parameter n > 30. The major limitation in the exponential crack velocity formulation, however, was that an inert strength of a material must be known priori to evaluate the important SCG parameter n, a significant drawback as compared to the conventional power-law crack velocity formulation.

  18. Modeling the growth of individuals in plant populations: local density variation in a strand population of Xanthium strumarium (Asteraceae).

    PubMed

    Weiner, J; Kinsman, S; Williams, S

    1998-11-01

    We studied the growth of individual Xanthium strumarium plants growing at four naturally occurring local densities on a beach in Maine: (1) isolated plants, (2) pairs of plants ≤1 cm apart, (3) four plants within 4 cm of each other, and (4) discrete dense clumps of 10-39 plants. A combination of nondestructive measurements every 2 wk and parallel calibration harvests provided very good estimates of the growth in aboveground biomass of over 400 individual plants over 8 wk and afforded the opportunity to fit explicit growth models to 293 of them. There was large individual variation in growth and resultant size within the population and within all densities. Local crowding played a role in determining plant size within the population: there were significant differences in final size between all densities except pairs and quadruples, which were almost identical. Overall, plants growing at higher densities were more variable in growth and final size than plants growing at lower densities, but this was due to increased variation among groups (greater variation in local density and/or greater environmental heterogeneity), not to increased variation within groups. Thus, there was no evidence of size asymmetric competition in this population. The growth of most plants was close to exponential over the study period, but half the plants were slightly better fit by a sigmoidal (logistic) model. The proportion of plants better fit by the logistic model increased with density and with initial plant size. The use of explicit growth models over several growth intervals to describe stand development can provide more biological content and more statistical power than "growth-size" methods that analyze growth intervals separately.

  19. Rapid population growth.

    PubMed

    1972-01-01

    At the current rate of population growth, world population by 2000 is expected to reach 7 billion or more, with developing countries accounting for some 5.4 billion, and economically advanced nations accounting for 1.6 billion. 'Population explosion' is the result of falling mortality rates and continuing high birth rates. Many European countries, and Japan, have already completed what is termed as demographic transition, that is, birth rates have fallen to below 20 births per 1000 population, death rates to 10/1000 population, and annual growth rates are 1% or less; annual growth rates for less developed countries ranged from 2 to 3.5%. Less developed countries can be divided into 3 groups: 1) countries with both high birth and death rates; 2) countries with high birth rates and low death rates; and 3) countries with intermediate and declining birth rates and low death rates. Rapid population growth has serious economic consequences. It encourages inequities in income distribution; it limits rate of growth of gross national product by holding down level of savings and capital investments; it exerts pressure on agricultural production and land; and it creates unemployment problems. In addition, the quality of education for increasing number of chidren is adversely affected, as high proportions of children reduce the amount that can be spent for the education of each child out of the educational budget; the cost and adequacy of health and welfare services are affected in a similar way. Other serious consequences of rapid population growth are maternal death and illness, and physical and mental retardation of children of very poor families. It is very urgent that over a billion births be prevented in the next 30 years to reduce annual population growth rate from the current 2% to 1% per year.

  20. Effects of clustered transmission on epidemic growth Comment on "Mathematical models to characterize early epidemic growth: A review" by Gerardo Chowell et al.

    NASA Astrophysics Data System (ADS)

    Merler, Stefano

    2016-09-01

    Characterizing the early growth profile of an epidemic outbreak is key for predicting the likely trajectory of the number of cases and for designing adequate control measures. Epidemic profiles characterized by exponential growth have been widely observed in the past and a grounding theoretical framework for the analysis of infectious disease dynamics was provided by the pioneering work of Kermack and McKendrick [1]. In particular, exponential growth stems from the assumption that pathogens spread in homogeneous mixing populations; that is, individuals of the population mix uniformly and randomly with each other. However, this assumption was readily recognized as highly questionable [2], and sub-exponential profiles of epidemic growth have been observed in a number of epidemic outbreaks, including HIV/AIDS, foot-and-mouth disease, measles and, more recently, Ebola [3,4].

  1. Population Blocks.

    ERIC Educational Resources Information Center

    Smith, Martin H.

    1992-01-01

    Describes an educational game called "Population Blocks" that is designed to illustrate the concept of exponential growth of the human population and some potential effects of overpopulation. The game material consists of wooden blocks; 18 blocks are painted green (representing land), 7 are painted blue (representing water); and the remaining…

  2. From Experiment to Theory: What Can We Learn from Growth Curves?

    PubMed

    Kareva, Irina; Karev, Georgy

    2018-01-01

    Finding an appropriate functional form to describe population growth based on key properties of a described system allows making justified predictions about future population development. This information can be of vital importance in all areas of research, ranging from cell growth to global demography. Here, we use this connection between theory and observation to pose the following question: what can we infer about intrinsic properties of a population (i.e., degree of heterogeneity, or dependence on external resources) based on which growth function best fits its growth dynamics? We investigate several nonstandard classes of multi-phase growth curves that capture different stages of population growth; these models include hyperbolic-exponential, exponential-linear, exponential-linear-saturation growth patterns. The constructed models account explicitly for the process of natural selection within inhomogeneous populations. Based on the underlying hypotheses for each of the models, we identify whether the population that it best fits by a particular curve is more likely to be homogeneous or heterogeneous, grow in a density-dependent or frequency-dependent manner, and whether it depends on external resources during any or all stages of its development. We apply these predictions to cancer cell growth and demographic data obtained from the literature. Our theory, if confirmed, can provide an additional biomarker and a predictive tool to complement experimental research.

  3. Shanghai: a study on the spatial growth of population and economy in a Chinese metropolitan area.

    PubMed

    Zhu, J

    1995-01-01

    In this study of the growth in population and industry in Shanghai, China, between the 1982 and 1990 censuses, data on administrative divisions was normalized through digitization and spatial analysis. Analysis focused on spatial units, intensity of growth, time period, distance, rate of growth, and direction of spatial growth. The trisection method divided the city into city proper, outskirts, and suburbs. The distance function method considered the distance from center city as a function: exponential, power, trigonometric, logarithmic, and polynomial. Population growth and employment in all sectors increased in the outskirts and suburbs and decreased in the city proper except tertiary sectors. Primary sector employment decreased in all three sections. Employment in the secondary increased faster in the outskirts and suburbs than the total rate of growth of population and employment. In the city secondary sector employment rates decreased faster than total population and employment rates. The tertiary sector had the highest rate of growth in all sections, and employment grew faster than secondary sector rates. Tertiary growth was highest in real estate, finance, and insurance. Industrial growth in the secondary sector was 160.2% in the suburbs, 156.6% in the outskirts, and 80.9% in the city. In the distance function analysis, industry expanded further out than the entire secondary sector. Commerce grew the fastest in areas 15.4 km from center city. Economic growth was faster after economic reforms in 1978. Growth was led by industry and followed by the secondary sector, the tertiary sector, and population. Industrial expansion resulted from inner pressure, political factors controlling size, the social and economic system, and the housing construction and distribution system. Initially sociopsychological factors affected urban concentration.

  4. Non-exponential growth of Mycobacterium leprae Thai-53 strain cultured in vitro.

    PubMed

    Amako, Kazunobu; Iida, Ken-Ichiro; Saito, Mitsumasa; Ogura, Yoshitoshi; Hayashi, Tetsuya; Yoshida, Shin-Ichi

    2016-12-01

    In this study, attempts were made to culture this bacterium in media supplemented with a variety of biological materials to determine why cultivation of Mycobacterium leprae in vitro has not this far been successful. A slight increase in the number of cells in medium supplemented with human blood plasma and an extract of nude mouse tissue as observed after more than 3 months of cultivation at 30 °C. To ascertain whether this increase was real growth, the growth was analyzed by droplet digital PCR, which showed a slow increase in the copy number of cell-associated DNA and the release of a large amount of DNA into the culture medium from bacterial cells during cultivation. These results were supported by electron microscopic examination of M. leprae in infected mouse tissues, which showed that most of the replicated bacteria had degenerated and only a few cells survived. Based on these results, it was postulated that many of the replicated cells degenerate during M. leprae growth and that only a few cells remain to participate in the next growth stage. This means that, unlike other cultivable bacteria, the growth of M. leprae is not exponential and the number of cells therefore increase extremely slowly. Thus, accurate judging of the success of M. leprae cultivation requires observation of growth over a long period of time and careful measurement of the increase in number of viable cells. © 2016 The Authors. Microbiology and Immunology published by The Societies and John Wiley & Sons Australia, Ltd.

  5. Population growth and consumption.

    PubMed

    Chalkley, K

    1997-04-01

    The relationship between population growth, resource consumption, and environmental degradation is complex. The rise in "greenhouse gases" that will cause climatic change is clearly due to human activity, and pollutants are often concentrated in densely populated areas. However, even an area with a negative population growth, such as Russia, can experience severe environmental degradation due to poor management. Consumption patterns have the most effect on ozone depletion, while population growth threatens biodiversity of and within species through the destruction of ecosystems. Migration joins population growth and social factors, such as land inequality, as major causes of deforestation, and global demand for water is expected to increase faster than the rate of population growth. Coastal development and over-fishing threaten to deplete the oceans, while soil quality is threatened by inappropriate land use. Estimates of the earth's carrying capacity range from less than 3 billion to more than 44 billion people, indicating how difficult it is to assess this figure. Development efforts throughout the world may lead to human gains that will ultimately be negated by environmental losses. These factors have led to growing support for environmentally sustainable development.

  6. Adjusting for overdispersion in piecewise exponential regression models to estimate excess mortality rate in population-based research.

    PubMed

    Luque-Fernandez, Miguel Angel; Belot, Aurélien; Quaresma, Manuela; Maringe, Camille; Coleman, Michel P; Rachet, Bernard

    2016-10-01

    In population-based cancer research, piecewise exponential regression models are used to derive adjusted estimates of excess mortality due to cancer using the Poisson generalized linear modelling framework. However, the assumption that the conditional mean and variance of the rate parameter given the set of covariates x i are equal is strong and may fail to account for overdispersion given the variability of the rate parameter (the variance exceeds the mean). Using an empirical example, we aimed to describe simple methods to test and correct for overdispersion. We used a regression-based score test for overdispersion under the relative survival framework and proposed different approaches to correct for overdispersion including a quasi-likelihood, robust standard errors estimation, negative binomial regression and flexible piecewise modelling. All piecewise exponential regression models showed the presence of significant inherent overdispersion (p-value <0.001). However, the flexible piecewise exponential model showed the smallest overdispersion parameter (3.2 versus 21.3) for non-flexible piecewise exponential models. We showed that there were no major differences between methods. However, using a flexible piecewise regression modelling, with either a quasi-likelihood or robust standard errors, was the best approach as it deals with both, overdispersion due to model misspecification and true or inherent overdispersion.

  7. Optimal savings and the value of population.

    PubMed

    Arrow, Kenneth J; Bensoussan, Alain; Feng, Qi; Sethi, Suresh P

    2007-11-20

    We study a model of economic growth in which an exogenously changing population enters in the objective function under total utilitarianism and into the state dynamics as the labor input to the production function. We consider an arbitrary population growth until it reaches a critical level (resp. saturation level) at which point it starts growing exponentially (resp. it stops growing altogether). This requires population as well as capital as state variables. By letting the population variable serve as the surrogate of time, we are still able to depict the optimal path and its convergence to the long-run equilibrium on a two-dimensional phase diagram. The phase diagram consists of a transient curve that reaches the classical curve associated with a positive exponential growth at the time the population reaches the critical level. In the case of an asymptotic population saturation, we expect the transient curve to approach the equilibrium as the population approaches its saturation level. Finally, we characterize the approaches to the classical curve and to the equilibrium.

  8. Optimal savings and the value of population

    PubMed Central

    Arrow, Kenneth J.; Bensoussan, Alain; Feng, Qi; Sethi, Suresh P.

    2007-01-01

    We study a model of economic growth in which an exogenously changing population enters in the objective function under total utilitarianism and into the state dynamics as the labor input to the production function. We consider an arbitrary population growth until it reaches a critical level (resp. saturation level) at which point it starts growing exponentially (resp. it stops growing altogether). This requires population as well as capital as state variables. By letting the population variable serve as the surrogate of time, we are still able to depict the optimal path and its convergence to the long-run equilibrium on a two-dimensional phase diagram. The phase diagram consists of a transient curve that reaches the classical curve associated with a positive exponential growth at the time the population reaches the critical level. In the case of an asymptotic population saturation, we expect the transient curve to approach the equilibrium as the population approaches its saturation level. Finally, we characterize the approaches to the classical curve and to the equilibrium. PMID:17984059

  9. Perspectives on population growth.

    PubMed

    1996-09-01

    Assume that everyone has the same information on population growth. There are many different opinions on what that information means and what should be done about it. Some people worry about current rates of growth, especially in the context of growing per capita consumption, and believe that all reasonable steps should be taken to reduce rates and stabilize population size. Others believe that growing populations can be accommodated by reducing consumption in rich countries, that technological progress will supply the new resources needed, that the development needed to support a larger population can be sustained, that large population size fosters prosperity, or that birth rates are falling and current growth is just temporary. These are all valid positions worthy of at least debate. Interest groups commonly acknowledgement population growth as a significant issue, but offer no response to it. Sometimes the issue goes unrecognized because it conflicts with a more highly valued personal agenda item. Finally, some responses come from confusion and anger rather than reasoning or self-interest. The proponents of these latter arguments bring nothing constructive to the debate.

  10. Compound haplotypes at Xp11.23 and human population growth in Eurasia.

    PubMed

    Alonso, S; Armour, J A L

    2004-09-01

    To investigate patterns of diversity and the evolutionary history of Eurasians, we have sequenced a 2.8 kb region at Xp11.23 in a sample of African and Eurasian chromosomes. This region is in a long intron of CLCN5 and is immediately flanked by a highly variable minisatellite, DXS255, and a human-specific Ta0 LINE. Compared to Africans, Eurasians showed a marked reduction in sequence diversity. The main Euro-Asiatic haplotype seems to be the ancestral haplotype for the whole sample. Coalescent simulations, including recombination and exponential growth, indicate a median length of strong linkage disequilibrium, up to approximately 9 kb for this area. The Ka/Ks ratio between the coding sequence of human CLCN5 and its mouse orthologue is much less than 1. This implies that the region sequenced is unlikely to be under the strong influence of positive selective processes on CLCN5, mutations in which have been associated with disorders such as Dent's disease. In contrast, a scenario based on a population bottleneck and exponential growth seems a more likely explanation for the reduced diversity observed in Eurasians. Coalescent analysis and linked minisatellite diversity (which reaches a gene diversity value greater than 98% in Eurasians) suggest an estimated age of origin of the Euro-Asiatic diversity compatible with a recent out-of-Africa model for colonization of Eurasia by modern Homo sapiens.

  11. Slow Crack Growth of Brittle Materials With Exponential Crack-Velocity Formulation. Part 3; Constant Stress and Cyclic Stress Experiments

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Nemeth, Noel N.; Gyekenyesi, John P.

    2002-01-01

    The previously determined life prediction analysis based on an exponential crack-velocity formulation was examined using a variety of experimental data on advanced structural ceramics tested under constant stress and cyclic stress loading at ambient and elevated temperatures. The data fit to the relation between the time to failure and applied stress (or maximum applied stress in cyclic loading) was very reasonable for most of the materials studied. It was also found that life prediction for cyclic stress loading from data of constant stress loading in the exponential formulation was in good agreement with the experimental data, resulting in a similar degree of accuracy as compared with the power-law formulation. The major limitation in the exponential crack-velocity formulation, however, was that the inert strength of a material must be known a priori to evaluate the important slow-crack-growth (SCG) parameter n, a significant drawback as compared with the conventional power-law crack-velocity formulation.

  12. Population growth, poverty and health.

    PubMed

    Kibirige, J S

    1997-07-01

    One of the most popular explanations for the many problems that face Africa is population growth. Africa's population has doubled since 1960. Africa has the highest fertility rate in the world and the rate of population growth is higher than in any other region. At the same time, Africa faces a social and economic situation that is viewed by many as alarming. Among the problems that devastate Africa is that of persistent poor health. Africa has lower life expectancy, higher mortality rates and is affected by more disease and illness conditions than any other region. Focusing on sub-Saharan Africa, this paper examines the relationship between population growth, poverty and poor health. While most analyses have focused on population growth as an original cause of poverty and underdevelopment, this paper argues that while both population growth and poor health play a significant role in exacerbating the problem of poverty, they are themselves primary consequences of poverty rather than its cause.

  13. Effect of benzalkonium chloride on viability and energy metabolism in exponential- and stationary-growth-phase cells of Listeria monocytogenes.

    PubMed

    Luppens, S B; Abee, T; Oosterom, J

    2001-04-01

    The difference in killing exponential- and stationary-phase cells of Listeria monocytogenes by benzalkonium chloride (BAC) was investigated by plate counting and linked to relevant bioenergetic parameters. At a low concentration of BAC (8 mg liter(-1)), a similar reduction in viable cell numbers was observed for stationary-phase cells and exponential-phase cells (an approximately 0.22-log unit reduction), although their membrane potential and pH gradient were dissipated. However, at higher concentrations of BAC, exponential-phase cells were more susceptible than stationary-phase cells. At 25 mg liter(-1), the difference in survival on plates was more than 3 log units. For both types of cells, killing, i.e., more than 1-log unit reduction in survival on plates, coincided with complete inhibition of acidification and respiration and total depletion of ATP pools. Killing efficiency was not influenced by the presence of glucose, brain heart infusion medium, or oxygen. Our results suggest that growth phase is one of the major factors that determine the susceptibility of L. monocytogenes to BAC.

  14. Limits to Growth--A Role Playing Activity.

    ERIC Educational Resources Information Center

    Intercom, 1985

    1985-01-01

    In this lesson, junior high students consider two instances of exponential population growth--one at the local community level and one at the world level--as a way of illuminating some of the problems posed by growth and the limits that may curtail it. (RM)

  15. Human Population: Fundamentals of Growth and Change.

    ERIC Educational Resources Information Center

    Stauffer, Cheryl Lynn, Ed.

    This booklet focuses on eight elements of population dynamics: "Population Growth and Distribution"; "Natural Increase and Future Growth"; "Effect of Migration on Population Growth"; "Three Patterns of Population Change"; "Patterns of World Urbanization"; "The Status of Women";…

  16. Flower Power: Sunflowers as a Model for Logistic Growth

    ERIC Educational Resources Information Center

    Fernandez, Eileen; Geist, Kristi A.

    2011-01-01

    Logistic growth displays an interesting pattern: It starts fast, exhibiting the rapid growth characteristic of exponential models. As time passes, it slows in response to constraints such as limited resources or reallocation of energy. The growth continues to slow until it reaches a limit, called capacity. When the growth describes a population,…

  17. Comparing Exponential and Exponentiated Models of Drug Demand in Cocaine Users

    PubMed Central

    Strickland, Justin C.; Lile, Joshua A.; Rush, Craig R.; Stoops, William W.

    2016-01-01

    Drug purchase tasks provide rapid and efficient measurement of drug demand. Zero values (i.e., prices with zero consumption) present a quantitative challenge when using exponential demand models that exponentiated models may resolve. We aimed to replicate and advance the utility of using an exponentiated model by demonstrating construct validity (i.e., association with real-world drug use) and generalizability across drug commodities. Participants (N = 40 cocaine-using adults) completed Cocaine, Alcohol, and Cigarette Purchase Tasks evaluating hypothetical consumption across changes in price. Exponentiated and exponential models were fit to these data using different treatments of zero consumption values, including retaining zeros or replacing them with 0.1, 0.01, 0.001. Excellent model fits were observed with the exponentiated model. Means and precision fluctuated with different replacement values when using the exponential model, but were consistent for the exponentiated model. The exponentiated model provided the strongest correlation between derived demand intensity (Q0) and self-reported free consumption in all instances (Cocaine r = .88; Alcohol r = .97; Cigarette r = .91). Cocaine demand elasticity was positively correlated with alcohol and cigarette elasticity. Exponentiated parameters were associated with real-world drug use (e.g., weekly cocaine use), whereas these correlations were less consistent for exponential parameters. Our findings show that selection of zero replacement values impact demand parameters and their association with drug-use outcomes when using the exponential model, but not the exponentiated model. This work supports the adoption of the exponentiated demand model by replicating improved fit and consistency, in addition to demonstrating construct validity and generalizability. PMID:27929347

  18. The Exponential Expansion of Simulation in Research

    DTIC Science & Technology

    2012-12-01

    exponential growth of computing power. Although other analytic approaches also benefit from this trend, keyword searches of several scholarly search ... engines reveal that the reliance on simulation is increasing more rapidly. A descriptive analysis paints a compelling picture: simulation is frequently

  19. Population Growth Types in India, 1961-71

    ERIC Educational Resources Information Center

    Chakravarti, A. K.

    1976-01-01

    An effective means of cartographic representation of India's population growth and its spatial characteristics is the focus of this paper. A population growth index and population growth types are discussed. (Author/ND)

  20. Comparing exponential and exponentiated models of drug demand in cocaine users.

    PubMed

    Strickland, Justin C; Lile, Joshua A; Rush, Craig R; Stoops, William W

    2016-12-01

    Drug purchase tasks provide rapid and efficient measurement of drug demand. Zero values (i.e., prices with zero consumption) present a quantitative challenge when using exponential demand models that exponentiated models may resolve. We aimed to replicate and advance the utility of using an exponentiated model by demonstrating construct validity (i.e., association with real-world drug use) and generalizability across drug commodities. Participants (N = 40 cocaine-using adults) completed Cocaine, Alcohol, and Cigarette Purchase Tasks evaluating hypothetical consumption across changes in price. Exponentiated and exponential models were fit to these data using different treatments of zero consumption values, including retaining zeros or replacing them with 0.1, 0.01, or 0.001. Excellent model fits were observed with the exponentiated model. Means and precision fluctuated with different replacement values when using the exponential model but were consistent for the exponentiated model. The exponentiated model provided the strongest correlation between derived demand intensity (Q0) and self-reported free consumption in all instances (Cocaine r = .88; Alcohol r = .97; Cigarette r = .91). Cocaine demand elasticity was positively correlated with alcohol and cigarette elasticity. Exponentiated parameters were associated with real-world drug use (e.g., weekly cocaine use) whereas these correlations were less consistent for exponential parameters. Our findings show that selection of zero replacement values affects demand parameters and their association with drug-use outcomes when using the exponential model but not the exponentiated model. This work supports the adoption of the exponentiated demand model by replicating improved fit and consistency and demonstrating construct validity and generalizability. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  1. 2D motility tracking of Pseudomonas putida KT2440 in growth phases using video microscopy

    PubMed Central

    Davis, Michael L.; Mounteer, Leslie C.; Stevens, Lindsey K.; Miller, Charles D.; Zhou, Anhong

    2011-01-01

    Pseudomonas putida KT2440 is a gram negative motile soil bacterium important in bioremediation and biotechnology. Thus, it is important to understand its motility characteristics as individuals and in populations. Population characteristics were determined using a modified Gompertz model. Video microscopy and imaging software were utilized to analyze two dimensional (2D) bacteria movement tracks to quantify individual bacteria behavior. It was determined that inoculum density increased the lag time as seeding densities decreased, and that the maximum specific growth rate decreased as seeding densities increased. Average bacterial velocity remained relatively similar throughout exponential growth phase (~20.9 µm/sec), while maximum velocities peak early in exponential growth phase at a velocity of 51.2 µm/sec. Pseudomonas putida KT2440 also favor smaller turn angles indicating they often continue in the same direction after a change in flagella rotation throughout the exponential growth phase. PMID:21334971

  2. Critical thresholds for eventual extinction in randomly disturbed population growth models.

    PubMed

    Peckham, Scott D; Waymire, Edward C; De Leenheer, Patrick

    2018-02-16

    This paper considers several single species growth models featuring a carrying capacity, which are subject to random disturbances that lead to instantaneous population reduction at the disturbance times. This is motivated in part by growing concerns about the impacts of climate change. Our main goal is to understand whether or not the species can persist in the long run. We consider the discrete-time stochastic process obtained by sampling the system immediately after the disturbances, and find various thresholds for several modes of convergence of this discrete process, including thresholds for the absence or existence of a positively supported invariant distribution. These thresholds are given explicitly in terms of the intensity and frequency of the disturbances on the one hand, and the population's growth characteristics on the other. We also perform a similar threshold analysis for the original continuous-time stochastic process, and obtain a formula that allows us to express the invariant distribution for this continuous-time process in terms of the invariant distribution of the discrete-time process, and vice versa. Examples illustrate that these distributions can differ, and this sends a cautionary message to practitioners who wish to parameterize these and related models using field data. Our analysis relies heavily on a particular feature shared by all the deterministic growth models considered here, namely that their solutions exhibit an exponentially weighted averaging property between a function of the initial condition, and the same function applied to the carrying capacity. This property is due to the fact that these systems can be transformed into affine systems.

  3. Population priorities: the challenge of continued rapid population growth.

    PubMed

    Turner, Adair

    2009-10-27

    Rapid population growth continues in the least developed countries. The revisionist case that rapid population could be overcome by technology, that population density was advantageous, that capital shallowing is not a vital concern and that empirical investigations had not proved a correlation between high population growth and low per capita income was both empirically and theoretically flawed. In the modern world, population density does not play the role it did in nineteenth-century Europe and rates of growth in some of today's least developed nations are four times than those in nineteenth-century Europe, and without major accumulation of capital per capita, no major economy has or is likely to make the low- to middle-income transition. Though not sufficient, capital accumulation for growth is absolutely essential to economic growth. While there are good reasons for objecting to the enforced nature of the Chinese one-child policy, we should not underestimate the positive impact which that policy has almost certainly had and will have over the next several decades on Chinese economic performance. And a valid reticence about telling developing countries that they must contain fertility should not lead us to underestimate the severely adverse impact of high fertility rates on the economic performance and prospects of many countries in Africa and the Middle East.

  4. Teaching the Verhulst Model: A Teaching Experiment in Covariational Reasoning and Exponential Growth

    ERIC Educational Resources Information Center

    Castillo-Garsow, Carlos

    2010-01-01

    Both Thompson and the duo of Confrey and Smith describe how students might be taught to build "ways of thinking" about exponential behavior by coordinating the covariation of two changing quantities, however, these authors build exponential behavior from different meanings of covariation. Confrey and Smith advocate beginning with discrete additive…

  5. Population Growth: Crisis and Challenge.

    ERIC Educational Resources Information Center

    Beaton, John R., Ed.; Doberenz, Alexander R., Ed.

    The proceedings of this first annual symposium on population growth considers the consequences of this growth, along with possible means of regulation. Topics of speeches include: Population Outlook in Asia (Irene Taeuber); Malnutrition is a Problem of Ecology (Paul Gyorgy); The Leisure Explosion (E. H. Storey); Effects of Pollution on Population…

  6. Canada's population: growth and dualism.

    PubMed

    Beaujot, R P

    1978-04-01

    In Canada the current 1.3% population growth rate is causing some concern. Those concerned argue that such a rate of growth in combination with high levels of consumption could jeopardize the country's resource base and its comfortable style of living. Many Canadians are questioning high levels of immigration, for now that the fertility level is below replacement level, net immigration contributes substantially to population growth (over 1/3 in 1976). The growing proportion of non-Europeans among recent immigrants is causing resentment, and, in a tight job market, immigrants are regarded as threats to the World War 2 baby boom cohort who are now at working ages. The baby boom generation also puts stress on housing and health services, and it will increase the need for pension checks as it ages. Although French fertility is no longer high and immigration is no longer dominated by the British, the French group's 200-year struggle to preserve its identity continues on in the current effort of the Quebec government to enforce the use of French language by law within that province. Geography and climate dictate another demographic fact that divides the country and pervades its history. In addition to intense regionalism, uneven population distribution is responsible for 2 other concerns: the rapid growth of several already large cities and depopulation of many small communities. Focus in this discussion is on Canada's population growth in the past and as projected for the future, historical and current fertility, mortality and immigration trends, the search for a new immigration policy, the impact of the baby boom generation on the population's age structure and the problems this creates, and recent shifts in population distribution and in the country's ethnic and linguistic makeup. The population policy proposals evolved thus far involve to a great extent the use of immigration as a lever for achieving given population objectives.

  7. 2D motility tracking of Pseudomonas putida KT2440 in growth phases using video microscopy.

    PubMed

    Davis, Michael L; Mounteer, Leslie C; Stevens, Lindsey K; Miller, Charles D; Zhou, Anhong

    2011-05-01

    Pseudomonas putida KT2440 is a gram negative motile soil bacterium important in bioremediation and biotechnology. Thus, it is important to understand its motility characteristics as individuals and in populations. Population characteristics were determined using a modified Gompertz model. Video microscopy and imaging software were utilized to analyze two dimensional (2D) bacteria movement tracks to quantify individual bacteria behavior. It was determined that inoculum density increased the lag time as seeding densities decreased, and that the maximum specific growth rate decreased as seeding densities increased. Average bacterial velocity remained relatively similar throughout the exponential growth phase (~20.9 μm/s), while maximum velocities peak early in the exponential growth phase at a velocity of 51.2 μm/s. P. putida KT2440 also favors smaller turn angles indicating that they often continue in the same direction after a change in flagella rotation throughout the exponential growth phase. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. Teaching about Population Growth.

    ERIC Educational Resources Information Center

    Otero, George G., Jr., Comp.

    This teaching guide contains 20 activities on population growth for students in grades 6-12. The purpose is to help students gain the skills, knowledge, and understanding of population dynamics so that they can make rational decisions and take responsible action regarding population matters and public policy. Activities are organized around the…

  9. Population growth, inequality and poverty.

    PubMed

    Rodgers, G

    1983-01-01

    In this discussion of population growth, inequality, and poverty, the type of relationships that can be observed in intercountry comparisons are explored, reviewing the findings of several other authors, presenting some new estimates using an International Labor Office data bank, considering some basic conceptual problems, and examining some of the theoretical and empirical issues that call for investigation at the national level. Intercountry comparisons, despite their limitations, appear to be the easiest starting point for empirical analysis. The approach adopted by most researchers has been to select 1 or more population indicators and a measure of national income inequality and to explain intercountry differences in 1 or both of these variables in terms of each other and of other indicators of economic and social development. Underlying this methodology is the assumption that there are aspects of demographic and economic change that are common to all countries included in the study, so that differences between countries give some guide to the likely evolution over time within any 1 country. This can be accepted at best with reservations, but given the scarcity of data on the evolution of inequality over time, a working hypothesis of this type appears unavoidable. But, as many of the factors likely to cause population growth and inequality operate over extended periods of time, a dynamic model is indicated. A simpler model, which pays particular attention to lags and variations over time, may generate new insights. A summary of the results of a new international cross-section analysis set up on these lines is presented. Results suggest that contrary to expectations, reducing population growth does not seem to generate longterm benefits for the poor in this model, though some short term gains are found. Increasing equality does appear to generate some decline in population growth, as well as persistent gains in incomes among the poor, but the reductions in

  10. Population growth and development: the case of Bangladesh.

    PubMed

    Nakibullah, A

    1998-04-01

    In a poor, overly populated country such as Bangladesh, some believe that a high rate of population growth is a cause of poverty which impedes economic development. Population growth would therefore be exogenous to economic development. However, others believe that rapid population growth is a consequence rather than a cause of poverty. Population growth is therefore endogenous to economic development. Findings are presented from an investigation of whether population growth has been exogenous or endogenous with respect to Bangladesh's development process during the past 3 decades. The increase in per capita real gross domestic product (GDP) is used as a measure of development. Data on population, real GDP per capita, and real investment share of GDP are drawn from the Penn World Table prepared by Summers and Heston in 1991. The data are annual and cover the period 1959-90. Analysis of the data indicate that population growth is endogenous to Bangladesh's development process. These findings are reflected both in the Granger causality tests and the decompositions of variances of detrended real GDP per capita and population growth.

  11. The containment of world population growth.

    PubMed

    Caldwell, J C

    1975-12-01

    The world has reached the present position of unprecedentedly rapid population growth not by achieving uniquely high fertility but by bringing about extraordinarily low mortality. The high growth rate and the built-in momentum of the age structure are obstacles to achievement of an acceptable standard of living for most of the world's population. Although government population programs have the potential to curb this growth rate, this potential has not been realized, and such programs are too often perceived both by their administrators and the population concerned as an end in themselves rather than a means toward a better standard of living. It is in this latter perspective, and in the context of the total development process, that population programs should be implemented.

  12. Population growth rates: issues and an application.

    PubMed Central

    Godfray, H Charles J; Rees, Mark

    2002-01-01

    Current issues in population dynamics are discussed in the context of The Royal Society Discussion Meeting 'Population growth rate: determining factors and role in population regulation'. In particular, different views on the centrality of population growth rates to the study of population dynamics and the role of experiments and theory are explored. Major themes emerging include the role of modern statistical techniques in bringing together experimental and theoretical studies, the importance of long-term experimentation and the need for ecology to have model systems, and the value of population growth rate as a means of understanding and predicting population change. The last point is illustrated by the application of a recently introduced technique, integral projection modelling, to study the population growth rate of a monocarpic perennial plant, its elasticities to different life-history components and the evolution of an evolutionarily stable strategy size at flowering. PMID:12396521

  13. Population growth and global security

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mumford, S.

    A new threat to international and domestic security has emerged in the past three decades: uncontrolled world population growth. Current world population growth control efforts are ineffective. Unchecked growth will threaten global security by depleting food, energy, and other resources. Immigration is another complicating factor that is straining the carrying capacity of some overpopulated regions. Barriers to effective action include the desire of decision-makers to avoid the controversy of abortion and the role of the Catholic church in lobbying against birth control. (3 graphs, 12 photos, 2 tables)

  14. Kinetic Model of Growth of Arthropoda Populations

    NASA Astrophysics Data System (ADS)

    Ershov, Yu. A.; Kuznetsov, M. A.

    2018-05-01

    Kinetic equations were derived for calculating the growth of crustacean populations ( Crustacea) based on the biological growth model suggested earlier using shrimp ( Caridea) populations as an example. The development cycle of successive stages for populations can be represented in the form of quasi-chemical equations. The kinetic equations that describe the development cycle of crustaceans allow quantitative prediction of the development of populations depending on conditions. In contrast to extrapolation-simulation models, in the developed kinetic model of biological growth the kinetic parameters are the experimental characteristics of population growth. Verification and parametric identification of the developed model on the basis of the experimental data showed agreement with experiment within the error of the measurement technique.

  15. Metropolitan population growth in Arab countries.

    PubMed

    Vaidyanathan, K E

    1977-01-01

    A study or urban population growth in Arab countries has 3 objectives: 1) examination at the micro level of recent demographic trends in selected metropolitan areas of the Arab world and their relationship to changes in the total and urban populations in the respective countries; 2) estimation of net migration by sex and broad age groups for each metropolitan area; and 3) analysis of the pattern of variation in the metropolitan growth rates and their components, migration and natural increase. The study covers the cities proper or urban agglomerations, which includes the suburbs, whose population exceeded 100,000 in the most recent census. Altogether, the study covers 49 metropolitan areas from 9 Arab countries--Algeria; Morocco; Tunisia; Libya; Egypt; Sudan; Syria; Iraq; and Kuwait. Analysis revealed that metropolitan growth rates do follow geographic patterns. In countries with an oil-based economy, metropolitan growth rates are high; in countries with unexploited resources they are slightly below the 1st group; and countries which have pressure on land have low metropolitan growth rates. Population size of the metropolitan area appears to be an important factor associated with variations in metropolitan growth rates and net migration rates. Natural increase emerges as the predominant factor in metropolitan growth, but the differentials in the growth rates are more clearly associated with variations in net migration rates. As all the possibilities of analysis of relationships of metropolitan growth have not been exhausted, it is proposed to examine additional variables as possible factors associated with the speed of metropolitan growth.

  16. Liver fibrosis: stretched exponential model outperforms mono-exponential and bi-exponential models of diffusion-weighted MRI.

    PubMed

    Seo, Nieun; Chung, Yong Eun; Park, Yung Nyun; Kim, Eunju; Hwang, Jinwoo; Kim, Myeong-Jin

    2018-07-01

    To compare the ability of diffusion-weighted imaging (DWI) parameters acquired from three different models for the diagnosis of hepatic fibrosis (HF). Ninety-five patients underwent DWI using nine b values at 3 T magnetic resonance. The hepatic apparent diffusion coefficient (ADC) from a mono-exponential model, the true diffusion coefficient (D t ), pseudo-diffusion coefficient (D p ) and perfusion fraction (f) from a biexponential model, and the distributed diffusion coefficient (DDC) and intravoxel heterogeneity index (α) from a stretched exponential model were compared with the pathological HF stage. For the stretched exponential model, parameters were also obtained using a dataset of six b values (DDC # , α # ). The diagnostic performances of the parameters for HF staging were evaluated with Obuchowski measures and receiver operating characteristics (ROC) analysis. The measurement variability of DWI parameters was evaluated using the coefficient of variation (CoV). Diagnostic accuracy for HF staging was highest for DDC # (Obuchowski measures, 0.770 ± 0.03), and it was significantly higher than that of ADC (0.597 ± 0.05, p < 0.001), D t (0.575 ± 0.05, p < 0.001) and f (0.669 ± 0.04, p = 0.035). The parameters from stretched exponential DWI and D p showed higher areas under the ROC curve (AUCs) for determining significant fibrosis (≥F2) and cirrhosis (F = 4) than other parameters. However, D p showed significantly higher measurement variability (CoV, 74.6%) than DDC # (16.1%, p < 0.001) and α # (15.1%, p < 0.001). Stretched exponential DWI is a promising method for HF staging with good diagnostic performance and fewer b-value acquisitions, allowing shorter acquisition time. • Stretched exponential DWI provides a precise and accurate model for HF staging. • Stretched exponential DWI parameters are more reliable than D p from bi-exponential DWI model • Acquisition of six b values is sufficient to obtain accurate DDC and α.

  17. Optimized O'Neill/Glaser Model for Human Population of Space and its Impact on Survival Probabilities

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A.

    2010-01-01

    Two contemporary issues foretell a shift from our historical Earth based industrial economy and habitation to a solar system based society. The first is the limits to Earth's carrying capacity, that is the maximum number of people that the Earth can support before a catastrophic impact to the health of the planet and human species occurs. The simple example of carrying capacity is that of a bacterial colony in a Petri dish with a limited amount of nutrient. The colony experiences exponential population growth until the carrying capacity is reached after which catastrophic depopulation often results. Estimates of the Earth s carrying capacity vary between 14 and 40 billion people. Although at current population growth rates we may have over a century before we reach Earth s carrying limit our influence on climate and resources on the planetary scale is becoming scientifically established. The second issue is the exponential growth of knowledge and technological power. The exponential growth of technology interacts with the exponential growth of population in a manner that is unique to a highly intelligent species. Thus, the predicted consequences (world famines etc.) of the limits to growth have been largely avoided due to technological advances. However, at the mid twentieth century a critical coincidence occurred in these two trends humanity obtained the technological ability to extinguish life on the planetary scale (by nuclear, chemical, biological means) and attained the ability to expand human life beyond Earth. This paper examines an optimized O Neill/Glaser model (O Neill 1975; Curreri 2007; Detweiler and Curreri 2008) for the economic human population of space. Critical to this model is the utilization of extraterrestrial resources, solar power and spaced based labor. A simple statistical analysis is then performed which predicts the robustness of a single planet based technological society versus that of multiple world (independent habitats) society.

  18. Optimized O'Neill/Glaser Model for Human Population of Space and its Impact on Survival Probabilities

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A.

    2010-01-01

    Two contemporary issues foretell a shift from our historical Earth based industrial economy and habitation to a solar system based society. The first is the limits to Earth s carrying capacity, that is the maximum number of people that the Earth can support before a catastrophic impact to the health of the planet and human species occurs. The simple example of carrying capacity is that of a bacterial colony in a Petri dish with a limited amount of nutrient. The colony experiences exponential population growth until the carrying capacity is reached after which catastrophic depopulation often results. Estimates of the Earth s carrying capacity vary between 14 and 40 billion people. Although at current population growth rates we may have over a century before we reach Earth s carrying limit our influence on climate and resources on the planetary scale is becoming scientifically established. The second issue is the exponential growth of knowledge and technological power. The exponential growth of technology interacts with the exponential growth of population in a manner that is unique to a highly intelligent species. Thus, the predicted consequences (world famines etc.) of the limits to growth have been largely avoided due to technological advances. However, at the mid twentieth century a critical coincidence occurred in these two trends humanity obtained the technological ability to extinguish life on the planetary scale (by nuclear, chemical, biological means) and attained the ability to expand human life beyond Earth. This paper examines an optimized O Neill/Glaser model (O Neill 1975; Curreri 2007; Detweiler and Curreri 2008) for the economic human population of space. Critical to this model is the utilization of extraterrestrial resources, solar power and spaced based labor. A simple statistical analysis is then performed which predicts the robustness of a single planet based technological society versus that of multiple world (independent habitats) society.

  19. Optimized O'Neill/Glaser Model for Human Population of Space and its Impact on Survival Probabilities

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A.

    2010-01-01

    Two contemporary issues foretell a shift from our historical Earth based industrial economy and habitation to a solar system based society. The first is the limits to Earth s carrying capacity, that is the maximum number of people that the Earth can support before a catastrophic impact to the health of the planet and human species occurs. The simple example of carrying capacity is that of a bacterial colony in a Petri dish with a limited amount of nutrient. The colony experiences exponential population growth until the carrying capacity is reached after which catastrophic depopulation often results. Estimates of the Earth s carrying capacity vary between 14 and 40 billion people. Although at current population growth rates we may have over a century before we reach Earth s carrying limit our influence on climate and resources on the planetary scale is becoming scientifically established. The second issue is the exponential growth of knowledge and technological power. The exponential growth of technology interacts with the exponential growth of population in a manner that is unique to a highly intelligent species. Thus, the predicted consequences (world famines etc.) of the limits to growth have been largely avoided due to technological advances. However, at the mid twentieth century a critical coincidence occurred in these two trends humanity obtained the technological ability to extinguish life on the planetary scale (by nuclear, chemical, biological means) and attained the ability to expand human life beyond Earth. This paper examines an optimized O'Neill/Glaser model (O Neill 1975; Curreri 2007; Detweiler and Curreri 2008) for the economic human population of space. Critical to this model is the utilization of extraterrestrial resources, solar power and spaced based labor. A simple statistical analysis is then performed which predicts the robustness of a single planet based technological society versus that of multiple world (independent habitats) society.

  20. Population and prehistory I: Food-dependent population growth in constant environments.

    PubMed

    Lee, Charlotte T; Tuljapurkar, Shripad

    2008-06-01

    We present a demographic model that describes the feedbacks between food supply, human mortality and fertility rates, and labor availability in expanding populations, where arable land area is not limiting. This model provides a quantitative framework to describe how environment, technology, and culture interact to influence the fates of preindustrial agricultural populations. We present equilibrium conditions and derive approximations for the equilibrium population growth rate, food availability, and other food-dependent measures of population well-being. We examine how the approximations respond to environmental changes and to human choices, and find that the impact of environmental quality depends upon whether it manifests through agricultural yield or maximum (food-independent) survival rates. Human choices can complement or offset environmental effects: greater labor investments increase both population growth and well-being, and therefore can counteract lower agricultural yield, while fertility control decreases the growth rate but can increase or decrease well-being. Finally we establish equilibrium stability criteria, and argue that the potential for loss of local stability at low population growth rates could have important consequences for populations that suffer significant environmental or demographic shocks.

  1. The Oenococcus oeni clpX Homologue Is a Heat Shock Gene Preferentially Expressed in Exponential Growth Phase

    PubMed Central

    Jobin, Michel-Philippe; Garmyn, Dominique; Diviès, Charles; Guzzo, Jean

    1999-01-01

    Using degenerated primers from conserved regions of previously studied clpX gene products, we cloned the clpX gene of the malolactic bacterium Oenococcus oeni. The clpX gene was sequenced, and the deduced protein of 413 amino acids (predicted molecular mass of 45,650 Da) was highly similar to previously analyzed clpX gene products from other organisms. An open reading frame located upstream of the clpX gene was identified as the tig gene by similarity of its predicted product to other bacterial trigger factors. ClpX was purified by using a maltose binding protein fusion system and was shown to possess an ATPase activity. Northern analyses indicated the presence of two independent 1.6-kb monocistronic clpX and tig mRNAs and also showed an increase in clpX mRNA amount after a temperature shift from 30 to 42°C. The clpX transcript is abundant in the early exponential growth phase and progressively declines to undetectable levels in the stationary phase. Thus, unlike hsp18, the gene encoding one of the major small heat shock proteins of Oenococcus oeni, clpX expression is related to the exponential growth phase and requires de novo protein synthesis. Primer extension analysis identified the 5′ end of clpX mRNA which is located 408 nucleotides upstream of a putative AUA start codon. The putative transcription start site allowed identification of a predicted promoter sequence with a high similarity to the consensus sequence found in the housekeeping gene promoter of gram-positive bacteria as well as Escherichia coli. PMID:10542163

  2. Real-Time Exponential Curve Fits Using Discrete Calculus

    NASA Technical Reports Server (NTRS)

    Rowe, Geoffrey

    2010-01-01

    An improved solution for curve fitting data to an exponential equation (y = Ae(exp Bt) + C) has been developed. This improvement is in four areas -- speed, stability, determinant processing time, and the removal of limits. The solution presented avoids iterative techniques and their stability errors by using three mathematical ideas: discrete calculus, a special relationship (be tween exponential curves and the Mean Value Theorem for Derivatives), and a simple linear curve fit algorithm. This method can also be applied to fitting data to the general power law equation y = Ax(exp B) + C and the general geometric growth equation y = Ak(exp Bt) + C.

  3. Political economy of population growth.

    PubMed

    Mehta, S; Mehta, H S

    1987-01-01

    Tracing the origin of political economy as a class-science, this paper focuses on the political economy of population growth. Exposing the limitations of Malthusian ideas and their invalidity even for the capitalist economies, it discusses the subsequent revival of the Malthusian model during the period of de-colonization and the misinterpretation of the relationship between population growth and development in the developing and developed countries. Taking India, China, and Japan as some case studies, the paper examines the relationship between birth rate levels and some correlates. It elaborates on the Indian experience, emphasizing the association of population growth with poverty and unemployment and lays bare some of the hidden causes of these phenomena. The authors examine some interstate variations in India and identify constraints and prospects of the existing population policy. The paper proposes outlines of a democratic population policy as an integral part of India's development strategy which should recognize human beings not simply as consumers but also as producers of material values. It pleads for 1) restructuring of property relations; 2) bringing down the mortality rates and raising of the literacy levels, especially among females; and 3) improving nutritional levels, as prerequisites for bringing down birth rates.

  4. Optimal population size and endogenous growth.

    PubMed

    Palivos, T; Yip, C K

    1993-01-01

    "Many applications in economics require the selection of an objective function which enables the comparison of allocations involving different population sizes. The two most commonly used criteria are the Benthamite and the Millian welfare functions, also known as classical and average utilitarianism, respectively. The former maximizes total utility of the society and thus represents individuals, while the latter maximizes average utility and so represents generations. Edgeworth (1925) was the first to conjecture, that the Benthamite principle leads to a larger population size and a lower standard of living.... The purpose of this paper is to examine Edgeworth's conjecture in an endogenous growth framework in which there are interactions between output and population growth rates. It is shown that, under conditions that ensure an optimum, the Benthamite criterion leads to smaller population and higher output growth rates than the Millian." excerpt

  5. Non-exponential kinetics of unfolding under a constant force.

    PubMed

    Bell, Samuel; Terentjev, Eugene M

    2016-11-14

    We examine the population dynamics of naturally folded globular polymers, with a super-hydrophobic "core" inserted at a prescribed point in the polymer chain, unfolding under an application of external force, as in AFM force-clamp spectroscopy. This acts as a crude model for a large class of folded biomolecules with hydrophobic or hydrogen-bonded cores. We find that the introduction of super-hydrophobic units leads to a stochastic variation in the unfolding rate, even when the positions of the added monomers are fixed. This leads to the average non-exponential population dynamics, which is consistent with a variety of experimental data and does not require any intrinsic quenched disorder that was traditionally thought to be at the origin of non-exponential relaxation laws.

  6. Non-exponential kinetics of unfolding under a constant force

    NASA Astrophysics Data System (ADS)

    Bell, Samuel; Terentjev, Eugene M.

    2016-11-01

    We examine the population dynamics of naturally folded globular polymers, with a super-hydrophobic "core" inserted at a prescribed point in the polymer chain, unfolding under an application of external force, as in AFM force-clamp spectroscopy. This acts as a crude model for a large class of folded biomolecules with hydrophobic or hydrogen-bonded cores. We find that the introduction of super-hydrophobic units leads to a stochastic variation in the unfolding rate, even when the positions of the added monomers are fixed. This leads to the average non-exponential population dynamics, which is consistent with a variety of experimental data and does not require any intrinsic quenched disorder that was traditionally thought to be at the origin of non-exponential relaxation laws.

  7. The Population Growth and Carrying Capacity in Semarang City

    NASA Astrophysics Data System (ADS)

    Hariyanto; Hadi, Sudharto P.; Buchori, Imam

    2018-02-01

    Population growth and development of city activities take some lands to carry them. As a result, land use competition happens among persons, society or sector. Land necessity for settlement, industry, or sector has taken over farm land, therefore farm land has been converted intensively and massively. Chronologically, population growth will cause land necessity increase. Unproductive land, especially farm land will be converted. Furthermore, farm land conversion will cause carrying capacity change. Carrying capacity has certain bio capacity. With the population growth, it will increase resource consumption; on the other side, farm land conversion will decrease carrying capacity. The objective of the study is to know about the influence of population growth towards carrying capacity (bio capacity) in Semarang city. Land consumption per capita is indeed influenced by city population, the higher the population is, the lower the land consumption per capita. With the population growth, it will influence carrying capacity. Carrying capacity here is the ratio of area to population. Analytical descriptive method is applied in the study with all sub-districts in Semarang city as the analysis unit. Population here is sub-district area and population per sub-district in Semarang city. Population growth data period is from 2000 until 2015. Main variables of the study are area per sub-district, population, population growth, carrying capacity. Result of the study shows significant influence of carrying capacity decrease, especially some outskirts in Semarang city. This condition happens because the outskirts in Semarang city tend to have dense population growth. Range of carrying capacity in Semarang city is from 0,007 to 0,117 of 0 to 1. Almost all sub-districts in Semarang city show miserable condition, except Mijen and Tugu. The conclusion of the study is that population will decrease carrying capacity. Therefore, the government should control population growth by paying

  8. Population models of burrowing mayfly recolonization in Western Lake Erie

    USGS Publications Warehouse

    Madenjian, C.P.; Schloesser, D.W.; Krieger, K.A.

    1998-01-01

    Burrowing mayflies, Hexagenia spp. (H. limbata and H. rigida), began recolonizing western Lake Erie during the 1990s. Survey data for mayfly nymph densities indicated that the population experienced exponential growth between 1991 and 1997. To predict the time to full recovery of the mayfly population, we fitted logistic models, ranging in carrying capacity from 600 to 2000 nymphs/m2, to these survey data. Based on the fitted logistic curves, we forecast that the mayfly population in western Lake Erie would achieve full recovery between years 1998 and 2000, depending on the carrying capacity of the western basin. Additionally, we estimated the mortality rate of nymphs in western Lake Erie during 1994 and then applied an age-based matrix model to the mayfly population. The results of the matrix population modeling corroborated the exponential growth model application in that both methods yielded an estimate of the population growth rate, r, in excess of 0.8 yr-1. This was the first evidence that mayfly populations are capable of recolonizing large aquatic ecosystems at rates comparable with those observed in much smaller lentic ecosystems. Our model predictions should prove valuable to managers of power plant facilities along the western basin in planning for mayfly emergences and to managers of the yellow perch (Perca flavescens) fishery in western Lake Erie.

  9. Density-Dependent Growth in Invasive Lionfish (Pterois volitans)

    PubMed Central

    Benkwitt, Cassandra E.

    2013-01-01

    Direct demographic density dependence is necessary for population regulation and is a central concept in ecology, yet has not been studied in many invasive species, including any invasive marine fish. The red lionfish (Pterois volitans) is an invasive predatory marine fish that is undergoing exponential population growth throughout the tropical western Atlantic. Invasive lionfish threaten coral-reef ecosystems, but there is currently no evidence of any natural population control. Therefore, a manipulative field experiment was conducted to test for density dependence in lionfish. Juvenile lionfish densities were adjusted on small reefs and several demographic rates (growth, recruitment, immigration, and loss) were measured throughout an 8-week period. Invasive lionfish exhibited direct density dependence in individual growth rates, as lionfish grew slower at higher densities throughout the study. Individual growth in length declined linearly with increasing lionfish density, while growth in mass declined exponentially with increasing density. There was no evidence, however, for density dependence in recruitment, immigration, or loss (mortality plus emigration) of invasive lionfish. The observed density-dependent growth rates may have implications for which native species are susceptible to lionfish predation, as the size and type of prey that lionfish consume is directly related to their body size. The absence of density-dependent loss, however, contrasts with many native coral-reef fish species and suggests that for the foreseeable future manual removals may be the only effective local control of this invasion. PMID:23825604

  10. Density-dependent growth in invasive Lionfish (Pterois volitans).

    PubMed

    Benkwitt, Cassandra E

    2013-01-01

    Direct demographic density dependence is necessary for population regulation and is a central concept in ecology, yet has not been studied in many invasive species, including any invasive marine fish. The red lionfish (Pterois volitans) is an invasive predatory marine fish that is undergoing exponential population growth throughout the tropical western Atlantic. Invasive lionfish threaten coral-reef ecosystems, but there is currently no evidence of any natural population control. Therefore, a manipulative field experiment was conducted to test for density dependence in lionfish. Juvenile lionfish densities were adjusted on small reefs and several demographic rates (growth, recruitment, immigration, and loss) were measured throughout an 8-week period. Invasive lionfish exhibited direct density dependence in individual growth rates, as lionfish grew slower at higher densities throughout the study. Individual growth in length declined linearly with increasing lionfish density, while growth in mass declined exponentially with increasing density. There was no evidence, however, for density dependence in recruitment, immigration, or loss (mortality plus emigration) of invasive lionfish. The observed density-dependent growth rates may have implications for which native species are susceptible to lionfish predation, as the size and type of prey that lionfish consume is directly related to their body size. The absence of density-dependent loss, however, contrasts with many native coral-reef fish species and suggests that for the foreseeable future manual removals may be the only effective local control of this invasion.

  11. Theoretical and Experimental Study of Bacterial Colony Growth in 3D

    NASA Astrophysics Data System (ADS)

    Shao, Xinxian; Mugler, Andrew; Nemenman, Ilya

    2014-03-01

    Bacterial cells growing in liquid culture have been well studied and modeled. However, in nature, bacteria often grow as biofilms or colonies in physically structured habitats. A comprehensive model for population growth in such conditions has not yet been developed. Based on the well-established theory for bacterial growth in liquid culture, we develop a model for colony growth in 3D in which a homogeneous colony of cells locally consume a diffusing nutrient. We predict that colony growth is initially exponential, as in liquid culture, but quickly slows to sub-exponential after nutrient is locally depleted. This prediction is consistent with our experiments performed with E. coli in soft agar. Our model provides a baseline to which studies of complex growth process, such as such as spatially and phenotypically heterogeneous colonies, must be compared.

  12. The Growth of Older Inmate Populations: How Population Aging Explains Rising Age at Admission.

    PubMed

    Luallen, Jeremy; Cutler, Christopher

    2017-09-01

    Older inmates are the fastest growing segment of the prison population; however, the reasons for this are not well understood. One explanation is that the general population is aging, driving prison age distributions to change. For this article, we study the role of population aging in prison growth by investigating how the baby boom phenomenon of post-World War II has contributed to the growth of older inmate populations. We identify the impact of population aging using simulation methods that explain prison growth as the combination of criminal justice processes. Overall, we find evidence that population aging has played a significant role in explaining the growth of older inmate populations, in particular among inmates aged between 50 and 64 years, contributing to as much as half of the observed increase in these groups since 2000. This finding stands in contrast to the notion that population aging has little explanatory power in describing the growth of prison populations and implies that older inmate groups are more sensitive to compositional changes in the general population. We argue that prediction-based modeling of prison growth should more seriously consider the impacts and consequences of demographic shifts among older prisoner populations. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Poverty-led higher population growth in Bangladesh.

    PubMed

    Nakibullah, A; Rahman, A

    1996-01-01

    This article discusses the issue whether population growth is exogenous or endogenous in the economic development of Bangladesh. Overpopulation adversely affects food supplies, foreign exchange, and human resources. Moreover, it depresses savings per capita and retards growth of physical capital per labor. Underdeveloped countries, like Bangladesh, are faced with the problem of allocating resources between infrastructure, education, and health service that are essential for human capital development and population control measures. With this, determination whether fertility is exogenous or endogenous is important for policy purposes in the context of Bangladesh. Results showed that there is a correlation between population growth and real gross domestic products per capita. Based on Granger causality test, population growth is endogenous in the development process of Bangladesh and its overpopulation is due to poverty. Thus, there is a need for appropriate policy to take measures to improve human capital and decrease fertility rates.

  14. Power law incidence rate in epidemic models. Comment on: "Mathematical models to characterize early epidemic growth: A review" by Gerardo Chowell et al.

    NASA Astrophysics Data System (ADS)

    Allen, Linda J. S.

    2016-09-01

    Dr. Chowell and colleagues emphasize the importance of considering a variety of modeling approaches to characterize the growth of an epidemic during the early stages [1]. A fit of data from the 2009 H1N1 influenza pandemic and the 2014-2015 Ebola outbreak to models indicates sub-exponential growth, in contrast to the classic, homogeneous-mixing SIR model with exponential growth. With incidence rate βSI / N and S approximately equal to the total population size N, the number of new infections in an SIR epidemic model grows exponentially as in the differential equation,

  15. U.S. Population Growth: Prospects and Policy.

    ERIC Educational Resources Information Center

    McFalls, Joseph A., Jr.; And Others

    1984-01-01

    The Commission on Population Growth and the American Future concluded that zero population growth (ZPG) is in the best interest of the United States. To achieve ZPG in the future, the United States must keep fertility and net immigration relatively low. Practical problems are discussed. (RM)

  16. Exponential growth and selection in self-replicating materials from DNA origami rafts

    NASA Astrophysics Data System (ADS)

    He, Xiaojin; Sha, Ruojie; Zhuo, Rebecca; Mi, Yongli; Chaikin, Paul M.; Seeman, Nadrian C.

    2017-10-01

    Self-replication and evolution under selective pressure are inherent phenomena in life, and but few artificial systems exhibit these phenomena. We have designed a system of DNA origami rafts that exponentially replicates a seed pattern, doubling the copies in each diurnal-like cycle of temperature and ultraviolet illumination, producing more than 7 million copies in 24 cycles. We demonstrate environmental selection in growing populations by incorporating pH-sensitive binding in two subpopulations. In one species, pH-sensitive triplex DNA bonds enable parent-daughter templating, while in the second species, triplex binding inhibits the formation of duplex DNA templating. At pH 5.3, the replication rate of species I is ~1.3-1.4 times faster than that of species II. At pH 7.8, the replication rates are reversed. When mixed together in the same vial, the progeny of species I replicate preferentially at pH 7.8 similarly at pH 5.3, the progeny of species II take over the system. This addressable selectivity should be adaptable to the selection and evolution of multi-component self-replicating materials in the nanoscopic-to-microscopic size range.

  17. Impact of population growth and population ethics on climate change mitigation policy

    PubMed Central

    Scovronick, Noah; Budolfson, Mark B.; Dennig, Francis; Fleurbaey, Marc; Siebert, Asher; Socolow, Robert H.; Spears, Dean; Wagner, Fabian

    2017-01-01

    Future population growth is uncertain and matters for climate policy: higher growth entails more emissions and means more people will be vulnerable to climate-related impacts. We show that how future population is valued importantly determines mitigation decisions. Using the Dynamic Integrated Climate-Economy model, we explore two approaches to valuing population: a discounted version of total utilitarianism (TU), which considers total wellbeing and is standard in social cost of carbon dioxide (SCC) models, and of average utilitarianism (AU), which ignores population size and sums only each time period’s discounted average wellbeing. Under both approaches, as population increases the SCC increases, but optimal peak temperature decreases. The effect is larger under TU, because it responds to the fact that a larger population means climate change hurts more people: for example, in 2025, assuming the United Nations (UN)-high rather than UN-low population scenario entails an increase in the SCC of 85% under TU vs. 5% under AU. The difference in the SCC between the two population scenarios under TU is comparable to commonly debated decisions regarding time discounting. Additionally, we estimate the avoided mitigation costs implied by plausible reductions in population growth, finding that large near-term savings ($billions annually) occur under TU; savings under AU emerge in the more distant future. These savings are larger than spending shortfalls for human development policies that may lower fertility. Finally, we show that whether lowering population growth entails overall improvements in wellbeing—rather than merely cost savings—again depends on the ethical approach to valuing population. PMID:29087298

  18. Hispanic Population Growth and Rural Income Inequality

    ERIC Educational Resources Information Center

    Parrado, Emilio A.; Kandel, William A.

    2010-01-01

    We analyze the relationship between Hispanic population growth and changes in U.S. rural income inequality from 1990 through 2000. Applying comparative approaches used for urban areas we disentangle Hispanic population growth's contribution to inequality by comparing and statistically modeling changes in the family income Gini coefficient across…

  19. Population Growth and Economic and Social Development.

    ERIC Educational Resources Information Center

    Clausen, A. W.

    Because evidence is clear that in many developing countries development will be postponed indefinitely unless slower population growth can be achieved soon, the international community must work together in a renewed effort to slow population growth. Assistance can be accomplished in three ways: (1) encouraging dialog aimed at forging…

  20. In vivo growth of 60 non-screening detected lung cancers: a computed tomography study.

    PubMed

    Mets, Onno M; Chung, Kaman; Zanen, Pieter; Scholten, Ernst T; Veldhuis, Wouter B; van Ginneken, Bram; Prokop, Mathias; Schaefer-Prokop, Cornelia M; de Jong, Pim A

    2018-04-01

    Current pulmonary nodule management guidelines are based on nodule volume doubling time, which assumes exponential growth behaviour. However, this is a theory that has never been validated in vivo in the routine-care target population. This study evaluates growth patterns of untreated solid and subsolid lung cancers of various histologies in a non-screening setting.Growth behaviour of pathology-proven lung cancers from two academic centres that were imaged at least three times before diagnosis (n=60) was analysed using dedicated software. Random-intercept random-slope mixed-models analysis was applied to test which growth pattern most accurately described lung cancer growth. Individual growth curves were plotted per pathology subgroup and nodule type.We confirmed that growth in both subsolid and solid lung cancers is best explained by an exponential model. However, subsolid lesions generally progress slower than solid ones. Baseline lesion volume was not related to growth, indicating that smaller lesions do not grow slower compared to larger ones.By showing that lung cancer conforms to exponential growth we provide the first experimental basis in the routine-care setting for the assumption made in volume doubling time analysis. Copyright ©ERS 2018.

  1. World Population: Fundamentals of Growth. Student Chartbook. Third Edition.

    ERIC Educational Resources Information Center

    Kent, Mary Mederios

    This booklet is designed for K-12 students and educators to learn about world population growth factors. Data are shown through charts and graphs with brief explanations. The booklet contains: (1) "World Population Growth and Regional Distribution through History"; (2) "Population Growth through Natural Increase"; (3) "Effect of Migration on…

  2. Population Growth and Poverty in the Developing World.

    ERIC Educational Resources Information Center

    Birdsall, Nancy

    1980-01-01

    The link between rapid population growth and the absolute poverty which currently afflicts 780 million people in developing countries (excluding China and other centrally planned economies) is examined. As a result of rapid population growth, many countries suffer slow per capita income growth, a lack of progress in reducing income inequality, and…

  3. Impact of population growth and population ethics on climate change mitigation policy.

    PubMed

    Scovronick, Noah; Budolfson, Mark B; Dennig, Francis; Fleurbaey, Marc; Siebert, Asher; Socolow, Robert H; Spears, Dean; Wagner, Fabian

    2017-11-14

    Future population growth is uncertain and matters for climate policy: higher growth entails more emissions and means more people will be vulnerable to climate-related impacts. We show that how future population is valued importantly determines mitigation decisions. Using the Dynamic Integrated Climate-Economy model, we explore two approaches to valuing population: a discounted version of total utilitarianism (TU), which considers total wellbeing and is standard in social cost of carbon dioxide (SCC) models, and of average utilitarianism (AU), which ignores population size and sums only each time period's discounted average wellbeing. Under both approaches, as population increases the SCC increases, but optimal peak temperature decreases. The effect is larger under TU, because it responds to the fact that a larger population means climate change hurts more people: for example, in 2025, assuming the United Nations (UN)-high rather than UN-low population scenario entails an increase in the SCC of 85% under TU vs. 5% under AU. The difference in the SCC between the two population scenarios under TU is comparable to commonly debated decisions regarding time discounting. Additionally, we estimate the avoided mitigation costs implied by plausible reductions in population growth, finding that large near-term savings ($billions annually) occur under TU; savings under AU emerge in the more distant future. These savings are larger than spending shortfalls for human development policies that may lower fertility. Finally, we show that whether lowering population growth entails overall improvements in wellbeing-rather than merely cost savings-again depends on the ethical approach to valuing population. Copyright © 2017 the Author(s). Published by PNAS.

  4. Stochastic Individual-Based Modeling of Bacterial Growth and Division Using Flow Cytometry.

    PubMed

    García, Míriam R; Vázquez, José A; Teixeira, Isabel G; Alonso, Antonio A

    2017-01-01

    A realistic description of the variability in bacterial growth and division is critical to produce reliable predictions of safety risks along the food chain. Individual-based modeling of bacteria provides the theoretical framework to deal with this variability, but it requires information about the individual behavior of bacteria inside populations. In this work, we overcome this problem by estimating the individual behavior of bacteria from population statistics obtained with flow cytometry. For this objective, a stochastic individual-based modeling framework is defined based on standard assumptions during division and exponential growth. The unknown single-cell parameters required for running the individual-based modeling simulations, such as cell size growth rate, are estimated from the flow cytometry data. Instead of using directly the individual-based model, we make use of a modified Fokker-Plank equation. This only equation simulates the population statistics in function of the unknown single-cell parameters. We test the validity of the approach by modeling the growth and division of Pediococcus acidilactici within the exponential phase. Estimations reveal the statistics of cell growth and division using only data from flow cytometry at a given time. From the relationship between the mother and daughter volumes, we also predict that P. acidilactici divide into two successive parallel planes.

  5. How exponential are FREDs?

    NASA Astrophysics Data System (ADS)

    Schaefer, Bradley E.; Dyson, Samuel E.

    1996-08-01

    A common Gamma-Ray Burst-light curve shape is the ``FRED'' or ``fast-rise exponential-decay.'' But how exponential is the tail? Are they merely decaying with some smoothly decreasing decline rate, or is the functional form an exponential to within the uncertainties? If the shape really is an exponential, then it would be reasonable to assign some physically significant time scale to the burst. That is, there would have to be some specific mechanism that produces the characteristic decay profile. So if an exponential is found, then we will know that the decay light curve profile is governed by one mechanism (at least for simple FREDs) instead of by complex/multiple mechanisms. As such, a specific number amenable to theory can be derived for each FRED. We report on the fitting of exponentials (and two other shapes) to the tails of ten bright BATSE bursts. The BATSE trigger numbers are 105, 257, 451, 907, 1406, 1578, 1883, 1885, 1989, and 2193. Our technique was to perform a least square fit to the tail from some time after peak until the light curve approaches background. We find that most FREDs are not exponentials, although a few come close. But since the other candidate shapes come close just as often, we conclude that the FREDs are misnamed.

  6. Metropolitan migration and population growth in selected developing countries.

    PubMed

    1983-01-01

    The purpose of this article is to estimate the components of metropolitan population growth in selected developing countries during 1960-1970 period. The study examines population growth in 26 cities: 5 are in Africa, 8 in Asia, and 13 in Latin America, using data from national census publications. These cities in general are the political capitals of their countries, but some additional large cities were selected in Brazil, Mexico, and South Africa. All cities, at the beginning of the 1960-1970 decade had over 500,000 population; Accra, the only exception, reached this population level during the 1960s. Some cities had over 4 million residents in 1970. Net migration contributed about 37% to total metropolitan population growth; the remainder of the growth is attributable to natural increase. Migration has a much stronger impact on metropolitan growth than suggested by the above figure: 1) Several metropolitan areas, for various reasons, are unlikely to receive many migrants; without those cities, the share of metropolitan growth from net migration is 44%. 2) Estimates of the natural increase of migrants after their arrival in the metropolitan areas, when added to migration itself, changes the total contribution of migration to 49% in some metropolitan areas. 3) Even where net migration contributes a smaller proportion to metropolitan growth than natural increase, the rates of net migration are generally high and should be viewed in the context of rapid metropolitan population growth from natural increase alone. Finally, the paper also compares the components of metropolitan growth with the components of growth in the remaining urban areas. The results show that the metropolitan areas, in general, grow faster than the remaining urban areas, and that this more rapid growth is mostly due to a higher rate of net migration. Given the significance of migration for metropolitan growth, further investigations of the effects of these migration streams, particularly with

  7. Population growth and sustainable development in China.

    PubMed

    Gui, S

    1998-12-01

    This article identifies the adverse impacts of population growth in China and offers suggestions for attaining sustainable development. Although China has below replacement level fertility, population will continue to increase. Chinese demographers project that the total fertility rate will average 2.1 each year until 2010, 2.1 until 2050, or 1.88 until 2010 and 1.6 during 2010-2050 under high, medium, and low variants, respectively. Total population would number 1.69 billion, 1.50 billion, or 1.46 billion under various projections, respectively, by 2050. Continued growth is expected to seriously slow economic development, to hinder improvements in the quality of and full use of human resources, to depress increases in per-capita economic development levels, and to impact on reasonable use of resources and environmental protection. The averting of 5 million births would save 35.5 billion yuan. Population growth has reduced the per-capita share of cultivated land from 0.19 to 0.08 hectares during 1952-95. There are about 150-190 million surplus rural laborers. Registered unemployment in cities was 3.1% in 1997. 11.5 million were laid-off workers. The working-age population will exceed 900 million during 2007-26. China's gross national product (GNP) was the 8th highest in the world in 1990, but its per-capita GNP was in 100th place. China's abundant natural resources are seriously reduced when population is considered. Environmental damage is already evident. Population growth needs to be controlled through family planning, an old-age social security program, and long-term population policies. Society needs healthier births and childbearing and better educated children.

  8. Growth of Juniperus and Potentilla using Liquid Exponential and Controlled-release Fertilizers

    Treesearch

    R. Kasten Dumroese

    2003-01-01

    Juniperus scopularum Sarg. (Rocky Mountain juniper) and Potentilla fruticosa L. 'Gold Drop (gold drop potentilla) plants grown in containers had similar or better morphology, higher nitrogen concentrations and contents, and higher N-use efficiency when grown with liquid fertilizer applied at an exponentially increasing rate as...

  9. Contribution of population growth to per capita income and sectoral output growth in Japan, 1880-1970.

    PubMed

    Yamaguchi, M; Kennedy, G

    1984-09-01

    The authors measured the positive and negative contributions of population and labor force growth to the growth of per capita income and sectoral output in Japan in the 1880-1970 period. A 2-sector growth accounting model that treats population and labor growth as separate variables was used. 3 alternative methods were used: the Residual method, the Verdoorn method, and the factor augmenting rate method. The total contribution of population cum labor growth to per capita income growth tended to be negative in the 1880-1930 period and positive in the 1930-40 and 1950-70. Over the 1880-1970 period as a whole, population cum labor growth made a positive contribution to per capita income growth under the Residual method (0.35%/year), the factor augmenting rate method (0.29%/year), and the Verdoorn method (0.01%/year). In addition, population cum labor growth contributed positively to sectoral output growth. The average contribution to agricultural output growth ranged from 1.03% (Verdoorn) - 1.46%/year (factor augmenting rate), while the average contribution to nonagricultural output growth ranged from 1.22% (Verdoorn) - 1.60%/year (Residual). Although these results are dependent on the model used, the fact that all 3 methods yielded consistent results suggests that population cum labor growth did make a positive contribution to per capita income and sectoral output growth in Japan. These findings imply that in economies where the rate of technical change in agricultural and nonagricultural sectors exceeds population growth, policies that reduce agricultural elasticities may be preferable; on the other hand, policies that reduce agricultural elasticities are to be avoided in economies with low rates of technical change. Moreover, in the early stages of economic development, policies that increase agricultural income and price elasticities should be considered.

  10. Measurement of the Dewetting, Nucleation, and Deactivation Kinetics of Carbon Nanotube Population Growth by Environmental Transmission Electron Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bedewy, Mostafa; Viswanath, B.; Meshot, Eric R.

    In order to understand the collective growth of carbon nanotube (CNT) populations tailoring their properties for many applications is key. During the initial stages of CNT growth by chemical vapor deposition, catalyst nanoparticle formation by thin-film dewetting and the subsequent CNT nucleation processes dictate the CNT diameter distribution, areal density, and alignment. We use in situ environmental transmission electron microscopy (E-TEM) to observe the catalyst annealing, growth, and deactivation stages for a population of CNTs grown from a thin-film catalyst. Complementary in situ electron diffraction and TEM imaging show that, during the annealing step in hydrogen, reduction of the ironmore » oxide catalyst is concomitant with changes in the thin-film morphology; complete dewetting and the formation of a population of nanoparticles is only achieved upon the introduction of the carbon source, acetylene. The dewetting kinetics, i.e., the appearance of distinct nanoparticles, exhibits a sigmoidal (autocatalytic) curve with 95% of all nanoparticles appearing within 6 s. After nanoparticles form, they either nucleate CNTs or remain inactive, with incubation times measured to be as small as 3.5 s. Via E-TEM we also directly observe the crowding and self-alignment of CNTs after dewetting and nucleation. Additionally, in situ electron energy loss spectroscopy reveals that the collective rate of carbon accumulation decays exponentially. We conclude that the kinetics of catalyst formation and CNT nucleation must both be addressed in order to achieve uniform and high CNT density, and their transient behavior may be a primary cause of the well-known nonuniform density of CNT forests.« less

  11. Measurement of the Dewetting, Nucleation, and Deactivation Kinetics of Carbon Nanotube Population Growth by Environmental Transmission Electron Microscopy

    DOE PAGES

    Bedewy, Mostafa; Viswanath, B.; Meshot, Eric R.; ...

    2016-05-23

    In order to understand the collective growth of carbon nanotube (CNT) populations tailoring their properties for many applications is key. During the initial stages of CNT growth by chemical vapor deposition, catalyst nanoparticle formation by thin-film dewetting and the subsequent CNT nucleation processes dictate the CNT diameter distribution, areal density, and alignment. We use in situ environmental transmission electron microscopy (E-TEM) to observe the catalyst annealing, growth, and deactivation stages for a population of CNTs grown from a thin-film catalyst. Complementary in situ electron diffraction and TEM imaging show that, during the annealing step in hydrogen, reduction of the ironmore » oxide catalyst is concomitant with changes in the thin-film morphology; complete dewetting and the formation of a population of nanoparticles is only achieved upon the introduction of the carbon source, acetylene. The dewetting kinetics, i.e., the appearance of distinct nanoparticles, exhibits a sigmoidal (autocatalytic) curve with 95% of all nanoparticles appearing within 6 s. After nanoparticles form, they either nucleate CNTs or remain inactive, with incubation times measured to be as small as 3.5 s. Via E-TEM we also directly observe the crowding and self-alignment of CNTs after dewetting and nucleation. Additionally, in situ electron energy loss spectroscopy reveals that the collective rate of carbon accumulation decays exponentially. We conclude that the kinetics of catalyst formation and CNT nucleation must both be addressed in order to achieve uniform and high CNT density, and their transient behavior may be a primary cause of the well-known nonuniform density of CNT forests.« less

  12. Economic consequences of population size, structure and growth.

    PubMed

    Lee, R

    1983-01-01

    There seems to be 4 major approaches to conceptualizing and modeling demographic influences on economic and social welfare. These approaches are combined in various ways to construct richer and more comprehensive models. The basic approaches are: demographic influences on household or family behavior; population growth and reproducible capital; population size and fixed factors; and population and advantages of scale. These 4 models emphasize the supply side effects of population. A few of the ways in which these theories have been combined are sketched. Neoclassical growth models often have been combined with age distributed populations of individuals (or households), assumed to pursue optimal life cycle consumption and saving. In some well known development models, neoclassical growth models for the modern sector are linked by labor markets and migration to fixed factor (land) models of the traditional (agricultural) sector. A whole series of macro simulation models for developed and developing countries was based on single sector neoclassical growth models with age distributed populations. Yet, typically the household level foundations of assumed age distribution effects were not worked out. Simon's (1977) simulation models are in a class by themselves, for they are the only models that attempt to incorporate all the kinds of effects discussed. The economic demography of the individual and family cycle, as it is affected by regimes of fertility, mortality, and nuptiality, taken as given, are considered. The examination touches on many of the purported consequences of aggregate population growth and age composition, since so many of these are based implicitly or explicitly on assertions about micro level behavior. Demographic influences on saving and consumption, on general labor supply and female labor supply, and on problems of youth and old age dependency frequently fall in this category. Finally, attention is focused specifically on macro economic issues in

  13. Bioconvective patterns, synchrony, and survival. [in light-limited growth model of motile algae culture

    NASA Technical Reports Server (NTRS)

    Noever, David A.

    1990-01-01

    With and without bioconvective pattern formation, a theoretical model predicts growth in light-limited cultures of motile algae. At the critical density for pattern formation, the resulting doubly exponential population curves show an inflection. Such growth corresponds quantitatively to experiments in mechanically unstirred cultures. This attaches survival value to synchronized pattern formation.

  14. Volatility and Growth in Populations of Rural Associations

    ERIC Educational Resources Information Center

    Wollebaek, Dag

    2010-01-01

    This article uses unique community-level data aggregated from censuses of associations to analyze growth and volatility in rural populations of grassroots associations. A qualitative comparative analysis (QCA) shows that the two main paths to growth were (1) centralization in polycephalous (multicentered) municipalities and (2) population growth…

  15. Fertility decline and population growth: China's dilemma.

    PubMed

    Gu, B

    1996-02-01

    This article includes the assertion by the deputy director and demographer of the China Information and Research Center that China must maintain and implement a strict population policy in order to feed its large population. China has 22% of the world's total population but only 7% of the world's total cultivated land. The population rate varies by province and region in China and ranges from replacement level fertility in Shanghai to high growth in remote and underdeveloped provinces. About 70 million people live under the poverty line or have an annual family income of under 500 yuan. The family planning programs should emphasize a service oriented approach. The increased power of women and improved educational status of women are also desired. Concern is recognized in government circles about the rapid aging of the population. Rural-urban migration has improved the economic climate in cities, but migration has also resulted in "some serious social problems." China has a low fertility level but rapid population growth. In the 1990s about 21 million babies were born, which is a net increase of about 14 million annually. Population growth is serious because of a strong population momentum from the previous baby boom of the 1960s. China has accomplished a great deal in a short period of time in reducing fertility under unfavorable socioeconomic conditions. Credit must be given to the Chinese government, its various departments, and public response. Present population is over 1.2 billion, which is higher than the total population of developed countries of the world.

  16. Enhancement of L-phenylalanine production by engineered Escherichia coli using phased exponential L-tyrosine feeding combined with nitrogen source optimization.

    PubMed

    Yuan, Peipei; Cao, Weijia; Wang, Zhen; Chen, Kequan; Li, Yan; Ouyang, Pingkai

    2015-07-01

    Nitrogen source optimization combined with phased exponential L-tyrosine feeding was employed to enhance L-phenylalanine production by a tyrosine-auxotroph strain, Escherichia coli YP1617. The absence of (NH4)2SO4, the use of corn steep powder and yeast extract as composite organic nitrogen source were more suitable for cell growth and L-phenylalanine production. Moreover, the optimal initial L-tyrosine level was 0.3 g L(-1) and exponential L-tyrosine feeding slightly improved L-phenylalanine production. Nerveless, L-phenylalanine production was greatly enhanced by a strategy of phased exponential L-tyrosine feeding, where exponential feeding was started at the set specific growth rate of 0.08, 0.05, and 0.02 h(-1) after 12, 32, and 52 h, respectively. Compared with exponential L-tyrosine feeding at the set specific growth rate of 0.08 h(-1), the developed strategy obtained a 15.33% increase in L-phenylalanine production (L-phenylalanine of 56.20 g L(-1)) and a 45.28% decrease in L-tyrosine supplementation. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Rapid Population Growth-Cause or Result of Global Problems?

    ERIC Educational Resources Information Center

    Schwartz, Richard H.

    Explosive population growth is a symptom of the world's unjust and inequitable social, political, and economic conditions. The current rate of growth is staggering, particularly in the cities of the underdeveloped countries. While some progress has been made in slowing population growth, several factors still contribute to its momentum. One of…

  18. Economic analyses of rapid population growth.

    PubMed

    Birdsall, N

    1989-01-01

    "Discussion of the macroeconomic consequences of rapid population growth is organized into three schools: pessimists, optimists, and the recent revisionists. For the revisionists, differing views are presented about the pervasiveness and relevance of market failures, such as the negative externalities of childbearing, and about the ability of families and institutions to adjust rapidly to changes brought on by rapid population growth. A welfare economics approach is used to review the merits of various public policies to reduce fertility, including public financing of family planning services and taxes and incentives associated with childbearing." The focus is on developing countries. excerpt

  19. Understanding the demographic drivers of realized population growth rates.

    PubMed

    Koons, David N; Arnold, Todd W; Schaub, Michael

    2017-10-01

    Identifying the demographic parameters (e.g., reproduction, survival, dispersal) that most influence population dynamics can increase conservation effectiveness and enhance ecological understanding. Life table response experiments (LTRE) aim to decompose the effects of change in parameters on past demographic outcomes (e.g., population growth rates). But the vast majority of LTREs and other retrospective population analyses have focused on decomposing asymptotic population growth rates, which do not account for the dynamic interplay between population structure and vital rates that shape realized population growth rates (λt=Nt+1/Nt) in time-varying environments. We provide an empirical means to overcome these shortcomings by merging recently developed "transient life-table response experiments" with integrated population models (IPMs). IPMs allow for the estimation of latent population structure and other demographic parameters that are required for transient LTRE analysis, and Bayesian versions additionally allow for complete error propagation from the estimation of demographic parameters to derivations of realized population growth rates and perturbation analyses of growth rates. By integrating available monitoring data for Lesser Scaup over 60 yr, and conducting transient LTREs on IPM estimates, we found that the contribution of juvenile female survival to long-term variation in realized population growth rates was 1.6 and 3.7 times larger than that of adult female survival and fecundity, respectively. But a persistent long-term decline in fecundity explained 92% of the decline in abundance between 1983 and 2006. In contrast, an improvement in adult female survival drove the modest recovery in Lesser Scaup abundance since 2006, indicating that the most important demographic drivers of Lesser Scaup population dynamics are temporally dynamic. In addition to resolving uncertainty about Lesser Scaup population dynamics, the merger of IPMs with transient LTREs will

  20. Explosive genetic evidence for explosive human population growth

    PubMed Central

    Gao, Feng; Keinan, Alon

    2016-01-01

    The advent of next-generation sequencing technology has allowed the collection of vast amounts of genetic variation data. A recurring discovery from studying larger and larger samples of individuals had been the extreme, previously unexpected, excess of very rare genetic variants, which has been shown to be mostly due to the recent explosive growth of human populations. Here, we review recent literature that inferred recent changes in population size in different human populations and with different methodologies, with many pointing to recent explosive growth, especially in European populations for which more data has been available. We also review the state-of-the-art methods and software for the inference of historical population size changes that lead to these discoveries. Finally, we discuss the implications of recent population growth on personalized genomics, on purifying selection in the non-equilibrium state it entails and, as a consequence, on the genetic architecture underlying complex disease and the performance of mapping methods in discovering rare variants that contribute to complex disease risk. PMID:27710906

  1. Long-wave theory for a new convective instability with exponential growth normal to the wall.

    PubMed

    Healey, J J

    2005-05-15

    A linear stability theory is presented for the boundary-layer flow produced by an infinite disc rotating at constant angular velocity in otherwise undisturbed fluid. The theory is developed in the limit of long waves and when the effects of viscosity on the waves can be neglected. This is the parameter regime recently identified by the author in a numerical stability investigation where a curious new type of instability was found in which disturbances propagate and grow exponentially in the direction normal to the disc, (i.e. the growth takes place in a region of zero mean shear). The theory describes the mechanisms controlling the instability, the role and location of critical points, and presents a saddle-point analysis describing the large-time evolution of a wave packet in frames of reference moving normal to the disc. The theory also shows that the previously obtained numerical solutions for numerically large wavelengths do indeed lie in the asymptotic long-wave regime, and so the behaviour and mechanisms described here may apply to a number of cross-flow instability problems.

  2. Agriculture, population growth, and statistical analysis of the radiocarbon record.

    PubMed

    Zahid, H Jabran; Robinson, Erick; Kelly, Robert L

    2016-01-26

    The human population has grown significantly since the onset of the Holocene about 12,000 y ago. Despite decades of research, the factors determining prehistoric population growth remain uncertain. Here, we examine measurements of the rate of growth of the prehistoric human population based on statistical analysis of the radiocarbon record. We find that, during most of the Holocene, human populations worldwide grew at a long-term annual rate of 0.04%. Statistical analysis of the radiocarbon record shows that transitioning farming societies experienced the same rate of growth as contemporaneous foraging societies. The same rate of growth measured for populations dwelling in a range of environments and practicing a variety of subsistence strategies suggests that the global climate and/or endogenous biological factors, not adaptability to local environment or subsistence practices, regulated the long-term growth of the human population during most of the Holocene. Our results demonstrate that statistical analyses of large ensembles of radiocarbon dates are robust and valuable for quantitatively investigating the demography of prehistoric human populations worldwide.

  3. Lebensraum: paradoxically, population growth may eventually end wars.

    PubMed

    Simon, J L

    1989-03-01

    Population growth may progressively reduce 1 of the motives for making war. Namely, population growth threatens shortages of resources, and especially land. Impending shortages cause a search for ways to mitigate the shortages. The discoveries eventually produce greater availability of resources than if population growth and pressure on resources had never occurred. The argument runs as follows: 1) Rhetoric about resources scarcity induced by population density has often contributed to international conflict, even if economics has not been the main motive in making war. 2) In the pre-modern era, war to obtain land and other resources may sometimes have been an economically sound policy. 3) Politicians and others in industrially developed nations believe resources may still be a casus belli. 4) Land and other productive resources are no longer worth acquiring at the cost of war.

  4. The outlook for population growth.

    PubMed

    Lee, Ronald

    2011-07-29

    Projections of population size, growth rates, and age distribution, although extending to distant horizons, shape policies today for the economy, environment, and government programs such as public pensions and health care. The projections can lead to costly policy adjustments, which in turn can cause political and economic turmoil. The United Nations projects global population to grow from about 7 billion today to 9.3 billion in 2050 and 10.1 billion in 2100, while the Old Age Dependency Ratio doubles by 2050 and triples by 2100. How are such population projections made, and how certain can we be about the trends they foresee?

  5. Cooperative bi-exponential decay of dye emission coupled via plasmons.

    PubMed

    Lyvers, David P; Moazzezi, Mojtaba; de Silva, Vashista C; Brown, Dean P; Urbas, Augustine M; Rostovtsev, Yuri V; Drachev, Vladimir P

    2018-06-22

    Bi-exponential decay of dye fluorescence near the surface of plasmonic metamaterials and core-shell nanoparticles is shown to be an intrinsic property of the coupled system. Indeed, the Dicke, cooperative states involve two groups of transitions: super-radiant, from the most excited to the ground states and sub-radiant, which cannot reach the ground state. The relaxation in the sub-radiant system occurs mainly due to the interaction with the plasmon modes. Our theory shows that the relaxation leads to the population of the sub-radiant states by dephasing the super-radiant Dicke states giving rise to the bi-exponential decay in agreement with the experiments. We use a set of metamaterial samples consisting of gratings of paired silver nanostrips coated with Rh800 dye molecules, having resonances in the same spectral range. The bi-exponential decay is demonstrated for Au\\SiO 2 \\ATTO655 core-shell nanoparticles as well, which persists even when averaging over a broad range of the coupling parameter.

  6. Nutrition, Development, and Population Growth

    ERIC Educational Resources Information Center

    Berg, Alan

    1973-01-01

    Focuses on the problem of malnutrition in developing countries through a description of its interrelationships with human development, national economies, economic growth and income, agricultural advances, the crisis in infant feeding practices, new foods, and the population dilemma. Outlines possible future policy directions to significantly…

  7. Population growth, human development, and deforestation in biodiversity hotspots.

    PubMed

    Jha, S; Bawa, K S

    2006-06-01

    Human population and development activities affect the rate of deforestation in biodiversity hotspots. We quantified the effect of human population growth and development on rates of deforestation and analyzed the relationship between these causal factors in the 1980s and 1990s. We compared the averages of population growth, human development index (HDI, which measures income, health, and education), and deforestation rate and computed correlations among these variables for countries that contain biodiversity hotspots. When population growth was high and HDI was low there was a high rate of deforestation, but when HDI was high, rate of deforestation was low, despite high population growth. The correlation among variables was significant for the 1990s but not for the 1980s. The relationship between population growth and HDI had a regional pattern that reflected the historical process of development. Based on the changes in HDI and deforestation rate over time, we identified two drivers of deforestation: policy choice and human-development constraints. Policy choices that disregard conservation may cause the loss of forests even in countries that are relatively developed. Lack of development in other countries, on the other hand, may increase the pressure on forests to meet the basic needs of the human population. Deforestation resulting from policy choices may be easier to fix than deforestation arising from human development constraints. To prevent deforestation in the countries that have such constraints, transfer of material and intellectual resources from developed countries may be needed. Popular interest in sustainable development in developed countries can facilitate the transfer of these resources.

  8. [The fear of numbers or the challenge of population growth?].

    PubMed

    Loriaux, M

    1991-12-01

    Africa, currently one of the least densely populated continents, is growing so rapidly that its population will comprise some 1.5 billion inhabitants around 2020, and Africans will be more numerous than the population of the developed world. Attitudes about Africa's population size vary widely; many educated Africans believe that low density is a greater disadvantage than overpopulation, but most specialists believe the population of the developing world, and of Africa especially, to be too large, the prospects of significant voluntary reduction are dim. The rate of population growth has thus attracted attention as a factor amenable to modification. Africa's demographic transition remains largely in the future. Its case is unique because of the rate of demographic growth and because the phase of rapid growth will apparently continue far longer in Africa than in any other continent. The widening gap between population growth rates and rates of economic development in Africa inspires great pessimism about the future wellbeing of the population. Population officials urge that demographic growth be slowed in order to reduce pressure on economic and ecological resources and to gain time for social and economic development. But despite the consensus of international organizations, such as the UN Fund for Population, on the desirability of slowing population growth to encourage and permit economic growth, there has actually been relatively little progress since the time of Malthus in understanding the relationship between population, development, and the environment. Some recent works suggest that demographic growth has benefits as well as disadvantages, and the net impact on development is uncertain. Demographic pressure is in this view a far more potent force for innovation than is usually recognized. Population is not just an exogenous variable in development, but it is at the heart of the process. There can be no true integration of population into development until

  9. Mathematical models to characterize early epidemic growth: A Review

    PubMed Central

    Chowell, Gerardo; Sattenspiel, Lisa; Bansal, Shweta; Viboud, Cécile

    2016-01-01

    There is a long tradition of using mathematical models to generate insights into the transmission dynamics of infectious diseases and assess the potential impact of different intervention strategies. The increasing use of mathematical models for epidemic forecasting has highlighted the importance of designing reliable models that capture the baseline transmission characteristics of specific pathogens and social contexts. More refined models are needed however, in particular to account for variation in the early growth dynamics of real epidemics and to gain a better understanding of the mechanisms at play. Here, we review recent progress on modeling and characterizing early epidemic growth patterns from infectious disease outbreak data, and survey the types of mathematical formulations that are most useful for capturing a diversity of early epidemic growth profiles, ranging from sub-exponential to exponential growth dynamics. Specifically, we review mathematical models that incorporate spatial details or realistic population mixing structures, including meta-population models, individual-based network models, and simple SIR-type models that incorporate the effects of reactive behavior changes or inhomogeneous mixing. In this process, we also analyze simulation data stemming from detailed large-scale agent-based models previously designed and calibrated to study how realistic social networks and disease transmission characteristics shape early epidemic growth patterns, general transmission dynamics, and control of international disease emergencies such as the 2009 A/H1N1 influenza pandemic and the 2014-15 Ebola epidemic in West Africa. PMID:27451336

  10. Mathematical models to characterize early epidemic growth: A review

    NASA Astrophysics Data System (ADS)

    Chowell, Gerardo; Sattenspiel, Lisa; Bansal, Shweta; Viboud, Cécile

    2016-09-01

    There is a long tradition of using mathematical models to generate insights into the transmission dynamics of infectious diseases and assess the potential impact of different intervention strategies. The increasing use of mathematical models for epidemic forecasting has highlighted the importance of designing reliable models that capture the baseline transmission characteristics of specific pathogens and social contexts. More refined models are needed however, in particular to account for variation in the early growth dynamics of real epidemics and to gain a better understanding of the mechanisms at play. Here, we review recent progress on modeling and characterizing early epidemic growth patterns from infectious disease outbreak data, and survey the types of mathematical formulations that are most useful for capturing a diversity of early epidemic growth profiles, ranging from sub-exponential to exponential growth dynamics. Specifically, we review mathematical models that incorporate spatial details or realistic population mixing structures, including meta-population models, individual-based network models, and simple SIR-type models that incorporate the effects of reactive behavior changes or inhomogeneous mixing. In this process, we also analyze simulation data stemming from detailed large-scale agent-based models previously designed and calibrated to study how realistic social networks and disease transmission characteristics shape early epidemic growth patterns, general transmission dynamics, and control of international disease emergencies such as the 2009 A/H1N1 influenza pandemic and the 2014-2015 Ebola epidemic in West Africa.

  11. An exponential growth of computational phantom research in radiation protection, imaging, and radiotherapy: A review of the fifty-year history

    PubMed Central

    Xu, X. George

    2014-01-01

    -known phantoms were developed and used in practice. Some of the information covered in this review has not been previously reported, for example, the CAM and CAF phantoms developed in 1970s for space radiation applications. The author also clarifies confusion about “population-average” prospective dosimetry needed for radiological protection under the current ICRP radiation protection system and “individualized” retrospective dosimetry often performed for medical physics studies. To illustrate the impact of computational phantoms, a section of this article is devoted to examples from the author’s own research group. Finally the author explains an unexpected finding during the course of preparing for this article that the phantoms from the past 50 years followed a pattern of exponential growth. The review ends on a brief discussion of future research needs (A supplementary file “3DPhantoms.pdf” to Figure 15 is available for download that will allow a reader to interactively visualize the phantoms in 3D). PMID:25144730

  12. An exponential growth of computational phantom research in radiation protection, imaging, and radiotherapy: a review of the fifty-year history.

    PubMed

    Xu, X George

    2014-09-21

    well-known phantoms were developed and used in practice. Some of the information covered in this review has not been previously reported, for example, the CAM and CAF phantoms developed in 1970s for space radiation applications. The author also clarifies confusion about 'population-average' prospective dosimetry needed for radiological protection under the current ICRP radiation protection system and 'individualized' retrospective dosimetry often performed for medical physics studies. To illustrate the impact of computational phantoms, a section of this article is devoted to examples from the author's own research group. Finally the author explains an unexpected finding during the course of preparing for this article that the phantoms from the past 50 years followed a pattern of exponential growth. The review ends on a brief discussion of future research needs (a supplementary file '3DPhantoms.pdf' to figure 15 is available for download that will allow a reader to interactively visualize the phantoms in 3D).

  13. [Population growth and the environment].

    PubMed

    Hogan, D J

    1991-01-01

    The impact of population growth on the enviornment has been extensively researched; it consists of the depletion of resources (agricultural land absorbed by urban expansion, loss of soils, desertification, loss of biodiversity, less availability of minerals, dwindling of petroleum reserves) and the degradation of natural resources (air and water pollution). For politicians, journalists, and environmentalists, population growth is identified as the principal villain, which is a unidirectional and negative opinion. Demography is supposed to examine the negative and positive effects of the environment-population relationship; however, it is postulated that there has not been much produced in the last 2 centuries in this area. Examination of the research literature does not indicate any view that transcends the Malthusian vision, although a few empirical studies exist (Hogan, 1989). Durham (1979) identified the replacement of subsistence agriculture by export-oriented agriculture as the key factor in overpopulation in El Salvador and Honduras that led to migrations and international conflicts. Tudela (1987) related a similar process in the Mexican state of Tabasco, where a period of malnutrition was accompanied by the expansion of export agriculture and nutritional improvements emanated only from recapturing subsistence agriculture. Fearnside (1986) researched the dynamics of the occupation and destruction of Amazonia. However, Kahn and Simon went further and denied the existence of real environmental problems: population is the ultimate resource, and the more minds, the more good ideas and solutions for any problem. However, in all these cases of pure or modified Malthusianism the relation of population/resources is reduced to a unidimensional relationship; and fertility, mortality, migration, marriage, and age structure receive little attention. A prime candidate for the attention of population specialists should be migration and patterns of settlement and their

  14. The Exponential Expansion of Simulation: How Simulation has Grown as a Research Tool

    DTIC Science & Technology

    2012-09-01

    exponential growth of computing power. Although other analytic approaches also benefit from this trend, keyword searches of several scholarly search ... engines reveal that the reliance on simulation is increasing more rapidly. A descriptive analysis paints a compelling picture: simulation is frequently

  15. Population Growth: Family Planning Programs.

    ERIC Educational Resources Information Center

    Doberenz, Alexander R., Ed.; Taylor, N. Burwell G., Ed.

    These proceedings of the second annual symposium on population growth bring together speeches and panel discussions on family planning programs. Titles of speeches delivered are: Communicating Family Planning (Mrs. Jean Hutchinson); Effects of New York's Abortion Law Change (Dr. Walter Rogers); The Law and Birth Control, Sterilization and Abortion…

  16. Anomalous Growth of Aging Populations

    NASA Astrophysics Data System (ADS)

    Grebenkov, Denis S.

    2016-04-01

    We consider a discrete-time population dynamics with age-dependent structure. At every time step, one of the alive individuals from the population is chosen randomly and removed with probability q_k depending on its age, whereas a new individual of age 1 is born with probability r. The model can also describe a single queue in which the service order is random while the service efficiency depends on a customer's "age" in the queue. We propose a mean field approximation to investigate the long-time asymptotic behavior of the mean population size. The age dependence is shown to lead to anomalous power-law growth of the population at the critical regime. The scaling exponent is determined by the asymptotic behavior of the probabilities q_k at large k. The mean field approximation is validated by Monte Carlo simulations.

  17. Regulatory design governing progression of population growth phases in bacteria.

    PubMed

    Martínez-Antonio, Agustino; Lomnitz, Jason G; Sandoval, Santiago; Aldana, Maximino; Savageau, Michael A

    2012-01-01

    It has long been noted that batch cultures inoculated with resting bacteria exhibit a progression of growth phases traditionally labeled lag, exponential, pre-stationary and stationary. However, a detailed molecular description of the mechanisms controlling the transitions between these phases is lacking. A core circuit, formed by a subset of regulatory interactions involving five global transcription factors (FIS, HNS, IHF, RpoS and GadX), has been identified by correlating information from the well- established transcriptional regulatory network of Escherichia coli and genome-wide expression data from cultures in these different growth phases. We propose a functional role for this circuit in controlling progression through these phases. Two alternative hypotheses for controlling the transition between the growth phases are first, a continuous graded adjustment to changing environmental conditions, and second, a discontinuous hysteretic switch at critical thresholds between growth phases. We formulate a simple mathematical model of the core circuit, consisting of differential equations based on the power-law formalism, and show by mathematical and computer-assisted analysis that there are critical conditions among the parameters of the model that can lead to hysteretic switch behavior, which--if validated experimentally--would suggest that the transitions between different growth phases might be analogous to cellular differentiation. Based on these provocative results, we propose experiments to test the alternative hypotheses.

  18. TOPICAL PROBLEMS: The phenomenological theory of world population growth

    NASA Astrophysics Data System (ADS)

    Kapitza, Sergei P.

    1996-01-01

    Of all global problems world population growth is the most significant. Demographic data describe this process in a concise and quantitative way in its past and present. Analysing this development it is possible by applying the concepts of systems analysis and synergetics, to work out a mathematical model for a phenomenological description of the global demographic process and to project its trends into the future. Assuming self-similarity as the dynamic principle of development, growth can be described practically over the whole of human history, assuming the growth rate to be proportional to the square of the number of people. The large parameter of the theory and the effective size of a coherent population group is of the order of 105 and the microscopic parameter of the phenomenology is the human lifespan. The demographic transition — a transition to a stabilised world population of some 14 billion in a foreseeable future — is a systemic singularity and is determined by the inherent pattern of growth of an open system, rather than by the lack of resources. The development of a quantitative nonlinear theory of the world population is of interest for interdisciplinary research in anthropology and demography, history and sociology, for population genetics and epidemiology, for studies in evolution of humankind and the origin of man. The model also provides insight into the stability of growth and the present predicament of humankind, and provides a setting for discussing the main global problems.

  19. [World population growth and the food supply].

    PubMed

    Huang, Y

    1982-07-29

    The general trend in the last several hundred years has been that the speed of growth in the food supply exceeds the speed of the population growth. For the time being, 2 major problems still exist. The 1st problem is that food production is still influenced by natural conditions. For example, abnormal weather conditions may cause regional food shortages. The 2nd problem is the imbalance of food consumption by the world population. This phenomenon exists between different social classes as well as between developed and developing countries. According to statistics released by the World Bank, 1 billion suffer from malnutrition today and most of them are in developing countries. In developed countries, about half of their increase in the food supply is for feed grains, and those countries follow the policy of reducing farm land for the purpose of maintaing stabl e grain prices. Up to the present time, grain prices have been unstable, and this has become a rather heavy economic burden for numerous developing countries. Many developing countries are trying to increase grain production by increasing their arable land and promoting their cultivating techniques. However, these countries are facing the problems of finding and adequate water supply, fertilizer, and pesticides. In addition, a rapid population growth in these countries has offset their endeavors in agriculture. In recent years, these counties have realized the necessity of birth control. The world population growth rate has decreased from 2% to about 1.7% in 1981. Birth control and an increase in the food supply will bring new hope to the world's problems of overpopulation and food supply.

  20. The world population explosion: causes, backgrounds and projections for the future

    PubMed Central

    Van Bavel, J.

    2013-01-01

    At the beginning of the nineteenth century, the total world population crossed the threshold of 1 billion people for the first time in the history of the homo sapiens sapiens. Since then, growth rates have been increasing exponentially, reaching staggeringly high peaks in the 20th century and slowing down a bit thereafter. Total world population reached 7 billion just after 2010 and is expected to count 9 billion by 2045. This paper first charts the differences in population growth between the world regions. Next, the mechanisms behind unprecedented population growth are explained and plausible scenarios for future developments are discussed. Crucial for the long term trend will be the rate of decline of the number of births per woman, called total fertility. Improvements in education, reproductive health and child survival will be needed to speed up the decline of total fertility, particularly in Africa. But in all scenarios, world population will continue to grow for some time due to population momentum. Finally, the paper outlines the debate about the consequences of the population explosion, involving poverty and food security, the impact on the natural environment, and migration flows. Key words: Fertility, family planning, world population, population growth, demographic transition, urbanization, population momentum, population projections. PMID:24753956

  1. An Unusual Exponential Graph

    ERIC Educational Resources Information Center

    Syed, M. Qasim; Lovatt, Ian

    2014-01-01

    This paper is an addition to the series of papers on the exponential function begun by Albert Bartlett. In particular, we ask how the graph of the exponential function y = e[superscript -t/t] would appear if y were plotted versus ln t rather than the normal practice of plotting ln y versus t. In answering this question, we find a new way to…

  2. Growth and differentiation of human lens epithelial cells in vitro on matrix

    NASA Technical Reports Server (NTRS)

    Blakely, E. A.; Bjornstad, K. A.; Chang, P. Y.; McNamara, M. P.; Chang, E.; Aragon, G.; Lin, S. P.; Lui, G.; Polansky, J. R.

    2000-01-01

    PURPOSE: To characterize the growth and maturation of nonimmortalized human lens epithelial (HLE) cells grown in vitro. METHODS: HLE cells, established from 18-week prenatal lenses, were maintained on bovine corneal endothelial (BCE) extracellular matrix (ECM) in medium supplemented with basic fibroblast growth factor (FGF-2). The identity, growth, and differentiation of the cultures were characterized by karyotyping, cell morphology, and growth kinetics studies, reverse transcription-polymerase chain reaction (RT-PCR), immunofluorescence, and Western blot analysis. RESULTS: HLE cells had a male, human diploid (2N = 46) karyotype. The population-doubling time of exponentially growing cells was 24 hours. After 15 days in culture, cell morphology changed, and lentoid formation was evident. Reverse transcription-polymerase chain reaction (RT-PCR) indicated expression of alphaA- and betaB2-crystallin, fibroblast growth factor receptor 1 (FGFR1), and major intrinsic protein (MIP26) in exponential growth. Western analyses of protein extracts show positive expression of three immunologically distinct classes of crystallin proteins (alphaA-, alphaB-, and betaB2-crystallin) with time in culture. By Western blot analysis, expression of p57(KIP2), a known marker of terminally differentiated fiber cells, was detectable in exponential cultures, and levels increased after confluence. MIP26 and gamma-crystallin protein expression was detected in confluent cultures, by using immunofluorescence, but not in exponentially growing cells. CONCLUSIONS: HLE cells can be maintained for up to 4 months on ECM derived from BCE cells in medium containing FGF-2. With time in culture, the cells demonstrate morphologic characteristics of, and express protein markers for, lens fiber cell differentiation. This in vitro model will be useful for investigations of radiation-induced cataractogenesis and other studies of lens toxicity.

  3. Nigerian population growth and its implications for economic development.

    PubMed

    Okpala, A O

    1990-12-01

    The population of Nigeria is growing at a rate of 3.75%/year indicating a doubling of the population every 22 years. Demographers estimated the population to be 91,178,000 in 1985. Even though population density is high (288 people/square mile), it is not equally distributed. It is highest in the south and southwest urban areas such as Lagos (1045 people/square mile) and lowest in the northeast (75 people/square mile). Moreover rural-urban migration is growing. A major reason for rural-urban migration is the dual nature of the economy in Nigeria. In urban areas, economic development brings about higher standards of living, but, in rural areas, a subsistence economy predominates. This coupled with rapid population growth results in small or no growth in per capita income. Only if the government were to integrate redistribution policies into complete economic development plans should it consider redistributing the population. It should stress rural development (e.g., incentives for firms to set up in rural areas). Further it should move some government offices to rural areas. The government also needs to adopt population policies encouraging the lowering of fertility levels. If it were to provide education through the secondary and prevocational education level free of charge, educated women will lower their fertility. Sex education should be included in the curriculum. Further the government must play an active role in family planning programs, especially educating rural women about family planning. It should also use the mass media to promote small family size, but it should not dictate family size. It also needs to recognize that population growth puts much pressure on the environment. For example, population growth causes soil erosion, nutrient exhaustion, rapid deforestation, and other problems which render the land unusable for agriculture.

  4. Food Production, Population Growth, and Environmental Quality. Caltech Population Program Occasional Papers, Series 1, Number 7.

    ERIC Educational Resources Information Center

    Groth, Edward, III

    This paper, one in a series of occasional publications, discusses trends in food production and population growth, emphasizing how environmental quality will be affected. The series is intended to increase understanding of the interrelationships between population growth and socioeconomic and cultural patterns throughout the world, and to…

  5. Solving the puzzle of yeast survival in ephemeral nectar systems: exponential growth is not enough.

    PubMed

    Hausmann, Sebastian L; Tietjen, Britta; Rillig, Matthias C

    2017-12-01

    Flower nectar is a sugar-rich ephemeral habitat for microorganisms. Nectar-borne yeasts are part of the microbial community and can affect pollination by changing nectar chemistry, attractiveness to pollinators or flower temperature if yeast population densities are high. Pollinators act as dispersal agents in this system; however, pollination events lead potentially to shrinking nectar yeast populations. We here examine how sufficiently high cell densities of nectar yeast can develop in a flower. In laboratory experiments, we determined the remaining fraction of nectar yeast cells after nectar removal, and used honeybees to determine the number of transmitted yeast cells from one flower to the next. The results of these experiments directly fed into a simulation model providing an insight into movement and colonization ecology of nectar yeasts. We found that cell densities only reached an ecologically relevant size for an intermediate pollination probability. Too few pollination events reduce yeast inoculation rate and too many reduce yeast population size strongly. In addition, nectar yeasts need a trait combination of at least an intermediate growth rate and an intermediate remaining fraction to compensate for highly frequent decimations. Our results can be used to predict nectar yeast dispersal, growth and consequently their ecological effects. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. The Hispanic Population: 1990-2000 Growth and Change.

    ERIC Educational Resources Information Center

    Guzman, Betsy; McConnell, Eileen Diaz

    2002-01-01

    Points out significant changes in the Hispanic population between 1990 and 2000. Explores changes in the size and distribution of the Latino population using short-form data from the 1990 and 2000 censuses. Indicates significant growth of the Hispanic population who identify as 'other' Latino and the growing importance of the Midwest and South as…

  7. Population growth and economic development: two new U.S. perspectives.

    PubMed

    Wulf, D; Klitsch, M

    1986-01-01

    This report compares the research paths of economic development reports by the US National Academy of Sciences (NAS) and the American Assembly of Columbia University. The NAS group, made up principally of economists and demographers, refrained from recommending population reduction targets, in contrast to the stronger terms of its 1971 report. A 1965 report by the Assembly spoke of population as a serious negative influence for economic development, political stability, and world peace, while the new report speaks of negative socioeconomic effects, and of the limiting of a person's right to control family size. The NAS agenda was established before the US delegation to the UN population conference in Mexico City retreated from declaring population growth to be a necessarily negative influencer of socioeconomic progress. The Assembly took the position that possible benefits of population growth would be far outweighed by factors such as resource depletion and women's health. The NAS maintained that growth might provide incentives for institutional adjustments (market development, investment in education) and control of growth should not be considered a substitute for such interventions. Both reports agree that control of fertility is a human right, but the NAS report examined the question of the acceptable degree of compulsion to be used to encourage couples. The Assembly objected to limiting access to family planning by defunding abortion programs oversease. Differences exist between the 2 reports in questins such as the negative impact of 1950's population growth, the synergistic effect of growth on many areas of human activity, the extent to which welfare of future generations is considered relevant today, and the adequacy of pure economic analysis in assessing need. Much study of population/development linkages is still required.

  8. Population Growth in the 1990s: Patterns within the United States.

    ERIC Educational Resources Information Center

    Perry, Marc

    2002-01-01

    Examines population growth during the 1990s for a variety of geographic levels including regions, divisions, states, metropolitan areas, counties, and large cities. Compares growth rates for the 1990s with earlier decades to provide an historical context for present-day trends in population growth and decline. Discusses how differential population…

  9. Effect of bacterial growth rate on bacteriophage population growth rate.

    PubMed

    Nabergoj, Dominik; Modic, Petra; Podgornik, Aleš

    2018-04-01

    It is important to understand how physiological state of the host influence propagation of bacteriophages (phages), due to the potential higher phage production needs in the future. In our study, we tried to elucidate the effect of bacterial growth rate on adsorption constant (δ), latent period (L), burst size (b), and bacteriophage population growth rate (λ). As a model system, a well-studied phage T4 and Escherichia coli K-12 as a host was used. Bacteria were grown in a continuous culture operating at dilution rates in the range between 0.06 and 0.98 hr -1 . It was found that the burst size increases linearly from 8 PFU·cell -1 to 89 PFU·cell -1 with increase in bacteria growth rate. On the other hand, adsorption constant and latent period were both decreasing from 2.6∙10 -9  ml·min -1 and 80 min to reach limiting values of 0.5 × 10 -9  ml·min -1 and 27 min at higher growth rates, respectively. Both trends were mathematically described with Michaelis-Menten based type of equation and reasons for such form are discussed. By applying selected equations, a mathematical equation for prediction of bacteriophage population growth rate as a function of dilution rate was derived, reaching values around 8 hr -1 at highest dilution rate. Interestingly, almost identical description can be obtained using much simpler Monod type equation and possible reasons for this finding are discussed. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  10. Optimal growth entails risky localization in population dynamics

    NASA Astrophysics Data System (ADS)

    Gueudré, Thomas; Martin, David G.

    2018-03-01

    Essential to each other, growth and exploration are jointly observed in alive and inanimate entities, such as animals, cells or goods. But how the environment's structural and temporal properties weights in this balance remains elusive. We analyze a model of stochastic growth with time correlations and diffusive dynamics that sheds light on the way populations grow and spread over general networks. This model suggests natural explanations of empirical facts in econo-physics or ecology, such as the risk-return trade-off and the Zipf law. We conclude that optimal growth leads to a localized population distribution, but such risky position can be mitigated through the space geometry. These results have broad applicability and are subsequently illustrated over an empirical study of financial data.

  11. Population growth, agrarian peasant economy and environmental degradation in Tanzania.

    PubMed

    Madulu, N F

    1995-03-01

    Population strategies to relieve the density pressures on land and resources in Tanzania have not considered the basic causes of population growth. Resettlement results in the same environmental degradation as in the original settlement. There should be a reduction in the population growth and planning of proper land use and resource exploitation before resettlement. Rural development must include a decline in the dependency on subsistence agriculture. Population in Tanzania increased by 213% during 1948-88. An absolute increase in population size during 1978-88 is recorded despite a slight decline in the rate of growth. Death rates declined, but birth rates were relatively stable at around 50 per 1000 population. Regions with the highest growth rates were Dar es Salaam (4.8%), Rukwa (4.3%), Arusha (3.8%), Mbeya (3.1%), and Ruvuma (3.2%). The regions with the lowest rates were Tanga and Kilimanjaro (2.1%), Coast (2.1%), Lindi (2%), and Mtwara (1.4%). Low growth rates are attributed to low fertility and high infertility. Other factors affecting high growth rates are culture, rates of natural increase, intensity of internal and international migration, climatic conditions, and availability of resources. In 1988 46% of the population was under 15 years old. Per capita land availability declined from 11.8 hectares in 1948 to 3.8 hectares in 1988. The number of landless peasants increased. Productivity declined, and distances to farms increased. The total fertility rate was 6.5 children per woman in 1988 and 6.1 during 1991-92. Slight declines were apparent in the crude birth rate also. High fertility was a response to universal marriage, low contraceptive use (7% using modern methods during 1991-92), declining lactation periods, high mortality rates, and old traditions favoring large families. Children were used extensively in time-consuming and labor-intensive activities, such as fetching water. The mean number of children ever born was higher among women with 1

  12. Development Planning and Population Growth and Redistribution in the Republic of Iraq.

    ERIC Educational Resources Information Center

    El Attar, M. E.; Salman, A. D.

    Utilizing the 1947, 1957, and l965 census data and the 1970 preliminary population count, the relationship between population growth and redistribution and development planning in Iraq was examined. Trends in rural-urban population growth, migration, and population redistribution were examined as they pertained to the socioeconomic development…

  13. Theory, computation, and application of exponential splines

    NASA Technical Reports Server (NTRS)

    Mccartin, B. J.

    1981-01-01

    A generalization of the semiclassical cubic spline known in the literature as the exponential spline is discussed. In actuality, the exponential spline represents a continuum of interpolants ranging from the cubic spline to the linear spline. A particular member of this family is uniquely specified by the choice of certain tension parameters. The theoretical underpinnings of the exponential spline are outlined. This development roughly parallels the existing theory for cubic splines. The primary extension lies in the ability of the exponential spline to preserve convexity and monotonicity present in the data. Next, the numerical computation of the exponential spline is discussed. A variety of numerical devices are employed to produce a stable and robust algorithm. An algorithm for the selection of tension parameters that will produce a shape preserving approximant is developed. A sequence of selected curve-fitting examples are presented which clearly demonstrate the advantages of exponential splines over cubic splines.

  14. Population stress: A spatiotemporal analysis of population change and land development at the county level in the contiguous United States, 2001-2011.

    PubMed

    Chi, Guangqing; Ho, Hung Chak

    2018-01-01

    The past century has witnessed rapidly increasing population-land conflicts due to exponential population growth and its many consequences. Although the measures of population-land conflicts are many, there lacks a model that appropriately considers both the social and physical contexts of population-land conflicts. In this study we introduce the concept of population stress , which identifies areas with populations growing faster than the lands available for sustainable development. Specifically, population stress areas are identified by comparing population growth and land development as measured by land developability in the contiguous United States from 2001 to 2011. Our approach is based on a combination of spatial multicriteria analysis, zonal statistics, and spatiotemporal modeling. We found that the population growth of a county is associated with the decrease of land developability, along with the spatial influences of surrounding counties. The Midwest and the traditional "Deep South" counties would have less population stress with future land development, whereas the Southeast Coast, Washington State, Northern Texas, and the Southwest would face more stress due to population growth that is faster than the loss of suitable lands for development. The factors contributing to population stress may differ from place to place. Our population stress concept is useful and innovative for understanding population stress due to land development and can be applied to other regions as well as global research. It can act as a basis towards developing coherent sustainable land use policies. Coordination among local governments and across different levels of governments in the twenty-first century is a must for effective land use planning.

  15. Population growth and economic development.

    PubMed

    Corbridge, S

    1989-01-01

    The Malthusian and neo-Malthusian approaches to the role of population growth in economic development and resource depletion are briefly outlined. Three arguments are then presented that emphasize demographic determinism, empirical evidence, and cause and effect. The author concludes that non-coercive family planning programs may have a role to play in countries that are unable to reduce inequalities, particularly for the poor and for women.

  16. Changes of ploidy during the Azotobacter vinelandii growth cycle.

    PubMed Central

    Maldonado, R; Jiménez, J; Casadesús, J

    1994-01-01

    The size of the Azotobacter vinelandii chromosome is approximately 4,700 kb, as calculated by pulsed-field electrophoretic separation of fragments digested with the rarely cutting endonucleases SpeI and SwaI. Surveys of DNA content per cell by flow cytometry indicated the existence of ploidy changes during the A. vinelandii growth cycle in rich medium. Early-exponential-phase cells have a ploidy level similar to that of Escherichia coli or Salmonella typhimurium (probably ca. four chromosomes per cell), but a continuous increase of DNA content per cell is observed during growth. Late-exponential-phase cells may contain > 40 chromosomes per cell, while cells in the early stationary stage may contain > 80 chromosomes per cell. In late-stationary-phase cultures, the DNA content per cell is even higher, probably over 100 chromosome equivalents per cell. A dramatic change is observed in old stationary-phase cultures, when the population of highly polyploid bacteria segregates cells with low ploidy. The DNA content of the latter cells resembles that of cysts, suggesting that the process may reflect the onset of cyst differentiation. Cells with low ploidy are also formed when old stationary-phase cultures are diluted into fresh medium. Addition of rifampin to exponential-phase cultures causes a rapid increase in DNA content, indicating that A. vinelandii initiates multiple rounds of chromosome replication per cell division. Growth in minimal medium does not result in the spectacular changes of ploidy observed during rapid growth; this observation suggests that the polyploidy of A. vinelandii may not exist outside the laboratory. Images PMID:8021173

  17. Metabolic Flux Analysis during the Exponential Growth Phase of Saccharomyces cerevisiae in Wine Fermentations

    PubMed Central

    Quirós, Manuel; Martínez-Moreno, Rubén; Albiol, Joan; Morales, Pilar; Vázquez-Lima, Felícitas; Barreiro-Vázquez, Antonio; Ferrer, Pau; Gonzalez, Ramon

    2013-01-01

    As a consequence of the increase in global average temperature, grapes with the adequate phenolic and aromatic maturity tend to be overripe by the time of harvest, resulting in increased sugar concentrations and imbalanced C/N ratios in fermenting musts. This fact sets obvious additional hurdles in the challenge of obtaining wines with reduced alcohols levels, a new trend in consumer demands. It would therefore be interesting to understand Saccharomyces cerevisiae physiology during the fermentation of must with these altered characteristics. The present study aims to determine the distribution of metabolic fluxes during the yeast exponential growth phase, when both carbon and nitrogen sources are in excess, using continuous cultures. Two different sugar concentrations were studied under two different winemaking temperature conditions. Although consumption and production rates for key metabolites were severely affected by the different experimental conditions studied, the general distribution of fluxes in central carbon metabolism was basically conserved in all cases. It was also observed that temperature and sugar concentration exerted a higher effect on the pentose phosphate pathway and glycerol formation than on glycolysis and ethanol production. Additionally, nitrogen uptake, both quantitatively and qualitatively, was strongly influenced by environmental conditions. This work provides the most complete stoichiometric model used for Metabolic Flux Analysis of S. cerevisiae in wine fermentations employed so far, including the synthesis and release of relevant aroma compounds and could be used in the design of optimal nitrogen supplementation of wine fermentations. PMID:23967264

  18. Exponential expansion: galactic destiny or technological hubris?

    NASA Astrophysics Data System (ADS)

    Finney, B. R.

    Is it our destiny to expand exponentially to populate the galaxy, or is such a vision but an extreme example of technological hubris? The overall record of human evolution and dispersion over the Earth can be cited to support the view that we are a uniquely expansionary and technological animal bound for the stars, yet an examination of the fate of individual migrations and exploratory initiatives raises doubts. Although it may be in keeping with our hubristic nature to predict ultimate galactic expansion, there is no way to specify how far expansionary urges may drive our spacefaring descendants.

  19. Population growth is a variable open to change

    NASA Astrophysics Data System (ADS)

    Potts, M.

    2016-12-01

    The absolute number of people and the rate of population growth have an impact on climate mitigation, adaptation and possible conflict. Half the pregnancies in the US are unintended. Robust quantitative evidence from California demonstrates that improving access to family planning is the single most cost-effective way of mitigating our carbon footprint. Globally, there are 80 million unintended pregnancies annually. Many non-evidence barriers deprive women of the information and means required to separate sex from childbearing. Between 1960 and 1990, meeting the need for family planning led to a rapid fall in family size in much of Asia. Since 1990, funding for family planning has collapsed and fertility decline has stalled. The UN projects that by 2100 global population will increase by 3.8 billion (equal to world population in 1975). 80% of this growth will be in Africa. Studies project that climate change will undermine crop yields in parts of Africa, especially the Sahel. A high ratio of young males to the rest of the population is a risk factor in conflict. Today, only 1% of overseas assistance is allocated to family planning. Based on analysis of the past, doubling that investment would accelerate fertility decline, facilitating climate mitigation and adaptation, and possibly reducing conflict. Population and family planning were pushed off the international agenda by unacceptably and tragic episodes of coercion in China and India. However, there is compelling data that when voluntary family planning is widely available then family size can fall rapidly, as occurred in the Islamic Republic of Iran, where fertility fell more rapidly than in any other country in history. Family planning is listening to what women want not telling people want to do. Population growth is a variable open to change in a human rights framework. Population and family planning are variables relevant to the scientific agenda of the AGU.

  20. On the Matrix Exponential Function

    ERIC Educational Resources Information Center

    Hou, Shui-Hung; Hou, Edwin; Pang, Wan-Kai

    2006-01-01

    A novel and simple formula for computing the matrix exponential function is presented. Specifically, it can be used to derive explicit formulas for the matrix exponential of a general matrix A satisfying p(A) = 0 for a polynomial p(s). It is ready for use in a classroom and suitable for both hand as well as symbolic computation.

  1. Stochastic dynamics and logistic population growth

    NASA Astrophysics Data System (ADS)

    Méndez, Vicenç; Assaf, Michael; Campos, Daniel; Horsthemke, Werner

    2015-06-01

    The Verhulst model is probably the best known macroscopic rate equation in population ecology. It depends on two parameters, the intrinsic growth rate and the carrying capacity. These parameters can be estimated for different populations and are related to the reproductive fitness and the competition for limited resources, respectively. We investigate analytically and numerically the simplest possible microscopic scenarios that give rise to the logistic equation in the deterministic mean-field limit. We provide a definition of the two parameters of the Verhulst equation in terms of microscopic parameters. In addition, we derive the conditions for extinction or persistence of the population by employing either the momentum-space spectral theory or the real-space Wentzel-Kramers-Brillouin approximation to determine the probability distribution function and the mean time to extinction of the population. Our analytical results agree well with numerical simulations.

  2. A General Exponential Framework for Dimensionality Reduction.

    PubMed

    Wang, Su-Jing; Yan, Shuicheng; Yang, Jian; Zhou, Chun-Guang; Fu, Xiaolan

    2014-02-01

    As a general framework, Laplacian embedding, based on a pairwise similarity matrix, infers low dimensional representations from high dimensional data. However, it generally suffers from three issues: 1) algorithmic performance is sensitive to the size of neighbors; 2) the algorithm encounters the well known small sample size (SSS) problem; and 3) the algorithm de-emphasizes small distance pairs. To address these issues, here we propose exponential embedding using matrix exponential and provide a general framework for dimensionality reduction. In the framework, the matrix exponential can be roughly interpreted by the random walk over the feature similarity matrix, and thus is more robust. The positive definite property of matrix exponential deals with the SSS problem. The behavior of the decay function of exponential embedding is more significant in emphasizing small distance pairs. Under this framework, we apply matrix exponential to extend many popular Laplacian embedding algorithms, e.g., locality preserving projections, unsupervised discriminant projections, and marginal fisher analysis. Experiments conducted on the synthesized data, UCI, and the Georgia Tech face database show that the proposed new framework can well address the issues mentioned above.

  3. Plant defences limit herbivore population growth by changing predator-prey interactions.

    PubMed

    Kersch-Becker, Mônica F; Kessler, André; Thaler, Jennifer S

    2017-09-13

    Plant quality and predators are important factors affecting herbivore population growth, but how they interact to regulate herbivore populations is not well understood. We manipulated jasmonate-induced plant resistance, exposure to the natural predator community and herbivore density to test how these factors jointly and independently affect herbivore population growth. On low-resistance plants, the predator community was diverse and abundant, promoting high predator consumption rates. On high-resistance plants, the predator community was less diverse and abundant, resulting in low predator consumption rate. Plant resistance only directly regulated aphid population growth on predator-excluded plants. When predators were present, plant resistance indirectly regulated herbivore population growth by changing the impact of predators on the herbivorous prey. A possible mechanism for the interaction between plant resistance and predation is that methyl salicylate, a herbivore-induced plant volatile attractive to predators, was more strongly induced in low-resistance plants. Increased plant resistance reduced predator attractant lures, preventing predators from locating their prey. Low-resistance plants may regulate herbivore populations via predators by providing reliable information on prey availability and increasing the effectiveness of predators. © 2017 The Author(s).

  4. Operculina from the northwestern Pacific (Sesoko Island, Japan) Species Differentiation, Population Dynamics, Growth and Development

    NASA Astrophysics Data System (ADS)

    Woeger, Julia; Eder, Wolfgang; Kinoshita, Shunichi; Briguglio, Antonino; Hohenegger, Johann

    2017-04-01

    During the last decades larger benthic foraminifera have gained importance as indicator species and are used in a variety of applications, from ecological monitoring, studying the effects of ocean acidification, or reconstructing paleoenvironments. They significantly contribute to the carbonate budget of costal areas and are invaluable tools in biostratigraphy. Even before their advancement as bioindicators, laboratory experiments have been conducted to investigate the effects of various ecological parameters on community composition, biology of single species, or investigating the effects of salinity and temperature on stable isotope composition of the foraminiferal test, to name only a few. The natural laboratory approach (continuous sampling over a period of more than one year) was conducted at the island of Sesoko (Okinawa, Japan). in combination with µ-CT scanning was used to reveal population dynamics of 3 different morphotypes of Operculina. The clarification of reproductive cycles as well as generation and size abundances were used to calculate natural growth models. Best fit was achieved using Bertalanffy and Michaelis-Menten functions. Exponential-, logistic-, generalized logistic-, Gompertz-function yielded weaker fits, when compared by coefficient of determination as well as Akaike Information criterion. The resulting growth curves and inferred growth rates were in turn used to evaluate the quality of a laboratory cultivation experiment carried out simultaneously over a period of 15 months. Culturing parameters such as temperature, light intensities, salinity and pH and light-dark duration were continuously adapted to measurements in the field. The average investigation time in culture was 77days. 13 Individuals lived more than 200 days, 3 reproduced asexually and one sexually. 14% of 186 Individuals were lost, while 22% could not be kept alive for more than one month. Growth curves also represent an instrumental source of information for the various

  5. Endogenous population growth may imply chaos.

    PubMed

    Prskawetz, A; Feichtinger, G

    1995-01-01

    The authors consider a discrete-time neoclassical growth model with an endogenous rate of population growth. The resulting one-dimensional map for the capital intensity has a tilted z-shape. Using the theory of nonlinear dynamical systems, they obtain numerical results on the qualitative behavior of time paths for changing parameter values. Besides stable and periodic solutions, erratic time paths may result. In particular, myopic and far-sighted economies--assumed to be characterized by low and high savings rate respectively--are characterized by stable per capita capital stocks, while solutions with chaotic windows exist between these two extremes.

  6. [African population growth: status and prospects].

    PubMed

    Tabutin, D

    1991-01-01

    Despite great improvements over the past several years, the quality of demographic data in Africa is still a problem, and Africa remains the least well known continent. Population growth is extremely rapid, with all countries growing at annual rates of over 3%. The natural increase rate even shows some signs of increasing slightly in the next decade or so. Africa's population was estimated at 220 million in 1950, 650 million at present, and is projected at 1.5 billion by 2025. Africans represented 9% of the world population in 1960, but will increase to 19% around 2025. The rapid population growth is the result of declining mortality since the 1950s unmatched by changes in fertility. There are significant socioeconomic and rural-urban mortality differentials in Africa, but as yet only highly educated urbanites have measurably reduced their family size. 2 consequences of this rapid growth are the youth of the population, with almost 50% under 20 years, and its high density in some areas. By 2025, 18 countries will have densities of over 100 persons per sq km. Almost everywhere in Africa, family sizes are at least 6 children/woman. 3 factors explaining this high level of fertility are the earliness and universality of marriage, rates of contraceptive usage of only 4-10% in most countries, and declining durations of breast feeding and sexual abstinence, which traditionally served as brakes on fertility. As a rule, women marry young and remain married until the end of their reproductive years. Divorce and widowhood are common, but remarriage is usually rapid if the woman is still of reproductive age. Life expectancy at birth in sub-Saharan Africa has increased from some 36 years around 1950 to 50 years at present. Progress in control of mortality, and especially infant mortality, has been slower than expected, and Africa still has by far the lowest life expectancy of any major region. Regional, rural-urban, and socioeconomic mortality differentials are considerable and

  7. Population mixture model for nonlinear telomere dynamics

    NASA Astrophysics Data System (ADS)

    Itzkovitz, Shalev; Shlush, Liran I.; Gluck, Dan; Skorecki, Karl

    2008-12-01

    Telomeres are DNA repeats protecting chromosomal ends which shorten with each cell division, eventually leading to cessation of cell growth. We present a population mixture model that predicts an exponential decrease in telomere length with time. We analytically solve the dynamics of the telomere length distribution. The model provides an excellent fit to available telomere data and accounts for the previously unexplained observation of telomere elongation following stress and bone marrow transplantation, thereby providing insight into the nature of the telomere clock.

  8. Equivalences between nonuniform exponential dichotomy and admissibility

    NASA Astrophysics Data System (ADS)

    Zhou, Linfeng; Lu, Kening; Zhang, Weinian

    2017-01-01

    Relationship between exponential dichotomies and admissibility of function classes is a significant problem for hyperbolic dynamical systems. It was proved that a nonuniform exponential dichotomy implies several admissible pairs of function classes and conversely some admissible pairs were found to imply a nonuniform exponential dichotomy. In this paper we find an appropriate admissible pair of classes of Lyapunov bounded functions which is equivalent to the existence of nonuniform exponential dichotomy on half-lines R± separately, on both half-lines R± simultaneously, and on the whole line R. Additionally, the maximal admissibility is proved in the case on both half-lines R± simultaneously.

  9. BORAX V EXPONENTIAL EXPERIMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirn, F.S.; Hagen, J.I.

    1963-04-01

    The cadmium ratio was measured in an exponential mockup of Borax V as a function of the void fraction. The extent of voids, simulated by lengths of closed polyethylene tubes, ranged from 0 to 40%. The corresponding cadmium ratios ranged from 6.1 to 4.6. The exponential was also used to determine the radial flux pattern across a Borax-type fuel assembly and the fine flux detail in and around fuel rods. For a normal loading the maximum-to-average power generation across an assembly was 1.24. (auth)

  10. The matrix exponential in transient structural analysis

    NASA Technical Reports Server (NTRS)

    Minnetyan, Levon

    1987-01-01

    The primary usefulness of the presented theory is in the ability to represent the effects of high frequency linear response with accuracy, without requiring very small time steps in the analysis of dynamic response. The matrix exponential contains a series approximation to the dynamic model. However, unlike the usual analysis procedure which truncates the high frequency response, the approximation in the exponential matrix solution is in the time domain. By truncating the series solution to the matrix exponential short, the solution is made inaccurate after a certain time. Yet, up to that time the solution is extremely accurate, including all high frequency effects. By taking finite time increments, the exponential matrix solution can compute the response very accurately. Use of the exponential matrix in structural dynamics is demonstrated by simulating the free vibration response of multi degree of freedom models of cantilever beams.

  11. The New Population Debate: Two Views on Population Growth and Economic Development. Population Trends and Public Policy, Number 7.

    ERIC Educational Resources Information Center

    King, Timothy; Kelley, Allen C.

    Articles representing two views on the issue of rapid population growth and economic development are presented. Although the authors present different perspectives, they agree on many of the fundamentals. For example, both reject alarmism about impending "population explosions" and the use of population as a scapegoat for all Third World…

  12. Krill population dynamics in the Scotia Sea: variability in growth and mortality within a single population

    NASA Astrophysics Data System (ADS)

    Reid, K.; Murphy, E. J.; Loeb, V.; Hewitt, R. P.

    2002-07-01

    Understanding the demographics of Antarctic krill over large scales may be complicated by regional differences in the processes that govern population structure. The influence of regional differences in growth and mortality on population size structure was examined using data on the length-frequency distribution of krill in the Scotia Sea using samples from the South Shetland Islands and South Georgia collected annually from 1991 to 2000. A correction function, which took account of the higher growth rate at South Georgia, produced a consistent similarity in the position of the modal size classes that was not present in the raw data. Optimising the mortality rate, to minimise the differences in the growth corrected length-frequency distribution, suggested a higher mortality rate at South Georgia that the South Shetlands. The intra-specific variations in growth and mortality rates are consistent with published values and with other Euphausiids species. Having accounted for the demographic plasticity, it is apparent that strong recruitment of the smallest size class of krill is represented in both populations simultaneously. It appears that first-year krill are advected into different regions of the Scotia Sea where the resultant population size structure is determined by regional differences in growth and mortality. The majority of the commercial harvest of krill in the Antarctic occurs in a relatively small number of regional fisheries within the Scotia Sea and is managed using population models based on a single set of demographic parameters. Where substantial differences in these parameters exist between fishing areas, the calculation of catch limits should take these differences into account.

  13. Effects of climate change on plant population growth rate and community composition change.

    PubMed

    Chang, Xiao-Yu; Chen, Bao-Ming; Liu, Gang; Zhou, Ting; Jia, Xiao-Rong; Peng, Shao-Lin

    2015-01-01

    The impacts of climate change on forest community composition are still not well known. Although directional trends in climate change and community composition change were reported in recent years, further quantitative analyses are urgently needed. Previous studies focused on measuring population growth rates in a single time period, neglecting the development of the populations. Here we aimed to compose a method for calculating the community composition change, and to testify the impacts of climate change on community composition change within a relatively short period (several decades) based on long-term monitoring data from two plots-Dinghushan Biosphere Reserve, China (DBR) and Barro Colorado Island, Panama (BCI)-that are located in tropical and subtropical regions. We proposed a relatively more concise index, Slnλ, which refers to an overall population growth rate based on the dominant species in a community. The results indicated that the population growth rate of a majority of populations has decreased over the past few decades. This decrease was mainly caused by population development. The increasing temperature had a positive effect on population growth rates and community change rates. Our results promote understanding and explaining variations in population growth rates and community composition rates, and are helpful to predict population dynamics and population responses to climate change.

  14. Exponential approximations in optimal design

    NASA Technical Reports Server (NTRS)

    Belegundu, A. D.; Rajan, S. D.; Rajgopal, J.

    1990-01-01

    One-point and two-point exponential functions have been developed and proved to be very effective approximations of structural response. The exponential has been compared to the linear, reciprocal and quadratic fit methods. Four test problems in structural analysis have been selected. The use of such approximations is attractive in structural optimization to reduce the numbers of exact analyses which involve computationally expensive finite element analysis.

  15. Life-History and Spatial Determinants of Somatic Growth Dynamics in Komodo Dragon Populations

    PubMed Central

    Laver, Rebecca J.; Purwandana, Deni; Ariefiandy, Achmad; Imansyah, Jeri; Forsyth, David; Ciofi, Claudio; Jessop, Tim S.

    2012-01-01

    Somatic growth patterns represent a major component of organismal fitness and may vary among sexes and populations due to genetic and environmental processes leading to profound differences in life-history and demography. This study considered the ontogenic, sex-specific and spatial dynamics of somatic growth patterns in ten populations of the world’s largest lizard the Komodo dragon (Varanus komodoensis). The growth of 400 individual Komodo dragons was measured in a capture-mark-recapture study at ten sites on four islands in eastern Indonesia, from 2002 to 2010. Generalized Additive Mixed Models (GAMMs) and information-theoretic methods were used to examine how growth rates varied with size, age and sex, and across and within islands in relation to site-specific prey availability, lizard population density and inbreeding coefficients. Growth trajectories differed significantly with size and between sexes, indicating different energy allocation tactics and overall costs associated with reproduction. This leads to disparities in maximum body sizes and longevity. Spatial variation in growth was strongly supported by a curvilinear density-dependent growth model with highest growth rates occurring at intermediate population densities. Sex-specific trade-offs in growth underpin key differences in Komodo dragon life-history including evidence for high costs of reproduction in females. Further, inverse density-dependent growth may have profound effects on individual and population level processes that influence the demography of this species. PMID:23028983

  16. Spatial variability and macro‐scale drivers of growth for native and introduced Flathead Catfish populations

    USGS Publications Warehouse

    Massie, Danielle L.; Smith, Geoffrey; Bonvechio, Timothy F.; Bunch, Aaron J.; Lucchesi, David O.; Wagner, Tyler

    2018-01-01

    Quantifying spatial variability in fish growth and identifying large‐scale drivers of growth are fundamental to many conservation and management decisions. Although fish growth studies often focus on a single population, it is becoming increasingly clear that large‐scale studies are likely needed for addressing transboundary management needs. This is particularly true for species with high recreational value and for those with negative ecological consequences when introduced outside of their native range, such as the Flathead Catfish Pylodictis olivaris. This study quantified growth variability of the Flathead Catfish across a large portion of its contemporary range to determine whether growth differences existed between habitat types (i.e., reservoirs and rivers) and between native and introduced populations. Additionally, we investigated whether growth parameters varied as a function of latitude and time since introduction (for introduced populations). Length‐at‐age data from 26 populations across 11 states in the USA were modeled using a Bayesian hierarchical von Bertalanffy growth model. Population‐specific growth trajectories revealed large variation in Flathead Catfish growth and relatively high uncertainty in growth parameters for some populations. Relatively high uncertainty was also evident when comparing populations and when quantifying large‐scale patterns. Growth parameters (Brody growth coefficient [K] and theoretical maximum average length [L∞]) were not different (based on overlapping 90% credible intervals) between habitat types or between native and introduced populations. For populations within the introduced range of Flathead Catfish, latitude was negatively correlated with K. For native populations, we estimated an 85% probability that L∞ estimates were negatively correlated with latitude. Contrary to predictions, time since introduction was not correlated with growth parameters in introduced populations of Flathead Catfish

  17. On the relationship between population growth and social and economic development.

    PubMed

    Xu, D

    1983-01-01

    China's population has grown rapidly since 1949, reaching a size of 1,008,170,000 by 1982. Rapid population growth has been encouraged by a high birth rate coupled with low mortality, traditional preference for sons, and the incorrect assumption that man is only a producer and not a consumer. Rapid population growth directly decreases economic development while producing a rapidly increasing labor force requiring an increase in the number of jobs available. Population growth has already reduced arable land from 3 MN in 1949 to 1.5 MN at present and can also cause sanitation and pollution problems. Only by adopting family plnning and the 1 child family can China gradually slow population growth to correspond with economic development; then the state will be able to improve health care and education and, therefore, population quality. China's population policy is not one of NeoMalthusianism, which advocates birth control and late marriage, and assumes the existence of a capitalist system and does not apply to communist systems. Malthus may have attempted to absolve the nourgeoisie from all blame by aiming his preaching against blind reproduction at the poor; he thought that overpopulation would be reduced by pestilence, war, and famine. Protecting capitalism motivated Malthus and other capitalists, but the Chinese want to promote economic development. Marx has refuted Malthus' views on population. While Chinese population policy and NeoMalthusianism agree on advocating birth control and late marriage, their underlying philosophies are different. The author supports laws and policies on fertility and family planning, and feels that population scientists must be involved in all aspects--study, propaganda, and education--relating to family planning.

  18. The Between-Population Genetic Architecture of Growth, Maturation, and Plasticity in Atlantic Salmon

    PubMed Central

    Debes, Paul Vincent; Fraser, Dylan John; Yates, Matthew; Hutchings, Jeffrey A.

    2014-01-01

    The between-population genetic architecture for growth and maturation has not been examined in detail for many animal species despite its central importance in understanding hybrid fitness. We studied the genetic architecture of population divergence in: (i) maturation probabilities at the same age; (ii) size at age and growth, while accounting for maturity status and sex; and (iii) growth plasticity in response to environmental factors, using divergent wild and domesticated Atlantic salmon (Salmo salar). Our work examined two populations and their multigenerational hybrids in a common experimental arrangement in which salinity and quantity of suspended sediments were manipulated to mimic naturally occurring environmental variation. Average specific growth rates across environments differed among crosses, maturity groups, and cross-by-maturity groups, but a growth-rate reduction in the presence of suspended sediments was equal for all groups. Our results revealed both additive and nonadditive outbreeding effects for size at age and for growth rates that differed with life stage, as well as the presence of different sex- and size-specific maturation probabilities between populations. The major implication of our work is that estimates of the genetic architecture of growth and maturation can be biased if one does not simultaneously account for temporal changes in growth and for different maturation probabilities between populations. Namely, these correlated traits interact differently within each population and between sexes and among generations, due to nonadditive effects and a level of independence in the genetic control for traits. Our results emphasize the challenges to investigating and predicting phenotypic changes resulting from between-population outbreeding. PMID:24473933

  19. The between-population genetic architecture of growth, maturation, and plasticity in Atlantic salmon.

    PubMed

    Debes, Paul Vincent; Fraser, Dylan John; Yates, Matthew; Hutchings, Jeffrey A

    2014-04-01

    The between-population genetic architecture for growth and maturation has not been examined in detail for many animal species despite its central importance in understanding hybrid fitness. We studied the genetic architecture of population divergence in: (i) maturation probabilities at the same age; (ii) size at age and growth, while accounting for maturity status and sex; and (iii) growth plasticity in response to environmental factors, using divergent wild and domesticated Atlantic salmon (Salmo salar). Our work examined two populations and their multigenerational hybrids in a common experimental arrangement in which salinity and quantity of suspended sediments were manipulated to mimic naturally occurring environmental variation. Average specific growth rates across environments differed among crosses, maturity groups, and cross-by-maturity groups, but a growth-rate reduction in the presence of suspended sediments was equal for all groups. Our results revealed both additive and nonadditive outbreeding effects for size at age and for growth rates that differed with life stage, as well as the presence of different sex- and size-specific maturation probabilities between populations. The major implication of our work is that estimates of the genetic architecture of growth and maturation can be biased if one does not simultaneously account for temporal changes in growth and for different maturation probabilities between populations. Namely, these correlated traits interact differently within each population and between sexes and among generations, due to nonadditive effects and a level of independence in the genetic control for traits. Our results emphasize the challenges to investigating and predicting phenotypic changes resulting from between-population outbreeding.

  20. Method for nonlinear exponential regression analysis

    NASA Technical Reports Server (NTRS)

    Junkin, B. G.

    1972-01-01

    Two computer programs developed according to two general types of exponential models for conducting nonlinear exponential regression analysis are described. Least squares procedure is used in which the nonlinear problem is linearized by expanding in a Taylor series. Program is written in FORTRAN 5 for the Univac 1108 computer.

  1. The Secular Evolution Of Disc Galaxies And The Origin Of Exponential And Double Exponential Surface Density Profiles

    NASA Astrophysics Data System (ADS)

    Elmegreen, Bruce G.

    2016-10-01

    Exponential radial profiles are ubiquitous in spiral and dwarf Irregular galaxies, but the origin of this structural form is not understood. This talk will review the observations of exponential and double exponential disks, considering both the light and the mass profiles, and the contributions from stars and gas. Several theories for this structure will also be reviewed, including primordial collapse, bar and spiral torques, clump torques, galaxy interactions, disk viscosity and other internal processes of angular momentum exchange, and stellar scattering off of clumpy structure. The only process currently known that can account for this structure in the most theoretically difficult case is stellar scattering off disks clumps. Stellar orbit models suggest that such scattering can produce exponentials even in isolated dwarf irregulars that have no bars or spirals, little shear or viscosity, and profiles that go out too far for the classical Mestel case of primordial collapse with specific angular momentum conservation.

  2. Small regulatory RNA-induced growth rate heterogeneity of Bacillus subtilis.

    PubMed

    Mars, Ruben A T; Nicolas, Pierre; Ciccolini, Mariano; Reilman, Ewoud; Reder, Alexander; Schaffer, Marc; Mäder, Ulrike; Völker, Uwe; van Dijl, Jan Maarten; Denham, Emma L

    2015-03-01

    Isogenic bacterial populations can consist of cells displaying heterogeneous physiological traits. Small regulatory RNAs (sRNAs) could affect this heterogeneity since they act by fine-tuning mRNA or protein levels to coordinate the appropriate cellular behavior. Here we show that the sRNA RnaC/S1022 from the Gram-positive bacterium Bacillus subtilis can suppress exponential growth by modulation of the transcriptional regulator AbrB. Specifically, the post-transcriptional abrB-RnaC/S1022 interaction allows B. subtilis to increase the cell-to-cell variation in AbrB protein levels, despite strong negative autoregulation of the abrB promoter. This behavior is consistent with existing mathematical models of sRNA action, thus suggesting that induction of protein expression noise could be a new general aspect of sRNA regulation. Importantly, we show that the sRNA-induced diversity in AbrB levels generates heterogeneity in growth rates during the exponential growth phase. Based on these findings, we hypothesize that the resulting subpopulations of fast- and slow-growing B. subtilis cells reflect a bet-hedging strategy for enhanced survival of unfavorable conditions.

  3. Correlation between the change in the kinetics of the ribosomal RNA rrnB P2 promoter and the transition from lag to exponential phase with Pseudomonas fluorescens.

    PubMed

    McKellar, Robin C

    2008-01-15

    Developing accurate mathematical models to describe the pre-exponential lag phase in food-borne pathogens presents a considerable challenge to food microbiologists. While the growth rate is influenced by current environmental conditions, the lag phase is affected in addition by the history of the inoculum. A deeper understanding of physiological changes taking place during the lag phase would improve accuracy of models, and in earlier studies a strain of Pseudomonas fluorescens containing the Tn7-luxCDABE gene cassette regulated by the rRNA promoter rrnB P2 was used to measure the influence of starvation, growth temperature and sub-lethal heating on promoter expression and subsequent growth. The present study expands the models developed earlier to include a model which describes the change from exponential to linear increase in promoter expression with time when the exponential phase of growth commences. A two-phase linear model with Poisson weighting was used to estimate the lag (LPDLin) and the rate (RLin) for this linear increase in bioluminescence. The Spearman rank correlation coefficient (r=0.830) between the LPDLin and the growth lag phase (LPDOD) was extremely significant (Pexponential growth. These results suggest that models based on measurable physiological changes in the cells can be useful in predicting the behaviour of food-borne pathogens.

  4. On the Prony series representation of stretched exponential relaxation

    NASA Astrophysics Data System (ADS)

    Mauro, John C.; Mauro, Yihong Z.

    2018-09-01

    Stretched exponential relaxation is a ubiquitous feature of homogeneous glasses. The stretched exponential decay function can be derived from the diffusion-trap model, which predicts certain critical values of the fractional stretching exponent, β. In practical implementations of glass relaxation models, it is computationally convenient to represent the stretched exponential function as a Prony series of simple exponentials. Here, we perform a comprehensive mathematical analysis of the Prony series approximation of the stretched exponential relaxation, including optimized coefficients for certain critical values of β. The fitting quality of the Prony series is analyzed as a function of the number of terms in the series. With a sufficient number of terms, the Prony series can accurately capture the time evolution of the stretched exponential function, including its "fat tail" at long times. However, it is unable to capture the divergence of the first-derivative of the stretched exponential function in the limit of zero time. We also present a frequency-domain analysis of the Prony series representation of the stretched exponential function and discuss its physical implications for the modeling of glass relaxation behavior.

  5. Parameter Estimates in Differential Equation Models for Population Growth

    ERIC Educational Resources Information Center

    Winkel, Brian J.

    2011-01-01

    We estimate the parameters present in several differential equation models of population growth, specifically logistic growth models and two-species competition models. We discuss student-evolved strategies and offer "Mathematica" code for a gradient search approach. We use historical (1930s) data from microbial studies of the Russian biologist,…

  6. Adult survival and population growth rate in Colorado big brown bats (Eptesicus fuscus)

    USGS Publications Warehouse

    O'Shea, T.J.; Ellison, L.E.; Stanley, T.R.

    2011-01-01

    We studied adult survival and population growth at multiple maternity colonies of big brown bats (Eptesicus fuscus) in Fort Collins, Colorado. We investigated hypotheses about survival using information-theoretic methods and mark-recapture analyses based on passive detection of adult females tagged with passive integrated transponders. We constructed a 3-stage life-history matrix model to estimate population growth rate (??) and assessed the relative importance of adult survival and other life-history parameters to population growth through elasticity and sensitivity analysis. Annual adult survival at 5 maternity colonies monitored from 2001 to 2005 was estimated at 0.79 (95% confidence interval [95% CI] = 0.77-0.82). Adult survival varied by year and roost, with low survival during an extreme drought year, a finding with negative implications for bat populations because of the likelihood of increasing drought in western North America due to global climate change. Adult survival during winter was higher than in summer, and mean life expectancies calculated from survival estimates were lower than maximum longevity records. We modeled adult survival with recruitment parameter estimates from the same population. The study population was growing (?? = 1.096; 95% CI = 1.057-1.135). Adult survival was the most important demographic parameter for population growth. Growth clearly had the highest elasticity to adult survival, followed by juvenile survival and adult fecundity (approximately equivalent in rank). Elasticity was lowest for fecundity of yearlings. The relative importances of the various life-history parameters for population growth rate are similar to those of large mammals. ?? 2011 American Society of Mammalogists.

  7. A model of northern pintail productivity and population growth rate

    USGS Publications Warehouse

    Flint, Paul L.; Grand, James B.; Rockwell, Robert F.

    1998-01-01

    Our objective was to synthesize individual components of reproductive ecology into a single estimate of productivity and to assess the relative effects of survival and productivity on population dynamics. We used information on nesting ecology, renesting potential, and duckling survival of northern pintails (Anas acuta) collected on the Yukon-Kuskokwim Delta (Y-K Delta), Alaska, 1991-95, to model the number of ducklings produced under a range of nest success and duckling survival probabilities. Using average values of 25% nest success, 11% duckling survival, and 56% renesting probability from our study population, we calculated that all young in our population were produced by 13% of the breeding females, and that early-nesting females produced more young than later-nesting females. Further, we calculated, on average, that each female produced only 0.16 young females/nesting season. We combined these results with estimates of first-year and adult survival to examine the growth rate (X) of the population and the relative contributions of these demographic parameters to that growth rate. Contrary to aerial survey data, the population projection model suggests our study population is declining rapidly (X = 0.6969). The relative effects on population growth rate were 0.1175 for reproductive success, 0.1175 for first-year survival, and 0.8825 for adult survival. Adult survival had the greatest influence on X for our population, and this conclusion was robust over a range of survival and productivity estimates. Given published estimates of annual survival for adult females (61%), our model suggested nest success and duckling survival need to increase to approximately 40% to achieve population stability. We discuss reasons for the apparent discrepancy in population trends between our model and aerial surveys in terms of bias in productivity and survival estimates.

  8. Practical pulse engineering: Gradient ascent without matrix exponentiation

    NASA Astrophysics Data System (ADS)

    Bhole, Gaurav; Jones, Jonathan A.

    2018-06-01

    Since 2005, there has been a huge growth in the use of engineered control pulses to perform desired quantum operations in systems such as nuclear magnetic resonance quantum information processors. These approaches, which build on the original gradient ascent pulse engineering algorithm, remain computationally intensive because of the need to calculate matrix exponentials for each time step in the control pulse. In this study, we discuss how the propagators for each time step can be approximated using the Trotter-Suzuki formula, and a further speedup achieved by avoiding unnecessary operations. The resulting procedure can provide substantial speed gain with negligible costs in the propagator error, providing a more practical approach to pulse engineering.

  9. Calculating second derivatives of population growth rates for ecology and evolution

    PubMed Central

    Shyu, Esther; Caswell, Hal

    2014-01-01

    1. Second derivatives of the population growth rate measure the curvature of its response to demographic, physiological or environmental parameters. The second derivatives quantify the response of sensitivity results to perturbations, provide a classification of types of selection and provide one way to calculate sensitivities of the stochastic growth rate. 2. Using matrix calculus, we derive the second derivatives of three population growth rate measures: the discrete-time growth rate λ, the continuous-time growth rate r = log λ and the net reproductive rate R0, which measures per-generation growth. 3. We present a suite of formulae for the second derivatives of each growth rate and show how to compute these derivatives with respect to projection matrix entries and to lower-level parameters affecting those matrix entries. 4. We also illustrate several ecological and evolutionary applications for these second derivative calculations with a case study for the tropical herb Calathea ovandensis. PMID:25793101

  10. The role of density-dependent individual growth in the persistence of freshwater salmonid populations.

    PubMed

    Vincenzi, Simone; Crivelli, Alain J; Jesensek, Dusan; De Leo, Giulio A

    2008-06-01

    Theoretical and empirical models of populations dynamics have paid little attention to the implications of density-dependent individual growth on the persistence and regulation of small freshwater salmonid populations. We have therefore designed a study aimed at testing our hypothesis that density-dependent individual growth is a process that enhances population recovery and reduces extinction risk in salmonid populations in a variable environment subject to disturbance events. This hypothesis was tested in two newly introduced marble trout (Salmo marmoratus) populations living in Slovenian streams (Zakojska and Gorska) subject to severe autumn floods. We developed a discrete-time stochastic individual-based model of population dynamics for each population with demographic parameters and compensatory responses tightly calibrated on data from individually tagged marble trout. The occurrence of severe flood events causing population collapses was explicitly accounted for in the model. We used the model in a population viability analysis setting to estimate the quasi-extinction risk and demographic indexes of the two marble trout populations when individual growth was density-dependent. We ran a set of simulations in which the effect of floods on population abundance was explicitly accounted for and another set of simulations in which flood events were not included in the model. These simulation results were compared with those of scenarios in which individual growth was modelled with density-independent Von Bertalanffy growth curves. Our results show how density-dependent individual growth may confer remarkable resilience to marble trout populations in case of major flood events. The resilience to flood events shown by the simulation results can be explained by the increase in size-dependent fecundity as a consequence of the drop in population size after a severe flood, which allows the population to quickly recover to the pre-event conditions. Our results suggest

  11. Stretched exponential distributions in nature and economy: ``fat tails'' with characteristic scales

    NASA Astrophysics Data System (ADS)

    Laherrère, J.; Sornette, D.

    1998-04-01

    To account quantitatively for many reported "natural" fat tail distributions in Nature and Economy, we propose the stretched exponential family as a complement to the often used power law distributions. It has many advantages, among which to be economical with only two adjustable parameters with clear physical interpretation. Furthermore, it derives from a simple and generic mechanism in terms of multiplicative processes. We show that stretched exponentials describe very well the distributions of radio and light emissions from galaxies, of US GOM OCS oilfield reserve sizes, of World, US and French agglomeration sizes, of country population sizes, of daily Forex US-Mark and Franc-Mark price variations, of Vostok (near the south pole) temperature variations over the last 400 000 years, of the Raup-Sepkoski's kill curve and of citations of the most cited physicists in the world. We also discuss its potential for the distribution of earthquake sizes and fault displacements. We suggest physical interpretations of the parameters and provide a short toolkit of the statistical properties of the stretched exponentials. We also provide a comparison with other distributions, such as the shifted linear fractal, the log-normal and the recently introduced parabolic fractal distributions.

  12. Trends in the growth of population and labour force in Pakistan.

    PubMed

    Hashmi, S S

    1990-01-01

    Trends in the growth of the population and labor force in Pakistan are examined and future prospects for growth of population and labor, particularly agriculture, are estimated. The definition of labor force as employed or seeking work after a short period of employment has led to a great disparity in results for women in the labor force. Past trends in population growth reflected a growth rate of 1.6% for the 1950's, and 2.4% in 1960. The population rose to 84.3 million in 1981 from 42.6 million in 1961, which intercensally was an increase of 3.6% per annum for 1961-72 and 3.1% per annum for 1972-81. The estimated rate for 1981-86 was 2.9%/year. The rural population doubled and the urban tripled. There was a net migration of 2.123 million to urban areas reported in the 1981 census. There is also evidence of a high sex ratio. Balochistan (7.1%) and Sindh (3.6%) provinces have the highest growth rates. Although the largest population is in the Punjab, the growth is the lowest at 2.7%. The population is primarily young -- 44.5% 15 years in 1981, which is the highest in the world. Under high, medium, and low levels of fertility, prospective trends are estimated for 2006 and 2031, and by sex every 5 years from 1981. Population under high fertility is expected to reach 270 million by 2031, which is 3.39 persons/hectare. The population/hectare of land under cultivation was 4.25 in 1981 and is expected to rise to 13.49 persons/hectare in 2031. 11 million acres could be brought under cultivation to reduce the ratio. However, there are ecological considerations as well as an employment problem. The dependency ratio under the high variant will decline from 76.8 persons 0-14 and 65 years/100 persons 15-64 years in 1986 to 70.3 in 2006 which is still considerably higher than other developing countries. It is suggested that replacement level fertility be attained as soon as possible. Under low fertility, replacement level can be reached by 2011 with strong political commitment

  13. Growth dynamics and the evolution of cooperation in microbial populations

    NASA Astrophysics Data System (ADS)

    Cremer, Jonas; Melbinger, Anna; Frey, Erwin

    2012-02-01

    Microbes providing public goods are widespread in nature despite running the risk of being exploited by free-riders. However, the precise ecological factors supporting cooperation are still puzzling. Following recent experiments, we consider the role of population growth and the repetitive fragmentation of populations into new colonies mimicking simple microbial life-cycles. Individual-based modeling reveals that demographic fluctuations, which lead to a large variance in the composition of colonies, promote cooperation. Biased by population dynamics these fluctuations result in two qualitatively distinct regimes of robust cooperation under repetitive fragmentation into groups. First, if the level of cooperation exceeds a threshold, cooperators will take over the whole population. Second, cooperators can also emerge from a single mutant leading to a robust coexistence between cooperators and free-riders. We find frequency and size of population bottlenecks, and growth dynamics to be the major ecological factors determining the regimes and thereby the evolutionary pathway towards cooperation.

  14. Intercoalescence time distribution of incomplete gene genealogies in temporally varying populations, and applications in population genetic inference.

    PubMed

    Chen, Hua

    2013-03-01

    Tracing back to a specific time T in the past, the genealogy of a sample of haplotypes may not have reached their common ancestor and may leave m lineages extant. For such an incomplete genealogy truncated at a specific time T in the past, the distribution and expectation of the intercoalescence times conditional on T are derived in an exact form in this paper for populations of deterministically time-varying sizes, specifically, for populations growing exponentially. The derived intercoalescence time distribution can be integrated to the coalescent-based joint allele frequency spectrum (JAFS) theory, and is useful for population genetic inference from large-scale genomic data, without relying on computationally intensive approaches, such as importance sampling and Markov Chain Monte Carlo (MCMC) methods. The inference of several important parameters relying on this derived conditional distribution is demonstrated: quantifying population growth rate and onset time, and estimating the number of ancestral lineages at a specific ancient time. Simulation studies confirm validity of the derivation and statistical efficiency of the methods using the derived intercoalescence time distribution. Two examples of real data are given to show the inference of the population growth rate of a European sample from the NIEHS Environmental Genome Project, and the number of ancient lineages of 31 mitochondrial genomes from Tibetan populations. © 2013 Blackwell Publishing Ltd/University College London.

  15. Stable, semi-stable populations and growth potential.

    PubMed

    Bourgeois-Pichat, J

    1971-07-01

    Abstract Starting from the definition of a Malthusian population given by Alfred J. Lotka, the author recalls how the concept of stable population is introduced in demography, first as a particular case of stable populations, and secondly as a limit of a demographic evolutionary process in which female age-specific fertility rates and age-specific mortality rates remain constant. Then he defines a new concept: the semi-stable population which is a population with a constant age distribution. He shows that such a population coincides at any point of time with the stable population corresponding to the mortality and the fertility at this point of time. In the remaining part of the paper it is shown how the concept of a stable population can be used for defining a coefficient of inertia which measures the resistance of a population to modification of its course as a consequence of changing fertility and mortality. Some formulae are established to calculate this coefficient first for an arbitrary population, and secondly for a semistable population. In this second case the formula is particularly simple. It appears as a product of three terms: the expectation of life at birth in years, the crude birth rate, and a coefficient depending on the rate of growth and for which a numerical table is easy to establish.

  16. Exponential Sum-Fitting of Dwell-Time Distributions without Specifying Starting Parameters

    PubMed Central

    Landowne, David; Yuan, Bin; Magleby, Karl L.

    2013-01-01

    Fitting dwell-time distributions with sums of exponentials is widely used to characterize histograms of open- and closed-interval durations recorded from single ion channels, as well as for other physical phenomena. However, it can be difficult to identify the contributing exponential components. Here we extend previous methods of exponential sum-fitting to present a maximum-likelihood approach that consistently detects all significant exponentials without the need for user-specified starting parameters. Instead of searching for exponentials, the fitting starts with a very large number of initial exponentials with logarithmically spaced time constants, so that none are missed. Maximum-likelihood fitting then determines the areas of all the initial exponentials keeping the time constants fixed. In an iterative manner, with refitting after each step, the analysis then removes exponentials with negligible area and combines closely spaced adjacent exponentials, until only those exponentials that make significant contributions to the dwell-time distribution remain. There is no limit on the number of significant exponentials and no starting parameters need be specified. We demonstrate fully automated detection for both experimental and simulated data, as well as for classical exponential-sum-fitting problems. PMID:23746510

  17. The exponential behavior and stabilizability of the stochastic magnetohydrodynamic equations

    NASA Astrophysics Data System (ADS)

    Wang, Huaqiao

    2018-06-01

    This paper studies the two-dimensional stochastic magnetohydrodynamic equations which are used to describe the turbulent flows in magnetohydrodynamics. The exponential behavior and the exponential mean square stability of the weak solutions are proved by the application of energy method. Furthermore, we establish the pathwise exponential stability by using the exponential mean square stability. When the stochastic perturbations satisfy certain additional hypotheses, we can also obtain pathwise exponential stability results without using the mean square stability.

  18. A Role for M-Matrices in Modelling Population Growth

    ERIC Educational Resources Information Center

    James, Glyn; Rumchev, Ventsi

    2006-01-01

    Adopting a discrete-time cohort-type model to represent the dynamics of a population, the problem of achieving a desired total size of the population under a balanced growth (contraction) and the problem of maintaining the desired size, once achieved, are studied. Properties of positive-time systems and M-matrices are used to develop the results,…

  19. [The decline in population growth, income distribution, and economic recession].

    PubMed

    Banguero, H

    1983-05-01

    This work uses Keynesian principles and an analysis of the Colombian population in the 1970s to argue that the Colombian policy of slowing population growth, which was adopted with the aim of improving the general welfare of the population, has had shortterm negative effects on effective demand and thus on the level of employment and welfare. These negative effects were caused by the inflexibility of income distribution, which prevented expansion of the internal market, complicated by the stagnant condition of the external sector and the budget deficit. The results of the Colombian case study demonstrate how the deceleration of population growth beginning in the 1960s had a significant impact on the levels of consumption and savings and on the patterns of consumption, leading to low levels of investment and little dynamism. Although the current Colombian economic recession is aggravated by contextual factors such as the world economic recession, the high cost of capital, the industrial recession, and declining food production among others, at the core of the crisis are longer term structural determinants such as the decline in the rate of population growth and the highly unequal distribution of income and wealth, which have contributed to a shrinking of the internal market for some types of goods. Given the unlikelihood of renewed rapid population growth, the Keynesian model suggests that the only alternative for increasing aggregate demand is state intervention through public spending and investment and reorientation of the financial system to achieve a dynamic redistribution of income. Based on these findings and on proposals of other analysts, a stragegy for revitalization is proposed which would imply a gradual income redistribution to allow increased consumption of mass produced goods by the low income groups. Direct consumption subsidies would be avoided because of their inflationary and import-expanding tendencies; rather, incentives and support would be

  20. [Fifty years of population growth and absorbing manual labor in Brazil, 1950-2000].

    PubMed

    Paiva, P D

    1986-01-01

    The economically active population has grown rapidly in Brazil, resulting either from population growth or increased female participation in the work force. This rhythm of growth will continue at least until the end of this century. The authors suggest that the impact of the recent decline in fertility will be moderate and will only affect the younger age groups. Despite the rapid growth of employment in the processing industry, the relative size of the so-called informal sector has remained stable since 1950. It is further predicted that, given the economically active population's rate of growth and the decrease in employment in agriculture, there will be a great demand for urban employment in the next 20 years.

  1. Prediction of microbial growth in fresh-cut vegetables treated with acidic electrolyzed water during storage under various temperature conditions.

    PubMed

    Koseki, S; Itoh, K

    2001-12-01

    Effects of storage temperature (1, 5, and 10 degrees C) on growth of microbial populations (total aerobic bacteria, coliform bacteria, Bacillus cereus, and psychrotrophic bacteria) on acidic electrolyzed water (AcEW)-treated fresh-cut lettuce and cabbage were determined. A modified Gompertz function was used to describe the kinetics of microbial growth. Growth data were analyzed using regression analysis to generate "best-fit" modified Gompertz equations, which were subsequently used to calculate lag time, exponential growth rate, and generation time. The data indicated that the growth kinetics of each bacterium were dependent on storage temperature, except at 1 degrees C storage. At 1 degrees C storage, no increases were observed in bacterial populations. Treatment of vegetables with AcEW produced a decrease in initial microbial populations. However, subsequent growth rates were higher than on nontreated vegetables. The recovery time required by the reduced microbial population to reach the initial (treated with tap water [TW]) population was also determined in this study, with the recovery time of the microbial population at 10 degrees C being <3 days. The benefits of reducing the initial microbial populations on fresh-cut vegetables were greatly affected by storage temperature. Results from this study could be used to predict microbial quality of fresh-cut lettuce and cabbage throughout their distribution.

  2. Development and population growth: the Indian experience.

    PubMed

    Chandna, R C

    1996-01-01

    This paper analyzes the prevailing demographic trends and development processes in India. Data were taken from the World Development Report and the Human Development Reports of South Asia and India, Census of India, and Government of India's Economic Survey. A much slower economic progress and human development was observed in South Asia as compared to those in East Asia. At present, the income levels in East Asia are 27 times higher and have a human development index twice that of South Asia. India had a better economic performance as compared to other countries in South Asia. However, the human deprivations within India continue to hinder the country's emergence as a politico-economic power on the international scene. Investigation of the diversity in population growth and development in India was presented in this paper using indicators such as: average annual population growth; couple protection rate; female literacy; mean age at marriage for females; infrastructural facilities; proportion below poverty line; and the per capita income. Finally, specific suggestions on how to accelerate the fertility transition in the country were enumerated.

  3. Local perturbations perturb—exponentially-locally

    NASA Astrophysics Data System (ADS)

    De Roeck, W.; Schütz, M.

    2015-06-01

    We elaborate on the principle that for gapped quantum spin systems with local interaction, "local perturbations [in the Hamiltonian] perturb locally [the groundstate]." This principle was established by Bachmann et al. [Commun. Math. Phys. 309, 835-871 (2012)], relying on the "spectral flow technique" or "quasi-adiabatic continuation" [M. B. Hastings, Phys. Rev. B 69, 104431 (2004)] to obtain locality estimates with sub-exponential decay in the distance to the spatial support of the perturbation. We use ideas of Hamza et al. [J. Math. Phys. 50, 095213 (2009)] to obtain similarly a transformation between gapped eigenvectors and their perturbations that is local with exponential decay. This allows to improve locality bounds on the effect of perturbations on the low lying states in certain gapped models with a unique "bulk ground state" or "topological quantum order." We also give some estimate on the exponential decay of correlations in models with impurities where some relevant correlations decay faster than one would naively infer from the global gap of the system, as one also expects in disordered systems with a localized groundstate.

  4. Population Growth Rate: Teaching Guide. Measures of Progress Poster Kit Number 2.

    ERIC Educational Resources Information Center

    World Bank, Washington, DC.

    This teaching guide accompanies the Population Growth Rate poster kit which is designed to teach students about population growth differences between rich and poor nations and about what people in developing countries are doing to help improve their quality of life. The guide is designed for use with: (1) a poster map of the world providing social…

  5. THE INFLUENCE OF MODEL TIME STEP ON THE RELATIVE SENSITIVITY OF POPULATION GROWTH TO SURVIVAL, GROWTH AND REPRODUCTION

    EPA Science Inventory

    Matrix population models are often used to extrapolate from life stage-specific stressor effects on survival and reproduction to population-level effects. Demographic elasticity analysis of a matrix model allows an evaluation of the relative sensitivity of population growth rate ...

  6. Mathematical Modeling of Extinction of Inhomogeneous Populations

    PubMed Central

    Karev, G.P.; Kareva, I.

    2016-01-01

    Mathematical models of population extinction have a variety of applications in such areas as ecology, paleontology and conservation biology. Here we propose and investigate two types of sub-exponential models of population extinction. Unlike the more traditional exponential models, the life duration of sub-exponential models is finite. In the first model, the population is assumed to be composed clones that are independent from each other. In the second model, we assume that the size of the population as a whole decreases according to the sub-exponential equation. We then investigate the “unobserved heterogeneity”, i.e. the underlying inhomogeneous population model, and calculate the distribution of frequencies of clones for both models. We show that the dynamics of frequencies in the first model is governed by the principle of minimum of Tsallis information loss. In the second model, the notion of “internal population time” is proposed; with respect to the internal time, the dynamics of frequencies is governed by the principle of minimum of Shannon information loss. The results of this analysis show that the principle of minimum of information loss is the underlying law for the evolution of a broad class of models of population extinction. Finally, we propose a possible application of this modeling framework to mechanisms underlying time perception. PMID:27090117

  7. Fluid particles only separate exponentially in the dissipation range of turbulence after extremely long times

    NASA Astrophysics Data System (ADS)

    Dhariwal, Rohit; Bragg, Andrew D.

    2018-03-01

    In this paper, we consider how the statistical moments of the separation between two fluid particles grow with time when their separation lies in the dissipation range of turbulence. In this range, the fluid velocity field varies smoothly and the relative velocity of two fluid particles depends linearly upon their separation. While this may suggest that the rate at which fluid particles separate is exponential in time, this is not guaranteed because the strain rate governing their separation is a strongly fluctuating quantity in turbulence. Indeed, Afik and Steinberg [Nat. Commun. 8, 468 (2017), 10.1038/s41467-017-00389-8] argue that there is no convincing evidence that the moments of the separation between fluid particles grow exponentially with time in the dissipation range of turbulence. Motivated by this, we use direct numerical simulations (DNS) to compute the moments of particle separation over very long periods of time in a statistically stationary, isotropic turbulent flow to see if we ever observe evidence for exponential separation. Our results show that if the initial separation between the particles is infinitesimal, the moments of the particle separation first grow as power laws in time, but we then observe convincing evidence that at sufficiently long times the moments do grow exponentially. However, this exponential growth is only observed after extremely long times ≳200 τη , where τη is the Kolmogorov time scale. This is due to fluctuations in the strain rate about its mean value measured along the particle trajectories, the effect of which on the moments of the particle separation persists for very long times. We also consider the backward-in-time (BIT) moments of the article separation, and observe that they too grow exponentially in the long-time regime. However, a dramatic consequence of the exponential separation is that at long times the difference between the rate of the particle separation forward in time (FIT) and BIT grows

  8. Both nursery and field performance determine suitable nitrogen supply of nursery-grown, exponentially fertilized Chinese pine

    Treesearch

    Jiaxi Wang; Guolei Li; Jeremiah R. Pinto; Jiajia Liu; Wenhui Shi; Yong Liu

    2015-01-01

    Optimum fertilization levels are often determined solely from nursery growth responses. However, it is the performance of the seedling on the outplanting site that is the most important. For Pinus species seedlings, little information is known about the field performance of plants cultured with different nutrient rates, especially with exponential fertilization. In...

  9. Sustainability of population growth: a case study of urban settlements in Israel.

    PubMed

    Portnov, B A; Pearlmutter, D

    1997-01-01

    "One of the most sensitive criteria for gauging the degree of socio-economic prosperity of an urban settlement is the ability to sustain stable rates of population growth by attracting newcomers and retaining existing population. The present paper argues that after reaching a particular size (on the average, 20-30,000 residents), urban localities in Israel tend to experience substantial changes in components of their annual population growth. Starting with this inflection point, the growth of settlements gradually becomes less dependent on natural causes (birth and death rates) than on the ability to attract newcomers and retain current residents. On the basis of this conclusion, a strategy of ¿redirecting priorities' to developing the peripheral regions of the country is suggested." excerpt

  10. Modeling tradeoffs in avian life history traits and consequences for population growth

    USGS Publications Warehouse

    Clark, M.E.; Martin, T.E.

    2007-01-01

    Variation in population dynamics is inherently related to life history characteristics of species, which vary markedly even within phylogenetic groups such as passerine birds. We computed the finite rate of population change (??) from a matrix projection model and from mark-recapture observations for 23 bird species breeding in northern Arizona. We used sensitivity analyses and a simulation model to separate contributions of different life history traits to population growth rate. In particular we focused on contrasting effects of components of reproduction (nest success, clutch size, number of clutches, and juvenile survival) versus adult survival on ??. We explored how changes in nest success or adult survival coupled to costs in other life history parameters affected ?? over a life history gradient provided by our 23 Arizona species, as well as a broader sample of 121 North American passerine species. We further examined these effects for more than 200 passeriform and piciform populations breeding across North America. Model simulations indicate nest success and juvenile survival exert the largest effects on population growth in species with moderate to high reproductive output, whereas adult survival contributed more to population growth in long-lived species. Our simulations suggest that monitoring breeding success in populations across a broad geographic area provides an important index for identifying neotropical migratory populations at risk of serious population declines and a potential method for identifying large-scale mechanisms regulating population dynamics. ?? 2007 Elsevier B.V. All rights reserved.

  11. Population Growth and Global Security: Toward an American Strategic Commitment.

    ERIC Educational Resources Information Center

    Mumford, Steven

    1981-01-01

    Addresses the world population problem by highlighting three crucial areas: the relationship between population growth control and national security issues, the role of American leadership in resolving the problem, and the barriers to effective action. One barrier discussed in detail is the Roman Catholic Church's stand on abortion and…

  12. Urban Ecology: Patterns of Population Growth and Ecological Effects

    Treesearch

    Wayne C. Zipperer; Steward T.A. Pickett

    2012-01-01

    Currently, over 50% of the world’s population lives in urban areas. By 2050, this estimate is expected to be 70%. This urban growth, however, is not uniformly distributed around the world. The majority of it will occur in developing nations and create megacities whose populations exceed at least 10 million people. Not all urban areas, however, are growing. Some are...

  13. Exponentially growing tearing modes in Rijnhuizen Tokamak Project plasmas.

    PubMed

    Salzedas, F; Schüller, F C; Oomens, A A M

    2002-02-18

    The local measurement of the island width w, around the resonant surface, allowed a direct test of the extended Rutherford model [P. H. Rutherford, PPPL Report-2277 (1985)], describing the evolution of radiation-induced tearing modes prior to disruptions of tokamak plasmas. It is found that this model accounts very well for the observed exponential growth and supports radiation losses as being the main driving mechanism. The model implies that the effective perpendicular electron heat conductivity in the island is smaller than the global one. Comparison of the local measurements of w with the magnetic perturbed field B showed that w proportional to B1/2 was valid for widths up to 18% of the minor radius.

  14. Shotgun proteomic monitoring of Clostridium acetobutylicum during stationary phase of butanol fermentation using xylose and comparison with the exponential phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivagnanam, Kumaran; Raghavan, Vijaya G. S.; Shah, Manesh B

    2012-01-01

    Economically viable production of solvents through acetone butanol ethanol (ABE) fermentation requires a detailed understanding of Clostridium acetobutylicum. This study focuses on the proteomic profiling of C. acetobutylicum ATCC 824 from the stationary phase of ABE fermentation using xylose and compares with the exponential growth by shotgun proteomics approach. Comparative proteomic analysis revealed 22.9% of the C. acetobutylicum genome and 18.6% was found to be common in both exponential and stationary phases. The proteomic profile of C. acetobutylicum changed during the ABE fermentation such that 17 proteins were significantly differentially expressed between the two phases. Specifically, the expression of fivemore » proteins namely, CAC2873, CAP0164, CAP0165, CAC3298, and CAC1742 involved in the solvent production pathway were found to be significantly lower in the stationary phase compared to the exponential growth. Similarly, the expression of fucose isomerase (CAC2610), xylulose kinase (CAC2612), and a putative uncharacterized protein (CAC2611) involved in the xylose utilization pathway were also significantly lower in the stationary phase. These findings provide an insight into the metabolic behavior of C. acetobutylicum between different phases of ABE fermentation using xylose.« less

  15. Population growth, interest rate, and housing tax in the transitional China

    NASA Astrophysics Data System (ADS)

    He, Ling-Yun; Wen, Xing-Chun

    2017-03-01

    This paper combines and develops the models in Lastrapes (2002) and Mankiw and Weil (1989), which enables us to analyze the effects of interest rate and population growth shocks on housing price in one integrated framework. Based on this model, we carry out policy simulations to examine whether the housing (stock or flow) tax reduces the housing price fluctuations caused by interest rate or population growth shocks. Simulation results imply that the choice of housing tax tools depends on the kind of shock that housing market faces. In the situation where the housing price volatility is caused by the population growth shock, the flow tax can reduce the volatility of housing price while the stock tax makes no difference to it. If the shock is resulting from the interest rate, the policy maker should not impose any kind of the housing taxes. Furthermore, the effect of one kind of the housing tax can be strengthened by that of the other type of housing tax.

  16. The demographic consequences of mutualism: ants increase host-plant fruit production but not population growth.

    PubMed

    Ford, Kevin R; Ness, Joshua H; Bronstein, Judith L; Morris, William F

    2015-10-01

    The impact of mutualists on a partner's demography depends on how they affect the partner's multiple vital rates and how those vital rates, in turn, affect population growth. However, mutualism studies rarely measure effects on multiple vital rates or integrate them to assess the ultimate impact on population growth. We used vital rate data, population models and simulations of long-term population dynamics to quantify the demographic impact of a guild of ant species on the plant Ferocactus wislizeni. The ants feed at the plant's extrafloral nectaries and attack herbivores attempting to consume reproductive organs. Ant-guarded plants produced significantly more fruit, but ants had no significant effect on individual growth or survival. After integrating ant effects across these vital rates, we found that projected population growth was not significantly different between unguarded and ant-guarded plants because population growth was only weakly influenced by differences in fruit production (though strongly influenced by differences in individual growth and survival). However, simulations showed that ants could positively affect long-term plant population dynamics through services provided during rare but important events (herbivore outbreaks that reduce survival or years of high seedling recruitment associated with abundant precipitation). Thus, in this seemingly clear example of mutualism, the interaction may actually yield no clear benefit to plant population growth, or if it does, may only do so through the actions of the ants during rare events. These insights demonstrate the value of taking a demographic approach to studying the consequences of mutualism.

  17. Dual exponential polynomials and linear differential equations

    NASA Astrophysics Data System (ADS)

    Wen, Zhi-Tao; Gundersen, Gary G.; Heittokangas, Janne

    2018-01-01

    We study linear differential equations with exponential polynomial coefficients, where exactly one coefficient is of order greater than all the others. The main result shows that a nontrivial exponential polynomial solution of such an equation has a certain dual relationship with the maximum order coefficient. Several examples illustrate our results and exhibit possibilities that can occur.

  18. Using a laboratory-based growth model to estimate mass- and temperature-dependent growth parameters across populations of juvenile Chinook Salmon

    USGS Publications Warehouse

    Perry, Russell W.; Plumb, John M.; Huntington, Charles

    2015-01-01

    To estimate the parameters that govern mass- and temperature-dependent growth, we conducted a meta-analysis of existing growth data from juvenile Chinook Salmon Oncorhynchus tshawytscha that were fed an ad libitum ration of a pelleted diet. Although the growth of juvenile Chinook Salmon has been well studied, research has focused on a single population, a narrow range of fish sizes, or a narrow range of temperatures. Therefore, we incorporated the Ratkowsky model for temperature-dependent growth into an allometric growth model; this model was then fitted to growth data from 11 data sources representing nine populations of juvenile Chinook Salmon. The model fit the growth data well, explaining 98% of the variation in final mass. The estimated allometric mass exponent (b) was 0.338 (SE = 0.025), similar to estimates reported for other salmonids. This estimate of b will be particularly useful for estimating mass-standardized growth rates of juvenile Chinook Salmon. In addition, the lower thermal limit, optimal temperature, and upper thermal limit for growth were estimated to be 1.8°C (SE = 0.63°C), 19.0°C (SE = 0.27°C), and 24.9°C (SE = 0.02°C), respectively. By taking a meta-analytical approach, we were able to provide a growth model that is applicable across populations of juvenile Chinook Salmon receiving an ad libitum ration of a pelleted diet.

  19. Consequences of increased longevity for wealth, fertility, and population growth

    NASA Astrophysics Data System (ADS)

    Bogojević, A.; Balaž, A.; Karapandža, R.

    2008-01-01

    We present, solve and numerically simulate a simple model that describes the consequences of increased longevity for fertility rates, population growth and the distribution of wealth in developed societies. We look at the consequences of the repeated use of life extension techniques and show that they represent a novel commodity whose introduction will profoundly influence key aspects of the economy and society in general. In particular, we uncover two phases within our simplified model, labeled as ‘mortal’ and ‘immortal’. Within the life extension scenario it is possible to have sustainable economic growth in a population of stable size, as a result of dynamical equilibrium between the two phases.

  20. Population, internal migration, and economic growth: an empirical analysis.

    PubMed

    Moreland, R S

    1982-01-01

    The role of population growth in the development process has received increasing attention during the last 15 years, as manifested in the literature in 3 broad categories. In the 1st category, the effects of rapid population growth on the growth of income have been studied with the use of simulation models, which sometimes include endogenous population growth. The 2nd category of the literature is concerned with theoretical and empirical studies of the economic determinants of various demographic rates--most usually fertility. Internal migration and dualism is the 3rd population development category to recieve attention. An attempt is made to synthesize developments in these 3 categories by estimating from a consistent set of data a 2 sector economic demographic model in which the major demographic rates are endogenous. Due to the fact that the interactions between economic and demographic variables are nonlinear and complex, the indirect effects of changes in a particular variable may depend upon the balance of numerical coefficients. For this reason it was felt that the model should be empirically grounded. A brief overview of the model is provided, and the model is compared to some similar existing models. Estimation of the model's 9 behavior equations is discussed, followed by a "base run" simulation of a developing country "stereotype" and a report of a number of policy experiments. The relatively new field of economic determinants of demographic variables was drawn upon in estimating equations to endogenize demographic phenomena that are frequently left exogenous in simulation models. The fertility and labor force participation rate functions are fairly standard, but a step beyong existing literature was taken in the life expectancy and intersectorial migration equations. On the economic side, sectoral savings functions were estimated, and it was found that the marginal propensity to save is lower in agriculture than in nonagriculture. Testing to see the

  1. Contributions of long-distance dispersal to population growth in colonising Pinus ponderosa populations.

    PubMed

    Lesser, Mark R; Jackson, Stephen T

    2013-03-01

    Long-distance dispersal is an integral part of plant species migration and population development. We aged and genotyped 1125 individuals in four disjunct populations of Pinus ponderosa that were initially established by long-distance dispersal in the 16th and 17th centuries. Parentage analysis was used to determine if individuals were the product of local reproductive events (two parents present), long-distance pollen dispersal (one parent present) or long-distance seed dispersal (no parents present). All individuals established in the first century at each site were the result of long-distance dispersal. Individuals reproduced at younger ages with increasing age of the overall population. These results suggest Allee effects, where populations were initially unable to expand on their own, and were dependent on long-distance dispersal to overcome a minimum-size threshold. Our results demonstrate that long-distance dispersal was not only necessary for initial colonisation but also to sustain subsequent population growth during early phases of expansion. © 2012 Blackwell Publishing Ltd/CNRS.

  2. Population growth, economic security, and cultural change in wilderness counties

    Treesearch

    Paul A. Lorah

    2000-01-01

    A familiar version of the “jobs versus the environment” argument asserts that wilderness areas limit economic growth by locking up potentially productive natural resources. Analysis of the development paths of rural Western counties shows that this is unlikely: the presence of Wilderness is correlated with income, employment and population growth. Similarly, Wilderness...

  3. Compact exponential product formulas and operator functional derivative

    NASA Astrophysics Data System (ADS)

    Suzuki, Masuo

    1997-02-01

    A new scheme for deriving compact expressions of the logarithm of the exponential product is proposed and it is applied to several exponential product formulas. A generalization of the Dynkin-Specht-Wever (DSW) theorem on free Lie elements is given, and it is used to study the relation between the traditional method (based on the DSW theorem) and the present new scheme. The concept of the operator functional derivative is also proposed, and it is applied to ordered exponentials, such as time-evolution operators for time-dependent Hamiltonians.

  4. Method for exponentiating in cryptographic systems

    DOEpatents

    Brickell, Ernest F.; Gordon, Daniel M.; McCurley, Kevin S.

    1994-01-01

    An improved cryptographic method utilizing exponentiation is provided which has the advantage of reducing the number of multiplications required to determine the legitimacy of a message or user. The basic method comprises the steps of selecting a key from a preapproved group of integer keys g; exponentiating the key by an integer value e, where e represents a digital signature, to generate a value g.sup.e ; transmitting the value g.sup.e to a remote facility by a communications network; receiving the value g.sup.e at the remote facility; and verifying the digital signature as originating from the legitimate user. The exponentiating step comprises the steps of initializing a plurality of memory locations with a plurality of values g.sup.xi ; computi The United States Government has rights in this invention pursuant to Contract No. DE-AC04-76DP00789 between the Department of Energy and AT&T Company.

  5. The Exponential Function, XI: The New Flat Earth Society.

    ERIC Educational Resources Information Center

    Bartlett, Albert A.

    1996-01-01

    Discusses issues related to perpetual population growth. Argues that if we believe that there are no limits to growth, we will have to abandon the concept of a spherical Earth which puts limits to growth. (JRH)

  6. Impacts of Hispanic Population Growth on Rural Wages. Agricultural Economic Report.

    ERIC Educational Resources Information Center

    Newman, Constance

    Although earnings generally increased in rural areas in the 1990s, Hispanic population growth led to lower wages for at least one segment of the rural population--workers with a high school degree (skilled workers), particularly men in this skill group. Using data from the Bureau of Economic Analysis and the Current Population Survey, this report…

  7. Exponential asymptotics of homoclinic snaking

    NASA Astrophysics Data System (ADS)

    Dean, A. D.; Matthews, P. C.; Cox, S. M.; King, J. R.

    2011-12-01

    We study homoclinic snaking in the cubic-quintic Swift-Hohenberg equation (SHE) close to the onset of a subcritical pattern-forming instability. Application of the usual multiple-scales method produces a leading-order stationary front solution, connecting the trivial solution to the patterned state. A localized pattern may therefore be constructed by matching between two distant fronts placed back-to-back. However, the asymptotic expansion of the front is divergent, and hence should be truncated. By truncating optimally, such that the resultant remainder is exponentially small, an exponentially small parameter range is derived within which stationary fronts exist. This is shown to be a direct result of the 'locking' between the phase of the underlying pattern and its slowly varying envelope. The locking mechanism remains unobservable at any algebraic order, and can only be derived by explicitly considering beyond-all-orders effects in the tail of the asymptotic expansion, following the method of Kozyreff and Chapman as applied to the quadratic-cubic SHE (Chapman and Kozyreff 2009 Physica D 238 319-54, Kozyreff and Chapman 2006 Phys. Rev. Lett. 97 44502). Exponentially small, but exponentially growing, contributions appear in the tail of the expansion, which must be included when constructing localized patterns in order to reproduce the full snaking diagram. Implicit within the bifurcation equations is an analytical formula for the width of the snaking region. Due to the linear nature of the beyond-all-orders calculation, the bifurcation equations contain an analytically indeterminable constant, estimated in the previous work by Chapman and Kozyreff using a best fit approximation. A more accurate estimate of the equivalent constant in the cubic-quintic case is calculated from the iteration of a recurrence relation, and the subsequent analytical bifurcation diagram compared with numerical simulations, with good agreement.

  8. The Educational Effects of Rapid Rural Population Growth.

    ERIC Educational Resources Information Center

    Ross, Peggy J.; Green, Bernal L.

    Rapid population growth in rural areas has confronted rural communities and particularly rural educational systems with a number of problems. Sudden, large increases in students crowd school facilities and strain budgets. The different values, attitudes, and orientations toward education of the newcomers act as a catalyst for changes and can cause…

  9. Current demographics suggest future energy supplies will be inadequate to slow human population growth.

    PubMed

    DeLong, John P; Burger, Oskar; Hamilton, Marcus J

    2010-10-05

    Influential demographic projections suggest that the global human population will stabilize at about 9-10 billion people by mid-century. These projections rest on two fundamental assumptions. The first is that the energy needed to fuel development and the associated decline in fertility will keep pace with energy demand far into the future. The second is that the demographic transition is irreversible such that once countries start down the path to lower fertility they cannot reverse to higher fertility. Both of these assumptions are problematic and may have an effect on population projections. Here we examine these assumptions explicitly. Specifically, given the theoretical and empirical relation between energy-use and population growth rates, we ask how the availability of energy is likely to affect population growth through 2050. Using a cross-country data set, we show that human population growth rates are negatively related to per-capita energy consumption, with zero growth occurring at ∼13 kW, suggesting that the global human population will stop growing only if individuals have access to this amount of power. Further, we find that current projected future energy supply rates are far below the supply needed to fuel a global demographic transition to zero growth, suggesting that the predicted leveling-off of the global population by mid-century is unlikely to occur, in the absence of a transition to an alternative energy source. Direct consideration of the energetic constraints underlying the demographic transition results in a qualitatively different population projection than produced when the energetic constraints are ignored. We suggest that energetic constraints be incorporated into future population projections.

  10. Zeros and logarithmic asymptotics of Sobolev orthogonal polynomials for exponential weights

    NASA Astrophysics Data System (ADS)

    Díaz Mendoza, C.; Orive, R.; Pijeira Cabrera, H.

    2009-12-01

    We obtain the (contracted) weak zero asymptotics for orthogonal polynomials with respect to Sobolev inner products with exponential weights in the real semiaxis, of the form , with [gamma]>0, which include as particular cases the counterparts of the so-called Freud (i.e., when [phi] has a polynomial growth at infinity) and Erdös (when [phi] grows faster than any polynomial at infinity) weights. In addition, the boundness of the distance of the zeros of these Sobolev orthogonal polynomials to the convex hull of the support and, as a consequence, a result on logarithmic asymptotics are derived.

  11. Central Limit Theorem for Exponentially Quasi-local Statistics of Spin Models on Cayley Graphs

    NASA Astrophysics Data System (ADS)

    Reddy, Tulasi Ram; Vadlamani, Sreekar; Yogeshwaran, D.

    2018-04-01

    Central limit theorems for linear statistics of lattice random fields (including spin models) are usually proven under suitable mixing conditions or quasi-associativity. Many interesting examples of spin models do not satisfy mixing conditions, and on the other hand, it does not seem easy to show central limit theorem for local statistics via quasi-associativity. In this work, we prove general central limit theorems for local statistics and exponentially quasi-local statistics of spin models on discrete Cayley graphs with polynomial growth. Further, we supplement these results by proving similar central limit theorems for random fields on discrete Cayley graphs taking values in a countable space, but under the stronger assumptions of α -mixing (for local statistics) and exponential α -mixing (for exponentially quasi-local statistics). All our central limit theorems assume a suitable variance lower bound like many others in the literature. We illustrate our general central limit theorem with specific examples of lattice spin models and statistics arising in computational topology, statistical physics and random networks. Examples of clustering spin models include quasi-associated spin models with fast decaying covariances like the off-critical Ising model, level sets of Gaussian random fields with fast decaying covariances like the massive Gaussian free field and determinantal point processes with fast decaying kernels. Examples of local statistics include intrinsic volumes, face counts, component counts of random cubical complexes while exponentially quasi-local statistics include nearest neighbour distances in spin models and Betti numbers of sub-critical random cubical complexes.

  12. Age, growth, and mortality of introduced flathead catfish in Atlantic rivers and a review of other populations

    USGS Publications Warehouse

    Kwak, T.J.; Pine, William E.; Waters, D.S.

    2006-01-01

    Knowledge of individual growth and mortality rates of an introduced fish population is required to determine the success and degree of establishment as well as to predict the fish's impact on native fauna. The age and growth of flathead catfish Pylodictis olivaris have been studied extensively in the species' native and introduced ranges, and estimates have varied widely. We quantified individual growth rates and age structure of three introduced flathead catfish populations in North Carolina's Atlantic slope rivers using sagittal otoliths, determined trends in growth rates over time, compared these estimates among rivers in native and introduced ranges, and determined total mortality rates for each population. Growth was significantly faster in the Northeast Cape Fear River (NECFR) than in the Lumber and Neuse rivers. Fish in the NECFR grew to a total length of 700 mm by age 7, whereas fish in the Neuse and Lumber river populations reached this length by 8 and 10 years, respectively. The growth rates of fish in all three rivers were consistently higher than those of native riverine populations, similar to those of native reservoir populations, and slower than those of other introduced riverine populations. In general, recent cohorts (1998-2001 year-classes) in these three rivers exhibited slower growth among all ages than did cohorts previous to the 1998 year-class. The annual total mortality rate was similar among the three rivers, ranging from 0.16 to 0.20. These mortality estimates are considerably lower than those from the Missouri and Mississippi rivers, suggesting relatively low fishing mortality for these introduced populations. Overall, flathead catfish populations in reservoirs grow faster than those in rivers, the growth rates of introduced populations exceed those of native populations, and eastern United States populations grow faster than those in western states. Such trends constitute critical information for understanding and managing local

  13. Compact exponential product formulas and operator functional derivative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, M.

    1997-02-01

    A new scheme for deriving compact expressions of the logarithm of the exponential product is proposed and it is applied to several exponential product formulas. A generalization of the Dynkin{endash}Specht{endash}Wever (DSW) theorem on free Lie elements is given, and it is used to study the relation between the traditional method (based on the DSW theorem) and the present new scheme. The concept of the operator functional derivative is also proposed, and it is applied to ordered exponentials, such as time-evolution operators for time-dependent Hamiltonians. {copyright} {ital 1997 American Institute of Physics.}

  14. Metabolic Profiling and Flux Analysis of MEL-2 Human Embryonic Stem Cells during Exponential Growth at Physiological and Atmospheric Oxygen Concentrations

    PubMed Central

    Titmarsh, Drew; Krömer, Jens O.; Kao, Li-Pin; Nielsen, Lars; Wolvetang, Ernst; Cooper-White, Justin

    2014-01-01

    As human embryonic stem cells (hESCs) steadily progress towards regenerative medicine applications there is an increasing emphasis on the development of bioreactor platforms that enable expansion of these cells to clinically relevant numbers. Surprisingly little is known about the metabolic requirements of hESCs, precluding the rational design and optimisation of such platforms. In this study, we undertook an in-depth characterisation of MEL-2 hESC metabolic behaviour during the exponential growth phase, combining metabolic profiling and flux analysis tools at physiological (hypoxic) and atmospheric (normoxic) oxygen concentrations. To overcome variability in growth profiles and the problem of closing mass balances in a complex environment, we developed protocols to accurately measure uptake and production rates of metabolites, cell density, growth rate and biomass composition, and designed a metabolic flux analysis model for estimating internal rates. hESCs are commonly considered to be highly glycolytic with inactive or immature mitochondria, however, whilst the results of this study confirmed that glycolysis is indeed highly active, we show that at least in MEL-2 hESC, it is supported by the use of oxidative phosphorylation within the mitochondria utilising carbon sources, such as glutamine to maximise ATP production. Under both conditions, glycolysis was disconnected from the mitochondria with all of the glucose being converted to lactate. No difference in the growth rates of cells cultured under physiological or atmospheric oxygen concentrations was observed nor did this cause differences in fluxes through the majority of the internal metabolic pathways associated with biogenesis. These results suggest that hESCs display the conventional Warburg effect, with high aerobic activity despite high lactate production, challenging the idea of an anaerobic metabolism with low mitochondrial activity. The results of this study provide new insight that can be used in

  15. Genetic variation facilitates seedling establishment but not population growth rate of a perennial invader

    PubMed Central

    Li, Shou-Li; Vasemägi, Anti; Ramula, Satu

    2016-01-01

    Background and Aims Assessing the demographic consequences of genetic variation is fundamental to invasion biology. However, genetic and demographic approaches are rarely combined to explore the effects of genetic variation on invasive populations in natural environments. This study combined population genetics, demographic data and a greenhouse experiment to investigate the consequences of genetic variation for the population fitness of the perennial, invasive herb Lupinus polyphyllus. Methods Genetic and demographic data were collected from 37 L. polyphyllus populations representing different latitudes in Finland, and genetic variation was characterized based on 13 microsatellite loci. Associations between genetic variation and population size, population density, latitude and habitat were investigated. Genetic variation was then explored in relation to four fitness components (establishment, survival, growth, fecundity) measured at the population level, and the long-term population growth rate (λ). For a subset of populations genetic variation was also examined in relation to the temporal variability of λ. A further assessment was made of the role of natural selection in the observed variation of certain fitness components among populations under greenhouse conditions. Key Results It was found that genetic variation correlated positively with population size, particularly at higher latitudes, and differed among habitat types. Average seedling establishment per population increased with genetic variation in the field, but not under greenhouse conditions. Quantitative genetic divergence (QST) based on seedling establishment in the greenhouse was smaller than allelic genetic divergence (F′ST), indicating that unifying selection has a prominent role in this fitness component. Genetic variation was not associated with average survival, growth or fecundity measured at the population level, λ or its variability. Conclusions The study suggests that although genetic

  16. Population growth, fecundity, and survivorship in recovering populations of bighorn sheep

    USGS Publications Warehouse

    Singer, F.J.; Williams, E.; Miller, M.W.; Zeigenfuss, L.C.

    2000-01-01

    The single greatest obstacle to the restoration of large, healthy, populations of bighorn sheep (Ovis canadensis) in the western United States is epizootic outbreaks of bronchopneumonia that may kill 20–100% of the animals in populations. Although the species is capable of rapid initial growth rates following restoration into new habitat (λ = 1.23–1.30 have been observed), these rates of increase are typical only a few years following the release of a population, and then most populations either decline to extirpation or remnant status (<30 animals) or remain at <100 individuals. We studied the fecundity and survivorship of three increasing, and three declining and suspected diseased, populations of bighorn sheep (the latter were subjected to outbreaks of bronchopneumonia) located in or near several large national parks in the western United States from 1991 to 1996. Titers verified both population categories were exposed to the bacteria Pasteurella haemolytica serotypes 3; 4; and 3, 4, 10; Moraxella sp., and parainfluenza-3 and bluetongue (BT) viruses. Pregnancy rates of adult ewes were not different in increasing or decreasing populations (pooled rate = 0.93; p = 0.57), but pregnancy rates of yearlings were lower (0.00 for decreasing vs. 0.33 for increasing populations), initial production of lambs and annual recruitment of lambs was lower (0.14, decreasing vs. 0.66, p < 0.05). Adult survival was lower during the first year of an epizootic, 0.62, in one population, but recovered to 0.85 by the second and subsequent years. Survival of adult rams was variable in diseased populations; in two populations rams appeared to be disproportionately impacted, but in a third population rams survived better during the epizootic. In all the increasing park (unhunted) populations, adult ram survival (0.94 ± 0.01) was higher than adult ewe survival (0.89 ± 0.02) (p = 0.10), in contrast to published information from hunted populations where ram survival was lower

  17. Boundary curves of individual items in the distribution of total depressive symptom scores approximate an exponential pattern in a general population.

    PubMed

    Tomitaka, Shinichiro; Kawasaki, Yohei; Ide, Kazuki; Akutagawa, Maiko; Yamada, Hiroshi; Furukawa, Toshiaki A; Ono, Yutaka

    2016-01-01

    Previously, we proposed a model for ordinal scale scoring in which individual thresholds for each item constitute a distribution by each item. This lead us to hypothesize that the boundary curves of each depressive symptom score in the distribution of total depressive symptom scores follow a common mathematical model, which is expressed as the product of the frequency of the total depressive symptom scores and the probability of the cumulative distribution function of each item threshold. To verify this hypothesis, we investigated the boundary curves of the distribution of total depressive symptom scores in a general population. Data collected from 21,040 subjects who had completed the Center for Epidemiologic Studies Depression Scale (CES-D) questionnaire as part of a national Japanese survey were analyzed. The CES-D consists of 20 items (16 negative items and four positive items). The boundary curves of adjacent item scores in the distribution of total depressive symptom scores for the 16 negative items were analyzed using log-normal scales and curve fitting. The boundary curves of adjacent item scores for a given symptom approximated a common linear pattern on a log normal scale. Curve fitting showed that an exponential fit had a markedly higher coefficient of determination than either linear or quadratic fits. With negative affect items, the gap between the total score curve and boundary curve continuously increased with increasing total depressive symptom scores on a log-normal scale, whereas the boundary curves of positive affect items, which are not considered manifest variables of the latent trait, did not exhibit such increases in this gap. The results of the present study support the hypothesis that the boundary curves of each depressive symptom score in the distribution of total depressive symptom scores commonly follow the predicted mathematical model, which was verified to approximate an exponential mathematical pattern.

  18. Boundary curves of individual items in the distribution of total depressive symptom scores approximate an exponential pattern in a general population

    PubMed Central

    Kawasaki, Yohei; Akutagawa, Maiko; Yamada, Hiroshi; Furukawa, Toshiaki A.; Ono, Yutaka

    2016-01-01

    Background Previously, we proposed a model for ordinal scale scoring in which individual thresholds for each item constitute a distribution by each item. This lead us to hypothesize that the boundary curves of each depressive symptom score in the distribution of total depressive symptom scores follow a common mathematical model, which is expressed as the product of the frequency of the total depressive symptom scores and the probability of the cumulative distribution function of each item threshold. To verify this hypothesis, we investigated the boundary curves of the distribution of total depressive symptom scores in a general population. Methods Data collected from 21,040 subjects who had completed the Center for Epidemiologic Studies Depression Scale (CES-D) questionnaire as part of a national Japanese survey were analyzed. The CES-D consists of 20 items (16 negative items and four positive items). The boundary curves of adjacent item scores in the distribution of total depressive symptom scores for the 16 negative items were analyzed using log-normal scales and curve fitting. Results The boundary curves of adjacent item scores for a given symptom approximated a common linear pattern on a log normal scale. Curve fitting showed that an exponential fit had a markedly higher coefficient of determination than either linear or quadratic fits. With negative affect items, the gap between the total score curve and boundary curve continuously increased with increasing total depressive symptom scores on a log-normal scale, whereas the boundary curves of positive affect items, which are not considered manifest variables of the latent trait, did not exhibit such increases in this gap. Discussion The results of the present study support the hypothesis that the boundary curves of each depressive symptom score in the distribution of total depressive symptom scores commonly follow the predicted mathematical model, which was verified to approximate an exponential mathematical

  19. Sweden Faces Zero Population Growth. Population Bulletin, Vol. 35, No. 2, June, 1980.

    ERIC Educational Resources Information Center

    Gendell, Murray

    This bulletin examines the causes of the fertility decline in Sweden and the concerns and ambivalence of Swedes about zero population growth (ZPG). The fertility decline is attributed to many causes. In recent years there has been a drop in marriage rates and a sharp increase in non-marital cohabitation. The decline is also related to the…

  20. Uncertainty in Population Growth Rates: Determining Confidence Intervals from Point Estimates of Parameters

    PubMed Central

    Devenish Nelson, Eleanor S.; Harris, Stephen; Soulsbury, Carl D.; Richards, Shane A.; Stephens, Philip A.

    2010-01-01

    Background Demographic models are widely used in conservation and management, and their parameterisation often relies on data collected for other purposes. When underlying data lack clear indications of associated uncertainty, modellers often fail to account for that uncertainty in model outputs, such as estimates of population growth. Methodology/Principal Findings We applied a likelihood approach to infer uncertainty retrospectively from point estimates of vital rates. Combining this with resampling techniques and projection modelling, we show that confidence intervals for population growth estimates are easy to derive. We used similar techniques to examine the effects of sample size on uncertainty. Our approach is illustrated using data on the red fox, Vulpes vulpes, a predator of ecological and cultural importance, and the most widespread extant terrestrial mammal. We show that uncertainty surrounding estimated population growth rates can be high, even for relatively well-studied populations. Halving that uncertainty typically requires a quadrupling of sampling effort. Conclusions/Significance Our results compel caution when comparing demographic trends between populations without accounting for uncertainty. Our methods will be widely applicable to demographic studies of many species. PMID:21049049

  1. Meeting the Sustainable Development Goals leads to lower world population growth.

    PubMed

    Abel, Guy J; Barakat, Bilal; Kc, Samir; Lutz, Wolfgang

    2016-12-13

    Here we show the extent to which the expected world population growth could be lowered by successfully implementing the recently agreed-upon Sustainable Development Goals (SDGs). The SDGs include specific quantitative targets on mortality, reproductive health, and education for all girls by 2030, measures that will directly and indirectly affect future demographic trends. Based on a multidimensional model of population dynamics that stratifies national populations by age, sex, and level of education with educational fertility and mortality differentials, we translate these goals into SDG population scenarios, resulting in population sizes between 8.2 and 8.7 billion in 2100. Because these results lie outside the 95% prediction range given by the 2015 United Nations probabilistic population projections, we complement the study with sensitivity analyses of these projections that suggest that those prediction intervals are too narrow because of uncertainty in baseline data, conservative assumptions on correlations, and the possibility of new policies influencing these trends. Although the analysis presented here rests on several assumptions about the implementation of the SDGs and the persistence of educational, fertility, and mortality differentials, it quantitatively illustrates the view that demography is not destiny and that policies can make a decisive difference. In particular, advances in female education and reproductive health can contribute greatly to reducing world population growth.

  2. Exponential integrators in time-dependent density-functional calculations

    NASA Astrophysics Data System (ADS)

    Kidd, Daniel; Covington, Cody; Varga, Kálmán

    2017-12-01

    The integrating factor and exponential time differencing methods are implemented and tested for solving the time-dependent Kohn-Sham equations. Popular time propagation methods used in physics, as well as other robust numerical approaches, are compared to these exponential integrator methods in order to judge the relative merit of the computational schemes. We determine an improvement in accuracy of multiple orders of magnitude when describing dynamics driven primarily by a nonlinear potential. For cases of dynamics driven by a time-dependent external potential, the accuracy of the exponential integrator methods are less enhanced but still match or outperform the best of the conventional methods tested.

  3. Population increase, economic growth, educational inequality, and income distribution: some recent evidence.

    PubMed

    Ram, R

    1984-04-01

    The relationship between population increase, economic growth, education and income inequality was examined in a cross-section study based on data from 26 developing and 2 developed countries. As other studies have noted, high population growth is associated with a less equal income distribution. A 1 percentage point reduction in the rate of population growth tends to raise the income share of the poorest 80% in the less developed world by almost 5 percentage points and is associated with a 1.7 percentage point increase in the income share of the poorest 40%. The relationship between short-run income growth and equality, on the other hand, is strong and positive. Estimates suggest that a 1 percentage point increase in the short-run rate of growth of the gross domestic product (GDP) increases the income share of the bottom 80% by about 2 percentage points and that of the poorest 40% by almost 1 percentage point. Although higher mean schooling appears to be a mild equalizer, educational inequality does not appear to have an adverse effect on income distribution. Overall, these results challenge the widely held belief that there must be a growth-equity trade-off. Moreover, they suggest that the impact of educational inequality on income distribution may be different from that observed in earlier studies, implying a need for caution in using these earlier results as a basis for educational policy development.

  4. Analysis of the impact of population growth in Henan Province on its environment and ecosystem.

    PubMed

    Zhao, J

    1997-01-01

    "This paper analyzes the effects of population growth on the...environment and ecosystem [of China's Henan Province]. This paper also proposes a key countermeasure to deal with the population growth and environmental improvement of Henan Province." excerpt

  5. Modeling of magnitude distributions by the generalized truncated exponential distribution

    NASA Astrophysics Data System (ADS)

    Raschke, Mathias

    2015-01-01

    The probability distribution of the magnitude can be modeled by an exponential distribution according to the Gutenberg-Richter relation. Two alternatives are the truncated exponential distribution (TED) and the cutoff exponential distribution (CED). The TED is frequently used in seismic hazard analysis although it has a weak point: when two TEDs with equal parameters except the upper bound magnitude are mixed, then the resulting distribution is not a TED. Inversely, it is also not possible to split a TED of a seismic region into TEDs of subregions with equal parameters except the upper bound magnitude. This weakness is a principal problem as seismic regions are constructed scientific objects and not natural units. We overcome it by the generalization of the abovementioned exponential distributions: the generalized truncated exponential distribution (GTED). Therein, identical exponential distributions are mixed by the probability distribution of the correct cutoff points. This distribution model is flexible in the vicinity of the upper bound magnitude and is equal to the exponential distribution for smaller magnitudes. Additionally, the exponential distributions TED and CED are special cases of the GTED. We discuss the possible ways of estimating its parameters and introduce the normalized spacing for this purpose. Furthermore, we present methods for geographic aggregation and differentiation of the GTED and demonstrate the potential and universality of our simple approach by applying it to empirical data. The considerable improvement by the GTED in contrast to the TED is indicated by a large difference between the corresponding values of the Akaike information criterion.

  6. The effects of declining population growth on the demand for housing.

    Treesearch

    Thomas C. Marcin

    1974-01-01

    Declining population growth and unprecedented changes in the age structure of the population in the next several decades will profoundly affect housing demand in the next 50 years. A decline in housing demand and substantial change in the type of housing in demand are likely to occur by 1990.

  7. Meteorological limits on the growth and development of screwworm populations

    NASA Technical Reports Server (NTRS)

    Phinney, D. E.; Arp, G. K.

    1978-01-01

    A program to evaluate the use of remotely sensed data as an additional tool in existing and projected efforts to eradicate the screwworm began in 1973. Estimating weather conditions by use of remotely sensed data was part of the study. Next, the effect of weather on screwworm populations was modeled. A significant portion of the variation in screwworm population growth and development has been traced to weather-related parameters. This report deals with the salient points of the weather and the screwworm population interaction.

  8. Confronting quasi-exponential inflation with WMAP seven

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pal, Barun Kumar; Pal, Supratik; Basu, B., E-mail: barunp1985@rediffmail.com, E-mail: pal@th.physik.uni-bonn.de, E-mail: banasri@isical.ac.in

    2012-04-01

    We confront quasi-exponential models of inflation with WMAP seven years dataset using Hamilton Jacobi formalism. With a phenomenological Hubble parameter, representing quasi exponential inflation, we develop the formalism and subject the analysis to confrontation with WMAP seven using the publicly available code CAMB. The observable parameters are found to fair extremely well with WMAP seven. We also obtain a ratio of tensor to scalar amplitudes which may be detectable in PLANCK.

  9. Growth in an English population from the Industrial Revolution.

    PubMed

    Mays, S; Brickley, M; Ives, R

    2008-05-01

    The rapid urbanization of the Industrial Revolution in 18th-19th century England presented new health challenges. Our aim is to investigate using English skeletal remains whether the living conditions for an urban working class group in the Industrial Revolution negatively impacted upon their skeletal growth compared with a population from a rural agrarian parish. The Industrial Revolution skeletal material is from St Martin's Churchyard, Birmingham (SMB), West Midlands. It dates primarily from the first half of the nineteenth century when Birmingham was a major manufacturing center. The rural group is from Wharram Percy (WP), North Yorkshire, and dates from 10th-19th century AD. The methodology involves plotting diaphyseal bone lengths versus dental age for subadults. No overall difference was found between the two populations in bone length-for-age among the 2- to 18-year cohort. However the younger parts of the SMB cohort were smaller than at WP; the opposite was true of the older parts of the cohort. Growth rate, as inferred from crosssectional data, appeared greater at SMB than at WP. The only result consistent with expectations is the larger bone dimensions in young children from WP, but this likely reflects prolonged breastfeeding at WP not differences in urban and rural environments. That the deleterious health effects that we know accompanied the major transition in human society from a rural agrarian to an urban industrialized living environment should be little manifest in skeletal endochondral growth data is discouraging for those who would use such methodology to monitor health in earlier populations. (c) 2008 Wiley-Liss, Inc.

  10. A necessary condition for dispersal driven growth of populations with discrete patch dynamics.

    PubMed

    Guiver, Chris; Packman, David; Townley, Stuart

    2017-07-07

    We revisit the question of when can dispersal-induced coupling between discrete sink populations cause overall population growth? Such a phenomenon is called dispersal driven growth and provides a simple explanation of how dispersal can allow populations to persist across discrete, spatially heterogeneous, environments even when individual patches are adverse or unfavourable. For two classes of mathematical models, one linear and one non-linear, we provide necessary conditions for dispersal driven growth in terms of the non-existence of a common linear Lyapunov function, which we describe. Our approach draws heavily upon the underlying positive dynamical systems structure. Our results apply to both discrete- and continuous-time models. The theory is illustrated with examples and both biological and mathematical conclusions are drawn. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Accounting for inherent variability of growth in microbial risk assessment.

    PubMed

    Marks, H M; Coleman, M E

    2005-04-15

    Risk assessments of pathogens need to account for the growth of small number of cells under varying conditions. In order to determine the possible risks that occur when there are small numbers of cells, stochastic models of growth are needed that would capture the distribution of the number of cells over replicate trials of the same scenario or environmental conditions. This paper provides a simple stochastic growth model, accounting only for inherent cell-growth variability, assuming constant growth kinetic parameters, for an initial, small, numbers of cells assumed to be transforming from a stationary to an exponential phase. Two, basic, microbial sets of assumptions are considered: serial, where it is assume that cells transform through a lag phase before entering the exponential phase of growth; and parallel, where it is assumed that lag and exponential phases develop in parallel. The model is based on, first determining the distribution of the time when growth commences, and then modelling the conditional distribution of the number of cells. For the latter distribution, it is found that a Weibull distribution provides a simple approximation to the conditional distribution of the relative growth, so that the model developed in this paper can be easily implemented in risk assessments using commercial software packages.

  12. Saccharomyces cerevisiae biofilm tolerance towards systemic antifungals depends on growth phase.

    PubMed

    Bojsen, Rasmus; Regenberg, Birgitte; Folkesson, Anders

    2014-12-04

    Biofilm-forming Candida species cause infections that can be difficult to eradicate, possibly because of antifungal drug tolerance mechanisms specific to biofilms. In spite of decades of research, the connection between biofilm and drug tolerance is not fully understood. We used Saccharomyces cerevisiae as a model for drug susceptibility of yeast biofilms. Confocal laser scanning microscopy showed that S. cerevisiae and C. glabrata form similarly structured biofilms and that the viable cell numbers were significantly reduced by treatment of mature biofilms with amphotericin B but not voriconazole, flucytosine, or caspofungin. We showed that metabolic activity in yeast biofilm cells decreased with time, as visualized by FUN-1 staining, and mature, 48-hour biofilms contained cells with slow metabolism and limited growth. Time-kill studies showed that in exponentially growing planktonic cells, voriconazole had limited antifungal activity, flucytosine was fungistatic, caspofungin and amphotericin B were fungicidal. In growth-arrested cells, only amphotericin B had antifungal activity. Confocal microscopy and colony count viability assays revealed that the response of growing biofilms to antifungal drugs was similar to the response of exponentially growing planktonic cells. The response in mature biofilm was similar to that of non-growing planktonic cells. These results confirmed the importance of growth phase on drug efficacy. We showed that in vitro susceptibility to antifungal drugs was independent of biofilm or planktonic growth mode. Instead, drug tolerance was a consequence of growth arrest achievable by both planktonic and biofilm populations. Our results suggest that efficient strategies for treatment of yeast biofilm might be developed by targeting of non-dividing cells.

  13. The many faces of the quantum Liouville exponentials

    NASA Astrophysics Data System (ADS)

    Gervais, Jean-Loup; Schnittger, Jens

    1994-01-01

    First, it is proven that the three main operator approaches to the quantum Liouville exponentials—that is the one of Gervais-Neveu (more recently developed further by Gervais), Braaten-Curtright-Ghandour-Thorn, and Otto-Weigt—are equivalent since they are related by simple basis transformations in the Fock space of the free field depending upon the zero-mode only. Second, the GN-G expressions for quantum Liouville exponentials, where the U q( sl(2)) quantum-group structure is manifest, are shown to be given by q-binomial sums over powers of the chiral fields in the J = {1}/{2} representation. Third, the Liouville exponentials are expressed as operator tau functions, whose chiral expansion exhibits a q Gauss decomposition, which is the direct quantum analogue of the classical solution of Leznov and Saveliev. It involves q exponentials of quantum-group generators with group "parameters" equal to chiral components of the quantum metric. Fourth, we point out that the OPE of the J = {1}/{2} Liouville exponential provides the quantum version of the Hirota bilinear equation.

  14. The impact of population growth on environment: the debate heats up.

    PubMed

    Shaw, R P

    1992-02-01

    A proposed framework, which was introduced at the 1989 meetings of the American Association for the Advancement of Science, included political constraints as well as population growth as a proximate cause with potentially important impacts on the environment in Paul and Ann Ehrlich's well-known PAT equation. PAT limitations are identified as the 1.2 billion people caught in the debt-poverty trap, less developed countries' balance of payments deficits, and "distortionary factors" that undermined economic incentives and contributed to mismanagement of resources. Such factors could be keeping farm prices low and have an impact on deterring use of environmentally sound traditional agricultural practices. Mismanagement of public lands occurs when large commercial enterprises or large scale mechanization displace population onto marginal or less productive lands. Intergroup warfare is a new form impacting on the environment. In Burma loggers are authorized to clear cut large tracts of teak forests in order to ferret out Karen guerrillas. Over 15 million refugees were thus displaced and forced to live in encampments that require trees for shelter, firewood for survival, and overgrazing of livestock. Social and economic environments are also undermined by "dependency" factors such as trade protectionism, brain drain, and limited foreign aid. The Group of 77 Non-Aligned Developing Countries proposed that discussions of the links between population and the environment be omitted from the agenda of the 1994 UN Conference on Population and Development. Basic clarifications are needed to distinguish ultimate versus proximate factors and current versus future concerns. The debate ignores distribution patterns, migration, or changing age structures. The debate blames unjustifiably rapid population growth as the ultimate cause of global environmental degradation and links population growth to a host of other social problems such as famine and refugees, while ignoring civil unrest

  15. Computer Simulation of the Population Growth (Schizosaccharomyces Pombe) Experiment.

    ERIC Educational Resources Information Center

    Daley, Michael; Hillier, Douglas

    1981-01-01

    Describes a computer program (available from authors) developed to simulate "Growth of a Population (Yeast) Experiment." Students actively revise the counting techniques with realistically simulated haemocytometer or eye-piece grid and are reminded of the necessary dilution technique. Program can be modified to introduce such variables…

  16. Rapid population growth and environmental degradation: ultimate versus proximate factors.

    PubMed

    Shaw, R P

    1989-01-01

    This philosophical review of 2 arguments about responsibility for and solutions to environmental degradation concludes that both sides are correct: the ultimate and the proximal causes. Ultimate causes of pollution are defined as the technology responsible for a given type of pollution, such as burning fossil fuel; proximate causes are defined as situation-specific factors confounding the problem, such as population density or rate of growth. Commoner and others argue that developed countries with low or negative population growth rates are responsible for 80% of world pollution, primarily in polluting technologies such as automobiles, power generation, plastics, pesticides, toxic wastes, garbage, warfaring, and nuclear weapons wastes. Distortionary policies also contribute; examples are agricultural trade protection, land mismanagement, urban bias in expenditures, and institutional rigidity., Poor nations are responsible for very little pollution because poverty allows little waste or expenditures for polluting, synthetic technologies. The proximal causes of pollution include numbers and rate of growth of populations responsible for the pollution. Since change in the ultimate cause of pollution remains out of reach, altering the numbers of polluters can make a difference. Predictions are made for proportions of the world's total waste production, assuming current 1.6 tons/capita for developed countries and 0.17 tons/capita for developing countries. If developing countries grow at current rates and become more wealthy, they will be emitting half the world's waste by 2025. ON the other hand, unsustainable population growth goes along with inadequate investment in human capital: education, health, employment, infrastructure. The solution is to improve farming technologies in the 117 non-self-sufficient countries, fund development in the most unsustainable enclaves of growing countries, break institutionalized socio-political rigidity in these enclaves, and focus on

  17. Genetic variation facilitates seedling establishment but not population growth rate of a perennial invader.

    PubMed

    Li, Shou-Li; Vasemägi, Anti; Ramula, Satu

    2016-01-01

    Assessing the demographic consequences of genetic variation is fundamental to invasion biology. However, genetic and demographic approaches are rarely combined to explore the effects of genetic variation on invasive populations in natural environments. This study combined population genetics, demographic data and a greenhouse experiment to investigate the consequences of genetic variation for the population fitness of the perennial, invasive herb Lupinus polyphyllus. Genetic and demographic data were collected from 37 L. polyphyllus populations representing different latitudes in Finland, and genetic variation was characterized based on 13 microsatellite loci. Associations between genetic variation and population size, population density, latitude and habitat were investigated. Genetic variation was then explored in relation to four fitness components (establishment, survival, growth, fecundity) measured at the population level, and the long-term population growth rate (λ). For a subset of populations genetic variation was also examined in relation to the temporal variability of λ. A further assessment was made of the role of natural selection in the observed variation of certain fitness components among populations under greenhouse conditions. It was found that genetic variation correlated positively with population size, particularly at higher latitudes, and differed among habitat types. Average seedling establishment per population increased with genetic variation in the field, but not under greenhouse conditions. Quantitative genetic divergence (Q(ST)) based on seedling establishment in the greenhouse was smaller than allelic genetic divergence (F'(ST)), indicating that unifying selection has a prominent role in this fitness component. Genetic variation was not associated with average survival, growth or fecundity measured at the population level, λ or its variability. The study suggests that although genetic variation may facilitate plant invasions by

  18. Analysis of Urban Growth in Edwardsville Illinois Using Remote Sensing and Population Change

    NASA Astrophysics Data System (ADS)

    Onuoha, Hilda U.

    Rapid urbanization is one of the many critical, global issues. This very significant social and economic phenomenon has brought about much debate in the past twenty years and has become a very important policy issue. Understanding its dynamics and patterns is important to develop appropriate policies and make more informed planning decisions. Many dimensions to the urban land growth have been identified in related literature including drivers, relationship with other factors like population, impacts, and methods of measurement. In this study, urban growth in the Edwardsville area (composed of Edwardsville and Glen Carbon, Illinois) is analyzed spatio-temporally using remote sensing and population change from 1990 to 2015. The objectives of this study are (a) identifying the major land use changes in the Edwardsville area from 1990 to 2015, (b) analyzing the rate of urban growth and its relationship to population change in the area from 1990 to 2015, (c) identifying the general pattern and direction of urban growth in the study area. Using multi-temporal satellite images to classify and derive changes in land cover classes during the study period, results showed that the land cover classes with major changes are the urban/built-up land and agricultural/grassland, with a steady increase in the former and steady decrease in the later. Results also show the highest rate of increase in urban land was between 2000 and 2010. In comparison to population, the both show increase over the study years but urban land shows a higher rate of increase indicating dispersion. To analyze urban growth pattern in the area, the study area was divided into three zones: NE, SE, and W. The SE zone showed the highest amount of the growth and from the results, the infill type of growth was inferred.

  19. Meeting the Sustainable Development Goals leads to lower world population growth

    PubMed Central

    Abel, Guy J.; Barakat, Bilal; KC, Samir; Lutz, Wolfgang

    2016-01-01

    Here we show the extent to which the expected world population growth could be lowered by successfully implementing the recently agreed-upon Sustainable Development Goals (SDGs). The SDGs include specific quantitative targets on mortality, reproductive health, and education for all girls by 2030, measures that will directly and indirectly affect future demographic trends. Based on a multidimensional model of population dynamics that stratifies national populations by age, sex, and level of education with educational fertility and mortality differentials, we translate these goals into SDG population scenarios, resulting in population sizes between 8.2 and 8.7 billion in 2100. Because these results lie outside the 95% prediction range given by the 2015 United Nations probabilistic population projections, we complement the study with sensitivity analyses of these projections that suggest that those prediction intervals are too narrow because of uncertainty in baseline data, conservative assumptions on correlations, and the possibility of new policies influencing these trends. Although the analysis presented here rests on several assumptions about the implementation of the SDGs and the persistence of educational, fertility, and mortality differentials, it quantitatively illustrates the view that demography is not destiny and that policies can make a decisive difference. In particular, advances in female education and reproductive health can contribute greatly to reducing world population growth. PMID:27911797

  20. Rapid Population Growth and Human Carrying Capacity: Two Perspectives. World Bank Staff Working Papers No. 690 and Population and Development Series No. 15.

    ERIC Educational Resources Information Center

    Mahar, Dennis J., Ed.; And Others

    Two perspectives on carrying capacity and population growth are examined. The first perspective, "Carrying Capacity and Rapid Population Growth: Definition, Cases, and Consequences" (Robert Muscat), explores the possible meanings of the idea of carrying capacity under developing country conditions, looks at historical and present-day cases of…

  1. Emergent multicellular life cycles in filamentous bacteria owing to density-dependent population dynamics.

    PubMed

    Rossetti, Valentina; Filippini, Manuela; Svercel, Miroslav; Barbour, A D; Bagheri, Homayoun C

    2011-12-07

    Filamentous bacteria are the oldest and simplest known multicellular life forms. By using computer simulations and experiments that address cell division in a filamentous context, we investigate some of the ecological factors that can lead to the emergence of a multicellular life cycle in filamentous life forms. The model predicts that if cell division and death rates are dependent on the density of cells in a population, a predictable cycle between short and long filament lengths is produced. During exponential growth, there will be a predominance of multicellular filaments, while at carrying capacity, the population converges to a predominance of short filaments and single cells. Model predictions are experimentally tested and confirmed in cultures of heterotrophic and phototrophic bacterial species. Furthermore, by developing a formulation of generation time in bacterial populations, it is shown that changes in generation time can alter length distributions. The theory predicts that given the same population growth curve and fitness, species with longer generation times have longer filaments during comparable population growth phases. Characterization of the environmental dependence of morphological properties such as length, and the number of cells per filament, helps in understanding the pre-existing conditions for the evolution of developmental cycles in simple multicellular organisms. Moreover, the theoretical prediction that strains with the same fitness can exhibit different lengths at comparable growth phases has important implications. It demonstrates that differences in fitness attributed to morphology are not the sole explanation for the evolution of life cycles dominated by multicellularity.

  2. Exponentiated power Lindley distribution.

    PubMed

    Ashour, Samir K; Eltehiwy, Mahmoud A

    2015-11-01

    A new generalization of the Lindley distribution is recently proposed by Ghitany et al. [1], called as the power Lindley distribution. Another generalization of the Lindley distribution was introduced by Nadarajah et al. [2], named as the generalized Lindley distribution. This paper proposes a more generalization of the Lindley distribution which generalizes the two. We refer to this new generalization as the exponentiated power Lindley distribution. The new distribution is important since it contains as special sub-models some widely well-known distributions in addition to the above two models, such as the Lindley distribution among many others. It also provides more flexibility to analyze complex real data sets. We study some statistical properties for the new distribution. We discuss maximum likelihood estimation of the distribution parameters. Least square estimation is used to evaluate the parameters. Three algorithms are proposed for generating random data from the proposed distribution. An application of the model to a real data set is analyzed using the new distribution, which shows that the exponentiated power Lindley distribution can be used quite effectively in analyzing real lifetime data.

  3. "Peer Review: Nonroad (NR) Updates to Population Growth, Compression Ignition (CI) Criteria, Toxic Emission Factors and Speciation Profiles"

    EPA Science Inventory

    This report focuses on the methodology for estimating growth in NR engine populations as used in the MOVES201X-NONROAD emission inventory model. MOVES NR growth rates start with base year engine populations and estimate growth in the populations of NR engines, while applying cons...

  4. Diversity waves in collapse-driven population dynamics

    DOE PAGES

    Maslov, Sergei; Sneppen, Kim

    2015-09-14

    Populations of species in ecosystems are often constrained by availability of resources within their environment. In effect this means that a growth of one population, needs to be balanced by comparable reduction in populations of others. In neutral models of biodiversity all populations are assumed to change incrementally due to stochastic births and deaths of individuals. Here we propose and model another redistribution mechanism driven by abrupt and severe collapses of the entire population of a single species freeing up resources for the remaining ones. This mechanism may be relevant e.g. for communities of bacteria, with strain-specific collapses caused e.g.more » by invading bacteriophages, or for other ecosystems where infectious diseases play an important role. The emergent dynamics of our system is cyclic ‘‘diversity waves’’ triggered by collapses of globally dominating populations. The population diversity peaks at the beginning of each wave and exponentially decreases afterwards. Species abundances are characterized by a bimodal time-aggregated distribution with the lower peak formed by populations of recently collapsed or newly introduced species while the upper peak - species that has not yet collapsed in the current wave. In most waves both upper and lower peaks are composed of several smaller peaks. This self-organized hierarchical peak structure has a long-term memory transmitted across several waves. It gives rise to a scale-free tail of the time-aggregated population distribution with a universal exponent of 1.7. We show that diversity wave dynamics is robust with respect to variations in the rules of our model such as diffusion between multiple environments, species-specific growth and extinction rates, and bet-hedging strategies.« less

  5. Diversity waves in collapse-driven population dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maslov, Sergei; Sneppen, Kim

    Populations of species in ecosystems are often constrained by availability of resources within their environment. In effect this means that a growth of one population, needs to be balanced by comparable reduction in populations of others. In neutral models of biodiversity all populations are assumed to change incrementally due to stochastic births and deaths of individuals. Here we propose and model another redistribution mechanism driven by abrupt and severe collapses of the entire population of a single species freeing up resources for the remaining ones. This mechanism may be relevant e.g. for communities of bacteria, with strain-specific collapses caused e.g.more » by invading bacteriophages, or for other ecosystems where infectious diseases play an important role. The emergent dynamics of our system is cyclic ‘‘diversity waves’’ triggered by collapses of globally dominating populations. The population diversity peaks at the beginning of each wave and exponentially decreases afterwards. Species abundances are characterized by a bimodal time-aggregated distribution with the lower peak formed by populations of recently collapsed or newly introduced species while the upper peak - species that has not yet collapsed in the current wave. In most waves both upper and lower peaks are composed of several smaller peaks. This self-organized hierarchical peak structure has a long-term memory transmitted across several waves. It gives rise to a scale-free tail of the time-aggregated population distribution with a universal exponent of 1.7. We show that diversity wave dynamics is robust with respect to variations in the rules of our model such as diffusion between multiple environments, species-specific growth and extinction rates, and bet-hedging strategies.« less

  6. The demographic consequences of mutualism: ants increase host-plant fruit production but not population growth

    Treesearch

    Kevin Ford; Joshua H. Ness; Judith L. Bronstein; William F. Morris

    2015-01-01

    The impact of mutualists on a partner’s demography depends on how they affect the partner’s multiple vital rates and how those vital rates, in turn, affect population growth. However, mutualism studies rarely measure effects on multiple vital rates or integrate them to assess the ultimate impact on population growth. We used vital rate data, population models and...

  7. Exponential localization of Wannier functions in insulators.

    PubMed

    Brouder, Christian; Panati, Gianluca; Calandra, Matteo; Mourougane, Christophe; Marzari, Nicola

    2007-01-26

    The exponential localization of Wannier functions in two or three dimensions is proven for all insulators that display time-reversal symmetry, settling a long-standing conjecture. Our proof relies on the equivalence between the existence of analytic quasi-Bloch functions and the nullity of the Chern numbers (or of the Hall current) for the system under consideration. The same equivalence implies that Chern insulators cannot display exponentially localized Wannier functions. An explicit condition for the reality of the Wannier functions is identified.

  8. Exponential growth kinetics for Polyporus versicolor and Pleurotus ostreatus in submerged culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroad, P.A.; Wilke, C.R.

    1977-04-01

    Simple mathematical models for a batch culture of pellet-forming fungi in submerged culture were tested on growth data for Polyporus versicolor (ATCC 12679) and Pleurotus ostreatus (ATCC 9415). A kinetic model based on a growth rate proportional to the two-thirds power of the cell mass was shown to be satisfactory. A model based on a growth rate directly proportional to the cell mass fitted the data equally well, however, and may be preferable because of mathematical simplicity.

  9. Multiserver Queueing Model subject to Single Exponential Vacation

    NASA Astrophysics Data System (ADS)

    Vijayashree, K. V.; Janani, B.

    2018-04-01

    A multi-server queueing model subject to single exponential vacation is considered. The arrivals are allowed to join the queue according to a Poisson distribution and services takes place according to an exponential distribution. Whenever the system becomes empty, all the servers goes for a vacation and returns back after a fixed interval of time. The servers then starts providing service if there are waiting customers otherwise they will wait to complete the busy period. The vacation times are also assumed to be exponentially distributed. In this paper, the stationary and transient probabilities for the number of customers during ideal and functional state of the server are obtained explicitly. Also, numerical illustrations are added to visualize the effect of various parameters.

  10. A new ODE tumor growth modeling based on tumor population dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oroji, Amin; Omar, Mohd bin; Yarahmadian, Shantia

    2015-10-22

    In this paper a new mathematical model for the population of tumor growth treated by radiation is proposed. The cells dynamics population in each state and the dynamics of whole tumor population are studied. Furthermore, a new definition of tumor lifespan is presented. Finally, the effects of two main parameters, treatment parameter (q), and repair mechanism parameter (r) on tumor lifespan are probed, and it is showed that the change in treatment parameter (q) highly affects the tumor lifespan.

  11. Growth curves for ostriches (Struthio camelus) in a Brazilian population.

    PubMed

    Ramos, S B; Caetano, S L; Savegnago, R P; Nunes, B N; Ramos, A A; Munari, D P

    2013-01-01

    The objective of this study was to fit growth curves using nonlinear and linear functions to describe the growth of ostriches in a Brazilian population. The data set consisted of 112 animals with BW measurements from hatching to 383 d of age. Two nonlinear growth functions (Gompertz and logistic) and a third-order polynomial function were applied. The parameters for the models were estimated using the least-squares method and Gauss-Newton algorithm. The goodness-of-fit of the models was assessed using R(2) and the Akaike information criterion. The R(2) calculated for the logistic growth model was 0.945 for hens and 0.928 for cockerels and for the Gompertz growth model, 0.938 for hens and 0.924 for cockerels. The third-order polynomial fit gave R(2) of 0.938 for hens and 0.924 for cockerels. Among the Akaike information criterion calculations, the logistic growth model presented the lowest values in this study, both for hens and for cockerels. Nonlinear models are more appropriate for describing the sigmoid nature of ostrich growth.

  12. Variability in winter climate and winter extremes reduces population growth of an alpine butterfly.

    PubMed

    Roland, Jens; Matter, Stephen F

    2013-01-01

    We examined the long-term, 15-year pattern of population change in a network of 21 Rocky Mountain populations of Parnassius smintheus butterflies in response to climatic variation. We found that winter values of the broadscale climate variable, the Pacific Decadal Oscillation (PDO) index, were a strong predictor of annual population growth, much more so than were endogenous biotic factors related to population density. The relationship between PDO and population growth was nonlinear. Populations declined in years with extreme winter PDO values, when there were either extremely warm or extremely cold sea surface temperatures in the eastern Pacific relative to that in the western Pacific. Results suggest that more variable winters, and more frequent extremely cold or warm winters, will result in more frequent decline of these populations, a pattern exacerbated by the trend for increasingly variable winters seen over the past century.

  13. An exponential decay model for mediation.

    PubMed

    Fritz, Matthew S

    2014-10-01

    Mediation analysis is often used to investigate mechanisms of change in prevention research. Results finding mediation are strengthened when longitudinal data are used because of the need for temporal precedence. Current longitudinal mediation models have focused mainly on linear change, but many variables in prevention change nonlinearly across time. The most common solution to nonlinearity is to add a quadratic term to the linear model, but this can lead to the use of the quadratic function to explain all nonlinearity, regardless of theory and the characteristics of the variables in the model. The current study describes the problems that arise when quadratic functions are used to describe all nonlinearity and how the use of nonlinear functions, such as exponential decay, address many of these problems. In addition, nonlinear models provide several advantages over polynomial models including usefulness of parameters, parsimony, and generalizability. The effects of using nonlinear functions for mediation analysis are then discussed and a nonlinear growth curve model for mediation is presented. An empirical example using data from a randomized intervention study is then provided to illustrate the estimation and interpretation of the model. Implications, limitations, and future directions are also discussed.

  14. An Exponential Decay Model for Mediation

    PubMed Central

    Fritz, Matthew S.

    2013-01-01

    Mediation analysis is often used to investigate mechanisms of change in prevention research. Results finding mediation are strengthened when longitudinal data are used because of the need for temporal precedence. Current longitudinal mediation models have focused mainly on linear change, but many variables in prevention change nonlinearly across time. The most common solution to nonlinearity is to add a quadratic term to the linear model, but this can lead to the use of the quadratic function to explain all nonlinearity, regardless of theory and the characteristics of the variables in the model. The current study describes the problems that arise when quadratic functions are used to describe all nonlinearity and how the use of nonlinear functions, such as exponential decay, addresses many of these problems. In addition, nonlinear models provide several advantages over polynomial models including usefulness of parameters, parsimony, and generalizability. The effects of using nonlinear functions for mediation analysis are then discussed and a nonlinear growth curve model for mediation is presented. An empirical example using data from a randomized intervention study is then provided to illustrate the estimation and interpretation of the model. Implications, limitations, and future directions are also discussed. PMID:23625557

  15. Population growth and development of Liposcelis pearmani (Psocoptera: Liposcelididae) at constant temperatures and relative humidities.

    PubMed

    Aminatou, B A; Gautam, S G; Opit, G P; Talley, J; Shakya, K

    2011-08-01

    Psocids of genus Liposcelis are now considered serious pests of stored products. We investigated the effects of eight temperatures (22.5, 25.0, 27.5, 30.0, 32.5, 35.0, 37.5, and 40.0°C) and four relative humidities (43, 55, 63, and 75%) on population growth and development of the psocid Liposcelis pearmani Lienhard. L. pearmani did not survive at 37.5 and 40.0°C, at all relative humidities tested; at 43% RH, at all temperatures tested; and at 55% RH, at 32.5 and 35°C. The greatest population growth was recorded at 32.5°C and 75% RH (32-fold growth). L. pearmani males have two to four nymphal instars, and the percentages of males with two, three, and four instars were 17, 63, and 20%, respectively. Female L. pearmani have two to five instars, and the percentages of females with two, three, four, and five instars were 5, 39, 55, and 1%, respectively. We developed temperature-dependent development equations for male and female eggs, individual nymphal, combined nymphal, and combined immature stages. Based on 30-d population growth, L. pearmani cannot survive at temperatures >35.0°C; does not thrive at low relative humidities (55%), at temperatures above 25°C; and has a high optimum relative humidity for population growth (75%). Therefore, we expect it to have a more limited distribution compared with other Liposcelis species. These data provide a better understanding of how temperature and RH may influence L. pearmani population dynamics and can be used in population growth models to help develop effective management strategies for this psocid, and to predict its occurrence.

  16. [Effect of the population density on growth and regeneration in the snail Achatina fulica].

    PubMed

    Sidel'nikov, A P; Stepanov, I I

    2000-01-01

    In the laboratory, the growth rate of the giant African snail Achatina fulica, as estimated by the weight and shell length was shown to decrease when the population density increased from 10 to 60 snails/m2 of the total terrarium area for five months. In the second experiment, when the population density increased from 48 to 193 snails/m2, the growth rate had already decreased by six weeks. In the groups with a high population density the feeding behavior was weakened, expressed by a greater amount of nonconsumed food, according to visual observations, than in the groups with lower population densities. At the population density of 10 to 60 snails/m2, the proliferative activity in the course of the optic tentacle regeneration, as expressed by the mitotic index, did not differ reliably within five months. In the second experiment, the mitotic indices at the population densities of 96 and 193 snails/m2 within 1.5 months exceeded that of 48 snails/m2. Recommendations are given concerning the population density from the viewpoint of commercial growth of the snails. It was proposed that, based on the analysis of the mechanism underlying the inhibition of feeding behavior in populations with extra high densities, one may develop a new approach to the production of chemical agents to control land snails as agricultural pests.

  17. A review of the matrix-exponential formalism in radiative transfer

    NASA Astrophysics Data System (ADS)

    Efremenko, Dmitry S.; Molina García, Víctor; Gimeno García, Sebastián; Doicu, Adrian

    2017-07-01

    This paper outlines the matrix exponential description of radiative transfer. The eigendecomposition method which serves as a basis for computing the matrix exponential and for representing the solution in a discrete ordinate setting is considered. The mathematical equivalence of the discrete ordinate method, the matrix operator method, and the matrix Riccati equations method is proved rigorously by means of the matrix exponential formalism. For optically thin layers, approximate solution methods relying on the Padé and Taylor series approximations to the matrix exponential, as well as on the matrix Riccati equations, are presented. For optically thick layers, the asymptotic theory with higher-order corrections is derived, and parameterizations of the asymptotic functions and constants for a water-cloud model with a Gamma size distribution are obtained.

  18. Comparison of individual-based modeling and population approaches for prediction of foodborne pathogens growth.

    PubMed

    Augustin, Jean-Christophe; Ferrier, Rachel; Hezard, Bernard; Lintz, Adrienne; Stahl, Valérie

    2015-02-01

    Individual-based modeling (IBM) approach combined with the microenvironment modeling of vacuum-packed cold-smoked salmon was more effective to describe the variability of the growth of a few Listeria monocytogenes cells contaminating irradiated salmon slices than the traditional population models. The IBM approach was particularly relevant to predict the absence of growth in 25% (5 among 20) of artificially contaminated cold-smoked salmon samples stored at 8 °C. These results confirmed similar observations obtained with smear soft cheese (Ferrier et al., 2013). These two different food models were used to compare the IBM/microscale and population/macroscale modeling approaches in more global exposure and risk assessment frameworks taking into account the variability and/or the uncertainty of the factors influencing the growth of L. monocytogenes. We observed that the traditional population models significantly overestimate exposure and risk estimates in comparison to IBM approach when contamination of foods occurs with a low number of cells (<100 per serving). Moreover, the exposure estimates obtained with the population model were characterized by a great uncertainty. The overestimation was mainly linked to the ability of IBM to predict no growth situations rather than the consideration of microscale environment. On the other hand, when the aim of quantitative risk assessment studies is only to assess the relative impact of changes in control measures affecting the growth of foodborne bacteria, the two modeling approach gave similar results and the simplest population approach was suitable. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Growth rates and variances of unexploited wolf populations in dynamic equilibria

    USGS Publications Warehouse

    Mech, L. David; Fieberg, John

    2015-01-01

    Several states have begun harvesting gray wolves (Canis lupus), and these states and various European countries are closely monitoring their wolf populations. To provide appropriate perspective for determining unusual or extreme fluctuations in their managed wolf populations, we analyzed natural, long-term, wolf-population-density trajectories totaling 130 years of data from 3 areas: Isle Royale National Park in Lake Superior, Michigan, USA; the east-central Superior National Forest in northeastern Minnesota, USA; and Denali National Park, Alaska, USA. Ratios between minimum and maximum annual sizes for 2 mainland populations (n = 28 and 46 yr) varied from 2.5–2.8, whereas for Isle Royale (n = 56 yr), the ratio was 6.3. The interquartile range (25th percentile, 75th percentile) for annual growth rates, Nt+1/Nt, was (0.88, 1.14), (0.92, 1.11), and (0.86, 1.12) for Denali, Superior National Forest, and Isle Royale respectively. We fit a density-independent model and a Ricker model to each time series, and in both cases we considered the potential for observation error. Mean growth rates from the density-independent model were close to 0 for all 3 populations, with 95% credible intervals including 0. We view the estimated model parameters, including those describing annual variability or process variance, as providing useful summaries of the trajectories of these populations. The estimates of these natural wolf population parameters can serve as benchmarks for comparison with those of recovering wolf populations. Because our study populations were all from circumscribed areas, fluctuations in them represent fluctuations in densities (i.e., changes in numbers are not confounded by changes in occupied area as would be the case with populations expanding their range, as are wolf populations in many states).

  20. Exponential gain of randomness certified by quantum contextuality

    NASA Astrophysics Data System (ADS)

    Um, Mark; Zhang, Junhua; Wang, Ye; Wang, Pengfei; Kim, Kihwan

    2017-04-01

    We demonstrate the protocol of exponential gain of randomness certified by quantum contextuality in a trapped ion system. The genuine randomness can be produced by quantum principle and certified by quantum inequalities. Recently, randomness expansion protocols based on inequality of Bell-text and Kochen-Specker (KS) theorem, have been demonstrated. These schemes have been theoretically innovated to exponentially expand the randomness and amplify the randomness from weak initial random seed. Here, we report the experimental evidence of such exponential expansion of randomness. In the experiment, we use three states of a 138Ba + ion between a ground state and two quadrupole states. In the 138Ba + ion system, we do not have detection loophole and we apply a methods to rule out certain hidden variable models that obey a kind of extended noncontextuality.

  1. Population cycles and species diversity in dynamic Kill-the-Winner model of microbial ecosystems

    NASA Astrophysics Data System (ADS)

    Maslov, Sergei; Sneppen, Kim

    2017-01-01

    Determinants of species diversity in microbial ecosystems remain poorly understood. Bacteriophages are believed to increase the diversity by the virtue of Kill-the-Winner infection bias preventing the fastest growing organism from taking over the community. Phage-bacterial ecosystems are traditionally described in terms of the static equilibrium state of Lotka-Volterra equations in which bacterial growth is exactly balanced by losses due to phage predation. Here we consider a more dynamic scenario in which phage infections give rise to abrupt and severe collapses of bacterial populations whenever they become sufficiently large. As a consequence, each bacterial population in our model follows cyclic dynamics of exponential growth interrupted by sudden declines. The total population of all species fluctuates around the carrying capacity of the environment, making these cycles cryptic. While a subset of the slowest growing species in our model is always driven towards extinction, in general the overall ecosystem diversity remains high. The number of surviving species is inversely proportional to the variation in their growth rates but increases with the frequency and severity of phage-induced collapses. Thus counter-intuitively we predict that microbial communities exposed to more violent perturbations should have higher diversity.

  2. Population cycles and species diversity in dynamic Kill-the-Winner model of microbial ecosystems

    PubMed Central

    Maslov, Sergei; Sneppen, Kim

    2017-01-01

    Determinants of species diversity in microbial ecosystems remain poorly understood. Bacteriophages are believed to increase the diversity by the virtue of Kill-the-Winner infection bias preventing the fastest growing organism from taking over the community. Phage-bacterial ecosystems are traditionally described in terms of the static equilibrium state of Lotka-Volterra equations in which bacterial growth is exactly balanced by losses due to phage predation. Here we consider a more dynamic scenario in which phage infections give rise to abrupt and severe collapses of bacterial populations whenever they become sufficiently large. As a consequence, each bacterial population in our model follows cyclic dynamics of exponential growth interrupted by sudden declines. The total population of all species fluctuates around the carrying capacity of the environment, making these cycles cryptic. While a subset of the slowest growing species in our model is always driven towards extinction, in general the overall ecosystem diversity remains high. The number of surviving species is inversely proportional to the variation in their growth rates but increases with the frequency and severity of phage-induced collapses. Thus counter-intuitively we predict that microbial communities exposed to more violent perturbations should have higher diversity. PMID:28051127

  3. Rural Renaissance in America? The Revival of Population Growth in Remote Areas.

    ERIC Educational Resources Information Center

    Morrison, Peter A.; Wheeler, Judith P.

    Presenting narrative and tabular documentation of the revival of population growth in remote, rural areas and the decline of growth in urban areas, this bulletin describes the characteristics of these shifts, considers their possible causes, and suggests some of the problems and potential benefits. Specifically, this report presents the following:…

  4. Optimal Resting-Growth Strategies of Microbial Populations in Fluctuating Environments

    PubMed Central

    Geisel, Nico; Vilar, Jose M. G.; Rubi, J. Miguel

    2011-01-01

    Bacteria spend most of their lifetime in non-growing states which allow them to survive extended periods of stress and starvation. When environments improve, they must quickly resume growth to maximize their share of limited nutrients. Cells with higher stress resistance often survive longer stress durations at the cost of needing more time to resume growth, a strong disadvantage in competitive environments. Here we analyze the basis of optimal strategies that microorganisms can use to cope with this tradeoff. We explicitly show that the prototypical inverse relation between stress resistance and growth rate can explain much of the different types of behavior observed in stressed microbial populations. Using analytical mathematical methods, we determine the environmental parameters that decide whether cells should remain vegetative upon stress exposure, downregulate their metabolism to an intermediate optimum level, or become dormant. We find that cell-cell variability, or intercellular noise, is consistently beneficial in the presence of extreme environmental fluctuations, and that it provides an efficient population-level mechanism for adaption in a deteriorating environment. Our results reveal key novel aspects of responsive phenotype switching and its role as an adaptive strategy in changing environments. PMID:21525975

  5. A method for nonlinear exponential regression analysis

    NASA Technical Reports Server (NTRS)

    Junkin, B. G.

    1971-01-01

    A computer-oriented technique is presented for performing a nonlinear exponential regression analysis on decay-type experimental data. The technique involves the least squares procedure wherein the nonlinear problem is linearized by expansion in a Taylor series. A linear curve fitting procedure for determining the initial nominal estimates for the unknown exponential model parameters is included as an integral part of the technique. A correction matrix was derived and then applied to the nominal estimate to produce an improved set of model parameters. The solution cycle is repeated until some predetermined criterion is satisfied.

  6. Exponentially decaying interaction potential of cavity solitons

    NASA Astrophysics Data System (ADS)

    Anbardan, Shayesteh Rahmani; Rimoldi, Cristina; Kheradmand, Reza; Tissoni, Giovanna; Prati, Franco

    2018-03-01

    We analyze the interaction of two cavity solitons in an optically injected vertical cavity surface emitting laser above threshold. We show that they experience an attractive force even when their distance is much larger than their diameter, and eventually they merge. Since the merging time depends exponentially on the initial distance, we suggest that the attraction could be associated with an exponentially decaying interaction potential, similarly to what is found for hydrophobic materials. We also show that the merging time is simply related to the characteristic times of the laser, photon lifetime, and carrier lifetime.

  7. Populational Growth Models Proportional to Beta Densities with Allee Effect

    NASA Astrophysics Data System (ADS)

    Aleixo, Sandra M.; Rocha, J. Leonel; Pestana, Dinis D.

    2009-05-01

    We consider populations growth models with Allee effect, proportional to beta densities with shape parameters p and 2, where the dynamical complexity is related with the Malthusian parameter r. For p>2, these models exhibit a population dynamics with natural Allee effect. However, in the case of 1

  8. Density regulation in Northeast Atlantic fish populations: Density dependence is stronger in recruitment than in somatic growth.

    PubMed

    Zimmermann, Fabian; Ricard, Daniel; Heino, Mikko

    2018-05-01

    Population regulation is a central concept in ecology, yet in many cases its presence and the underlying mechanisms are difficult to demonstrate. The current paradigm maintains that marine fish populations are predominantly regulated by density-dependent recruitment. While it is known that density-dependent somatic growth can be present too, its general importance remains unknown and most practical applications neglect it. This study aimed to close this gap by for the first time quantifying and comparing density dependence in growth and recruitment over a large set of fish populations. We fitted density-dependent models to time-series data on population size, recruitment and age-specific weight from commercially exploited fish populations in the Northeast Atlantic Ocean and the Baltic Sea. Data were standardized to enable a direct comparison within and among populations, and estimated parameters were used to quantify the impact of density regulation on population biomass. Statistically significant density dependence in recruitment was detected in a large proportion of populations (70%), whereas for density dependence in somatic growth the prevalence of density dependence depended heavily on the method (26% and 69%). Despite age-dependent variability, the density dependence in recruitment was consistently stronger among age groups and between alternative approaches that use weight-at-age or weight increments to assess growth. Estimates of density-dependent reduction in biomass underlined these results: 97% of populations with statistically significant parameters for growth and recruitment showed a larger impact of density-dependent recruitment on population biomass. The results reaffirm the importance of density-dependent recruitment in marine fishes, yet they also show that density dependence in somatic growth is not uncommon. Furthermore, the results are important from an applied perspective because density dependence in somatic growth affects productivity and

  9. Numerical study of MHD nanofluid flow and heat transfer past a bidirectional exponentially stretching sheet

    NASA Astrophysics Data System (ADS)

    Ahmad, Rida; Mustafa, M.; Hayat, T.; Alsaedi, A.

    2016-06-01

    Recent advancements in nanotechnology have led to the discovery of new generation coolants known as nanofluids. Nanofluids possess novel and unique characteristics which are fruitful in numerous cooling applications. Current work is undertaken to address the heat transfer in MHD three-dimensional flow of magnetic nanofluid (ferrofluid) over a bidirectional exponentially stretching sheet. The base fluid is considered as water which consists of magnetite-Fe3O4 nanoparticles. Exponentially varying surface temperature distribution is accounted. Problem formulation is presented through the Maxwell models for effective electrical conductivity and effective thermal conductivity of nanofluid. Similarity transformations give rise to a coupled non-linear differential system which is solved numerically. Appreciable growth in the convective heat transfer coefficient is observed when nanoparticle volume fraction is augmented. Temperature exponent parameter serves to enhance the heat transfer from the surface. Moreover the skin friction coefficient is directly proportional to both magnetic field strength and nanoparticle volume fraction.

  10. The Association between Natural Amenities, Rural Population Growth, and Long-Term Residents' Economic Well-Being

    ERIC Educational Resources Information Center

    Hunter, Lori M; Boardman, Jason D.; Saint Onge, Jarron M.

    2005-01-01

    Population growth in rural areas characterized by high levels of natural amenities has recently received substantial research attention. A noted concern with amenity-driven rural population growth is its potential to raise local costs-of-living while yielding only low-wage service sector employment for long-term residents. The work presented here…

  11. Consequences of Rapid Population Growth: An Overview. World Bank Staff Working Papers No. 691 and Population and Development Series No. 16.

    ERIC Educational Resources Information Center

    McNicoll, Geoffrey

    A systematic discussion of the consequences of rapid population growth for economics and social systems examines growth resulting from mortality decline in the absence of comparable fertility decline. Growth resulting from net migration is also considered. The background and rationale for the study are supplied in a brief introduction. Part 2…

  12. The Vatican & Population Growth Control: Why an American Confrontation?

    ERIC Educational Resources Information Center

    Mumford, Stephen D.

    1983-01-01

    The Vatican, because of its position on population growth, threatens the security of all nations. Catholic countries with right-wing dictatorships cannot confront the Vatican on family planning and survive. U.S. Catholics must confront the Vatican on this issue. American lay Catholics must break the American church away from the Vatican control.…

  13. Exponential smoothing weighted correlations

    NASA Astrophysics Data System (ADS)

    Pozzi, F.; Di Matteo, T.; Aste, T.

    2012-06-01

    In many practical applications, correlation matrices might be affected by the "curse of dimensionality" and by an excessive sensitiveness to outliers and remote observations. These shortcomings can cause problems of statistical robustness especially accentuated when a system of dynamic correlations over a running window is concerned. These drawbacks can be partially mitigated by assigning a structure of weights to observational events. In this paper, we discuss Pearson's ρ and Kendall's τ correlation matrices, weighted with an exponential smoothing, computed on moving windows using a data-set of daily returns for 300 NYSE highly capitalized companies in the period between 2001 and 2003. Criteria for jointly determining optimal weights together with the optimal length of the running window are proposed. We find that the exponential smoothing can provide more robust and reliable dynamic measures and we discuss that a careful choice of the parameters can reduce the autocorrelation of dynamic correlations whilst keeping significance and robustness of the measure. Weighted correlations are found to be smoother and recovering faster from market turbulence than their unweighted counterparts, helping also to discriminate more effectively genuine from spurious correlations.

  14. An exact formulation of the time-ordered exponential using path-sums

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giscard, P.-L., E-mail: p.giscard1@physics.ox.ac.uk; Lui, K.; Thwaite, S. J.

    2015-05-15

    We present the path-sum formulation for the time-ordered exponential of a time-dependent matrix. The path-sum formulation gives the time-ordered exponential as a branched continued fraction of finite depth and breadth. The terms of the path-sum have an elementary interpretation as self-avoiding walks and self-avoiding polygons on a graph. Our result is based on a representation of the time-ordered exponential as the inverse of an operator, the mapping of this inverse to sums of walks on a graphs, and the algebraic structure of sets of walks. We give examples demonstrating our approach. We establish a super-exponential decay bound for the magnitudemore » of the entries of the time-ordered exponential of sparse matrices. We give explicit results for matrices with commonly encountered sparse structures.« less

  15. Influences of growth parameters on the reaction pathway during GaN synthesis

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi; Liu, Zhongyi; Fang, Haisheng

    2018-01-01

    Gallium nitride (GaN) film growth is a complicated physical and chemical process including fluid flow, heat transfer, species transport and chemical reaction. Study of the reaction mechanism, i.e., the reaction pathway, is important for optimizing the growth process in the actual manufacture. In the paper, the growth pathway of GaN in a closed-coupled showerhead metal-organic chemical vapor deposition (CCS-MOCVD) reactor is investigated in detail using computational fluid dynamics (CFD). Influences of the process parameters, such as the chamber pressure, the inlet temperature, the susceptor temperature and the pre-exponential factor, on the reaction pathway are examined. The results show that increases of the chamber pressure or the inlet temperature, as well as reductions of the susceptor temperature or the pre-exponential factor lead to the adduct route dominating the growth. The deposition rate contributed by the decomposition route, however, can be enhanced dramatically by increasing the inlet temperature, the susceptor temperature and the pre-exponential factor.

  16. Growth and competitive effects of Centaurea stoebe populations in response to simulated nitrogen deposition.

    PubMed

    He, Wei-Ming; Montesinos, Daniel; Thelen, Giles C; Callaway, Ragan M

    2012-01-01

    Increased resource availability can promote invasion by exotic plants, raising concerns over the potential effects of global increases in the deposition of nitrogen (N). It is poorly understood why increased N favors exotics over natives. Fast growth may be a general trait of good invaders and these species may have exceptional abilities to increase growth rates in response to N deposition. Additionally, invaders commonly displace locals, and thus may have inherently greater competitive abilities. The mean growth response of Centaurea stoebe to two N levels was significantly greater than that of North American (NA) species. Growth responses to N did not vary among C. stoebe populations or NA species. Without supplemental N, NA species were better competitors than C. stoebe, and C. stoebe populations varied in competitive effects. The competitive effects of C. stoebe populations increased with N whereas the competitive effects of NA species decreased, eliminating the overall competitive advantage demonstrated by NA species in soil without N added. These results suggest that simulated N deposition may enhance C. stoebe invasion through increasing its growth and relative competitive advantage, and also indicate the possibility of local adaptation in competitive effects across the introduced range of an invader.

  17. Endless urban growth? On the mismatch of population, household and urban land area growth and its effects on the urban debate.

    PubMed

    Haase, Dagmar; Kabisch, Nadja; Haase, Annegret

    2013-01-01

    In European cities, the rate of population growth has declined significantly, while the number of households has increased. This increase in the number of households is associated with an increase in space for housing. To date, the effects of both a declining population and decreasing household numbers remain unclear. In this paper, we analyse the relationship between population and household number development in 188 European cities from 1990-2000 and 2000-2006 to the growth of urban land area and per capita living space. Our results support a trend toward decreasing population with simultaneously increasing household number. However, we also found cites facing both a declining population and a decreasing household number. Nevertheless, the urban land area of these "double-declining" cities has continued to spread because the increasing per capita living space counteracts a reduction in land consumption. We conclude that neither a decline in population nor in household number "automatically" solve the global problem of land consumption.

  18. Echoes from the past: Regional variations in recovery within a harbour seal population

    PubMed Central

    Reijnders, Peter J. H.; Cremer, Jenny; Meesters, Erik; Kirkwood, Roger; Jensen, Lasse Fast; Jeβ, Armin; Galatius, Anders; Teilmann, Jonas; Aarts, Geert

    2018-01-01

    Terrestrial and marine wildlife populations have been severely reduced by hunting, fishing and habitat destruction, especially in the last centuries. Although management regulations have led to the recovery of some populations, the underlying processes are not always well understood. This study uses a 40-year time series of counts of harbour seals (Phoca vitulina) in the Wadden Sea to study these processes, and demonstrates the influence of historical regional differences in management regimes on the recovery of this population. While the Wadden Sea is considered one ecologically coupled zone, with a distinct harbour seal population, the area is divided into four geo-political regions i.e. the Netherlands, Lower Saxony including Hamburg, Schleswig-Holstein and Denmark. Gradually, seal hunting was banned between 1962 and 1977 in the different regions. Counts of moulting harbour seals and pup counts, obtained during aerial surveys between 1974 and 2014, show a population growth from approximately 4500 to 39,000 individuals. Population growth models were developed to assess if population growth differed between regions, taking into account two Phocine Distemper Virus (PDV) epizootics, in 1988 and 2002 which seriously affected the population. After a slow start prior to the first epizootic, the overall population grew exponentially at rates close to assumed maximum rates of increase in a harbour seal population. Recently, growth slowed down, potentially indicative of approaching carrying capacity. Regional differences in growth rates were demonstrated, with the highest recovery in Netherlands after the first PDV epizootic (i.e. 17.9%), suggesting that growth was fuelled by migration from the other regions, where growth remained at or below the intrinsic growth rate (13%). The seals’ distribution changed, and although the proportion of seals counted in the German regions declined, they remained by far the most important pupping region, with approximately 70% of all

  19. Echoes from the past: Regional variations in recovery within a harbour seal population.

    PubMed

    Brasseur, Sophie M J M; Reijnders, Peter J H; Cremer, Jenny; Meesters, Erik; Kirkwood, Roger; Jensen, Lasse Fast; Jeβ, Armin; Galatius, Anders; Teilmann, Jonas; Aarts, Geert

    2018-01-01

    Terrestrial and marine wildlife populations have been severely reduced by hunting, fishing and habitat destruction, especially in the last centuries. Although management regulations have led to the recovery of some populations, the underlying processes are not always well understood. This study uses a 40-year time series of counts of harbour seals (Phoca vitulina) in the Wadden Sea to study these processes, and demonstrates the influence of historical regional differences in management regimes on the recovery of this population. While the Wadden Sea is considered one ecologically coupled zone, with a distinct harbour seal population, the area is divided into four geo-political regions i.e. the Netherlands, Lower Saxony including Hamburg, Schleswig-Holstein and Denmark. Gradually, seal hunting was banned between 1962 and 1977 in the different regions. Counts of moulting harbour seals and pup counts, obtained during aerial surveys between 1974 and 2014, show a population growth from approximately 4500 to 39,000 individuals. Population growth models were developed to assess if population growth differed between regions, taking into account two Phocine Distemper Virus (PDV) epizootics, in 1988 and 2002 which seriously affected the population. After a slow start prior to the first epizootic, the overall population grew exponentially at rates close to assumed maximum rates of increase in a harbour seal population. Recently, growth slowed down, potentially indicative of approaching carrying capacity. Regional differences in growth rates were demonstrated, with the highest recovery in Netherlands after the first PDV epizootic (i.e. 17.9%), suggesting that growth was fuelled by migration from the other regions, where growth remained at or below the intrinsic growth rate (13%). The seals' distribution changed, and although the proportion of seals counted in the German regions declined, they remained by far the most important pupping region, with approximately 70% of all pups

  20. Population growth enhances the mean fixation time of neutral mutations and the persistence of neutral variation.

    PubMed

    Waxman, D

    2012-06-01

    A fundamental result of population genetics states that a new mutation, at an unlinked neutral locus in a randomly mating diploid population, has a mean time of fixation of ∼4N(e) generations, where N(e) is the effective population size. This result is based on an assumption of fixed population size, which does not universally hold in natural populations. Here, we analyze such neutral fixations in populations of changing size within the framework of the diffusion approximation. General expressions are derived for the mean and variance of the fixation time in changing populations. Some explicit results are given for two cases: (i) the effective population size undergoes a sudden change, representing a sudden population expansion or a sudden bottleneck; (ii) the effective population changes linearly for a limited period of time and then remains constant. Additionally, a lower bound for the mean time of fixation is obtained for an effective population size that increases with time, and this is applied to exponentially growing populations. The results obtained in this work show, among other things, that for populations that increase in size, the mean time of fixation can be enhanced, sometimes substantially so, over 4N(e,0) generations, where N(e,0) is the effective population size at the time the mutation arises. Such an enhancement is associated with (i) an increased probability of neutral polymorphism in a population and (ii) an enhanced persistence of high-frequency neutral variation, which is the variation most likely to be observed.

  1. Anthropometric growth study of the ear in a Chinese population.

    PubMed

    Zhao, Shichun; Li, Dianguo; Liu, Zhenzhong; Wang, Yibiao; Liu, Lei; Jiang, Duyin; Pan, Bo

    2018-04-01

    A large number of anthropometric studies of the auricle have been reported in different nations, but little data were available in the Chinese population. The aim of this study was to analyze growth changes in the ear by measuring the width and length of ears in a Chinese population. A total of 480 participants were enrolled and classified into 1-, 3-, 5-, 7-, 9-, 12-, 14-, and 18-year groups (half were boys and half were girls in each group). Ear length, ear width, body weight, and body length were measured and recorded; ear index was calculated according to ear length and ear width. The growth of auricle and differences between genders were analyzed. Growth of ear in relation to body height and weight and the degree of emphasis on the length and width of the auricle were also analyzed. Ear length and width increased with age. Ear length achieved its mature size in both 14-year-old males and females. Ear width reached its mature size in males at 7 years and in females at 5 years. Different trends of ear index were shown between males and females. People in this population paid more attention to the length than the width of the auricle. The data indicated that ear development followed increase in age. There were gender and ethnic difference in the development of ear. These results may have potential implications for the diagnosis of congenital malformations, syndromes, and planning of ear reconstruction surgery. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  2. Detecting crop population growth using chlorophyll fluorescence imaging.

    PubMed

    Wang, Heng; Qian, Xiangjie; Zhang, Lan; Xu, Sailong; Li, Haifeng; Xia, Xiaojian; Dai, Liankui; Xu, Liang; Yu, Jingquan; Liu, Xu

    2017-12-10

    For both field and greenhouse crops, it is challenging to evaluate their growth information on a large area over a long time. In this work, we developed a chlorophyll fluorescence imaging-based system for crop population growth information detection. Modular design was used to make the system provide high-intensity uniform illumination. This system can perform modulated chlorophyll fluorescence induction kinetics measurement and chlorophyll fluorescence parameter imaging over a large area of up to 45  cm×34  cm. The system can provide different lighting intensity by modulating the duty cycle of its control signal. Results of continuous monitoring of cucumbers in nitrogen deficiency show the system can reduce the judge error of crop physiological status and improve monitoring efficiency. Meanwhile, the system is promising in high throughput application scenarios.

  3. Quantifying long-term population growth rates of threatened bull trout: challenges, lessons learned, and opportunities

    USGS Publications Warehouse

    Budy, Phaedra; Bowerman, Tracy; Al-Chokhachy, Robert K.; Conner, Mary; Schaller, Howard

    2017-01-01

    Temporal symmetry models (TSM) represent advances in the analytical application of mark–recapture data to population status assessments. For a population of char, we employed 10 years of active and passive mark–recapture data to quantify population growth rates using different data sources and analytical approaches. Estimates of adult population growth rate were 1.01 (95% confidence interval = 0.84–1.20) using a temporal symmetry model (λTSM), 0.96 (0.68–1.34) based on logistic regressions of annual snorkel data (λA), and 0.92 (0.77–1.11) from redd counts (λR). Top-performing TSMs included an increasing time trend in recruitment (f) and changes in capture probability (p). There was only a 1% chance the population decreased ≥50%, and a 10% chance it decreased ≥30% (λMCMC; based on Bayesian Markov chain Monte Carlo procedure). Size structure was stable; however, the adult population was dominated by small adults, and over the study period there was a decline in the contribution of large adults to total biomass. Juvenile condition decreased with increasing adult densities. Utilization of these different information sources provided a robust weight-of-evidence approach to identifying population status and potential mechanisms driving changes in population growth rates.

  4. An American Laboratory: Population Growth and Environmental Quality in California.

    ERIC Educational Resources Information Center

    McConnell, Robert

    1993-01-01

    Describes the cumulative impact of rapid population growth, industrial and military activity, agriculture, and motor vehicles on California's environmental and social fabric. Discusses these problems in California as a forecast for the nation and test to consensus-based U.S. representative government. (Author/ MCO)

  5. The relationship between population ageing and the economic growth in Asia

    NASA Astrophysics Data System (ADS)

    Brendan, Lo Rick; Sek, Siok Kun

    2017-08-01

    Asia has witnessed robust economic growth since the 1960s. Today, emerging markets in Asia have managed to maintain rapid growth even when the world's main economies suffer from debt and banking crises. However, declining total fertility rate, increasing life expectancy, continuous change of birth and death patterns, and increasing share of old age population in the age distribution in Asia exert significant pressure on its economies. This paper analyses the relationship between population ageing and economic growth using 2 different panels of countries; one Asian and another the from the oldest countries worldwide between 1970 and 2014. The analysis is based on the Auto Regression Distributed Lag models. The MG (Mean Group) and PMG (Pooled Mean Group) estimations are applied in this analysis. The Hausman Test is conducted to decide between the MG and PMG estimators. We find that ageing will negatively affect the economy in the long run. The growing number of youths will initially have a negative effect on the economy but would eventually lead to a positive growth in the future. The old age dependency ratio has yet to have affect the Asian economy but is expected eventually to impose a negative effect as seen in the oldest nations of the world.

  6. Growth and physiological responses to varied environments among populations of Pinus ponderosa

    Treesearch

    Jianwei Zhang; Bert M. Cregg

    2005-01-01

    We investigated population responses in physiology, morphology, and growth of mature Pinus ponderosa trees to an environmental gradient across Nebraska, USA. Ten populations from western Nebraska and eastern Wyoming were grown in three 26-year-old provenance tests from the warmest and wettest site in the east (Plattsmouth) to the intermediate site in...

  7. Causes of mortality in California sea otters during periods of population growth and decline

    USGS Publications Warehouse

    Estes, J.A.; Hatfield, B.B.; Ralls, K.; Ames, J.

    2003-01-01

    Elevated mortality appears to be the main reason for both sluggish growth and periods of decline in the threatened California sea otter population. We assessed causes of mortality from salvage records of 3,105 beach-cast carcasses recovered from 1968 through 1999, contrasting two periods of growth with two periods of decline. Overall, an estimated 40%-60% of the deaths were not recovered and 70% of the recovered carcasses died from unknown causes. Nonetheless, several common patterns were evident in the salvage records during the periods of population decline. These included greater percentages of (1) prime age animals (3-10 yr), (2) carcasses killed by great white shark attacks, (3) carcasses recovered in spring and summer, and (4) carcasses for which the cause of death was unknown. Neither sex composition nor the proportion of carcasses dying of infectious disease varied consistently between periods of population increase and decline. The population decline from 1976 to 1984 was likely due to incidental mortality in a set-net fishery, and the decline from 1995 to 1999 may be related to a developing live-fish fishery. Long-term trends unrelated to periods of growth and decline included a decrease in per capita pup production and mass/length ratios of adult carcasses over the 31-yr study. The generally high proportion of deaths from infectious disease suggests that this factor has contributed to the chronically sluggish growth rate of the California sea otter population.

  8. Rapid population growth. Effects on the social infrastructures of southern Africa.

    PubMed

    Smith, J D

    1995-01-01

    Southern Africa's high rate of population growth and widespread poverty have serious implications for the region's social infrastructure. Large increases in the school-age population have undermined efforts to improve the quality of education since all resources are directed toward expansion of availability. To achieve a teacher-pupil ratio of 1:40 at the primary level and 1:35 at the secondary level, an estimated additional 50,000 classrooms would be required. Also jeopardized by high fertility is access to health services, safe water, and sanitation. In Mozambique, for example, where only 30% of the population has access to health services, the under-five years mortality rate is 297/1000 live births and the physician-population ratio is 1:37,970. Substandard housing, homelessness, congestion, deteriorating public services, pollution, and crime dominate urban areas. The single most effective intervention to reduce population growth in Southern Africa is female education. Women without a secondary education bear an average of seven children; if 40% of women attend secondary school, this drops to three children. Thus, governments must make gender equality a central focus of development planning and ensure that women are participants in this process. Property and inheritance laws that serve to increase the economic need for early marriage should be eliminated. Public health programs, including family planning, must be expanded. Finally, women's organizations should be strengthened and urged to foster female empowerment.

  9. Time indices of multiphasic development in genotypes of sweet cherry are similar from dormancy to cessation of pit growth

    PubMed Central

    Gibeaut, David M.; Whiting, Matthew D.; Einhorn, Todd

    2017-01-01

    Background and Aims The archetypical double sigmoid-shaped growth curve of the sweet cherry drupe (Prunus avium) does not address critical development from eco-dormancy to anthesis and has not been correlated to reproductive bud development. Accurate representation of the growth and development of post-anthesis ovaries is confounded by anthesis timing, fruiting-density and the presence of unfertilized and defective ovaries whose growth differs from those that persist to maturation. These factors were addressed to assess pre-anthesis and full-season growth and development of three sweet cherry cultivars, ‘Chelan’, ‘Bing’ and ‘Sweetheart’, differing primarily in seasonal duration and fruit size. Methods Volume was calculated from photographic measurements of reproductive buds, ovaries and pits at all phases of development. A population of unfertilized ovaries was produced using bee-exclusion netting to enable a statistical comparison with an open pollinated population to detect differences in size and shape between successful and failing fruit growth. Anthesis timing and fruiting-density were manipulated by floral extinction at the spur and whole-tree scales. Developmental time indices were analysed using polynomial curve fitting of log-transformed data supported by Richards and logistic functions of asymptotic growth of the pit and maturing fruit, respectively. Key Results Pre-anthesis growth began at the completion of eco-dormancy. A slight decline in relative growth rate (RGR) was observed during bud scale separation approx. −16 d from anthesis (DFA) before resumption of exponential growth to a maximum about 14 DFA. After anthesis, reduced growth of unfertilized or defective ovaries was partly discriminated from successful fruit at 5 DFA and completely at 25 DFA. Time indices of RGR inflections were similar among cultivars when adjusted for anthesis date alone, until the end of pit growth. Asymptotic growth of the pit underpinned the declining growth

  10. Exponential Correlation of IQ and the Wealth of Nations

    ERIC Educational Resources Information Center

    Dickerson, Richard E.

    2006-01-01

    Plots of mean IQ and per capita real Gross Domestic Product for groups of 81 and 185 nations, as collected by Lynn and Vanhanen, are best fitted by an exponential function of the form: GDP = "a" * 10["b"*(IQ)], where "a" and "b" are empirical constants. Exponential fitting yields markedly higher correlation coefficients than either linear or…

  11. Differences in Townsend's chipmunk populations between second- and old-growth forests in western Oregon

    Treesearch

    D.K. Rosenberg; R.G. Anthony

    1993-01-01

    Because Townsend's chipmunks (Tomias townsendii) may be important in maintaining natural ecosystem processes in forests in the central Oregon Cascade Range, we compared their population characteristics in young second-growth and old-growth forests. We live-trapped Townsend's chipmunks in 5 young (30-60 yr old) second-growth and 5 old-...

  12. Growth and mortality of larval Myctophum affine (Myctophidae, Teleostei).

    PubMed

    Namiki, C; Katsuragawa, M; Zani-Teixeira, M L

    2015-04-01

    The growth and mortality rates of Myctophum affine larvae were analysed based on samples collected during the austral summer and winter of 2002 from south-eastern Brazilian waters. The larvae ranged in size from 2·75 to 14·00 mm standard length (L(S)). Daily increment counts from 82 sagittal otoliths showed that the age of M. affine ranged from 2 to 28 days. Three models were applied to estimate the growth rate: linear regression, exponential model and Laird-Gompertz model. The exponential model best fitted the data, and L(0) values from exponential and Laird-Gompertz models were close to the smallest larva reported in the literature (c. 2·5 mm L(S)). The average growth rate (0·33 mm day(-1)) was intermediate among lanternfishes. The mortality rate (12%) during the larval period was below average compared with other marine fish species but similar to some epipelagic fishes that occur in the area. © 2015 The Fisheries Society of the British Isles.

  13. Population regulation in Gyrodactylus salaris - Atlantic salmon (Salmo salar L.) interactions: testing the paradigm.

    PubMed

    Ramírez, Raúl; Bakke, Tor A; Harris, Philip D

    2015-07-25

    Gyrodactylus salaris is a directly transmitted ectoparasite that reproduces in situ on its fish host. Wild Norwegian (East Atlantic) salmon stocks are thought to be especially susceptible to the parasite due to lack of co-adaptation, contrary to Baltic salmon stocks. This study i) identifies whether time- and density-dependent mechanisms in gyrodactylid population growth exist in G. salaris-Atlantic salmon interactions and ii) based on differences between Norwegian and Baltic stocks, determines whether the 'Atlantic susceptible, Baltic resistant' paradigm holds as an example of local adaptation. A total of 18 datasets of G. salaris population growth on individually isolated Atlantic salmon (12 different stocks) infected with three parasite strains were re-analysed using a Bayesian approach. Datasets included over 2000 observations of 388 individual fish. The best fitting model of population growth was time-limited; parasite population growth rate declined consistently from the beginning of infection. We found no evidence of exponential population growth in any dataset. In some stocks, a density dependence in the size of the initial inoculum limited the maximum rate of parasite population growth. There is no evidence to support the hypothesis that all Norwegian and Scottish Atlantic salmon stocks are equally susceptible to G. salaris, while Baltic stocks control and limit infections due to co-evolution. Northern and Western Norwegian as well as the Scottish Shin stocks, support higher initial parasite population growth rates than Baltic, South-eastern Norwegian, or the Scottish Conon stocks, and several Norwegian stocks tested (Akerselva, Altaelva, Lierelva, Numedalslågen), and the Scottish stocks (i.e. Conon, Shin), were able to limit infections after 40-50 days. No significant differences in performance of the three parasite strains (Batnfjordselva, Figga, and Lierelva), or the two parasite mitochondrial haplotypes (A and F) were observed. Our study shows a

  14. Different isotope and chemical patterns of pyrite oxidation related to lag and exponential growth phases of Acidithiobacillus ferrooxidans reveal a microbial growth strategy

    NASA Astrophysics Data System (ADS)

    Brunner, Benjamin; Yu, Jae-Young; Mielke, Randall E.; MacAskill, John A.; Madzunkov, Stojan; McGenity, Terry J.; Coleman, Max

    2008-06-01

    The solution chemistry during the initial (slow increase of dissolved iron and sulfate) and main stage (rapid increase of dissolved iron and sulfate) of pyrite leaching by Acidithiobacillus ferrooxidans (Af) at a starting pH of 2.05 shows significant differences. During the initial stage, ferrous iron (Fe2+) is the dominant iron species in solution and the molar ratio of produced sulfate (SO42-) and total iron (Fetot) is 1.1, thus does not reflect the stoichiometry of pyrite (FeS2). During the main stage, ferric iron (Fe3+) is the dominant iron species in solution and the SO42-:Fetot ratio is with 1.9, close to the stoichiometry of FeS2. Another difference between initial and main stage is an initial trend to slightly higher pH values followed by a drop during the main stage to pH 1.84. These observations raise the question if there are different modes of bioleaching of pyrite, and if there are, what those modes imply in terms of leaching mechanisms. Different oxygen and sulfur isotope trends of sulfate during the initial and main stages of pyrite oxidation confirm that there are two pyrite bioleaching modes. The biochemical reactions during initial stage are best explained by the net reaction FeS2 + 3O2 ⇒ Fe2+ + SO42- + SO2(g). The degassing of sulfur dioxide (SO2) acts as sink for sulfur depleted in 34S compared to pyrite, and is the cause of the SO42-:Fetot ratio of 1.1 and the near constant pH. During the exponential phase, pyrite sulfur is almost quantitatively converted to sulfate, according to the net reaction FeS2 + 15/4O2 + 1/2H2O ⇒ Fe3+ + 2SO42- + H+. We hypothesize that the transition between the modes of bioleaching of pyrite is due to the impact of the accumulation of ferrous iron, which induces changes in the metabolic activity of Af and may act as an inhibitor for the oxidation of sulfur species. This transition defines a fundamental change in the growth strategy of Af. A mode, where bacteria gain energy by oxidation of elemental sulfur to

  15. Women and Population Growth: Choice beyond Childbearing. Worldwatch Paper 16.

    ERIC Educational Resources Information Center

    Newland, Kathleen

    The paper explores the relationship of women's childbearing attitudes to educational and work opportunities. Program administrators for family planning, educational programs, and national development efforts in developing countries must realize the importance of the social and cultural environment in designing programs to reduce population growth.…

  16. A modelling approach to vaccination and contraception programmes for rabies control in fox populations.

    PubMed Central

    Suppo, C; Naulin, J M; Langlais, M; Artois, M

    2000-01-01

    In a previous study, three of the authors designed a one-dimensional model to simulate the propagation of rabies within a growing fox population; the influence of various parameters on the epidemic model was studied, including oral-vaccination programmes. In this work, a two-dimensional model of a fox population having either an exponential or a logistic growth pattern was considered. Using numerical simulations, the efficiencies of two prophylactic methods (fox contraception and vaccination against rabies) were assessed, used either separately or jointly. It was concluded that far lower rates of administration are necessary to eradicate rabies, and that the undesirable side-effects of each programme disappear, when both are used together. PMID:11007334

  17. Comparisons of Growth and Survival Performance Among Selected Families and Wild Populations of Fenneropenaeus chinensis

    NASA Astrophysics Data System (ADS)

    Luo, Kun; Kong, Jie; Meng, Xianhong; Luan, Sheng; Cao, Baoxiang; Chen, Baolong

    2018-04-01

    In this study, families of selected population for growth (SP_BWT), selected population for white spot syndrome virus (WSSV) resistance (SP_RW), Bohai wild population (WP_BH) and Huanghai wild population (WP_HH) of F. chinensis were constructed through artificial insemination and with the standardized procedure of larvae rearing. Growth and survival performance were studied among four populations after a 70 days common test. The results showed that the maximum least square mean of body weight was 17.50 g in SP_BWT while the minimum was 13.03 g in WP_HH. Compared with WP_BH, body weight of SP_BWT increased by 23.41% ( P < 0.01) and that of SP_RW by 12.20% ( P > 0.05). Body weights of SP_BWT and SP_RW were significantly higher than that of WP_HH, which increased by 34.31% ( P < 0.01) and 22.10% ( P < 0.05), respectively. The mean AGR of four populations was 0.19, 0.18, 0.17 and 0.16 g d-1, respectively. Coefficient of variation of body weight among four populations was high, which ranged from 32.67% to 35.25%. Such a range showed that there was the potentiality for further improvement in selected populations. Coefficient of variation of survival rate among four populations was low, varying between 3.20% and 5.90%. The difference of survival was highly significant ( P < 0.01) between SP_BWT and WP_BH, and significant ( P < 0.05) between SP_RW and WP_BH. However, no significant difference among other populations ( P < 0.05) was observed. Different growth performances were also observed among different families in each population. The body weight of 798F family was the highest. The absolute growth rate (AGR) was 0.25 g d-1, 150% higher than that of the lowest one, 0.1 g d-1 in 807F family. Survival rate of families among four populations was different. The highest was 94.74%, and the lowest was 71.88%.

  18. Linear or Exponential Number Lines

    ERIC Educational Resources Information Center

    Stafford, Pat

    2011-01-01

    Having decided to spend some time looking at one's understanding of numbers, the author was inspired by "Alex's Adventures in Numberland," by Alex Bellos to look at one's innate appreciation of number. Bellos quotes research studies suggesting that an individual's natural appreciation of numbers is more likely to be exponential rather…

  19. Are whooping cranes destined for extinction? Climate change imperils recruitment and population growth.

    PubMed

    Butler, Matthew J; Metzger, Kristine L; Harris, Grant M

    2017-04-01

    Identifying climatic drivers of an animal population's vital rates and locating where they operate steers conservation efforts to optimize species recovery. The population growth of endangered whooping cranes ( Grus americana ) hinges on juvenile recruitment. Therefore, we identify climatic drivers (solar activity [sunspots] and weather) of whooping crane recruitment throughout the species' life cycle (breeding, migration, wintering). Our method uses a repeated cross-validated absolute shrinkage and selection operator approach to identify drivers of recruitment. We model effects of climate change on those drivers to predict whooping crane population growth given alternative scenarios of climate change and solar activity. Years with fewer sunspots indicated greater recruitment. Increased precipitation during autumn migration signified less recruitment. On the breeding grounds, fewer days below freezing during winter and more precipitation during breeding suggested less recruitment. We predicted whooping crane recruitment and population growth may fall below long-term averages during all solar cycles when atmospheric CO 2 concentration increases, as expected, to 500 ppm by 2050. Species recovery during a typical solar cycle with 500 ppm may require eight times longer than conditions without climate change and the chance of population decline increases to 31%. Although this whooping crane population is growing and may appear secure, long-term threats imposed by climate change and increased solar activity may jeopardize its persistence. Weather on the breeding grounds likely affects recruitment through hydrological processes and predation risk, whereas precipitation during autumn migration may influence juvenile mortality. Mitigating threats or abating climate change should occur within ≈30 years or this wild population of whooping cranes may begin declining.

  20. Growth and Competitive Effects of Centaurea stoebe Populations in Response to Simulated Nitrogen Deposition

    PubMed Central

    He, Wei-Ming; Montesinos, Daniel; Thelen, Giles C.; Callaway, Ragan M.

    2012-01-01

    Increased resource availability can promote invasion by exotic plants, raising concerns over the potential effects of global increases in the deposition of nitrogen (N). It is poorly understood why increased N favors exotics over natives. Fast growth may be a general trait of good invaders and these species may have exceptional abilities to increase growth rates in response to N deposition. Additionally, invaders commonly displace locals, and thus may have inherently greater competitive abilities. The mean growth response of Centaurea stoebe to two N levels was significantly greater than that of North American (NA) species. Growth responses to N did not vary among C. stoebe populations or NA species. Without supplemental N, NA species were better competitors than C. stoebe, and C. stoebe populations varied in competitive effects. The competitive effects of C. stoebe populations increased with N whereas the competitive effects of NA species decreased, eliminating the overall competitive advantage demonstrated by NA species in soil without N added. These results suggest that simulated N deposition may enhance C. stoebe invasion through increasing its growth and relative competitive advantage, and also indicate the possibility of local adaptation in competitive effects across the introduced range of an invader. PMID:22563451

  1. Quark mixing and exponential form of the Cabibbo-Kobayashi-Maskawa matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhukovsky, K. V., E-mail: zhukovsk@phys.msu.ru; Dattoli, D., E-mail: dattoli@frascati.enea.i

    2008-10-15

    Various forms of representation of the mixing matrix are discussed. An exponential parametrization e{sup A} of the Cabibbo-Kobayashi-Maskawa matrix is considered in the context of the unitarity requirement, this parametrization being the most general form of the mixing matrix. An explicit representation for the exponential mixing matrix in terms of the first and second degrees of the matrix A exclusively is obtained. This representation makes it possible to calculate this exponential mixing matrix readily in any order of the expansion in the small parameter {lambda}. The generation of new unitary parametric representations of the mixing matrix with the aid ofmore » the exponential matrix is demonstrated.« less

  2. Photocounting distributions for exponentially decaying sources.

    PubMed

    Teich, M C; Card, H C

    1979-05-01

    Exact photocounting distributions are obtained for a pulse of light whose intensity is exponentially decaying in time, when the underlying photon statistics are Poisson. It is assumed that the starting time for the sampling interval (which is of arbitrary duration) is uniformly distributed. The probability of registering n counts in the fixed time T is given in terms of the incomplete gamma function for n >/= 1 and in terms of the exponential integral for n = 0. Simple closed-form expressions are obtained for the count mean and variance. The results are expected to be of interest in certain studies involving spontaneous emission, radiation damage in solids, and nuclear counting. They will also be useful in neurobiology and psychophysics, since habituation and sensitization processes may sometimes be characterized by the same stochastic model.

  3. [A model of world population growth as an experiment in systematic research].

    PubMed

    Kapitsa, S

    1997-01-01

    A mathematical model was developed for the estimation of global population growth, and the estimates were compared with those of the UN and covered the stretch of 4.4 million years B.C. to the years 2175 and 2500 A.D. The estimates were also broken down into human, geological, and technological historical periods. The model showed that human population would stabilize at the level of 14 billion around 2500 A.D. and 13 billion around 2200 A.D., in accordance with UN projections. It also revealed the history of human population growth through the following stages (UN figures are listed in parentheses): 100,000, about 1.6 million years ago; 5 (1-5) million, 35,000 B.C.; 21 (10-15) million, 7000 B.C.; 46 (47) million, 2000 B.C.; 93 (100-230) million, at the time of Christ; 185 (275-345) million, 1000 A.D.; 366 (450-540) million, 1500 A.D.; 887 (907) million, 1800 A.D.; 1158 (1170) million, 1850 A.D.; 1656 (1650-1710) million, 1900 A.D.; 2812 (2515) million, 1950 A.D.; 5253 (5328) million, 1990 A.D.; 6265 (6261) million, 2000 A.D.; 10,487 (10,019) million, 2050 A.D.; 12,034 (11,186) million, 2100 A.D.; 12,648 (11,543) million, 2150 A.D.; 12,946 (11,600) million, 2200 A.D.; and 13,536 million, 2500 A.D. The model advanced the investigation of phenomena by studying the interactions between economical, technological, social, cultural, and biological processes. The analysis showed that humanity has reached a critical phase in its growth and that development in each period depended on external, not internal, factors. This permits the formulation of the principle of demographic imperative (distinct from the Malthusian principle), which states that resources determine the speed and extent of the growth of population.

  4. Survival and growth of Cronobacter sakazakii on fresh-cut fruit and the effect of UV-C illumination and electrolyzed water in the reduction of its population.

    PubMed

    Santo, David; Graça, Ana; Nunes, Carla; Quintas, Célia

    2016-08-16

    Cronobacter sakazakii, found in foods such as powdered infant formula and plant origin ready-to-eat food, is an opportunistic pathogen to infants, neonates and vulnerable adults. The objective of this study was to monitor the growth of C. sakazakii in fresh-cut 'Royal gala' apple, 'Rocha' pear, and 'Piel de sapo' melon, and the effect of UV-C illumination, acidic electrolyzed water (AEW) and neutral electrolyzed water (NEW) in the reduction of its population. Fresh-cut fruits were inoculated and incubated at different temperatures during 10days while monitoring C. sakazakii. The inhibitory activity of different doses of UV-C (0-10kJ.m(2)), electrolyzed water and sodium hypochlorite (SH) (100ppm chlorine) was evaluated on the fruits inoculated with C. sakazakii. The bacterium showed a significant growth in the fruits at 12 and 20°C, but did not grow at 4°C, despite having survived for 10days. At 8°C, adaptation phases of 0.6-3.9days were estimated in the fruits before exponential growth. The UV-C 7.5 and 10kJ/m(2) produced greater C. sakazakii population decreases (2-2.4logcfu/g) than AEW (1.3-1.8logcfu/g), NEW (1-1.2logcfu/g) and SH (0.8-1.4logcfu/g). The UV-C decontamination system and refrigeration at 4°C, may contribute to the product's safety and quality. The results help better understand the behavior of C. sakazakii on fresh-cut fruit alerting producers of the necessity to respect the high hygienic practices, adequate refrigerating temperature maintenance and caution with the tendency to prolong the validity of this kind of ready-to-eat food. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Individual-based modelling of population growth and diffusion in discrete time.

    PubMed

    Tkachenko, Natalie; Weissmann, John D; Petersen, Wesley P; Lake, George; Zollikofer, Christoph P E; Callegari, Simone

    2017-01-01

    Individual-based models (IBMs) of human populations capture spatio-temporal dynamics using rules that govern the birth, behavior, and death of individuals. We explore a stochastic IBM of logistic growth-diffusion with constant time steps and independent, simultaneous actions of birth, death, and movement that approaches the Fisher-Kolmogorov model in the continuum limit. This model is well-suited to parallelization on high-performance computers. We explore its emergent properties with analytical approximations and numerical simulations in parameter ranges relevant to human population dynamics and ecology, and reproduce continuous-time results in the limit of small transition probabilities. Our model prediction indicates that the population density and dispersal speed are affected by fluctuations in the number of individuals. The discrete-time model displays novel properties owing to the binomial character of the fluctuations: in certain regimes of the growth model, a decrease in time step size drives the system away from the continuum limit. These effects are especially important at local population sizes of <50 individuals, which largely correspond to group sizes of hunter-gatherers. As an application scenario, we model the late Pleistocene dispersal of Homo sapiens into the Americas, and discuss the agreement of model-based estimates of first-arrival dates with archaeological dates in dependence of IBM model parameter settings.

  6. Matrix exponential-based closures for the turbulent subgrid-scale stress tensor.

    PubMed

    Li, Yi; Chevillard, Laurent; Eyink, Gregory; Meneveau, Charles

    2009-01-01

    Two approaches for closing the turbulence subgrid-scale stress tensor in terms of matrix exponentials are introduced and compared. The first approach is based on a formal solution of the stress transport equation in which the production terms can be integrated exactly in terms of matrix exponentials. This formal solution of the subgrid-scale stress transport equation is shown to be useful to explore special cases, such as the response to constant velocity gradient, but neglecting pressure-strain correlations and diffusion effects. The second approach is based on an Eulerian-Lagrangian change of variables, combined with the assumption of isotropy for the conditionally averaged Lagrangian velocity gradient tensor and with the recent fluid deformation approximation. It is shown that both approaches lead to the same basic closure in which the stress tensor is expressed as the matrix exponential of the resolved velocity gradient tensor multiplied by its transpose. Short-time expansions of the matrix exponentials are shown to provide an eddy-viscosity term and particular quadratic terms, and thus allow a reinterpretation of traditional eddy-viscosity and nonlinear stress closures. The basic feasibility of the matrix-exponential closure is illustrated by implementing it successfully in large eddy simulation of forced isotropic turbulence. The matrix-exponential closure employs the drastic approximation of entirely omitting the pressure-strain correlation and other nonlinear scrambling terms. But unlike eddy-viscosity closures, the matrix exponential approach provides a simple and local closure that can be derived directly from the stress transport equation with the production term, and using physically motivated assumptions about Lagrangian decorrelation and upstream isotropy.

  7. The intrinsic growth rate as a predictor of population viability under climate warming.

    PubMed

    Amarasekare, Priyanga; Coutinho, Renato M

    2013-11-01

    1. Lately, there has been interest in using the intrinsic growth rate (rm) to predict the effects of climate warming on ectotherm population viability. However, because rm is calculated using the Euler-Lotka equation, its reliability in predicting population persistence depends on whether ectotherm populations can achieve a stable age/stage distribution in thermally variable environments. Here, we investigate this issue using a mathematical framework that incorporates mechanistic descriptions of temperature effects on vital rates into a stage-structured population model that realistically captures the temperature-induced variability in developmental delays that characterize ectotherm life cycles. 2. We find that populations experiencing seasonal temperature variation converge to a stage distribution whose intra-annual pattern remains invariant across years. As a result, the mean annual per capita growth rate also remains constant between years. The key insight is the mechanism that allows populations converge to a stationary stage distribution. Temperature effects on the biochemical processes (e.g. enzyme kinetics, hormonal regulation) that underlie life-history traits (reproduction, development and mortality) exhibit well-defined thermodynamical properties (e.g. changes in entropy and enthalpy) that lead to predictable outcomes (e.g. reduction in reaction rates or hormonal action at temperature extremes). As a result, life-history traits exhibit a systematic and predictable response to seasonal temperature variation. This in turn leads to temporally predictable temperature responses of the stage distribution and the per capita growth rate. 3. When climate warming causes an increase in the mean annual temperature and/or the amplitude of seasonal fluctuations, the population model predicts the mean annual per capita growth rate to decline to zero within 100 years when warming is slow relative to the developmental period of the organism (0.03-0.05°C per year) and to

  8. Apocalypse when? Population growth and food supply in South Asia.

    PubMed

    Greenspan, A

    1994-12-01

    Food demands for staple grains are expected to almost double over the next 25 years in South Asia, due to population growth and increased standards of living. Trends in the mid-1990s suggest that neither pessimism nor optimism prevails in the region. There is wide diversity among and within countries. Trends suggest that population densities are already the highest in the world, and the amount of arable land is declining. Urban growth has moved onto farm land and farmers have been pushed onto more marginal lands or have become landless. Land intensification has produced mixed results. Cereal production per capita has increased since the 1950s in India, with about 75% of the region's population, but Pakistan's increases were not sustained into the 1980s. Average daily caloric intake per person in the region of 2214 is below the level in Sub-Saharan Africa. In Bangladesh, levels are particularly worrisome at 2037. The environmental impact has not been easily quantified, but experts have suggested that pressure on farm land has contributed to loss of soil fertility and water resource loss. Further intensification of farming is feasible, but difficult and more expensive than in the past. Regardless of production problems and solutions, there is also the very real problem of poor food distribution and lack of purchasing power. Farm management skills must be utilized, if environmental degradation is to be avoided. There is the added unknown of what climate changes will occur and how agricultural production will be affected. The policy implications are that increased food production must be made a political priority. Policies must support agricultural research into improved technologies and support distribution of technological advances to a wider number of farmers. Rural infrastructures such as roads, market outlets, and credit agencies must be established. Policies must be removed that disadvantage farmers, such as inappropriate subsidies for irrigation water

  9. Making sense of snapshot data: ergodic principle for clonal cell populations

    PubMed Central

    2017-01-01

    Population growth is often ignored when quantifying gene expression levels across clonal cell populations. We develop a framework for obtaining the molecule number distributions in an exponentially growing cell population taking into account its age structure. In the presence of generation time variability, the average acquired across a population snapshot does not obey the average of a dividing cell over time, apparently contradicting ergodicity between single cells and the population. Instead, we show that the variation observed across snapshots with known cell age is captured by cell histories, a single-cell measure obtained from tracking an arbitrary cell of the population back to the ancestor from which it originated. The correspondence between cells of known age in a population with their histories represents an ergodic principle that provides a new interpretation of population snapshot data. We illustrate the principle using analytical solutions of stochastic gene expression models in cell populations with arbitrary generation time distributions. We further elucidate that the principle breaks down for biochemical reactions that are under selection, such as the expression of genes conveying antibiotic resistance, which gives rise to an experimental criterion with which to probe selection on gene expression fluctuations. PMID:29187636

  10. Exponential Sensitivity and its Cost in Quantum Physics

    PubMed Central

    Gilyén, András; Kiss, Tamás; Jex, Igor

    2016-01-01

    State selective protocols, like entanglement purification, lead to an essentially non-linear quantum evolution, unusual in naturally occurring quantum processes. Sensitivity to initial states in quantum systems, stemming from such non-linear dynamics, is a promising perspective for applications. Here we demonstrate that chaotic behaviour is a rather generic feature in state selective protocols: exponential sensitivity can exist for all initial states in an experimentally realisable optical scheme. Moreover, any complex rational polynomial map, including the example of the Mandelbrot set, can be directly realised. In state selective protocols, one needs an ensemble of initial states, the size of which decreases with each iteration. We prove that exponential sensitivity to initial states in any quantum system has to be related to downsizing the initial ensemble also exponentially. Our results show that magnifying initial differences of quantum states (a Schrödinger microscope) is possible; however, there is a strict bound on the number of copies needed. PMID:26861076

  11. Exponential Sensitivity and its Cost in Quantum Physics.

    PubMed

    Gilyén, András; Kiss, Tamás; Jex, Igor

    2016-02-10

    State selective protocols, like entanglement purification, lead to an essentially non-linear quantum evolution, unusual in naturally occurring quantum processes. Sensitivity to initial states in quantum systems, stemming from such non-linear dynamics, is a promising perspective for applications. Here we demonstrate that chaotic behaviour is a rather generic feature in state selective protocols: exponential sensitivity can exist for all initial states in an experimentally realisable optical scheme. Moreover, any complex rational polynomial map, including the example of the Mandelbrot set, can be directly realised. In state selective protocols, one needs an ensemble of initial states, the size of which decreases with each iteration. We prove that exponential sensitivity to initial states in any quantum system has to be related to downsizing the initial ensemble also exponentially. Our results show that magnifying initial differences of quantum states (a Schrödinger microscope) is possible; however, there is a strict bound on the number of copies needed.

  12. Effects of recruitment, growth, and exploitation on walleye population size structure in northern Wisconsin lakes

    USGS Publications Warehouse

    Hansen, Michael J.; Nate, Nancy A.

    2014-01-01

    We evaluated the dynamics of walleye Sander vitreus population size structure, as indexed by the proportional size distribution (PSD) of quality-length fish, in Escanaba Lake during 1967–2003 and in 204 other lakes in northern Wisconsin during 1990–2011. We estimated PSD from angler-caught walleyes in Escanaba Lake and from spring electrofishing in 204 other lakes, and then related PSD to annual estimates of recruitment to age-3, length at age 3, and annual angling exploitation rate. In Escanaba Lake during 1967–2003, annual estimates of PSD were highly dynamic, growth (positively) explained 35% of PSD variation, recruitment explained only 3% of PSD variation, and exploitation explained only 7% of PSD variation. In 204 other northern Wisconsin lakes during 1990–2011, PSD varied widely among lakes, recruitment (negatively) explained 29% of PSD variation, growth (positively) explained 21% of PSD variation, and exploitation explained only 4% of PSD variation. We conclude that population size structure was most strongly driven by recruitment and growth, rather than exploitation, in northern Wisconsin walleye populations. Studies of other species over wide spatial and temporal ranges of recruitment, growth, and mortality are needed to determine which dynamic rate most strongly influences population size structure of other species. Our findings indicate a need to be cautious about assuming exploitation is a strong driver of walleye population size structure.

  13. Urban population growth and urbanization in the Caribbean.

    PubMed

    Hope, K R

    1985-01-01

    The structure, sources, consequences, and policy implications of urbanization and of the rapid growth of the urban population in the Caribbean are examined. In particular, a comparative analysis of the situation in Barbados, Guyana, Jamaica, and Trinidad and Tobago is presented. Data are from a variety of secondary sources, including those published by the United Nations and the World Bank. The need to reorient policies to favor rural rather than urban areas in order to reduce rural-urban migration is noted.

  14. Determining Individual Variation in Growth and Its Implication for Life-History and Population Processes Using the Empirical Bayes Method

    PubMed Central

    Vincenzi, Simone; Mangel, Marc; Crivelli, Alain J.; Munch, Stephan; Skaug, Hans J.

    2014-01-01

    The differences in demographic and life-history processes between organisms living in the same population have important consequences for ecological and evolutionary dynamics. Modern statistical and computational methods allow the investigation of individual and shared (among homogeneous groups) determinants of the observed variation in growth. We use an Empirical Bayes approach to estimate individual and shared variation in somatic growth using a von Bertalanffy growth model with random effects. To illustrate the power and generality of the method, we consider two populations of marble trout Salmo marmoratus living in Slovenian streams, where individually tagged fish have been sampled for more than 15 years. We use year-of-birth cohort, population density during the first year of life, and individual random effects as potential predictors of the von Bertalanffy growth function's parameters k (rate of growth) and (asymptotic size). Our results showed that size ranks were largely maintained throughout marble trout lifetime in both populations. According to the Akaike Information Criterion (AIC), the best models showed different growth patterns for year-of-birth cohorts as well as the existence of substantial individual variation in growth trajectories after accounting for the cohort effect. For both populations, models including density during the first year of life showed that growth tended to decrease with increasing population density early in life. Model validation showed that predictions of individual growth trajectories using the random-effects model were more accurate than predictions based on mean size-at-age of fish. PMID:25211603

  15. Determining individual variation in growth and its implication for life-history and population processes using the empirical Bayes method.

    PubMed

    Vincenzi, Simone; Mangel, Marc; Crivelli, Alain J; Munch, Stephan; Skaug, Hans J

    2014-09-01

    The differences in demographic and life-history processes between organisms living in the same population have important consequences for ecological and evolutionary dynamics. Modern statistical and computational methods allow the investigation of individual and shared (among homogeneous groups) determinants of the observed variation in growth. We use an Empirical Bayes approach to estimate individual and shared variation in somatic growth using a von Bertalanffy growth model with random effects. To illustrate the power and generality of the method, we consider two populations of marble trout Salmo marmoratus living in Slovenian streams, where individually tagged fish have been sampled for more than 15 years. We use year-of-birth cohort, population density during the first year of life, and individual random effects as potential predictors of the von Bertalanffy growth function's parameters k (rate of growth) and L∞ (asymptotic size). Our results showed that size ranks were largely maintained throughout marble trout lifetime in both populations. According to the Akaike Information Criterion (AIC), the best models showed different growth patterns for year-of-birth cohorts as well as the existence of substantial individual variation in growth trajectories after accounting for the cohort effect. For both populations, models including density during the first year of life showed that growth tended to decrease with increasing population density early in life. Model validation showed that predictions of individual growth trajectories using the random-effects model were more accurate than predictions based on mean size-at-age of fish.

  16. Possible stretched exponential parametrization for humidity absorption in polymers.

    PubMed

    Hacinliyan, A; Skarlatos, Y; Sahin, G; Atak, K; Aybar, O O

    2009-04-01

    Polymer thin films have irregular transient current characteristics under constant voltage. In hydrophilic and hydrophobic polymers, the irregularity is also known to depend on the humidity absorbed by the polymer sample. Different stretched exponential models are studied and it is shown that the absorption of humidity as a function of time can be adequately modelled by a class of these stretched exponential absorption models.

  17. Translating effects of inbreeding depression on component vital rates to overall population growth in endangered bighorn sheep.

    PubMed

    Johnson, Heather E; Mills, L Scott; Wehausen, John D; Stephenson, Thomas R; Luikart, Gordon

    2011-12-01

    Evidence of inbreeding depression is commonly detected from the fitness traits of animals, yet its effects on population growth rates of endangered species are rarely assessed. We examined whether inbreeding depression was affecting Sierra Nevada bighorn sheep (Ovis canadensis sierrae), a subspecies listed as endangered under the U.S. Endangered Species Act. Our objectives were to characterize genetic variation in this subspecies; test whether inbreeding depression affects bighorn sheep vital rates (adult survival and female fecundity); evaluate whether inbreeding depression may limit subspecies recovery; and examine the potential for genetic management to increase population growth rates. Genetic variation in 4 populations of Sierra Nevada bighorn sheep was among the lowest reported for any wild bighorn sheep population, and our results suggest that inbreeding depression has reduced adult female fecundity. Despite this population sizes and growth rates predicted from matrix-based projection models demonstrated that inbreeding depression would not substantially inhibit the recovery of Sierra Nevada bighorn sheep populations in the next approximately 8 bighorn sheep generations (48 years). Furthermore, simulations of genetic rescue within the subspecies did not suggest that such activities would appreciably increase population sizes or growth rates during the period we modeled (10 bighorn sheep generations, 60 years). Only simulations that augmented the Mono Basin population with genetic variation from other subspecies, which is not currently a management option, predicted significant increases in population size. Although we recommend that recovery activities should minimize future losses of genetic variation, genetic effects within these endangered populations-either negative (inbreeding depression) or positive (within subspecies genetic rescue)-appear unlikely to dramatically compromise or stimulate short-term conservation efforts. The distinction between

  18. MECHANISMS OF FLUID SHEAR-INDUCED INHIBITION OF POPULATION GROWTH IN A RED-TIDE DINOFLAGELLATE

    EPA Science Inventory

    Net population growth of some dinoflagellates is inhibited by fluid shear at shear stresses comparable with those generated during oceanic turbulence. Decreased net growth may occur through lowered cell division, increased mortality, or both. The dominant mechanism under various ...

  19. Does Size Matter? A Study of Risk Perceptions of Global Population Growth.

    PubMed

    Dawson, Ian G J; Johnson, Johnnie E V

    2017-01-01

    The global human population now exceeds 7 billion and is projected to reach 10 billion around 2060. While population growth has been associated with certain benefits (e.g., economies of scale, technological advancements), theoretical models, probabilistic projections, and empirical evidence also indicate that this growth could increase the likelihood of many adverse events (e.g., climate change, resource shortages) and the impact of these events, as more people are exposed to the outcomes. While concerns about these issues are well-documented in the academic literature, there is little evidence concerning the public's perceptions of the risks associated with global population growth (GPG) and how these perceptions are likely to influence related decisions. To address these issues, we conducted a U.K.-based study that examined respondents' risk perceptions of GPG, their willingness to embrace mitigation/precautionary behaviors, and reasons for variations in these two factors. We found that GPG is perceived as a moderate-to-high risk, with concerns about the increased likelihood of resource shortages, ecological damage, and violent conflict being foremost. Respondents believed that the worst effects of GPG would arrive around 2050 and would be experienced by the world's poorest people. Respondents who perceived greater levels of risk from GPG were generally those who indicated a greater willingness to embrace mitigation behaviors (e.g., reduce resource consumption) and preventative actions (e.g., support political action to limit growth). We discuss how our findings might be utilized to better manage the potential challenges associated with GPG and we suggest several directions for further research. © 2016 Society for Risk Analysis.

  20. Teaching Population Growth Using Cultures of Vinegar Eels, "Turbatrix aceti" (Nematoda)

    ERIC Educational Resources Information Center

    Wallace, Robert L.

    2005-01-01

    A simple laboratory exercise is presented that follows the population growth of the common vinegar eel, "Turbatrix aceti" (Nematoda), in a microcosm using a simple culture medium. It lends itself to an exercise in a single semester course. (Contains 4 figures.)

  1. Exponential series approaches for nonparametric graphical models

    NASA Astrophysics Data System (ADS)

    Janofsky, Eric

    Markov Random Fields (MRFs) or undirected graphical models are parsimonious representations of joint probability distributions. This thesis studies high-dimensional, continuous-valued pairwise Markov Random Fields. We are particularly interested in approximating pairwise densities whose logarithm belongs to a Sobolev space. For this problem we propose the method of exponential series which approximates the log density by a finite-dimensional exponential family with the number of sufficient statistics increasing with the sample size. We consider two approaches to estimating these models. The first is regularized maximum likelihood. This involves optimizing the sum of the log-likelihood of the data and a sparsity-inducing regularizer. We then propose a variational approximation to the likelihood based on tree-reweighted, nonparametric message passing. This approximation allows for upper bounds on risk estimates, leverages parallelization and is scalable to densities on hundreds of nodes. We show how the regularized variational MLE may be estimated using a proximal gradient algorithm. We then consider estimation using regularized score matching. This approach uses an alternative scoring rule to the log-likelihood, which obviates the need to compute the normalizing constant of the distribution. For general continuous-valued exponential families, we provide parameter and edge consistency results. As a special case we detail a new approach to sparse precision matrix estimation which has statistical performance competitive with the graphical lasso and computational performance competitive with the state-of-the-art glasso algorithm. We then describe results for model selection in the nonparametric pairwise model using exponential series. The regularized score matching problem is shown to be a convex program; we provide scalable algorithms based on consensus alternating direction method of multipliers (ADMM) and coordinate-wise descent. We use simulations to compare our

  2. Phosphorus-zinc interactive effects on growth by Selenastrum capricornutum (chlorophyta)

    USGS Publications Warehouse

    Kuwabara, J.S.

    1985-01-01

    Culturing experiments in chemically defined growth media were conducted to observe possible Zn and P interactions on Selenastrum capricornutum Printz growth indexes. Elevated Zn concentrations (7.5 ?? 10-8 and 1.5 ?? 10-7 M [Zn2+]) were highly detrimental to algal growth, affecting lag, exponential, and stationary growth phases. P behaved as a yield-limiting nutrient with maximum cell densities increasing linearly with total P. This yield limitation was intensified at elevated Zn concentrations. Although calculated cellular phosphorus concentrations increased markedly with Zn ion activity, elevated Zn concentrations had no apparent effect on rates of phosphorus uptake estimated for Selenastrum during exponential growth. Results indicated that P-Zn interactions were significant in describing Selenastrum cell yield results and are consistent with previous Zn studies on chlorophytes. These P-Zn interactions and the observed inhibitory growth effects of submicromolar Zn concentrations suggest that in nature an apparent P yield-limiting condition may result from elevated Zn concentrations.

  3. Growth models of Rhizophora mangle L. seedlings in tropical southwestern Atlantic

    NASA Astrophysics Data System (ADS)

    Lima, Karen Otoni de Oliveira; Tognella, Mônica Maria Pereira; Cunha, Simone Rabelo; Andrade, Humber Agrelli de

    2018-07-01

    The present study selected and compared regression models that best describe the growth curves of Rhizophora mangle seedlings based on the height (cm) and time (days) variables. The Linear, Exponential, Power Law, Monomolecular, Logistic, and Gompertz models were adjusted with non-linear formulations and minimization of the sum of the squares of the residues. The Akaike Information Criterion was used to select the best model for each seedling. After this selection, the determination coefficient, which evaluates how well a model describes height variation as a time function, was inspected. Differing from the classic population ecology studies, the Monomolecular, Three-parameter Logistic, and Gompertz models presented the best performance in describing growth, suggesting they are the most adequate options for long-term studies. The different growth curves reflect the complexity of stem growth at the seedling stage for R. mangle. The analysis of the joint distribution of the parameters initial height, growth rate, and, asymptotic size allowed the study of the species ecological attributes and to observe its intraspecific variability in each model. Our results provide a basis for interpretation of the dynamics of seedlings growth during their establishment in a mature forest, as well as its regeneration processes.

  4. Nutritional status and growth in pediatric Crohn's disease: a population-based study.

    PubMed

    Vasseur, Francis; Gower-Rousseau, Corinne; Vernier-Massouille, Gwenola; Dupas, Jean Louis; Merle, Veronique; Merlin, Beatrice; Lerebours, Eric; Savoye, Guillaume; Salomez, Jean Louis; Cortot, Antoine; Colombel, Jean Frederic; Turck, Dominique

    2010-08-01

    Growth retardation and malnutrition are major features of pediatric Crohn's disease (CD). We examined nutritional and growth parameters from diagnosis to maximal follow-up in a population-based pediatric cohort, and we determined predictive factors. A total of 261 patients (156 boys, 105 girls) with onset of CD before the age of 17 were identified from 1988 to 2004 through the EPIMAD registry (Registre des Maladies Inflammatoires Chroniques de l'Intestin) in northern France. Median age at diagnosis was 13 years (11.2-15.4) and median follow-up was 73 months (46-114). Z-scores of height/age, weight/age, and body mass index (BMI)/age were determined. Multivariate stepwise regression analysis identified predictive factors for malnutrition and growth retardation at maximal follow-up. At diagnosis, 25 children (9.5%) showed height less than -2 s.d., 70 (27%) weight less than -2 s.d., and 84 (32%) BMI less than -2 s.d. At maximal follow-up, growth retardation was present in 18 children (6.9%), whereas 40 (15%) had malnutrition. Nutritional status was more severely impaired in children with stricturing disease. Growth and nutritional retardation at diagnosis, young age, male gender, and extraintestinal manifestations at diagnosis were indicators of poor prognosis. A significant compensation was observed for weight and BMI in both genders and for height in girls. No treatment was associated with height, weight, or BMI at maximal follow-up. In our pediatric population-based study, growth retardation and severe malnutrition were still present at maximal follow-up in 6.9 and 15% of CD children, respectively. Young boys with substantial inflammatory manifestations of CD have a higher risk of subsequent growth failure, especially when growth retardation is present at diagnosis.

  5. Matrix models for size-structured populations: unrealistic fast growth or simply diffusion?

    PubMed

    Picard, Nicolas; Liang, Jingjing

    2014-01-01

    Matrix population models are widely used to study population dynamics but have been criticized because their outputs are sensitive to the dimension of the matrix (or, equivalently, to the class width). This sensitivity is concerning for the population growth rate (λ) because this is an intrinsic characteristic of the population that should not depend on the model specification. It has been suggested that the sensitivity of λ to matrix dimension was linked to the existence of fast pathways (i.e. the fraction of individuals that systematically move up a class), whose proportion increases when class width increases. We showed that for matrix population models with growth transition only from class i to class i + 1, λ was independent of the class width when the mortality and the recruitment rates were constant, irrespective of the growth rate. We also showed that if there were indeed fast pathways, there were also in about the same proportion slow pathways (i.e. the fraction of individuals that systematically remained in the same class), and that they jointly act as a diffusion process (where diffusion here is the movement in size of an individual whose size increments are random according to a normal distribution with mean zero). For 53 tree species from a tropical rain forest in the Central African Republic, the diffusion resulting from common matrix dimensions was much stronger than would be realistic. Yet, the sensitivity of λ to matrix dimension for a class width in the range 1-10 cm was small, much smaller than the sampling uncertainty on the value of λ. Moreover, λ could either increase or decrease when class width increased depending on the species. Overall, even if the class width should be kept small enough to limit diffusion, it had little impact on the estimate of λ for tree species.

  6. Analysing the natural population growth of a large marine mammal after a depletive harvest.

    PubMed

    Romero, M A; Grandi, M F; Koen-Alonso, M; Svendsen, G; Ocampo Reinaldo, M; García, N A; Dans, S L; González, R; Crespo, E A

    2017-07-13

    An understanding of the underlying processes and comprehensive history of population growth after a harvest-driven depletion is necessary when assessing the long-term effectiveness of management and conservation strategies. The South American sea lion (SASL), Otaria flavescens, is the most conspicuous marine mammal along the South American coasts, where it has been heavily exploited. As a consequence of this exploitation, many of its populations were decimated during the early 20th century but currently show a clear recovery. The aim of this study was to assess SASL population recovery by applying a Bayesian state-space modelling framework. We were particularly interested in understanding how the population responds at low densities, how human-induced mortality interplays with natural mechanisms, and how density-dependence may regulate population growth. The observed population trajectory of SASL shows a non-linear relationship with density, recovering with a maximum increase rate of 0.055. However, 50 years after hunting cessation, the population still represents only 40% of its pre-exploitation abundance. Considering that the SASL population in this region represents approximately 72% of the species abundance within the Atlantic Ocean, the present analysis provides insights into the potential mechanisms regulating the dynamics of SASL populations across the global distributional range of the species.

  7. [Application of exponential smoothing method in prediction and warning of epidemic mumps].

    PubMed

    Shi, Yun-ping; Ma, Jia-qi

    2010-06-01

    To analyze the daily data of epidemic Mumps in a province from 2004 to 2008 and set up exponential smoothing model for the prediction. To predict and warn the epidemic mumps in 2008 through calculating 7-day moving summation and removing the effect of weekends to the data of daily reported mumps cases during 2005-2008 and exponential summation to the data from 2005 to 2007. The performance of Holt-Winters exponential smoothing is good. The result of warning sensitivity was 76.92%, specificity was 83.33%, and timely rate was 80%. It is practicable to use exponential smoothing method to warn against epidemic Mumps.

  8. Fifty years of population growth and absorption of labor in Brazil: from 1950 to 2000.

    PubMed

    Paiva, P D

    1997-01-01

    For a long time, the Brazilian population has grown at a relatively high rate, and only recently has the process of demographic transition intensified in the country. While the associated decline in fertility could result in a future decline in the size of the working-age population, it could also lead to an increase in female participation in the labor market. Brazil's economy is performing well, with gross domestic product (GDP) growing at an average annual rate of 7.1% during 1947-80. Marked growth in industrial employment opportunities has accompanied this growth in GDP. The size of the informal sector, however, has not decreased in similar proportion, while the 1981-83 economic crisis caused urban employment levels to drop, especially in industry and construction. Moreover, the level of rural-urban migration has increased and the agricultural employment index has fallen. The author evaluates past growth trends of the Economically Active Population (EAP) and of employment in Brazil, and assesses the potential growth of the labor force until the year 2000.

  9. Investment, population growth and GNP as determinants of US immigration.

    PubMed

    Kritz, M M

    1998-09-01

    Northern countries typically attract migrants from poorer countries because of the formers' high wage rates and demand for labor. In particular, the US receives large numbers of legal migrants from almost every country and region of the world. This paper explores the determinants of permanent emigration to the US during 1989-93 using data drawn from the US Immigration and Naturalization Service (INS) Annual Tapes for the period. The analysis is restricted to only legal migration from 150 countries, and specifically investigates whether emigration to the US during 1989-93 can be accounted for by demographic and economic conditions in sending countries, or by levels of US investment in sending countries. No support is found for claims that rapid population growth and US investment fuel US immigration; emigration is comparatively far lower from countries experiencing rapid population growth and not significantly correlated with US investment, while the US typically invests the most in the more developed countries which send relatively few migrants to the US. Geographic proximity is the most important correlate of migration, followed by the population size of sending countries, which is negatively related to emigration. Some evidence was found that emigration will decrease as countries develop. Who a country decides to admit and how many people are admitted depend mainly upon public policy and very little upon the economic and demographic conditions of sending countries.

  10. Design of a 9-loop quasi-exponential waveform generator

    NASA Astrophysics Data System (ADS)

    Banerjee, Partha; Shukla, Rohit; Shyam, Anurag

    2015-12-01

    We know in an under-damped L-C-R series circuit, current follows a damped sinusoidal waveform. But if a number of sinusoidal waveforms of decreasing time period, generated in an L-C-R circuit, be combined in first quarter cycle of time period, then a quasi-exponential nature of output current waveform can be achieved. In an L-C-R series circuit, quasi-exponential current waveform shows a rising current derivative and thereby finds many applications in pulsed power. Here, we have described design and experiment details of a 9-loop quasi-exponential waveform generator. In that, design details of magnetic switches have also been described. In the experiment, output current of 26 kA has been achieved. It has been shown that how well the experimentally obtained output current profile matches with the numerically computed output.

  11. Design of a 9-loop quasi-exponential waveform generator.

    PubMed

    Banerjee, Partha; Shukla, Rohit; Shyam, Anurag

    2015-12-01

    We know in an under-damped L-C-R series circuit, current follows a damped sinusoidal waveform. But if a number of sinusoidal waveforms of decreasing time period, generated in an L-C-R circuit, be combined in first quarter cycle of time period, then a quasi-exponential nature of output current waveform can be achieved. In an L-C-R series circuit, quasi-exponential current waveform shows a rising current derivative and thereby finds many applications in pulsed power. Here, we have described design and experiment details of a 9-loop quasi-exponential waveform generator. In that, design details of magnetic switches have also been described. In the experiment, output current of 26 kA has been achieved. It has been shown that how well the experimentally obtained output current profile matches with the numerically computed output.

  12. Determining the Kinetic Parameters Characteristic of Microalgal Growth.

    ERIC Educational Resources Information Center

    Martinez Sancho, Maria Eugenie; And Others

    1991-01-01

    An activity in which students obtain a growth curve for algae, identify the exponential and linear growth phases, and calculate the parameters which characterize both phases is described. The procedure, a list of required materials, experimental conditions, analytical technique, and a discussion of the interpretations of individual results are…

  13. On the performance of exponential integrators for problems in magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Einkemmer, Lukas; Tokman, Mayya; Loffeld, John

    2017-02-01

    Exponential integrators have been introduced as an efficient alternative to explicit and implicit methods for integrating large stiff systems of differential equations. Over the past decades these methods have been studied theoretically and their performance was evaluated using a range of test problems. While the results of these investigations showed that exponential integrators can provide significant computational savings, the research on validating this hypothesis for large scale systems and understanding what classes of problems can particularly benefit from the use of the new techniques is in its initial stages. Resistive magnetohydrodynamic (MHD) modeling is widely used in studying large scale behavior of laboratory and astrophysical plasmas. In many problems numerical solution of MHD equations is a challenging task due to the temporal stiffness of this system in the parameter regimes of interest. In this paper we evaluate the performance of exponential integrators on large MHD problems and compare them to a state-of-the-art implicit time integrator. Both the variable and constant time step exponential methods of EPIRK-type are used to simulate magnetic reconnection and the Kevin-Helmholtz instability in plasma. Performance of these methods, which are part of the EPIC software package, is compared to the variable time step variable order BDF scheme included in the CVODE (part of SUNDIALS) library. We study performance of the methods on parallel architectures and with respect to magnitudes of important parameters such as Reynolds, Lundquist, and Prandtl numbers. We find that the exponential integrators provide superior or equal performance in most circumstances and conclude that further development of exponential methods for MHD problems is warranted and can lead to significant computational advantages for large scale stiff systems of differential equations such as MHD.

  14. Exponential Potential versus Dark Matter

    DTIC Science & Technology

    1993-10-15

    scale of the solar system. Galaxy, Dark matter , Galaxy cluster, Gravitation, Quantum gravity...A two parameter exponential potential explains the anomalous kinematics of galaxies and galaxy clusters without need for the myriad ad hoc dark ... matter models currently in vogue. It also explains much about the scales and structures of galaxies and galaxy clusters while being quite negligible on the

  15. Bacterial populations growth under co- and counter-flow condition

    NASA Astrophysics Data System (ADS)

    Tesser, Francesca; Zeegers, Jos C. H.; Clercx, Herman J. H.; Toschi, Federico

    2014-11-01

    For organisms living in a liquid ecosystem, flow and flow gradients play a major role on the population level: the flow has a dual role as it transports the nutrient while dispersing the individuals. In absence of flow and under homogeneous conditions, the growth of a population towards an empty region is usually described by a reaction diffusion equation. The solution predicts the expansion as a wave front (Fisher wave) proceeding at constant speed, till the carrying capacity is reached everywhere. The effect of fluid flow, however, is not well understood and the interplay between transport of individuals and nutrient opens a wide scenario of possible behaviors. In this work, we experimentally observe non-motile E. coli bacteria spreading inside rectangular channels in a PDMS microfluidic device. By use of a fluorescent microscope we analyze the dynamics of the population density subjected to different co- and counter-flow conditions and shear rates.

  16. Density dependence and risk of extinction in a small population of sea otters

    USGS Publications Warehouse

    Gerber, L.R.; Buenau, K.E.; VanBlaricom, G.

    2004-01-01

    Sea otters (Enhydra lutris (L.)) were hunted to extinction off the coast of Washington State early in the 20th century. A new population was established by translocations from Alaska in 1969 and 1970. The population, currently numbering at least 550 animals, A major threat to the population is the ongoing risk of majour oil spills in sea otter habitat. We apply population models to census and demographic data in order to evaluate the status of the population. We fit several density dependent models to test for density dependence and determine plausible values for the carrying capacity (K) by comparing model goodness of fit to an exponential model. Model fits were compared using Akaike Information Criterion (AIC). A significant negative relationship was found between the population growth rate and population size (r2=0.27, F=5.57, df=16, p<0.05), suggesting density dependence in Washington state sea otters. Information criterion statistics suggest that the model is the most parsimonious, followed closely by the logistic Beverton-Holt model. Values of K ranged from 612 to 759 with best-fit parameter estimates for the Beverton-Holt model including 0.26 for r and 612 for K. The latest (2001) population index count (555) puts the population at 87-92% of the estimated carrying capacity, above the suggested range for optimum sustainable population (OSP). Elasticity analysis was conducted to examine the effects of proportional changes in vital rates on the population growth rate (??). The elasticity values indicate the population is most sensitive to changes in survival rates (particularly adult survival).

  17. Is There Hidden Potential for Rural Population Growth in Sweden?

    ERIC Educational Resources Information Center

    Niedomysl, Thomas; Amcoff, Jan

    2011-01-01

    Rural depopulation is a concern in many countries, and various policy initiatives have been taken to combat such trends. This article examines whether hidden potential for rural population growth can be found in Sweden. If such potential exists, it implies that the development prospects for many rural areas are not as unpromising as they may seem…

  18. The Economic Base of Recent Population Growth in Nonmetropolitan Settings.

    ERIC Educational Resources Information Center

    Long, Larry; DeAre, Diana

    In the late 1970s both jobs and population were growing more rapidly outside metropolitan areas. As a group, nonmetropolitan counties not adjacent to a metropolitan area experienced a faster rate of employment growth than metropolitan areas between 1975-79. Even in rural counties (no urban place of 2,500 or more) not adjacent to a metropolitan…

  19. Inhomogeneous growth of fluctuations of concentration of inertial particles in channel turbulence

    NASA Astrophysics Data System (ADS)

    Fouxon, Itzhak; Schmidt, Lukas; Ditlevsen, Peter; van Reeuwijk, Maarten; Holzner, Markus

    2018-06-01

    We study the growth of concentration fluctuations of weakly inertial particles in the turbulent channel flow starting with a smooth initial distribution. The steady-state concentration is singular and multifractal so the growth describes the increasingly rugged structure of the distribution. We demonstrate that inhomogeneity influences the growth of concentration fluctuations profoundly. For homogeneous turbulence the growth is exponential and is fully determined by Kolmogorov scale eddies.We derive lognormality of the statistics in this case. The growth exponents of the moments are proportional to the sum of Lyapunov exponents, which is quadratic in the small inertia of the particles. In contrast, for inhomogeneous turbulence the growth is linear in inertia. It involves correlations of inertial range and viscous scale eddies that turn the growth into a stretched exponential law with exponent three halves. We demonstrate using direct numerical simulations that the resulting growth rate can differ by orders of magnitude over channel height. This strong variation might have relevance in the planetary boundary layer.

  20. Estimating piecewise exponential frailty model with changing prior for baseline hazard function

    NASA Astrophysics Data System (ADS)

    Thamrin, Sri Astuti; Lawi, Armin

    2016-02-01

    Piecewise exponential models provide a very flexible framework for modelling univariate survival data. It can be used to estimate the effects of different covariates which are influenced by the survival data. Although in a strict sense it is a parametric model, a piecewise exponential hazard can approximate any shape of a parametric baseline hazard. In the parametric baseline hazard, the hazard function for each individual may depend on a set of risk factors or explanatory variables. However, it usually does not explain all such variables which are known or measurable, and these variables become interesting to be considered. This unknown and unobservable risk factor of the hazard function is often termed as the individual's heterogeneity or frailty. This paper analyses the effects of unobserved population heterogeneity in patients' survival times. The issue of model choice through variable selection is also considered. A sensitivity analysis is conducted to assess the influence of the prior for each parameter. We used the Markov Chain Monte Carlo method in computing the Bayesian estimator on kidney infection data. The results obtained show that the sex and frailty are substantially associated with survival in this study and the models are relatively quite sensitive to the choice of two different priors.

  1. Individual tree-diameter growth model for the Northeastern United States

    Treesearch

    Richard M. Teck; Donald E. Hilt

    1991-01-01

    Describes a distance-independent individual-tree diameter growth model for the Northeastern United States. Diameter growth is predicted in two steps using a two parameter, sigmoidal growth function modified by a one parameter exponential decay function with species-specific coefficients. Coefficients are presented for 28 species groups. The model accounts for...

  2. A note on the status of women as a factor in population growth in less developed countries.

    PubMed

    Laidlaw, K A; Pugh, M D; Stockwell, E G

    1980-01-01

    The 1978 U.S. Bureau of the Census reported 4.3 billion as the world's population. 3.1 billion were living in the less developed areas where life is characterized by poverty and low levels of material well-being. In the develop countries the per capita income averaged $490, compared to $5,210 in developed areas. Little attention has been paid to the status of women in developing countries, where the impact of development often has a negative effect. As a measure of women's status, rates are given for male/female infant mortality. If the ratio is less than 1.14 the status of women is low. If the is 1.15-1.24 the status is medium. If the ratio is 1.25 and over, women enjoy high status. In countries where women have low status the population growth ra averages 3%. Where the status of women is medium, the growth rate is 2.5%. I countries of high status the population growth rate is 2.2. Further research is needed on correlations between population and economic growth, with particula emphasis on subtle factors behind population/economic development.

  3. [A brief discussion on the effect of religion and feudal superstitions on China's population growth].

    PubMed

    Chen, G

    1983-05-29

    According to Marxism, population development is subject to the determination of production means under certain social and historical conditions, but it is also influenced by ideology, religions, and other factors. China is a country with numerous religions and traditional superstitions. Their impact on China's population growth cannot be underestimated. All religions and feudal superstitions have a role in the increase of the population, and they oppose birth control and abortion. Similarly, traditional feudal concepts of having more children for good fortune, ancestral worship, and filial piety also encouraged early marriage and having more children, and they have contributed to population growth. On the contrary, "individualism" practiced by Buddhist monks and nuns, the "sacred war" believed by Islamic people, and the offering of human sacrifices by many primitive religions, and the murdering of baby twins have served to reduce the population. Most of the religions and feudal superstitions are in favor of increasing the population. The popularity of Buddhism in the past was caused by an oversupply of the labor force. Many farmers became Buddhist monks as a way to earn a living. Since liberation, unhealthy religions and feudal superstitions have been prohibited but their everlasting infulence upon the people cannot be ignored. Uncontrolled population growth is harmful to the nation's economy and improvement of people's livelihood. In family planning work, attention should also be given to the prevention of interference from religions and feudal superstitions in people's ideology.

  4. Growth of bacteria in 3-d colonies

    PubMed Central

    Mugler, Andrew; Kim, Justin

    2017-01-01

    The dynamics of growth of bacterial populations has been extensively studied for planktonic cells in well-agitated liquid culture, in which all cells have equal access to nutrients. In the real world, bacteria are more likely to live in physically structured habitats as colonies, within which individual cells vary in their access to nutrients. The dynamics of bacterial growth in such conditions is poorly understood, and, unlike that for liquid culture, there is not a standard broadly used mathematical model for bacterial populations growing in colonies in three dimensions (3-d). By extending the classic Monod model of resource-limited population growth to allow for spatial heterogeneity in the bacterial access to nutrients, we develop a 3-d model of colonies, in which bacteria consume diffusing nutrients in their vicinity. By following the changes in density of E. coli in liquid and embedded in glucose-limited soft agar, we evaluate the fit of this model to experimental data. The model accounts for the experimentally observed presence of a sub-exponential, diffusion-limited growth regime in colonies, which is absent in liquid cultures. The model predicts and our experiments confirm that, as a consequence of inter-colony competition for the diffusing nutrients and of cell death, there is a non-monotonic relationship between total number of colonies within the habitat and the total number of individual cells in all of these colonies. This combined theoretical-experimental study reveals that, within 3-d colonies, E. coli cells are loosely packed, and colonies produce about 2.5 times as many cells as the liquid culture from the same amount of nutrients. We verify that this is because cells in liquid culture are larger than in colonies. Our model provides a baseline description of bacterial growth in 3-d, deviations from which can be used to identify phenotypic heterogeneities and inter-cellular interactions that further contribute to the structure of bacterial

  5. Trans-generational influences of sulfamethoxazole on lifespan, reproduction and population growth of Caenorhabditis elegans.

    PubMed

    Yu, Zhenyang; Sun, Guohua; Liu, Yanjun; Yin, Daqiang; Zhang, Jing

    2017-01-01

    Trans-generational effects are increasingly used to indicate long-term influences of environmental pollutants. However, such studies can be complex and yield inconclusive results. In this study, the trans-generational effects of sulfamethoxazole (SMX) on Caenorhabditis elegans on lifespan, reproduction and population growth were tested for 7 consecutive generations, which included gestating generation (F0), embryo-exposed generation (F1), germline-exposed generation (F2), the first non-exposed generation (F3) and the three following generations (F4-F6). Results showed that lifespan was significantly affected by embryo exposure (F1) at 400µm SMX with a value as low as 47% of the control. The reproduction (a total brood size as 49% of the control) and population growth (81% of the control) were significantly affected in germline exposure (F2). Lifespan and reproduction were severely inhibited in non-exposed generations, confirming the real trans-generational effects. Notably, initial reproduction and reproduction duration showed opposite generation-related changes, indicating their interplay in the overall brood size. The population growth rate was well correlated with median lethal time, brood size and initial reproduction, which indicated that the population would increase when the nematodes lived longer and reproduced more offspring within shorter duration. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Fourier Transforms of Pulses Containing Exponential Leading and Trailing Profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warshaw, S I

    2001-07-15

    In this monograph we discuss a class of pulse shapes that have exponential rise and fall profiles, and evaluate their Fourier transforms. Such pulses can be used as models for time-varying processes that produce an initial exponential rise and end with the exponential decay of a specified physical quantity. Unipolar examples of such processes include the voltage record of an increasingly rapid charge followed by a damped discharge of a capacitor bank, and the amplitude of an electromagnetic pulse produced by a nuclear explosion. Bipolar examples include acoustic N waves propagating for long distances in the atmosphere that have resultedmore » from explosions in the air, and sonic booms generated by supersonic aircraft. These bipolar pulses have leading and trailing edges that appear to be exponential in character. To the author's knowledge the Fourier transforms of such pulses are not generally well-known or tabulated in Fourier transform compendia, and it is the purpose of this monograph to derive and present these transforms. These Fourier transforms are related to a definite integral of a ratio of exponential functions, whose evaluation we carry out in considerable detail. From this result we derive the Fourier transforms of other related functions. In all Figures showing plots of calculated curves, the actual numbers used for the function parameter values and dependent variables are arbitrary and non-dimensional, and are not identified with any particular physical phenomenon or model.« less

  7. When growth models are not universal: evidence from marine invertebrates

    PubMed Central

    Hirst, Andrew G.; Forster, Jack

    2013-01-01

    The accumulation of body mass, as growth, is fundamental to all organisms. Being able to understand which model(s) best describe this growth trajectory, both empirically and ultimately mechanistically, is an important challenge. A variety of equations have been proposed to describe growth during ontogeny. Recently, the West Brown Enquist (WBE) equation, formulated as part of the metabolic theory of ecology, has been proposed as a universal model of growth. This equation has the advantage of having a biological basis, but its ability to describe invertebrate growth patterns has not been well tested against other, more simple models. In this study, we collected data for 58 species of marine invertebrate from 15 different taxa. The data were fitted to three growth models (power, exponential and WBE), and their abilities were examined using an information theoretic approach. Using Akaike information criteria, we found changes in mass through time to fit an exponential equation form best (in approx. 73% of cases). The WBE model predominantly overestimates body size in early ontogeny and underestimates it in later ontogeny; it was the best fit in approximately 14% of cases. The exponential model described growth well in nine taxa, whereas the WBE described growth well in one of the 15 taxa, the Amphipoda. Although the WBE has the advantage of being developed with an underlying proximate mechanism, it provides a poor fit to the majority of marine invertebrates examined here, including species with determinate and indeterminate growth types. In the original formulation of the WBE model, it was tested almost exclusively against vertebrates, to which it fitted well; the model does not however appear to be universal given its poor ability to describe growth in benthic or pelagic marine invertebrates. PMID:23945691

  8. Variations in growth, survival and carbon isotope composition (delta(13)C) among Pinus pinaster populations of different geographic origins.

    PubMed

    Correia, Isabel; Almeida, Maria Helena; Aguiar, Alexandre; Alía, Ricardo; David, Teresa Soares; Pereira, João Santos

    2008-10-01

    To evaluate differences in growth and adaptability of maritime pine (Pinus pinaster Ait.), we studied growth, polycyclism, needle tissue carbon isotope composition (delta(13)C) as an estimate of water-use efficiency (WUE) and survival of seven populations at 10 years of age growing in a performance trial at a provenance test site in Escaroupim, Portugal. Six populations were from relatively high rainfall sites in Portugal and southwestern France (Atlantic group), and one population was from a more arid Mediterranean site in Spain. There were significant differences between some populations in total height, diameter at breast height, delta(13)C of bulk needle tissue, polycyclism and survival. A population from central Portugal (Leiria, on the Atlantic coast) was the tallest and had the lowest delta(13)C. Overall, the variation in delta(13)C was better explained by the mean minimum temperatures of the coldest month than by annual precipitation at the place of origin. Analyses of the relationships between delta(13)C and growth or survival revealed a distinct pattern for the Mediterranean population, with low delta(13)C (and WUE) associated with the lowest growth potential and reduced survival. There were significant negative correlations between delta(13)C and height or survival in the Atlantic group. Variation in polycyclism was correlated with annual precipitation at the place of origin. Some Atlantic populations maintained a high growth potential while experiencing moderate water stress. A detailed knowledge of the relationships between growth, survival and delta(13)C in contrasting environments will enhance our ability to select populations for forestry or conservation.

  9. Population dynamics of tule elk at point Reyes National Seashore, California

    USGS Publications Warehouse

    Howell, J.A.; Brooks, G.C.; Semenoff-Irving, M.; Greene, C.

    2002-01-01

    The presence of locally abundant wildlife raises questions about natural regulation and ecological consequences of overpopulation. We sought to establish precise information about population size, structure, and productivity to examine the role of natural regulation in a closed tule elk (Cervus elaphus nannodes) population at Point Reyes National Seashore, California, USA. We estimated an instantaneous exponential growth rate of 0.19 with an adjusted R2 = 0.98 during 1998, 20 years after the elk were introduced. We estimated annual survival for adult cows of nearly 0.95. Calf survival from birth through the rut ending during October-November was 0.85. Male calves exhibited higher mortality than female calves. Cow mortality was associated with the calving season. We measured a 42% increase in cow:calf density from 0.733 ha-1 to 1.043 ha-1 during 1996-1998. We observed a density-correlated reduction in the rate of increase and in the cow:calf ratios prior to high precipitation El Nin??o Southern Oscillation years, 1993, 1996, and 1997, precipitation >1.23 m year-1. Given the high population growth rate and model evaluation of management scenarios, park managers will need to use a suite of approaches, such as contraception and removal, to maintain the elk population at levels at or near the closed-range carrying capacity for years between El Nin??o events.

  10. THE IMPACT OF HISPANIC POPULATION GROWTH ON THE OUTLOOK OF AFRICAN AMERICANS

    PubMed Central

    Taylor, Marylee C.; Schroeder, Matthew B.

    2014-01-01

    We know too little about the effects of immigration on black Americans. If prior research yields mixed evidence about immigration’s consequences for the objective well-being of African Americans, it is silent about effects of immigration on blacks’ subjective well-being. To fill that void, this paper assesses the impact of the expanding Hispanic population on black Americans from a social psychological perspective. We ask whether blacks’ self-reported distress, social distrust, or attitudes toward Hispanics and immigrants are affected by the size of the local Hispanic population or by the percentage growth in local Hispanic residents. Answers come from responses of non-Hispanic black participants in the 1998–2002 General Social Surveys, linked to 1990 and 2000 census data. Contrary to pessimistic claims, most social psychological outcomes, including measures of economic distress, manifest no impact of local Hispanic numbers. The four exceptions, significant effects of local Hispanic population share or percentage growth evenly split in valence, underscore the complexity of recent immigration’s effects on African Americans. PMID:25242830

  11. Fetal growth and psychiatric and socioeconomic problems: population-based sibling comparison

    PubMed Central

    Class, Quetzal A.; Rickert, Martin E.; Larsson, Henrik; Lichtenstein, Paul; D’Onofrio, Brian M.

    2014-01-01

    Background It is unclear whether associations between fetal growth and psychiatric and socioeconomic problems are consistent with causal mechanisms. Aims To estimate the extent to which associations are a result of unmeasured confounding factors using a sibling-comparison approach. Method We predicted outcomes from continuously measured birth weight in a Swedish population cohort (n = 3 291 773), while controlling for measured and unmeasured confounding. Results In the population, lower birth weight (⩽2500 g) increased the risk of all outcomes. Sibling-comparison models indicated that lower birth weight independently predicted increased risk for autism spectrum disorder (hazard ratio for low birth weight = 2.44, 95% CI 1.99-2.97) and attention-deficit hyperactivity disorder. Although attenuated, associations remained for psychotic or bipolar disorder and educational problems. Associations with suicide attempt, substance use problems and social welfare receipt, however, were fully attenuated in sibling comparisons. Conclusions Results suggest that fetal growth, and factors that influence it, contribute to psychiatric and socioeconomic problems. PMID:25257067

  12. Fetal growth and psychiatric and socioeconomic problems: population-based sibling comparison.

    PubMed

    Class, Quetzal A; Rickert, Martin E; Larsson, Henrik; Lichtenstein, Paul; D'Onofrio, Brian M

    2014-11-01

    It is unclear whether associations between fetal growth and psychiatric and socioeconomic problems are consistent with causal mechanisms. To estimate the extent to which associations are a result of unmeasured confounding factors using a sibling-comparison approach. We predicted outcomes from continuously measured birth weight in a Swedish population cohort (n = 3 291 773), while controlling for measured and unmeasured confounding. In the population, lower birth weight (⩽ 2500 g) increased the risk of all outcomes. Sibling-comparison models indicated that lower birth weight independently predicted increased risk for autism spectrum disorder (hazard ratio for low birth weight = 2.44, 95% CI 1.99-2.97) and attention-deficit hyperactivity disorder. Although attenuated, associations remained for psychotic or bipolar disorder and educational problems. Associations with suicide attempt, substance use problems and social welfare receipt, however, were fully attenuated in sibling comparisons. Results suggest that fetal growth, and factors that influence it, contribute to psychiatric and socioeconomic problems. Royal College of Psychiatrists.

  13. Associations of DNA polymorphisms in growth hormone and its transcriptional regulators with growth and carcass traits in two populations of Brangus bulls.

    PubMed

    Thomas, M G; Enns, R M; Shirley, K L; Garcia, M D; Garrett, A J; Silver, G A

    2007-03-30

    Sequence polymorphisms in the growth hormone (GH) gene and its transcriptional regulators, Pit-1 and Prop-1, were evaluated for associations with growth and carcass traits in two populations of Brangus bulls Chihuahuan Desert Rangeland Research Center (CDRRC, N = 248 from 14 sires) and a cooperating breeding program (COOP, N = 186 from 34 sires). Polymorphisms were SNP mutations in intron 4 (C/T) and exon V (C/G) in GH, A/G in exon VI in Pit-1, and A/G in exon III in Prop-1. In the COOP population, bulls of Pit-1 GG genotype had a significantly greater percentage of intramuscular fat than bulls of the AA or AG genotype, and bulls of the Prop-1 AA genotype had significantly greater scrotal circumference than bulls of AG or GG genotypes at ~365 days of age. Also, heterozygous genotypes for the two GH polymorphisms appeared advantageous for traits of muscularity and adiposity in the COOP population. The heterozygous genotype of GH intron 4 SNP was associated with advantages in weight gain, scrotal circumference, and fat thickness in the CDRRC population. The two GH polymorphisms accounted for >/=27.7% of the variation in these traits in the CDRRC population; however, R(2) was <5% in the COOP population. Based on haplotype analyses the two GH SNPs appeared to be in phase; the haplotype analyses also paralleled with the genotype analyses. Polymorphisms in GH and its transcriptional regulators appear to be predictors of growth and carcass traits in Brangus bulls, particularly those with heterozygous GH genotypes.

  14. Fast Modular Exponentiation and Elliptic Curve Group Operation in Maple

    ERIC Educational Resources Information Center

    Yan, S. Y.; James, G.

    2006-01-01

    The modular exponentiation, y[equivalent to]x[superscript k](mod n) with x,y,k,n integers and n [greater than] 1; is the most fundamental operation in RSA and ElGamal public-key cryptographic systems. Thus the efficiency of RSA and ElGamal depends entirely on the efficiency of the modular exponentiation. The same situation arises also in elliptic…

  15. [The decline in the population growth rate--a priority issue in international politics].

    PubMed

    Rhein, E

    1994-08-25

    The Third International UN Conference on Population and Development took place in Cairo in early September 1994 with the participation of 200 governments and 1000 nongovernmental organizations to discuss ways of stabilizing world population at the possible lowest level and how industrialized countries could contribute to this effort. As a consequence of the advances in reproductive medicine the use of contraceptives skyrocketed: in 1994 more than half of men and women were using contraception compared to only 5% in 1950. However, the demographic momentum would still increase world population for another 100 years, even if fertility would drop to 2.2 children per couple (compared to 4 children in 1990). Nevertheless, the present generation could be instrumental in deciding whether the world's population will remain around 8 billion or reach 12 billion between 2050 and 2150. Poor countries can no longer afford an annual growth rate of 2-4% while also trying to improve living standards; this would require an economic growth rate of 6-8%. For the control of population growth both a sustainable environmental policy in the North, with rapid transition to renewable energy and recycling, and a more effective population policy in the South are needed. Family planning (FP) is the precondition of stabilization. The global FP outlays are envisioned to double from the 1994 figure of $5 billion to over $10 billion in the year 2000, with donor contributions to increase from 20% to 40% of the total. The US contribution is to double from $500 million by 2000, while the European Commission decided to boost expenditures for FP from DM 30 million in 1994 to DM 600 million by 2000. Japan is also expending $3 billion during this period. Recent promising developments have emerged: national pronatalist policies have diminished sharply and the pronatalist influence of religions has also declined. Political commitment at the highest level is central to a successful population policy as

  16. Why sustainable population growth is a key to climate change and public health equity.

    PubMed

    Howat, Peter; Stoneham, Melissa

    2011-12-01

    Australia's population could reach 42 million by 2050. This rapid population growth, if unabated, will have significant social, public health and environmental implications. On the one hand, it is a major driver of climate change and environmental degradation; on the other it is likely to be a major contributor to growing social and health issues including a decline in quality of life for many residents. Disadvantaged and vulnerable groups will be most affected. The environmental, social and health-related issues include: pressure on the limited arable land in Australia; increased volumes of industrial and domestic waste; inadequate essential services; traffic congestion; lack of affordable housing; declining mental health; increased obesity problems; and inadequate aged care services. Many of these factors are related to the aggravation of climate change and health inequities. It is critical that the Australian Government develops a sustainable population plan with stabilisation of population growth as an option. The plan needs to ensure adequate hospitals and healthcare services, education facilities, road infrastructure, sustainable transport options, water quality and quantity, utilities and other amenities that are already severely overburdened in Australian cities. There is a need for a guarantee that affordable housing will be available and priority be given to training young people and Indigenous people for employment. This paper presents evidence to support the need for the stabilisation of population growth as one of the most significant measures to control climate change as well as to improve public health equity.

  17. Time indices of multiphasic development in genotypes of sweet cherry are similar from dormancy to cessation of pit growth.

    PubMed

    Gibeaut, David M; Whiting, Matthew D; Einhorn, Todd

    2017-02-01

    The archetypical double sigmoid-shaped growth curve of the sweet cherry drupe (Prunus avium) does not address critical development from eco-dormancy to anthesis and has not been correlated to reproductive bud development. Accurate representation of the growth and development of post-anthesis ovaries is confounded by anthesis timing, fruiting-density and the presence of unfertilized and defective ovaries whose growth differs from those that persist to maturation. These factors were addressed to assess pre-anthesis and full-season growth and development of three sweet cherry cultivars, 'Chelan', 'Bing' and 'Sweetheart', differing primarily in seasonal duration and fruit size. Volume was calculated from photographic measurements of reproductive buds, ovaries and pits at all phases of development. A population of unfertilized ovaries was produced using bee-exclusion netting to enable a statistical comparison with an open pollinated population to detect differences in size and shape between successful and failing fruit growth. Anthesis timing and fruiting-density were manipulated by floral extinction at the spur and whole-tree scales. Developmental time indices were analysed using polynomial curve fitting of log-transformed data supported by Richards and logistic functions of asymptotic growth of the pit and maturing fruit, respectively. Pre-anthesis growth began at the completion of eco-dormancy. A slight decline in relative growth rate (RGR) was observed during bud scale separation approx. -16 d from anthesis (DFA) before resumption of exponential growth to a maximum about 14 DFA. After anthesis, reduced growth of unfertilized or defective ovaries was partly discriminated from successful fruit at 5 DFA and completely at 25 DFA. Time indices of RGR inflections were similar among cultivars when adjusted for anthesis date alone, until the end of pit growth. Asymptotic growth of the pit underpinned the declining growth rate of fruit at the end of the first exponential

  18. The exponentiated Hencky energy: anisotropic extension and case studies

    NASA Astrophysics Data System (ADS)

    Schröder, Jörg; von Hoegen, Markus; Neff, Patrizio

    2017-10-01

    In this paper we propose an anisotropic extension of the isotropic exponentiated Hencky energy, based on logarithmic strain invariants. Unlike other elastic formulations, the isotropic exponentiated Hencky elastic energy has been derived solely on differential geometric grounds, involving the geodesic distance of the deformation gradient \\varvec{F} to the group of rotations. We formally extend this approach towards anisotropy by defining additional anisotropic logarithmic strain invariants with the help of suitable structural tensors and consider our findings for selected case studies.

  19. Effects of red, far-red and blue light in maintaining growth in latitudinal populations of Norway spruce (Picea abies).

    PubMed

    Mølmann, Jørgen Alexander; Junttila, Olavi; Johnsen, Oystein; Olsen, Jorunn Elisabeth

    2006-02-01

    Seedlings of trees with a free growth pattern cease growth when night-lengths become shorter than a critical value, and this critical night-length (CNL) decreases with increasing latitude of origin. In northern populations, the light quality also appears to play an important role and a clinal variation in requirement for far-red (FR) light has been documented. In this study we dissected the light quality requirements for maintaining growth in different latitudinal populations of Norway spruce (Picea abies (L.) H. Karst.) using light emitting diodes for red (R), FR and blue (B) light, as 12 h day extension to provide 24 h photoperiod. At equal spectral photon flux, FR light was more effective than R light in maintaining growth, and the requirement of both R and FR increased with northern latitude of origin. One-to-one mixtures of R and FR light were more effective in maintaining growth than either FR or R light alone, indicating a possible interaction between R and FR light maintaining growth. Using the blue light as day extension could not prevent growth cessation in any of the populations, but delayed the bud set slightly in all populations. Our results suggest that phytochrome(s) are the primary photoreceptors in high irradiance responses maintaining growth in Norway spruce seedlings.

  20. Land use change and population growth in the Morobe Province of Papua New Guinea between 1975 and 2000.

    PubMed

    Ningal, Tine; Hartemink, A E; Bregt, A K

    2008-04-01

    The relation between human population growth and land use change is much debated. Here we present a case study from Papua New Guinea where the population has increased from 2.3 million in 1975 to 5.2 million in 2000. Since 85% of the population relies on subsistence agriculture, population growth affects agricultural land use. We assessed land use change in the Morobe province (33,933 km2) using topographic maps of 1975 and Landsat TM images of 1990 and 2000. Between 1975 and 2000, agricultural land use increased by 58% and population grew by 99%. Most new agricultural land was taken from primary forest and the forest area decreased from 9.8 ha person(-1) in 1975 to 4.4 ha person(-1) in 2000. Total population change and total land use change were strongly correlated. Most of the agricultural land use change occurred on Inceptisols in areas with high rainfall (>2500 mm year(-1)) on moderate to very steep slopes (10-56%). Agricultural land use changes in logged-over areas were in the vicinity of populated places (villages), and in close proximity to road access. There was considerable variation between the districts but districts with higher population growth also had larger increases in agricultural areas. It is concluded that in the absence of improved farming systems the current trend of increased agriculture with rapid population growth is likely to continue.

  1. Physical Growth of the Shuar: Height, Weight, and BMI References for an Indigenous Amazonian Population

    PubMed Central

    URLACHER, SAMUEL S.; BLACKWELL, AARON D.; LIEBERT, MELISSA A.; MADIMENOS, FELICIA C.; CEPON-ROBINS, TARA J.; GILDNER, THERESA E.; SNODGRASS, J. JOSH; SUGIYAMA, LAWRENCE S.

    2015-01-01

    Objectives Information concerning physical growth among small-scale populations remains limited, yet such data are critical to local health efforts and to foster basic understandings of human life history and variation in childhood development. Using a large dataset and robust modeling methods, this study aims to describe growth from birth to adulthood among the indigenous Shuar of Amazonian Ecuador. Methods Mixed-longitudinal measures of height, weight, and BMI were collected from Shuar participants (n = 2,463; age 0–29 years). Centile growth curves and tables were created for each anthropometric variable of interest using GAMLSS. Pseudo-velocity and LMS curves were generated to further investigate Shuar patterns of growth and to facilitate comparison with U.S. CDC and multinational WHO growth references. Results The Shuar are small throughout life and exhibit complex patterns of growth that differ substantially from those of international references. Similar to other Amazonians, Shuar growth in weight compares more favorably to references than growth in height, resulting in BMI curves that approximate international medians. Several additional characteristics of Shuar development are noteworthy, including large observed variation in body size early in life, significant infant growth faltering, extended male growth into adulthood, and a markedly early female pubertal growth spurt in height. Phenotypic plasticity and genetic selection in response to local environmental factors may explain many of these patterns. Conclusions Providing a detailed reference of growth for the Shuar and other Amazonian populations, this study possesses direct clinical application and affords valuable insight into childhood health and the ecology of human growth. PMID:26126793

  2. Making sense of snapshot data: ergodic principle for clonal cell populations.

    PubMed

    Thomas, Philipp

    2017-11-01

    Population growth is often ignored when quantifying gene expression levels across clonal cell populations. We develop a framework for obtaining the molecule number distributions in an exponentially growing cell population taking into account its age structure. In the presence of generation time variability, the average acquired across a population snapshot does not obey the average of a dividing cell over time, apparently contradicting ergodicity between single cells and the population. Instead, we show that the variation observed across snapshots with known cell age is captured by cell histories, a single-cell measure obtained from tracking an arbitrary cell of the population back to the ancestor from which it originated. The correspondence between cells of known age in a population with their histories represents an ergodic principle that provides a new interpretation of population snapshot data. We illustrate the principle using analytical solutions of stochastic gene expression models in cell populations with arbitrary generation time distributions. We further elucidate that the principle breaks down for biochemical reactions that are under selection, such as the expression of genes conveying antibiotic resistance, which gives rise to an experimental criterion with which to probe selection on gene expression fluctuations. © 2017 The Author(s).

  3. exponential finite difference technique for solving partial differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Handschuh, R.F.

    1987-01-01

    An exponential finite difference algorithm, as first presented by Bhattacharya for one-dimensianal steady-state, heat conduction in Cartesian coordinates, has been extended. The finite difference algorithm developed was used to solve the diffusion equation in one-dimensional cylindrical coordinates and applied to two- and three-dimensional problems in Cartesian coordinates. The method was also used to solve nonlinear partial differential equations in one (Burger's equation) and two (Boundary Layer equations) dimensional Cartesian coordinates. Predicted results were compared to exact solutions where available, or to results obtained by other numerical methods. It was found that the exponential finite difference method produced results that weremore » more accurate than those obtained by other numerical methods, especially during the initial transient portion of the solution. Other applications made using the exponential finite difference technique included unsteady one-dimensional heat transfer with temperature varying thermal conductivity and the development of the temperature field in a laminar Couette flow.« less

  4. Turbulent particle transport in streams: can exponential settling be reconciled with fluid mechanics?

    PubMed

    McNair, James N; Newbold, J Denis

    2012-05-07

    Most ecological studies of particle transport in streams that focus on fine particulate organic matter or benthic invertebrates use the Exponential Settling Model (ESM) to characterize the longitudinal pattern of particle settling on the bed. The ESM predicts that if particles are released into a stream, the proportion that have not yet settled will decline exponentially with transport time or distance and will be independent of the release elevation above the bed. To date, no credible basis in fluid mechanics has been established for this model, nor has it been rigorously tested against more-mechanistic alternative models. One alternative is the Local Exchange Model (LEM), which is a stochastic advection-diffusion model that includes both longitudinal and vertical spatial dimensions and is based on classical fluid mechanics. The LEM predicts that particle settling will be non-exponential in the near field but will become exponential in the far field, providing a new theoretical justification for far-field exponential settling that is based on plausible fluid mechanics. We review properties of the ESM and LEM and compare these with available empirical evidence. Most evidence supports the prediction of both models that settling will be exponential in the far field but contradicts the ESM's prediction that a single exponential distribution will hold for all transport times and distances. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Effects of diet on population development of the rotifer Brachionus plicatilis in culture

    NASA Astrophysics Data System (ADS)

    Planas, M.; Estévez, A.

    1989-06-01

    Experiments were conducted in order to observe the effect of five diets on the population development of the rotifer Brachionus plicatilis Müller under laboratory conditions. Diets were based on baker’s yeast ( Saccharomyces cerevisiae) and the algae Tetraselmis suecica and Isochrysis galbana, mixed, or as simple diets. Growth rates, fecundity and biometric parameters were studied for 15 days. The cultures were divided in a logarithmic phase and a harvesting phase. Rotifers fed on Tetraselmis, alone or mixed with yeast or Isochrysis, gave good performances with the best results in all the parameters studied. Average growth rates in all diets were similar during the exponential phase, with values ranging from 0.72 ( Tetraselmis and Tetraselmis + yeast) to 0.47 (yeast). During the harvesting phase there were high differences between diets, with rates highly reduced in the yeast-group (0.17) and good rates when Tetraselmis was ingested (0.65 0.51). This alga had a positive influence on the rotifers, increasing individual growth and fecundity.

  6. A Decreasing Failure Rate, Mixed Exponential Model Applied to Reliability.

    DTIC Science & Technology

    1981-06-01

    Trident missile systems have been observed. The mixed exponential distribu- tion has been shown to fit the life data for the electronic equipment on...these systems . This paper discusses some of the estimation problems which occur with the decreasing failure rate mixed exponential distribution when...assumption of constant or increasing failure rate seemed to be incorrect. 2. However, the design of this electronic equipment indicated that

  7. Exponentially Stabilizing Robot Control Laws

    NASA Technical Reports Server (NTRS)

    Wen, John T.; Bayard, David S.

    1990-01-01

    New class of exponentially stabilizing laws for joint-level control of robotic manipulators introduced. In case of set-point control, approach offers simplicity of proportion/derivative control architecture. In case of tracking control, approach provides several important alternatives to completed-torque method, as far as computational requirements and convergence. New control laws modified in simple fashion to obtain asymptotically stable adaptive control, when robot model and/or payload mass properties unknown.

  8. Periodic matrix population models: growth rate, basic reproduction number, and entropy.

    PubMed

    Bacaër, Nicolas

    2009-10-01

    This article considers three different aspects of periodic matrix population models. First, a formula for the sensitivity analysis of the growth rate lambda is obtained that is simpler than the one obtained by Caswell and Trevisan. Secondly, the formula for the basic reproduction number R0 in a constant environment is generalized to the case of a periodic environment. Some inequalities between lambda and R0 proved by Cushing and Zhou are also generalized to the periodic case. Finally, we add some remarks on Demetrius' notion of evolutionary entropy H and its relationship to the growth rate lambda in the periodic case.

  9. Exponential operations and aggregation operators of interval neutrosophic sets and their decision making methods.

    PubMed

    Ye, Jun

    2016-01-01

    An interval neutrosophic set (INS) is a subclass of a neutrosophic set and a generalization of an interval-valued intuitionistic fuzzy set, and then the characteristics of INS are independently described by the interval numbers of its truth-membership, indeterminacy-membership, and falsity-membership degrees. However, the exponential parameters (weights) of all the existing exponential operational laws of INSs and the corresponding exponential aggregation operators are crisp values in interval neutrosophic decision making problems. As a supplement, this paper firstly introduces new exponential operational laws of INSs, where the bases are crisp values or interval numbers and the exponents are interval neutrosophic numbers (INNs), which are basic elements in INSs. Then, we propose an interval neutrosophic weighted exponential aggregation (INWEA) operator and a dual interval neutrosophic weighted exponential aggregation (DINWEA) operator based on these exponential operational laws and introduce comparative methods based on cosine measure functions for INNs and dual INNs. Further, we develop decision-making methods based on the INWEA and DINWEA operators. Finally, a practical example on the selecting problem of global suppliers is provided to illustrate the applicability and rationality of the proposed methods.

  10. Population Growth in New Hampshire during the Nineteenth and Twentieth Centuries. Studies in New England Geography, Number 1.

    ERIC Educational Resources Information Center

    Hobart, Christine L.

    This paper traces the shifts in New Hampshire's state and county population during the nineteenth and twentieth centuries, focusing on the growth of urban centers and industry. From 1790 to 1840 most of New Hampshire's population growth was agricultural despite the beginnings of industrialization and urbanization. These processes greatly…

  11. Future Coastal Population Growth and Exposure to Sea-Level Rise and Coastal Flooding - A Global Assessment

    PubMed Central

    Neumann, Barbara; Vafeidis, Athanasios T.; Zimmermann, Juliane; Nicholls, Robert J.

    2015-01-01

    Coastal zones are exposed to a range of coastal hazards including sea-level rise with its related effects. At the same time, they are more densely populated than the hinterland and exhibit higher rates of population growth and urbanisation. As this trend is expected to continue into the future, we investigate how coastal populations will be affected by such impacts at global and regional scales by the years 2030 and 2060. Starting from baseline population estimates for the year 2000, we assess future population change in the low-elevation coastal zone and trends in exposure to 100-year coastal floods based on four different sea-level and socio-economic scenarios. Our method accounts for differential growth of coastal areas against the land-locked hinterland and for trends of urbanisation and expansive urban growth, as currently observed, but does not explicitly consider possible displacement or out-migration due to factors such as sea-level rise. We combine spatially explicit estimates of the baseline population with demographic data in order to derive scenario-driven projections of coastal population development. Our scenarios show that the number of people living in the low-elevation coastal zone, as well as the number of people exposed to flooding from 1-in-100 year storm surge events, is highest in Asia. China, India, Bangladesh, Indonesia and Viet Nam are estimated to have the highest total coastal population exposure in the baseline year and this ranking is expected to remain largely unchanged in the future. However, Africa is expected to experience the highest rates of population growth and urbanisation in the coastal zone, particularly in Egypt and sub-Saharan countries in Western and Eastern Africa. The results highlight countries and regions with a high degree of exposure to coastal flooding and help identifying regions where policies and adaptive planning for building resilient coastal communities are not only desirable but essential. Furthermore, we

  12. Future coastal population growth and exposure to sea-level rise and coastal flooding--a global assessment.

    PubMed

    Neumann, Barbara; Vafeidis, Athanasios T; Zimmermann, Juliane; Nicholls, Robert J

    2015-01-01

    Coastal zones are exposed to a range of coastal hazards including sea-level rise with its related effects. At the same time, they are more densely populated than the hinterland and exhibit higher rates of population growth and urbanisation. As this trend is expected to continue into the future, we investigate how coastal populations will be affected by such impacts at global and regional scales by the years 2030 and 2060. Starting from baseline population estimates for the year 2000, we assess future population change in the low-elevation coastal zone and trends in exposure to 100-year coastal floods based on four different sea-level and socio-economic scenarios. Our method accounts for differential growth of coastal areas against the land-locked hinterland and for trends of urbanisation and expansive urban growth, as currently observed, but does not explicitly consider possible displacement or out-migration due to factors such as sea-level rise. We combine spatially explicit estimates of the baseline population with demographic data in order to derive scenario-driven projections of coastal population development. Our scenarios show that the number of people living in the low-elevation coastal zone, as well as the number of people exposed to flooding from 1-in-100 year storm surge events, is highest in Asia. China, India, Bangladesh, Indonesia and Viet Nam are estimated to have the highest total coastal population exposure in the baseline year and this ranking is expected to remain largely unchanged in the future. However, Africa is expected to experience the highest rates of population growth and urbanisation in the coastal zone, particularly in Egypt and sub-Saharan countries in Western and Eastern Africa. The results highlight countries and regions with a high degree of exposure to coastal flooding and help identifying regions where policies and adaptive planning for building resilient coastal communities are not only desirable but essential. Furthermore, we

  13. Exploring Exponential Decay Using Limited Resources

    ERIC Educational Resources Information Center

    DePierro, Ed; Garafalo, Fred; Gordon, Patrick

    2018-01-01

    Science students need exposure to activities that will help them to become familiar with phenomena exhibiting exponential decay. This paper describes an experiment that allows students to determine the rate of thermal energy loss by a hot object to its surroundings. It requires limited equipment, is safe, and gives reasonable results. Students…

  14. Identification of Novel Growth Regulators in Plant Populations Expressing Random Peptides1[OPEN

    PubMed Central

    Bao, Zhilong; Clancy, Maureen A.

    2017-01-01

    The use of chemical genomics approaches allows the identification of small molecules that integrate into biological systems, thereby changing discrete processes that influence growth, development, or metabolism. Libraries of chemicals are applied to living systems, and changes in phenotype are observed, potentially leading to the identification of new growth regulators. This work describes an approach that is the nexus of chemical genomics and synthetic biology. Here, each plant in an extensive population synthesizes a unique small peptide arising from a transgene composed of a randomized nucleic acid sequence core flanked by translational start, stop, and cysteine-encoding (for disulfide cyclization) sequences. Ten and 16 amino acid sequences, bearing a core of six and 12 random amino acids, have been synthesized in Arabidopsis (Arabidopsis thaliana) plants. Populations were screened for phenotypes from the seedling stage through senescence. Dozens of phenotypes were observed in over 2,000 plants analyzed. Ten conspicuous phenotypes were verified through separate transformation and analysis of multiple independent lines. The results indicate that these populations contain sequences that often influence discrete aspects of plant biology. Novel peptides that affect photosynthesis, flowering, and red light response are described. The challenge now is to identify the mechanistic integrations of these peptides into biochemical processes. These populations serve as a new tool to identify small molecules that modulate discrete plant functions that could be produced later in transgenic plants or potentially applied exogenously to impart their effects. These findings could usher in a new generation of agricultural growth regulators, herbicides, or defense compounds. PMID:28807931

  15. Exponential model normalization for electrical capacitance tomography with external electrodes under gap permittivity conditions

    NASA Astrophysics Data System (ADS)

    Baidillah, Marlin R.; Takei, Masahiro

    2017-06-01

    A nonlinear normalization model which is called exponential model for electrical capacitance tomography (ECT) with external electrodes under gap permittivity conditions has been developed. The exponential model normalization is proposed based on the inherently nonlinear relationship characteristic between the mixture permittivity and the measured capacitance due to the gap permittivity of inner wall. The parameters of exponential equation are derived by using an exponential fitting curve based on the simulation and a scaling function is added to adjust the experiment system condition. The exponential model normalization was applied to two dimensional low and high contrast dielectric distribution phantoms by using simulation and experimental studies. The proposed normalization model has been compared with other normalization models i.e. Parallel, Series, Maxwell and Böttcher models. Based on the comparison of image reconstruction results, the exponential model is reliable to predict the nonlinear normalization of measured capacitance in term of low and high contrast dielectric distribution.

  16. Efficient computation of the joint sample frequency spectra for multiple populations.

    PubMed

    Kamm, John A; Terhorst, Jonathan; Song, Yun S

    2017-01-01

    A wide range of studies in population genetics have employed the sample frequency spectrum (SFS), a summary statistic which describes the distribution of mutant alleles at a polymorphic site in a sample of DNA sequences and provides a highly efficient dimensional reduction of large-scale population genomic variation data. Recently, there has been much interest in analyzing the joint SFS data from multiple populations to infer parameters of complex demographic histories, including variable population sizes, population split times, migration rates, admixture proportions, and so on. SFS-based inference methods require accurate computation of the expected SFS under a given demographic model. Although much methodological progress has been made, existing methods suffer from numerical instability and high computational complexity when multiple populations are involved and the sample size is large. In this paper, we present new analytic formulas and algorithms that enable accurate, efficient computation of the expected joint SFS for thousands of individuals sampled from hundreds of populations related by a complex demographic model with arbitrary population size histories (including piecewise-exponential growth). Our results are implemented in a new software package called momi (MOran Models for Inference). Through an empirical study we demonstrate our improvements to numerical stability and computational complexity.

  17. Efficient computation of the joint sample frequency spectra for multiple populations

    PubMed Central

    Kamm, John A.; Terhorst, Jonathan; Song, Yun S.

    2016-01-01

    A wide range of studies in population genetics have employed the sample frequency spectrum (SFS), a summary statistic which describes the distribution of mutant alleles at a polymorphic site in a sample of DNA sequences and provides a highly efficient dimensional reduction of large-scale population genomic variation data. Recently, there has been much interest in analyzing the joint SFS data from multiple populations to infer parameters of complex demographic histories, including variable population sizes, population split times, migration rates, admixture proportions, and so on. SFS-based inference methods require accurate computation of the expected SFS under a given demographic model. Although much methodological progress has been made, existing methods suffer from numerical instability and high computational complexity when multiple populations are involved and the sample size is large. In this paper, we present new analytic formulas and algorithms that enable accurate, efficient computation of the expected joint SFS for thousands of individuals sampled from hundreds of populations related by a complex demographic model with arbitrary population size histories (including piecewise-exponential growth). Our results are implemented in a new software package called momi (MOran Models for Inference). Through an empirical study we demonstrate our improvements to numerical stability and computational complexity. PMID:28239248

  18. Age, growth and population structure of invasive lionfish (Pterois volitans/miles) in northeast Florida using a length-based, age-structured population model.

    PubMed

    Johnson, Eric G; Swenarton, Mary Katherine

    2016-01-01

    The effective management of invasive species requires detailed understanding of the invader's life history. This information is essential for modeling population growth and predicting rates of expansion, quantifying ecological impacts and assessing the efficacy of removal and control strategies. Indo-Pacific lionfish ( Pterois volitans/miles ) have rapidly invaded the western Atlantic, Gulf of Mexico and Caribbean Sea with documented negative impacts on native ecosystems. To better understand the life history of this species, we developed and validated a length-based, age-structured model to investigate age, growth and population structure in northeast Florida. The main findings of this study were: (1) lionfish exhibited rapid growth with seasonal variation in growth rates; (2) distinct cohorts were clearly identifiable in the length-frequency data, suggesting that lionfish are recruiting during a relatively short period in summer; and (3) the majority of lionfish were less than two years old with no lionfish older than three years of age, which may be the result of culling efforts as well as ontogenetic habitat shifts to deeper water.

  19. Age, growth and population structure of invasive lionfish (Pterois volitans/miles) in northeast Florida using a length-based, age-structured population model

    PubMed Central

    2016-01-01

    The effective management of invasive species requires detailed understanding of the invader’s life history. This information is essential for modeling population growth and predicting rates of expansion, quantifying ecological impacts and assessing the efficacy of removal and control strategies. Indo-Pacific lionfish (Pterois volitans/miles) have rapidly invaded the western Atlantic, Gulf of Mexico and Caribbean Sea with documented negative impacts on native ecosystems. To better understand the life history of this species, we developed and validated a length-based, age-structured model to investigate age, growth and population structure in northeast Florida. The main findings of this study were: (1) lionfish exhibited rapid growth with seasonal variation in growth rates; (2) distinct cohorts were clearly identifiable in the length-frequency data, suggesting that lionfish are recruiting during a relatively short period in summer; and (3) the majority of lionfish were less than two years old with no lionfish older than three years of age, which may be the result of culling efforts as well as ontogenetic habitat shifts to deeper water. PMID:27920953

  20. Social policy and population growth in South-East Asia.

    PubMed

    You Poh Seng Rao, B; Shantakumar, G

    1974-01-01

    Social and population policies are considered for the 10 countries comprising Southeast Asia--Burma, Indonesia, the Khmer Republic, Laos, Malaysia, the Philippines, Singapore, Thailand, North Vietnam, and South Vietnam. All but Singapore have high fertility rates and Burma, Indonesia, the Khmer Republic, Laos and the two Vietnams have high mortality rates also. Government expenditures for education and social security systems is expanding throughout the region and it is hoped that their continued growth will contribute substantially to the effective implementation of population policies. Population policies in the 5 countries which have them are discussed. These are Indonesia, Malaysia, the Philippines, Singapore, and Thailand. It is noted, however, that declaration of policy is but the first step. Strategies and programs differ from one country to the next and depend very much on the stage of development, level of literacy, degree of urbanization, and other factors. Family planning activities generally are endogenous to urban social systems but exogenous to rural social systems. Thus, the rural elite has a large role to play in making population policies an integral part of rural life. The possibility is considered of developing workable incentive packages integrating health, education, and social security benefits with suitable emphasis on fertility reduction.

  1. Reproductive health, population growth, economic development and environmental change.

    PubMed

    Lincoln, D W

    1993-01-01

    World population will increase by 1000 million, or by 20%, within 10 years. Ninety-five per cent of this increase will occur in the South, in areas that are already economically, environmentally and politically fragile. Morbidity and mortality associated with reproduction will be greater in the current decade than in any period in human history. Annually, 40-60 million pregnancies will be terminated and 5-10 million children will die within one year of birth. AIDS-related infections, e.g. tuberculosis, will undermine health care in Africa (and elsewhere) and in places AIDS-related deaths will decimate the work-force. The growth in population and associated morbidity will inhibit global economic development and spawn new problems. The key issues are migration, the spread of disease, the supply of water and the degradation of land, and fiscal policies with respect to family planning, pharmaceuticals and Third-World debt. Full education, particularly of women, and more effective family planning in the South have the power to unlock the problem. Failure will see the developed countries, with their 800 million population, swamped by the health, economic and environmental problems of the South, with its projected population of 5400 million people for the year 2000.

  2. Self-replication: Nanostructure evolution

    NASA Astrophysics Data System (ADS)

    Simmel, Friedrich C.

    2017-10-01

    DNA origami nanostructures were utilized to replicate a seed pattern that resulted in the growth of populations of nanostructures. Exponential growth could be controlled by environmental conditions depending on the preferential requirements of each population.

  3. Modelling the interactions between Pseudomonas putida and Escherichia coli O157:H7 in fish-burgers: use of the lag-exponential model and of a combined interaction index.

    PubMed

    Speranza, B; Bevilacqua, A; Mastromatteo, M; Sinigaglia, M; Corbo, M R

    2010-08-01

    The objective of the current study was to examine the interactions between Pseudomonas putida and Escherichia coli O157:H7 in coculture studies on fish-burgers packed in air and under different modified atmospheres (30 : 40 : 30 O(2) : CO(2) : N(2), 5 : 95 O(2) : CO(2) and 50 : 50 O(2) : CO(2)), throughout the storage at 8 degrees C. The lag-exponential model was applied to describe the microbial growth. To give a quantitative measure of the occurring microbial interactions, two simple parameters were developed: the combined interaction index (CII) and the partial interaction index (PII). Under air, the interaction was significant (P < 0.05) only within the exponential growth phase (CII, 1.72), whereas under the modified atmospheres, the interactions were highly significant (P < 0.001) and occurred both in the exponential and in the stationary phase (CII ranged from 0.33 to 1.18). PII values for E. coli O157:H7 were lower than those calculated for Ps. putida. The interactions occurring into the system affected both E. coli O157:H7 and pseudomonads subpopulations. The packaging atmosphere resulted in a key element. The article provides some useful information on the interactions occurring between E. coli O157:H7 and Ps. putida on fish-burgers. The proposed index describes successfully the competitive growth of both micro-organisms, giving also a quantitative measure of a qualitative phenomenon.

  4. Physical growth of the shuar: Height, Weight, and BMI references for an indigenous amazonian population.

    PubMed

    Urlacher, Samuel S; Blackwell, Aaron D; Liebert, Melissa A; Madimenos, Felicia C; Cepon-Robins, Tara J; Gildner, Theresa E; Snodgrass, J Josh; Sugiyama, Lawrence S

    2016-01-01

    Information concerning physical growth among small-scale populations remains limited, yet such data are critical to local health efforts and to foster basic understandings of human life history and variation in childhood development. Using a large dataset and robust modeling methods, this study aims to describe growth from birth to adulthood among the indigenous Shuar of Amazonian Ecuador. Mixed-longitudinal measures of height, weight, and body mass index (BMI) were collected from Shuar participants (n = 2,463; age: 0-29 years). Centile growth curves and tables were created for each anthropometric variable of interest using Generalized Additive Models for Location, Scale, and Shape (GAMLSS). Pseudo-velocity and Lambda-Mu-Sigma curves were generated to further investigate Shuar patterns of growth and to facilitate comparison with United States Center for Disease Control and Prevention and multinational World Health Organization growth references. The Shuar are small throughout life and exhibit complex patterns of growth that differ substantially from those of international references. Similar to other Amazonians, Shuar growth in weight compares more favorably to references than growth in height, resulting in BMI curves that approximate international medians. Several additional characteristics of Shuar development are noteworthy, including large observed variation in body size early in life, significant infant growth faltering, extended male growth into adulthood, and a markedly early female pubertal growth spurt in height. Phenotypic plasticity and genetic selection in response to local environmental factors may explain many of these patterns. Providing a detailed reference of growth for the Shuar and other Amazonian populations, this study possesses direct clinical application and affords valuable insight into childhood health and the ecology of human growth. © 2015 Wiley Periodicals, Inc.

  5. A generalized preferential attachment model for business firms growth rates. II. Mathematical treatment

    NASA Astrophysics Data System (ADS)

    Buldyrev, S. V.; Pammolli, F.; Riccaboni, M.; Yamasaki, K.; Fu, D.-F.; Matia, K.; Stanley, H. E.

    2007-05-01

    We present a preferential attachment growth model to obtain the distribution P(K) of number of units K in the classes which may represent business firms or other socio-economic entities. We found that P(K) is described in its central part by a power law with an exponent ϕ = 2+b/(1-b) which depends on the probability of entry of new classes, b. In a particular problem of city population this distribution is equivalent to the well known Zipf law. In the absence of the new classes entry, the distribution P(K) is exponential. Using analytical form of P(K) and assuming proportional growth for units, we derive P(g), the distribution of business firm growth rates. The model predicts that P(g) has a Laplacian cusp in the central part and asymptotic power-law tails with an exponent ζ = 3. We test the analytical expressions derived using heuristic arguments by simulations. The model might also explain the size-variance relationship of the firm growth rates.

  6. Exponential Boundary Observers for Pressurized Water Pipe

    NASA Astrophysics Data System (ADS)

    Hermine Som, Idellette Judith; Cocquempot, Vincent; Aitouche, Abdel

    2015-11-01

    This paper deals with state estimation on a pressurized water pipe modeled by nonlinear coupled distributed hyperbolic equations for non-conservative laws with three known boundary measures. Our objective is to estimate the fourth boundary variable, which will be useful for leakage detection. Two approaches are studied. Firstly, the distributed hyperbolic equations are discretized through a finite-difference scheme. By using the Lipschitz property of the nonlinear term and a Lyapunov function, the exponential stability of the estimation error is proven by solving Linear Matrix Inequalities (LMIs). Secondly, the distributed hyperbolic system is preserved for state estimation. After state transformations, a Luenberger-like PDE boundary observer based on backstepping mathematical tools is proposed. An exponential Lyapunov function is used to prove the stability of the resulted estimation error. The performance of the two observers are shown on a water pipe prototype simulated example.

  7. Power law versus exponential state transition dynamics: application to sleep-wake architecture.

    PubMed

    Chu-Shore, Jesse; Westover, M Brandon; Bianchi, Matt T

    2010-12-02

    Despite the common experience that interrupted sleep has a negative impact on waking function, the features of human sleep-wake architecture that best distinguish sleep continuity versus fragmentation remain elusive. In this regard, there is growing interest in characterizing sleep architecture using models of the temporal dynamics of sleep-wake stage transitions. In humans and other mammals, the state transitions defining sleep and wake bout durations have been described with exponential and power law models, respectively. However, sleep-wake stage distributions are often complex, and distinguishing between exponential and power law processes is not always straightforward. Although mono-exponential distributions are distinct from power law distributions, multi-exponential distributions may in fact resemble power laws by appearing linear on a log-log plot. To characterize the parameters that may allow these distributions to mimic one another, we systematically fitted multi-exponential-generated distributions with a power law model, and power law-generated distributions with multi-exponential models. We used the Kolmogorov-Smirnov method to investigate goodness of fit for the "incorrect" model over a range of parameters. The "zone of mimicry" of parameters that increased the risk of mistakenly accepting power law fitting resembled empiric time constants obtained in human sleep and wake bout distributions. Recognizing this uncertainty in model distinction impacts interpretation of transition dynamics (self-organizing versus probabilistic), and the generation of predictive models for clinical classification of normal and pathological sleep architecture.

  8. Genetic variation in Pinus strobiformis growth and drought tolerance from southwestern US populations.

    PubMed

    Goodrich, Betsy A; Waring, Kristen M; Kolb, Thomas E

    2016-10-01

    The persistence of some tree species is threatened by combinations of novel abiotic and biotic stressors. To examine the hypothesis that Pinus strobiformis Engelm., a tree threatened by an invasive forest pathogen and a changing climate, exhibits intraspecific genetic variation in adaptive traits, we conducted a common garden study of seedlings at one location with two watering regimes using 24 populations. Four key findings emerged: (i) growth and physiological traits were low to moderately differentiated among populations but differentiation was high for some traits in water-stressed populations; (ii) seedlings from warmer climates grew larger, had higher stomatal density and were more water-use efficient (as measured by the carbon isotope ratio) than populations from colder climates; (iii) seedlings from the northern edge of the species' distribution had lower water-use efficiency, higher stomatal conductance, slower growth and longer survival in a lethal drought experiment compared with seedlings from more southern populations; and (iv) based on non-metric multidimensional scaling analyses, populations clustered into southern and northern groups, which did not correspond to current seed transfer zones. Our discovery of a clinal geographic pattern of genetic variation in adaptive traits of P. strobiformis seedlings will be useful in developing strategies to maintain the species during ongoing climate change and in the face of an invasive pathogen. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Population ecology of the gulf ribbed mussel across a salinity gradient: recruitment, growth and density

    USGS Publications Warehouse

    Honig, Aaron; Supan, John; LaPeyre, Megan K.

    2015-01-01

    Benthic intertidal bivalves play an essential role in estuarine ecosystems by contributing to habitat provision, water filtration, and promoting productivity. As such, changes that impact population distributions and persistence of local bivalve populations may have large ecosystem level consequences. Recruitment, growth, mortality, population size structure and density of the gulf coast ribbed mussel, Geukensia granosissima, were examined across a salinity gradient in southeastern Louisiana. Data were collected along 100-m transects at interior and edge marsh plots located at duplicate sites in upper (salinity ~4 psu), central (salinity ~8 psu) and lower (salinity ~15 psu) Barataria Bay, Louisiana, U.S.A. Growth, mortality and recruitment were measured in established plots from April through November 2012. Mussel densities were greatest within the middle bay (salinity ~8) regardless of flooding regime, but strongly associated with highest stem densities of Juncus roemerianus vegetation. Mussel recruitment, growth, size and survival were significantly higher at mid and high salinity marsh edge sites as compared to all interior marsh and low salinity sites. The observed patterns of density, growth and mortality in Barataria Bay may reflect detrital food resource availability, host vegetation community distribution along the salinity gradient, salinity tolerance of the mussel, and reduced predation at higher salinity edge sites.

  10. Global Population Growth: 21st Century Challenges. Headline Series No. 302.

    ERIC Educational Resources Information Center

    Moffett, George D.

    This booklet examines the highly complex and highly nuanced subject of population growth and its consequences. The subject is controversial because it lies at the intersection of so many different disciplines. The primary purpose of the book is to define the large measure of common ground that exists among experts with respect to two critical…

  11. Exponential inflation with F (R ) gravity

    NASA Astrophysics Data System (ADS)

    Oikonomou, V. K.

    2018-03-01

    In this paper, we shall consider an exponential inflationary model in the context of vacuum F (R ) gravity. By using well-known reconstruction techniques, we shall investigate which F (R ) gravity can realize the exponential inflation scenario at leading order in terms of the scalar curvature, and we shall calculate the slow-roll indices and the corresponding observational indices, in the context of slow-roll inflation. We also provide some general formulas of the slow-roll and the corresponding observational indices in terms of the e -foldings number. In addition, for the calculation of the slow-roll and of the observational indices, we shall consider quite general formulas, for which it is not necessary for the assumption that all the slow-roll indices are much smaller than unity to hold true. Finally, we investigate the phenomenological viability of the model by comparing it with the latest Planck and BICEP2/Keck-Array observational data. As we demonstrate, the model is compatible with the current observational data for a wide range of the free parameters of the model.

  12. Exponential rise of dynamical complexity in quantum computing through projections.

    PubMed

    Burgarth, Daniel Klaus; Facchi, Paolo; Giovannetti, Vittorio; Nakazato, Hiromichi; Pascazio, Saverio; Yuasa, Kazuya

    2014-10-10

    The ability of quantum systems to host exponentially complex dynamics has the potential to revolutionize science and technology. Therefore, much effort has been devoted to developing of protocols for computation, communication and metrology, which exploit this scaling, despite formidable technical difficulties. Here we show that the mere frequent observation of a small part of a quantum system can turn its dynamics from a very simple one into an exponentially complex one, capable of universal quantum computation. After discussing examples, we go on to show that this effect is generally to be expected: almost any quantum dynamics becomes universal once 'observed' as outlined above. Conversely, we show that any complex quantum dynamics can be 'purified' into a simpler one in larger dimensions. We conclude by demonstrating that even local noise can lead to an exponentially complex dynamics.

  13. Anatomy of a bottleneck: diagnosing factors limiting population growth in the Puerto Rican parrot

    USGS Publications Warehouse

    Beissenger, S.R.; Wunderle, J.M.; Meyers, J.M.; Saether, B.-E.; Engen, S.

    2008-01-01

    The relative importance of genetic, demographic, environmental, and catastrophic processes that maintain population bottlenecks has received little consideration. We evaluate the role of these factors in maintaining the Puerto Rican Parrot (Amazona vittata) in a prolonged bottleneck from 1973 through 2000 despite intensive conservation efforts. We first conduct a risk analysis, then examine evidence for the importance of specific processes maintaining the bottleneck using the multiple competing hypotheses approach, and finally integrate these results through a sensitivity analysis of a demographic model using life-stage simulation analysis (LSA) to determine the relative importance of genetic, demographic, environmental, and catastrophic processes on population growth. Annual population growth has been slow and variable (1.0 6 5.2 parrots per year, or an average k?1.05 6 0.19) from 16 parrots (1973) to a high of 40-42 birds (1997-1998). A risk analysis based on population prediction intervals (PPI) indicates great risk and large uncertainty, with a range of 22?83 birds in the 90% PPI only five years into the future. Four primary factors (reduced hatching success due to inbreeding, failure of adults to nest, nest failure due to nongenetic causes, and reduced survival of adults and juveniles) were responsible for maintaining the bottleneck. Egghatchability rates were low (70.6% per egg and 76.8% per pair), and hatchability increased after mate changes, suggesting inbreeding effects. Only an average of 34% of the population nested annually, which was well below the percentage of adults that should have reached an age of first breeding (41-56%). This chronic failure to nest appears to have been caused primarily by environmental and/or behavioral factors, and not by nest-site scarcity or a skewed sex ratio. Nest failure rates from nongenetic causes (i.e., predation, parasitism, and wet cavities) were low (29%) due to active management (protecting nests and fostering

  14. Using Differentials to Differentiate Trigonometric and Exponential Functions

    ERIC Educational Resources Information Center

    Dray, Tevian

    2013-01-01

    Starting from geometric definitions, we show how differentials can be used to differentiate trigonometric and exponential functions without limits, numerical estimates, solutions of differential equations, or integration.

  15. Body downsizing caused by non-consumptive social stress severely depresses population growth rate

    PubMed Central

    Edeline, Eric; Haugen, Thrond O.; Weltzien, Finn-Arne; Claessen, David; Winfield, Ian J.; Stenseth, Nils Chr.; Vøllestad, L. Asbjørn

    2010-01-01

    Chronic social stress diverts energy away from growth, reproduction and immunity, and is thus a potential driver of population dynamics. However, the effects of social stress on demographic density dependence remain largely overlooked in ecological theory. Here we combine behavioural experiments, physiology and population modelling to show in a top predator (pike Esox lucius) that social stress alone may be a primary driver of demographic density dependence. Doubling pike density in experimental ponds under controlled prey availability did not significantly change prey intake by pike (i.e. did not significantly change interference or exploitative competition), but induced a neuroendocrine stress response reflecting a size-dependent dominance hierarchy, depressed pike energetic status and lowered pike body growth rate by 23 per cent. Assuming fixed size-dependent survival and fecundity functions parameterized for the Windermere (UK) pike population, stress-induced smaller body size shifts age-specific survival rates and lowers age-specific fecundity, which in Leslie matrices projects into reduced population rate of increase (λ) by 37–56%. Our models also predict that social stress flattens elasticity profiles of λ to age-specific survival and fecundity, thus making population persistence more dependent on old individuals. Our results suggest that accounting for non-consumptive social stress from competitors and predators is necessary to accurately understand, predict and manage food-web dynamics. PMID:19923130

  16. An evaluation of density-dependent and density-independent influences on population growth rates in Weddell seals

    USGS Publications Warehouse

    Rotella, J.J.; Link, W.A.; Nichols, J.D.; Hadley, G.L.; Garrott, R.A.; Proffitt, K.M.

    2009-01-01

    Much of the existing literature that evaluates the roles of density-dependent and density-independent factors on population dynamics has been called into question in recent years because measurement errors were not properly dealt with in analyses. Using state-space models to account for measurement errors, we evaluated a set of competing models for a 22-year time series of mark-resight estimates of abundance for a breeding population of female Weddell seals (Leptonychotes weddellii) studied in Erebus Bay, Antarctica. We tested for evidence of direct density dependence in growth rates and evaluated whether equilibrium population size was related to seasonal sea-ice extent and the Southern Oscillation Index (SOI). We found strong evidence of negative density dependence in annual growth rates for a population whose estimated size ranged from 438 to 623 females during the study. Based on Bayes factors, a density-dependence-only model was favored over models that also included en! vironmental covariates. According to the favored model, the population had a stationary distribution with a mean of 497 females (SD = 60.5), an expected growth rate of 1.10 (95% credible interval 1.08-1.15) when population size was 441 females, and a rate of 0.90 (95% credible interval 0.87-0.93) for a population of 553 females. A model including effects of SOI did receive some support and indicated a positive relationship between SOI and population size. However, effects of SOI were not large, and including the effect did not greatly reduce our estimate of process variation. We speculate that direct density dependence occurred because rates of adult survival, breeding, and temporary emigration were affected by limitations on per capita food resources and space for parturition and pup-rearing. To improve understanding of the relative roles of various demographic components and their associated vital rates to population growth rate, mark-recapture methods can be applied that incorporate both

  17. A general theory of early growth?. Comment on: "Mathematical models to characterize early epidemic growth: A review" by Gerardo Chowell et al.

    NASA Astrophysics Data System (ADS)

    House, Thomas

    2016-09-01

    Chowell et al. [1] consider the early growth behaviour of various epidemic models that range from phenomenological approaches driven by data to mechanistic descriptions of complex interactions between individuals. This is particularly timely given the recent Ebola epidemic, although non-exponential early growth may be more common (but less immediately evident) than we realise.

  18. Customized versus population-based growth curves: prediction of low body fat percent at term corrected gestational age following preterm birth.

    PubMed

    Law, Tameeka L; Katikaneni, Lakshmi D; Taylor, Sarah N; Korte, Jeffrey E; Ebeling, Myla D; Wagner, Carol L; Newman, Roger B

    2012-07-01

    Compare customized versus population-based growth curves for identification of small-for-gestational-age (SGA) and body fat percent (BF%) among preterm infants. Prospective cohort study of 204 preterm infants classified as SGA or appropriate-for-gestational-age (AGA) by population-based and customized growth curves. BF% was determined by air-displacement plethysmography. Differences between groups were compared using bivariable and multivariable linear and logistic regression analyses. Customized curves reclassified 30% of the preterm infants as SGA. SGA infants identified by customized method only had significantly lower BF% (13.8 ± 6.0) than the AGA (16.2 ± 6.3, p = 0.02) infants and similar to the SGA infants classified by both methods (14.6 ± 6.7, p = 0.51). Customized growth curves were a significant predictor of BF% (p = 0.02), whereas population-based growth curves were not a significant independent predictor of BF% (p = 0.50) at term corrected gestational age. Customized growth potential improves the differentiation of SGA infants and low BF% compared with a standard population-based growth curve among a cohort of preterm infants.

  19. Population growth and the decline of natural Southern yellow pine forests

    Treesearch

    David B. South; Edward R. Buckner

    2004-01-01

    Population growth has created social and economic pressures that affect the sustainability of naturally regenerated southern yellow pine forests. Major causes of this decline include (1) a shift in public attitudes regarding woods burning (from one favoring it to one that favors fire suppression) and (2) an increase in land values (especially near urban centers). The...

  20. Very slow growth of Escherichia coli.

    PubMed Central

    Chesbro, W; Evans, T; Eifert, R

    1979-01-01

    A recycling fermentor (a chemostat with 100% biomass feedback) was used to study glucose-limited behavior of Escherichia coli B. The expectation from mass transfer analysis that growth would asymptotically approach a limit mass determined by the glucose provision rate (GPR) and the culture's maintenance requirement was not met. Instead, growth proceeded at progressively lower rates through three distinct phases. After the fermentor was seeded, but before glucose became limiting, growth followed the usual, exponential path (phase 1). About 12 h postseeding, residual glucose in the fermentor fell below 1 microgram . ml-1 and the growth rate (dx/dt) became constant and a linear function of GPR (phase 2). The specific growth rate, mu, therefore fell continuously throughout the phase. Biomass yield and glucose assimilation (13%) were near the level for exponential growth, however, and independent of GPR over a broad range. At a critical specific growth rate (0.04 h-1 for this strain), phase 2 ended abruptly and phase 3 commenced. In phase 3, the growth rate was again constant, although lower than in phase 2, so that mu continued to fall, but growth rates and yields were praboloid functions of GPR. They were never zero, however, at any positive value of GPR. By inference, the fraction of metabolic energy used for maintenance functions is constant for a given GPR, although different for phases 2 and 3, and independent of biomass. In both phases 2 and 3, orcinol, diphenylamine, and Lowry reactive materials were secreted at near-constant rates such that over 50% as much biosynthetic mass was secreted as was retained by the cells. Images PMID:378981

  1. Bone growth, limb proportions and non-specific stress in archaeological populations from Croatia.

    PubMed

    Pinhasi, R; Timpson, A; Thomas, M; Slaus, M

    2014-01-01

    The effect of environmental factors and, in particular, non-specific stress on the growth patterns of limbs and other body dimensions of children from past populations is not well understood. This study assesses whether growth of mediaeval and post-mediaeval children aged between 0-11.5 years from Adriatic (coastal) and continental Croatia varies by region and by the prevalence and type of non-specific stress. Dental ages were estimated using the Moorrees, Fanning and Hunt (MFH) scoring method. Growth of long bone diaphyses (femur, tibia, humerus, radius and ulna) was assessed by using a composite Z-score statistic (CZS). Clavicular length was measured as a proxy for upper trunk width, distal metaphyseal width of the femur was measured as a proxy for body mass and upper and lower intra-limb indices were calculated. Differences between sub-sets sampled by (a) region and (b) active vs healed non-specific stress indicators and (c) intra-limb indices were tested by Mann--Whitney U-tests and Analysis of Covariance (ANCOVA). Adriatic children attained larger dimensions-per-age than continental children. Children with healed stress lesions had larger dimensions-per-age than those with active lesions. No inter-regional difference was found in intra-limb indices. These findings highlight the complexity of growth patterns in past populations and indicate that variation in environmental conditions such as diet and differences in the nature of non-specific stress lesions both exert a significant effect on long bone growth.

  2. Increasing Dengue Incidence in Singapore over the Past 40 Years: Population Growth, Climate and Mobility

    PubMed Central

    Struchiner, Claudio Jose; Rocklöv, Joacim; Wilder-Smith, Annelies; Massad, Eduardo

    2015-01-01

    In Singapore, the frequency and magnitude of dengue epidemics have increased significantly over the past 40 years. It is important to understand the main drivers for the rapid increase in dengue incidence. We studied the relative contributions of putative drivers for the rise of dengue in Singapore: population growth, climate parameters and international air passenger arrivals from dengue endemic countries, for the time period of 1974 until 2011. We used multivariable Poisson regression models with the following predictors: Annual Population Size; Aedes Premises Index; Mean Annual Temperature; Minimum and Maximum Temperature Recorded in each year; Annual Precipitation and Annual Number of Air Passengers arriving from dengue-endemic South-East Asia to Singapore. The relative risk (RR) of the increase in dengue incidence due to population growth over the study period was 42.7, while the climate variables (mean and minimum temperature) together explained an RR of 7.1 (RR defined as risk at the end of the time period relative to the beginning and goodness of fit associated with the model leading to these estimates assessed by pseudo-R2 equal to 0.83). Estimating the extent of the contribution of these individual factors on the increasing dengue incidence, we found that population growth contributed to 86% while the residual 14% was explained by increase in temperature. We found no correlation with incoming air passenger arrivals into Singapore from dengue endemic countries. Our findings have significant implications for predicting future trends of the dengue epidemics given the rapid urbanization with population growth in many dengue endemic countries. It is time for policy-makers and the scientific community alike to pay more attention to the negative impact of urbanization and urban climate on diseases such as dengue. PMID:26322517

  3. Increasing Dengue Incidence in Singapore over the Past 40 Years: Population Growth, Climate and Mobility.

    PubMed

    Struchiner, Claudio Jose; Rocklöv, Joacim; Wilder-Smith, Annelies; Massad, Eduardo

    2015-01-01

    In Singapore, the frequency and magnitude of dengue epidemics have increased significantly over the past 40 years. It is important to understand the main drivers for the rapid increase in dengue incidence. We studied the relative contributions of putative drivers for the rise of dengue in Singapore: population growth, climate parameters and international air passenger arrivals from dengue endemic countries, for the time period of 1974 until 2011. We used multivariable Poisson regression models with the following predictors: Annual Population Size; Aedes Premises Index; Mean Annual Temperature; Minimum and Maximum Temperature Recorded in each year; Annual Precipitation and Annual Number of Air Passengers arriving from dengue-endemic South-East Asia to Singapore. The relative risk (RR) of the increase in dengue incidence due to population growth over the study period was 42.7, while the climate variables (mean and minimum temperature) together explained an RR of 7.1 (RR defined as risk at the end of the time period relative to the beginning and goodness of fit associated with the model leading to these estimates assessed by pseudo-R2 equal to 0.83). Estimating the extent of the contribution of these individual factors on the increasing dengue incidence, we found that population growth contributed to 86% while the residual 14% was explained by increase in temperature. We found no correlation with incoming air passenger arrivals into Singapore from dengue endemic countries. Our findings have significant implications for predicting future trends of the dengue epidemics given the rapid urbanization with population growth in many dengue endemic countries. It is time for policy-makers and the scientific community alike to pay more attention to the negative impact of urbanization and urban climate on diseases such as dengue.

  4. Impacts of invasive fish removal through angling on population characteristics and juvenile growth rate.

    PubMed

    Evangelista, Charlotte; Britton, Robert J; Cucherousset, Julien

    2015-06-01

    Exploitation can modify the characteristics of fish populations through the selective harvesting of individuals, with this potentially leading to rapid ecological and evolutionary changes. Despite the well-known effects of invasive fishes on aquatic ecosystems generally, the potential effects of their selective removal through angling, a strategy commonly used to manage invasive fish, are poorly understood. The aim of this field-based study was to use the North American pumpkinseed Lepomis gibbosus as the model species to investigate the consequences of selective removal on their population characteristics and juvenile growth rates across 10 populations in artificial lakes in southern France. We found that the maximal individual mass in populations decreased as removal pressure through angling increased, whereas we did not observed any changes in the maximal individual length in populations as removal pressure increased. Total population abundance did not decrease as removal pressure increased; instead, here was a U-shaped relationship between removal pressure and the abundance of medium-bodied individuals. In addition, population biomass had a U-shaped curve response to removal pressure, implying that invasive fish populations can modulate their characteristics to compensate for the negative effects of selective removals. In addition, individual lengths at age 2 and juvenile growth rates decreased as removal pressure through angling increased, suggesting a shift toward an earlier size at maturity and an overall slower growing phenotype. Therefore, these outputs challenge the efficiency of selective management methods, suggesting the use of more proactive strategies to control invasive populations, and the need to investigate the potential ecological and evolutionary repercussions of nonrandom removal.

  5. Impacts of invasive fish removal through angling on population characteristics and juvenile growth rate

    PubMed Central

    Evangelista, Charlotte; Britton, Robert J; Cucherousset, Julien

    2015-01-01

    Exploitation can modify the characteristics of fish populations through the selective harvesting of individuals, with this potentially leading to rapid ecological and evolutionary changes. Despite the well-known effects of invasive fishes on aquatic ecosystems generally, the potential effects of their selective removal through angling, a strategy commonly used to manage invasive fish, are poorly understood. The aim of this field-based study was to use the North American pumpkinseed Lepomis gibbosus as the model species to investigate the consequences of selective removal on their population characteristics and juvenile growth rates across 10 populations in artificial lakes in southern France. We found that the maximal individual mass in populations decreased as removal pressure through angling increased, whereas we did not observed any changes in the maximal individual length in populations as removal pressure increased. Total population abundance did not decrease as removal pressure increased; instead, here was a U-shaped relationship between removal pressure and the abundance of medium-bodied individuals. In addition, population biomass had a U-shaped curve response to removal pressure, implying that invasive fish populations can modulate their characteristics to compensate for the negative effects of selective removals. In addition, individual lengths at age 2 and juvenile growth rates decreased as removal pressure through angling increased, suggesting a shift toward an earlier size at maturity and an overall slower growing phenotype. Therefore, these outputs challenge the efficiency of selective management methods, suggesting the use of more proactive strategies to control invasive populations, and the need to investigate the potential ecological and evolutionary repercussions of nonrandom removal. PMID:26078856

  6. Stochastic resonance in a generalized Von Foerster population growth model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumi, N.; Mankin, R.

    The stochastic dynamics of a population growth model, similar to the Von Foerster model for human population, is studied. The influence of fluctuating environment on the carrying capacity is modeled as a multiplicative dichotomous noise. It is established that an interplay between nonlinearity and environmental fluctuations can cause single unidirectional discontinuous transitions of the mean population size versus the noise amplitude, i.e., an increase of noise amplitude can induce a jump from a state with a moderate number of individuals to that with a very large number, while by decreasing the noise amplitude an opposite transition cannot be effected. Anmore » analytical expression of the mean escape time for such transitions is found. Particularly, it is shown that the mean transition time exhibits a strong minimum at intermediate values of noise correlation time, i.e., the phenomenon of stochastic resonance occurs. Applications of the results in ecology are also discussed.« less

  7. Estimating the effects of 17α-ethinylestradiol on stochastic population growth rate of fathead minnows: a population synthesis of empirically derived vital rates

    USGS Publications Warehouse

    Schwindt, Adam R.; Winkelman, Dana L.

    2016-01-01

    Urban freshwater streams in arid climates are wastewater effluent dominated ecosystems particularly impacted by bioactive chemicals including steroid estrogens that disrupt vertebrate reproduction. However, more understanding of the population and ecological consequences of exposure to wastewater effluent is needed. We used empirically derived vital rate estimates from a mesocosm study to develop a stochastic stage-structured population model and evaluated the effect of 17α-ethinylestradiol (EE2), the estrogen in human contraceptive pills, on fathead minnow Pimephales promelas stochastic population growth rate. Tested EE2 concentrations ranged from 3.2 to 10.9 ng L−1 and produced stochastic population growth rates (λ S ) below 1 at the lowest concentration, indicating potential for population decline. Declines in λ S compared to controls were evident in treatments that were lethal to adult males despite statistically insignificant effects on egg production and juvenile recruitment. In fact, results indicated that λ S was most sensitive to the survival of juveniles and female egg production. More broadly, our results document that population model results may differ even when empirically derived estimates of vital rates are similar among experimental treatments, and demonstrate how population models integrate and project the effects of stressors throughout the life cycle. Thus, stochastic population models can more effectively evaluate the ecological consequences of experimentally derived vital rates.

  8. Estimating the effects of 17α-ethinylestradiol on stochastic population growth rate of fathead minnows: a population synthesis of empirically derived vital rates.

    PubMed

    Schwindt, Adam R; Winkelman, Dana L

    2016-09-01

    Urban freshwater streams in arid climates are wastewater effluent dominated ecosystems particularly impacted by bioactive chemicals including steroid estrogens that disrupt vertebrate reproduction. However, more understanding of the population and ecological consequences of exposure to wastewater effluent is needed. We used empirically derived vital rate estimates from a mesocosm study to develop a stochastic stage-structured population model and evaluated the effect of 17α-ethinylestradiol (EE2), the estrogen in human contraceptive pills, on fathead minnow Pimephales promelas stochastic population growth rate. Tested EE2 concentrations ranged from 3.2 to 10.9 ng L(-1) and produced stochastic population growth rates (λ S ) below 1 at the lowest concentration, indicating potential for population decline. Declines in λ S compared to controls were evident in treatments that were lethal to adult males despite statistically insignificant effects on egg production and juvenile recruitment. In fact, results indicated that λ S was most sensitive to the survival of juveniles and female egg production. More broadly, our results document that population model results may differ even when empirically derived estimates of vital rates are similar among experimental treatments, and demonstrate how population models integrate and project the effects of stressors throughout the life cycle. Thus, stochastic population models can more effectively evaluate the ecological consequences of experimentally derived vital rates.

  9. CMB constraints on β-exponential inflationary models

    NASA Astrophysics Data System (ADS)

    Santos, M. A.; Benetti, M.; Alcaniz, J. S.; Brito, F. A.; Silva, R.

    2018-03-01

    We analyze a class of generalized inflationary models proposed in ref. [1], known as β-exponential inflation. We show that this kind of potential can arise in the context of brane cosmology, where the field describing the size of the extra-dimension is interpreted as the inflaton. We discuss the observational viability of this class of model in light of the latest Cosmic Microwave Background (CMB) data from the Planck Collaboration through a Bayesian analysis, and impose tight constraints on the model parameters. We find that the CMB data alone prefer weakly the minimal standard model (ΛCDM) over the β-exponential inflation. However, when current local measurements of the Hubble parameter, H0, are considered, the β-inflation model is moderately preferred over the ΛCDM cosmology, making the study of this class of inflationary models interesting in the context of the current H0 tension.

  10. Exponential convergence through linear finite element discretization of stratified subdomains

    NASA Astrophysics Data System (ADS)

    Guddati, Murthy N.; Druskin, Vladimir; Vaziri Astaneh, Ali

    2016-10-01

    Motivated by problems where the response is needed at select localized regions in a large computational domain, we devise a novel finite element discretization that results in exponential convergence at pre-selected points. The key features of the discretization are (a) use of midpoint integration to evaluate the contribution matrices, and (b) an unconventional mapping of the mesh into complex space. Named complex-length finite element method (CFEM), the technique is linked to Padé approximants that provide exponential convergence of the Dirichlet-to-Neumann maps and thus the solution at specified points in the domain. Exponential convergence facilitates drastic reduction in the number of elements. This, combined with sparse computation associated with linear finite elements, results in significant reduction in the computational cost. The paper presents the basic ideas of the method as well as illustration of its effectiveness for a variety of problems involving Laplace, Helmholtz and elastodynamics equations.

  11. Application of Krylov exponential propagation to fluid dynamics equations

    NASA Technical Reports Server (NTRS)

    Saad, Youcef; Semeraro, David

    1991-01-01

    An application of matrix exponentiation via Krylov subspace projection to the solution of fluid dynamics problems is presented. The main idea is to approximate the operation exp(A)v by means of a projection-like process onto a krylov subspace. This results in a computation of an exponential matrix vector product similar to the one above but of a much smaller size. Time integration schemes can then be devised to exploit this basic computational kernel. The motivation of this approach is to provide time-integration schemes that are essentially of an explicit nature but which have good stability properties.

  12. Exponential stability of stochastic complex networks with multi-weights based on graph theory

    NASA Astrophysics Data System (ADS)

    Zhang, Chunmei; Chen, Tianrui

    2018-04-01

    In this paper, a novel approach to exponential stability of stochastic complex networks with multi-weights is investigated by means of the graph-theoretical method. New sufficient conditions are provided to ascertain the moment exponential stability and almost surely exponential stability of stochastic complex networks with multiple weights. It is noted that our stability results are closely related with multi-weights and the intensity of stochastic disturbance. Numerical simulations are also presented to substantiate the theoretical results.

  13. Rodent malaria-resistant strains of the mosquito, Anopheles gambiae, have slower population growth than -susceptible strains

    PubMed Central

    Voordouw, Maarten J; Anholt, Bradley R; Taylor, Pam J; Hurd, Hilary

    2009-01-01

    Background Trade-offs between anti-parasite defence mechanisms and other life history traits limit the evolution of host resistance to parasites and have important implications for understanding diseases such as malaria. Mosquitoes have not evolved complete resistance to malaria parasites and one hypothesis is that anti-malaria defence mechanisms are costly. Results We used matrix population models to compare the population growth rates among lines of Anopheles gambiae that had been selected for resistance or high susceptibility to the rodent malaria parasite, Plasmodium yoelii nigeriensis. The population growth rate of the resistant line was significantly lower than that of the highly susceptible and the unselected control lines, regardless of whether mosquitoes were infected with Plasmodium or not. The lower population growth of malaria-resistant mosquitoes was caused by reduced post blood-feeding survival of females and poor egg hatching. Conclusion With respect to eradicating malaria, the strategy of releasing Plasmodium-resistant Anopheles mosquitoes is unlikely to be successful if the costs of Plasmodium-resistance in the field are as great as the ones measured in this study. High densities of malaria-resistant mosquitoes would have to be maintained by continuous release from captive breeding facilities. PMID:19379508

  14. Energetics of growth and reproduction in a high-tidal population of the clam Ruditapes decussatus from Urdaibai Estuary (Basque Country, N. Spain)

    NASA Astrophysics Data System (ADS)

    Urrutia, M. B.; Ibarrola, I.; Iglesias, J. I. P.; Navarro, E.

    1999-08-01

    Energetics of growth and reproduction were studied in a high-tidal population of the clam Ruditapes decussatus living in the Mundaka Estuary in the Biosphere Reserve of Urdaibai (Basque Country, North Spain). The study included an analysis of growth rings on the shells to establish the growth curve as well as seasonal patterns of growth and body condition, and estimates of the breeding cycle including quantification of the reproductive output and reproductive effort. The simultaneous determination of the seasonal course of metabolism allowed estimates of assimilation, growth efficiency and reproductive costs. Growth rates were consistently lower in this population than in other populations from similar latitudes, and this effect is interpreted in terms of nutritional restrictions caused by the high tidal position of the population. Assimilation rapidly increased from March to July, as a consequence of optimal nutritional conditions and increasing water temperatures. Somatic growth (spring) and gonadal development (early summer) both took place during this period. Negative growth was restricted to the winter and late summer and was associated with poor nutritional conditions (winter) and high rates of metabolic expenditure induced by high temperatures (late summer). Net growth efficiencies (ranging from 27% in 1-y-old to 6% in 7-y-old individuals) ranked among the lowest recorded for populations of marine bivalves. Reduced reproductive-effort values were consistent with the poor growing conditions that appeared to characterise this population of clams.

  15. Conditional optimal spacing in exponential distribution.

    PubMed

    Park, Sangun

    2006-12-01

    In this paper, we propose the conditional optimal spacing defined as the optimal spacing after specifying a predetermined order statistic. If we specify a censoring time, then the optimal inspection times for grouped inspection can be determined from this conditional optimal spacing. We take an example of exponential distribution, and provide a simple method of finding the conditional optimal spacing.

  16. The little women of Loja--growth hormone-receptor deficiency in an inbred population of southern Ecuador.

    PubMed

    Rosenbloom, A L; Guevara Aguirre, J; Rosenfeld, R G; Fielder, P J

    1990-11-15

    Laron-type dwarfism, which is characterized by the clinical appearance of isolated growth hormone deficiency with elevated serum levels of growth hormone and decreased serum levels of insulin-like growth factor I (IGF-I), has been described in approximately 50 patients. This condition is caused by a deficiency of the cellular receptor for growth hormone, and it is transmitted as an autosomal recessive trait, as indicated by an equal sex distribution and a high rate of consanguinity in affected families. We studied 20 patients (19 females and 1 male, 2 to 49 years of age), from an inbred Spanish population in southern Ecuador, who had the clinical features of Laron-type dwarfism. Seventeen patients were members of two large pedigrees. Among the 13 affected sibships, there were 19 affected and 24 unaffected female siblings and 1 affected and 21 unaffected male siblings. The patients' heights ranged from 10.0 to 6.7 SD below the normal mean height for age in the United States. In addition to the previously described features, 15 patients had limited elbow extensibility, all had blue scleras, affected adults had relatively short extremities, and all four affected women over 30 years of age had hip degeneration. Basal serum concentrations of growth hormone were elevated in all affected children (30 to 160 micrograms per liter) and normal to moderately elevated in the adults. The serum level of growth hormone-binding protein ranged from 1 to 30 percent of normal; IGF-I concentrations were low--less than or equal to 7 micrograms per liter in the children and less than or equal to 66 micrograms per liter in the adults (normal for Ecuadorean women, 98 to 238). Serum levels of IGF-II and growth hormone-dependent IGF-binding protein-3 were also low. We describe an inbred population with a high incidence of growth hormone-receptor deficiency resulting in a clinical picture resembling Laron-type dwarfism but differing principally in showing a marked predominance of affected

  17. The generalized truncated exponential distribution as a model for earthquake magnitudes

    NASA Astrophysics Data System (ADS)

    Raschke, Mathias

    2015-04-01

    The random distribution of small, medium and large earthquake magnitudes follows an exponential distribution (ED) according to the Gutenberg-Richter relation. But a magnitude distribution is truncated in the range of very large magnitudes because the earthquake energy is finite and the upper tail of the exponential distribution does not fit well observations. Hence the truncated exponential distribution (TED) is frequently applied for the modelling of the magnitude distributions in the seismic hazard and risk analysis. The TED has a weak point: when two TEDs with equal parameters, except the upper bound magnitude, are mixed, then the resulting distribution is not a TED. Inversely, it is also not possible to split a TED of a seismic region into TEDs of subregions with equal parameters, except the upper bound magnitude. This weakness is a principal problem as seismic regions are constructed scientific objects and not natural units. It also applies to alternative distribution models. The presented generalized truncated exponential distribution (GTED) overcomes this weakness. The ED and the TED are special cases of the GTED. Different issues of the statistical inference are also discussed and an example of empirical data is presented in the current contribution.

  18. Fetal growth trajectory and risk for eczema in a Saudi population.

    PubMed

    AlMakoshi, Amel; Ellahi, Awaiss; Sallout, Bala; Devereux, Graham; Turner, Steve

    2015-12-01

    Recent studies in Western cohorts have identified associations between increasing fetal abdominal circumference (AC) during mid-pregnancy and increased risk for eczema and atopy. We sought to replicate these findings in a Saudi population where antenatal environmental exposures are different compared with Western countries. A Saudi birth cohort was recruited to relate maternal dietary intake and fetal growth to wheeze, eczema, and rhinitis in the first 2 yrs. Fetal size was determined from routine ultrasound scan measurements in the second and third trimesters and birthweight was noted. Parent-reported outcomes during the first 2 yrs were acquired by telephone-administered questionnaire. There were 1076 mothers recruited. AC was determined in 562 for the second, in 632 for the third, and in 281 for both second and third trimesters. A history of eczema was determined in 814 children at 2 yrs of age. There was an inverse relationship between change in abdominal circumference between the second and third trimesters for eczema (OR 0.66 per z score increase in AC [95% CI 0.49, 0.89]), and the quartile with the greatest faltering growth were at increased risk compared with other groups (p ≤ 0.045). Change in fetal size between the third trimester and birth was not associated with altered eczema risk. There were no associations between fetal growth and wheeze at the age of 2 yrs. Our findings contrast observations made in Western populations but nonetheless suggest that factors associated with changing fetal growth trajectory in the second half of pregnancy are also relevant to atopy development on the global setting. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Convergence and stability of the exponential Euler method for semi-linear stochastic delay differential equations.

    PubMed

    Zhang, Ling

    2017-01-01

    The main purpose of this paper is to investigate the strong convergence and exponential stability in mean square of the exponential Euler method to semi-linear stochastic delay differential equations (SLSDDEs). It is proved that the exponential Euler approximation solution converges to the analytic solution with the strong order [Formula: see text] to SLSDDEs. On the one hand, the classical stability theorem to SLSDDEs is given by the Lyapunov functions. However, in this paper we study the exponential stability in mean square of the exact solution to SLSDDEs by using the definition of logarithmic norm. On the other hand, the implicit Euler scheme to SLSDDEs is known to be exponentially stable in mean square for any step size. However, in this article we propose an explicit method to show that the exponential Euler method to SLSDDEs is proved to share the same stability for any step size by the property of logarithmic norm.

  20. Integrating physiological and biomechanical drivers of population growth over environmental gradients on coral reefs.

    PubMed

    Madin, Joshua S; Hoogenboom, Mia O; Connolly, Sean R

    2012-03-15

    Coral reefs exhibit marked spatial and temporal variability, and coral reef organisms exhibit trade-offs in functional traits that influence demographic performance under different combinations of abiotic environmental conditions. In many systems, trait trade-offs are modelled using an energy and/or nutrient allocation framework. However, on coral reefs, differences in biomechanical vulnerability have major demographic implications, and indeed are believed to play an essential role in mediating species coexistence because highly competitive growth forms are vulnerable to physical dislodgment events that occur with high frequency (e.g. annual summer storms). Therefore, an integrated energy allocation and biomechanics framework is required to understand the effect of physical environmental gradients on species' demographic performance. However, on coral reefs, as in most ecosystems, the effects of environmental conditions on organisms are measured in different currencies (e.g. lipid accumulation, survival and number of gametes), and thus the relative contributions of these effects to overall capacity for population growth are not readily apparent. A comprehensive assessment of links between the environment and the organism, including those mediated by biomechanical processes, must convert environmental effects on individual-level performance (e.g. survival, growth and reproduction) into a common currency that is relevant to the capacity to contribute to population growth. We outline such an approach by considering the population-level performance of scleractinian reef corals over a hydrodynamic gradient, with a focus on the integrating the biomechanical determinants of size-dependent coral colony dislodgment as a function of flow, with the effects of flow on photosynthetic energy acquisition and respiration.

  1. Microplate-based method for high-throughput screening of microalgae growth potential.

    PubMed

    Van Wagenen, Jon; Holdt, Susan Løvstad; De Francisci, Davide; Valverde-Pérez, Borja; Plósz, Benedek Gy; Angelidaki, Irini

    2014-10-01

    Microalgae cultivation conditions in microplates will differ from large-scale photobioreactors in crucial parameters such as light profile, mixing and gas transfer. Hence volumetric productivity (P(v)) measurements made in microplates cannot be directly scaled up. Here we demonstrate that it is possible to use microplates to measure characteristic exponential growth rates and determine the specific growth rate light intensity dependency (μ-I curve), which is useful as the key input for several models that predict P(v). Nannochloropsis salina and Chlorella sorokiniana specific growth rates were measured by repeated batch culture in microplates supplied with continuous light at different intensities. Exponential growth unlimited by gas transfer or self-shading was observable for a period of several days using fluorescence, which is an order of magnitude more sensitive than optical density. The microplate datasets were comparable to similar datasets obtained in photobioreactors and were used an input for the Huesemann model to accurately predict P(v). Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Dynamic light scattering: A fast and reliable method to analyze bacterial growth during the lag phase.

    PubMed

    Vargas, Susana; Millán-Chiu, Blanca E; Arvizu-Medrano, Sofía M; Loske, Achim M; Rodríguez, Rogelio

    2017-06-01

    A comparison between plate counting (PC) and dynamic light scattering (DLS) is reported. PC is the standard technique to determine bacterial population as a function of time; however, this method has drawbacks, such as the cumbersome preparation and handling of samples, as well as the long time required to obtain results. Alternative methods based on optical density are faster, but do not distinguish viable from non-viable cells. These inconveniences are overcome by using DLS. Two different bacteria strains were considered: Escherichia coli and Staphylococcus aureus. DLS was performed at two different illuminating conditions: continuous and intermittent. By the increment of particle size as a function of time, it was possible to observe cell division and the formation of aggregates containing very few bacteria. The scattered intensity profiles showed the lag phase and the transition to the exponential phase of growth, providing a quantity proportional to viable bacteria concentration. The results revealed a clear and linear correlation in both lag and exponential phase, between the Log 10 (colony-forming units/mL) from PC and the Log 10 of the scattered intensity I s from DLS. These correlations provide a good support to use DLS as an alternative technique to determine bacterial population. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Characterizing the reproduction number of epidemics with early subexponential growth dynamics

    PubMed Central

    Viboud, Cécile; Simonsen, Lone; Moghadas, Seyed M.

    2016-01-01

    Early estimates of the transmission potential of emerging and re-emerging infections are increasingly used to inform public health authorities on the level of risk posed by outbreaks. Existing methods to estimate the reproduction number generally assume exponential growth in case incidence in the first few disease generations, before susceptible depletion sets in. In reality, outbreaks can display subexponential (i.e. polynomial) growth in the first few disease generations, owing to clustering in contact patterns, spatial effects, inhomogeneous mixing, reactive behaviour changes or other mechanisms. Here, we introduce the generalized growth model to characterize the early growth profile of outbreaks and estimate the effective reproduction number, with no need for explicit assumptions about the shape of epidemic growth. We demonstrate this phenomenological approach using analytical results and simulations from mechanistic models, and provide validation against a range of empirical disease datasets. Our results suggest that subexponential growth in the early phase of an epidemic is the rule rather the exception. Mechanistic simulations show that slight modifications to the classical susceptible–infectious–removed model result in subexponential growth, and in turn a rapid decline in the reproduction number within three to five disease generations. For empirical outbreaks, the generalized-growth model consistently outperforms the exponential model for a variety of directly and indirectly transmitted diseases datasets (pandemic influenza, measles, smallpox, bubonic plague, cholera, foot-and-mouth disease, HIV/AIDS and Ebola) with model estimates supporting subexponential growth dynamics. The rapid decline in effective reproduction number predicted by analytical results and observed in real and synthetic datasets within three to five disease generations contrasts with the expectation of invariant reproduction number in epidemics obeying exponential growth. The

  4. Disease invasion risk in a growing population.

    PubMed

    Yuan, Sanling; van den Driessche, P; Willeboordse, Frederick H; Shuai, Zhisheng; Ma, Junling

    2016-09-01

    The spread of an infectious disease may depend on the population size. For simplicity, classic epidemic models assume homogeneous mixing, usually standard incidence or mass action. For standard incidence, the contact rate between any pair of individuals is inversely proportional to the population size, and so the basic reproduction number (and thus the initial exponential growth rate of the disease) is independent of the population size. For mass action, this contact rate remains constant, predicting that the basic reproduction number increases linearly with the population size, meaning that disease invasion is easiest when the population is largest. In this paper, we show that neither of these may be true on a slowly evolving contact network: the basic reproduction number of a short epidemic can reach its maximum while the population is still growing. The basic reproduction number is proportional to the spectral radius of a contact matrix, which is shown numerically to be well approximated by the average excess degree of the contact network. We base our analysis on modeling the dynamics of the average excess degree of a random contact network with constant population input, proportional deaths, and preferential attachment for contacts brought in by incoming individuals (i.e., individuals with more contacts attract more incoming contacts). In addition, we show that our result also holds for uniform attachment of incoming contacts (i.e., every individual has the same chance of attracting incoming contacts), and much more general population dynamics. Our results show that a disease spreading in a growing population may evade control if disease control planning is based on the basic reproduction number at maximum population size.

  5. Population Growth and Economic Development: Lessons from Selected Asian Countries. Policy Development Studies, Number 10.

    ERIC Educational Resources Information Center

    Mason, Andrew; And Others

    The major findings of a research project on the relationship between population growth and economic development are summarized in this monograph. The study compares recent demographic and economic trends in Japan, Korea, Thailand, and Indonesia to worldwide experience as described by an econometric model of population and development. The study…

  6. A nanostructured surface increases friction exponentially at the solid-gas interface.

    PubMed

    Phani, Arindam; Putkaradze, Vakhtang; Hawk, John E; Prashanthi, Kovur; Thundat, Thomas

    2016-09-06

    According to Stokes' law, a moving solid surface experiences viscous drag that is linearly related to its velocity and the viscosity of the medium. The viscous interactions result in dissipation that is known to scale as the square root of the kinematic viscosity times the density of the gas. We observed that when an oscillating surface is modified with nanostructures, the experimentally measured dissipation shows an exponential dependence on kinematic viscosity. The surface nanostructures alter solid-gas interplay greatly, amplifying the dissipation response exponentially for even minute variations in viscosity. Nanostructured resonator thus allows discrimination of otherwise narrow range of gaseous viscosity making dissipation an ideal parameter for analysis of a gaseous media. We attribute the observed exponential enhancement to the stochastic nature of interactions of many coupled nanostructures with the gas media.

  7. A nanostructured surface increases friction exponentially at the solid-gas interface

    NASA Astrophysics Data System (ADS)

    Phani, Arindam; Putkaradze, Vakhtang; Hawk, John E.; Prashanthi, Kovur; Thundat, Thomas

    2016-09-01

    According to Stokes’ law, a moving solid surface experiences viscous drag that is linearly related to its velocity and the viscosity of the medium. The viscous interactions result in dissipation that is known to scale as the square root of the kinematic viscosity times the density of the gas. We observed that when an oscillating surface is modified with nanostructures, the experimentally measured dissipation shows an exponential dependence on kinematic viscosity. The surface nanostructures alter solid-gas interplay greatly, amplifying the dissipation response exponentially for even minute variations in viscosity. Nanostructured resonator thus allows discrimination of otherwise narrow range of gaseous viscosity making dissipation an ideal parameter for analysis of a gaseous media. We attribute the observed exponential enhancement to the stochastic nature of interactions of many coupled nanostructures with the gas media.

  8. [The impact of population growth on Tamba Kosi, a Himalayan valley in Nepal].

    PubMed

    Verliat, S

    1994-01-01

    Two several-month-long stays in the isolated Tamba Kosi valley in Nepal in 1983 and 1986 allowed an assessment of the importance of changes in rural societies. In about 50 years, the oldest inhabitants of some villages have seen the number of houses quadruple. In the absence of reliable statistical data, the inhabitants say that the Tamba Kosi valley population has doubled in the last 25 years. This population growth exacerbates the multiethnic fight for good land (i.e., ground of modest slope, hot, and humid). Many people have emigrated, which has somewhat eased problems relative to population growth. Soil degradation, which is becoming more and more acute, drives the inhabitants to cut down trees and clear the land for cultivation of new plots. These new plots are running up against steep slopes and high altitude. Most families have barely two hectares, which must suffice to feed 5-6 people on average. This fuels intensification of agricultural production, resulting in low efficacy. Livestock mutilate forests with their hooves and teeth. The marked increase in the variety of livestock accelerates this destruction. Three types of building materials are used in this high valley: thatch, shingles (fir tree), and bamboo matting. The disappearance of wild grasses used to make thatch roofs and people moving to higher and higher altitudes resulted in use of shingles to make roofs. Buildings made of shingles, which demanded changes in construction techniques, changed the conception of homes. They became the preferred building type, which increased the demand for fir trees and deforestation. This lead to a demand for roofing material made of bamboo matting and another change in construction techniques. The retreat of the forest and disappearance of the most wanted plant species are the most spectacular impacts of population growth. This environmental degradation exacerbates erosion at all bioclimatic altitudes.

  9. Exponential integration algorithms applied to viscoplasticity

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.; Walker, Kevin P.

    1991-01-01

    Four, linear, exponential, integration algorithms (two implicit, one explicit, and one predictor/corrector) are applied to a viscoplastic model to assess their capabilities. Viscoplasticity comprises a system of coupled, nonlinear, stiff, first order, ordinary differential equations which are a challenge to integrate by any means. Two of the algorithms (the predictor/corrector and one of the implicits) give outstanding results, even for very large time steps.

  10. Exponentially convergent state estimation for delayed switched recurrent neural networks.

    PubMed

    Ahn, Choon Ki

    2011-11-01

    This paper deals with the delay-dependent exponentially convergent state estimation problem for delayed switched neural networks. A set of delay-dependent criteria is derived under which the resulting estimation error system is exponentially stable. It is shown that the gain matrix of the proposed state estimator is characterised in terms of the solution to a set of linear matrix inequalities (LMIs), which can be checked readily by using some standard numerical packages. An illustrative example is given to demonstrate the effectiveness of the proposed state estimator.

  11. Exponential Thurston maps and limits of quadratic differentials

    NASA Astrophysics Data System (ADS)

    Hubbard, John; Schleicher, Dierk; Shishikura, Mitsuhiro

    2009-01-01

    We give a topological characterization of postsingularly finite topological exponential maps, i.e., universal covers g\\colon{C}to{C}setminus\\{0\\} such that 0 has a finite orbit. Such a map either is Thurston equivalent to a unique holomorphic exponential map λ e^z or it has a topological obstruction called a degenerate Levy cycle. This is the first analog of Thurston's topological characterization theorem of rational maps, as published by Douady and Hubbard, for the case of infinite degree. One main tool is a theorem about the distribution of mass of an integrable quadratic differential with a given number of poles, providing an almost compact space of models for the entire mass of quadratic differentials. This theorem is given for arbitrary Riemann surfaces of finite type in a uniform way.

  12. Impacts of population growth, urbanisation and sanitation changes on global human Cryptosporidium emissions to surface water.

    PubMed

    Hofstra, Nynke; Vermeulen, Lucie C

    2016-10-01

    Cryptosporidium is a pathogenic protozoan parasite and is a leading cause of diarrhoea worldwide. The concentration of Cryptosporidium in the surface water is a determinant for probability of exposure and the risk of disease. Surface water concentrations are expected to change with population growth, urbanisation and changes in sanitation. The objective of this paper is to assess the importance of future changes in population, urbanisation and sanitation on global human emissions of Cryptosporidium to surface water. The GloWPa-Crypto H1 (the Global Waterborne Pathogen model for Human Cryptosporidium emissions version 1) model is presented and run for 2010 and with scenarios for 2050. The new scenarios are based on the Shared Socio-economic Pathways (SSPs) developed for the climate community. The scenarios comprise assumptions on sanitation changes in line with the storylines and population and urbanisation changes from the SSPs. In SSP1 population growth is limited, urbanisation large and sanitation and waste water treatment strongly improve. SSP1* is the same as SSP1, but waste water treatment does not improve. SSP3 sees large population growth, moderate urbanisation and sanitation and waste water treatment fractions that are the same as in 2010. Total global Cryptosporidium emissions to surface water for 2010 are estimated to be 1.6×10 17 oocysts per year, with hotspots in the most urbanised parts of the world. In 2050 emissions are expected to decrease by 24% or increase by 52% and 70% for SSP1, SSP3 and SSP1* respectively. The emissions increase in all scenarios for countries in the Middle East and Africa (MAF) region, while emissions in large parts in Europe decrease in scenarios SSP1 and SSP3. Improving sanitation by connecting the population to sewers, should be combined with waste water treatment, otherwise (SSP1*) emissions in 2050 are expected to be much larger than in a situation with strong population growth and slow development of safe water and

  13. Test Exponential Pile

    NASA Astrophysics Data System (ADS)

    Fermi, Enrico

    The Patent contains an extremely detailed description of an atomic pile employing natural uranium as fissile material and graphite as moderator. It starts with the discussion of the theory of the intervening phenomena, in particular the evaluation of the reproduction or multiplication factor, K, that is the ratio of the number of fast neutrons produced in one generation by the fissions to the original number of fast neutrons, in a system of infinite size. The possibility of having a self-maintaining chain reaction in a system of finite size depends both on the facts that K is greater than unity and the overall size of the system is sufficiently large to minimize the percentage of neutrons escaping from the system. After the description of a possible realization of such a pile (with many detailed drawings), the various kinds of neutron losses in a pile are depicted. Particularly relevant is the reported "invention" of the exponential experiment: since theoretical calculations can determine whether or not a chain reaction will occur in a give system, but can be invalidated by uncertainties in the parameters of the problem, an experimental test of the pile is proposed, aimed at ascertaining if the pile under construction would be divergent (i.e. with a neutron multiplication factor K greater than 1) by making measurements on a smaller pile. The idea is to measure, by a detector containing an indium foil, the exponential decrease of the neutron density along the length of a column of uranium-graphite lattice, where a neutron source is placed near its base. Such an exponential decrease is greater or less than that expected due to leakage, according to whether the K factor is less or greater than 1, so that this experiment is able to test the criticality of the pile, its accuracy increasing with the size of the column. In order to perform this measure a mathematical description of the effect of neutron production, diffusion, and absorption on the neutron density in the

  14. Population growth and development of the psocid Liposcelis brunnea (Psocoptera: Liposcelididae) at constant temperatures and relative humidities.

    PubMed

    Opit, G P; Throne, J E

    2009-06-01

    We studied the effects of temperature and relative humidity on population growth and development of the psocid Liposcelis brunnea Motschulsky. L. brunnea did not survive at 43% RH, but populations increased from 22.5 to 32.5 degrees C and 55-75% RH. Interestingly, we found population growth was higher at 63% RH than at 75% RH, and the greatest population growth was recorded at 32.5 degrees C and 63% RH. At 35 degrees C, L. brunnea nymphal survivorship was 33%, and populations declined or barely grew. L. brunnea males have two to four nymphal instars, and the percentages of males with two, three, and four instars were 13, 82, and 5%, respectively. Female L. brunnea have three to five instars, and the percentages of females with three, four, and five instars were 18, 78, and 4%, respectively. The life cycle was shorter for males than females. We developed temperature-dependent development equations for male and female eggs, individual nymphal, combined nymphal, and combined immature stages and nymphal survivorship. The ability of L. brunnea to multiply rather rapidly at 55% RH may allow it to thrive under conditions of low relative humidity where other Liposcelis species may not. These data give us a better understanding of L. brunnea population dynamics and can be used to help develop effective management strategies for this psocid.

  15. Theory of a microfluidic serial dilution bioreactor for growth of planktonic and biofilm populations.

    PubMed

    Hsu, Sze-Bi; Yang, Ya-Tang

    2016-04-01

    We present the theory of a microfluidic bioreactor with a two-compartment growth chamber and periodic serial dilution. In the model, coexisting planktonic and biofilm populations exchange by adsorption and detachment. The criteria for coexistence and global extinction are determined by stability analysis of the global extinction state. Stability analysis yields the operating diagram in terms of the dilution and removal ratios, constrained by the plumbing action of the bioreactor. The special case of equal uptake function and logistic growth is analytically solved and explicit growth curves are plotted. The presented theory is applicable to generic microfluidic bioreactors with discrete growth chambers and periodic dilution at discrete time points. Therefore, the theory is expected to assist the design of microfluidic devices for investigating microbial competition and microbial biofilm growth under serial dilution conditions.

  16. Resource acquisition, distribution and end-use efficiencies and the growth of industrial society

    NASA Astrophysics Data System (ADS)

    Jarvis, A.; Jarvis, S.; Hewitt, N.

    2015-01-01

    A key feature of the growth of industrial society is the acquisition of increasing quantities of resources from the environment and their distribution for end use. With respect to energy, growth has been near exponential for the last 160 years. We attempt to show that the global distribution of resources that underpins this growth may be facilitated by the continual development and expansion of near optimal directed networks. If so, the distribution efficiencies of these networks must decline as they expand due to path lengths becoming longer and more tortuous. To maintain long-term exponential growth the physical limits placed on the distribution networks appear to be counteracted by innovations deployed elsewhere in the system: namely at the points of acquisition and end use. We postulate that the maintenance of growth at the specific rate of ~2.4% yr-1 stems from an implicit desire to optimise patterns of energy use over human working lifetimes.

  17. 1/f oscillations in a model of moth populations oriented by diffusive pheromones

    NASA Astrophysics Data System (ADS)

    Barbosa, L. A.; Martins, M. L.; Lima, E. R.

    2005-01-01

    An individual-based model for the population dynamics of Spodoptera frugiperda in a homogeneous environment is proposed. The model involves moths feeding plants, mating through an anemotaxis search (i.e., oriented by odor dispersed in a current of air), and dying due to resource competition or at a maximum age. As observed in the laboratory, the females release pheromones at exponentially distributed time intervals, and it is assumed that the ranges of the male flights follow a power-law distribution. Computer simulations of the model reveal the central role of anemotaxis search for the persistence of moth population. Such stationary populations are exponentially distributed in age, exhibit random temporal fluctuations with 1/f spectrum, and self-organize in disordered spatial patterns with long-range correlations. In addition, the model results demonstrate that pest control through pheromone mass trapping is effective only if the amounts of pheromone released by the traps decay much slower than the exponential distribution for calling female.

  18. Population growth and development in the Third World: the neocolonial context.

    PubMed

    Patterson, J G; Shrestha, N R

    1988-01-01

    Less developed countries (LDCs) that were colonies of other nations continued operating under the same social and political structures set up by the former ruling nations. The small minority of elites in the LDCs held on to the power acquired during colonial times. In order to preserve their political and financial status after independence, they maintained their close linkages to the capitalist nations and their multinational corporations (MNCs). The elites did not generally have popular support, however. These capitalist nations and their commercial interests continue to dictate most LDCs development process which supports the financial interests of the MNCs and the local elites and not those of the majority, the poor. The poor realize that they are trapped and unable to break away from the economic and political structures, therefore, to assure some form of security, they have many children which exacerbates their poverty. Yet population control policies based on Malthusian theory and those that rely on such undimensional, technical approaches as family planning alone cannot cure the multidimensional social problems of high population growth and poverty. Neither the Malthusian nor Marxist theories totally explain the situation in the LDCs or even provide workable solutions. Research on population and development in LDCs needs to address both the Malthusian concern for the problems posed by high growth rates and the Marxist critique of class struggle in development trends. To eliminate the trap of poverty and dependent economies, each country must design its own remedies based on its history, culture, and geography and alter the prevailing social, economic, and political power structures in favor of the poor. 6 propositions that must be modified to each nation's particular problems and needs are presented to guide LDCs in formulating or reformulating policies to alleviate the problems of population and poverty.

  19. Individualism in plant populations: using stochastic differential equations to model individual neighbourhood-dependent plant growth.

    PubMed

    Lv, Qiming; Schneider, Manuel K; Pitchford, Jonathan W

    2008-08-01

    We study individual plant growth and size hierarchy formation in an experimental population of Arabidopsis thaliana, within an integrated analysis that explicitly accounts for size-dependent growth, size- and space-dependent competition, and environmental stochasticity. It is shown that a Gompertz-type stochastic differential equation (SDE) model, involving asymmetric competition kernels and a stochastic term which decreases with the logarithm of plant weight, efficiently describes individual plant growth, competition, and variability in the studied population. The model is evaluated within a Bayesian framework and compared to its deterministic counterpart, and to several simplified stochastic models, using distributional validation. We show that stochasticity is an important determinant of size hierarchy and that SDE models outperform the deterministic model if and only if structural components of competition (asymmetry; size- and space-dependence) are accounted for. Implications of these results are discussed in the context of plant ecology and in more general modelling situations.

  20. Potential population growth and harmful effects on humans from bed bug populations exposed to different feeding regimes.

    PubMed

    Pereira, R M; Taylor, A S; Lehnert, M P; Koehler, P G

    2013-06-01

    Effects of host availability and feeding period on bed bugs, Cimex lectularius (L.) (Hemiptera: Cimicidae), were measured. Population growth and the potential harmful effect of bed bug populations on human hosts were modelled. Bloodmeal sizes were affected by both feeding length and frequency, with >2-fold difference between insects fed daily or weekly. Blood consumption increased >2-fold between bed bugs fed occasionally and often, and 1.5-fold between occasional and daily feeding. Bed bugs fed more often than once a week, potentially every 2-4 days. Egg production was associated with nutrition, being strongly correlated with blood consumption in the previous week. Bed bug populations can grow under different feeding regimes and are hard to control with <80% mortality. Bed bugs can survive and grow even in locations with a limited blood supply, where bed bug persistence may be important for the continual spread of populations. Persistence in non-traditional locations and a potential association with human pathogens increase the health risks of bed bugs. Potential blood loss as a result of a bed bug can have serious consequences because uncontrolled populations can reach harmful levels in 3-8 months. The reproduction potential of bed bug populations suggests serious consequences to human health and the need for efficacious control measures. © 2012 The Royal Entomological Society.

  1. The interaction between the spatial distribution of resource patches and population density: consequences for intraspecific growth and morphology.

    PubMed

    Jacobson, Bailey; Grant, James W A; Peres-Neto, Pedro R

    2015-07-01

    How individuals within a population distribute themselves across resource patches of varying quality has been an important focus of ecological theory. The ideal free distribution predicts equal fitness amongst individuals in a 1 : 1 ratio with resources, whereas resource defence theory predicts different degrees of monopolization (fitness variance) as a function of temporal and spatial resource clumping and population density. One overlooked landscape characteristic is the spatial distribution of resource patches, altering the equitability of resource accessibility and thereby the effective number of competitors. While much work has investigated the influence of morphology on competitive ability for different resource types, less is known regarding the phenotypic characteristics conferring relative ability for a single resource type, particularly when exploitative competition predominates. Here we used young-of-the-year rainbow trout (Oncorhynchus mykiss) to test whether and how the spatial distribution of resource patches and population density interact to influence the level and variance of individual growth, as well as if functional morphology relates to competitive ability. Feeding trials were conducted within stream channels under three spatial distributions of nine resource patches (distributed, semi-clumped and clumped) at two density levels (9 and 27 individuals). Average trial growth was greater in high-density treatments with no effect of resource distribution. Within-trial growth variance had opposite patterns across resource distributions. Here, variance decreased at low-population, but increased at high-population densities as patches became increasingly clumped as the result of changes in the levels of interference vs. exploitative competition. Within-trial growth was related to both pre- and post-trial morphology where competitive individuals were those with traits associated with swimming capacity and efficiency: larger heads/bodies/caudal fins

  2. Efficient inference of population size histories and locus-specific mutation rates from large-sample genomic variation data.

    PubMed

    Bhaskar, Anand; Wang, Y X Rachel; Song, Yun S

    2015-02-01

    With the recent increase in study sample sizes in human genetics, there has been growing interest in inferring historical population demography from genomic variation data. Here, we present an efficient inference method that can scale up to very large samples, with tens or hundreds of thousands of individuals. Specifically, by utilizing analytic results on the expected frequency spectrum under the coalescent and by leveraging the technique of automatic differentiation, which allows us to compute gradients exactly, we develop a very efficient algorithm to infer piecewise-exponential models of the historical effective population size from the distribution of sample allele frequencies. Our method is orders of magnitude faster than previous demographic inference methods based on the frequency spectrum. In addition to inferring demography, our method can also accurately estimate locus-specific mutation rates. We perform extensive validation of our method on simulated data and show that it can accurately infer multiple recent epochs of rapid exponential growth, a signal that is difficult to pick up with small sample sizes. Lastly, we use our method to analyze data from recent sequencing studies, including a large-sample exome-sequencing data set of tens of thousands of individuals assayed at a few hundred genic regions. © 2015 Bhaskar et al.; Published by Cold Spring Harbor Laboratory Press.

  3. The impact of invasive grasses on the population growth of Anemone patens, a long-lived native forb.

    PubMed

    Williams, Jennifer L; Crone, Elizabeth E

    2006-12-01

    Negative impacts of invasive plants on natives have been well documented, but much less is known about whether invasive plants can cause population level declines. We used demographic models to investigate the effects of two invasive grasses on the demography and population growth of Anemone patens, a long-lived native perennial of North American grasslands. Demographic data of A. patens growing in patches characterized by Bromus inermis, Poa pratensis, or native grasses were used to parameterize integral projection models. Models based on both average conditions and those allowing for environmental stochasticity indicate that A. patens is slowly increasing in patches of native grass (lambda = 1.02) and declining in patches of invasive grasses, particularly those dominated by B. inermis (lambda = 0.93). Extinction probabilities indicate that A. patens should persist in native grass patches, but has a much higher probability of extinction in Bromus patches compared to Poa patches. While sensitivity analyses showed that survival had the biggest effect on population growth rates in all habitats, results of a Life Table Response Experiment (LTRE) revealed that slower individual growth rates in patches of invasive grasses contributed the most to the observed reduction in population growth. These results suggest that invasive grasses may cause slow declines in A. patens, despite short-term coexistence, and that controlling B. inermis only would not be sufficient to ensure A. patens persistence.

  4. Effects of wind energy production on growth, demography, and survivorship of a Desert Tortoise (Gopherus agassizii) population in Southern California with comparisons to natural populations

    USGS Publications Warehouse

    Lovich, J.E.; Ennen, J.R.; Madrak, S.; Meyer, K.; Loughran, C.; Bjurlin, C.; Arundel, T.; Turner, W.; Jones, C.; Groenendaal, G.M.

    2011-01-01

    We studied a Desert Tortoise (Gopherus agassizii) population at a large wind energy generation facility near Palm Springs, California over six field seasons from 1997 to 2010. We compared growth and demographic parameters to populations living in less disturbed areas; as well as populations of the closely-related and newly-described G. morafkai elsewhere in the Sonoran Desert of Arizona. We marked 69 individuals of all size classes and estimated a population size of 96 tortoises, or about 15.4/km2. Growth rates for males were lower than reported elsewhere, although maximum body size was larger. The smallest female with shelled eggs was 221 mm and males mature at over 200 mm. Mean male size was greater than that of females. The adult sex ratio was not significantly different from unity. Size frequency histograms were similar over time and when compared to most, but not all, G. morafkai populations in the Sonoran Desert. For a cohort of adult females, we estimated mortality at 8.4% annually due, in part, to site operations. This value was low in comparison to many other populations during the same time period. Other than possible differences in growth rate of males and the high survivorship of females, there appear to be few differences between this population and those in more natural areas. The high productivity of food plants at the site and its limited public access may contribute to the overall stability of the population. However, the effects of utility-scale renewable energy development on tortoises in other, less productive, areas are unknown. Additional research (especially controlled and replicated before and after studies) is urgently needed to address this deficiency because of forecasted expansion of utility-scale renewable energy development in the future.

  5. Plant growth promoting rhizobacteria reduce aphid population and enhance the productivity of bread wheat.

    PubMed

    Naeem, Muhammad; Aslam, Zubair; Khaliq, Abdul; Ahmed, Jam Nazir; Nawaz, Ahmad; Hussain, Mubshar

    2018-04-24

    Plant growth promoting rhizobacteria increase plant growth and give protection against insect pests and pathogens. Due to the negative impact of chemical pesticides on environment, alternatives to these chemicals are needed. In this scenario, the biological methods of pest control offer an eco-friendly and an attractive option. In this study, the effect of two plant growth promoting rhizobacterial strains (Bacillus sp. strain 6 and Pseudomonas sp. strain 6K) on aphid population and wheat productivity was evaluated in an aphid susceptible (Pasban-90) and resistant (Inqlab-91) wheat cultivar. The seeds were inoculated with each PGPR strain, separately or the combination of both. The lowest aphid population (2.1tiller -1 ), and highest plant height (85.8cm), number of spikelets per spike (18), grains per spike (44), productive tillers (320m -2 ), straw yield (8.6Mgha -1 ), and grain yield (4.8Mgha -1 ) were achieved when seeds were inoculated with Bacillus sp. strain 6+Pseudomonas sp. strain 6K. The grain yield of both varieties was enhanced by 35.5-38.9% with seed inoculation with both bacterial strains. Thus, the combine use of both PGPR strains viz. Bacillus sp. strain 6+Pseudomonas sp. strain 6K offers an attractive option to reduce aphid population tied with better wheat productivity. Copyright © 2018 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  6. Demographic Stress and Governance: The Influence of Nigerian Population Growth on the Risk of Civil Conflict

    DTIC Science & Technology

    2015-06-01

    increase the risk of conflict? Can good governance either prevent or mitigate such an increased risk? Although the annual rate of world population...growth is declining, the United Nations projects world population to reach a staggering 9.6 billion by 2050. In that time, Nigeria is expected to...63 Illustrations Figure 1 World Population in Increments of One Billion ......................................................9 2

  7. The penny pusher: a cellular model of lens growth.

    PubMed

    Shi, Yanrong; De Maria, Alicia; Lubura, Snježana; Šikić, Hrvoje; Bassnett, Steven

    2014-12-16

    The mechanisms that regulate the number of cells in the lens and, therefore, its size and shape are unknown. We examined the dynamic relationship between proliferative behavior in the epithelial layer and macroscopic lens growth. The distribution of S-phase cells across the epithelium was visualized by confocal microscopy and cell populations were determined from orthographic projections of the lens surface. The number of S-phase cells in the mouse lens epithelium fell exponentially, to an asymptotic value of approximately 200 cells by 6 months. Mitosis became increasingly restricted to a 300-μm-wide swath of equatorial epithelium, the germinative zone (GZ), within which two peaks in labeling index were detected. Postnatally, the cell population increased to approximately 50,000 cells at 4 weeks of age. Thereafter, the number of cells declined, despite continued growth in lens dimensions. This apparently paradoxical observation was explained by a time-dependent increase in the surface area of cells at all locations. The cell biological measurements were incorporated into a physical model, the Penny Pusher. In this simple model, cells were considered to be of a single type, the proliferative behavior of which depended solely on latitude. Simulations using the Penny Pusher predicted the emergence of cell clones and were in good agreement with data obtained from earlier lineage-tracing studies. The Penny Pusher, a simple stochastic model, offers a useful conceptual framework for the investigation of lens growth mechanisms and provides a plausible alternative to growth models that postulate the existence of lens stem cells. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.

  8. Mutually catalyzed birth of population and assets in exchange-driven growth

    NASA Astrophysics Data System (ADS)

    Lin, Zhenquan; Ke, Jianhong; Ye, Gaoxiang

    2006-10-01

    We propose an exchange-driven aggregation growth model of population and assets with mutually catalyzed birth to study the interaction between the population and assets in their exchange-driven processes. In this model, monomer (or equivalently, individual) exchange occurs between any pair of aggregates of the same species (population or assets). The rate kernels of the exchanges of population and assets are K(k,l)=Kkl and L(k,l)=Lkl , respectively, at which one monomer migrates from an aggregate of size k to another of size l . Meanwhile, an aggregate of one species can yield a new monomer by the catalysis of an arbitrary aggregate of the other species. The rate kernel of asset-catalyzed population birth is I(k,l)=Iklμ [and that of population-catalyzed asset birth is J(k,l)=Jklν ], at which an aggregate of size k gains a monomer birth when it meets a catalyst aggregate of size l . The kinetic behaviors of the population and asset aggregates are solved based on the rate equations. The evolution of the aggregate size distributions of population and assets is found to fall into one of three categories for different parameters μ and ν : (i) population (asset) aggregates evolve according to the conventional scaling form in the case of μ⩽0 (ν⩽0) , (ii) population (asset) aggregates evolve according to a modified scaling form in the case of ν=0 and μ>0 ( μ=0 and ν>0 ), and (iii) both population and asset aggregates undergo gelation transitions at a finite time in the case of μ=ν>0 .

  9. Exponential model for option prices: Application to the Brazilian market

    NASA Astrophysics Data System (ADS)

    Ramos, Antônio M. T.; Carvalho, J. A.; Vasconcelos, G. L.

    2016-03-01

    In this paper we report an empirical analysis of the Ibovespa index of the São Paulo Stock Exchange and its respective option contracts. We compare the empirical data on the Ibovespa options with two option pricing models, namely the standard Black-Scholes model and an empirical model that assumes that the returns are exponentially distributed. It is found that at times near the option expiration date the exponential model performs better than the Black-Scholes model, in the sense that it fits the empirical data better than does the latter model.

  10. On exponential stability of linear Levin-Nohel integro-differential equations

    NASA Astrophysics Data System (ADS)

    Tien Dung, Nguyen

    2015-02-01

    The aim of this paper is to investigate the exponential stability for linear Levin-Nohel integro-differential equations with time-varying delays. To the best of our knowledge, the exponential stability for such equations has not yet been discussed. In addition, since we do not require that the kernel and delay are continuous, our results improve those obtained in Becker and Burton [Proc. R. Soc. Edinburgh, Sect. A: Math. 136, 245-275 (2006)]; Dung [J. Math. Phys. 54, 082705 (2013)]; and Jin and Luo [Comput. Math. Appl. 57(7), 1080-1088 (2009)].

  11. Estimates of annual survival, growth, and recruitment of a white-tailed ptarmigan population in Colorado over 43 years

    USGS Publications Warehouse

    Wann, Greg; Aldridge, Cameron L.; Braun, Clait E.

    2014-01-01

    Long-term datasets for high-elevation species are rare, and considerable uncertainty exists in understanding how high-elevation populations have responded to recent climate warming. We present estimates of demographic vital rates from a 43-year population study of white-tailed ptarmigan (Lagopus leucura), a species endemic to alpine habitats in western North America. We used capture-recapture models to estimate annual rates of apparent survival, population growth, and recruitment for breeding-age ptarmigan, and we fit winter weather covariates to models in an attempt to explain annual variation. There were no trends in survival over the study period but there was strong support for age and sex effects. The average rate of annual growth suggests a relatively stable breeding-age population ( λ ¯ = 1.036), but there was considerable variation between years for both population growth and recruitment rates. Winter weather covariates only explained a small amount of variation in female survival and were not an important predictor of male survival. Cumulative winter precipitation was found to have a quadratic effect on female survival, with survival being highest during years of average precipitation. Cumulative winter precipitation was positively correlated with population growth and recruitment rates, although this covariate only explained a small amount of annual variation in these rates and there was considerable uncertainty among the models tested. Our results provide evidence for an alpine-endemic population that has not experienced extirpation or drastic declines. However, more information is needed to understand risks and vulnerabilities of warming effects on juveniles as our analysis was confined to determination of vital rates for breeding-age birds.

  12. Policy Effects in Hyperbolic vs. Exponential Models of Consumption and Retirement

    PubMed Central

    Gustman, Alan L.; Steinmeier, Thomas L.

    2012-01-01

    This paper constructs a structural retirement model with hyperbolic preferences and uses it to estimate the effect of several potential Social Security policy changes. Estimated effects of policies are compared using two models, one with hyperbolic preferences and one with standard exponential preferences. Sophisticated hyperbolic discounters may accumulate substantial amounts of wealth for retirement. We find it is frequently difficult to distinguish empirically between models with the two types of preferences on the basis of asset accumulation paths or consumption paths around the period of retirement. Simulations suggest that, despite the much higher initial time preference rate, individuals with hyperbolic preferences may actually value a real annuity more than individuals with exponential preferences who have accumulated roughly equal amounts of assets. This appears to be especially true for individuals with relatively high time preference rates or who have low assets for whatever reason. This affects the tradeoff between current benefits and future benefits on which many of the retirement incentives of the Social Security system rest. Simulations involving increasing the early entitlement age and increasing the delayed retirement credit do not show a great deal of difference whether exponential or hyperbolic preferences are used, but simulations for eliminating the earnings test show a non-trivially greater effect when exponential preferences are used. PMID:22711946

  13. Policy Effects in Hyperbolic vs. Exponential Models of Consumption and Retirement.

    PubMed

    Gustman, Alan L; Steinmeier, Thomas L

    2012-06-01

    This paper constructs a structural retirement model with hyperbolic preferences and uses it to estimate the effect of several potential Social Security policy changes. Estimated effects of policies are compared using two models, one with hyperbolic preferences and one with standard exponential preferences. Sophisticated hyperbolic discounters may accumulate substantial amounts of wealth for retirement. We find it is frequently difficult to distinguish empirically between models with the two types of preferences on the basis of asset accumulation paths or consumption paths around the period of retirement. Simulations suggest that, despite the much higher initial time preference rate, individuals with hyperbolic preferences may actually value a real annuity more than individuals with exponential preferences who have accumulated roughly equal amounts of assets. This appears to be especially true for individuals with relatively high time preference rates or who have low assets for whatever reason. This affects the tradeoff between current benefits and future benefits on which many of the retirement incentives of the Social Security system rest.Simulations involving increasing the early entitlement age and increasing the delayed retirement credit do not show a great deal of difference whether exponential or hyperbolic preferences are used, but simulations for eliminating the earnings test show a non-trivially greater effect when exponential preferences are used.

  14. Control of Growth Rate by Initial Substrate Concentration at Values Below Maximum Rate

    PubMed Central

    Gaudy, Anthony F.; Obayashi, Alan; Gaudy, Elizabeth T.

    1971-01-01

    The hyperbolic relationship between specific growth rate, μ, and substrate concentration, proposed by Monod and used since as the basis for the theory of steady-state growth in continuous-flow systems, was tested experimentally in batch cultures. Use of a Flavobacterium sp. exhibiting a high saturation constant for growth in glucose minimal medium allowed direct measurement of growth rate and substrate concentration throughout the growth cycle in medium containing a rate-limiting initial concentration of glucose. Specific growth rates were also measured for a wide range of initial glucose concentrations. A plot of specific growth rate versus initial substrate concentration was found to fit the hyperbolic equation. However, the instantaneous relationship between specific growth rate and substrate concentration during growth, which is stated by the equation, was not observed. Well defined exponential growth phases were developed at initial substrate concentrations below that required for support of the maximum exponential growth rate and a constant doubling time was maintained until 50% of the substrate had been used. It is suggested that the external substrate concentration initially present “sets” the specific growth rate by establishing a steady-state internal concentration of substrate, possibly through control of the number of permeation sites. PMID:5137579

  15. The Effect of Population Growth upon the Quantity of Education Children Receive.

    ERIC Educational Resources Information Center

    Simon, Julian L.; Pilarski, Adam M.

    1979-01-01

    There is indeed some negative effect of population growth on the amount of education in developing nations, but the effect is less severe than has been thought. This finding is in sharp contrast to previous conclusions drawn from similar cross-national data. Available from Review of Economics and Statistics, M-8 Littauer Center, Cambridge, MA…

  16. APPLICATION OF ELASTICITY ANALYSES AND PERTURBATION SIMULATIONS IN DETERMINING STRESSOR IMPACTS ON POPULATION GROWTH RATE AND EXTINCTION RISK

    EPA Science Inventory

    Population structure and life history strategies are determinants of how populations respond to stressor-induced impairments in individual-level responses, but a consistent and holistic analysis has not been reported. Effects on population growth rate were modeled using five theo...

  17. Growing pains: How risk perception and risk communication research can help to manage the challenges of global population growth.

    PubMed

    Dawson, Ian G J; Johnson, Johnnie E V

    2014-08-01

    In 2011, the global human population reached 7 billion and medium variant projections indicate that it will exceed 9 billion before 2045. Theoretical and empirical perspectives suggest that this growth could lead to an increase in the likelihood of adverse events (e.g., food shortages, climate change, etc.) and/or the severity of adverse events (e.g., famines, natural disasters, etc.). Several scholars have posited that the size to which the global population grows and the extent to which this growth increases the likelihood of adverse outcomes will largely be shaped by individuals' decisions (in households, organizations, governments, etc.). In light of the strong relationship between perceived risk and decision behaviors, it is surprising that there remains a dearth of empirical research that specifically examines the perceived risks of population growth and how these perceptions might influence related decisions. In an attempt to motivate this important strand of research, this article examines the major risks that may be exacerbated by global population growth and draws upon empirical work concerning the perception and communication of risk to identify potential directions for future research. The article also considers how individuals might perceive both the risks and benefits of population growth and be helped to better understand and address the related issues. The answers to these questions could help humanity better manage the emerging consequences of its continuing success in increasing infant survival and adult longevity. © 2014 Society for Risk Analysis.

  18. A white-box model of S-shaped and double S-shaped single-species population growth

    PubMed Central

    Kalmykov, Lev V.

    2015-01-01

    Complex systems may be mechanistically modelled by white-box modeling with using logical deterministic individual-based cellular automata. Mathematical models of complex systems are of three types: black-box (phenomenological), white-box (mechanistic, based on the first principles) and grey-box (mixtures of phenomenological and mechanistic models). Most basic ecological models are of black-box type, including Malthusian, Verhulst, Lotka–Volterra models. In black-box models, the individual-based (mechanistic) mechanisms of population dynamics remain hidden. Here we mechanistically model the S-shaped and double S-shaped population growth of vegetatively propagated rhizomatous lawn grasses. Using purely logical deterministic individual-based cellular automata we create a white-box model. From a general physical standpoint, the vegetative propagation of plants is an analogue of excitation propagation in excitable media. Using the Monte Carlo method, we investigate a role of different initial positioning of an individual in the habitat. We have investigated mechanisms of the single-species population growth limited by habitat size, intraspecific competition, regeneration time and fecundity of individuals in two types of boundary conditions and at two types of fecundity. Besides that, we have compared the S-shaped and J-shaped population growth. We consider this white-box modeling approach as a method of artificial intelligence which works as automatic hyper-logical inference from the first principles of the studied subject. This approach is perspective for direct mechanistic insights into nature of any complex systems. PMID:26038717

  19. Early vs. asymptotic growth responses of herbaceous plants to elevated CO[sub 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, S.C.; Jasienski, M.; Bazzaz, F.A.

    1999-07-01

    Although many studies have examined the effects of elevated carbon dioxide on plant growth,'' the dynamics of growth involve at least two parameters, namely, an early rate of exponential size increase and an asymptotic size reached late in plant ontogeny. The common practice of quantifying CO[sub 2] responses as a single response ratio thus obscures two qualitatively distinct kinds of effects. The present experiment examines effects of elevated CO[sub 2] on both early and asymptotic growth parameters in eight C[sub 3] herbaceous plant species (Abutilon theophrasti, Cassia obtusifolia, Plantago major, Rumex crispus, Taraxacum officinale, Dactylis glomerata, Lolium multiflorum, and Panicummore » dichotomoflorum). Plants were grown for 118--172 d in a factorial design of CO[sub 2] (350 and 700 [micro]L/L) and plant density (individually grown vs. high-density monocultures) under edaphic conditions approximating those of coastal areas in Massachusetts. For Abutilon theophrasti, intraspecific patterns of plant response were also assessed using eight genotypes randomly sampled from a natural population and propagated as inbred lines.« less

  20. Nonlinear Dynamics and the Growth of Literature.

    ERIC Educational Resources Information Center

    Tabah, Albert N.

    1992-01-01

    Discussion of nonlinear dynamic mechanisms focuses on whether information production and dissemination can be described by similar mechanisms. The exponential versus linear growth of literature is discussed, the time factor is considered, an example using literature from the field of superconductivity is given, and implications for information…